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Recherche d’ondes gravitationnelles
associées aux sursauts gamma dans

les données LIGO-Virgo de
2009-2010

Résumé

Cette thèse présente les résultats de la recherche de signaux impulsion-
nels d’ondes gravitationnelles associés aux sursauts gamma dans les données
2009-2010 des interféromètres LIGO-Virgo. L’étude approfondie des méca-
nismes d’émission d’ondes gravitationnelles par les progéniteurs de sursauts
gamma, ainsi que des mécanismes d’émission de rayons gamma eux-mêmes,
permet de déterminer les caractéristiques essentielles du signal à détecter :
polarisation, délai temporel, etc ... Cette connaissance de l’émission conjointe
permet alors de construire une méthode d’analyse qui inclut les a priori astro-
physiques. Cette méthode est de plus robuste vis-à-vis des bruits transitoires
présents dans les données. L’absence de détection nous permet de placer des
limites observationnelles inédites sur la population des sursauts gamma.

Mots Clés : Rayonnement gravitationnel, Sursauts Gamma, Traitement du
signal, Interférométrie

Abstract

In this thesis we present the results of the search for gravitational wave bursts
associated with gamma-ray bursts in the 2009-2010 data from the LIGO-
Virgo gravitational wave interferometer network. The study of gamma-ray
bursts progenitors, both from the gamma-ray emission and the gravitational
wave emission point of view, yields the characteristic of the sought signal:
polarization, time delays, etc ... This knowledge allows the construction
of a data analysis method which includes the astrophysical priors on joint
gravitational wave and gamma-ray emission, and moreover which is robust
to non-stationary transient noises, which are present in the data. The lack
of detection in the analyzed data yields novel observational limits on the
gamma-ray burst population.

Keywords: Gravitational waves, Gamma ray bursts, Signal processing, In-
terferometry

Disclaimer: The work presented in this thesis has not been reviewed by
the LIGO Scientific Collaboration or the Virgo Collaboration. Therefore it
should not be taken as representative of the scientific opinion of either col-
laboration. This document has been assigned Laboratoire de l’Accélérateur
Linéaire number LAL 11-119, LIGO document number LIGO-T1100248,
Virgo document number VIR-0347A-11.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



Contents

Remerciements 7

Synthèse 9

Introduction 21

1 Gravitational Waves 23
1.1 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 Linearized General Relativity . . . . . . . . . . . . . . . . . . . 25
1.3 Generation of Gravitational Waves . . . . . . . . . . . . . . . . 27
1.4 Gravitational waves properties . . . . . . . . . . . . . . . . . . . 29
1.5 Example of Gravitational Radiation . . . . . . . . . . . . . . . . 31

2 Gravitational Wave Detectors 35
2.1 Detection principle . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Interferometer fundamental noise . . . . . . . . . . . . . . . . . 40

2.2.1 Seismic noise . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.3 Thermal noise . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.4 Final sensitivity . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Comparing gravitational wave sources with detector noise . . 51

3 Gravitational Wave sources 53
3.1 Continuous wave signals . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 Binary compact stars . . . . . . . . . . . . . . . . . . . . 57

3.2 Stochastic background . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 X-ray binaries . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Compact binary coalescence . . . . . . . . . . . . . . . . 62
3.3.3 Massive star collapse . . . . . . . . . . . . . . . . . . . . 68

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



4 Contents

4 Gamma-ray bursts 73
4.1 Relativistic jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Jet progenitors . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Jet properties . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Gamma-ray burst spacecrafts . . . . . . . . . . . . . . . . . . . 78
4.2.1 Third Interplanetary Network . . . . . . . . . . . . . . . 79
4.2.2 Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.3 Fermi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.4 Sky localization model . . . . . . . . . . . . . . . . . . . 79

4.3 Gamma-ray burst and gravitational wave coincidence . . . . . 80
4.3.1 Coalescence model . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Stellar collapse model . . . . . . . . . . . . . . . . . . . . 82
4.3.3 Coincidence with GRB trigger . . . . . . . . . . . . . . . 82

4.4 Polarization of gravitational waves associated with GRBs . . . 84
4.4.1 Jet opening angles . . . . . . . . . . . . . . . . . . . . . . 85
4.4.2 Gravitational wave circular polarization . . . . . . . . . 85

4.5 GRB event rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Relevance of triggered searches . . . . . . . . . . . . . . . . . . . 88

5 Gravitational wave data analysis tools 93
5.1 Optimal matched filtering . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Discrete sampling and multivariate Gaussian distributions . . 96
5.3 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4 Time-frequency representation . . . . . . . . . . . . . . . . . . . 100
5.5 From matched filtering to clustering . . . . . . . . . . . . . . . 103
5.6 Coherent analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7 Consistency tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7.1 Projection statistics . . . . . . . . . . . . . . . . . . . . . 111
5.7.2 Coherent cuts . . . . . . . . . . . . . . . . . . . . . . . . 114

5.8 Robust statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8.1 Two non aligned detectors statistic . . . . . . . . . . . . 116
5.8.2 Three non aligned detectors statistic . . . . . . . . . . . 118
5.8.3 Power law slope estimation . . . . . . . . . . . . . . . . 119

5.9 Sky location statistic . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.10 Combining clustering and coherent analysis . . . . . . . . . . . 122
5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Background estimation 125
6.1 Poisson statistics limitation . . . . . . . . . . . . . . . . . . . . . 126

6.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.1.2 The case of two detectors . . . . . . . . . . . . . . . . . 128
6.1.3 The case of three detectors . . . . . . . . . . . . . . . . . 131
6.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Rate fluctuations limitation . . . . . . . . . . . . . . . . . . . . . 137

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



Contents 5

6.2.1 Measure of rate fluctuations . . . . . . . . . . . . . . . . 138
6.2.2 Rate fluctuations model . . . . . . . . . . . . . . . . . . 139
6.2.3 Monte Carlo verification . . . . . . . . . . . . . . . . . . 140

6.3 Case of triggered gravitational wave search . . . . . . . . . . . 141

7 GRB analysis for S6/VSR2-3 143
7.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Analysis pipeline description . . . . . . . . . . . . . . . . . . . . 148

7.2.1 Network selection . . . . . . . . . . . . . . . . . . . . . . 148
7.2.2 Trigger generation . . . . . . . . . . . . . . . . . . . . . . 151
7.2.3 Analysis Tuning . . . . . . . . . . . . . . . . . . . . . . . 152
7.2.4 Analysis optimization procedure . . . . . . . . . . . . . 162

7.3 Circular polarization assumption validation . . . . . . . . . . . 165
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4.1 Per GRB detection . . . . . . . . . . . . . . . . . . . . . 167
7.4.2 Per GRB exclusion . . . . . . . . . . . . . . . . . . . . . 170
7.4.3 Population detection . . . . . . . . . . . . . . . . . . . . 170
7.4.4 Population exclusion . . . . . . . . . . . . . . . . . . . . 175

7.5 Comparison with other gravitational wave searches . . . . . . 178
7.5.1 Dedicated inspiral search . . . . . . . . . . . . . . . . . . 179
7.5.2 All-sky gravitational wave burst search . . . . . . . . . 180

Conclusion 185

A Background estimation computations 189
A.1 Two-detector integral . . . . . . . . . . . . . . . . . . . . . . . . 189
A.2 Three-detector integral . . . . . . . . . . . . . . . . . . . . . . . 190
A.3 “OR” case for D detectors . . . . . . . . . . . . . . . . . . . . . . 191
A.4 Monte Carlo for all-sky background estimation . . . . . . . . . 192
A.5 Estimation error variance computation . . . . . . . . . . . . . . 193

B Detailed S6/VSR2-3 GRB analysis results 195

Bibliography 207

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



Remerciements

Tout d’abord, je souhaiterais remercier Guy Wormser et Achille Stocchi de
m’avoir accueilli au laboratoire, ainsi que les services administratifs du la-
boratoire qui mon permit de ne pas être distrait de mon travail de thèse.
En particulier Annie Huguet, Isabelle Valeon et Sabine Rayaume du service
mission (appelé par certain « service vacances »), pour l’assistance dans mes
deux douzaines de missions, sans lesquelles cette thèse ne serait pas la même.

Je souhaiterais exprimer ma gratitude à Peter Shawhan et Eric Plagnol
d’avoir accepté la lourde tache de rapporteur, à Achille Stocchi d’avoir pris en
charge la présidence du jury, et à Frédérique Marion et Robert Mochkovich
d’avoir évaluer mon travail.

Je suis reconnaissant à Patrice Hello de m’avoir encadré durant cette
thèse. Il a toujours était prêt à répondre à mes questions ou à m’écouter
expliquer une idée. Mais il m’a aussi laisser la liberté de poursuivre mes
sujets de recherche.

Merci à l’ensemble du groupe Virgo à Orsay pour la magnifique ambiance
dans l’extension à la dérive du bâtiment 208. En particulier, Nicolas pour les
discussions dans le RER, Fabien pour les sous, et Arun, Florent, Miltos et
Samuel pour m’avoir supporté dans leur bureau.

Je souhaiterais remercier mes collaborateurs : Patrick Sutton, Isabel Leo-
nor et Gareth Jones ; sur le travail desquels je me suis reposer pour construire
cette thèse. Et de manière plus générale les collaborations LIGO et Virgo
pour les données collecté et les ressources mises à ma disposition.

Je remercie également ceux qui ont contribué à mon engagement dans
cette direction. En particulier Patrick Sutton qui m’a fait découvrir le mi-
lieu des ondes gravitationnelles en stage, ainsi que plus en amont, Sławomir
Brzezowski et Yann Brunel pour leurs ambitieux cours de physique.

Enfin, je suis redevable à tous ceux qui ont contribué à rendre ce manus-
crit compréhensible en le corrigeant tant du point de vue du fond que de la
forme. Merci Patrice, Marie-Anne, Nicolas, Fabien, Maman, Papa et Simon.
Les fautes dans ces remerciements devrait vous donnez une idée du travail
qu’ils ont eu à faire.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



Synthèse

Les ondes gravitationnelles sont l’une des prédictions de la théorie de la
Relativité Générale d’Einstein. Bien qu’elles aient été prédites depuis près
d’un siècle, elles n’ont pas encore été observées directement. Pour le moment
la seule confirmation observationnelle de l’existence d’ondes gravitationnelles
est indirecte. Pour quelques systèmes d’étoiles à neutron double en orbite
proche une diminution de la période orbitale a été observée grâce à l’analyse
des impulsions radio émises par l’une des étoiles à neutron (qui est donc un
pulsar). Cette décroissance de la période orbitale est expliquée par la perte
d’énergie du système par rayonnement gravitationnel. Les observations sont
effectuées pour certains systèmes depuis les années 70, et elles sont en parfait
accord avec les prédictions de la Relativité Générale avec une précision de
l’ordre du pour mille.

En parallèle un important effort expérimental a été entrepris depuis les
années 60 afin d’observer directement les effets des ondes gravitationnelles
sur Terre. Cette thèse s’inscrit dans cette effort en participant à l’analyse
des données des détecteurs d’ondes gravitationnelles LIGO et Virgo qui sont
les instruments les plus sensibles jusqu’à présent. En particulier nous nous
intéressons à la détection d’ondes gravitationnelles qui pourraient être émises
par les progéniteurs de sursauts gamma. Ces évènements catastrophiques
sont détectés grâce à leur émission de photons gamma, mais ils pourraient
être aussi à l’origine d’une importante émission d’ondes gravitationnelles.

Propriétés des ondes gravitationnelles

La théorie de la Relativité Générale décrit le mouvement d’objets sous l’in-
fluence de l’interaction gravitationnelle. Le cadre théorique est que l’espace
temps est décrit par une variété pseudo-riemannienne et les masses tests
se déplacent suivant les géodésiques de cette variété. La métrique de la va-
riété est déterminée par la présence d’une distribution de masse-énergie dans
l’univers. Ainsi la masse-énergie courbe l’espace et en retour la courbure de
l’espace détermine comment les objets se déplacent. L’équation d’Einstein

Gµν =
8πG

c4
Tµν ,
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10 Synthèse

décrit la formation de cette courbure. Le tenseur d’Einstein Gµν est seule-
ment fonction de la métrique et de ses deux premières dérivées spatio-
temporelles, alors que le tenseur énergie-impulsion Tµν est le terme source
et décrit la distribution de masse-énergie dans l’univers.

L’équation d’Einstein est non-linéaire et il est impossible de la résoudre
analytiquement à part dans quelque cas simples. Néanmoins dans la limite où
la courbure est faible ces équations peuvent être linéarisées, ce qui donne lieu
à deux degrés de liberté dynamique de la courbure. L’évolution de ces deux
degrés de liberté est décrite par de simples équations de propagation d’ondes
avec une célérité égale à la vitesse de la lumière. Ces deux degrés de liberté
représentent les deux polarisations des ondes gravitationnelles pouvant se
propager dans une direction donnée.

Les deux degrés de liberté sont habituellement décrits par deux polarisa-
tions linéaires : « plus » et « croix », distinguées par leur effet sur un cercle
de masses libres, le plan du cercle étant orthogonal à la direction de propa-
gation. Une onde polarisée « plus » déforme le cercle de masse libre en une
ellipse qui est alternativement écrasée et étirée suivant une direction don-
née, alors qu’une onde polarisée « croix » a le même effet mais suivant une
direction tournée de 45°. Bien sûr toutes les combinaisons linéaires de ces
deux polarisations sont possibles. En particulier, si l’onde polarisée « plus »
et « croix » sont d’amplitude égale et décalé d’un quart de période, l’onde
totale est dite polarisée circulairement.

L’équation d’Einstein décrit aussi l’émission d’ondes gravitationnelles par
des masses en mouvement. Dans ce cadre, la courbure n’est pas nécessaire-
ment faible, mais dans la limite où le mouvement de ces masses est lent par
rapport à la vitesse de la lumière, l’émission des ondes gravitationnelles est
bien décrite par l’évolution du moment quadrupolaire de ces masses.

Une discussion plus détaillée des propriétés des ondes gravitationnelles
est données dans le chapitre 1.

Détecteurs d’ondes gravitationnelles

Les détecteurs d’ondes gravitationnelles LIGO et Virgo utilisent comme prin-
cipe de détection l’effet des ondes gravitationnelles sur des masses libres.
Le concept de base est celui de l’interféromètre de Michelson, la lumière
transmise par cet interféromètre dépend de la différence de longueur entre
les deux bras orthogonaux qui le composent. Les miroirs formant l’inter-
féromètre étant suspendus, ils peuvent être considérés comme des masses
libres dans le plan horizontal pour des ondes gravitationnelles de haute fré-
quence par rapport aux résonances des suspensions. Les fréquences de ces
résonances sont en général inférieures à quelques hertz. Ainsi, une onde gra-
vitationnelle se propageant orthogonalement au plan de l’interféromètre et
d’axe de polarisation colinéaire à l’un des bras, alternativement allonge un
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Synthèse 11

bras de l’interféromètre et raccourcit l’autre, ceci a pour effet de modifier la
puissance transmise par l’interféromètre. La variation relative de la longueur
des bras est égale à l’amplitude de l’onde gravitationnelle, et cet effet devrait
permettre la détection du passage d’une onde gravitationnelle.

Néanmoins, les ondes gravitationnelles ne sont pas le seul phénomène
physique induisant une fluctuation de la puissance transmise par l’interféro-
mètre. La surface des miroirs formant l’interféromètre fluctue thermiquement
et la position de ces miroirs est perturbée par les vibrations du sol trans-
mises à travers le système de suspension. Aussi, la précision de la mesure
de la puissance transmise par l’interféromètre n’est pas infinie, elle est entre
autre limitée par les fluctuations quantiques du nombre de photons détecté
par une photo-diode pour une puissance incidente donnée.

De nombreuses améliorations ont été apportées à ce concept de simple
interféromètre de Michelson pour pallier aux bruits sismiques, thermiques et
quantiques, mais aussi pour réduire de nombreuses autres sources de bruit
que nous ne mentionneront pas ici. Au final une sensibilité suffisante a été
obtenue pour espérer extraire du bruit des ondes avec une amplitude infé-
rieure à 10−21 dans la bande de fréquence sensible des détecteurs, qui va de
quelque hertz à quelque milliers de hertz.

Une discussion plus détaillée des détecteurs interféromètrique d’ondes
gravitationnelles est donnée dans le chapitre 2

Sursauts gamma

Les sursauts gamma sont de brèves bouffées de photons gamma provenant
de points particuliers dans le ciel. Ils ont été découverts dans les années 70.
Leur durée typique est comprise entre 0.1 − 100 s et le spectre en énergie est
piqué dans la gamme de 10−100 keV. Les quarante années d’observation qui
ont suivi la découverte des sursauts gamma ont permis d’avoir une certaine
compréhension de leur origine.

La distribution de la durée des sursauts a une structure bimodale, avec
des sursauts courts (≲ 2 s) et des sursauts longs (≳ 2 s), néanmoins il n’y
a pas de séparation nette entre ces deux familles. Ces sursauts sont distri-
bués uniformément sur le ciel et leurs progéniteurs sont situés à des dis-
tance cosmologiques de l’ordre de 10 Gpc. L’énergie émise par la source sous
forme de photons gamma durant le sursaut est de l’ordre de 10−3 M⊙c2 (où
M⊙ = 1 masse solaire). Les sursauts courts sont le plus probablement dus
à la coalescence d’une étoile à neutron avec une autre étoile à neutron ou
un trou noir. Les sursauts longs sont, pour leur part, probablement produits
par l’effondrement d’une étoile massive en rotation rapide, c’est-à-dire un cas
extrême de supernova qui est appelé hypernova. Lors de cet effondrement un
trou noir entouré d’un disque de matière nucléaire ou bien une étoile à neu-
tron magnétisée et en rotation rapide est formée. Dans tous les cas de figure
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12 Synthèse

un jet de matière se propageant à des vitesses relativistes est éjecté par l’évé-
nement cataclysmique. Ce jet émet du rayonnement gamma principalement
suivant un cône autour de l’axe de rotation de symétrie du système. L’angle
d’ouverture de ce cône est typiquement de l’ordre de 5° pour les sursauts
longs et de l’ordre de 30° pour les sursauts courts, avec une grande dis-
persion dans les deux cas. Pour plus de détails sur la phénoménologie des
sursauts gamma voir section 4.1.

Les sursauts gamma sont détectés par un réseau de satellites avec un
taux de l’ordre de un par jour. La direction dans le ciel et le temps de début
de l’émission gamma sont publiés par le réseau GCN (Gamma-ray burst
Coordinates Network) avec un temps de latence de l’ordre de la minute.

Émission d’ondes gravitationnelles

Une émission d’ondes gravitationnelles par le cœur du progéniteur est atten-
due à la fois pour les sursauts courts et pour les sursauts longs

Pour le cas des sursauts courts le modèle de coalescence d’astres compacts
doubles prédit une émission d’ondes gravitationnelles, dans la bande passante
des détecteurs actuels, durant les quelques dizaines de secondes avant la coa-
lescence. Étant donné que l’émission est due à la rotation orbitale du système
binaire et que l’axe de rotation pointe approximativement vers l’observateur,
l’onde reçue par l’observateur sera polarisée circulairement.

Pour le cas des sursauts longs la situation est moins claire, étant donné
qu’il est très difficile de modéliser avec précision l’effondrement d’une étoile
massive. Néanmoins les modèles qui prédisent une grande énergie émise sous
forme d’ondes gravitationnelles correspondent à des instabilités rotation-
nelles du cœur de l’étoile. Dans le cas où le cœur est une étoile à neutron
le principal cas de figure est la formation de mode barre (excès de densité
ayant la forme d’une barre) dans l’étoile. Dans le cas où est un trou noir en-
touré d’un disque d’accrétion les principaux cas de figure sont la formation
de mode barre dans le disque, ou bien la fragmentation du disque. Dans ce
dernier cas le cœur s’apparente alors à un système binaire formé du trou noir
et du fragment en question.

Ces instabilités rotationnelles se développent dans les quelques secondes
qui suivent la formation des objets en question. Dans tous ces cas de figures
la distribution de masse est approximativement en rotation rigide autour de
l’axe pointant vers l’observateur, et les ondes gravitationnelles reçues par
l’observateur serons donc aussi polarisées circulairement.

Dans le cadre de l’effondrement stellaire il existe de nombreux autres
modèles d’émission qui ne donnent pas nécessairement lieu à une émission
polarisée circulairement. Mais dans tous ces autre modèles, l’émission atten-
due provenant d’un progéniteur extra-galactique ne serait pas visible avec
les détecteurs actuels. Nous ne prendrons donc pas en compte ces modèles
dans la suite.
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Synthèse 13

Nous discutons en détails l’émission par les coalescence d’astres compacts
dans la section 3.3.2 et pour l’effondrement stellaire dans la section 3.3.3.

Coïncidence temporelle

Le cœur des progéniteurs de sursauts gamma émet potentiellement des ondes
gravitationnelles, alors que les photons formant le sursaut lui même sont
émis à une grande distance du cœur dans le jet relativiste. Ceci résulte en un
décalage temporel entre l’arrivée des ondes gravitationnelles et des photons
gamma, et ce décalage doit être pris en compte lors d’une analyse qui associe
ces deux messagers.

Pour le cas des sursauts courts le jet relativiste est créé en moins de 1
seconde après la coalescence, et la propagation du jet entre sa création et
l’émission de photon gamma prends au plus quelque secondes du point de
vu de l’observateur. Cette durée courte s’explique par la contraction relati-
viste des distances dans le jet du point de vue de l’observateur, en réalité
le temps de propagation est beaucoup plus long dans le référentiel du cœur
du progéniteur. Il en résulte que les ondes gravitationnelles créées par une
coalescence de binaire devraient arriver au plus tôt une minute avant, et au
plus tard en même temps que les photons gamma.

Pour le cas des sursauts long la situation est encore une fois plus com-
plexe. Le jet doit en premier percer l’enveloppe de l’étoile ce qu’il fait avec
une vitesse non relativiste en un temps qui peut durer jusqu’à 100 s. En-
suite le temps de propagation du jet jusqu’à émission de photons gamma
est plus long et peut durer jusqu’à 200 s dans le référentiel de l’observateur.
De plus l’évolution du cœur du progéniteur peut se dérouler en deux étapes,
avec en premier la formation d’une étoile à neutron puis celle d’un trou noir
avec un disque d’accrétion dense. Ces deux évènements peuvent être séparés
d’au plus 100 s avec une possible émission d’ondes gravitationnelles associée
à chacun d’entre eux. Au final pour prendre en compte tout les cas possible
nous faisons une recherche d’ondes gravitationnelles associées à un sursaut
gamma dans les dix minutes précédant le début du sursaut et incluant toute
la durée du sursaut. Ce choix de fenêtre d’analyse inclut automatiquement le
cas des sursauts courts, nous le discutons de manière plus approfondie dans
la section 4.3.

Analyse de donnée

Après étalonnage, les données récoltées par un détecteur interférometrique
sont sous la forme d’une série temporelle

d(t) = F+(θ, φ)h+(t) + F×(θ, φ)h×(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s(t)

+ n(t), (1)
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14 Synthèse

où h+(t) et h×(t) sont les amplitudes des deux polarisations des ondes gra-
vitationnelles traversant le détecteur, F+(θ, φ) et F×(θ, φ) sont des facteurs
géométriques dépendant de la direction de propagation (θ, φ) de l’onde, et
n(t) est la somme des bruits du détecteur. Le but premier de l’analyse de
données des détecteurs d’ondes gravitationnelles est de déceler le signal s(t)
qui est éventuellement caché dans les données d(t) par le bruit n(t).

En règle générale ces analyses de données peuvent être répertoriées sui-
vant deux critères : la connaissance nécessaire de la forme d’onde et la ma-
nière de combiner les données de plusieurs détecteurs. Pour le premier cri-
tère, si la forme attendue de l’onde gravitationnelle est bien connue et décrite
par plusieurs paramètres une recherche par corrélation avec une famille de
calques peut être effectuée ; dans le cas contraire une méthode plus générale
de recherche d’excès de puissance dans le plan temps-fréquence des données
doit être utilisée. Pour le second critère, le point de départ est que l’onde
gravitationnelle (h+(t), h×(t)) qui traverse chaque détecteur est la même, au
temps de propagation entre les détecteurs près. Deux approches sont utilisées
pour prendre en compte cette propriété : rechercher le signal dans chaque
détecteur de manière indépendante, le décrire avec plusieurs paramètres, et
vérifier si le même signal est observé par plusieurs détecteurs ; ou bien com-
biner de manière cohérente les données des différents détecteur, c’est à dire
construire de nouvelles séries temporelles à partir des données et rechercher
un signal dans ces données combinées. La seconde approche est en principe
plus sensible, mais n’est pas toujours réalisable à cause de sa complexité nu-
mérique, les combinaisons cohérente devant être créées séparément pour une
grille fine de positions dans le ciel.

Pour la recherche d’ondes gravitationnelles associées aux sursauts gamma
nous adoptons une méthode de recherche par excès de puissance dans des
données combinées de manière cohérente. Les raisons de ce choix sont que
pour le modèle d’effondrement d’étoile massive il n’y a pas de prédiction
précise de la forme des ondes gravitationnelles émises, et que la connais-
sance de la position dans le ciel et du temps du sursaut simplifie grandement
la méthode cohérente d’analyse. Une information cruciale apportée par les
modèles du cœur des sursauts gamma est que les ondes gravitationnelles dé-
tectables sont polarisées circulairement, c’est à dire qu’il n’y a qu’un seul
degré de liberté pour l’onde. Du fait de cette propriété le signal observé
dans les détecteurs est corrélé même en utilisant seulement deux détecteurs.
Sans cette contrainte au moins trois détecteurs seraient nécessaires pour
obtenir une corrélation. Les corrélations des données entre détecteurs nous
permettent de réaliser des combinaisons linéaires où le signal se combine de
manière constructive ou bien destructive. La combinaison constructive est
utilisé pour rechercher le signal de manière plus sensible, alors que les com-
binaisons destructives sont utilisées pour rejeter les coïncidences fortuites
dues aux bruits des détecteurs qui restent présentes dans ces dernières. Au
final, des candidats à une détection d’ondes gravitationnelles sont générés et
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Synthèse 15

classés selon une statistique de détection, une quantité qui croît lorsque un
candidat ressemble plus à un signal qu’à du bruit.

Une fois que la méthode d’analyse est déterminée, il est nécessaire de
caractériser sa capacité à séparer le signal du bruit. La distribution de la
statistique de détection due au seul bruit de détecteurs ne peut pas être dé-
terminée a priori car les données des détecteurs contiennent de nombreux
bruit transitoires qui ne sont pas modélisés (le bruit n’est pas gaussien). La
distribution est donc obtenue en analysant les données des détecteurs après
les avoir décalées en temps pour enlever les corrélations dues aux ondes gra-
vitationnelles. Cette distribution permet de déterminer le seuil en statistique
de détection nécessaire pour qu’un signal soit détecté avec une probabilité
de fausse détection donnée, et donc de déclarer si parmi les évènements ob-
tenus au cours de l’analyse un ou plusieurs candidats correspondent à des
détections d’ondes gravitationnelles.

Ce seuil en statistique de détection est également nécessaire pour détermi-
ner la sensibilité de l’analyse. Des signaux d’ondes gravitationnelles peuvent
être aisément rajoutées aux données des détecteurs en s’inspirant de l’équa-
tion (1), ce qui permet de déterminer la valeur de la statistique de détection
pour une amplitude d’onde gravitationnelle donnée, c’est-à-dire d’obtenir
l’amplitude nécessaire pour détecter une onde gravitationnelle d’une forme
donnée. En l’absence de détection d’un signal, la connaissance de la sensibilité
permet d’exclure le passage d’ondes gravitationnelles de grande amplitude.
Jusqu’à présent tout les résultats des détecteurs d’ondes gravitationnelles
sont de ce type.

Pour une discussion abstraites des méthodes d’analyses de données des
détecteurs d’ondes gravitationnelles voir chapitre 5, et pour une description
de l’analyse utilisé pour obtenir les résultats ci-dessus voir section 7.2.

Résultats

Les détecteurs LIGO et Virgo ont collecté conjointement des données entre le
7 Juillet 2009 et le 20 Octobre 2010. Le détecteur Virgo est situé à Cascina en
Italie, et les deux détecteurs LIGO sont situés aux États Unis, à Livingston
en Louisianne et à Hanford dans l’état de Washington. Durant cette période
les satellites gamma ont communiqué à travers le réseau GCN les informa-
tions sur la détection de 407 sursauts gamma. Étant donné que les détecteurs
d’ondes gravitationnelles ne récoltent pas des données de qualité en perma-
nence nous avons analysé les données de ces détecteurs en association avec
seulement 153 sursauts gamma.

Nous avons analysé chacun des sursauts gamma séparément, pour chaque
sursauts gamma nous avons ajusté par une procédure automatique les para-
mètres de l’analyse afin de séparer au mieux le bruit de fond des détecteurs
au moment du sursaut d’un éventuel signal provenant de la direction dans
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16 Synthèse

Figure 1 – Histogramme sur l’ensemble des 153 sursauts gamma analysés de
la distance d’exclusion à 90% de confiance pour les 3 formes d’ondes gravita-
tionelles correspondant au modèle d’effondrement stellaire. Les 3 fréquences
des sinusoïdes avec enveloppe gaussienne sont : 100, 150 et 300 Hz. Pour
chacune de ces formes d’ondes une émission d’une énergie de 10−2 M⊙c2 sous
forme d’ondes gravitationnelles est présupposée.

le ciel du sursaut. Nous avons aussi estimé le bruit de fond et la sensibilité
de l’analyse pour chacun de ces sursauts.

L’ensemble des évènements trouvés pour ces 153 sursauts gamma est
consistent avec la distribution de bruit de fond estimée, cet ensemble a une
probabilité d’être due uniquement au bruit de fond de 25%. Étant donnée
cette non détection nous avons établi des limites supérieures sur plusieurs
modèles d’émission d’ondes gravitationnelles. En tout, nous avons considéré 5
familles de forme d’ondes : 2 correspondant à la coalescence d’astres compacts
et 3 correspondant à l’effondrement d’étoiles massives en rotation.

Les deux familles de coalescence sont les binaires étoile à neutron - trou
noir et les étoiles à neutron doubles. La distribution des masses des deux
astres compacts utilisée pour chaque famille de binaire est représentative de
notre connaissance sur la formation de ces systèmes binaires. Cette connais-
sance provient des observations radio et des simulations numériques de leur
formation. La forme de l’onde est le résultat d’un développement perturbatif
de la Relativité Générale.

Comme nous l’avons discuté précédemment, il n’existe pas de modèle
précis de l’effondrement stellaire. Afin de caractériser d’une manière simple
notre recherche d’ondes gravitationnelles, nous considérons une simple onde
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Synthèse 17

Figure 2 – Histogramme sur l’ensemble des 153 sursauts gamma analysés
de la distance d’exclusion à 90% de confiance pour les 2 formes d’ondes cor-
respondant au modèle de coalescence : coalescence de deux étoiles à neutrons
(NSNS) et coalescence d’une étoile à neutron avec un trou noir (NSBH).

sinusoïdale polarisée circulairement avec une enveloppe gaussienne d’une di-
zaine de cycles. Cette forme devrait être caractéristique de l’émission par
des instabilités rotationnelles, et nous choisissons l’amplitude de l’onde cor-
respondante à la valeur haute de l’énergie gravitationnelles potentiellement
émise, qui est de E ∼ 10−2 M⊙c2. La bande de fréquence pour laquelle les
détecteurs sont sensibles à des distances extra-galactiques est 60 − 500 Hz,
nous considérons donc 3 fréquence pour les sinusoïdes : 100, 150 et 300 Hz
afin de couvrir cette bande.

Pour ces cinq familles les distributions des distances d’exclusions sur
l’ensemble des sursauts gamma analysés sont montrées sur les figures 1 et 2.
Typiquement nous obtenons que les sursauts sont à plus d’une dizaines de
Mpc. Ces distances d’exclusions par sursauts peuvent être combinées en une
exclusion sur des modèles de distribution en distance de la population de
sursauts gamma.

Nous considérons un modèle simple de la population de sursauts gamma.
Nous supposons que tous les sursauts gamma émettent une onde gravitation-
nelle sinusoïdale à 150 Hz avec une enveloppe gaussienne et une énergie émise
de 10−2 M⊙c2. Pour la distribution en distance nous considérons qu’une frac-
tion f des sursauts est distribuée uniformément dans un volume de rayon
R, le reste étant suffisamment loin pour pouvoir être considérer comme à
l’infini. En combinant les courbes de sensibilités de chacun des sursauts nous
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18 Synthèse

Figure 3 – Exclusion sur la fonction de répartition de la distance des sur-
sauts gamma en supposant la forme d’onde sinusoïdale avec enveloppe gaus-
sienne et une énergie émise de 10−2 M⊙c2. L’espace des paramètres au dessus
de la ligne violette est exclue avec 90% de confiance par la non observa-
tion d’ondes gravitationnelles associés aux 153 sursauts gamma analysés. La
courbe rouge montre la distribution des décalages vers le rouge observée pour
les sursauts gamma détectés par le satellite Swift entre le début de la mis-
sion (en 2005) et août 2010. La courbe pointillée bleue est l’extrapolation
des résultats pour des détecteurs plus sensibles d’un facteur 10, qui est la
sensibilité attendue pour les détecteurs de seconde génération.

obtenons une exclusion sur l’espace de paramètres (f, R). Cette exclusion
est représentée sur la figure 3, avec la distance mesurée en terme de décalage
vers le rouge. Pour référence, le décalage vers le rouge est proportionnel à
la distance pour des distances inférieures à ∼ 1 Gpc, et un décalage vers le
rouge de 10−2 correspond à une distance de 40 Mpc. Cette exclusion se situe
un facteur 10 en de ça des décalages vers le rouge mesurés pour les sursauts
gamma, mais ce décalage n’est mesuré que pour ∼ 10% des sursauts, donc
pour la majorité des sursauts analysés il n’est pas connu.

Ce résultat montre qu’une détection d’ondes gravitationnelles associées
aux sursauts gamma avec les données actuelles est peu probable. Néanmoins
cette recherche était utile étant donné que la présence d’un sursaut gamma
proche (≲ 10 Mpc) était possible (probabilité ≲ 1%). Nous avons aussi ou-
vert la route aux recherches futures qui devraient permettre de trouver des
ondes gravitationnelles en utilisant les données des détecteurs d’ondes gra-
vitationnelles de seconde génération. Ces détecteurs sont une amélioration
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19

des détecteurs actuels, et ils devraient être mis en route à l’horizon 2015
avec une sensibilité améliorée d’un facteur 10, c’est-à-dire un nombre de dé-
tections attendues multiplié par un facteur1 1000. D’après la figure 3, la
détection d’ondes gravitationnelles en coïncidence avec des sursauts gamma
sera vraisemblable avec ces nouveaux détecteurs.

1Les détecteurs sont sensible à l’amplitude de l’onde une décroît proportionnellement
à l’inverse de la distance.
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Introduction

Gravitational waves are one of the early predictions of Einstein’s theory
of General Relativity which describes the gravitational interaction and the
space-time structure. Nevertheless for the past 100 years gravitational waves
have eluded any direct observations, and have only been seen as a missing
energy in some close binary pulsar systems, which is with a precise agreement
with General Relativity predictions. The main reason is that the gravita-
tional interaction is very weak, and gravitational waves have only tiny effects
on matter or any form of scientific apparatus.

However, this same property allows gravitational waves to be a direct
messenger of the interior evolution of the most dense objects in the known
Universe, as they are not obscured by the intervening matter between the
object interior and the observer as other messengers such as photons and
other particles are. Hence gravitational wave observations should open a
new observational window on the Universe.

A particular example of systems which gravitational waves might probe
are the progenitors of gamma-ray bursts, one of the most violent observed
events. These progenitors convert a fraction of a solar mass directly into en-
ergy emitted under the form of a burst of photons that is a few seconds long.
They are much brighter than for instance supernovae which emit the same
amount of electromagnetic energy on a time scale of weeks. A gravitational
wave observation associated to such an event should provide a definitive an-
swer on the nature of the gamma-ray burst progenitors, which is a debated
question in the community.

Different experiments aiming at detecting gravitational waves have been
proposed and operated over the past 50 years. Currently the most sensitive
detectors are Virgo and LIGO, and these detectors have jointly taken data in
2009-2010. In this thesis we present the results of a search for gravitational
wave bursts associated with gamma-ray bursts in these data.

We begin in chapter 1 by a reminder on the main results of General
Relativity concerning gravitational waves, especially on the properties of
gravitational waves which are important for their detection. Afterwards, the
detection principle of current interferometric gravitational wave detectors is
exposed in chapter 2, along with the main sources of noise which limit the
detectors sensitivity.
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22 Introduction

The next two chapters are devoted to astrophysical discussions. A rapid
overview of the main expected gravitational wave sources is given in chap-
ter 3, along with a more detailed discussion of the gravitational wave emission
of potential gamma-ray bursts progenitors. The following chapter focuses on
the process of gamma-ray bursts emission and how the electromagnetic ob-
servations motivate the particular gravitational wave parameter space over
which we perform the search.

Afterwards follows a more technical discussion of gravitational wave data
analysis. In chapter 5 we present the data analysis method used in the search
for gravitational wave bursts associated with gamma-ray bursts. And in
chapter 6 we discuss in detail the background estimation method for grav-
itational wave searches, a central element for defining the significance of a
gravitational wave detection candidate.

In the last chapter we describe the analysis of the LIGO and Virgo data
in a search for gravitational wave bursts associated with gamma-ray bursts.
This description gives details about the used data set, the exact construction
of the analysis pipeline and the obtained results which place some improved
limits on the gamma-ray burst astrophysics.
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Chapter 1

Gravitational Waves

Gravitational waves are one of the early predictions of Einstein’s theory
of General Relativity, a geometric framework which brings together special
relativity and gravitation. Below we give a rapid overview of the parts of
General relativity which are relevant to this thesis, mainly following the
results given in Weinberg’s “Gravitation and Cosmology” [1] with some inputs
from other books [2, 3, 4, 5]. In the first three sections we sketch out the
main steps of the derivation of gravitational waves from General Relativity
without going into the details of how each step is actually performed, and in
the last two sections we describe the properties of gravitational waves that
are needed in the next chapters.

1.1 General Relativity

General Relativity describes space-time as a 4 dimensional manifold, with a
pseudo-Riemannian metric. If one chooses a local coordinates system {xµ},
the infinitesimal length element ds is expressed as a function of the infinites-
imal changes in coordinates dxµ and the metric tensor field g evaluated at
the given point in space-time x

ds2
(x) = gµν(x)dxµdxν . (1.1)

In this chapter we will denote by an underscore X tensors, by bold char-
acters X 4-vectors and by normal characters with Greek subscripts Xµν...

their components. For space only coordinates we use Latin subscripts, and
for spatial 3-vectors the notation X⃗.

Properties of the gravitational field are encoded in the curvature of this
metric, which for an infinite empty space without gravitation is the flat
Minkowski metric η, whose expression in the usual time-space (t, x, y, z)

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



24 Gravitational Waves

Cartesian coordinate system is

ηµν =

⎛
⎜
⎜
⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

. (1.2)

The force of gravitation is described by the metric, following the principle
that free moving test masses follow geodesics, i.e. shortest paths according
to the metric. The gravitational field is created by energy/mass present in
space-time described by the energy-momentum tensor field T through the
Einstein equation

Gµν = Rµν −
1
2gµνR =

8πG

c4
Tµν , (1.3)

where the left hand side of the equation is a second order differential operator
of g which we detail below and the right hand side is the gravitational field
source term. The constant in front of the energy-momentum tensor is chosen
so that General Relativity yields the same results as Newtonian gravity in
the slow moving, weak field regime. The expression of Einstein tensor G
is more convolved to justify, however it can be shown that this is the only
second order operator of g that is reasonable and that yields a flat metric in
empty space [3].

To write explicitly the Einstein tensor in some coordinate system we
introduce the affine connexion

Γσλµ =
1
2g
νσ (∂λgµν + ∂µgλν − ∂νgµλ) . (1.4)

It is not a tensor, but it arises naturally in the equation of motion of a test
mass, and lets one to write compactly the Riemann-Christoffel curvature
tensor as

Rλµνκ = ∂κΓλµν − ∂νΓλµκ + ΓηµνΓλκη − ΓηµκΓλνη. (1.5)

This tensor describes the parallel transport of a 4-vector around closed paths.
It can also be shown [1] that all second order tensors that are linear in second
derivative of the metric can be constructed from the Riemann tensor Rλµνκ
and lower order tensors. For instance, the expression of the Einstein tensor
is

Gµν = Rµν −
1
2gµνR, (1.6)

where the Ricci tensor R and the Ricci scalar R are defined by

Rµν =R
λ
µλν , (1.7a)

R =gµνRµν . (1.7b)

For a better understanding of the Einstein equation, one can draw an
analogy with the source equation of electrodynamics where a second order
operator of the potential A is equal to the source current J :

∂µ∂
µAν − ∂µ∂

νAµ = −µ0J
ν . (1.8)
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1.2 Linearized General Relativity 25

That is the relation between the field of the theory (respectively A and g)
and the source field (respectively J and T ) are analogous, and some results
are similar. This analogy can be useful as many results such as the retarded
potential solutions and gauge freedoms are similar in the two cases, but much
simpler in the electrodynamics case.

1.2 Linearized General Relativity

The Einstein equation is non linear, however in the weak field limit, which is
for instance a good approximation in Earth’s neighborhood, the theory can
be linearized, which greatly simplifies the description. In this section we will
briefly derive the linearized theory of General Relativity.

The starting point of the linearized theory is to decompose the metric
into the Minkowski metric and a weak deviation from it

gµν = ηµν + hµν with ∣hµν ∣ ≪ 1, (1.9)

and then to keep only the terms linear in hµν while raising and lowering
indices using ηµν . The linearized form of the Einstein equation is

∂σ∂σhµν − ∂λ∂µh
λ
ν − ∂λ∂νh

λ
µ + ∂µ∂νh

λ
λ = −

16πG

c4
(Tµν −

1
2ηµνT

λ
λ) (1.10a)

= −
16πG

c4
T̄µν , (1.10b)

where we define T̄ as the traceless part of T .
The components gµν of the metric depend on the particular choice of

coordinates system. This arbitrary choice does not affect the General Rel-
ativity predictions and is only a gauge freedom of the metric description.
To simplify the linearized Einstein equation one can choose an appropriate
gauge condition which correspond to an infinitesimal change in coordinates
x′µ = xµ + εµ(x). This coordinates change modifies the metric perturbation
by

h′µν = hµν − ηλν∂λε
µ
− ηρµ∂ρε

ν . (1.11)

The most convenient choice is the radiation coordinate system for which
gµνΓλµν = 0 and the needed coordinate change can be obtained to first order
by solving

∂σ∂σεν = ∂µh
µ
ν −

1
2∂νh

µ
µ. (1.12)

In this coordinate system the linearized Einstein equation has the simple
form

∂σ∂σhµν = −
16πG

c4
T̄µν , (1.13)

for which a particular solution is the usual retarded potential.
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26 Gravitational Waves

To this retarded potential solution one can add any solution of the ho-
mogeneous radiation and gauge equations

∂σ∂σhµν = 0, (1.14a)

∂µh
µ
ν =

1
2∂νh

µ
µ. (1.14b)

The homogeneous solutions are linear combinations of plane wave solutions
of the form

hµν(x) = Re [Hµν exp(ikλx
λ
)] , (1.15)

where the amplitude components Hµν and wave 4-vector k satisfy the rela-
tions

kµk
µ
= 0, (1.16a)

kµH
µ
ν =

1
2kνH

µ
µ, (1.16b)

that results from equations (1.14).
However the radiation coordinates system does not fix completely the

choice of coordinates at first order, any further infinitesimal change εν that
satisfies ∂σ∂σεν = 0 is permitted. In particular, one can use the coordinate
change

εµ(x) = Re [ieµ exp(ikλx
λ
)] , (1.17)

which yields the transformation

H ′
µν =Hµν + kµeν + kνeµ, (1.18)

on the plane wave amplitude components.
The usual choice of gauge is the so called transverse-traceless gauge in

which one chooses the transformation to obtain a field which is traceless:
H ′µ

µ = 0 and orthogonal to a Galilean observer of velocity u: H ′
µνu

ν = 0.
This choice of gauge fixes all the 4 degrees of freedom of ε, and can be set
independently for each plane wave by linearity.

To summarize, the wave equations and gauge conditions for a planar per-
turbation in vacuum (homogeneous equation) in a Galilean observer frame
(uµ = δµ0 ) are

kµkµ = 0, (1.19a)
kµHµν = 0, (1.19b)
Hµ

µ = 0, (1.19c)

H0µ = 0. (1.19d)

Only eight of the nine gauge conditions are independent1, and Hµν is a
symmetric 2-tensor that has a priori 10 degrees of freedom. Thus there

1H0µ = 0 implies kµHµ0 = 0
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1.3 Generation of Gravitational Waves 27

are only 2 physical degrees of freedom, the number of degrees of freedom
once the gauge conditions are fixed. They represent the two polarization of
gravitational waves and are called plus and cross polarizations.

In particular if one chooses a plane wave along the z-axis, i.e. kµ =

(ω,0,0, ω/c), the planar solution has the form

hTTµν = Re

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

exp[iω(z/c − t)]

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

, (1.20)

where “TT ” denotes the transverse-traceless gauge.

1.3 Generation of Gravitational Waves

In principle, gravitational waves are produced by any energy or matter form
which is described by an energy-momentum tensor that changes with time.
Here we will focus on the gravitational field produced by a localized source
(confined within a radius R) seen from a large distance, which is the as-
trophysically relevant scenario. Similarly to electromagnetism, we perform
a multipole expansion of the source radiation and keep only the dominant
term. We place the spatial origin in the source, and denote x⃗ the observer
spatial position, x̂ = x⃗/r the normalized direction to it and x⃗′ the vector
pointing to a particular point in the source. Under the considered scenario,
we can use the approximation ∣x⃗− x⃗′∣ ≃ r− x⃗′ ⋅ x̂ and Tµν = 0 at infinity, which
yield the integral form of the retarded potential solution:

hµν(x⃗, t) =
4G

c4 ∫
d3x′

∣x⃗ − x⃗′∣
T̄µν (x⃗

′, t −
∣x⃗ − x⃗′∣

c
) (1.21a)

=
4G

c4 ∫
dωd3x′

∣x⃗ − x⃗′∣
T̄µν(x⃗

′, ω) exp [−iωt + iω∣x⃗ − x⃗′∣/c] (1.21b)

≃
4G

rc4 ∫ dω exp[iω(r/c − t)]∫ d3x′T̄µν(x⃗
′, ω) exp(−iωx̂ ⋅ x⃗′/c) (1.21c)

=
4G

rc4 ∫ dω exp[iω(r/c − t)]T̄µν(k⃗, ω), (1.21d)

where k⃗ = ω
c x̂. Hence, the metric perturbation (gravitational waves) in the

far field regime is a superposition of planar waves.
The Fourier components of energy-momentum tensors are hard to com-

pute in most cases, however at first order one can replace them with quadrupo-
lar moments when the slow-motion approximation applies (vc ≪ 1 or ωR≪ 1).
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28 Gravitational Waves

In this quadrupole radiation approximation

Tij(k⃗, ω) ≃ ∫ Tij(x⃗, ω)d3x (1.22a)

= −
ω2

2c2 ∫ xixjT
00
(x⃗, ω)d3x (1.22b)

= −
ω2

2c2
Dij(ω), (1.22c)

where the last line is just the definition of the energy quadrupolar moment.
In the derivation we have used the Gauss theorem and the conservation of the
energy-momentum tensor to express the Tij as a function of the time-time
component only, and Tij are the only components needed in the transverse-
traceless gauge. In the slow-motion approximation the time-time component
is dominated by the rest mass density T00 ≃ ρc

2, hence we are essentially as-
suming a rigid body representation of the source, where the second moments
of the mass distribution are naturally relevant, and the space and time coor-
dinates are separated. Hence in the quadrupole radiation approximation the
source can be described as a non relativistic object, and the mass quadrupole
is the analogue of the electric dipole in electromagnetism, both are the lowest
order terms in the multipole expansion of wave emission.

Obtaining the metric perturbation in the transverse-traceless gauge from
the result above is rather tedious, but it leads to a relatively simple equation

hTTjk =
2G

rc4
PjkmnÏ

mn
(t − r

c), (1.23)

where the time derivative is defined as Ẋ = c∂0X and we use the transverse-
traceless projector

Pjkmn = ΠjmΠkn −
1
2ΠjkΠmn with Πij = δij − x̂ix̂j ; x̂i = x

i
/r, (1.24)

and the reduced quadrupolar moment

Iij = ∫ (xixj −
1
3δijδkmx

kxm)ρ(x)d3x. (1.25)

The transverse-traceless projector is clearly constructed using the projector
Π on the plane orthogonal to the propagation direction x̂, as the transverse
part of I from which we remove the trace.

Given a metric perturbation, it is interesting to know how much energy
it carries, in order to estimate the maximal amplitude that can be created
by a source given its energetics constraint. The energy-momentum tensor t
of a gravitational wave can be derived from the Einstein equation. If one
expands the Ricci tensor R in terms of h, the second order term R

(2)
µν yields

the dominant contribution

tµν ≃ −
c5

8πG
[R(2)µν −

1
2ηµνη

λρR
(2)
λρ ] , (1.26)
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1.4 Gravitational waves properties 29

which, expressed in the transverse-traceless gauge and averaged over several
wave cycles, is simply the classical wave energy flux

t00 =
c5

32πG
⟨∑
j, k

∂0h
TT
jk ∂0h

TT
jk ⟩ =

c3

16πG
⟨(ḣ+)

2
+ (ḣ×)

2
⟩ . (1.27)

Whenever the source can be well described by the quadrupolar radiation
approximation discussed above the total emitted power PGW can be obtained
using (1.23) and (1.27), which after integrating over the sky yields

PGW =
G

5c5
⟨
...
I mn

...
I
mn

⟩ . (1.28)

In order to find which properties of a source are relevant to produce
large amounts of gravitational waves we can perform a dimensional analysis.
Assuming that our source has typical size R and evolves on time scale T , the
quadrupolar momentum is

...
I = εMR2

T 3 where ε < 1 and denotes the typical
asphericity of I. Using the speed of the object v = R

T and its Schwartzschild
radius RS = 2GM

c2
, the emitted power can be expressed as

PGW ∝
c5

G
ε2 (

RS
R

)

2

(
v

c
)

6

≃ 2 × 105
(
ε

1
)

2

(
RS
R

)

2

(
v

c
)

6

M⊙c2s−1. (1.29)

Hence a good source of gravitational waves is asymmetric (ε ∼ 1), compact
(R ∼ RS) and relativistic (v ∼ c). We can also obtain an obvious upper limit
on the total emitted power of any source by setting all those parameters to
1.

1.4 Gravitational waves properties

After glancing at how gravitational waves are generated the next question
to answer is what are their effects on an observer located on Earth.

The simplest physical system we may consider is a set of free-falling test
masses which are not subject to any forces (beside gravitation). Then each
test mass follows the geodesics equation

d2xµ

dt2
+ Γµνρ

dxν

dt
dxρ

dt
= 0, (1.30)

which in transverse-traceless coordinates yields at first order [2]

d2xi

dt2
= 0. (1.31)

The transverse-traceless coordinates are adapted to gravitational waves and
are following the motion of free falling masses. In this coordinate system
test masses are fixed and only the distance (light travel time) is changing.
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30 Gravitational Waves

Figure 1.1: Initial configuration and deformation by an h+ and h× perturba-
tion of a ring of free test masses. The red dashed circle is kept as a reference
of the initial ring.

This point of view is the most appropriate for interferometric observation of
gravitational waves.

Another point of view, which is more Newtonian like and allows to treat
similarly gravitation and other forces, is to choose the Fermi coordinates. In
these coordinates the metric is at first order Minkowski, and the coordinates
of test masses follow usual Newton equations with a gravitational wave tidal
pseudo-force:

d2Xi

dt2
≃

1

2

∂2hTTij

∂t2
Xj , (1.32)

which is valid as long as the region considered is small compared to the
incoming gravitational wavelength. This approach is the most convenient
for comparing gravitational waves and noise sources in a detector, and also
for visualizing gravitational wave effects on these test masses.

In the previous section we have shown that gravitational waves are spher-
ical waves in the far field regime, and are well approximated by planar waves
if observed in a region of space much smaller than the distance to the source.
Hence, in the transverse-traceless gauge for a wave propagating along the z
axis we can write the metric as a function of the two polarizations

gTTµν =

⎛
⎜
⎜
⎜
⎝

−1 0 0 0
0 1 + h+(t) h×(t) 0
0 h×(t) 1 − h+(t) 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

. (1.33)

and the equations of motion (1.32) can be easily integrated and yield

X(t) =X(0) + 1
2h+(t)X(0) + 1

2h×(t)Y (0), (1.34a)

Y (t) = Y (0) + 1
2h×(t)X(0) − 1

2h+(t)Y (0), (1.34b)
Z(t) = Z(0). (1.34c)

The effects of a positive h+ or h× perturbation on a ring of test masses can
be seen on figure 1.1. A plus polarized perturbation stretches the ring along
the x axis and squeezes along the y axis, and reversely squeezes along the
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1.5 Example of Gravitational Radiation 31

Figure 1.2: Description of the example toy model of two rotating point
masses.

x axis and stretches along the y half a period later when the sign of the
perturbation flips. The cross polarization has the same effect but rotated by
45°.

1.5 Example of Gravitational Radiation

As an example of the above results, we will study here a simple toy model
of gravitational radiation from a pair of rotating point masses shown of
figure 1.2. This gives a good illustration of how objects radiate gravitational
waves and how to read the gravitational waves polarization by simply looking
at the mass quadrupole evolution.

The equations of motion for two point objects of coordinates (x, y, z)
and (x′, y′, z′) with same masses m rotating in the Oxy plane at a distance
a from O with frequency ω are

x(t) = a cos(ωt) x′(t) = −a cos(ωt) (1.35a)
y(t) = a sin(ωt) y′(t) = −a sin(ωt) (1.35b)
z(t) = 0 z′(t) = 0, (1.35c)

which yield a reduced quadrupolar moment (1.25) of the system

I =
⎛
⎜
⎝

ma2 (1
3 + cos(2ωt)) ma2 sin(2ωt) 0

ma2 sin(2ωt) ma2 (1
3 − cos(2ωt)) 0

0 0 0

⎞
⎟
⎠
. (1.36)

One can immediately notice the 2ω dependence which results in gravitational
waves being emitted at twice the rotational frequency as we will see below.

In general, the expression of the transverse-traceless projector is not sim-
ple and is expressed in matricial form as

ITT = ΠIΠ − 1
2Π Tr (ΠI) . (1.37)
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32 Gravitational Waves

However, for some direction of propagation the Π matrix has a very simple
form. For instance for propagation along the z and x axis their form is

Πz =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 0

⎞
⎟
⎠
, Πx =

⎛
⎜
⎝

0 0 0
0 1 0
0 0 1

⎞
⎟
⎠
, (1.38)

and yield a projection

ITTz =
⎛
⎜
⎝

1
2(Ixx − Iyy) Ixy 0

Ixy
1
2(Iyy − Ixx) 0

0 0 0

⎞
⎟
⎠
, ITTx =

⎛
⎜
⎝

0 0 0

0 1
2Iyy 0

0 0 −1
2Iyy

⎞
⎟
⎠
.

(1.39)
Hence using (1.23) and keeping in mind that the polarization is transverse
to the direction of propagation, the gravitational waveform from a face-on
(seen along the z direction) rotating “binary” is

h+ = −
2G

rc4
ma2ω2

GW cos(ωGWtret) (1.40a)

h× = −
2G

rc4
ma2ω2

GW sin(ωGWtret), (1.40b)

and from an edge-on (seen from the x side) “binary” is

h+ = −
G

rc4
ma2ω2

GW cos(ωGWtret) (1.41a)

h× = 0, (1.41b)

where we used the retarded time tret = t − r
c , and the gravitational wave

angular frequency ωGW = 2ω.
A good way of interpreting these results is to compare the evolution

of the quadrupole moment with the deformation of a ring of test masses
orthogonal to the direction of propagation as shown on figure 1.3. Seen from
above (along the z axis) the perturbation is rotating with the object, seen
from the side (along the x axis) the deformation follows the linear movement
of the two point masses. The main conclusion to draw from this toy example
which apply for any rigidly rotating body are:

• The gravitational wave frequency is twice the rotation frequency.

• A face-on “binary” produces circularly polarized waves.

• An edge-on “binary” produces linearly polarized waves.

As this example shows only the projection of the source mass evolution on
the celestial sphere of the observer is relevant for the observed gravitational
wave. This argument explain also why an axi-symmetric source creates only
gravitational waves linearly polarized along the symmetry axis, and for an
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1.5 Example of Gravitational Radiation 33

Figure 1.3: Representation of a free mass ring deformed by a rotating “bi-
nary” system in the Oxy plane. Both a top view along the z axis and a
side view along the x axis are shown. The red dashed line shows the initial
ring and the black solid line its deformation at different rotation phases ψ.
The blue and green dot represent the retarded position of the two radiat-
ing masses. After half a rotation (ψ = π) the gravitational perturbation is
back to its initial state, the wave is clearly evolving at twice the rotation
frequency.

observer along the symmetry axis the motion is seen as radially symmetric
and thus do not create any gravitational wave.

We can also compare the gravitational wave amplitude between a labo-
ratory generator and a coalescence of neutron stars. A plausible laboratory
set up with a pair of 1 ton masses (or a bar) separated by 10 m and rotating
at 50 Hz observed from a 100 m distance leads to an amplitude h ∼ 6× 10−36

which is quite a small number. However, a pair of 3 × 1030 kg neutron stars
separated by 100 km and seen from a distance of 100 Mpc create an ampli-
tude h ∼ 5 × 10−20, which is a more optimistic goal. This explains why all
of the gravitational wave sources which are considered are of astrophysical
origin.

Simple considerations based on the total available energy are useful in
finding likely astrophysical sources. For instance, using the quadrupolar
momenta (1.36) in the expression of the radiated power (1.28) we obtain

PGW =
128G

5c5
m2a4ω6. (1.42)

For an on axis observer the emitted power can be rewritten in terms of
gravitational wave amplitudes as

h2
+ + h

2
× =

1

ω2
GW

10G

r2c3
PGW. (1.43)
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34 Gravitational Waves

We can also relate the total emitted energy EGW to the integrated amplitude

h2
rss = ∫ (h2

+ + h
2
×)dt ≃

1

ω2
GW

10G

r2c3
EGW, (1.44)

where rss stands for “root-sum-squared”. This relation justifies using the hrss
quantity as a characterization of the gravitational wave amplitude: it has
a direct relationship with the total energy emitted by the source and is an
intrinsic property of the wave. As we will see in section 2.3 it can also be
easily compared with detector noise. One should note that the frequency
dependence is not obvious to interpret: at fixed energy emission lower fre-
quency means higher amplitude, but at fixed quadrupolar deformation the
observed amplitude is larger at high frequency.

In the general case where the observed is not optimally positioned or the
source is not rotational the hrss - energy relation takes the form

h2
rss ≃

α

ω2
GW

G

r2c3
EGW, (1.45)

where α is a factor of the order of unity which depends on the details of the
geometry for the considered problem.

As an numerical example, for a source located at r = 10 Mpc emitting
EGW = 0.01 M⊙c2 at fGW = 150 Hz, the observed on-axis-amplitude is hrss =
7.5×10−22 Hz−

1/2, which is comparable to the sensitivity of currently operating
detectors shown on figure 7.1.

For completeness, if the “binary” system is seen from an inclination angle
ι the waveform is [6]

(
h+(t)
h×(t)

) = −
G

rc4
ma2ω2

GW (
(1 + cos2 ι) cos(ωGWtret)

2 cos ι sin(ωGWtret)
) , (1.46)

where the plus polarization is defined along the projection of the source x
and y axis onto the direction of propagation.
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Chapter 2

Gravitational Wave Detectors

In section 1.4 of the previous chapter we have discussed general properties
of gravitational waves. Armed with this knowledge we can study instru-
ments which are aiming at detecting gravitational waves. Two main detec-
tion schemes have been developed over the years.

The first scheme was initiated and developed in the sixties by Joe Weber
[7]. It consists of a solid bar that is stressed by a passing gravitational wave.
In its first incarnation the bar stress was read out with a piezo-electric crystal.
This type of detector is sensitive in a relatively narrow band (much less than
100 Hz) around the main resonant frequency of the bar, which is usually
somewhere in the 700 − 1000 Hz range. Bar detectors technology have been
improved and refined over time and attained at the end of the nineties a
sensitivity of 5 − 10 × 10−22 Hz−

1/2 in a ∼ 1 Hz band [8].
The second scheme uses an enhanced Michelson interferometer which is

directly sensitive to space-time deformation. First efforts in that direction
started in the seventies [9] and have continued since then. Among the advan-
tages of an interferometer is its scalability, the effective gravitational pseudo-
force (1.32) scales linearly with the size of the instrument, which leads to the
kilometer scale instruments currently operated. The latest improvements in
design and components of this kind of instruments lead to a sensitivity of
2− 5× 10−23 Hz−

1/2 over a few 100 Hz band and a good sensitivity between a
few dozen Hz and a few kHz, as can be seen on figure 7.1 which shows the
current sensitivity of LIGO and Virgo detectors.

In this chapter we focus on the working principles of interferometric de-
tectors, given that interferometric detectors are currently more sensitive than
bar detectors and are expected to detect gravitational waves in the coming
years. Unless noted otherwise the presented results are taken from Saul-
son’s book on that subject [10]. As an illustration of these principles we will
use the parameters of the Virgo detector during the second Virgo Science
Run (VSR2). We defer to section 7.1 for a more detailed description of the
performance of the Virgo and LIGO detectors in 2009-2010.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



36 Gravitational Wave Detectors

Figure 2.1: Optical scheme of Virgo during VSR2 [11]. Solid lines corre-
spond to sides of mirrors which are reflectively coated. The interferometer is
composed of an input laser with wavelength 1.06µm, which passes through
a mode cleaner cavity. The light is split by the beamer-splitter and stored in
two 3 kilometer long Fabry-Perot cavities. Each cavity is formed of an input
mirror (NI or WI) and an end mirror (NE or WE). Light that is reflected
back by the cavities is recombined by the beam-splitter into two beams, one
which travels back toward the laser and is reflected by the power recycling
mirror (PR), and one which passes through the output mode cleaner and is
absorbed by the photo-detector.

2.1 Detection principle

As discussed in section 1.4 the main effect of a passing gravitational wave
is a change in “distance” (as measured by light travel time) between free-
falling masses, and this change is opposite in two orthogonal directions. The
output of a Michelson interferometer is directly related to the differential
length between the beam-splitter and the mirror at the end of its orthogonal
arms, and is thus perfectly adapted to measure this space-time deformation,
as long as the beam-splitter and mirrors can be treated as free-falling masses.
In principle, a single arm could be used to measure the deformation, however
a differential measurement permits to cancel some of the measurement noise
and to achieve a better sensitivity.

A detailed optical scheme of the Virgo detector in 2009 is shown on
figure 2.1; we describe the relevance of different parts of this scheme in the
following sections. However to understand the detection principle only some
of them are needed. The crucial elements are the laser, the photodector and
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2.1 Detection principle 37

three optical elements: the beam-splitter (BS) and end of arms mirrors noted
WE (west-end) and NE (north-end) on the figure. This constitutes a simple
Michelson interferometer. In radiation coordinates the three optical elements
are fixed, and we choose the coordinates origin to be on the beam-splitter
and the x and y axis along the two arms.

Assuming a plus polarized gravitational wave incoming from the z direc-
tion (normal incidence), the metric at a given time t is given by (1.33) which
yields the equation for light propagation

0 = ds2
= gTTµν dx

µdxν (2.1a)

0 = −c2dt2 + (1 + h+(t))dx2 for the arm along x (2.1b)

0 = −c2dt2 + (1 − h+(t))dy2 for the arm along y. (2.1c)

That translates for an arm length L0 into an optical path in the arm along
the x direction

Lx = ∫ cdt = ∫
L0

0

√

1 + s(t +
x

c
)dx ≃ ∫

L0

0
(1 + 1

2s(t +
x

c
))dx. (2.2)

For our particular case x
c ≤

L0

c = 10µs which is much shorter than the typical
period of our signal in the 10−104 Hz sensitive band. Hence one can perform
a long wavelength approximation h+(t + x

c ) ≃ h+(t), and obtain

Lx = L0 +
1
2L0h+(t). (2.3)

Similarly, for the second arm one obtains

Ly = L0 −
1
2L0h+(t). (2.4)

To study the exact effect of this approximation we look at the particular
case of a monochromatic wave h+(t) = h0 cosωt, for which the rightmost
term in equation (2.2) yields

Lx ≃ L0 +
1
2h0L0

sin (ω (t + L0

c
)) − sinωt

ωL0

c

(2.5a)

= L0 +
1
2L0h0 cos(ω (t +

L0

2c
)) +O ((

ωL0

c
)

2

) . (2.5b)

Thus the long wavelength approximation induce at first order a frequency
dependent phase shift δ = ωL0

2c , which can be safely discarded up to a few
kHz.

With this approximation the gravitational wave induced phase shift be-
tween the two arms can be expressed as

∆ϕ =
2π

λ
(2Lx − 2Ly) = h+(t)

4πL0

λ
, (2.6)
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38 Gravitational Wave Detectors

Figure 2.2: Coordinate used to describe antenna pattern functions. The sky
location angles (Θ,Φ) and the polarization reference angle Ψ are shown. The
(x, y, z) coordinates are fixed to the interferometer, that is the two arms are
along the Ox and Oy axes, and the (x′, y′, z′) coordinates are the ones used
to define the gravitational wave propagation and polarization. Figure taken
from [10].

where λ is the laser wavelength. Reversely this allows us to define a gravita-
tional wave signal

s(t) =
λ

4πL0
∆ϕ =

Lx −Ly

L0
= h+(t). (2.7)

In the general case of a gravitational wave with any polarization incoming
from a sky location (Θ,Φ), the computation of the signal involves a few
projections and yields [12]

s(t) = F+
(Θ,Φ,Ψ)h+(t) + F

×
(Θ,Φ,Ψ)h×(t), (2.8)

where the antenna pattern functions are

F +
(Θ,Φ,Ψ) = 1

2(1 + cos2 Θ) cos 2Φ cos 2Ψ − cos Θ sin 2Φ sin 2Ψ (2.9a)

F×
(Θ,Φ,Ψ) = 1

2(1 + cos2 Θ) cos 2Φ sin 2Ψ + cos Θ sin 2Φ cos 2Ψ (2.9b)
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2.1 Detection principle 39

and Ψ is the angle between the projection of the x arm onto the plane or-
thogonal to the direction of propagation and the x′ axis along which the plus
polarization is defined as shown on figure 2.2. It should be noted that an
interferometer is sensitive only to a single linear combination of the two po-
larizations, it is completely insensitive to the orthogonal combination which
is a solution of

F+
(Θ,Φ,Ψ)h+(t) + F

×
(Θ,Φ,Ψ)h×(t) = 0. (2.10)

The output light power of a Michelson interferometer is a function of the
phase shift between its arms, and is recorded using a set of photo-diodes
which, after proper calibration of the instrument, yields the detector strain
time series

d(t) = F +
(Θ,Φ,Ψ)h+(t) + F

×
(Θ,Φ,Ψ)h×(t) + n(t) = s(t) + n(t), (2.11)

with n(t) denoting the detector noise. This dimensionless time series is
the primary output of a gravitational wave observatory. When working on
gravitational wave data three different dimensionless time series can be con-
sidered:

• The gravitational wave itself which is described by the two polariza-
tions time series (h+(t), h×(t)).

• The signal s(t) that gravitational waves produce in an interferometric
gravitational wave detector that is given in equation (2.8).

• The data d(t) that are measured by a gravitational wave experiment
which contain potential signals buried in detector noise.

To avoid confusion between these three quantities we will use the above
notations throughout the thesis and avoid using h(t) which could stand for
any of these three.

For the simple Michelson configuration considered so far the signal s(t) ≲
10−21 produced by a reasonable gravitational wave source corresponds to a
tiny phase difference ∆ϕ ≲ 10−11 rad. Hence reducing the noise, that is
improving the sensitivity, is the main preoccupation of people involved in
a gravitational wave experiment. Sources of noise are numerous and are
usually classified into three families: environmental noises due to external
perturbation on the detector, technical noises due to the equipments used
and fundamental noises due to the physical principles used to perform the
measurement. The noise term n(t) considered above is the sum of all these
different contributions. The noise reduction work starts with designing more
sensitive optical configuration and more effective environmental isolation sys-
tems, continues with understanding and removing sources of technical noise
once the detectors are constructed, and ends with improving data analysis
techniques.
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40 Gravitational Wave Detectors

In the next sections we will have a short overview of the most important
sources of noise and how they are driving different aspects of current interfer-
ometers design, which is a refined enhancement over the original Michelson
interferometer.

2.2 Interferometer fundamental noise

In many cases the different contributions to the detector noise n(t) are well
described by a colored Gaussian process, that is a Gaussian process that has
a non flat spectrum or equivalently that is autocorrelated. The total noise
n(t) is just the sum of these different contributions which in most cases can
be considered as independent.

With this noise model, the effect of a given noise source ni(t) on extract-
ing a signal s(t) from the data d(t) is completely characterized by the power
spectral density Si(f). The power spectral density can be obtained simply
from the time series ni(t) by two equivalent methods based on the Fourier
transform: the power spectrum is the square of the modulus of Fourier co-
efficients of the noise time series

Si(f) = ∣ñi(f)∣
2
+ ∣ñi(−f)∣

2
= 2∣ñi(f)∣

2, (2.12)

but it is also the Fourier transform of twice the auto-correlation

Ci(τ) = ∫
∞

−∞
ni(t)ni(τ − t)dt. (2.13)

Throughout this thesis we will use only one-sided spectral densities which
are defined only for positive frequencies and necessitate the factor 2 used
in equation (2.12). The equivalence of the two definitions comes from the
Fourier transform properties: the transform of a convolution of two functions
is the point-wise product of the transforms, and the transform of the parity
operation is the complex conjugate. A good interpretation of Si(f) is that
it represents the contribution of the different frequencies to the variance of
ni(t) in the time domain.

A quantity closely related to the power spectral density is the amplitude
spectral density Ai(f) =

√
Si(f) which is usually used to describe detector

noise. The reason is that it is linear in the amplitude of the noise and is also
a good way of describing the sensitivity of a detector to gravitational waves
as discussed in section 2.3.

The principal contributions to the total noise n(t) in a ground inter-
ferometer which drive the design of a ground detector are the seismic and
thermal vibrations of optical elements, and the quantum noise of photon
measurement. As we will see, each of those terms is a dominant one at
different frequencies. At low frequency the seismic motion of the ground is
the dominant source of noise, at high frequency the shot noise of photon

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



2.2 Interferometer fundamental noise 41

counting is dominant, and in the mid frequency range the thermal noise is
dominant. Of course, once a gravitational wave interferometer is constructed
often technical noise sources, and not these fundamental ones are dominant,
and a long period of detector commissioning is needed to understand and
remove these technical noise sources.

2.2.1 Seismic noise

In order to understand the effect of ground motion, the first question to
answer is how optics are fixed to the ground, and, above all, why can they
be treated as free falling masses. Let us first consider the principles of a
mechanical oscillator.

If we consider a mass m attached with a spring of constant k to the
ground, and look at the one dimensional problem with xg the position of the
ground and x the position of the mass, the equation of motion is

mẍ = −k(x − xg) + F, (2.14)

where F is the sum of external forces. We consider here an oscillator in
vacuum, where fluid friction is negligible and internal friction in the spring
is the dominant damping factor. Internal friction is well modelled [13] by
adding a “loss angle” φ to the spring constant k(1+iφ) when writing equations
in the frequency domain. For the materials and frequency range we will
consider the value of φ has been measured to be approximately constant and
small.

Writing the equation of motion in the frequency domain in terms of the
resonant angular frequency ω2

0 =
k
m and the quality factor Q = 1

φ ≫ 1 yields

(ω2
0 − ω

2
+ i
ω2

0

Q
)x(ω) ≃

1

m
F (ω) + ω2

0xg(ω). (2.15)

If we consider only the external forces term we find at high frequencies
(ω ≫ ω0)

1

m
F (ω) = (ω2

0 − ω
2
+ i
ω2

0

Q
)x(ω) ≃ −ω2x(ω), (2.16)

which is simply the equation of a mass subject only to the external force
F , this is the starting point in explaining why our optical elements are free-
falling masses.

If we consider only the ground motion term in equation (2.12), the am-
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42 Gravitational Wave Detectors

plitude transfer function of a spring is

T (ω) = ∣
x(ω)

xg(ω)
∣ =

ω2
0

√

(ω2
0 − ω

2)
2
+
ω4
0

Q2

(2.17a)

= 1 for ω ≪ ω0 (2.17b)
= Q for ω = ω0 (2.17c)

≃
ω2

0

ω2
for ω ≫ ω0. (2.17d)

Hence the ground motion is amplified by a factor Q at the resonant fre-
quencies ω0 with a bandwidth ω0

Q , and is suppressed at high frequencies. In
summary a mechanical oscillator is taking the ground motion at high fre-
quencies and concentrating it around the resonant frequency. For a simple
pendulum the equation of motions are the same as long as the oscillation an-
gle is small, hence the same effect is obtained although only in the horizontal
directions.

Armed with these results we can explain how mirrors are suspended in
Virgo. The mirror suspension chain used in Virgo, is shown on figure 2.3.
This so called Superattenuator is composed of an inverted pendulum fixed to
the ground, and a series of wires and mechanical filters attached to the top
of the inverted pendulum. Their purpose is to filter the ground motion by
repeatedly applying the ω2

0

ω2 factor to all degrees of freedom, horizontal for the
inverted pendulum and wires and vertical for the mechanical filters which
are basically vertical springs. The resonant frequencies of these stage are in
the 10 mHz−2 Hz range well below the intended sensitive band 10 Hz−10 kHz
and the quality factors are rather low (Q < 100) [15]. A damped oscillator
increase the root mean square1 motion by

√
Q, for this reason low quality

factors are chosen in the filtering chain in order to keep the integrated motion
(dominated by the low frequency part) small.

Optics are attached to this Superattenuator through a high quality factor
fiber or wire (Q ∼ 106). Thus, they cannot be considered as free in the vertical
direction, however in the horizontal direction for frequencies well above the
pendulum frequency of ∼ 0.6 Hz equations of motion are in the free mass
regime (2.16). Hence, the test masses are only horizontally free but this is
the only direction in which we measure gravitational wave effects.

The net effect of this complicated mechanic is to reduce the ground mo-
tion by 14 orders of magnitude in the sensitive band as shown on figure 2.4,
this reduces the ground motion from

x(f) ∼ 10−6
(

1 Hz

f
)

2

m/Hz
1/2, for f > 10 Hz (2.18)

1xrms =
√

∫ x(f)
2df is the integrated motion over all frequency, this also the standard

deviation of x in the time domain.
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2.2 Interferometer fundamental noise 43

Figure 2.3: Schematics of the Virgo Superattenuator [14]. It is composed
of an inverted pendulum fixed to the ground, and a series of wires and
mechanical filters attached to the top of the inverted pendulum. The purpose
of this chain is to isolate the mirror suspended at the bottom of the apparatus
from the ground motion.
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44 Gravitational Wave Detectors

Figure 2.4: Total transfer function of the Virgo Superattenuator between
ground motion and motion of the suspended mirrors [14].

to x(f) ∼ 10−22 m/
√

Hz at 10 Hz and even lower at higher frequency, while
increasing the root mean square motion by only a few dozens.

The signal that we measure is the fractional difference in lengths (Lx −
Ly)/L0 hence the seismic noise at frequencies larger than 10 hertz is

Aseismic(f) ∼
x(f)

L0
≲ 10−25 Hz−

1/2, (2.19)

and can be completely neglected compared to the other noise sources de-
scribed below. But it remains the dominant source of noise below ∼ 1 Hz.

2.2.2 Shot noise

We have seen that gravitational waves induce a phase difference ∆ϕ between
the two interferometer arms. What is measured by the photodector is the
output light power. We will assume that the interferometer is tuned to
constant phase offset π+α between the two arms, as we will see below, α = 0
corresponds to an optimal working point. Given this offset, the output power
is

Pout = Pin sin2
(
α +∆ϕ

2
) ≃ Pin [sin2

(
α

2
) +

1

2
sin(α)∆ϕ] , (2.20)

where we have used ∆ϕ≪ 1. But how small a power fluctuation are we able
to measure?

The fundamental limit in measuring a power P0 is the photon shot noise
(also called counting noise), which comes from the discrete nature of light,
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2.2 Interferometer fundamental noise 45

each photon carrying a hPc
λ quantum of power, where hP = 2πh̵ is the Planck

constant. The mean number of photons arriving during a time τ is Poisson
distributed with mean

⟨N⟩ =
P0τλ

hPc
(2.21)

and has fluctuation with standard deviation σN =
√

⟨N⟩. Which means that
the power measured is a random variable with moments

⟨P ⟩ = P0 σP = P0
σN
N

=

√
P0hPc

τλ
. (2.22a)

When no gravitational wave is present, P0 = Pin sin2 (α
2
) and using equa-

tion (2.20) the output power fluctuations σP are interpreted as phase fluc-
tuations

σϕ =
σP

Pin
1
2 sinα

=
1

cos α2

√
hPc

Pinτλ
. (2.23)

These noise fluctuations are minimized when α = 0, i.e. when the output of
the interferometer is tuned on a dark fringe.

Using ∆ϕ = 4πL0

λ s(t) we can rewrite2 the phase noise in terms of gravi-
tational wave amplitude spectral density

Ashot(f) =
1

L0

√
ch̵λ

4πPin
. (2.24)

For a 3 kilometer long Michelson interferometer with a 20 Watt laser of
wavelength λ = 1.06µm we find

Ashot(f) ∼ 4 × 10−21 Hz−
1/2. (2.25)

In order to lower this noise floor two sets of optical elements are added to
the optical scheme (see figure 2.1). Two input mirrors (WI and NI) which
form Fabry-Perot cavities with the end mirrors and effectively lengthen the
optical path L0 as we will see below. For numerical applications we will
use the electromagnetic field reflectivity of Virgo input mirrors during VSR2
r ∼ 0.94. And a power recycling mirror (PR) which increases the input power
Pin by a factor grec ∼ 30 and takes advantage of the dark fringe working
point of the interferometer which reflects most of the input power in the
laser direction.

Considering an ideal Fabry-Perot cavity with no losses and perfect reflec-
tivity of the end mirror, the cavity reflection of light at angular frequency ω

2To convert to the frequency domain we use two results: the arrival time independence
of a Poisson process, and that if the fluctuations of a variable x averaged over a time scale
τ are⟨δx⟩ =

√

D/τ then it has an autocorrelation function Aτ(t) ∼ D
τ
1(∣t∣ < τ/2) ∼ Dδ(t).

Taken together this yields a one sided amplitude noise spectral density of x(f) =
√

2D.
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46 Gravitational Wave Detectors

Figure 2.5: Electromagnetic field in a Fabry-Perot cavity with a perfect end
mirror and an input mirror of reflectivity r and transmittance t. The input
light field Ein is shown along with the different fields produce by this input
field. The total cavity reflectivity is given in equation (2.26), and only the
first two terms are shown on this figure.

is

R = −r + t2
∞

∑
n=1

rn−1
(exp i

2ωL

c
)

n

= −r +
t2 exp i2ωL

c

1 − r exp i2ωL
c

=
−r + exp i2ωL

c

1 − r exp i2ωL
c

,

(2.26)
where we denote r and t the electromagnetic field reflectivity and trans-
mittance of the input mirror. The reflected light is simply the sum of the
directly reflected light, and of the light reflected back into the cavity n times
and transmitted through the input mirror in both directions. On figure 2.5 is
shown An incoming gravitational wave is included in the length term through

2ωL

c
=

2ωL0

c
+
ωL0s(t)

c
=

2ωL0

c
+ ϕ(t). (2.27)

Assuming that the cavity length is tuned to be a multiple of the half-
wavelength λ/2, exp i2ωL0

c = 1, and using that gravitational wave induced
phase shifts are very small we obtain the cavity reflectivity

R =
exp iϕ(t) − r

1 − r exp iϕ(t)
≃

1 − r + iϕ(t)

1 − r − irϕ(t)
. (2.28)

Hence the light field reflected by an arm cavity has a phase change of

arg(R) =
1 + r

1 − r
ϕ(t) (2.29)

and the phase difference ∆ϕ between the two arms is multiplied by the same
factor. In the case of Virgo we obtain (1 + r)/(1 − r) ∼ 30, the Fabry-Perot
cavity stores the light for ∼ 30 round trips, which effectively lengthen the
optical path by as much.
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2.2 Interferometer fundamental noise 47

In the derivation above we have assumed that the arms length is constant
between round trips, this is true only when the gravitational wave frequency
is much lower that the inverse of the cavity storage time τs ∼ 1+r

1−r
2L
c ∼ 0.6 ms.

Hence, for gravitational wave signals with frequencies of a few hundred hertz
or more we need to include properly the time evolution of the arm length.
For that purpose we use a framework of modulated signals, where the fre-
quency of the light is modulated by the gravitational wave frequency. For
a monochromatic gravitational wave the phase modulation ϕ(t) = ωL0

c s(t) =
ϕ0 cos(ωgt) is split into a carrier and two sidebands

A cos(ωt + ϕ0 cos(ωgt)) ≃ A cos(ωt) +
Aϕ0

2
(cos(ω − ωg)t + cos(ω + ωg)t) .

(2.30)
In this framework we are no longer interested by the change in phase

of the cavity reflectivity but by the amplitude which is transfered from the
carrier frequency to the sidebands. The formal computation is quite involved
[16] however it can be heuristically retrieved with a simpler picture. We can
think of the sideband transfer as light which enters the cavity, bounces back
and forth, is converted into a sideband at the end mirror with a probability
1
2ϕ0 and then continues its round-trips until it escape the cavity. This picture
can be informally written as the cavity transfer function from the carrier to
the sideband

G = (cavity entrance) × (n + 1
2 round trips at frequency ω)

× (conversion to sideband)

× (m + 1
2 round trips at frequency ω + ωg) × (cavity exit).

Which if written formally has the form

G = t ×
∞

∑
n=0

rn (exp i
2ωL0

c
)

n

exp i
ωL0

c
× 1

2ϕ0×

exp i
(ω + ωg)L0

c

∞

∑
m=0

rm (exp i
2(ω + ωg)L0

c
)

m

× t (2.31a)

=
ϕ0

2

(1 − r2) exp i
(2ω+ωg)L0

c

(1 − r exp i2ωL0

c
) (1 − r exp i

2(ω+ωg)L0

c )
(2.31b)

=
ϕ0

2

(1 + r) exp i
ωgL0

c

(1 − r exp i
2ωgL0

c )
, (2.31c)

where in the last step we have assumed a perfect tuning of the interferometer.
In the long wavelength approximation 2ωgL0

c ≪ 1 that we are already using,
the amplitude of the side band transfer is

∣G∣ =
ϕ0

2

1 + r

1 − r

1
√

1 + (
√
r

1−r
2L0

c )
2
ω2
g

, (2.32)
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48 Gravitational Wave Detectors

which for ωg = 0 after combining the two sidebands into a phase modulation
yields the same phase gain as (2.29), and a has a linear high frequency cut-off
with a typical frequency fc = c

2πL(1 − r)/(2
√
r) ∼ 500 Hz.

To conclude, the use of cavities as interferometer arms increase the gravi-
tational wave induced phase shift, and the addition of power recycling lowers
the shot noise (2.24). As a result the shot noise amplitude spectral density
is

Ashot(f) =
1

L0

√
ch̵λ

4πgrecPin

1 − r

1 + r

¿
Á
ÁÀ1 +

f2

f2
c

, (2.33)

which in the case of Virgo yields

Ashot(f) ∼ 2 × 10−23

¿
Á
ÁÀ1 +

f2

f2
c

Hz−
1/2. (2.34)

One interesting conclusion we may draw from this result is that at high
frequency f ≫ fc, the shot noise is independent of the reflectivity r, because
for r ∼ 1 we have 1 + r ∼ 2

√
r. Hence the increase of stored light power in

the arms is compensated by the loss due to the low pass filtering nature of
cavities to length modulations.

2.2.3 Thermal noise

We have shown the photon measurement noise allows displacement measure-
ments of the order of 10−19 m/

√

Hz, However the position of the mirror surfaces
forming the interferometer are not fixed, but are thermally fluctuating. The
dominant fluctuations in the 10 − 1000 Hz frequency range are coming from
the thermal excitation of the pendular motion of the mirrors and of the ther-
mal fluctuation of the mirror surfaces. Both fluctuations are well modelled
by an internally damped oscillation excited by a Brownian force.

The fluctuation-dissipation theorem [17] stipulates that for any linear
system for which the relationship between the amplitude spectral density of
the position and of the external force is

χ(ω)x(ω) = F (ω) (2.35)

where the effective thermal force in equilibrium has a one sided power spec-
tral density

F 2
therm(ω) =

4kBT

ω
Im (χ(ω)) . (2.36)

This result is a consequence of energy equipartition for Hamiltonian systems
in thermal equilibrium, and it clearly relates the force fluctuations to the
friction part Im (χ(ω)) of the equation of motion.

In the case of an internally damped oscillator (2.15) we have

χ(ω) =m(ω2
0 − ω

2
+ i
ω2

0

Q
) (2.37)
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2.2 Interferometer fundamental noise 49

Figure 2.6: Simplified noise budget (blue dashed line) as a quadratic sum of
simplified thermal (green dot-dashed line) and shot noise (red dotted line),
and actual Virgo design noise budget for VSR2 (black solid line).

and the position fluctuations spectral density is

√
x2(ω) =

√
F 2
therm(ω)

∣χ(ω)∣
=

ω2
0

√

(ω2
0 − ω

2)
2
+
ω4
0

Q2

√
ω0

ω

¿
Á
ÁÀ 4kBT

mQω3
0

, (2.38)

where we recognize in the first term the oscillator transfer function (2.17a).
This motivates the choice of high quality factor (Q ∼ 106) materials for the
mirrors and pendulum, which concentrate the thermal noise in a narrow band
around the resonant frequency and lowers considerably ∝ 1√

Q
the broadband

noise floor.
In terms of gravitational wave strain for am = 20 kg mirror andQ = 5×105

the thermal noise is

Atherm(f) =
2

L0

√
x2(f) ∼ T (f)

√
f0

f

Hz

f
3/2
0

1.7 × 10−18 (2.39a)

∼ 1.7 × 10−18 Hz3/2

f0f1/2
Hz−

1/2 for f ≪ f0 (2.39b)

∼ 1.7 × 10−18 f0 Hz3/2

f5/2
Hz−

1/2 for f ≫ f0 (2.39c)

where the factor 2 in (2.39a) comes from the quadratic sum of the 4 mirrors
forming the two Fabry-Perot cavities. The Virgo mirrors have two main
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50 Gravitational Wave Detectors

Figure 2.7: Real noise budget for Virgo during VSR2. Only the main con-
tribution to the noise are shown. As shown by the difference between the
measured sensitivity and sum of known noises, most of the noise in the in-
terferometer is understood and well modeled.

modes of oscillation: the pendulum mode of the last stage of suspension at
f0 ≃ 0.6 Hz and the first internal eigen-mode of the different mirrors f0 ∼

5.7 kHz. We are interested by the noise contribution in the sensitive band
10−1000 Hz, which for the pendulum noise corresponds to the high frequency
limit (2.39c) and for the main mirror mode corresponds to the low frequency
limit (2.39b).

2.2.4 Final sensitivity

We can combine the three noise level estimations obtained above to derive
an expected noise budget for Virgo [18]. That is the decomposition of the
amplitude spectral density of the total detector noise n(t) into different con-
tributions. We simply take the quadratic sum of the thermal and shot noises
(the seismic noise is completely negligible at the considered frequencies).
This crude estimation is actually quite close to the official design curve of
Virgo for VSR2 shown on figure 2.6. However one should remember that this
derivation is quite approximate, for instance the effective mass that should
be used for internal thermal modes of the mirrors is about a factor 3 smaller
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2.3 Comparing gravitational wave sources with detector noise 51

that their total mass [19].
There is also a large number of fundamental noise sources that we have

not considered. For instance we have neglected the quantum fluctuations in
the radiation pressure applied to the mirrors, or the thermal internal modes
of the suspending wire communicated to the mirrors with a

√
mwire/mmirror

reduction.
We have also neglected a large number of technical noises that need to be

mitigated. For instance we have neglected the fluctuations of the input laser
power, e.g. due to laser instability. In Virgo these fluctuations are greatly
reduced by modulating the laser power at ∼ 6 MHz, which combined with a
homodyne detection replaces the power fluctuations at 10 − 1000 Hz by the
fluctuations at the modulating frequency which are much lower. The input
laser has also a fluctuating frequency, these fluctuations are one of the reason
for having two arms and a differential measurement. Also the main purpose
of the input mode cleaner shown on figure 2.1 is to reduce the noise due to
these frequency fluctuations of the laser.

Also some of the technical noise can be dominant, for instance noise
coming from imperfect mirrors alignment and control of the cavities which
keep them on the dark fringe working point can be comparable or even larger
than the thermal noise in the 10 − 100 Hz band.

As an example, on figure 2.7 is shown a real noise budget for Virgo
during VSR2 on a good day of operations. From that figure it is clear that
the fundamental noises are not sufficient to explain all the observed noise
spectral density, however combined with an estimation of all the technical
noise sources the detector spectral density is well understood.

2.3 Comparing gravitational wave sources with de-
tector noise

As we will see in chapter 5, the relevant figure of merit in comparing a signal
with noise is the matched filtering signal to noise ratio (SNR)

SNR2
= 2∫

∞

−∞

∣s̃(f)∣2

S(∣f ∣)
= 4∫

∞

0

∣s̃(f)∣2

S(∣f ∣)
, (2.40)

where s̃(f) are the Fourier components of the signal and S(∣f ∣) is the one
sided power spectral density. In this sense the noise spectral density repre-
sents the sensitivity of the detector. For a narrow band signal from an opti-
mally located and polarized source, this equation can be written in terms of
hrss as

SNR =
√

2
hrss

√
S(f)

. (2.41)

And we can directly express the SNR as a function of the gravitational wave
energy content using the hrss - energy relation (1.44).

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



52 Gravitational Wave Detectors

However real detectors have not a purely Gaussian noise as discussed so
far, a large number of transient noise excursions are also present in the data
and complicate their analysis. As a result the SNR is not a perfect figure of
merit for the signal strength, but in practice a good rule of thumb is that an
SNR of at least 10 is needed for a gravitational wave detection. The exact
value of this threshold depends on other parameters of the search such as
the rate of noise transients in the data, the prior knowledge on the sought
signal and the details of the analysis used.
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Chapter 3

Gravitational Wave sources

In this chapter we give a general overview of interesting gravitational wave
sources, and study a few examples in more details. As we have seen in
chapter 1 astrophysical objects even at extragalactic distances may yield
orders of magnitude larger gravitational wave strains that what could be
produced by a laboratory generator. We have derived in equation (1.29) that
good sources of gravitational waves are asymmetric, compact and relativistic.
Another necessary condition is that the source radiates at frequency where
current detectors are sensitive, that is the quadrupolar moments have to
evolve in the 10−1000 Hz frequency range in order to be observed by ground
based detectors.

The first objects fulfilling these requirements that come to mind are neu-
tron stars and stellar mass black holes, which are compact and their typical
evolution frequencies are a few kilohertz, corresponding to the light travel
time across their diameter. The term compact star or compact object is usu-
ally used to encompass both neutron stars and black holes when the distinc-
tion between the two is not relevant. There are also more exotic gravitational
wave sources like cusps or loops in hypothetical cosmic strings.

Usually, sources are observationally classified according to their gravi-
tational wave emission type into three categories: continuous wave signals
which are quasi-monochromatic and emitted permanently on a human time
scale, transient signals that have a short duration and correspond to par-
ticular cataclysmic events, and stochastic background which is an incoherent
sum of a large number of such transients or of cosmological events.

3.1 Continuous wave signals

There are two main sources of permanent quasi-monochromatic gravitational
waves: rotating neutron stars and compact object binaries that are far from
coalescence. In both cases, examples of such systems are known in the Milky
Way.
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54 Gravitational Wave sources

3.1.1 Pulsars

For rotating neutron stars the general picture is that young neutron stars1

could be not perfectly axisymmetric and have some ellipticity caused for ex-
ample by stress induced by internal magnetic fields. Assuming an ellipticity
ε = (Ixx−Iyy)/Izz, where Izz is the moment of inertia along the rotation axis
we can reuse our simple binary example of section 1.5 with 2ma2 = εIzz, as
the quadrupole radiation depends only on the value of the quadrupolar mass
moments and not any other parameter of the mass distribution. Hence for
an optimally oriented and positioned observer the signal amplitude is

h0 =
G

rc4
εIzzω

2
GW = 4.3 × 10−26 1 kpc

r

ε

10−6

Izz
1038 kgm2

(
fGW

200 Hz
)

2

, (3.1)

where the gravitational wave frequency fGW is at twice the pulsar rotational
frequency observed electromagnetically. The possible values εIzz are not
well constrained by theory, in the equation above we used optimistic but
reasonable values. However in the particular case of pulsars one can give
observational upper limits.

Pulsars are neutron stars whose magnetic and rotational axis are not
aligned. As a result the electromagnetic radiation (usually in radio wave-
lengths) is not symmetric around the rotation axis and the observed electro-
magnetic flux changes periodically as the star rotates. This allows a precise
measurement of the rotation frequency, and its time derivative. By assuming
that all of the spin-down2 is due to gravitationally radiated energy

Izzωω̇ = −PGW ∝ ε2I2
zz (3.2)

we can use the amplitude - power relation (1.43) to derive a spin-down upper
limit on the gravitational wave amplitude

hsd0 =

√
5GIzz
2r2c3

∣ω̇∣

ω
. (3.3)

Youngest pulsars, such as the Crab or the Vela pulsars, tend to have the
largest values of ∣ω̇/ω∣ and are therefore the most interesting for gravitational
wave observations.

Given that the signal has a narrow frequency band we can use the hrss
to compare pulsar signals with noise. Assuming that the gravitational wave
amplitude is at the spin-down limit and an observation time τobs, the relevant
quantity is

√
2hsdrss =

√

2∫
τobs

0
h2

0 sin2(ωGWt)dt ≃ hsd0
√
τobs. (3.4)

1In general neutron stars are called young when their age is < 107 yr
2The spin-down is the decrease in rotational frequency.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



3.1 Continuous wave signals 55

Figure 3.1: Noise amplitude spectral density for LIGO and Virgo detectors
in 2009-2010. Overlaid are the spin-down amplitude upper limit (3.4) as a
function of emission frequency for a 1 year observation time from a catalog
of known pulsars. The dashed lines represent twice the Fourier amplitude
of the signal 2∣s̃(f)∣ created by an optimally located (F+ = 1) and optimally
oriented (ι = 0) binary coalescence: the blue line is for a binary neutron stars
(NSNS) with component masses 1.4M⊙ and 1.4M⊙ at a distance of 10 Mpc;
the brown line is for a neutron star - black hole coalescence (NSBH) with
component masses 1.4M⊙ and 10M⊙ at the same distance. In both cases the
amplitude results from the stationary phase approximation of the waveform’s
zeroth order term (3.12) and is cut at the fisco frequency (3.22). The integral
of the squared ratio between the plotted amplitude and detectors noise (2.40)
yields the SNR2 of the corresponding signal.
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56 Gravitational Wave sources

Figure 3.2: Spin-down limits (dashed line) and gravitational wave obser-
vation exclusions [20] (solid line) in the moment of inertia versus ellipticity
plane, regions above the lines are excluded. Shaded regions are those outside
theoretical predictions for neutron star moment of inertia [20].

The reason for using the
√

2 factor is the expression (2.41) of the SNR as
a function of hrss and the one sided amplitude spectral density. For the
most promising known pulsars this value is shown on figure 3.1 for a 1 year
long observation time. By most promising we mean the pulsar with the
spin-down amplitude close or above the current detectors noise spectra. We
use the parameters of the known pulsars listed in the Australia Telescope
National Facility catalog [21, 22]. It should be noted that the actual upper
limit on the SNR is a factor of order a few smaller than what one could read
from this figure because pulsars are not optimally oriented with regard to
each detector and most analyzes are not able to coherently integrate over a
year long time.

In the case when no gravitational wave signal is found, one obtains an
upper limit on the gravitational wave amplitude h0, which using (3.1) can
be translated into an exclusion region in the Izz versus ε plane above a
line of fixed Izzε. However an exclusion is already provided by the spin-
down limit through (3.2), the electromagnetic measurement of ωω̇ forbids
the region above a line of fixed Izzε2. The comparison of these two exclusion
regions is shown on figure 3.2 for three pulsars where recent gravitational
wave observation was able to beat the spin-down limit.
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3.1 Continuous wave signals 57

Figure 3.3: Plot of the cumulative shift of the periastron time from 1975-
2007 [23]. The points are data with measurement error bars, the curve is the
General Relativity prediction.

3.1.2 Binary compact stars

Pairs of gravitationally bound compact stars radiate gravitational waves at
twice their rotation frequency as we have seen in the toy example of sec-
tion 1.5. As we will see in section 3.3.2, the radiation frequency is too low
for Earth based interferometers until the last few minutes or seconds before
the merger of the two objects. They are usually considered as continuous
wave sources only for proposed space borne interferometers which are sen-
sitive at much lower frequencies (of the order of mHz). However such pairs
of compact stars far from coalescence are worth mentioning because they
provide the only so far observed gravitational wave effect.

The pulsar PSR 1913+16 has been discovered by Hulse and Taylor in
1974 and it forms a close binary system with another compact object [24].
The orbital period measured through precise radio observation of this sys-
tem is 7.75 hours. Over time a decrease in this period has been observed,
and the period derivative is equal to the one predicted from energy loss by
gravitational radiation with an accuracy at the few per mil level [23]. A
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58 Gravitational Wave sources

remarkable way of presenting this result is to compare the shift in periastron
time predicted by General Relativity with the observed one. This compar-
ison is shown on figure 3.3, the cumulative shift would be equal to zero if
the binary system orbital energy was constant, and the observed shift is in
perfect agreement with the General Relativity predictions.

Several others pulsars in close binary systems have been discovered since
then, and they all confirm the General Relativity prediction of energy loss
[25].

3.2 Stochastic background

Another possibility of observing gravitational waves comes from looking for
the incoherent sum of a large number of unresolved sources. As a result of the
central limit theorem, gravitational waves at Earth are a random Gaussian
process with a spectrum depending on the dominant process forming the
incoherent sources. These random waves are called stochastic gravitational
wave background.

There are many potential sources of this background, such as an incoher-
ent sum of transient or continuous sources in the relatively close-by universe,
or a result of density fluctuations in the early Universe just after Big Bang.
The latter could provide crucial information on the early Universe physics.
For instance, latest results from ground gravitational wave detectors are able
to exclude some equations of state for the content of the early Universe or
some parameter space of the hypothetical cosmic strings [26].

Observation of a random signal in random detector noise is not obvious,
especially if the noise sources are not perfectly understood. However using a
network of detectors, one can cross-correlate data from at least two detectors.
The signal in the network of instruments will be correlated but noise which
is in most cases due to local sources should be uncorrelated. This difference
allows one to distinguish signal from noise, but we will not go into the details
of how such an analysis is performed.

3.3 Transients

Possible sources of transient gravitational waves are numerous, one of the
reason being the imprecise definition of the class of “short signals”. In prin-
ciple “short” means much shorter than the duration of a gravitational wave
experiment but in practice it means shorter than a few minutes. We will not
present here the full range of proposed sources but we will focus on three par-
ticular scenarios: black holes in X-ray binaries, compact binary coalescence,
and collapse of massive stars.

When considering how interesting is a particular source of transients
gravitational waves, it is important to bear in mind that not only their
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3.3 Transients 59

Figure 3.4: Observed masses for neutron stars and black holes. The mass
is measured by analyzing Doppler shifts of the non-degenerate companion
for black holes. For neutron stars the Doppler shift analysis is performed
directly on pulsar radio emission. Figure taken from [27].

amplitude but also the expected rate of such events are crucial. Sources that
are expected to be seen once per century or even more rarely are not very
appealing.

3.3.1 X-ray binaries

X-ray binaries are binary system composed of a non-degenerate star of the
main sequence or the giant branch and a compact object. Matter from the
non-degenerate companion is transfered onto the compact object through
Roche lobe overflow or stellar winds and forms an accretion disk around
it. The accreted matter transforms gravitational potential energy into ther-
mal energy through disk viscosity, and radiates a thermal spectrum peaked
around ∼ 10 keV [28]. These binaries have been observed in X-rays and in
most case were found during a bright X-ray outburst. These outbursts are
typically several months long and are in general separated by long periods
(years or more) of quiescence. These outburst are thought to be due to in-
stabilities in the accretion disk when it reaches a critical surface density and
rapidly depletes the disk onto the compact object. The X-ray light curve
during the outburst is variable, with, among others, frequent cases of quasi
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60 Gravitational Wave sources

periodic oscillations at 0.1 − 30 Hz [29].
Optical observations of these systems were used to measure the mass of

the unseen compact object. The measurement is based on analyzing Doppler
shift of spectral lines which yields the value of the mass function [29]

(m1 sin ι)3

(m1 +m2)
2
≤m1, (3.5)

where m1 is the mass of the compact object, m2 the mass of the companion
and ι is the angle between the orbital axis and the observer line of sight.
The mass function gives an absolute minimum for the mass of the compact
object. Additional information on the mass of the compact object can be
obtained through the optical spectrum of the companion which yields the
star type and constrains m2. As a result for 20 such systems [28] the mass
found for the compact object was greater than m1 > 3 M⊙ and the compact
object is thought to be a black hole. These 20 black holes have masses in
the 3 − 20 M⊙ range, this range include the estimation error bars which are
between 5% and 50%. A summary of the measured masses for black holes
is shown on the right side of figure 3.4. In addition there are also currently
of the order of 20 black hole candidates for which X-ray spectra properties
suggest the presence of a black hole but the Doppler shift of the companion
spectrum have not been sufficiently measured to constrain the candidate
black hole mass [28].

These unique known cases of stellar mass black holes, which allows many
interesting observations across the electromagnetic spectrum3 that allow to
measure black holes properties like the spin or to derive indirect limits on
their radius and event horizon. These objects could also be a source of
gravitational waves which are a direct probe of black hole properties.

Black holes are macroscopic objects whose stable state is fully described
by three parameters: mass, spin and charge. For astrophysical black holes
the charge is assumed to be zero as the forming matter is globally neutral.
For a black hole of mass M the spin S is usually parameterized using the
dimensionless spin χ =

∣S∣c
GM2 , which is always smaller than 1 [30] in order to

respect the cosmic censorship principle4. For an astrophysically reasonable
scenario of a black hole spun up through matter accretion the maximal spin
is slightly lower χ < 0.998. The limit is imposed by angular momentum
extraction through photons [31] and gravitational waves [32] emitted during
the matter infall.

When the black hole horizon is deformed just after its creation or by
infalling matter, it radiates gravitational waves in order to reach a stable

3One should note that the following interpretations of the measurements are not very
reliable for the moment.

4Which states that all astrophysical singularities are hidden behind an event horizon.
In Kerr black hole geometry an event horizon forms only for χ ≤ 1.
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3.3 Transients 61

state. After an initial transient period the emission is dominated by a super-
position of discrete quasi-normal modes, and the most slowly damped mode
is the spheroidal l =m = 2 mode which radiates a ringdown waveform

(
h+(t)
h×(t)

) = A exp [−
πf0

Q
(t − t0)] θ(t− t0)(

(1 + cos2 ι) cos [2πf0(t − t0) + φ0]

2 cos ι sin [2πf0(t − t0) + φ0]
) ,

(3.6)
where ι is the angle between the black hole spin and the line of sight, and the
frequency f0 and quality factor Q can be analytically approximated (within
5%) by [33]

Q ≃2(1 − χ)−0.45, (3.7a)

f0 ≃32 kHz × [1 − 0.63(1 − χ)0.3]
M⊙

M
. (3.7b)

Assuming the accretion spin-up limit on black hole spin χ < 0.998 for known
black holes the expected gravitational wave frequency is in the 600 Hz−10 kHz
range, and the expected quality factor is in the 2 − 33 range.

The fundamental question is what are the plausible amplitudes for grav-
itational wave signals emitted by known black holes in X-ray binaries, and
how do they compare with detector noise. We will choose as an example
Cyg X-1 which is a near-by binary at a distance of 2 kpc with a black hole
mass in the 6.8 − 13.3 M⊙ range [28]. The large black hole mass means a
lower frequency range where current detectors are more sensitive. For in-
stance at 2 kHz the sensitivity is at ∼ 2 × 10−22 Hz−

1/2 (see figure 3.1) which
for a typical detection threshold of SNR ∼ 10 correspond to a sensitivity
of hrss ∼ 10−21 Hz−

1/2. Using (1.44) this sensitivity corresponds to a gravi-
tationally radiated energy EGW ∼ 10−7 M⊙c2, during a time of the order of
Q
f0

∼ 10 ms.
This radiated energy should be compared with the available matter around

the black hole. For a simple order of magnitude argument, the difference of
potential energy for a mass m between a point at infinity and on the black
hole horizon is of the order of GM

RS
m = 1

2mc
2. Thus the accretion rate give

us an upper limit on the radiated power.
As extreme examples, the SS 433 X-ray binary has a very large persistent

accretion rate ∼ 10−11 M⊙s−1 [34], which is orders of magnitude smaller than
EGW
c2

f0
Q ∼ 10−5 M⊙s−1, the lower limit for gravitationally visible signals. How-

ever higher accretion on short time scales could happen during an outburst,
for instance for GRS 1915+105 the total mass of the disk is ∼ 4 × 10−4 M⊙

[35] for a 4 × 107 km radius, but only the inner cQf0 ∼ 3 × 103 km could fall
into the black hole and excite the longest lived quasi-normal mode. As an
example, the observed variation in the emission spectrum on seconds time
scale have been interpreted [36] as step changes in the inner radius of the
disk between 20 and 100 km. Assuming a uniform density, the emitted grav-
itational energy could be as high as 2 × 10−12 M⊙c2. But it is improbable as
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62 Gravitational Wave sources

the inner parts of the disk are expected to have smaller surface density than
the outer parts [37].

Furthermore, the expected gravitationally radiated energy is much smaller
than the total available potential energy. For instance for a radially falling
point test particle of mass m onto a Schwarzschild black hole only

∼ 0.01mc2
(m/M) (3.8)

is radiated. Hence the estimate in the preceding paragraph should be reduced
by several orders of magnitude.

In conclusion, even though X-ray binaries are highly variable objects
with infrequent bright outburst and sub second evolution time scales, they
do not involve enough mass transfers to be interesting gravitational wave
sources. Even an improvement by a factor 100 in sensitivity expected for
distant future third generation detectors [38], which corresponds to a factor
104 in gravitational wave energy sensitivity, are not sufficient to make black
holes in X-ray binary a relevant source. The study of black holes in these
systems will still need to rely solely on electromagnetic observations.

3.3.2 Compact binary coalescence

We have already seen a very crude model of how a compact binary radiates
gravitational waves in our toy example of section 1.5. In the case where
neither of the compact objects has a significant spin, that picture is actually
quite close to the real model. The only missing component is the energy loss
of the system through gravitational radiation, which slowly shrinks the orbit
and the orbital period.

In the general case of two point like objects of massm1 andm2, bound on
a circular orbit and separated by a distance d, a simple Newtonian calculation
yields the mechanical energy

E = −
GµM

2d
, (3.9)

in terms of the total massM =m1+m2 and the reduced mass µ =m1m2/(m1+

m2). By equating the time derivative of E to the power emitted through
gravitational quadrupolar radiation (1.28) one obtains a differential equation
on d, which assumes a quasi-static evolution. The solution of this equation
can be recast in terms of orbital angular frequency ω using Kepler’s third
law

d = (
GM

ω2
)

1
3

. (3.10)

We will not go here into the details, but with a relatively simple cal-
culation one obtains the time evolution of the gravitational wave angular
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3.3 Transients 63

frequency ωGW = 2ω [39]

ωGW(t) =
1

4
[
G5/3

5c5
M

5/3
c (tc − t)]

−3/8

, (3.11)

whereMc = µ
3/5M2/5 is the chirp mass which parameterizes at first order the

inspiral evolution and tc is the coalescence time at which the two point object
merge. The resulting gravitational wave for an observer with inclination ι is

(
h+(t)
h×(t)

) = −
G

rc4
2M5/3

c (GωGW(t)/2)
2
3 (

(1 + cos2 ι) cos (∫t ωGW(t′)dt′)
2 cos ι sin (∫

t ωGW(t′)dt′)
) .

(3.12)
The result (1.46) we obtained for the toy model discussed in section 1.5 can
also be obtained from the above formula by noticing that in that case the
reduced mass is µ =m/2 and the distance between the objects is

d = 2a = (
GM

2ω2
GW

)

1
3

. (3.13)

Hence as the orbit shrinks the frequency and the amplitude of the emitted
signal increases. In order to compare this waveform with detector noise its
Fourier transform is needed to compute the SNR as explained in section 2.3.
However a good approximation of this Fourier transform can be obtained by
using the stationary phase approximation, and it also yields some insight on
the inspiral signal. We will not go into the details of the stationary phase
calculation, but the result up to a constant factor can be obtained with a
simple argument. The amplitude of the signal in (3.12) grows as f2/3 and the
length of time ∆t during which the signal can be considered monochromatic
is the solution of

1 ∼ (f(t +∆t) − f(t))∆t ≃
df
dt

∆t2. (3.14)

If ones neglects the amplitude evolution of the signal during that time5 the
Fourier amplitude reads

∣h̃+(f)∣∝ f2/3∆t ≃
f2/3

√
df
dt

∝ f−7/6, (3.15)

where we used equation (3.11) to obtain the frequency derivative. This
result shows that even though the instantaneous amplitude at low frequency
is smaller, the longer integration time yields a higher contribution to the
SNR at low frequency than at high frequency. The comparison between this

5The stationary phase approximation consists in assuming that the first two relative
time derivatives of the amplitude can be neglected with regard to the phase derivative.
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64 Gravitational Wave sources

Fourier amplitude with appropriate normalization for an optimally located
and oriented source [40]

∣s̃(f)∣ =
G5/6

2rc3/2

√
5/6

π2/3
M

5/6
c f−7/6 (3.16)

and detectors noise is shown on figure 3.1. Note that 2∣s̃(f)∣ is shown on
the figure as the SNR2 computation (2.40) has a factor 4 in its expression.
Typically binary systems can be seen out to several dozen Mpc with current
detectors, within this range a merger rate of ∼ 10−2 yr−1 is expected [40].

The assumption of circular orbits is well justified by gravitational waves
circularizing the orbit in the course of the inspiral. By comparing the energy
and angular momentum lost through gravitational radiation one obtains [41]
a relationship

d(e)∝
e12/19

1 − e2
≃ e12/19, when e≪ 1 (3.17)

between orbital separation and eccentricity. For small eccentricities can be
rewritten using (3.10) as a relation between eccentricity and orbital frequency

e∝ ω−19/18. (3.18)

Thus the initial eccentricity becomes insignificant after the binary inspiral
which covers several decades in frequency between formation of the binary
and ∼ 10 Hz at which current gravitational waves detectors start to be sen-
sitive. This orbital circularization has been studied in more details in pop-
ulation synthesis models [42] with the conclusion that the eccentricity can
be neglected (e ≲ 10−5) for binary systems emitting in the sensitive band of
ground detectors.

Of course the waveform described by equations (3.11) and (3.12) is only
a zeroth order approximation, more precise waveforms are obtained through
a post-Newtonian expansion of the above formalism, that is an expansion in
different orders of v2/c2 corrections. For instance the angular frequency evo-
lution of a waveform that includes corrections inclusively up to v4/c4 (called
2PN order) is expressed in function of dimensionless time

Θ =
cµ

5GM2
(tc − t), (3.19)

and has the form [43]

ωGW(Θ) =
c3Θ−3/8

4GM
[1 + (

743

2688
+

11

32

µ

M
)Θ−2/8

−
3π

10
Θ−3/8

+(
1855099

14450688
+

56975

258048

µ

M
+

371

2048

µ2

M2
)Θ−4/8

] , (3.20)
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3.3 Transients 65

with the corresponding integral

∫ ωGW(t)dt = φ0 −
2MΘ5/8

µ
[1 + (

3715

8064
+

55

96

µ

M
)Θ−2/8

−
3π

4
Θ−3/8

+(
9275495

14450688
+

284875

258048

µ

M
+

1855

2048

µ2

M2
)Θ−4/8

] . (3.21)

The full 2PN expansion also includes higher order terms than just the
quadrupolar radiation, however this restricted post-Newtonian waveform cap-
tures most of the phase and amplitude evolution, and will be a sufficient ap-
proximation for the purpose of characterizing a search for unmodeled sources.

One should note that these post-Newtonian expansions are only valid
as long as ∣Θ∣ ≳ 1 and the size of the considered objects is smaller than
the distance between them. In the final part of the coalescence many non-
perturbative effects appear, neutron stars can be tidally disrupted, the evo-
lution changes from an adiabatic inspiral to a rapid plunge and eventually
the two compact objects collide and merge. For the case of two black holes
full general relativity numerical calculations are able to consistently calcu-
late merger waveforms using different approaches [44], but for cases involving
neutron stars the merger behavior is not well understood. The lack of pre-
cise knowledge on the nuclear matter equation of state is one of the reasons
beside the computer simulations complexity.

However for the problem of first gravitational wave detection this effects
will be largely unseen because they happen at high frequency where detec-
tors are less sensitive. The typical frequency at which the post-Newtonian
description fails is the frequency of the innermost stable circular orbit of a
test mass [4], which corresponds to a gravitational wave frequency

fisco =
c3

6
√

6πGM
≃ 4.4

M⊙

M
kHz, (3.22)

and Θ ∼ 1. For instance for two 1.4 M⊙ neutron star the ISCO frequency is
1.6 kHz. For a search which is limited to below 500 Hz the merger evolution
is out of band for binary systems with total mass M < 10M⊙, and is negli-
gible for binary systems with total mass of order a few dozen solar masses,
especially given the few kilohertz frequency of the quasi normal modes (3.7)
from the resulting black hole.

Spinning compact objects

For the moment we have only considered non-spinning compact objects, how-
ever these objects may acquire significant spins either during their formation
or by different types of mass transfers6 from a companion in its giant branch

6For instance Roche lobe overflow accretion or common envelope phase.
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66 Gravitational Wave sources

phase. Usually the spin is described by the dimensionless spin χ =
∣S∣c
GM2 ,

where S is the total angular momentum of the object. For neutron stars the
maximal spins in observed pulsars are χ ≃ 0.04, but for black holes they can
be much more significant with observed spins χ ∼ 0.1 − 0.99, though these
measurements come with many caveats [45, 46]. Also, some upper limits on
the spin can be theoretically derived, for neutron star with realistic equation
of state the break-up limit is χ ≲ 0.7 [47] and for black holes the maximal
spin that can be obtained through accretion is χ ∼ 0.998 [31].

During the time that the inspiral sweeps through detectors sensitive band
one can neglect the gravitational radiation of each of the individual objects
and consider the spins S1 and S2 of both objects as constant in magnitude.
Detailed calculation of the binary evolution equation of motion have been
performed at 2.5 PN [48] and higher orders. There are two major effects
on the gravitational waveform: the orbital frequency time evolution (3.20)
is modified at 1PN and higher orders, and the orbital plane is precessing,
which translates into a time dependent ι in (3.12). Only the second effect is
important from the point of view of a search that does not rely on template
waveforms.

In the simplified case of one spinning body (S1 = 0) the leading order
evolution is an orbital angular momentum L and spin S2 that are precessing
around the total angular momentum J = L + S2, with L that is decreasing
in magnitude due to gravitational radiation emission [48]. The equations of
motion are then:

Ṡ2 = ωp ∧S2, (3.23a)

L̇ = ωp ∧L − εRRL, (3.23b)

J̇ = −εRRL, (3.23c)

where the precession frequency ωp and the angular momentum radiation rate
εRR are

ωp =
GJ

2d3c2
(1 + 3

M

m2
) , (3.24a)

εRR =
32G3

5c5

µM2

d4
. (3.24b)

The solution is that the tilt angle κ = arccos(L̂ ⋅ Ŝ2), where L̂ = L/L and
analogously for Ŝ2, between the orbital momentum and spin is a constant
of motion, and that as long as the total angular momentum changes slowly
during one precession period, i.e. J̇

ωpJ
=
εRRL
ωpJ

≪ 1, the precession direction
∝ J stays fixed. The latter holds true whenever the post-Newtonian de-
velopment is valid unless the spin S2 is significant and anti-aligned with L,
in that case a situation where J ∼ 0 may happen and lead to the so called
transitional precession or tumbling.
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3.3 Transients 67

equal mass

mass ratio of 10

Figure 3.5: Sketch of the total angular momentum J , orbital momentum L
and a compact object spin S2 for a binary system containing one spinning
body. Shown are also the tilt angle κ between the spin and the orbital an-
gular momentum, and the angle δ between the total and the orbital angular
momentum. The left sketch corresponds to an equal mass system at ISCO
frequency and the right sketch correspond to a mass ratio of m2/m1 = 10 at
ISCO frequency. In both cases χ1 = 0, χ2 ∼ 1 and the tilt angle κ = 45°. In
any case as the binary inspirals the alignment of vectors will qualitatively
evolve from the left to the right configuration.

Hence the general picture shown on figure 3.5 is that the orbital plane
precesses around the fixed axis Ĵ , the orbital angular momentum slowly
decreases in magnitude and the orbital inclination angle δ between the two
increases.

For circular orbits the orbital momentum magnitude is

L = µd2ω = µ(GM)
2/3ω−1/3, (3.25)

and decreases with frequency. At the high frequency limit where L is mini-
mal, that is at the ISCO frequency Lisco =

√
6GµMc and should be compared

to the individual objects spins

Si
Lisco

=
χim

2
i√

6m1m2

. (3.26)

Hence for a near equal mass binary the spin contribution can be compara-
ble to the orbital momentum only at plunge time and the precession will
not significantly affect the orbital plane as J and L will be nearly parallel
during the inspiral. On the contrary, for large mass ratios the spin of the

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



68 Gravitational Wave sources

more massive object can dominate the total angular momentum and lead to
significant precession. For instance this is the case for a neutron star - black
hole binary where m2/m1 ∼ 10 and χ2 ∼ 0.7 are reasonable values. In both
cases the approximation of a single spinning body captures the important
features of the binary system precession.

3.3.3 Massive star collapse

Stars with large masses (above 10 M⊙ at star birth) are believed to produce
an iron core during their evolution [49]. This core collapses once it exceeds
the Chandrasekhar mass limit of electron degenerate pressure support. The
collapse stops when the center of the core exceeds nuclear density by about
a factor two, which generates a rebound of the core and launches a shock
wave that propagates through the infalling core. In about 0.1 s a hot proto-
neutron star with a radius7 of ∼ 30 km and an standing accretion shock at
∼ 150 km are created. Afterwards two scenarios are possible: either the proto-
neutron star cools and forms a neutron star or it accretes to much matter
and collapses into a black hole. The final state depends among others on the
mass and rotation of the initial star.

In the standard core-collapse model the cooling proto-neutron star radi-
ates copious amounts of neutrinos which are able to revive the shock, push off
the accreting mater and explode the star. In numerical simulations of core-
collapse successful explosions are difficult to obtain, as they require complex
instabilities such as the standing accretion shock instability and multi di-
mensional modelling [50]. The ejected matter radioactively decays on a time
scale of weeks and produces an optical brightening on the same time scale,
this brightening is called a supernova.

Supernovae are observationally classified according to their optical spec-
tra into two main types: in type I supernovae no hydrogen line is present
and in type II supernovae a hydrogen spectra line is visible. This two main
classes are subdivided into subclasses according to the presence or absence
of other spectral features. An important subclass are type Ia which are pro-
duced by the run-away combustion of a white dwarf. These supernovae are
important tracers in the field of cosmology but are not relevant as a gravita-
tional wave source. The other subclasses of type I supernovae and all type
II supernovae are thought to be produced by a massive star collapse.

In this thesis we are mostly interested by astrophysical events that could
produce a gamma ray burst. One of the main models of production for
these bursts is the collapse of rapidly rotating massive stars. We will discuss
in detail the gamma ray production from these systems in section 4.1, the
important point here is that in the current models either a black hole with
a nuclear density torus or a highly magnetized neutron star is needed to

7For a settled cold neutron star the radius is at about half this value.
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Evolved massive
star

Iron core collapse

Proto neutron star
Stalled shock
Accretion

Shock
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No shock revival

SN explosion

BH formation
"Collapsar"

Neutron star

Black hole
through fallback

Black hole

Collapsar GRB

Collapsar GRB
(type II)

Magnetar GRB

Depends on the
rotational profile
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profile isadequate

Figure 3.6: Graphical summary of different jet producing models described
in the text. The result depends strongly on the initial rotational profile of
the evolved star and the evolution of this profile. Figure idea courtesy of
Christian Ott.

produce such a burst. Several extreme extensions of the standard core-
collapse scenario have been proposed to produce these central engines, and
are thought to concern only a small fraction (∼ 1%) of core collapses. In
all cases the starting point is a core bounce, followed by the formation of a
proto-neutron star and a standing accretion shock. However the later stages
are largely unknown and several models have been proposed [51]:

Magnetar This model is the closest one to the standard core-collapse pic-
ture. The main difference is that the produced neutron star is rapidly
spinning with a period of the order of 1 ms that is near breakup, and
with a very large magnetic field (∼ 1015 G) which is produced through
a dynamo effect [52]. A successful supernova explosion is needed in
this model in order to prevent the collapse of the neutron star to a
black hole as described in the collapsar model.

Collapsar This is the most popular model to explain gamma ray bursts
in stellar collapse [53]. It involves the collapse of the proto-neutron
star into a black hole as it exceeds the mass that can be supported
by neutron degenerated pressure and rotation, and the creation of a
dense accretion disk around the hole which requires a large angular
momentum in the initial core. This model is divided into two types8

depending on how the black hole is created.

Type I In this scenario the shock revival is not successful, no super-
nova is produced and the proto-neutron star promptly (in less
than a few seconds) collapses to a black hole as the outer core
continues to accrete. Polar accretion is more rapid than equato-
rial, as the rotating matter needs to shed angular momentum in
order to fall onto the central object. As a result an equatorial

8Note that two types of the collapsar model do not have any relationship with the two
types of observed supernovae.
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70 Gravitational Wave sources

disk is formed around the black hole and is accreted on a time
scale of 10 − 100 s.

Type II In this scenario the shock revival is successful, but a sig-
nificant fraction of the infalling core (0.1 to several M⊙) stays
gravitationally bound throughout the explosion and accrete onto
the proto-neutron star which forms a black hole - disk system as
in the case of type I collapsar. The typical time for this fall back
is ∼ 100 s.

Supranova In this last model the supernova explosion is fully successful,
however the proto-neutron star is “hypermassive”, it exceeds the max-
imal mass of a non-rotating neutron star and its larger mass is sup-
ported by centrifugal force. The maximal supported mass is increased
by ∼ 20% in case of rigid rotation and ∼ 50% for differential rotation.
As the neutron-star slows down due to dipole radiation it eventually
collapses to a black hole and disk systems on a month time scale. This
model seems to be excluded by the observed association between su-
pernova and gamma ray burst [49] with delays of ∼ 1 day. However,
for differential rotation support the collapse time could be as short as
∼ 1 s, given that magnetic braking will lead to a uniformly rotating
star.

A graphical summary of these models is shown on figure 3.6, they all
involve relativistic motion of matter at nuclear densities. If this motion
is not spherically symmetric it can generate large amounts of gravitational
radiation. Given that gamma ray bursts are extra-galactic (and in most
cases cosmological) events, only process that could produce gravitational
waves detectable at more than 1 Mpc are of interest to us.

In currently operating gravitational wave detectors the best sensitivity
is ∼ 2 × 10−23 Hz−

1/2 at 150 Hz frequency (see figure 7.1). For a gravitational
wave detection an event with let say SNR ≳ 10 is required, hence only grav-
itational waves with hrss ≳ 2 × 10−22 Hz−

1/2 can be observed. Which using
equation (1.44) at a distance of 1 Mpc corresponds to a gravitationally ra-
diated energy EGW ∼ 10−5 M⊙c2. One should note that the sensitivity to
gravitationally radiated energy is strongly dependent on frequency. In the
shot noise dominated regions the detectors sensitivity is linearly growing with
frequency (2.33) and the energy is quadratic in both frequency and hrss. So
above a few hundred hertz the sensitivity is EGW ∝ f4 and at 1 kHz only
sources radiating more than EGW ∼ 10−2 M⊙c2 are of interest.

We will start our survey of possible gravitational wave emission mecha-
nisms with the common standard core-collapse part. It has been studied in
details in the context of garden variety core-collapse supernovae [54], how-
ever these results do not include extreme rotation nor high magnetic fields
that are present in the context of gamma-ray bursts.
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3.3 Transients 71

Core bounce During the initial core infall and bounce a quadrupolar de-
formation may arise, especially at high rotation. Numerical studies [55]
show that the emitted gravitational waves have the shape of a sharp
spike followed by a ringdown. For their most rapidly rotating models,
typically an energy EGW ∼ 10−9 M⊙c2 is emitted with a peak frequency
in the 100 − 200 Hz range. Thus the core bounce is not an interesting
extragalactic source.

Rotational instability Rapidly rotating star could develop bar mode9 type
instabilities. Dynamically formed instability seem to be excluded by
modern core-collapse simulations due to insufficient rotational kinetic
energy. However other type of instabilities have been seen to develop
in numerical simulations at lower rotational energy. The typical ob-
served [56] growth time and duration of these instability is on the order
of a few 100 ms and the emitted energies are EGW ∼ 10−7 M⊙c2 at twice
the rotational frequency (that is at ∼ 1 kHz in their simulation). How-
ever analytical arguments [57] suggest that in extreme cases the emit-
ted energy could be as high as 10−2 M⊙c2, which would be sufficient
for a gravitational wave observation at extragalactic distances.

g-Modes During the accretion of matter onto the proto-neutron star various
mode of the compact object can be excited, especially given that the
accretion is expected to be turbulent and modulated by the standing
accretion shock instability of the stalled shock. This could lead to the
excitation of neutron star core g-modes for which buoyancy is the main
restoring force [58] through a controversial acoustic mechanism [59]. In
the most extreme case, as much as 10−4 M⊙c2 could be gravitationally
radiated at about 800 Hz. One should note that these simulations
have been performed assuming axis symmetry, hence the gravitational
polarization is constrained to be linear.

There are several other emission mechanisms that are either out of the
sensitive frequency band or too low in amplitude to be included in the discus-
sion above: other types of proto-neutron star accretion induced excitations
radiate energies which are several order of magnitude smaller than g-modes;
neutrino and asymmetric outflow emission are too low in frequency ≲ 1 Hz;
black hole quasi-normal modes discussed in section 3.3.1 are too high fre-
quency at several kilohertz; neutron star r-modes are also promising sources
of gravitational waves but they long duration ≳ 100 s require new analysis
methods that are currently under development and beyond the scope of this
thesis.

The rapid rotation present in the context of gamma ray bursts could
lead to more extreme emission mechanisms on top of the ones described

9That is a bar shaped mass excess.
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72 Gravitational Wave sources

above. These mechanisms are the most promising for detection of extra-
galactic sources, the first one could be associated with any of the extreme
collapse models, but the two latter can only be involved in the collapsar or
supranova model as they require an accretion disk around a black hole.

Core fragmentation Neutron star modes instability if not saturated could
lead to the fragmentation of the proto-neutron star into several blobs
of nuclear matter containing a fraction of the neutron star mass [60].
These blobs would inspiral on a time scale of minutes and generate
gravitational waves similarly to a standard binary described in sec-
tion 3.3.2. Analogously to neutron star binaries, core fragmentation
could be seen up to several megaparsec away with current detectors.

Disk fragmentation In scenarios that contain a black hole surrounded by
an accretion disk, gravitational instability may arise in the disk and
produce blobs of mass ∼ 0.1 − 1 M⊙ [61]. As in the core fragmentation
mechanism these fragments inspiral around the central black hole, at
first more rapidly than in the binary scenario due to viscous torque
which is dwarfed by the gravitational torque once the inspiraling frag-
ment is close enough. In cases where the gravitational torque domi-
nates the viscous one for orbital frequencies ≲ 100 Hz these inspirals
could be seen at ∼ 10 Mpc.

Disk precession If the accretion disk is tilted with regard to the black hole
spin axis, the accretion disk will precess around the spin axis [62]. In
most optimistic evaluations the disk could radiate up to 10−4 M⊙c2

at 150 Hz over several seconds. However fits to gamma ray curves in
which the disk precession explains the temporal variability in the light
curve show precession at much lower typical frequency (several Hz).

All of the above optimistic models and the extreme cases of rotational
instability and g-Modes discussed before predict a gravitational radiation
around 100 Hz with a mass quadrupole evolution well approximated by a
rotating bar. Hence the inclination dependence of the + and × polarization
is expected to be the same as for a binary (3.12). The rate of such events
within a given radius is of the same order of magnitude as for the CBC case,
that is one per century within a dozen Mpc distance.

In conclusion gravitational radiation in stellar collapse is much more un-
certain than in compact binary coalescence. Typical signal to noise ratio for
these events could vary from the same one as for an inspiral at the same
distance down to 5 orders of magnitude lower, as the core bounce is the
only reliable and well modeled emission process. However massive star col-
lapse producing gamma ray bursts are thought to be extreme cases of stellar
collapse, which motivates an opportunistic search for gravitational waves in
association with them as they could also be in the upper range of predicted
gravitational radiation.
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Chapter 4

Gamma-ray bursts

Gamma-ray bursts (GRB) as their name implies are short bright bursts of
gamma-rays observed on the sky. They were first discovered in the early 70’s
by the Vela spacecrafts launched by the US government in order to monitor
the application of the Partial Test Ban Treaty on nuclear weapon tests in
air, in outer space and under water.

After this initial discovery a large number of dedicated spacecrafts have
been designed and operated in order to understand the nature of these tran-
sient events. These spacecrafts have enabled a more detailed study of the
γ-ray light curve and spectroscopy but also in most recent missions rapid
followups (down to minutes after the event) of the GRB afterglows in X-
ray, optical and radio band. Several thousands GRBs have been observed to
date, with current new detection rate of approximately 1 per day.

The observed distribution of GRBs is isotropic and for the fraction with
measured redshifts (median redshift ∼ 2) the typical distance is of the order of
10 Gpc. Assuming an isotropic γ-ray emission the typical energies emitted by
each burst are 10−3 − 1 M⊙c2. Based on the distribution of durations shown
on figure 4.1 GRBs have been observationally classified into two groups:
short GRBs with a duration of less than 2 seconds and long GRBs which are
longer than 2 seconds. The duration is characterized by the length T90 of the
time interval containing the 5 to 95% of above background photon counts
in the 15 − 350 keV energy range. The exact range used depends slightly on
the γ-ray detector. This classification is also supported by γ-ray spectra, as
short bursts tend to have a harder spectrum than long bursts.

Long bursts are thought to be generated by stellar collapse in massive
stars. The two main results supporting this model are: associations with a
supernova emission for several long bursts1, and a predominant localization
in galaxies with active star formation regions2.

1However for at least two long bursts no supernova optical bump has been observed
with upper limits a factor ∼ 100 lower than typical supernova light curves.

2Massive stars are very short lived, there is only a few million years between formation
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74 Gamma-ray bursts

Figure 4.1: Distribution of durations of GRB in the 4B catalog of the BATSE
detector [63]. The T90 is the duration of the time span that contains the 5
to 95% interval of total observed background subtracted γ-ray count in the
15 − 350 keV energy range.

The progenitors of short GRBs are less observationally constrained, among
others due to a much smaller sample of afterglow observations, but they are
thought to be generated by compact binary coalescence involving a neutron
star and another compact object. The hypothesis is motivated by their pre-
dominant localization in galaxies with an old stellar population and large
distances from the galaxy center explained by supernova kicks during the
neutron star formation.

For a historical discussion of the GRB field and the current results and
prospectives see for instance the recently published book by Vedrenne and
Atteia [51].

4.1 Relativistic jets

The large energy emission under the assumption of an isotropic γ-ray emis-
sions is difficult to explain with any of the above progenitors. Hence the
emission is believed to be beamed along narrow cones and produced by col-

and core collapse.
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4.1 Relativistic jets 75

limated jets. This model is also supported by the observation of achromatic
breaks in the afterglow light curves, which are explained by the observer
seeing the edge of the relativistic jet as it slows down. It is also supported
by much smaller energies observed once the jet slows down in the radio band
where the emission is close to being isotropic. The typical inferred angles are
5 − 20°, and the corresponding beaming corrected energies are ∼ 10−3 M⊙c2,
similar to the energy emitted by a typical, ∼ week long, supernova optical
bump.

The observed light curves are highly variable with variation time scale tvar
as short as milliseconds. In order to allow such rapid evolution the emitting
region has to be smaller than ctvar ∼ 300 km, otherwise the time structure
would be washed out by propagation delays. Given the large radiated energy
coming from such a small source the γ-ray spectrum should be sharply cut-
off at ∼ 1 MeV due to pair production γγ → e+e− opacity. Such cut-offs are
not seen in GRB spectra, which is well explained by bulk relativistic motion
of the emitting region.

In the standard model of GRB emission [51] the relativistic motion of the
emitting region (with Γ = 1/

√
1 − (v/c)2 ∼ 10 − 1000) shortens the apparent

size of the emission region and blue shifts the emitted photons. But be-
fore looking at relativistic jet properties let us review the different proposed
mechanisms for creating such jets.

4.1.1 Jet progenitors

There are thus two main astrophysical events expected to create GRBs:
a compact binary coalescence involving at least one neutron star, or the
collapse of a massive star. As discussed in section 3.3.3, the latter scenario
could create a central engine composed of a black hole and a dense accretion
disk or a rapidly spinning magnetar. For binary coalescence the formation
of a black hole and a dense accretion disk is also likely.

Several mechanisms have been proposed for extracting energy from the
central engine into an electromagnetic fireball [51].

Neutrino annihilation The newly formed accretion disk dissipates energy
through neutrino radiation. The νν̄ annihilation cross-section is largest
along the rotation axis where the interactions are the least tangential.

Magnetic fields Large magnetic fields are expected in both the magne-
tar and the black hole with accretion disk scenarios. For the latter
the initial magnetic field in the disk can be enhanced by dynamo pro-
cesses or by extracting rotational energy of the black hole through
the Blandford-Znajek mechanism [64]. This large ∼ 1015 G rotating
magnetic fields creates a strong electric field under which vacuum is
unstable to electron-positron pair production. In this scenario the jet
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76 Gamma-ray bursts

can also be Poynting flux dominated, with most of the energy carried
by bulk magnetic lines carried with the relativistic outflow.

The expansion of the fireball generated by either of the two mechanism
is collimated by the geometry of the systems, as the mass density is much
larger in the equatorial plane than in the polar region. The reason being
that baryon loading efficiently slows down the expansion. This collimation
can be further enhanced at larger distances from the central engine by the
outflow punching through the stellar envelope of the massive star or through
a baryonic wind driven of the accretion disk by the neutrino flux. In the case
of Poynting flux dominated jets the collimation can also be due to magnetic
fields.

4.1.2 Jet properties

Observer time scales

Let us consider a surface moving at relativistic speed with a Lorentz factor
Γ = 1/

√
1 − (v/c)2. The time evolution of the surface for an observer at rest

is x(t) = vt. For photons emitted at positions x1 and x2 the time difference
between their arrivals for an observer along the direction of propagation is

∆Tprop =
x2 − x1

v
−
x2 − x1

c
≃

Γ≫1

x2 − x1

2cΓ2
. (4.1)

This result relaxes the condition on the size of the emitting region from
ctvar ∼ 3 × 105 m to for instance cΓ2tvar ∼ 3 × 109 m if Γ ≃ 100.

In practice the geometry of the jet is not planar but conic as shown on
figure 4.2. The surface to consider is a spherical shell with a Lorentz factor
Γ limited to a cone of opening angle θ . For an observer at infinity only the
interior of a conic cut with an opening angle Γ−1 is visible due to relativistic
beaming. Moreover, for an observer whose line of sight forms an angle ζ with
regard to the jet axis greater than ∼ θ + Γ−1 the jet is completely invisible.

Due to this geometry, for an observer at infinity, photons emitted by
different visible parts of a shell at radius R will arrive spread out in time by

∆Tang =
∆R

c
=
R

c
(1 − cos Γ−1) ≃

Γ≫1

R

2cΓ2
, (4.2)

the same time as the propagation delay ∆Tprop (4.1) between the source of
the jet and the radius R.

Fireball model

Let us take a step back and study more carefully the expansion of a relativis-
tic fireball in spherical symmetry. As an initial condition one of the processes
described above deposits an energy E0 into a region of size Rin ≃ 105 m con-
taining a mass M0. This mass M0 is dominated by the amount of baryons
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4.1 Relativistic jets 77

observer
at 

infinity

Figure 4.2: Geometry of the outflow of a single shell in a jet. The shell is
limited in a jet opening angle θ. For a shell with Lorentz Γ only a conic cut
with angle Γ−1 is visible to an observer at infinity due to relativistic beaming.
The width of the shell due to the spherical curvature as seen by an observer
at infinity is ∆R = R (1 − cos Γ−1).

present in the deposition region, and we will assume it is small, M0c
2 ≪ E0.

The very large optical depth prevents any efficient radiative energy transport
and the relativistic fireball expands adiabatically3 with TV 1/3 = TR = const.
The total energy E = ΓM0(c

2 + kT /mp) is conserved and the initial ther-
mal energy (Γ ∼ 1 and kT /mp ≫ c2) is converted into bulk kinetic en-
ergy (E ∼ ΓM0c

2). In the regime where the thermal energy dominates over
the bulk kinetic energy the total energy is proportional to the temperature
E ∝ ΓT ∝ ΓR−1. Using the conservation of the total energy, we obtain that
the Lorentz factor Γ grows linearly with the expansion radius up to a max-
imal value Γsat ∼ E0/M0c

2 at a typical radius Rsat = ΓsatRin ≃ 107 − 108 m
where the bulk kinetic energy becomes dominant.

After the saturation of the initial accelerating expansion the fireball grows
linearly with a constant bulk Lorentz factor Γ ∼ Γsat. At a typical radius
Rph ∼ 109 − 1011 m the fireball becomes optically thin but most of the initial
energy has already been transfered to the bulk motion of baryons, hence the
radiated thermal spectrum is weak.

As a consequence electrons need to be reaccelerated in order to produce
γ-rays. In the standard fireball scenario this is done through internal shocks
in the outflow. The basic picture is that the central engine energy deposition

3For ideal gases the adiabatic expansion law is PV γ−1 = const and γ = 4/3 for relativistic
gases.
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78 Gamma-ray bursts

is fluctuating, if an initial expanding shell with Lorentz factor Γ1 is followed
by a faster shell Γ2 > Γ1 the two shells will eventually collide and produce a
shock. For a central engine with a variability time scale tvar, the two shells
meet at a radius RIS = v1t = v2(t− tvar). Assuming that Γ1 and Γ2 are of the
same order of magnitude and using v = c

√
1 − 1/Γ2 one obtains

tvar
t

=
Γ2

2 − Γ2
1

2Γ2
1Γ2

2

∼
1

Γ2
. (4.3)

Thus the typical radius at which the internal shocks occur is

RIS ∼ cΓ
2tvar ∼ 1012

− 1013 m (4.4)

for Γ ∼ 100 and tvar ∼ 1 s. The shock accelerates a small part of the present
electrons which are expected to radiate the observed γ-ray spectrum through
synchrotron radiation and inverse Compton scattering.

Electromagnetic model

An alternative to the fireball model is the electromagnetic model [65] in
which the jet is dominated by the Poynting flux. We will not go here into
the details of this less popular model, but the main features are that the
energy injection causes the expansion of a magnetized elongated bubble.
The front of this bubble (or jet) becomes unstable and produces γ-rays at a
typical distance

Rdec ∼ 1013
− 1015 m (4.5)

from the central engine.

4.2 Gamma-ray burst spacecrafts

In 2009-2010 most of GRBs have been detected by the Gamma-Ray Burst
Monitor on the Fermi spacecraft [66], the Burst Alert Telescope on the Swift
spacecraft [67], and the third Interplanetary Network of spacecrafts [68].
There are several other missions which have detected only a few GRBs during
that time due to a much smaller field of view. We will discuss below only
these three major sources of GRB triggers.

The detection time and sky locations of GRBs are distributed through
the Gamma-ray bursts Coordinates Network (GCN), a public alert system
intended to trigger low latency followups [69]. The reported time corresponds
to the crossing of an internal threshold in the spacecraft that depends among
others on the γ-ray flux and local background. Thus the reported time TGRB
corresponds to the start of the γ-ray light curve.
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4.2 Gamma-ray burst spacecrafts 79

4.2.1 Third Interplanetary Network

The third Interplanetary Network (IPN) started its operations in 1990 and
has been operating since then. It consists of γ-ray detectors fixed on various
spacecrafts in low Earth orbit, eccentric Earth orbit, on their way or in orbit
around other planets. These detector are roughly isotropic and the network
as a whole operates as a full-time all-sky monitor with a 50% detection
threshold at a 6 × 10−7 erg cm−2s−1 flux ( ∼ 1 photon cm−2s−1) in the 25 −
150 keV energy range. The localization is performed through triangulation
of the times of arrivals of γ-rays between different spacecrafts in the network.

However in most cases the data are retrieved with ∼ 1 day latency and
the sky position is computed with a much larger delay, thus the detection
and sky location information are not reported through GCN in most cases.
For cases where the detection is reported the sky location errors are of the
order of a few arcminute.

4.2.2 Swift

The Burst Alert Telescope (BAT) on the Swift spacecraft is a coded aper-
ture telescope with a field of view of 1.4 steradian. It is sensitive for fluxes
∼ 10−8 erg cm−2s−1 in the 15−150 keV energy range, with a sky location accu-
racy of several arcminutes. The sky location is performed by analyzing the
shadow pattern of a coded mask onto an array of CdZnTe detector elements,
and can be further refined if an X-ray or optical afterglow is detected by the
other instruments present on the Swift spacecraft.

4.2.3 Fermi

The Gamma-Ray Burst Monitor (GBM) on the Fermi spacecraft is com-
posed of NaI and BGO scintillation detectors which cover a field of view of 9
steradians. The NaI detectors are used for sky localization, and are sensitive
to fluxes ∼ 0.4 photons cm−2s−1 in the 8 keV − 30 MeV energy range. These
detectors are essentially thin disk and the observed flux is proportional to
the cosine of the angle between the γ-ray source and the disk axis. The sky
location reconstruction is based on comparing the fluxes between disks with
different orientations located on the spacecraft. The typical statistical error
of this sky location method is ∼ 1 degree or more.

4.2.4 Sky localization model

For the GBM the sky location errors are large enough that they need to be
included in a gravitational wave analysis triggered by these GRBs. The sky
location probability distribution is well modeled by a Gaussian distribution
on the sphere also called Fisher distribution [70]. The probability distri-
bution for the angle θ between the reported sky location and the true sky
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80 Gamma-ray bursts

location is
PF(θ;κ) =

κ sin θ

eκ − e−κ
eκ cos θ, (4.6)

where κ parameterizes the width of the distribution. This probability dis-
tribution is smoothly going from a Dirac distribution for κ = ∞, a good
approximation of a planar 2D Gaussian distribution for κ ≫ 1, and of a
uniform distribution on the sphere for κ = 0.

Sky location errors are usually specified in terms of the angular radius σ
containing 68% of the probability distribution. For small errors (σ < 30°) κ
can be expressed as a function of σ

κ(σ) ≃
1

(0.66σ)2
, (4.7)

with a 1% accuracy. Also the 95% containment radius for small angles is
σ95% ≃ 1.65σ, note that this is different from the usual one dimensional
Gaussian coverage where σ95% ≃ 2σ.

In addition to a statistical error σstat that depends on the GRB flux, sky
locations by the GBM also have a systematic error, due to the imperfect
modeling of the detector response and scattering of γ-rays on the spacecraft
and Earth’s atmosphere. This systematic error is estimated by comparing
the sky localizations between the GBM and other detectors [71]. Currently
this systematic error is modeled using two Fisher distributions [72]. A “core”
distribution which has a width σcore = 3.2° and contains a fraction fcore = 0.7
of the distribution, and a “tail” distribution which has a width σtail = 9.5°.
For these parameters a 95% coverage is obtained for an angular radius of
7.5°.

In total, the sky location probability distribution of GBM is well modeled
by

PGBM(θ) = fcorePF [θ;κ(

√

σ2
stat + σ

2
core)]+(1−fcore)PF [θ;κ(

√

σ2
stat + σ

2
tail)] ,

(4.8)
which is shown on figure 4.3.

4.3 Gamma-ray burst and gravitational wave coin-
cidence

As we have seen in section 3.3.2 and 3.3.3 central engines which produce
γ-ray bursts are also good sources of gravitational waves. A crucial question
is the expected time delay between the arrival of γ-rays Tγ and gravitational
waves TGW to an observer located on Earth. In the discussion below we will
use different time delays values as discussed in different models and add an
error safety margin only at the end in the final estimate.
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4.3 Gamma-ray burst and gravitational wave coincidence 81

Figure 4.3: Fisher probability distribution function for 1 sigma coverage at
angular radius 0.056 rad = 3.2° (blue line) and 0.17 rad = 9.5° (green line).
The systematic sky localization error probability distribution function for
the GBM (4.8) is shown in red. It is the sum of the two shown Fisher
distributions with appropriate weighting factors.

For this timing discussion we will place ourselves from the point of view of
an observer located in the Solar system. We delay by light time propagation
all the times of events happening in the GRB progenitor or jet, i.e. the time
of a particular event is the time at which a message emitted by this event
and propagating with speed of light would arrive to the observer.

4.3.1 Coalescence model

For the compact binary coalescence model of short GRBs the timing question
is relatively simple. We will use the time of the merger of the two compact
objects delayed by light propagation to the observer as a zero time reference
for the discussion. That is the zero time is the coalescence time as would be
measured by a gravitational wave detection.

As shown in section 3.3.2 gravitational wave are predominantly emitted
during the inspiral phase which enters gravitational wave detector sensitive
band at most 50 s before the merger (see equation (3.11)), hence the gravi-
tational wave emission time TGW is contained in [−50,0] s.

After the merger an accretion disk is produced on a viscous time scale
< 1 s and launches the relativistic jet. The time delay between the start of the
jet and the arrival of γ-rays to the observer is RIS/2Γ2c ≃ tvar ≤ T90 ≲ 2 s in the
fireball model. The sum of these two delays means that the γ-ray emission
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82 Gamma-ray bursts

arrival time Tγ is contained in [0,3] s. For the alternative electromagnetic
model the emission radius for short GRBs is Rdec ∼ 1013 m and the typical
Lorentz factors are Γ ≥ 10 − 50 [73], hence the delay is Rdec/2Γ2c ≲ 200 s.

Including both jet models the relative time of arrival between gravita-
tional waves and γ-rays is estimated to lie in the range

TGW − Tγ ∈ [−250,0] s. (4.9)

4.3.2 Stellar collapse model

For the stellar collapse model of long GRBs we will use as a zero time ref-
erence the formation of the proto-neutron star time delayed by the light
propagation to the observer. This reference does not necessarily correspond
to any observable around Earth but it is a well defined point of all long GRB
central engine models.

First, the relativistic jet is created at most several seconds after the proto-
neutron star in the type I collapsar and supranova model, in the magnetar
model the jet is created after ∼ 10 s [52], and in the type II collapsar the jet
is launched only after ∼ 100 s when the black hole forms through fall back.
Hence Tjet ∈ [0,100] s.

Second, the jet plows through the stellar envelope at a fraction of the
speed of light, the time for this propagation between jet creation and break
out is Tbreak out − Tjet ≲ 100 s.

Third, the jet accelerates to relativistic speeds after the break out and
produce γ-rays in the fireball model after an apparent time Tγ − Tbreak out ≃

tvar ≤ T90 ∼ 100 s, and in the electromagnetic model with typically Rdec =

1015 m and Γ ≥ 100 the apparent delay is Tγ −Tbreak out ≲ 200 s. Taking these
three effects into account the observed time is Tγ ∈ [0,400] s.

For gravitational waves all the mechanisms discussed in section 3.3.3 pre-
dict an emission within seconds of the creation of the proto-neutron star or
the black hole and accretion disk system. The latter being contemporane-
ous with the creation of the jet, the gravitational wave arrival time TGW is
contained in [−5, Tjet + 5] s.

4.3.3 Coincidence with GRB trigger

In total when taking both the coalescence and the stellar collapse model into
account the relative time of arrival between gravitational wave and γ-rays is

TGW − Tγ ∈ [−400,5] s. (4.10)

Note that cases where TGW ∼ 100 s happens correspond to cases where TGW ≃

Tjet, and we still obtain TGW ≲ Tγ .
In the discussion above Tγ is the time of arrival of the “main” γ-ray

emission produced by the relativistic jet. For the case of short GRBs this
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collapse

precursor jet?
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γ-ray burst
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γ light curve

GRB trigger

Figure 4.4: A graphical summary of the discussion in sections 4.3.2 and
4.3.3 of the gravitational wave coincidence window around the GRB trigger
time for the stellar collapse model of long GRBs. The bottom part shows
the stellar evolution with the formation of a relativistic jet and the possible
emission times of γ-rays and gravitational waves. The middle part shows a
fiducial γ-ray light curve where the γ-ray detector may trigger either on a
precursor or on the main emission peak. The top part shows the discussed
time window choice and the gravitational wave emission times compared to
the γ-ray light curve.

time is approximately equal to the spacecraft trigger time TGRB, and the
difference between the two is at most a few seconds and is not relevant.

However for long GRBs the light curve can be composed of multiple peaks
and the spacecraft may trigger on a small burst preceding the main emission
peak. This difference can be conservatively taken into account by assuming
that the main emission peak is anywhere in the observed light curve, that
is Tγ − TGRB ∈ [0, T90]. Hence gravitational waves should arrive in a time
window around the GRB trigger time

TGW − TGRB = [−400, T90 + 5] s. (4.11)

A particular example of significant γ-ray emission arriving before the
main emission are so called precursors. For instance in the catalog of GRBs
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84 Gamma-ray bursts

detected by BATSE a precursor has been observed in approximately 10% of
cases [74], and 20% of these precursors are separated by more than 100 s from
the following emission. The three main explanations for these precursors are:

fireball precursor: the jet becomes optically thin before all the thermal
energy is transformed into bulk jet motion, hence the jet emit a thermal
radiation before the main internal shock induced emission [75], as a
consequence TGRB ≃ Tbreak out.

progenitor precursor: the observer is slightly outside the jet cone and
the precursor is produced at break out by a mildly relativistic cocoon
around the jet [76], again as consequence TGRB ≃ Tbreak out.

two step engine: in the type II collapsar model a weak jet may be cre-
ated during the formation of the proto-neutron star, and precede the
main jet created by the torus around the final black hole [77], as a
consequence TGRB ≃ Tγ − Tjet.

These precursors confirm that searching in the few hundred seconds be-
fore the GRB trigger time is necessary to include the main gravitational
wave emission measurements. As a conclusion, the standard coincidence
time window used in the analysis described in chapter 7 is

TGW − TGRB = [−600,max (T90,60)] s, (4.12)

which includes an additional 50% in the lower bound to account for estima-
tion errors. Roughly 20% of GRBs have durations above the 60 s limit, but
the duration is not reported for all GRBs which justify imposing a sizeable
minimal upper bound. We neglect the additional 5 seconds to the T90 value,
as < 10% errors on the T90 are not relevant. A summary of the long GRB
progenitor evolution and associated gravitational wave and γ-ray emission
that justify this coincidence window choice is shown on figure 4.4.

4.4 Polarization of gravitational waves associated
with GRBs

The observation of a GRB provides a time and a sky location at which
to search for associated gravitational waves. Given that the relativistic jet
producing the γ-rays is launched along the rotation axis of the central en-
gine, the rotation axis is approximately pointing at the observer and we will
show in this section that the emitted gravitational waves are predominantly
circularly polarized.
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4.4 Polarization of gravitational waves associated with GRBs 85

4.4.1 Jet opening angles

As mentioned before, jets which are emitting GRBs are thought be colli-
mated. A study of 230 GRB afterglows seen by Swift shows that the median
opening angle of the jet is θ ∼ 5° with the largest inferred angles θ ≤ 25° [78].
However short GRBs form only 5% of that sample as afterglows are rarely
observed for short GRBs, and for these the inferred angles are 10 − 20°.

There are also attempts at deriving the jet opening angle based on ob-
served correlations between different properties of the prompt gamma emis-
sion. These methods are not well explained astrophysically and are thus
less reliable than observation of jet breaks in afterglows. A recent study of
382 GRBs detected by the GBM on Fermi shows that the distribution of in-
ferred opening angles for long and short GRBs is well fitted by a lognormal
distribution, with respectively a mean value of 8° and 50° [79].

Given the relativistic beaming of the γ-ray emission, the line of the ob-
server needs to form an angle ζ ≤ θ + Γ−1 with the jet axis. For long GRBs
typically Γ−1 ≲ 10−2 ∼ 0.5° and for short GRBs Γ−1 ≲ 10−1 ∼ 5°, hence to
simplify the discussion we can assume that the observer is within the jet
cone (ζ ≤ θ) in both case scenarios.

4.4.2 Gravitational wave circular polarization

We have shown in section 4.1.1 that the relativistic jet is launched along
the rotational axis J of the central engine. In sections 3.3.2 and 3.3.3 we
have discussed the main models of gravitational wave emission that could
be associated with GRBs: either the coalescence of two compact objects or
extremely rotating cases of stellar collapses that involve bar like deforma-
tions (rotational instability, core and disk fragmentation, disk precession).
In both cases the gravitational wave emitting body is well approximated by
a rigidly rotating quadrupolar mass distribution, and the magnitude of this
quadrupolar moment of mass is evolving slowly compared to the rotation.
Thus the gravitational wave emission has a polarization which depends on
the axis inclination angle ι as

(
h+(t)
h×(t)

) = A(t)(
(1 + cos2 ι) cos [2πφ(t)]

2 cos ι sin [2πφ(t)]
) . (4.13)

The inclination angle being equal to the angle ζ between the line of sight
and the jet axis. For ι = 0, both polarization are equal in amplitude and
are phase shifted by π/2, the gravitational wave is circularly polarized. But
this property stays approximately true even for large inclination angles, for
instance for ι = 60° the ratio of amplitude is 0.8, which is compatible with
circular polarization given the ∼ 20% amplitude calibration errors in current
gravitational wave detectors. Only for ι close to 90° the observed signal
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86 Gamma-ray bursts

Observer

Figure 4.5: Sketch of the total angular momentum J , orbital momentum
L, black hole spin S2 and direction to observer for a binary system with
one spinning body. The angles used in the text are shown: κ – the tilt
angle between black hole spin and orbital momentum, δ – the angle between
orbital and total angular momentum, ι the orbital inclination angle seen by
the observer and ζ the jet inclination angle.

becomes strongly elliptically polarized4. Hence for both short and long GRBs
the incoming gravitational wave signal can be considered circularly polarized.

One exception to the above discussion is the case of neutron star - black
hole binary coalescence with a rapidly spinning black hole. As discussed in
section 3.3.2 in this case the black hole spin is much larger than the orbital
angular momentum, and the spin of the central engine is aligned with the
former whereas the gravitational wave emitting quadrupole rotates around
the latter. Which means that ζ ≠ ι and a priori ι is not constrained by the
GRB observation. Four different relevant angles can be defined for such a
system and are shown on figure 4.5.

However a closer inspection shows that the black hole spin and orbital
orientations are correlated, that is the cosine of the black hole tilt angle κ
is not uniformly distributed. During the formation of the binary the black
hole is expected to form first, it tidally interacts and accretes matter from its
non-degenerate companion which aligns the black hole spin with the orbital
angular momentum. The alignment is degraded by the supernova kick at
the neutron star birth. Large kicks would cause a large misalignment but
would also disrupt the binary. A detailed population synthesis analysis of
this process shows that 50% of compact object binaries are formed with
κ < 45° [80]. Moreover, for κ ≳ 60° relativistic hydrodynamics simulations
show that the neutron star is promptly accreted onto the black hole, and
no accretion disk is formed to power the GRB [81]. Thus it is reasonable

4Which would account for half the cases if ι was uniformly distributed on a sphere.
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4.5 GRB event rate 87

to assume that the difference between the jet inclination and the emitting
quadrupole axis inclination is ∣ι− ζ ∣ ≤ δ ≤ κ ≤ 45°. Unless both ζ and δ are in
their upper range and in the same direction, this means that ι < 60° and the
observed gravitational wave signal is circularly polarized. This affirmation
is quantitatively estimated in section 7.3.

4.5 GRB event rate

As mentioned in section 3.3, when searching for transient signals not only
the amplitude of potential signals but also their rate is important. The rate
density of GRBs depends on the distance considered, and in many cases a
uniform rate density over the universe cannot be used. On one hand the
properties such as metallicity of typical galaxies and their density changes at
cosmological times, and on the other hand the galaxy density is not uniform
at small distances. However here we are only interested in typical distances of
dozens to hundreds of Mpc where the galaxy distribution is roughly uniform
but cosmological effects are not yet relevant. Also the GRB observational
selection effects are less of an issue at these smaller distances. Hence we can
assume a local constant rate density which can be inferred from the γ-ray
spacecrafts observations [82].

In practice three types of GRB rate densities can be defined:

Observed rate which corresponds to the rate as seen by actual spacecrafts.

Observable rate which takes into account the limited field of view of some
detectors. This is the rate as if all γ-ray detectors had a uniform all-sky
sensitivity.

True rate which takes into account the beaming factor. It counts all GRB
progenitors regardless of whether the jet cone includes Earth or not.

Usually the observable rate is estimated, as the observed rate is depending
on the current observational capability which are evolving with time and the
true rate is strongly dependent on the typical jet opening angle which is not
well constrained by observations5.

For long GRBs the inferred local density rate of observable GRBs is
ρlong ∼ 0.5 Gpc−1yr−1 with a precision of a factor a few, whereas for short
GRBs the inferred density rate is ρshort ∼ 10 Gpc−1yr−1 with similar errors.
In addition, several very close-by and low-luminosity long GRBs have been
observed, and these cases are considered as outliers compared to the general
long GRB distribution. Based on this limited number of events a rate density
of under luminous GRBs ρfaint ∼ 500 Gpc−1yr−1 has been inferred [83, 84].
This rate is a factor ∼ 1000 larger than the rate of usual long GRBs.

5The true rate can vary by three orders of magnitude depending on whether a very
small ∼ 1° or very large ∼ 30° typical opening angle is assumed.
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88 Gamma-ray bursts

These rates can be used to estimate the expected number of GRBs within
a given distance, which can be used as a rough estimation of the expected
number of gravitational wave detections associated with GRBs [85]. For
a given gravitational wave observation time T with two or more detectors,
an effective field of view Ω for the satellites providing GRB triggers and
a gravitational wave detection horizon distance R the expected number of
coincident detections is

⟨N⟩ = ρ
4π

3
R3T

Ω

4π
. (4.14)

If we use the field of view of the GBM on Fermi of 9 sr, and rough numbers of
one year of data with a horizon distance of ∼ 25 Mpc the expected detection
numbers are: for long GRBs Nlong ∼ 2×10−5, for short GRBs Nshort ∼ 5×10−4

and for under luminous GRBs Nfaint ∼ 2 × 10−2. These numbers are low,
but are expected to be multiplied by ∼ 1000 when advanced detectors are
constructed and operated at their design sensitivity.

4.6 Relevance of triggered searches

An important question to answer before embarking on searching for grav-
itational waves associated with GRBs is whether such a search is relevant
compared to a blind all-sky all-time search. The main issue is that if the
γ-ray beaming is important, a search trigger by GRB observations will miss
many potential gravitational wave events as gravitational wave emission is
roughly isotropic. In order to assess the relative detection rate we will use a
simple toy model for the gravitational wave source population and analyzes.

For sources we assume a standard siren toy model, with a uniform distri-
bution in space and orientation, and all progenitors having the same gravi-
tational wave emission with a rotator emission pattern (1.46). That is with
a gravitational wave power flux angular dependence

F (ι) =
(2 cos ι)2 + (1 + cos2 ι)2

8
, (4.15)

where ι is the inclination angle of both the rotation axis and the jet cone.
For the γ-ray emission we assume a fixed jet opening angle θc and a top-

hat emission, that is a uniform γ flux inside the jet cone and no emission
outside the jet cone. For the γ-ray observation part we assume that γ-ray
detectors will successfully observe all progenitors that include Earth in their
jet opening cone up to distances much larger than the horizon distance for
gravitational wave observation. For the gravitational wave observation we
will neglect the effects of detectors antenna patterns and assume that a signal
will be detected at a given confidence level if the hrss at Earth is larger than
some threshold depending on the analysis: Aall-sky for the all-sky search and
Atrig for the GRB triggered search. This latter assumption means that the
efficiency curve is approximated by a heavy side function.
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4.6 Relevance of triggered searches 89

For a given progenitor at distance r and with inclination ι the amplitude
at Earth is

h2
rss(ι) =

K2

r2
F (ι), (4.16)

where K is a constant characterizing the gravitational wave energy emission
of the standard siren. Hence at a given inclination angle the standard sirens
are detected up to a distance

rhorizon(ι) =
K

Asearch
F (ι)1/2, (4.17)

that depends on the amplitude detection threshold Asearch of the considered
search. The detection volume as a function of inclination is thus

V (ι) =
4π

3
r3
horizon(ι), (4.18)

and needs to be marginalized over inclination to obtain an effective detection
volume. Given that we assume an isotropic symmetry axis distribution for
the progenitors and bipolar jets the inclination distribution is p(ι) = sin ι
with ι ∈ [0, π/2].

Let us define the dimensionless integral

I(θc) = ∫
θc

0
F (ι)3/2 sin ιdι, (4.19)

that is needed for inclination angle marginalization. The marginalization
over ι yields the effective volume for an all-sky search

V all-sky
eff =

4π

3

K3

A3
all-sky

I (π2 ) . (4.20)

For the triggered search the marginalization on ι is limited to ι < θc as
progenitors with higher inclinations are not detected by γ-ray detectors,
hence the effective volume for a triggered search is

V trig
eff (θc) =

4π

3

K3

A3
trig

I (θc) . (4.21)

Given that the detection rate for both searches is just the same progen-
itor rate density times different effective volumes, the expected ratio of the
number of detections is

R(θc) =
Ntrig

Nall-sky
=
I(θc)

I(π/2)

A3
all-sky

A3
trig

. (4.22)

And a GRB triggered search is relevant compared to an all-sky search for
finding gravitational waves coming from GRB progenitors as long as this
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Figure 4.6: The expected ratio of detection numbers between equally sensi-
tive triggered and all-sky searches is shown as a function of the jet opening
angle θc. The blue line is for a rotator emission (4.15) as used to compute
the ratio in equation (4.22). The green is for an isotropic gravitational wave
emission hypothesis, that is R(θc) = 1 − cos(θc).

fraction is not much smaller than 1. An example of R(θc) for an equal
sensitivity Aall-sky = Atrig is shown on figure 4.6, this is a pessimistic limit as
the purpose of an externally triggered search is to obtain Atrig < Aall-sky, but
this example choice simplifies the rescaling for other sensitivity ratios. The
comparison with an isotropic emission (F (ι) = 1) assumption shows that the
beaming of the gravitational wave emission improves the expectation for a
triggered search by a factor about 3 for small jet opening angles.

An alternate way of looking at the event number ratio (4.22) is to derive
the sensitivity gain G = Aall-sky/Atrig required for the triggered search to
obtain a ratio of 1

G(θc) = [
I(π/2)

I(θc)
]

1/3

, (4.23)

which is shown on figure 4.7. Unsurprisingly, for low jet opening angles
a tremendous gain in sensitivity is required to compensate the large loss
in event rates due to γ-ray beaming. As discussed in section 4.4.1 current
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4.6 Relevance of triggered searches 91

Figure 4.7: Sensitivity gain G(θc) required to obtain the same detection
number for both the all-sky and triggered search in the considered toy model
as a function of the jet opening angle θc.

observations place the typical jet opening angle in the 5 − 30° range, hence
a sensitivity improvement between a factor 1.25 and 4 is required for the
GRB triggered search to obtain the same number of detections as an all-sky
search.

However, even at the same respective statistical significance level, a grav-
itational wave detection in association with a GRB is subjectively more con-
vincing than a gravitational wave detection without any counterpart, and a
multi-messenger observation should provide much richer astrophysical con-
sequences. Hence even for a small ratio such as R ∼ 0.1 a GRB triggered
search is relevant.
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Chapter 5

Gravitational wave data
analysis tools

As we have seen in chapter 2 the primary output of a gravitational wave
observatory is the detector strain

d(t) = F+
(Θ,Φ,Ψ)h+(t) + F

×
(Θ,Φ,Ψ)h×(t) + n(t) = s(t) + n(t). (5.1)

Depending on the signal type various data analysis technique are used to
detect the signal s(t) in data d(t). We will focus here on techniques useful
for detection of short (less than a few seconds) signals, especially the case
when the exact waveform (shape of the signal) is not known.

A fundamental difficulty of a search for short gravitational waves is the
behavior of the noise term in the data. The noise is not only composed of a
stationary colored Gaussian noise as one could assume based on chapter 2.
Not only the spectral density of the noise is evolving with time, but also a
large number of transient noise excursions are present in the data. These
transients, commonly called glitches, are poorly understood and render grav-
itational wave data analysis challenging but also interesting.

In the first two section we discuss very generic concepts in statistical
signal analysis. In section 5.3 we introduce the Bayesian statistics framework
in the context of gravitational wave data analysis. In that framework we
discuss questions pertaining to signal shape in sections 5.4 and 5.5, and to
the response of a network of gravitational wave detectors in sections 5.6
through 5.9. The two aspects are combined in section 5.10 to define a full
gravitational wave trigger generation procedure.

These data analysis statistical tools described in this chapter are used in
the search for gravitational wave bursts associated with gamma-ray bursts
described in chapter 7. An applied discussion of how these tools enter the
analysis pipeline and with which parameters is given in section 7.2 of that
chapter.
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94 Gravitational wave data analysis tools

5.1 Optimal matched filtering

Let us start with the simple case of a perfectly known signal s(t) in a sta-
tionary colored Gaussian noise. Given a data time series d(t), the purpose
of data analysis is to choose between two hypothesis:

• H0 – data contain only detector noise,

• H1 – data contain detector noise and the signal s(t).

In this simple case there is an optimal way of distinguishing between
the two hypothesis, i.e. there is an optimal mapping from d(t) to {0,1}. In
frequentist statistics the commonly used definition of optimality is to choose
a mapping which yields the lowest false dismissal probability for a given
false alarm probability (FAP). According the the Neyman-Pearson lemma
[86], this optimal mapping is obtained by comparing the likelihood ratio

Λ(d(t)) =
P (d(t)∣H1)

P (d(t)∣H0)
, (5.2)

with a threshold that is fixed by the desired FAP. Of course this formalism
assumes that P (d(t)∣H1) and P (d(t)∣H0) are known, i.e. that the noise is
well understood. It should be noted that any monotonic function of Λ can
be used as well.

In general in frequentist statistics, a function of data that increases when
data are better explained by the signal hypothesis H1 than by the noise
hypothesis H0 is called a detection statistic. For a given detection statistic
one chooses a threshold, data with detection statistic above that threshold
are called “signal detection” and below are “noise”. The particular choice de-
pends on the desired trade-off between low false alarm and low false dismissal
probability. The likelihood ratio is an example of a detection statistic, and
the Neyman-Pearson lemma shows that it is an optimal choice for separating
two simple hypothesis.

For the case of a colored Gaussian noise with one-sided power spectral
density S(f) the probability of obtaining a time series d(t) is

P (d(t)∣H0)∝ exp(−1
2 ∫

∞

−∞

2∣d̃(f)∣2

S(∣f ∣)
df) , (5.3)

where we use the following definition of the Fourier transform

d̃(f) = ∫
∞

−∞
d(t) exp(−2πft)dt. (5.4)

The factor 2 in (5.3) comes from using the one-sided power spectral density
which is twice the two sided power spectral density
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5.1 Optimal matched filtering 95

In this framework of multivariate Gaussian probabilities one naturally
introduces a scalar product

(a, b) = ∫
∞

−∞

2ã(f)∗b̃(f)

S(∣f ∣)
df, (5.5)

that is based on the noise covariance matrix. This allows to write the likeli-
hood ratio as

Λ(d∣s) = exp [−1
2 [(d − s, d − s) − (d, d)]] . (5.6)

In order to simplify the expression, one usually uses the log-likelihood

L = 2 log Λ = (d, d) − (d − s, d − s) = 2 (d, s) − (s, s) , (5.7)

note the factor 2 which is not a standard choice. The expectation value of
the log-likelihood when a signal s is present is

⟨L⟩ = (s, s) = SNR2, (5.8)

where the last equation defines the signal to noise ratio (SNR). The SNR
is thus a good figure of merit when comparing a given signal s to detector
noise, as it is directly related to the expected value of the detection statistic.

In practice the sought waveform is never perfectly known. At least its
overall amplitude A and the time of arrival t0 are not known, and in most
cases there are several other parameters describing the possible waveforms.
Hence the two hypothesis which we need to distinguish are

• H0 – data contain only detector noise,

• H1 – data contain detector noise and the signal s(A, t0, p) ∈M, where
M is the manifold of possible signals spanned by A, t0 and other
parameters p. We denote by P the space covered by these other pa-
rameters p.

For this scenario the Neyman-Pearson lemma does not apply, the second
hypothesis is not simple. There is not any known optimal test for this kind
of scenario in the framework of frequentist statistics. However the generalized
log-likelihood ratio detection statistic [87], which uses the maximum statistic
of the known signal case over the signal manifoldM,

S = max
A,t0,p

2 log Λ(d∣s(A, t0, p)), (5.9)

is efficient in many cases. For stationary colored Gaussian noise, the maxi-
mization over A can be performed analytically and yields

S = max
t0,p

(d, s(t0, p))
2

∣s(t0, p)∣2
, (5.10)
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96 Gravitational wave data analysis tools

that is the maximum of the projection of data d onto any unit vector in the
signal manifoldM. This statistic is the basis of matched filtering [88], that
is a search for a given family of gravitational wave signals.

In practice, maximization over t0 can be performed relatively quickly
using the properties of the Fourier transform, but the maximization over p
is much more tedious and uses a discrete grid of points1 in the parameter
space P.

5.2 Discrete sampling and multivariate Gaussian
distributions

In the previous section we have used a continuous representation of data and
signal either in the time or frequency domain. Actual data are sampled or
resampled at some sampling frequency fs. Usually fs is somewhere in the
1 − 20 kHz range, for instance the sampling frequency for LIGO is 16384 Hz
and for Virgo it is 20 kHz. Hence what is actually measured during a time
T is not d(t) but a data vector d with components

dl = d(l/fs) l ∈ ⟦1,M⟧, M = Tfs, (5.11)

This discrete measurement adds a host of issues related to edge effect,
aliasing and round-offs, but it has the advantage of simplifying the mathe-
matical concept needed. Working in finite dimension space we can write the
scalar product (5.5) as a simple sum

(a,b) =
M−1

∑
k=0

2ã∗k b̃k

∣Sk∣
= a†Rb, k ∈ ⟦0,M − 1⟧ (5.12)

where

ãk =
1

M

M

∑
l=1

al exp(−i2π
kl

M
) , (5.13)

are the coefficients of a in the Fourier basis (and analogously for b), and R
is the scalar product matrix which is diagonal in the Fourier basis with 2

∣Sk ∣
coefficients on the diagonal. This simple form of the scalar product is the
reason for using the frequency representation.

In finite dimension multivariate Gaussian distribution are easier to define.
For a positive self-adjoint2 matrix R, a vector b and a scalar c, the Gauss

1An exception to this rule are dimensions in the signal manifold which are vector spaces,
in that case an analytical maximization analogous to the one on A can be performed. We
will see an example in section 5.5

2which means R†
=R and eigen values of R are positive, i.e. all matrices that represent

a scalar product
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5.3 Bayesian statistics 97

integral is

∫
RM

exp (−1
2x

†Rx + b†x + c)dx

= ∫
RM

exp [−1
2(x −R

−1b)†R(x −R−1b) + b†R−1b + c]dx

=
√

det 2πR−1 exp (1
2b

†R−1b + c) . (5.14)

This permits the computation of the normalization constant for Gaussian
probabilities, for instance for equation (5.3) where we have omitted it so
far. Of course the normalization of the distribution can also be defined for
infinite dimension spaces, but the definition of a determinant is much more
complex in that case.

5.3 Bayesian statistics

For the case of composite hypothesis3 we have stated that in general, there
is no optimal detection statistic. However this problem can be solved in
the framework of Bayesian statistic by introducing prior probabilities on the
parameters of the composite hypothesis and using conditional probabilities.
Priors reflect on the observer a priori opinion on the value of parameters
in the composite hypothesis coming from other observations or can reflect
on the observer ignorance of these parameters. This additional information
permits to combine the composite hypothesis into a simple one by marginal-
izing over the hypothesis parameters. The price to pay is that the prior
needs to be defined which is far from obvious, and that the designed test
will be optimal only for those priors. It should be noted that ad-hoc tests
like the generalized log-likelihood ratio test can often be retrieved in the
Bayesian framework for a particular choice of priors, hence another advan-
tage of Bayesian test construction is that the priors are explicit and not
hidden.

In a Bayesian framework the likelihood ratio for our composite hypothesis
is

Λ(d) = ∫ Λ(d∣As(t0, p))p(A, t0, p)dAdt0dp, (5.15)

where p(A, t0, p) is the prior on the signal parameters. A flat prior on t0 is the
least questionable of choices, in most cases the time of arrival of gravitational
wave is not known, and in the cases where there is some information on time
(e.g. coming from an electromagnetic observation) the search is restricted to
a limited time window in which the prior is also flat. The choice of priors for
the waveform shape parameter space P is less obvious, but is also assumed
flat in most cases or with variation small enough that they can be neglected
compared with the dependence of Λ(d∣As(t0, p)) on p. The prior on A is the

3hypothesis with unknown parameters
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98 Gravitational wave data analysis tools

hardest to choose because we actually have some prior expectation on it. For
instance for an astrophysically sound scenario of standard siren distributed
uniformly in space one expect a distribution of amplitude

p(A)∝
1

A4
for A≫ Ac, (5.16a)

p(A) ≃ 0 for A≪ Ac, (5.16b)

where Ac is a characteristic amplitude of the standard siren signal at Earth.
The behavior at large A is just the effect of a uniform distribution in space
(p(r) ∝ r2) and signal amplitude inversely proportional to the distance as
shown in (1.44). The low amplitude cut-off is actually a redefinition of the
signal hypothesis H1. Only signals that are comparable or stronger than
the sensitivity of detectors are of interests, any signal that has an amplitude
orders of magnitude below the noise spectral density is in fact included in
the null hypothesis H0. This low amplitude cut-off is of no importance and
is included here only to obtain a well normalized prior distribution.

In practice Λ(d∣As(t0, p)) has the form of a Gaussian quadratic exponent
(see equation (5.6)), so one chooses a Gaussian amplitude prior

p(A) =
1

√
2πA2

c

exp(−1
2A

2
/A2

c), (5.17)

in order to obtain an integral that can be computed analytically. The
marginalization over amplitude yields

Λ(d∣s(t0, p)) = ∫
dA

√
2πA2

c

exp [A (d, s) − 1
2A

2
(s, s) − 1

2

A2

A2
c

] (5.18a)

=
1

√
A2
c (s, s) + 1

exp [
1

2

(d, s)2

(s, s) + 1/A2
c

] , (5.18b)

where we used the Gauss integral (5.14) with R = (s, s) + 1/A2
c , b = (d, s)

and c = 0 to perform the integral. In terms of log-likelihood one obtains

L(d∣s(t0, p)) =
(d, s)2

(s, s) + 1/A2
c

− log (A2
c (s, s) + 1) . (5.19)

The likelihood ratio should be compared to the generalized likelihood ratio
test of section 5.1

S(d∣s(t0, p)) = max
A

Λ(d∣As(t0, p)) = exp [
1

2

(d, s)2

(s, s)
] . (5.20)

By considering only the parts of both detection statistics that depend on the
data the two tests are exactly the same. In both cases one compares (d, s)2

with a threshold. Hence the usual matched filtering for a single template
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5.3 Bayesian statistics 99

at a known time is optimal if one assumes a Gaussian prior on the signal
amplitude distribution.

Let us expand the above argument to the parameter space spanned by
the time t0 and shape p of the waveform, we will denote points in that
space by x = (t0, p). As explained above we will assume a flat prior on this
parameter space. In order to simplify the computation we will choose the
templates to be noise normalized: (s(x), s(x)) = 1, and as a consequence the
characteristic amplitude Ac is in principle a function of x. We will replace
s(x) by u(x) in the equations below to emphasize that the waveforms are
noise normalized. Using the result of equation (5.18b) the likelihood ratio
marginalized over x is

Λ(d) = ∫
dx

√
1 +Ac(x)2

exp [
1

2

(d, u(x))2

1 + 1/Ac(x)2
] , (5.21)

where we omitted a constant probability factor coming from the flat prior
on x.

In order to compute this integral we need to choose a dependence of Ac
on x. Choosing Ac constant over the waveform parameters greatly simplifies
the integral, but it is not well justified as we do not expect the astrophysical
waveform parameters to exactly fit detectors noise spectra. However under
that assumption the integration can be performed approximately.

If we consider the factor in the exponent

E(d∣x) =
(d, u(x))2

1 + 1/A2
c

, (5.22)

and expand it around its maximum value x0(d)

E(d∣x0) = max
x

E(d∣x) =
(d, u(x0))

2

1 + 1/A2
c

, (5.23)

which means writing

E(d∣x) ≃
(d, u(x0))

2

1 + 1/A2
c

− (x −x0)
†H(x0)(x −x0), (5.24)

where H(x0) is the Hessian matrix of E(d∣x) evaluated at the maximum,
and yields the quadratic fit to E(d∣x) at x = x0. If the maximum is suffi-
ciently large (E(d∣x0) ≫ 1), is far from any edge of the parameter space and
there is no secondary maximum of comparable height, then the integral is

Λ(d) ≃

¿
Á
ÁÀ2π detH(x0)

1 +A2
c

exp [
1

2

(d, u(x0))
2

1 + 1/A2
c

] , (5.25)
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100 Gravitational wave data analysis tools

where we used the Gauss integral (5.14) with R =H(x0) and x −x0 as the
integration variable. The log-likelihood is thus

L(d) = 2 log Λ(d) ≃
(d, u(x0))

2

1 + 1/A2
c

+ log [2π detH(x0)] − log [1 +A2
c] , (5.26)

where one should remember that x0 is a function of the data d.
This should be compared to the usual matched filtering statistic (5.10)

which we can write with the above notations as

S(d) = max
x

(d, u(x))2
= (d, u(x0))

2 . (5.27)

Hence this statistic is equal to the optimal Bayesian likelihood ratio test
under the assumption that the dependence of Ac and of the Hessian deter-
minant detH on the parameters x can be neglected. This approximation on
the Hessian is easily justified whenever L(d∣x0) ≫ 1, in that case the statistic
is weakly depending on the Hessian through the logarithm of the determi-
nant term only. However the dependence on Ac is directly in the exponential
factor and should have a greater influence over the statistic, unless a regime
of loud signals can be assumed. Given that in the case where Ac(x) ≫ 1
over the parameter space, the amplitude factor in the exponent can be safely
neglected as it affects the statistic only through the logarithmic factor.

5.4 Time-frequency representation

In section 5.2 we have introduced the discrete time (5.11) and frequency
(5.13) representations of a data vector. These two representations form two
extreme choices between good frequency resolution (frequency representa-
tion) and good time resolution (time representation), but there are many
possible intermediary trade-offs between the two.

Before exploring other time-frequency representations, it is convenient to
move to a basis that is adapted to the noise scalar product. We have written
data vectors as

a =∑aktk =∑ ãkfk, (5.28)

where the vectors tk (respectively fk) correspond to a single time bin (re-
spectively frequency bin). By rescaling the basis frequency vector fk →
fwk = fk

√
∣Sk∣/2 the new frequency coefficients are noise normalized (ak →

awk = ak/
√

∣Sk∣/2) and the scalar product (5.5) is represented by the identity
matrix

(a,b) = (∑ ãwk f
w
k ,∑ b̃wl f

w
l ) =∑ ãwk b̃

w
k . (5.29)

The resulting coefficients are called whitened in reference to white noise,
and any unitary change of basis will conserve the simple form of the scalar
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5.4 Time-frequency representation 101

Time

Fr
e
q
u
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n
cy

FFT

SFFT

Figure 5.1: Sketch of time, frequency and time-frequency representations.
The upper left diagram shows the time representation: the time resolution
is very fine, but each bin contains all the frequency content. The upper right
diagram shows the frequency representation: the frequency resolution is very
fine, but each bin contains data from all the considered time. In the lower
right part is a time frequency representation, each bin contains information
about data in a ∆t time and over a frequency band which is ∆f wide. The
frequency coefficient can be obtained from the time frequency using the fast
Fourier transform (FFT) and the reverse can be done by using the inverse fast
Fourier transform (IFFT). The time-frequency coefficients can be obtained
from the time coefficient using a short fast Fourier transform (SFFT) of
duration ∆t.

product. For instance for the inverse discrete Fourier transform coefficients
we obtain

(a,b) =∑
k

awk b
w
k . (5.30)

The basic principle of a time-frequency representation, is to choose a set
of basis function which is limited in time and frequency, unlike the time twk
or frequency fwk basis vectors. This basic principle is graphically represented
on figure 5.1, the basis functions of a time-frequency representation are also
called pixels in reference to the rectangular grid they form in the plane.

The simplest form of a time-frequency basis, is obtained using the short
fast Fourier transform (SFFT), that is a Fourier transform on a short stretch
of data. Instead of using all the time samples in the time T , we cut the data
into blocks of m samples and perform the short Fourier transform on each
of them independently. This is equivalent to projecting the data onto a time
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102 Gravitational wave data analysis tools

Figure 5.2: Two example windows for time-frequency representations. Two
rectangular windows as in (5.32) with no overlap, and three modified hann
windows overlapped by 50%. The modified hann window is composed of
a hann window w(t) = sin2(πx) with a flat section inserted in the middle.
Windows as shown have equal normalization.

limited sine-wave (limited within a window ∆t = mts) instead of projecting
onto a sine-wave that stretches along the whole data duration T . Thus a
time-frequency coefficient is

ãwj,k =
1

m

m

∑
l=1

awl+(j−1)m exp(−i2π
kl

m
) , k ∈ ⟦0,m − 1⟧, j ∈ ⟦1,M/m⟧, (5.31)

and corresponds to the projection on a basis function

uj,k = tz→ exp [i2πfk(t − tj)]1(t − tj > 0)1(t − tj < ∆t), (5.32)

where fk = k fsm = k∆f and tj = jmts = j∆t. We have assumed that M/m is
an integer and for all practical applications this will be true.

An important property is that the time-frequency volume for each basis
function is the same, that is ∆t∆f = 1 for any choice of ∆t, in particu-
lar for the time and for the frequency representation, which correspond to
respectively the m = 1 and m = M case. This is a particular case of the
Heisenberg-Gabor inequality [89] which states that the time width σt and
frequency width σf as measured by the second moments in the time and
frequency domain are bound from below by σtσf ≥ 1

4π . A related property is
that the time-frequency transformation is orthonormal, and hence the vari-
ance of all coefficients is equal for a white noise or for whitened coefficients,
regardless of the representation choice.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



5.5 From matched filtering to clustering 103

We have presented here the simplest form of time-frequency represen-
tation which has the advantage of being straightforward and orthonormal.
There are some relatively simple generalizations. By changing the shape
of the amplitude window applied to the sine-wave to form a basis function
from a rectangle to some smoothly evolving function one obtains new time-
frequency representations. The main advantage of the smooth amplitude
evolution is that the functions are better localized in frequency, an example
is shown on figure 5.2. Usually these functions are used to form an over-
complete frame by overlapping the smooth windows in the time domain.
Another more complex choice is to use a wavelet basis or frame.

5.5 From matched filtering to clustering

In the previous section we have considered the case where the waveform
parameter space is well known and we have derived that the maximum of
a matched filtering with template signals is a reasonable detection statistic
choice. However this choice is in practice realizable only if the parameter
space P has a small dimension, otherwise covering the parameter space with
a grid of templates is computationally prohibitive.

As noted before, there are some cases where the maximization over some
dimensions of the parameter space can be done analytically. The main exam-
ple is when the signal manifoldM can be expressed as a Cartesian product
of a linear space E and some manifold P, i.e. for all parameters in P there
are dimE independent signal templates and all their linear combinations
are in the signal manifold. We have actually already looked at the case of
dimE = 1 when marginalizing over the gravitational waveform amplitude.

Let us focus on the case of dimE = 2, the result will be easily generalizable
to higher dimensions. That is for all parameters p ∈ P we have two orthogonal
noise normalized templates u1(p) and u2(p). If we assume a Gaussian prior
on the amplitude of each template with characteristic amplitude A1c and
A2c, the marginalized likelihood ratio is simply4 an extension of (5.18)

Λ(d∣p) = ∫
dA1

√
2πA2

1c

dA2
√

2πA2
2c

exp [(d,A1u1) + (d,A2u2) −
1
2
(A2

1 +A
2
2) −

1
2 (

A2
1

A2
1c

+
A2

2

A2
2c

)] (5.33a)

=
1

√
A2

1c + 1

1
√
A2

2c + 1
exp [

1

2

(d, u1)
2

1 + 1/A2
1c

+
1

2

(d, u2)
2

1 + 1/A2
2c

] , (5.33b)

4Among the pairs of orthonormal templates we choose the one that has an uncorrelated
prior.
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104 Gravitational wave data analysis tools

where we used the Gauss integral (5.14) with

R = (
1 + 1/A2

1c 0
0 1 + 1/A2

2c
) , b = (

(d, u1)

(d, u2)
) , c = 0. (5.34)

This can be rewritten in terms of log-likelihoods (5.19) as

L(d∣p) = L(d∣u1(p)) +L(d∣u2(p)). (5.35)

One important thing to note is that for data which is consistent with Gaus-
sian noise the value of Λ(d∣p) can be smaller than 1, or equivalently L(d∣p)
can be negative.

This approach is pushed further when the parameter search has a very
high dimension, like for the case of gravitational wave bursts searches where
the signal shape is not well constrained. In most cases the only considered
signal constraints is that the signal is short (≲ 1 sec) and in the detectors
sensitive frequency band. The usual approach is then:

1. Use a basis U of orthonormal5 time-frequency functions, like wavelets
or plain time-windowed short Fourier transforms, that covers the de-
sired time-frequency span.

2. Compute a detection statistic, e.g. (5.19), for each basis function.

3. Find clusters of basis functions that have a large value of the detec-
tion statistic. In general the clustering considers basis functions to be
nearby if they are close in time and frequency.

4. For each cluster compute the sum of the statistic over basis functions,
this yields the detection statistic for that cluster.

5. The maximum of the detection statistic over clusters yields the detec-
tion statistic for the chosen time-frequency span.

Let us interpret this procedure in the light of the Bayesian framework
described above. We will start by considering two extreme cases of clustering
(step 3): “no clustering”, that is each cluster contains only one basis function;
“full clustering”, that is all basis functions are always in one giant cluster that
covers the complete time-frequency span.

In the first case of “no clustering” the above procedure results in a detec-
tion statistic which is the maximum over basis functions

L(d) = max
u∈U

L(d∣u), (5.36)

and is very similar to the usual matched filtering test (5.10), although the
time grid is very coarse and is comparable to the duration of the basis func-
tions. Hence in that case the underlying prior on the signal shape is that
the signal will have a good match to one of the basis functions.

5In the noise scalar product (5.5) sense.
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5.5 From matched filtering to clustering 105
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Figure 5.3: Shown is an illustration of a small time-frequency map. White
pixels are below threshold and the three colors show three 4-connected clus-
ters. In case of 8-connected clustering the three pixels in the lower right part
of the figure form a single cluster.

In the second case of “full clustering”, the detection statistic is the sum
over basis functions

L(d) = ∑
u∈U

L(d∣u), (5.37)

which is just the case of two templates (5.35) expanded to the full basis U
of time-frequency functions. Hence the underlying signal hypothesis is that
of a colored Gaussian noise burst, where the spectral shape of the burst
are controlled by the choice of characteristic amplitude Auc that define the
individual likelihoods L(d∣u).

An intermediate choice is to set a threshold on the per pixel (basis func-
tion) likelihood L(d∣u), and consider as a cluster all groups of 4-connected
(or 8-connected)6 pixels that are above threshold. Illustrative examples of
clusters are on figure 5.3. The likelihood ratio for a cluster C is then

L(d∣C) = ∑
u∈C

L(d∣u), (5.38)

and the detection statistic for the given span of data is the maximum of
L(d∣C) over all defined clusters.

This a priori ad-hoc method can be justified in the Bayesian framework
for one particular threshold choice when the signal prior is a colored Gaussian
noise in any possible connected shape7 in the time-frequency domain. For
any given time-frequency signal shape we approximate it by a cluster C of

64-connected clusters have each pixel touching a neighbor with an edge. In 8-connected
clusters pixels touch their neighbors either with an edge or a vertex.

7Actually, there are some potential signals that are unconnected in the time-frequency
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106 Gravitational wave data analysis tools

basis functions, and the associated likelihood ratio is given by (5.38). This
justifies the use of over-complete frames for time-frequency representation, as
they can provide a better fit to the shape of the signal in the time-frequency
domain.

As we do not know a priori which cluster C to use, we need to marginal-
ize over the set C of possible clusters. Following the same argument as for
matched filtering we will maximize the likelihood ratio instead of marginal-
izing, which yields a detection statistic of the form

L(d) = max
C∈C

L(d∣C) + 2 log(p(C)), (5.39)

where p(C) is the prior for the given cluster. We have no good prior informa-
tion on the signal shape, hence a flat prior is a reasonable choice. Defining
what a “flat” prior is for the space of possible clusters is not obvious, one
possibility is to define the prior as:

• Uniform in the pixel number k = ∣C∣ with k between 1 and the total
pixel number M = ∣U ∣, which yields a 1

M factor to the prior.

• Uniform in the location on the time-frequency plane, which yields also
a factor 1

M to the prior, as long as the cluster is small compared to the
time-frequency plane.

• Uniform in the cluster shape, this contribution is not simple to com-
pute, the number of cluster shapes c(k) is known to grow exponen-
tially [90] with the number of pixels in the cluster, for instance for
4-connected cluster the growth has been estimated numerically [91] to
be log c(k) ∼ k log 4, and for 8-connected clusters [92] to be log c(k) ∼
k log 6.5 . Hence there is a factor 1

c(k) contributing to the prior.

With this definition the 4-connected cluster prior is p(C) ≃ 1
4kM2 and the

detection statistic is

L(d) = max
C∈C

[∑
u∈C

(L(d∣u) − 2 log 4)] − 4 logM. (5.40)

In order to perform the above maximization trying all possible clusters is
not actually needed. Selecting the clusters of connected pixels with L(d∣u) >
2 log 4 and taking the maximum over this subset should yield a comparable
result. The reason is that for a cluster of this subset removing one pixel
will diminish the total statistic for that cluster, and adding a pixel will also
diminish the total statistic as it will add a negative contribution, unless the
additional pixel allows to connect two clusters from the subset and yield a

domain, e.g. eccentric binary mergers are expected to emit a burst of gravitational waves
at each periapsis which results into a series of disconnected bursts. However for most
other sources the connected assumption is valid.
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5.6 Coherent analysis 107

larger total statistic. Hence this approximation add to our prior that the
signal amplitude is unimodal8 in the time-frequency domain.

In conclusion, the procedure of selecting clusters of pixels above some
likelihood ratio threshold is a reasonable approximation for the optimal
Bayesian test, which uses a colored Gaussian random process with a uni-
modal time-frequency shape as a signal prior. One crucial argument against
the derivation above is that in real data analysis the noise is known to be
non-Gaussian, hence any desire of optimality obtained from the Gaussian
assumption is in principle futile. An optimal test for one signal and noise
assumption has no reasons to be a good test for any other assumptions.
Even worse, an optimal test makes full usage of the given assumption, and,
at least in principle, will be less robust to deviations from this assumption
than a near optimal test. In section 5.7 we will explore some additional tests
which adds robustness to tests that use the Gaussian noise assumption.

5.6 Coherent analysis

So far, we have only considered searching for a signal in a single data stream.
In practice a network of gravitational wave detectors is operated and com-
bining data from across a network of detectors allows good rejection of noise
glitches. For a network of D detectors the vector of data streams can be
written as

⎛
⎜
⎝

d1(t)
⋮

dD(t)

⎞
⎟
⎠
=
⎛
⎜
⎝

F+
1 (θ, φ,ψ)h+(t − t1) + F

×
1 (θ, φ,ψ)h×(t − t1) + n1(t)
⋮

F +
D(θ, φ,ψ)h+(t − tD) + F×

D(θ, φ,ψ)h×(t − tD) + nD(t)

⎞
⎟
⎠
,

(5.41)
where di(t) and ni(t) are respectively the data and the noise from detector i,
(F+

i , F
×
i ) are its antenna patterns, and ti is the light travel time between

Earth’s center and detector i for a planar gravitational wave propagating
along the (θ, φ) direction. Here we use the (θ, φ,ψ) Euler angles defined
in a detector independent frame, a standard choice is to set the frame at
the Earth center with the z-axis in the north pole direction, and the x-axis
pointing at the Greenwich meridian. We will call this coordinates system
Earth fixed. The Earth fixed angles can be related to the detector specific
angles (Θi,Φi,Ψi) used for instance in equation (2.9) through a rotation
operations that we will not discuss here.

In this thesis we focus on sources with known sky locations, hence we
can easily time shift the data so that the gravitational waves contribution
is synchronized. Furthermore, if we use a time-frequency representation of

8i.e. the signal has a shape with a single peak in the time-frequency domain.
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108 Gravitational wave data analysis tools

whitened data, the amplitudes for a given time-frequency pixel9 are

⎛
⎜
⎝

dw1 (j, k)
⋮

dwD(j, k)

⎞
⎟
⎠
=
⎛
⎜
⎝

F+w
1 (k)
⋮

F+w
D (k)

⎞
⎟
⎠
h+(j, k) +

⎛
⎜
⎝

F×w
1 (k)
⋮

F×w
D (k)

⎞
⎟
⎠
h×(j, k) +

⎛
⎜
⎝

nw1 (j, k)
⋮

nwD(j, k)

⎞
⎟
⎠
, (5.42)

where the antenna patterns coefficients are whitened analogously to the other
coefficients. Note that the astrophysical signal is not whitened because the
division by the amplitude spectrum is detector dependent, which explains
why it is included in the antenna patterns. We will write this equation more
compactly for a single time-frequency pixel as

d = F +h+ +F
×h× +n, (5.43)

where we drop the explicit reference to the given pixel and whitening. One
should note that under the Gaussian noise assumption the noise vector n
is multivariate Gaussian distributed with identity variance because noise is
assumed to be uncorrelated between detectors. Hence we are exactly in the
case of matched filtering with two templates F + and F ×, that is summarized
in (5.33). The only difference is that vectors are here in the detector space
instead of being in the waveform space.

In order to apply results from section 5.5 we first need to orthonormalize
the two template vectors F + and F ×. The first step is to orthogonalize the
basis, there is no unique possibility, however a common choice is to use the
so called dominant polarization frame. It can be shown that it corresponds
to a particular choice of the polarization reference ψ = ψDP, hence the name.

The construction of the dominant polarization frame consists in looking
at the network response

f(ψ) = F +h+ +F
×h× (5.44)

of the network to all linearly polarized signals (h+, h×) ∝ (cos 2ψ, sin 2ψ)
and choose one vector f+ along the highest network response. The second
orthogonal vector f× will happen to correspond to the lowest network re-
sponse and the orthogonal (i.e. rotated by π/4) polarization. This justify
the choice of the dominant polarization frame, as this frame is adapted to
the sensitivity of the network.

The magnitude of the network response

M = ∣f(ψ)∣2 = ∣F + cos 2ψ +F × sin 2ψ∣2 (5.45a)

= ∣F +
∣
2 cos2 2ψ + ∣F ×

∣
2 sin2 2ψ + 2F ×

⋅F + sin 2ψ cos 2ψ (5.45b)

= ∣F +
∣
2 1 + cos 4ψ

2
+ ∣F ×

∣
2 1 − cos 4ψ

2
+F ×

⋅F + sin 4ψ, (5.45c)

9Amore general derivation that works through the calculations for a given finite number
of pixels is described in [93].
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5.6 Coherent analysis 109

(AU)

(A
U
)

Figure 5.4: Sketch of the network response (5.44) as a function of sig-
nal polarization, the response in the dominant polarization frame to plus
(resp. cross) polarized signal is given in red (resp. green). Shown is the sig-
nal plane spanned by F + and F ×. The horizontal axis is the projection on
the unit vector parallel to F + and the vertical axis is the projection on the
vector orthogonal to it.

is maximal when

0 =
∂M

∂ψ
= −2 (∣F +

∣
2
− ∣F ×

∣
2) sin 4ψDP + 4F ×

⋅F + cos 4ψDP, (5.46a)

that is for a polarization

ψDP =
1

4
arctan(

2F × ⋅F +

∣F +∣2 − ∣F ×∣2
) , (5.47)

and the two orthogonal vectors are then

f+ = F + cos 2ψDP +F
× sin 2ψDP, (5.48a)

f× = −F + sin 2ψDP +F
× cos 2ψDP. (5.48b)

These two vectors correspond to respectively the semi-major and semi-minor
axis of the ellipse sketched on figure 5.4, this ellipse is drawn by the network
response vector (5.44) when varying ψ ∈ [0, π]. To obtain the normalized
template vectors we just need to divide by the norm which yields

e+ = f+/∣f+∣, (5.49a)
e× = f×/∣f×∣. (5.49b)

The last step before using equation (5.33) is to choose a prior on the
gravitational wave signal. A relatively uninformed and simple to use choice
is a Gaussian prior on h+ and h× with standard deviation σh. In that case the
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110 Gravitational wave data analysis tools

priors on the amplitude for the two templates e+ and e× are Gaussian with
characteristic amplitudes A1c = σh∣f

+∣ and A2c = σh∣f
×∣, which following the

results of equation (5.33b) yields a log-likelihood

L(d∣σh) =
∣e+ ⋅ d∣2

1 + 1/(σh∣f+∣)2
+

∣e× ⋅ d∣2

1 + 1/(σh∣f×∣)2
−log(1+σ2

h∣f
+
∣
2
)−log(1+σ2

h∣f
×
∣
2
).

(5.50)
Choosing a particular σh is not obvious, it should correspond to a value

that is expected from astrophysical models but also should not be too far
from the detectors sensitivity. A way of using a less informed prior is to
marginalize over σh, for instance uniformly over a discrete set of amplitudes
A. This yields a marginalized log-likelihood

L(d∣A) = 2 log

⎧⎪⎪
⎨
⎪⎪⎩

∑
σh∈A

exp [1
2L(d∣σh)]

∣A∣

⎫⎪⎪
⎬
⎪⎪⎭

, (5.51)

which is a reasonable detection statistic for a single time-frequency pixel
when no good prior on the gravitational wave is available. To obtain a full
detection statistic for gravitational wave bursts we just need to follow the
cluster construction of section 5.5 and sum the per pixel log-likelihood over
pixels in clusters.

However, for some sources a good prior on the polarization is available.
As explained in section 4.4 for gravitational waves associated with gamma
ray bursts we can reasonably assume a circular polarization, that is10 h× =

±ih+. In that case we have a right polarized template f↻ = f+ + if× and
a left polarized template f↺ = f+ − if×, but we are not interested in linear
combinations between the two. Hence a reasonable detection statistic is to
use the normalized template11 e↻ = f↻/∣f↻∣ to define a right log-likelihood

L(d∣↻, σh) =
∣e↻ ⋅ d∣2

1 + 1/(σh∣f↻∣)2
− log(1 + σ2

h∣f
↻

∣
2
), (5.52)

and analogously a left log-likelihood. We then take the maximum12 over left
or right circular polarization hypothesis, and marginalize over the amplitude
priors as it is done in equation (5.51). The resulting detection statistic is

L(d∣circular) = 2 log ∑
σh∈A

max{exp [1
2L(d∣↻, σh)] , exp [1

2L(d∣↺, σh)]}

∣A∣
.

(5.53)
10We consider here only time-frequency coefficients with positive frequencies, that is

k < m/2. Coefficients with negative frequencies are complex conjugates of the positive
one, the sign of the i factor is reversed for them, but they are redundant with the positive
frequencies and are not considered in the analysis.

11Note that defining the dominant polarization is not needed for constructing the left
and right circularly polarized unit vectors. Any other polarization reference is equally
good and would yield the same unit vector multiplied by a complex unit.

12In principle, we should perform a proper marginalization as in equation (5.51), but it
is much more computationally intensive and does not change significantly the result.
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5.7 Consistency tests 111

For instance for the analysis described in chapter 7 the amplitude set used is
A = 10−{23,22.5,22,21.5,21}Hz−

1/2, this choice corresponds well to the sensitivity
of current detectors and plausible astrophysical scenarios.

5.7 Consistency tests

For the moment we have only considered the case of Gaussian noise. How-
ever, in actual gravitational wave data a large number of spurious glitches
are present. The detection statistics we have derived so far depend on the
data through the squared projection of data on some template vector. When
a glitch is present, the data vector will not be aligned with the projection
vector in most cases, however it can still have a significant scalar product
and hence yields a large value of the detection statistic. This shows that
these detection statistics are not robust to detector glitches, as expected
given the input noise priors. In this section we will present some tests which
are able to reject these glitches and increase the robustness of the detection
procedure.

5.7.1 Projection statistics

In order to reject such spurious events a number of consistency tests has been
developed [94], here we will focus on tests that do not assume any waveform
shape [95]. Their basic principle is to compare data from a network of
detectors and see if they fit expectations for gravitational wave signals. The
basic principle is that the gravitational wave signal is correlated across a
network in a particular way dictated by the f+ and f× vectors, and noise is
uncorrelated between detectors.

As noted before, any gravitational wave signal generates a network re-
sponse in signal plane spanned by f+ and f×, or along the two axis generated
by f↺ and f↻ if the signal can be assumed circularly polarized. Whenever
the number of detectors is greater than the dimension of that signal space
one can use it to separate gravitational wave signal from spurious glitches.
Data vectors which contain signal should be only slightly deviated from that
space by detector noise. Thus events that are far away from that plane,
i.e. data for which the projection on the orthogonal space, called the null
space, is large can be classified as glitches and rejected. A sketch of the
configuration for 3 detectors and the network response plane is shown on
figure 5.5.

In practice for a network of 3 non-aligned detectors the null space is
spanned by the null vector

en = e+ ∧ e×, (5.54)

and in principle for Gaussian noise with or without signal the squared mag-
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112 Gravitational wave data analysis tools

Figure 5.5: Shown is the three dimensional space of detector strains (3 de-
tector case). The yellow plane is the plane spanned by the detector response
vectors. The grey ellipse is the sensitivity to linearly polarized waves with
different polarizations (see figure 5.4). The red and green lines are the sensi-
tivities to the plus and cross polarization in the dominant polarization frame.
The magenta line is the vector of detector strains for one noise realization.
The blue line is its projection on the detector response plane, and the bur-
gundy dashed line is its projection on the null space.

nitude of the projection
En = ∣en ⋅ d∣2, (5.55)

called null energy, should be χ2 distributed and any event that has a suffi-
ciently large null energy can be rejected.

In the case where we can assume circularly polarized signals, which is
relevant for the analysis presented in this thesis, we have developed additional
projection tests. A null projection can be performed on the null vectors
orthogonal to right or left polarized signals

fn↻ =
f+

∣f+∣2
− i

f×

∣f×∣2
, (5.56a)

fn↺ =
f+

∣f+∣2
+ i

f×

∣f×∣2
. (5.56b)

Note that the null right vector is not parallel to the left vector unless the two
modules ∣f+∣ and ∣f×∣ are equal. Given that the exact polarization13 is not
known, the relevant quantity is the minimum of the two projections which
we call circular null energy

En◯ = min (En↻,En↺) = min (∣en↻ ⋅ d∣2, ∣en↺ ⋅ d∣2) , (5.57)

13between left and right circular
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5.7 Consistency tests 113

where we have used the normalized null circular vector en↻ and en↺. This
energy also has a distribution centered around 1, but it is not simply related
to a χ2 distribution.

In practice, the distribution of the null energies defined above will not be
distributed around 1 for a Gaussian noise with a gravitational wave signal.
Significant deviation can be present due for instance to calibration errors or
inaccurate assumption on the polarization. A method that has proven to
be robust and effective [95], is to compare the above energies with their so
called incoherent parts, that is the part which involves only squares of data
from each detector. More explicitly, for a projection vector e the energy is
of the form

E = ∣e ⋅ d∣2 = ∑
1≤i,j≤D

e∗i ejdid
∗
j (5.58)

and its incoherent part is the sum of the diagonal terms

I =
D

∑
i=1

∣ei∣
2
∣di∣

2. (5.59)

For the case of circular null energy the incoherent parts of left and right
energies are equal, so there is no ambiguity in defining the incoherent circular
null energy.

Noise glitches are uncorrelated between detectors hence the expectation
value of the energy is its incoherent part: ⟨E⟩ = I. On the contrary, for a
gravitational wave signal, the amplitudes in different detectors will cancel out
(at least approximately) when projected onto a null vector and one expects

1 ≫
E

I
∼

1

I
+ calibration and polarization relative errors ≳ 0.1, (5.60)

where we assumed 10% calibration/polarization errors in the last inequality.
Hence requiring E/I small will prove as being a good discriminant between
signal and glitches.

When comparing an energy to its incoherent part, the projections onto
vectors in the signal plane become interesting. Indeed, for a glitch the two
are still expected to be equal, but for signals one expect a coherent buildup
in the energy. The general picture is that for two aligned detectors and a
noiseless signal one obtains E = ∣a+a∣ = 4∣a∣2 and I = ∣a∣2+∣a∣2 = 2∣a∣2, where a
is the amplitude of the signal projected onto the relevant vector. This kind of
test is weaker than a null test, because it mostly relies on phase consistency
between detectors, however it can usefully complement null tests which rely
on phase and amplitude consistency, especially when amplitude calibration
errors are large.

There are several choices of energies that give a coherent buildup [96], we
have developed another one tailored to the circular polarization assumption,
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114 Gravitational wave data analysis tools

that we call circular energy,

E◯ = max (∣e↻ ⋅ d∣, ∣e↺ ⋅ d∣) , (5.61)

which is the maximum of the projection onto the left and right circular
vectors, and as for the circular null energy the incoherent parts of the two
terms in the maximum are equal.

5.7.2 Coherent cuts

In the previous section we have introduced several energies and their inco-
herent parts: the null, circular null and circular energies. In each case the
energy involves either a coherent cancellation or a coherent build-up of gravi-
tational wave amplitudes compared to the incoherent part. The goal is to use
these pairs of variables to separate gravitational wave signals from glitches,
and especially to remove all glitches of high amplitude while keeping most
signals with sufficiently high amplitude.

For a sufficiently loud14 signal of amplitude A all energy related quantities
have an A2 dependence

E ∝ A2, (5.62a)

I ∝ A2, (5.62b)

E − I ∝ A2. (5.62c)

However for the case of a glitch of amplitude A in a single detector the dif-
ference E−I involves only cross-terms between the glitch and some Gaussian
noise in another detector. Hence the leading terms for high amplitudes are

E ∝ A2, (5.63a)

I ∝ A2, (5.63b)
E − I ∝ A. (5.63c)

For signal and glitches the cross-correlation term E − I has a different
behavior, we use this property to construct a family of functions

f(I,E∣α) =
∣E − I ∣

(E + I)α
, (5.64)

which compared to a threshold r are able to reject glitches while keeping
the signal. Depending on whether coherent build-up or cancellation of grav-
itational wave signal is expected for the particular energy considered, one
should keep either cases where E − I is positive or negative. Each choice
of (r, α) corresponds to a different line in the I versus E plane which tries

14for which the Gaussian noise contribution can be neglected

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



5.8 Robust statistics 115

to separate gravitational wave signal from glitches, and at given value of α
the amount of rejected triggers increases with r regardless of their type. An
example of such a separation line is shown on figure 7.11.

Two particular values of α motivate this functional form. Using the
amplitude dependencies for signal (5.62) and glitches (5.63) we find that for
α = 1

p [r < f(I,E∣1)]∝ const for signal, (5.65a)

p [r < f(I,E∣1)]∝
1

A
for glitches, (5.65b)

hence a given choice of r rejects a fixed fraction of all possible signals forms
independently of their amplitude, and keeps a fraction of possible glitches
forms which is decreasing with amplitude. The reverse happens for α = 0.5,
where

p [r < f(I,E∣0.5)]∝ A for signal, (5.66a)
p [r < f(I,E∣0.5)]∝ const for glitches, (5.66b)

and for a given choice of r a constant fraction of glitches is kept, while the
fraction of rejected signals is decreasing with amplitude. Between these two
extreme choices of amplitude dependence there is a continuum of possible
separation tests with different trade-offs between keeping all loud signals and
rejecting all loud glitches.

In principle the choice of r could be determined analytically by selecting
a desired false alarm or false dismissal probability. However, in practice this
threshold depends on the ratio of magnitude between the cross-correlation
and auto-correlation terms in the projector operator15, on the calibration
errors (and model errors for circular energies) and above all on the particular
distribution of glitches in each detector. Hence, in practice, the values of r
for each coherent cut is selected by a numerical tuning procedure that will
be detailed in section 7.2.3.

5.8 Robust statistics

In section 5.6 we have always assumed that interferometer noise is Gaus-
sian which led to statistics that are very sensitive to non-Gaussian glitches.
Coherent consistency tests developed in section 5.7 allows to reject some of
these glitches. A complementary approach is to include a non-Gaussian noise
distribution in the Bayesian statistic derivation. Here we model the noise
distribution with a power-law distribution, this is motivated by a relatively
good fit of the power-law distribution with the tail of the distribution in
real data. We are designing a robust detection statistic for events with large

15i.e. on the diagonal and off-diagonal terms of the e∗i ej operator in equation (5.58).
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116 Gravitational wave data analysis tools

amplitude, hence the exact shape of the distribution at low amplitudes is
not important. In the derivation below we will assume for each detector a
noise probability distribution of the form

p(x) =
B

A + ∣x∣α
, (5.67)

the exact values of A and B will not be relevant, only the exponent α is
important. For real data this exponent is typically in the 1 − 7 range.

5.8.1 Two non aligned detectors statistic

For the case of two detectors as usual we assume the noise to be independent
between detectors and the power-law noise distribution hypothesis has the
form

P (d∣H0) =
bα1

aα1
α1 + ∣d1∣

α1

bα2

aα2
α2 + ∣d2∣

α2
, (5.68)

where d1 and d2 are respectively the whitened strains in the first and the
second detector, α1 and α2 are the power law slopes for each detector, and
the constant aα, bα are chosen so that the single detector noise distribution
is normalized and has a standard deviation equal to 1.

For a given known signal the probability of the signal with noise hypoth-
esis H1 is

P (d∣H1, h+, h×) =
bα1

aα1
α1 + ∣d1 − F+

1 h+ − F
×
1 h×∣

α1

bα2

aα2
α2 + ∣d2 − F +

2 h+ − F
×
2 h×∣

α2
,

(5.69)
where F +

i and F ×
i are the whitened antenna pattern coefficients defined in

equation (5.42). In this case of non-Gaussian noise distribution, the only
signal prior which can be analytically marginalized on is the flat prior, that is
the Gaussian prior in the limit of infinite characteristic amplitude. Without
any polarization assumptions we obtain

P (d∣H1) = ∫ P (d∣h+, h× + noise)dh+dh× (5.70a)

=
1

detF
∫

bα1dn1

aα1
α1 + ∣n1∣

α1
∫

bα2dn2

aα2
α2 + ∣n2∣

α2
(5.70b)

=
1

detF
, (5.70c)

where

F = (F +F ×
) = (

F+
1 F×

1

F+
2 F×

2
) (5.71)

is the two by two Jacobian matrix that comes from the change of variables

n1 = d1 − F
+
1 h+ − F

×
1 h×, (5.72a)

n2 = d2 − F
+
2 h+ − F

×
2 h×. (5.72b)
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5.8 Robust statistics 117

Figure 5.6: Contour lines for Gaussian type and powerlaw type detection
statistic. The left panel show isolines for (5.76) and the right panel for
S(d) = (1+ ∣d1∣

4)(1+ ∣d2∣
4). In both case the x and y axes are the magnitudes

of d1 and d2, respectively.

Thus the likelihood ratio is

Λ(d) =
P (d∣H1)

P (d∣H0)
=

(aα1
α1
+ ∣d1∣

α1)(aα2
α2
+ ∣d2∣

α2)

bα1bα2 det(F )
(5.73a)

≃
∣d1∣

α1 ∣d2∣
α2

bα1bα2 det(F )
for large ∣d∣. (5.73b)

If we discard terms that do not depend on detectors data the obtained
detection statistic is

S(d) = ∣d1∣
α1 ∣d2∣

α2 . (5.74)

The fundamental difference compared to the log-likelihood statistic derived
before is that a significant amplitude in both detectors is required in order
to yield a large detection statistic as can be seen on the contour lines on
figure 5.6. This means that the statistic is much more robust to single
detector glitches.

This behavior is more clear if one compares this statistic with α1 = α2 = 1

S1(d) = ∣d1∣∣d2∣, (5.75)

and the Gaussian statistic (5.50) in the loud signal limit with terms which
are not depending on the data dropped

S2(d) = ∣d1∣
2
+ ∣d2∣

2. (5.76)

In both cases the statistic grows quadratically with the amplitude of the
signal, whereas for a glitch the Gaussian statistic still grows quadratically
with the amplitude, while the robust statistic grows only linearly.
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118 Gravitational wave data analysis tools

5.8.2 Three non aligned detectors statistic

For the case of three detectors the statistic computation is more cumbersome.
The noise probability distribution is still the product of the individual de-
tectors distributions p1, p2 and p3

P (d∣H0) =
bα1

aα1
α1 + ∣d1∣

α1

bα2

aα2
α2 + ∣d2∣

α2

bα3

aα3
α3 + ∣d3∣

α3
= p1(d1)p2(d2)p3(d3). (5.77)

But the marginalization on the flat prior of signal amplitude is more complex

P (d∣H1) =

∫ p1(∣d1−F
+
1 h+−F

×
1 h×∣)p2(∣d2−F

+
2 h+−F

×
2 h×∣)p3(∣d3−F

+
3 h+−F

×
3 h×∣)dh+dh×.

(5.78)

This is an integral of a three dimensional probability distribution over a
two dimensional plane, whose offset is given by the observed data d and
orientation by the antenna pattern vectors F + and F ×. Similarly to the
two-detector case shown on the right panel of figure 5.6, the probability
distribution is concentrated around the three Cartesian axes that correspond
to each detector, and the vector which is normal to this plane is the null
vector en defined in equation (5.54). If we assume that this normal is not
nearly parallel16 to any of the three Cartesian axis, we can approximate the
integral by three integrals each around the intersection of the plane with one
of the axis. The coordinate of the intersection between the signal plane and
the x axis is X0 =

en⋅d
en⋅e1

, the coordinates of the intersection points with the
y and z have an analogous form.

At each intersection point we approximate the integral with an integral
along the plan orthogonal to the given axis and divide the result by a slope
factor ∣en ⋅ ei∣ in order to correct at first order the orthogonal plane simpli-
fication. These integrals along the orthogonal planes are respectively equal
to p1(X0), p2(Y0), p3(Z0). The final result is

P (d∣H1) ≃
1

√
detF †F

(
p1(X0)

en ⋅ e1
+
p2(Y0)

en ⋅ e2
+
p3(Z0)

en ⋅ e3
) , (5.79)

where the
√

detF †F factor corresponds to a change of variables analogous
to (5.72), the peculiar form comes from the non-square nature of F .

The full expression of the likelihood ratio is quite complex, but in the
large amplitude limit it can be usefully approximated if one sets all constant
factors to 1 with the exclusion of exponents. This simplified likelihood ratio

16Which will be true as long as the second and third least sensitive detector have com-
parable sensitivities.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



5.8 Robust statistics 119

is

Λ(d) =
∣d1∣

α1 ∣d2∣
α2 ∣d3∣

α3

√
detF †F

(
1

1 + ∣X0(d)∣α1
+

1

1 + ∣Y0(d)∣α2
+

1

1 + ∣Z0(d)∣α3
) ,

(5.80)
and if we discard terms that do not depend on data the obtained detection
statistic is

S(d) = ∣d1∣
α1 ∣d2∣

α2 ∣d3∣
α3 (

1

1 + ∣X0(d)∣α1
+

1

1 + ∣Y0(d)∣α2
+

1

1 + ∣Z0(d)∣α3
) .

(5.81)
As in the two-detector case, the detection statistic has a large value if the
event is seen in all detectors. Moreover, the value of the detection statistic
is decreased if the event deviates from the signal plane, i.e. when the data
projection on the null vector is large.

5.8.3 Power law slope estimation

The remaining question in the above derivation is which power-law slope
αi should be used for each detector. Given that the noise behavior of each
detector is time and frequency dependent, the best approach is to determine
these coefficients based on the data, similarly to what it is done in order to
estimate the noise power spectrum for data whitening. Among others, such
a procedure needs to be robust to the presence of desirable signal in the data.
The ad hoc method that we use for a detector i is the following one

• Use the whitened coefficients at a given frequency from the same stretch
of data as the one used for power spectrum estimation. That is, based
on equation (5.31), the dwi (j, k) amplitudes for j ∈ ⟦1,M/m⟧.

• Compute the median E50% = prctile50%(∣dwi (j, k)∣
2) and the 99 per-

centile E99% = prctile99%(∣dwi (j, k)∣
2) energy in these coefficients.

• Choose αi(k) =
√

44
E50%

E99%

.

This method has no simple justification but has proven effective in real data
analysis. It has as well some valuable properties. The method is robust to
real signals, the expected signal duration is less than 1% of the used data
stretch duration, hence the 50 and 99 percentiles are not affected by the
presence of a signal. Moreover, if the noise has a long tail, the chosen αi
coefficient will be small and the robust statistic will grow slowly with the
noise amplitude for that detector. This reflects on our limited trust in large
amplitude deviation from a detector and frequency which is known to contain
a large noise tail.

The overall normalization of the exponent αi is not really important,
especially in the two-detector case. The

√
44 prefactor is chosen in order
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120 Gravitational wave data analysis tools

to obtain αi = 1 for pure Gaussian noise17, which yields a statistic that is
growing with the square of the signal amplitude as it is the case for the
Bayesian statistics.

5.9 Sky location statistic

In the sections above we have assumed that the source sky location is known
with sufficient precision compared to the resolution of the interferometer
networks that the sky location errors can be safely neglected. However, as
shown in section 4.2, for some satellites the sky localization is rather poor.
The resulting difference in time delays between pairs of detectors for different
sky positions in the reconstructed sky location error box can be large. That
is, sufficiently large that signal between detectors can coherently build up
instead of canceling for null energies (and vice-versa for circular energy).

The sky location error can be taken into account with the Bayesian for-
malism developed above. Electromagnetic observation by satellites give a
sky location prior (4.6) or (4.8) of the source, and given that the null hy-
pothesis H0 is independent of the sky location, the Bayesian marginalization
over the sky position Ω yields the likelihood ratio

Λ(d) = ∫
P (d∣Ω,H1)PEM(Ω)dΩ

P (d∣H0)
= ∫ Λ(d∣Ω)PEM(Ω)dΩ, (5.82)

where Λ(d∣Ω) is one of the likelihoods derived previously, for instance the
exponential of half the log-likelihood (5.51) or its equivalent (5.53) with the
circular polarization assumption.

In practice, such a marginalization is computationally very expensive,
and for the consistency tests and the robust statistic computation we need
a single sky location. Therefore we use the usual workaround of maximizing
instead of marginalizing the likelihood ratio. This will also provide a max-
imum likelihood estimator of the source sky location, which can be used to
compute auxiliary statistics. Indeed, the posterior probability distribution
of the sky locations is

P (Ω∣d) =
P (d∣Ω,H1)PEM(Ω)

∫ P (d∣Ω,H1)PEM(Ω)dΩ
∝ Λ(d∣Ω)PEM(Ω), (5.83)

where the proportionality constant do not depend on Ω. Hence Ω0 which
maximizes the likelihood ratio is also the most likely posterior sky position
based on the electromagnetic and gravitational wave observations.

To perform this maximization a simple choice is to scan a discrete grid of
sky positions covering most of the probability distribution. For a disk shaped

17The dwi (j, k) are complex Gaussian distributed (i.e. Gaussian with 2 degrees of free-
dom), the resulting ratio is E99%

E50%
≃

√

44.
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5.9 Sky location statistic 121

Figure 5.7: Example grid of sky position for a GBM sky location error box.
The x and y axis are the standard Earth fixed spherical coordinates (θ, φ) in
radians, color coded is the sky location prior PEM(Ω) = PF(α; κ)/2π sin(α)
where α is the angular distance from the center of the grid. Here σ ≃ 0.175 ≃
10°, θstep = 4.2× 10−2 rad and the grid cover at least a disk of angular radius
σ95% = 1.65σ.

error box region O, an example of a grid on the sphere is to consider a single
central point and concentric circles of points around it each spaced by at most
θstep, each circle being separated from the next one by an angular radius θstep.
An example of such a grid is shown on figure 5.7. This angular step θstep
depends on the maximal time tolerance ttol between pairs of detectors which
does not significantly affect the coherent consistency tests. For a pair of
detectors (i, j) separated by a light travel time vector t⃗ij the time difference
of gravitational wave arrival for a sky position Ω̂ is

tij(Ω) = t⃗ij ⋅ Ω̂, (5.84)

and a sky location error dθ leads to a timing error

∣dtij(Ω)∣ ≤ ∣t⃗ij ∣∣ sin (cos−1 t̂ij ⋅ Ω̂)dθ∣, (5.85)

where the equality is obtained if the error is in the same direction as t⃗ij .
This means that given a time tolerance ttol, a single grid point Ω covers at
least all the sky position within an angular radius

θr =
ttol

∣t⃗ij ∣ sin (cos−1 t̂ij ⋅ Ω̂)
. (5.86)
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122 Gravitational wave data analysis tools

As a conservative choice of the angular step θstep we minimize the angular
radius coverage θr over the sky location error box and the available detectors
pairs, and use twice the obtained value which is

θstep = 2 min
Ω∈O

min
(i,j)

ttol

∣t⃗ij ∣ sin (cos−1 t̂ij ⋅ Ω̂)
. (5.87)

The reason for using twice the minimized θr is that any point in the error
box is within half a step18 of a grid point.

5.10 Combining clustering and coherent analysis

For the moment we have considered separately the question of clustering
(signal shape) and of coherent analysis of a network of gravitational wave
detectors. Let us combine the two and obtain the detection statistic used to
rank gravitational wave triggers. The operation consists simply in replacing
the single stream log-likelihood ratio L(d∣u) in equation (5.40) with the co-
herent log-likelihood ratio for a single time frequency pixel such as (5.53).
The rest of the clustering procedure is kept the same, the log-likelihood ratio
passing over some threshold forms clusters, and the detection statistic for the
cluster C is the sum of the log-likelihood over the cluster

L(d∣C) = ∑
u∈C

L(d∣u, circular) + 2 logPEM(Ω), (5.88)

where PEM(Ω) is the prior probability of the analyzed sky position Ω.
This procedure yields for an excess energy present in the data one cluster

for each sky positions in the analyzed grid of sky positions. In principle one
should marginalize over the possible sky positions, but as mentioned before,
we replace the marginalization with maximization for simplicity. Given that
any trigger found can be rejected by one of the coherent cuts or a data quality
check, this maximization needs to be done on a per event basis. A reasonable
choice is to consider clusters “overlapping” in time and frequency as coming
from the same physical event, and keep only the cluster with the highest
value of the detection statistic (5.88). To obtain a simple implementation,
we assume that two clusters are “overlapping” if the two bounding rectangles
around each cluster have a non empty intersection.

In addition clustering, to refine the signal shape marginalization the trig-
ger production is performed for different aspect ratios of the time-frequency
basis, that is for different choice of the short FFT time length ∆t. This al-
lows to construct clusters which are a better fit to the time-frequency shape

18A point in the middle of a square of grid points separated by θstep is not distant by
θstep/

√

2 but by at most θstep/2 because the metric is not Euclidean. Only the distance
in the direction parallel to t⃗ij is relevant.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



5.11 Conclusion 123

of possible signals. The maximization over this aspect ratio is performed in
exactly the same way as for the maximization over the sky positions.

As a result, for each physical event one obtains a single cluster which
maximizes the detection statistic (5.88). The time-frequency basis, sky lo-
cation and pixels defining this cluster are used to compute other auxiliary
statistics, mainly the robust statistic of section 5.8 and the projections ener-
gies used in coherent cuts. These auxiliary statistics are summed over pixels
in the cluster in the same way as the log-likelihood in equation (5.88). These
properties together with all the statistic fully define a gravitational wave
trigger.

5.11 Conclusion

In this section we have described the basics analysis tools which we will use
in searching for gravitational wave bursts associated with GRBs, however
these tools are quite generic and in principle can be applied to any search for
gravitational wave bursts. In section 7.2 we will give a detailed description
of how these tools are used and the parameters which tailor the analysis to
the specific needs of searching in association with GRBs.
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Chapter 6

Background estimation

In addition to the colored Gaussian noise discussed in chapter 2 a large
number of instrumental and environmental glitches are present in the data
collected by gravitational wave interferometers. The sources of these glitches
are understood for some mechanisms, but there are many sources that are
not understood and in all cases the exact non-linear couplings between noise
sources and the measured dark fringe signal are not known. As a result, the
background distribution of any of the statistics discussed in chapter 5 is a
priori not known.

However, for statistics that use information from a network of at least
two detectors, a powerful method of measuring this background distribution
is available. The method consists in time shifting the data from the different
detectors in the network by times that are much larger than the gravitational
wave travel time between the detectors and the typical autocorrelation time
of the data analysis method used. For this reason this method is usually
called the time slide background estimation, and has already been used by
Weber in the 70’ [97]. The underlying assumption is that the noise in dif-
ferent detectors is uncorrelated, this is true for most sources of glitches with
several exceptions like glitches in timing clocks synchronization and extraor-
dinary large scale electromagnetic transients, these need to be discarded
by environmental and instrumental probes. The only remaining source of
correlated “glitches” are gravitational waves and we use time slides in the
background estimation method to remove this correlation. Hence, the anal-
ysis of time shifted data yields a realization of coincident or coherent events
due to noise only, and multiple realizations can be obtained by changing the
time slide step. This standard method is used in most current searches for
gravitational wave transients [98, 99, 100, 101, 102].

But the method has some limitations which we will discuss in this chap-
ter. The most obvious limitation is that the number of possible time shifts
is not infinite but limited to the duration of the data run divided by the
minimal length of a time slide step which constrains the statistics of the
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126 Background estimation

background estimation. A more subtle limitation is that the different real-
izations are not completely independent but reuse the same data over and
over. This is reasonable as long as the most significant events are due to
a random coincidence of relatively quiet events in each detector and not to
an uncommon event in one detector coincident with very common events in
the others. Another potential limitation comes from the background non-
stationarity. For instance detector noise tends to be higher during day time
or bad weather than during night time or calm weather, and too large time
slides may wash out these correlated effects.

In the section below we discuss both these limitations in the context
of a simplified coincident analysis, that is an analysis that creates triggers
for each detector independently and then searches for coincidences between
trigger lists. This is a good representation of some analysis, and is simple
enough to be tractable analytically. We test these analytically results for the
toy analysis with Monte Carlo simulations. Most of the results presented
here have been published previously in an article [103] and a conference
proceeding [104].

6.1 Poisson statistics limitation

We start by looking into the first limitation coming from reusing the same
data. For the moment we assume that detectors trigger rates are stationary.

6.1.1 Definitions

Poisson approximation for trigger generation

Background triggers in each detector are due to rare glitches. Often these
glitches come in groups, but most analysis pipelines cluster their triggers, so
each glitch group results in only one final trigger. This clustering procedure is
reasonable as long as the resulting trigger rate is much lower than the inverse
of the typical clustering time length. In this limit the clustered triggers can
be considered as independent events. Thus we will assume that each detector
produces random background triggers, which are Poisson distributed in time.

Problem description

We then look at the coincidence between two Poisson processes. In this
chapter we will use the following notations for describing Poisson processes:

αi – the Poisson rate parameter of the trigger distribution in detector i,
which means that the probability of obtaining n triggers during a time
t is (αit)

n exp(−αit)/n!.

FAi – the measured rate of triggers in detector i, i.e. the observed number
of triggers divided by the total time T .
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6.1 Poisson statistics limitation 127

FA((T ))) – the measured coincidence rate for a given time slide T .

In particular for zero lag (T = 0) the measured rate is FA(0). In these terms
the time slide method uses

F̂A =
1

R

R

∑
k=1

FA(Tk), (6.1)

as an estimator of FA(0), where R is the number of time slides and Tk is the
kth time slide step.

Poisson process model

To model a Poisson process with event rate α1 we discretize the data stream
duration T with bins of length ∆t, the discretization time scale, e.g. either
the detector sampling rate or the clustering time scale. Thus, for each bin
an event is present with a probability1 p = α1∆t.

To ease the calculation we describe the Poisson process realizations with a
continuous random variable. We take x uniformly distributed in the volume
[0,1]N where N = T

∆t is the number of samples, then compare xk (the kth

coordinate of x) with p. When xk < p there is an event in time bin k,
otherwise there is none. Thus x characterizes one realization of a Poisson
process, and it can be easily seen that the uniform distribution of x leads to
a Poisson distribution of events.

Coincidences

In order to simplify the modeling of the coincidence between two processes we
use a binned coincidence definition. More precisely, for two Poisson processes
with event rates respectively α1 and α2, we define a coincidence when there
is an event in the same time bin k of duration ∆t for both processes. This is
different from the usual definition, where events are considered in coincidence
when they are less than a given time window apart. This binning time
coincidence has on average the same effect as defining as coincident events
those that are less than ±1

2∆t = ±τc apart. Note that the bin duration ∆t
is equal to twice the usual coincidence tolerance duration τc. The analytical
results are derived using this non standard definition, but they are in an
excellent agreement with Monte Carlo simulations that are performed using
the usual definition of time coincidence.

1Here we model the Poisson process by a binomial distribution, recalling that when
p≪ 1 the binomial distribution tends toward a Poisson distribution
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128 Background estimation

6.1.2 The case of two detectors

Time slides between two detectors

Let x,y ∈ [0,1]N be two realizations of Poisson processes with respectively
p = α1∆t and q = α2∆t. There is a coincident event in time bin k when
xk < p and yk < q. So the total number of coincidences for this realization is

N

∑
k=1

1(xk < p)1(yk < q) (6.2)

where

{
1(a) = 1 if a is true
1(a) = 0 if a is false (6.3)

Thus the mean number of coincidences in the zero lag is as expected

Mean = ∫
x1
⋯∫

xN
∫
y1
⋯∫

yN

N

∑
k=1

1(xk < p)1(yk < q)dx1⋯dxNdy1⋯dyN
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dV

= Npq.

(6.4)
To consider a number R of time slides we take a set of R circular per-

mutations of ⟦1,N⟧. Time-sliding a vector x by the circular permutation π
transforms the vector x into the vector of coordinates xπ(k). Then the mean
number of coincidences coming from the time slide estimator is simply

Mean = ∫
x1
⋯∫

xN
∫
y1
⋯∫

yN

1

R
∑
π
∑
k

1(xk < p)1(yπ(k) < q)dV = Npq, (6.5)

thus there is no bias resulting from the use of time slides.

Computation of the variance

In order to have an estimate of the statistical error, we compute the variance
with R time slides. The second moment of the time slide estimator is

M2 = ∫
x1
⋯∫

xN
∫
y1
⋯∫

yN
[

1

R
∑
π
∑
k

1(xk < p)1(yπ(k) < q)]

2

dV

= ∫ ⋯∫
1

R2∑
π1

∑
π2

∑
k

∑
l

1(xk < p)1(xl < p)1(yπ1(k) < q)1(yπ2(l) < q)dV.

(6.6)

We can then move the sums in front of the integrals. To compute the in-
tegrals we distinguish two cases: when k ≠ l the integrals on xk and xl are
independent, and the integration over x1, . . . , xN gives a p2 contribution; oth-
erwise the integration gives a p contribution. Analogously for the y variables
we obtain q or q2 depending on whether π1(k) = π2(l) or not.
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6.1 Poisson statistics limitation 129

Figure 6.1: The solid line is the analytical formula (6.8) of the variance and
the dashed line is the Monte Carlo variance as a function of the number of
time slides. The Monte Carlo has been performed with α1 = 0.7 Hz, α2 =

0.8 Hz, τc = 1 ms, 500 trials and a T = 104 s data stream length.

The computation of this integral, detailed in appendix A.1, yields

Var = Npq [
1

R
+ p + q +

pq − (p + q)

R
− 2pq] (6.7)

≃ Npq [
1

R
+ p + q] , (6.8)

where the last line is an approximation in the limit p, q, 1
R ≪ 1, which is

reasonable as far as gravitational wave analysis is concerned.

Interpretation

Each term in equation (6.8) can be interpreted. The 1
R is what we would

expect if we considered R independent Poisson process realizations instead
of R time slides. The p+ q comes from the estimation of the Poisson process
event rate. Indeed, the estimation of the event probability p from a single
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130 Background estimation

realization of a Poisson process with a mean number of eventsNp is p̂ = p+δp,
where δp is the random statistical error with variance ⟨δp2⟩ =

p
N . This yields

the mean rate of coincidences

Mean = Np̂q̂ = N (p + δp) (q + δq) ≃ Npq +Npδq +Nqδp (6.9)

which corresponds to a variance of ⟨N2p2δq2 +Nq2δp2⟩ = Npq(p+q), because
δp and δq are independent errors. Thus, when using only one realization for
the single detector triggers, we have a statistical error on the single detector
process rate. This statistical error is systematically propagated to the coin-
cidence rate of each time slide, which yields the extra terms in the variance
as compared to independent process realizations. One can see that this extra
term is important when 1

R < max(p, q); for cases where the coincident false
alarm rate is maintained fixed (pq constant), the effect is most noticeable
when p and q are very different.

This gives an estimate of the variance of the number of coincident events
in a data stream of length T . After converting to the estimation of the
coincidence false alarm rate we obtain

Mean F̂A =
Mean

T
= α1α2∆t, (6.10)

Var F̂A =
Var

T 2
≃ α1α2

∆t

T
[

1

R
+ α1∆t + α2∆t] . (6.11)

One should note that the variance is different from what one would naively
expect if each background time shift trial was independent, i.e.

VarnaiveF̂A = α1α2
∆t

T

1

R
. (6.12)

To verify these results, a Monte Carlo simulation has been performed.
The Poisson processes are created as described in section 6.1.1, using a sam-
pling rate of 16384 Hz, then a simple coincidence test with a window of
τc = 1 ms is applied. The time shifts are done by adding an integer number
of seconds to all events and applying a modulo T operation. The formula
has been tested using 500 realizations of T = 104 s long Poisson processes,
and using between 1 and 104 time slides for each realization. Figure 6.1
shows that the analytical formula (6.8) and the Monte Carlo agree well for
any number of time slides, and that the variance starts saturating when a
few hundreds time slides are used. We can see that the identification of the
sampling time and the coincidence time window has no consequences on the
result, the effect between the choice of binning and windowing coincidences
represents a higher order correction.

Straightforward extensions of the model

In real data analysis, there are times when one of the detectors does not
take science quality data for some reason. Thus, the data set is divided into
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6.1 Poisson statistics limitation 131

disjoint segments, and the background estimation is often done by circular
time slides on each segment separately. Afterwards the results from all the
segments are combined to get the background false alarm estimation. The
computation discussed above extends to this case with minimal changes. The
circular permutations have to be changed to circular by block permutations,
everything else can be kept identical.

Another caveat is that for real data analysis the coincidence procedure
is often more complicated. Some of those complications are at the level of
event consistency tests, e.g. do the two coincident events have a similar
frequency? We can model this by adding some parameter f distributed
uniformly in [0,1] attached to each event, and then requesting a coincidence
in the parameter f .

For this model the results will be the same as those above, up to a
factor of order 1. Indeed, instead of applying a window of size ∆t to our
events, we are now working in a 2 dimensional (for instance time-frequency)
space and using a rectangular window in this 2 dimensional parameter space.
The procedure in both cases is the same — applying an M dimensional
rectangular windows to events distributed uniformly in an M dimensional
space — up to the dimension of the space.

6.1.3 The case of three detectors

Time slides between three detectors

In the case of three detectors one natural extension is to ask for events that
are seen by at least two detectors, which means look for coincidence between
two detectors for each detector pair, but counting the coincidences between
three detectors only once. This “OR” strategy in a interferometer network
has been shown to be more efficient than a direct three fold coincidence
strategy (“AND” strategy) [105]. For time slides, when shifting the events of
the second detector with some permutation π, we choose to shift the events
of the third detector by the same amount but in the opposite direction with
π−1, so that the time delay for any of the detector pairs is different for
each time shift. To write compact equations we abbreviate X = 1(xk < p),
Y = 1(yπ(k) < q), Z = 1(zπ−1(k) < r), dV = dx1⋯dxNdy1⋯dyNdz1⋯dzN ,
where r = α3∆t is the event probability per bin of the third detector and the
vector z describes its realizations. Thus, the mean number of coincidences
in the framework described in section 6.1.2 becomes

Mean = ∫ ⋯∫
1

R
∑
π
∑
k

[XY + Y Z +XZ − 2XY Z]dV (6.13a)

= N [pq + pr + qr − 2pqr] . (6.13b)
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132 Background estimation

Computation of the variance

The second moment can be written compactly as

M2 = ∫ ⋯∫
1

R2∑
π1

∑
π2

∑
k

∑
l

[XYX ′Y ′
+XZX ′Z ′

+ Y ZY ′Z ′
+ 4XY ZX ′Y ′Z ′

+ 2XYX ′Z ′
+ 2XY Y ′Z ′

+2XZY ′Z ′
− 4XYX ′Y ′Z ′

− 4XZX ′Y ′Z ′
− 4Y ZX ′Y ′Z ′]dV, (6.14)

where the ′ denotes whether the hidden variables are π1, k or π2, l.
The computation of this integral, detailed in appendix A.2, yields

M2 =
N

R
{(pq + pr + qr − 2pqr)

+ (R − 1) [pq(p + q + pq) + pr(p + r + pr) + qr(q + r + qr) + 6pqr

−4pqr(p + q + r)]+ [(R − 1)(N − 3) + (N − 1)] (pq + pr + qr − 2pqr)2
},

(6.15)

and can be approximated in the limit p, q, r, 1
R ≪ 1 by

Var ≃ N(pq + pr + qr) (
1

R
+ p + q + r +

3pqr

pq + pr + qr
) . (6.16)

Interpretation

Similarly to section 6.1.2 the extra terms in equation (6.16) can be explained
through the error in the estimation of the single detector event rate. Using
the same notations as in section 6.1.2 the mean coincidence number is

Mean = N (p̂q̂ + p̂r̂ + q̂r̂) (6.17a)
≃ N [pq + pr + qr + (q + r)δp + (p + r)δq + (p + q)δr] . (6.17b)

Using the independence of single detector estimation errors and recalling
that ⟨δp2⟩ =

p
N we obtain the variance of this mean value

Var = N2 [⟨δp2
⟩(q + r)2

+ ⟨δq2
⟩(p + r)2

+ ⟨δr2
⟩(p + q)2]

= N [(pq + pr + qr)(p + q + r) + 3pqr] , (6.18)

that corresponds to the extra terms in equation (6.16).
After converting to the estimation of the false alarm rate we obtain

Mean F̂A ≃ (α1α2 + α1α3 + α2α3)∆t, (6.19)

Var F̂A ≃ (α1α2 + α1α3 + α2α3)
∆t

T

(
1

R
+ α1∆t + α2∆t + α3∆t +

3α1α2α3

α1α2 + α1α3 + α2α3
∆t) . (6.20)
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6.1 Poisson statistics limitation 133

Figure 6.2: The solid line is the analytical formula (6.16) of the coincident
event number variance and the dotted line is the Monte Carlo variance as a
function of the number of time slides. The Monte Carlo has been performed
with α1 = 0.04 Hz, α2 = 0.08 Hz, α3 = 0.16 Hz, τc = 31 ms, 500 trials and a
T = 104 s data stream length.

To check the 3 detector results we performed a Monte Carlo similar to
the one for the 2 detector case (see section 6.1.2). The only difference is the
number of detectors, and we have chosen a different coincidence window2

τc = 31 ms. To check that the assumption of equal and opposite time slides
has no impact on the result, the data in the second detector are shifted by Tk
and in the third detector by 3Tk in the Monte Carlo simulation. Figure 6.2
shows that the Monte Carlo and the 3 detector “OR” formula (6.16) agree
really well.

The case of D detectors

For the sake of completeness, we generalize the interpretation done in section
6.1.2 to the case of D detectors in the “AND” configuration. This general-
ization of equation (6.9) to D detectors yields a variance on the number of

2This accounts for the largest light travel time in the LIGO-Virgo network (27 ms) and
some timing error in each detector.
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134 Background estimation

Figure 6.3: The plus markers are the standard deviations of the time slide
estimator F̂A taken from a Monte Carlo simulation, the dashed green line
is the standard deviation coming from the exact theoretical formula (6.11),
the dotted red line is coming from the naive formula (6.12), and the solid
cyan line is the expected false alarm rate. The parameters used are: α1 =

2× 10−4 Hz, α2 = 5× 10−5 Hz, ∆t = 20 ms, and a T = 107 s. 500 trials are used
for the Monte Carlo simulations, and the corresponding Poisson counting
error bars on the standard deviation are shown. The large deviation of the
Monte Carlo simulations at low R is due to the limited number of trials, as
the number of events seen in 500 trials for ∼ 10 time slides is close to 1.

coincidences

Var ≃ N
D

∏
i=1

pi
⎛

⎝

1

R
+
D

∑
i=1
∏
j≠i

pj
⎞

⎠
, (6.21)

where pi is the probability for detector i to have an event in a given time
bin.

The interpretation can also be generalized in the “OR” case, that is re-
quiring coincidence between any pair of detectors, although the computation
is more cumbersome as detailed in appendix A.3 and yields

Var ≃ N

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
∑
i<j

pipj
⎞

⎠
(

1

R
+
D

∑
i=1

pi) +
1

2
∑

i≠j, j≠k, k≠i

pipjpk

⎤
⎥
⎥
⎥
⎥
⎦

. (6.22)

6.1.4 Discussion

We finally discuss the consequences of the above results on gravitational
wave data analysis. As an example, we choose a fiducial data run with the
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6.1 Poisson statistics limitation 135

following properties:

• a duration of T = 107 s, that is roughly 4 months

• two detectors with a light travel time separation of 10 ms, and we
use the same time as the coincidence window3, so that ∆t = 20 ms,
assuming perfect timing accuracy of trigger generators.

• a desired coincidence false alarm rate of 2×10−10 Hz, i.e. a 2×10−3 back-
ground probability which corresponds to a “3-sigma” detection thresh-
old.

Note that the desired coincidence false alarm rate is several orders of mag-
nitude smaller that the one is the tests shown on figures 6.1 and 6.2. The
parameters for these previous tests were chosen to show the saturation effect
with a small number of time slide and not as representative of a realistic
scenario.

For illustration we consider two special cases of single detector thresh-
olds choices. One realistic case, where thresholds are set so that the single
detector trigger rate in each detector is roughly the same. One extremely
asymmetric case, where in one of the detectors there is only one trigger.
This extreme case is instructive as it shows clearly the limits of the time
slide background estimation method.

Realistic case In this case we assume comparable but different trigger rates
in each detector with α1 = 2×10−4 Hz and α2 = 5×10−5 Hz, which yields
correctly the desired coincidence rate α = α1α2∆t = 2×10−10 Hz. Using
equation (6.11) the fractional error of the false alarm estimation is

σα
α

≃ 22.4(
1

R
+ 5 × 10−6

)

1
2

p = 4 × 10−6, q = 10−6

≃ 0.71 for R = 1000

≃ 0.05 for R →∞.

The 22.4 factor comes from the desired detection confidence threshold
as 22.4 ≃ 1/

√
2 × 10−3. For 1000 time slides we get a typical error of

70% in the false alarm estimation, and the error saturates at 5% for
R ≳ 2 × 105. For illustration, the dependence of σα on R is shown
on figure 6.3. In this particular fiducial case, the Poisson fluctuations
do not impede the background estimation, as with ∼ 104 time slides a
reliable estimate of the expected false alarm can be obtained.

Extreme case In this extreme case the single detector trigger rates are
α1 = 1

T = 10−7 Hz and α2 = α
α1∆t = 0.1 Hz, which gives using equation

3As noted in section 6.1.1, coincident triggers are defined as less that ± 1
2
∆t apart.

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



136 Background estimation

(6.11) the fractional error of the false alarm estimation

σα
α

≃ 22.4(
1

R
+ 2 × 10−3

)

1
2

p = 2 × 10−9, q = 2 × 10−3

≃ 1.2 for R = 1000

≃ 1 for R →∞.

So the error saturates at 100%, and this saturation is achieved for
R ≳ 500.

Those two examples show that the maximal number of useful time slides
and the false alarm estimation precision strongly depends on the relative
properties of the two detectors. In particular when there is much more
triggers in one detector than in the other, the background can be badly
estimated and increasing the number of time slides will not help.

One subtlety to consider is that background estimation can actually cor-
respond to two slightly different questions. The first question is how many
background coincidences will be recorded if the instrument continued to col-
lect for a very long time. That is what is the coincidence rate we obtain
in the limit of infinite number of independent realizations of detectors data
containing only noise and no signal. The results obtained in this section
pertain to this question.

The other question is how the observed coincidences in the zero lag are
consistent with the data in each detector assuming that there is only noise
in the detectors. That is how exceptional are the zero lag coincidences com-
pared to time shifted (or random) coincidences of the same data. The main
difference compared to the previous question is that the data are not in-
dependent between the measured background estimate and the statistical
significance of the zero lag.

All-sky searches [99, 100, 101, 98, 102] analyze all the available data
without distinction, and use the same data to perform the background esti-
mation. The time slide method of background estimation is answering the
second question. In that case the saturation discussed above is not rele-
vant, because the errors on the estimate of the single detector event rate
discussed in section 6.1.2 are biasing in the same way the event number of
the time shifted and of the zero lag coincidence, and the final background
estimation is not affected. A Monte Carlo confirmation of this is shown
in appendix A.4. The price to pay is that if the presence of gravitational
waves is significantly affecting the single detectors trigger rate (above some
threshold) the estimated background coincidence rate is elevated, as the sin-
gle detector triggers composing the gravitational wave events cannot be a
priori labeled as a gravitational waves.

However, for the case of gravitational wave searches triggered by external
observations, such as gamma-ray bursts, only a small amount of data around
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6.2 Rate fluctuations limitation 137

the external trigger time (called the on-source region) is used for the pur-
pose of finding gravitational waves. The data further away from the external
trigger time (called the off-source region) can be use for background estima-
tion and are statistically independent. The drawback is that the saturation
term discussed above are affecting the background estimation, but the gain
is that the presence of gravitational waves is much less likely in the off-source
than in the on-source region, and the estimated background is not elevated
by the presence of a gravitational wave in the on-source region. In this on-
source/off-source scheme the time slide method of background estimation is
answering the first question.

6.2 Rate fluctuations limitation

In the previous section we have modeled the trigger time distribution for
each gravitational wave detector as a stationary Poisson process. However,
the trigger rate produced by each detector is usually not constant in time, for
instance it depends on weather conditions [106]. In this section we will study
how this non stationary rate of triggers affects the background estimation
errors.

Intuitively, non stationary data can become problematic for the time slide
method whenever the time step of the slide is equal or larger than the rate
fluctuation time scale TF.

For example, if there are two storms that happen at two separate detector
sites at the same time, they will produce an elevated rate of triggers at both
detectors that will increase the coincidence rate. This increased coincidence
rate scales as the product of the trigger rate increase factors at each detector.
However, if we use a time slide with a step longer than the storms duration,
the increased coincidence rate will only scale as the sum of the trigger rate
increase factors at each detector. This case would yield an underestimation of
the background coincidence rate. Obviously the opposite scenario is possible,
where two storms that do not happen at the same time are brought together
by the time slides, which results in an overestimation of the background
coincidence rate.

This kind of effect is in practice alleviated by using time slides that
are limited in time, usually shorter than 1 hour. However, each time slide
step has to be different from the others by the filters (trigger generator)
auto-correlation lengths which is usually of the order of 1 second. Thus
for two detectors the maximal number of time slides shorter than 1 hour is
limited to a few thousands. This is the main motivation for breaking the
non stationarity barrier and using longer time steps.

In the following sections we will present a systematic method of quanti-
fying the background estimation error introduced by this kind of phenomena
when random time slides are used. That is time slides that are on a circu-
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138 Background estimation

lar ring and have time steps distributed uniformly in the [0, T ] range. For
simplicity, we will discuss this issue in the 2 detector case only.

6.2.1 Measure of rate fluctuations

As a measure of a detector trigger rate fluctuation we look at the variance of
the binned trigger rate. We divide the data into P bins of length ∆T = T /P ,
where T is the duration of the run. By computing the standard deviation
of the measured trigger rate in each time bin, we obtain a parameter a1(P )

characterizing the amplitude of the rate fluctuations with time scale ∆T

FA1 = Meani∈⟦1, P ⟧FAi
1, (6.23)

a1(P ) = Stdi∈⟦1, P ⟧FAi
1/FA1. (6.24)

Where FAi
1 is the rate measured4 in time bin i.

The effects of the Poisson distribution of triggers on the background
estimation error have already been discussed in section 6.1. We will study
here only the additional errors due to non stationary data, therefore we will
use the mean coincidence rate equation α = α1α2∆t.

For a given set of R time slides {Tk} the background estimation error is

αErr = α(0) −
1

R
∑
k

α(Tk) (6.25)

≃
1

P

P

∑
i=1

αi1α
i
2∆t −

1

RP

P

∑
i=1
∑
k

αi1α
πk(i)
2 ∆t, (6.26)

where we have approximated each time slide Tk with the nearest circular
permutation of time bins πk. In this equation the αi1 are local trigger rates,
and we treat them as equally distributed random variables with the first
two moments measured from real data using (6.23) and (6.24) (we treat αi2
analogously).

Under those assumptions the mean of αErr is null and a detailed compu-
tation described in appendix A.5 yields the standard deviation

Std(αErr)

α1α2∆t
= [

1

P
(1 +

1

R
)a2

1(P )a2
2(P )]

1
2
. (6.27)

To obtain an estimator of the background estimation error, we maximize
(6.27) over all time scales ∆T , which is equivalent to maximizing over P and
yields

Std(αErr)

α1α2∆t
= max

P
[

1

P
(1 +

1

R
)a2

1(P )a2
2(P )]

1
2
. (6.28)

4number of triggers in time bin i divided by ∆T
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6.2 Rate fluctuations limitation 139

Figure 6.4: Shown are the generated rate fluctuations with time scale TF =

105 sec and three amplitude factors: A = 1 for the dotted line, A = 2 for the
dashed line, and A = 3 for the solid line. In all three cases the mean rate is
2 × 10−4 Hz.

6.2.2 Rate fluctuations model

In order to compare the analytical results of section 6.2.1 with simulations,
one needs to generate a non-homogeneous Poisson process. It does not need
to be an accurate model of real detectors, but only to have some cursory
resemblance.

In order to generate rate fluctuations with time scales larger than some
given TF we proceed as follows

• Generate a white Gaussian noise

• Low pass filter the Gaussian noise with a frequency cut at 1/TF

• Normalize the resulting process to unit variance

• Pass it through a non linear memory-less filter x→ 1+exp(Ax), where
A is a parameter that characterizes the amplitude of the fluctuations

• Normalize the resulting process to the desired mean rate

Examples of the resulting rate fluctuations for several amplitude factors
are shown on figure 6.4.
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140 Background estimation

Figure 6.5: The dotted, dashed and solid lines are the theoretical predictions
of the standard deviation (6.30) for respectively A = 1, A = 2, and A = 3 as a
function of the rate fluctuation time scale TF. The plus, cross and diamond
markers denote the Monte Carlo standard deviation (6.29) for respectively
A = 1, A = 2, and A = 3. The upper dot-dashed line is the desired false alarm
rate α = 2 × 10−10 Hz, and the lower dot-dashed line is the contribution of
Poisson error (6.11) only for R = 104 time slides. The parameters used are:
α1 = 2 × 10−4 Hz, α2 = 5 × 10−5 Hz, ∆t = 20 ms, and a T = 107 s. The maxi-
mization over P is done on a discrete grid from 20 to 10000 with logarithmic
steps. 1000 trials are used for the Monte Carlo simulations.

6.2.3 Monte Carlo verification

In order to verify how accurate are the predictions of (6.28), we perform
a Monte Carlo simulation and compare predicted and measured standard
deviation. For the comparison to be as close as possible to the real case
scenario, we generate rate fluctuations as described in section 6.2.2, and
then use this local rate to generate triggers.

We look at two sets of time slides: time slides with random time steps
{Tk}, and a set of closely spaced linear steps {Sk}. The second set is used
as a reference background estimation which is not affected by trigger rate
fluctuations, given that its longest time step is smaller than the time scale
of trigger rate fluctuations. Finally, the standard deviation of the difference
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6.3 Case of triggered gravitational wave search 141

between the two rate measures

FAErr =
1

R
∑
k

FA(Sk) −
1

R
∑
k

FA(Tk), (6.29)

is compared to the predicted standard deviation, which is the quadratic sum
of the Poisson (6.11) and non stationary rate (6.28) errors

StdTh(FAErr) = [Std(αErr)
2
+ 2 Std(F̂A)

2]
1
2 , (6.30)

as the Poisson error plays a role both for the {Sk} and {Tk} time slides.
On figure 6.5 are shown the results of the comparison of the theoretical

and Monte Carlo standard deviations. The theoretical prediction explains
well the error observed in the simulation. However, one can notice that the
Monte Carlo error is slightly above the theoretical prediction. This shows
that the presented method is not able to measure it fully, and is rather a
good rule of thumb than a precise prediction. For instance the predicted
error decreases with the coarseness of the maximization over P , and the
time binning is losing some of the structure of the trigger rate fluctuations.

The parameters used correspond to a realistic scenario and are the same
as on figure 6.3. The set of linear time slides {Sk} = {k × 0.1 sec}k∈⟦1,104⟧ has
a time step of only 100 ms which would not be used in a real analysis, but
is allowed here because the simulated triggers have a delta auto-correlation
and time steps are limited only by the ∆t = 20 ms time coincidence window.

One can see that for moderately non stationary data (A = 1), the asso-
ciated error is buried in the Poisson error. However, for larger amplitude
factors the associated error becomes greater than the measured rate, which
renders the background estimation useless. When TFαi ≪ 1, the trigger rate
fluctuations are averaged out by Poisson counting, this explains why the
estimation error is increasing with TF.

6.3 Case of triggered gravitational wave search

The toy analysis used to derive the results above is not an accurate descrip-
tion of a real gravitational wave data analysis, but it is still able to yield some
order of magnitude conclusion, for instance for the search in association with
gamma-ray bursts described in chapter 7.

In that case a period of Ton ∼ 600 s is analyzed and Toff ∼ 104 sec of
data around that period is used for background estimation. We will assume
that the 3 hours are short enough that rate fluctuations do not play an
important role. Hence only the Poisson limitation is relevant in that case,
and the saturation terms play a role as different data are used for background
estimation and for gravitational wave detection.

The analysis used is coherent and not coincident, hence the results de-
rived here cannot be applied directly, however as a worst case scenario we
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142 Background estimation

can verify the effects for the extremely asymmetric case of the discussed toy
analysis. Given that the sky position is known for this analysis the effective
time coincidence window in the coherent analysis is rather tight5 and we will
assume ∆t = 10−3 s here. As a reference we use the false alarm threshold for a
“3-sigma” detection that is α ≃ 2×10−3/Ton ≃ 3×10−6 Hz, and in the extreme
case the single detector rates are α1 = 1/Ton and α2 = α/(α1∆t) ≃ 2 Hz. Using
equation (6.11) we obtain6 the fractional error on the false alarm estimation

σα
α

≃ 5.5(
1

R
+ 2 × 10−3

)

1
2

p ≃ 1.7 × 10−5, q = 2 × 10−3

≃ 0.3 for R = 1000

≃ 0.25 for R →∞.

Hence 1000 time slides of the background estimation region of duration Toff
are sufficient to obtain a reasonable estimate of the background in the on-
source region even in the extremely asymmetric scenario. One should re-
member that this case is not representative of actual coherent searches as
loud single detector events are well removed by coherent consistency tests.
Compared to the previous discussions of the extremely asymmetric case in
section 6.1.4 the Poisson limitation is not as important, the reason is that
here the time length Toff of data used in the background estimation is much
larger than the detection period Ton and not equal as it was the case previ-
ously.

5see the time tolerance discussed in section 7.2.2
6Note that here T = Toff.
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Chapter 7

GRB analysis for S6/VSR2-3

In this chapter we present the methods and main results of the search for
gravitational waves in LIGO and Virgo data in association with GRBs re-
ported by the Gamma-ray bursts Coordinates Network [69] in 2009-2010.
This analysis follows the scheme established with earlier data from LIGO
and Virgo. The first searches considered single GRBs [107, 108], then grav-
itational wave detectors engaged in long science runs and the searches con-
sidered large samples of GRBs [109, 85, 110]. In particular the analysis
described here represents an incremental improvement of the search for grav-
itational wave bursts in the 2005-2007 LIGO and Virgo data [85].

Beside the availability of new data (which also inevitably leads to new
problems related to them) the main challenges of this analysis compared to
the previous one are:

• Large sky location errors of GRBs detected by the GBM detector on
the Fermi spacecraft which was launched in 2008. This was not an
issue in the 2005-2007 analysis where most GRBs were well localized
by Swift. In 2009-2010 roughly half of the GRB sky locations were
provided by each spacecraft.

• A more predominant role of Virgo in the gravitational wave detector
network. The LIGO detectors are roughly aligned but Virgo has com-
pletely different antenna patterns functions. This required designing
new coherent glitch rejection tests.

• More informed GRB astrophysics inputs resulted in a change in the
analyzed parameter space (time window, frequency range, gravitational
wave polarization assumption).

7.1 Data set

In the years 2009-2010, data were taken for the sixth LIGO science run (S6)
and for the second and third Virgo science runs (VSR2 and VSR3). During
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144 GRB analysis for S6/VSR2-3

Figure 7.1: Noise amplitude spectral density for “good days” in LIGO and
Virgo detectors in 2009-2010. For Virgo both a good spectrum during VSR2
and during VSR3 are shown.

that period the LIGO laboratory operated two 4 km detectors: H1 at the
Hanford observatory in the state of Washington, USA and L1 at the Liv-
ingston observatory in the state of Louisiana, USA; the Virgo collaboration
operated the Virgo detector (V1) in Cascina, Italy. The light time of flight
between the H1-L1, H1-V1 and L1-V1 pairs are respectively 10 ms, 27 ms
and 26 ms.

The joint LIGO-Virgo run was held from 2009 July 7 to 2010 October
20. For Virgo VSR2 started on 2009 July 7 and ended on 2010 January 8 to
allow an upgrade. The Fabry-Perot cavity mirrors suspension was changed
from steel wires to fused silica fibers. In the process a lower reflectivity for
the cavity input mirror was chosen, which modified the shape of the noise
spectrum in the shot noise dominated region at high frequency as can be seen
on figure 7.1. Virgo data taking resumed with VSR3 on 2010 August 11 and
ended on 2010 October 20. For LIGO the S6 run was split into four periods:
S6A from 2009 July 7 to 2009 September 1, S6B from 2009 September 26
to 2010 January 12, S6C from 2010 January 16 to 2010 June 26 and finally
S6D from 2010 June 26 to 2010 October 20. During the break between S6A
and S6B some seismic isolation of auxiliary mirrors was added and read-out
photo-diodes were changed, the break between S6B and S6C was dedicated
to glitch hunting, and finally the boundary between S6C and S6D was purely
administrative.

The sensitivity of the different detectors evolved during the different pe-
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7.1 Data set 145

Figure 7.2: Time evolution of the inspiral range for H1, L1 and V1 during
the joint 2009-2010 run. Each dot represents the average inspiral range
in a given day, considering only science data after CAT1 flagged times are
removed (see end of this section for definitions of data quality flags). The
red, green and blue dots are respectively the inspiral ranges for H1, L1 and
V1. The black dots mark the time of the analyzed GRBs listed in table B.1,
and the magenta vertical lines mark the end of the four LIGO science run
periods: S6A, S6B, S6C and S6D.

riods of the run. A standard figure of merit of the sensitivity is the inspiral
range which is the distance at which a 1.4 M⊙ neutron stars binary inspiral
yields an SNR = 8, where the SNR is marginalized uniformly over sky posi-
tion and inclination of the binary. Given that the magnitude of the spectrum
of an inspiral signal is decreasing with frequency as shown on figure 3.1, this
figure of merit is a good integrated measure of the sensitivity of a detector in
the few dozens to few hundred hertz frequency range. The time evolution of
the inspiral range in 2009-2010 for the three detectors is shown on figure 7.2.

The inspiral range is an integrated measure of noise amplitude spectral
density. Hence this figure of merit includes mostly the Gaussian part of the
noise and depends weakly on the amount of glitches present in the data. As
a figure of merit of the glitches present in the data we use the threshold
in reconstructed SNR at which the trigger rate above this threshold is kept
constant and equal to 1 per minute. The triggers were produced by the
same trigger generation procedure as the GRB search presented here, and is
a good representation of the glitches as seen by that analysis. This figure
of merit is shown on figure 7.3 for the three detectors along with the value
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146 GRB analysis for S6/VSR2-3

Figure 7.3: Time evolution of the reconstructed SNR threshold for glitches
with a false alarm rate of 1 per minute during the joint 2009-2010 run. Each
dot represents the SNR at which a gravitational wave signal would have a
false alarm rate of 1 per minute in a given detector on a given day. The single
detectors triggers are produced using the analysis described in section 7.2 on
single detector streams. This analysis is limited to the 64−500 Hz frequency
band. The times that are marked by either category 1 or 2 data quality flags
or during hardware injections are not used in this analysis (see end of this
section for definitions of data quality flags). The black solid line shows the
corresponding threshold for Gaussian noise. The magenta vertical lines mark
the end of the four LIGO science run periods: S6A, S6B, S6C and S6D.

expected for Gaussian noise. The ratio between the measured SNR threshold
and the Gaussian expectation shows how much sensitivity at the given false
alarm rate is lost due to the presence of glitches. For instance, for the simple
toy coincident GRB analysis of data from two interferometers discussed in
section 6.3, if we choose SNR thresholds which correspond to a 1 per minute
false alarm rate, and use an effective coincidence time window of 1 ms, the
coincidence rate is ≃ 3 × 10−7 Hz. This corresponds to a false alarm proba-
bility of 2 × 10−4 for the standard GRB analysis time window (4.12), and is
sufficiently low to be a reasonable gravitational wave candidate threshold.
For such an analysis the SNR thresholds shown on figure 7.3 mean that a
little less than a factor 2 in sensitivity is lost due to the presence of glitches
in the data for most parts of the run.

For H1 the run started with a typical range of ∼ 16 Mpc and increased
to ∼ 19 Mpc during the transition from S6B to S6C. L1 started with a lower
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7.1 Data set 147

Interferometer Amplitude Phase Time
H1 S6 20% 10° 20µs
L1 S6 20% 10° 20µs

V1 VSR2 5.5% 3° 8µs
V1 VSR3 7% 3° 8µs

Table 7.1: Calibration error budget for the LIGO and Virgo detectors in
2009-2010 [11, 111, 112, 113]. Values represent the estimated 1 sigma de-
viations in the calibration for the amplitude and phase response and also
the timing errors. This budget is valid at least in the 40 − 500 Hz frequency
range.

range of ∼ 12 Mpc, which increased to ∼ 15 Mpc at the transition between
S6B and S6C, and continued to improve during S6C up to ∼ 18 Mpc. From
the point of view of glitches, both for the Hanford and Livingston detectors,
the S6B period has been plagued with a large amount of glitches compared
to the rest of the run.

For Virgo the range during VSR2 improved from ∼ 7 Mpc to ∼ 9 Mpc with
a low rate of glitches during the summer 2009 which then increased as bad
weather in the end of Autumn caused lots of micro seismic up-conversion
through scattered light [106]. This increased amount of glitches is not vis-
ible on figure 7.3 as the seismic up-conversion in Virgo is well vetoed by
data quality flags. For VSR3 the range was low at ∼ 5 Mpc throughout the
run due to bad radius of curvature matching and astigmatism in the newly
installed mirrors. The run started with a very large glitch rate, but the sit-
uation improved during the first month as different problems with this new
configuration were fixed.

The raw photo-diode data are digitized at a sampling rate of 20000 Hz for
Virgo and 16384 Hz for LIGO. Science data are collected when an interferom-
eter reaches stable operation condition, which is decided by the operator(s)
and scientist(s) present on site. The raw data are calibrated based on the
response to continuous injection of sinusoidal lines into coils controlling the
test masses and regular periods of dedicated calibration studies [11]. The
budget of calibration errors is summarized in table 7.1. Sample strain noise
curves are shown on figure 7.1 for periods were each of the interferometer
had a good sensitivity.

The science run is broken into shorter time spans by periods of interfer-
ometer down time caused for instance by large environmental disturbances,
malfunctions or maintenance operations. Moreover, during the periods where
an interferometer is in a properly working condition, short periods of bad
behavior are marked by data quality flags which are among others based
on auxiliary instrumental and environmental channels [114]. These flags are
gathered in different categories depending on how serious and well under-
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148 GRB analysis for S6/VSR2-3

stood the problem is:

Category 1 flags (CAT1) mark periods of obvious problems (data miss-
ing, calibration failure, interferometer loosing control, ...) that would
severely affect power spectrum estimation, these data should not be
used.

Category 2 flags (CAT2) mark periods where large glitches of understood
origin are present (overflows, magnetic and laser glitches, strongly cou-
pled scattered light due to large seismic motion, ...), these data are
analyzed but triggers from these times should not be considered. Typ-
ically these flags remove ≤ 5 − 10% of the remaining science time.

Category 3 flags (CAT3) mark periods with glitches whose origin and/or
coupling is only partially understood or whose effect is limited (nearby
trains, signal processing overloads, moderate seismic motion). Triggers
from these times should be considered with caution. Typically these
flags remove an additional ≤ 10 − 15% of the remaining science time.

Hardware injections (CAT4) mark periods of gravitational wave signal
injections into the interferometers through coils that are controlling
the mirrors position. These injections are used among others to test
the safety of the different data quality flags, i.e. that the apparent
motion of mirrors which would be due to a real gravitational wavedoes
not trigger any flag.

7.2 Analysis pipeline description

In this section we will describe in detail the pipeline used to analyze S6 and
VSR2-3 data in association with GRBs circulated through GCN. A previous
version of this pipeline, called X-Pipeline [96], has been used for the analysis
of data in the previous LIGO and Virgo data run [85].

7.2.1 Network selection

The input to the analysis are gravitational wave data and information about
the GRB triggers. The calibrated gravitational wave data are read with a
sampling frequency of 16384 Hz for LIGO and 4096 Hz for Virgo1 in blocks
of 256 s. These data are low pass filtered with a cut-off at 506 Hz to prevent
anti-aliasing and down-sampled to 1024 Hz. Afterwards data are high-passed

1In Virgo photo-diode data are digitized at a sampling frequency of 20000 Hz, and
calibrated data are produced at the same sampling frequency. However, the calibrated
data are also produced at lower sampling frequencies of 16384 Hz and 4096 Hz. We use
the lowest sampling frequency available as only the frequency content below 500 Hz is of
interest to us.
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7.2 Analysis pipeline description 149

Figure 7.4: Shown is the amplitude spectral density of real Virgo data with
a 1 Hz resolution before and after the data conditioning procedure described
in the text. The blue line shows the amplitude spectral density of the data
collected by the detector. The green line shows the conditioned data with
an arbitrary overall rescaling. The high pass filter clearly removes the data
fluctuation below 30 Hz and the anti-aliasing filter above 500 Hz. The lack
of frequency content above 512 Hz is due to the data down-sampling. The
amplitude spectral density in between is flat with the exception of frequency
ranges that contained lines, these frequency ranges see their contribution
downgraded which is not detrimental to the analysis as the detector does
not have a good sensitivity at these frequencies.

filtered above 32 Hz to limit whitening filters transients, frequencies below
32 Hz are anyway not of interest as the sensitivity at low frequencies is very
poor. The power spectrum of the filtered data is estimated using the median-
mean average of the power in 1 second long FFTs from the whole block of
data. The block of data is whitened using this estimate saturated below
the high-pass filter cut-off and above the low-pass filter cut-off, and linearly
interpolated to obtain the needed 1/256 Hz frequency resolution. The goal
of the saturation is to prevent the whitening to remove the effect of the low
and high-pass filters. The effect of this whole data conditioning procedure
on the data amplitude spectral density is shown on figure 7.4. In order to
prevent the filter transients to corrupt gravitational wave event candidates,
the first and last 4 seconds of data are discarded from event production. As
a result a 256 s block of data covers only its inner 248 s.

In order to analyze a given search time window, called on-source window,
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150 GRB analysis for S6/VSR2-3

the desired time stretch is covered with 256 s blocks, starting 4 s before the
start of the time window, overlapped by 8 seconds and ending at least 4 s
after the end of the time window. As a result the whole on-source window
is covered with contiguous inner parts of blocks.

For each GRB trigger the γ-ray - gravitational wave coincidence window
(4.12) discussed in section 4.3.3 is considered. To analyze this time window
all detectors which have good quality data available at that time are used to
form a gravitational wave detector network. The good quality criteria are:

• Science data present and no CAT1 flags overlapping with the blocks
forming the on-source window. Otherwise the whitening procedure for
one block will be corrupted, e.g. by the presence of a very loud glitch.

• No CAT2 flags or hardware injections in a tight [−5,1] s window around
the GRB trigger time, where the arrival of gravitational waves is most
likely.

• Less than 5% of time removed by CAT2 flags and hardware injections
in the on-source window, so that a 95% detection efficiency point is not
ruled out by the data quality vetoes. That efficiency point is needed for
some parts of the automatic pipeline tuning described in section 7.2.3,
and for reasonable 90% confidence level exclusions.

All detectors with good quality data form the network of detectors available
for a given GRB, and only GRBs whose network contains at least two de-
tectors are analyzed. There is also an additional requirement which treats
the network as a whole:

• If the union of CAT2 flags and hardware injection times from all the
detectors in the network exceeds 5%, one detector from the network
has to be removed by hand to lower the total flagged time to be less
than 5%.

This has happened for only one case in the analyzed GRBs sample, for that
case only 2 detectors were forming the network, and that GRB has thus not
been analyzed.

Exceptionally, when gravitational wave data are not available in the 10
minutes before the GRB trigger time a reduced time window is used

TGW − TGRB = [−120,max (T90,60)] s. (7.1)

This window still covers most of the possible gravitational wave and γ-ray
emission scenarios. This reduced window is used only if it allows to include an
additional detector into the network and this addition improves significantly
the sensitivity of the pipeline. This trade-off removes the most extreme time
delay scenarios for the important gain in sensitivity, and was used in the
analysis of the previous LIGO-Virgo science run [85].
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7.2 Analysis pipeline description 151

7.2.2 Trigger generation

Following the discussion in chapter 5, we generate time-frequency maps using
FFT integration length for all powers of two between 1/128 Hz and 1/4 Hz.
This covers the parameter space of signals shorter than a few seconds and
with frequencies below 500 Hz, which is the relevant parameter space for
GRBs as discussed in section 3.3. Only time-frequency pixels with central
frequency above 64 Hz are considered, given the rapidly decreasing sensitivity
of LIGO detectors at low frequency (see figure 7.1).

For these time-frequency maps the circular detection statistic equal up to
a constant offset to half the statistic (5.53) is computed, a threshold at the
99 percentile value over the map is used to define 8-connected clusters2, and
the circular detection statistic is summed over each cluster. Time-frequency
maps of auxiliary statistics are also computed and summed over pixels in
each cluster. The auxiliary statistics used are:

• The robust detection statistic described in section 5.8, which includes a
non-Gaussian hypothesis in its construction and is robust against loud
glitches in a single detector.

• Whenever 3 detectors are available, the coherent and incoherent part
of the null energy (5.55). These are used to check that the three data
streams are coherently cancelling out following the constraints given
by the two independent polarizations of gravitational waves.

• The coherent and incoherent circular null energy (5.57), which are used
to check that the data streams are coherently cancelling out following
the assumption of circular polarization of gravitational waves.

• The coherent and incoherent parts of the circular energy (5.61), which
are used to check that the data streams are coherently adding up if
one assumes a circular polarization. Note that this test requires only
phase consistency between detectors, and not phase and amplitude
consistency as the null energy tests do.

Beside the GRB trigger time and duration used for constructing the
on-source window, a GRB observation by a satellite provides sky location
information. For detectors with poor spatial resolution, such as the GBM
on Fermi, a maximization over the sky location error box O needs to be
performed as discussed in section 5.9. The maximization is performed using
a discrete grid, which is designed to cover 95% of the sky location probability

2In practice this is quite close to the Bayesian derived optimal threshold for 4-connected
clusters of ∼ 2 log 4 ≃ 2.8 shown in equation (5.40). In both Gaussian noise and typical
interferometer data the 99 percentile value of (5.53) is ≃ 3.2 and the 98 percentile one is
≃ 2.8. More relevantly, for 8-connected clusters and real data the value of 2 log 6.5 ≃ 3.8 is
attained for approximately the 99.5 percentile.
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152 GRB analysis for S6/VSR2-3

distribution given by the γ-ray detector (see for instance equation (4.8) for
the GBM).

As shown by equation (5.88) clusters that are reconstructed in improba-
ble parts of the sky location error box are downgraded by the sky location
probability. For simplicity we use a Fisher sky location probability distri-
bution (4.6) with σ = (σ2

stat + σ
2
sys)

1/2 to compute this penalty factor. The
values of σ used for each GRB are given in table B.2 of appendix B. For the
GBM σsys = 7.5° is used as it provides a 95% coverage equal to the actual
core plus tail systematic error distribution shown on figure 4.3.

If the auxiliary statistic used for coherent consistency tests are computed
for a wrong sky location, the inappropriate time delays between detectors
will cause real signals to fail the tests. To determine the grid angular spacing
needed to avoid this issue a time tolerance of ttol = 0.5 ms is used, in practice
the obtained coverage has a lower timing error ≲ 0.2 ms in most cases, and
the timing error is below 0.4 ms over 90% of the error box in the worst case
scenario. This is a sufficiently low timing error for signals with frequency
below 500 Hz.

As described in section 5.10, among triggers coming from analyzing dif-
ferent sky positions in the grid and different FFT resolutions only the loudest
triggers are selected. Moreover for each 256 s block only the loudest 62 trig-
gers3 are kept to reduce the computing load of managing a large number
of uninteresting triggers. This is a zero level threshold on the trigger false
alarm rate for further processing.

Once produced, triggers are collected for each block forming the on-
source window, and then triggers marked by CAT2 flags or falling outside
the on-source window are discarded. Furthermore triggers which fail coherent
consistency tests that are based on the auxiliary statistic and described in
section 5.7 are also removed, and the remaining triggers are ranked according
to the detection statistic. The highest ranked trigger with detection statistic
Smax is a gravitational wave event candidate for that particular on-source
window.

7.2.3 Analysis Tuning

The goal of an analysis pipeline is to separate gravitational wave signals
from noise. To optimize a pipeline and estimate its efficiency both samples
of data containing only noise (background set) and samples containing signal
embedded in noise (injections set) need to be analyzed.

We have discussed in details how to produce samples of detector noise
in chapter 6. In particular for this GRB search data from the ±1.5 h around
the GRB trigger with the exclusion of the on-source time window are used
to construct background samples. 824 time slides with steps of 6 s are used

3Which correspond to a fixed rate of 0.25 Hz over the inner part of the block.
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7.2 Analysis pipeline description 153

Figure 7.5: Cumulative histogram of the loudest event in terms of the robust
detection statistic for a sample of ∼ 2500 background trials for the first
GRB listed in table B.1 of appendix B. The red line shows the distribution
before the coherent consistency cuts are applied and the black line after their
application. The cumulative distribution C(Smax) corresponds to the latter
but normalized to start at 1 instead of the number of trials.

and the same data quality criteria as for the on-source window are applied
to discard bad quality background samples. These background data samples
are processed in exactly the same way as the on-source data, which yields a
cumulative distribution C(Smax) of the loudest event detection statistic. An
example is shown on figure 7.5.

Gravitational wave injections

In order to produce samples of data with gravitational wave signal, wave-
forms with different parameters are added in software to the on-source data
and the same trigger production and processing is applied to these samples4.
The waveforms used are chosen to cover the analyzed waveform parameter
space and to be representative of our expectations for compact binary coa-
lescence and stellar collapse models. One should note that performing the
injections into the on-source data has the drawback of being biased by the

4One caveat is that for data with injections time-frequency maps and clusters are
produced only for the 16 s around the injection time in order to reduce the computational
load. However the data conditioning and whitening is still performed on the whole 256 s
block of data, and this optimization does not yield any significant changes in the recovered
triggers.
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154 GRB analysis for S6/VSR2-3

possible presence of a gravitational wave candidate in the data. However
this affects the efficiency at a given injection amplitude by at most a few
percents.

For the stellar collapse model of long GRBs we have seen in section 3.3.3
that no precise waveform is known. However the most likely scenario of
extra-galactically visible signal is produced by a slowly evolving rotating
quadrupolar mass distribution, which given the GRB observation has a ro-
tation axis inclination ≲ 5° with respect to the observer (see section 4.4).
Hence as a crude but simple waveform model we use elliptical sine-Gaussian
waveforms

(
h+(t + t0)
h×(t + t0)

) = A0 (
cos(2πf0t)(1 + cos2 ι)

sin(2πf0t)2 cos ι
) exp(−

(2πf0t)
2

2Q2
) , (7.2)

with Q = 9 and construct three sets of waveforms with central frequencies
f0: 100, 150 and 300 Hz. For each set the peak time t0 is distributed uni-
formly inside the on-source window, the inclination angle ι is distributed
uniformly in cos(ι) between 0° and 5°, and the amplitude factor A0 is chosen
such that hrss = 2.5 × 10−21 Hz−

1/2 for ι = 0. We will refer to these three
families by CSG100, CSG150 and CSG300, where “CSG” stands for circular
sine-Gaussian as the limitation on ι makes the waveform polarization nearly
circular. An example of the gravitational wave time series for a CSG100
waveform is shown on figure 7.6.

For the compact binary coalescence model of short GRBs good wave-
form models are available as discussed in section 3.3.2. We use non-spinning
second order restricted post-Newtonian inspiral waveforms (3.12) with fre-
quency evolution (3.20). Two waveform sets are constructed to represent the
double neutron star (NSNS) coalescence and the neutron star - black hole
(NSBH) coalescence scenarios.

NSNS For this set a nominal distance r of 10 Mpc is used. For both neutron
stars the mass follows a Gaussian distribution with a 1.4 M⊙ mean and
0.2 M⊙ standard deviation, also a lower bound of 0.9 M⊙ and an upper
bound of 3 M⊙ is applied to this distribution [115].

NSBH For this set a nominal distance r of 20 Mpc is used. Both the black
hole and neutron star mass follow Gaussian distributions with respec-
tively 10 ± 6 M⊙ and 1.4 ± 0.4 M⊙, and respectively limited to a mass
range [2, 25]M⊙ and [0.9, 3]M⊙. The wider distribution of the neu-
tron star mass is motivated by the lack of observation of NSBH binaries
and the wider mass distribution found in binary population synthesis
simulations [116].

For both sets the inclination angle is uniformly distributed in cos(ι) between
0° and 30°, which is representative of the measured jet opening angles for
short GRBs. The binary coalescence time t0 is distributed uniformly in the
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7.2 Analysis pipeline description 155

Figure 7.6: Example of circular sine-Gaussian gravitational waveform. The
h+(t) and h×(t) time series are shown for a central frequency f0 = 100 Hz, a
peak time t0 = 0.5 s, a quality factor Q = 9, an inclination angle ι = 0, and
the amplitude A0 chosen to yield hrss = 2.5 × 10−21 Hz−

1/2.

on-source window. An example of the gravitational wave time series for a
NSBH waveform is shown on figure 7.7.

For both the inspiral and elliptical sine-Gaussian rotator model the hrss
(amplitude) at the observer location is dependent on the inclination of the
system with respect to the observer. The gravitational wave emission energy
flux dependence for a rotator emission pattern is

F (ι) =
hrss(ι)

2

hrss(0)2
=

(2 cos ι)2 + (1 + cos2 ι)2

8
, (7.3)

which we normalized to the optimal face-on orientation. Hence relative to
the optimal orientation the hrss available to the observer for an inclined
system is rescaled by the F 1/2(ι) factor which is shown on figure 7.8. If one
compares a face-on and an edge-on system the received gravitational wave
amplitude is a factor ∼ 3 larger for the face-on system if all other aspects of
the systems are the same.

For the 5 sets of waveforms described above the sky position of the source
is distributed according to the given γ-ray detector sky localization distribu-
tion. In addition, the interferometers calibration errors reported in table 7.1
are taken into account by jittering the amplitude and time of the injected
waveform independently in each detector. The phase error is converted into
a timing error using the central frequency for sine-Gaussian waveforms, and
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156 GRB analysis for S6/VSR2-3

Figure 7.7: Example of the last 100 ms of an inspiral waveform. The h+(t)
and h×(t) time series are shown for a binary of masses m1 = 1.4 M⊙ and
m2 = 10 M⊙, an inclination angle ι = 0 and a distance of 10 Mpc.

Figure 7.8: Dependence of the observed gravitational wave amplitude in
terms of hrss as a function of the rotator or inspiral inclination angle with
respect to the observer. The relative amplitude factor F 1/2(ι) is given by
equation (7.3).
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7.2 Analysis pipeline description 157

using a 150 Hz frequency at which detectors are most sensitive for the broad-
band inspiral injections.

These injections are considered to be detected (or found) if within a
small time window5 around the injection time t0 a trigger is present with a
detection statistic above some threshold Sthreshold and passing all consistency
and data quality cuts.

In order to measure the detection efficiency as a function of amplitude
A (or equivalently distance) for each of the waveform sets, 600 injection
parameters are drawn from the distributions described above and for each
parameter set the injection is repeated with a range of scaling factors. We
construct the range of scaling factors using one very small scale which is
used for sanity checks of injection recovery and a set of 24 logarithmically
separated scales between ∼ 0.03 and 100:

A/A0 ∈ {0.001}∪{100/1.4k}k∈⟦0,24⟧ = {0.001, 0.0316, 0.0442, . . . , 71.477,100},
(7.4)

where A0 is the nominal amplitude. This ensures that detection efficiency
curves go from 0 to 100% efficiency.

Automatic tuning

The generic principle of automatic tuning is to select from a pool of possi-
ble analysis parameters R a set R which optimizes the analysis sensitivity,
according to some figure of merit.

The figure of merit which we use is the ε-efficiency injection amplitude
AεCL, that is the amplitude at which the detection efficiency at a confidence
level CL is equal to ε for a given waveform family. For instance, for ε = 50%
and CL = 99.7% this amplitude can be easily converted into the typical
distance at which a given source family can be detected at a 3-sigma level.

In order to construct this amplitude both background and injections sam-
ple sets are needed. Given the cumulative distribution of loudest event de-
tection statistic C(Smax) constructed from the background set, for a given
detection confidence level CL, the detection statistic threshold SCL is the so-
lution of 1−CL = C(SCL). This solution can be easily obtained by computing
the CL percentile of the Smax samples. This defines the injection detection
threshold Sthreshold = SCL and the corresponding detection efficiency curves
eCL(A). The amplitude AεCL is then the solution of eCL(AεCL) = ε and is
obtained by interpolating points in eCL(A). An example of an efficiency
curve for circular sine-Gaussian signals is shown on figure 7.9. Such effi-
ciency curves can also be drawn in terms of distance instead of amplitude as
shown on figure 7.10.

5In our analysis equal to ±100 ms for sine-Gaussian waveforms and [−5,0.1] s for in-
spiral waveforms. The larger window for inspiral waveforms takes into account their long
duration and extended emission before the coalescence time.
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158 GRB analysis for S6/VSR2-3

Figure 7.9: Example of a detection efficiency curve for circular sine-Gaussian
at 150 Hz. This example is the detection efficiency for the first GRB listed
in table B.1 of appendix B, and 300 injections are performed to estimate the
injection at each amplitude. In this example e99%(A) is shown as black dots
and the amplitude A is scaled in terms of hrss. The black line shows the
linear interpolation in log scale of the efficiency curve, and two amplitude
examples: 90% efficiency amplitude A90%

99%
(red square) and 50% efficiency

amplitude A50%
99%

(yellow square) are shown. The reason why the efficiency
curve saturates slightly below 100% is that for this particular example 1.5%
of the on-source time is vetoed by data quality flags.

If more than one family of waveforms is used, as is the case for this
search, a compound figure of merit which takes into account all the possible
signals needs to be formed. Given that a priori the injection amplitudes can-
not be meaningfully compared between different families6 we use a relative
compound figure of merit.

For each parameters set R and waveform family i we have described how
to construct the figure of merit AεCL(R, i). For each waveform set there is
an optimal parameters choice which yield a minimal detection amplitude

AεCL(optimal, i) = min
R∈R

AεCL(R, i). (7.5)

As the compound figure of merit we use the average relative distance from

6For instance the choice of 10 Mpc and 20 Mpc nominal distance for respectively NS-NS
and NS-BH do not correspond to the astrophysical distance expectations for each event
family, and these expectations are not determined well enough to be used.
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7.2 Analysis pipeline description 159

Figure 7.10: Detection efficiency curve for neutron star - neutron star (NSNS)
and neutron star - black hole (NSBH) inspiral waveform families. For both
families e99%(r) is shown in terms of distance and 300 injections with pa-
rameters distributed as described in the text are performed to estimate the
efficiency at each distance. In this example the results for the first GRB
listed in table B.1 of appendix B are used, but the reduction of detection
efficiency due to data quality flags is not shown for the sake of clarity.

this optimal value in the mean square sense

FOMε
CL(R) =∑

i

(
AεCL(R, i) −A

ε
CL(optimal, i)

AεCL(optimal, i)
)

2

, (7.6)

and the parameter set Rtuned for which the minimum is attained

FOMε
CL(Rtuned) = min

R∈R
FOMε

CL(R), (7.7)

is our parameter tuning choice.
The amplitude used to compute FOMε

CL(R) are also used to quote the
final sensitivity of the analysis pipeline. In order to avoid biasing these
quoted sensitivities, a statistically independent set of injection and back-
ground samples is used to tune the parameters choice Rtuned and to quote
the sensitivity.

Tunable parameters

For the automatic tuning we use the space of parameters R formed by:
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160 GRB analysis for S6/VSR2-3

• the choice between the circular detection statistic and the robust de-
tection statistic as the final ranking of events,

• the shape of the coherent consistency cut on the following energies:

– the circular energy,

– the circular null energy,

– the null energy if present.

The tuning is done in two steps according to two figures of merit: first
with FOM95%

99%(R) and then with FOM50%
99%(R). The main reason for using

the relatively low detection confidence level of 99% is computational. A
systematic extensive background estimation through the time slide method
is computationally expensive and that confidence level was determined to
be a good trade-off between reasonable tuning and limited computational
resources.

To draw a line separating signal from glitches in the incoherent versus
coherent energy plane the two parameter (r,α) family of functions

∣E − I ∣

(E + I)α
> r, (7.8)

discussed in section 5.7.2 is used. The parameter α characterizes the shape
of the line, and r the “strength” of the cut of that shape. The tuning of the
separation line is performed in two steps:

• In the first step the family of separation function is used with α = 1,
which for growing amplitudes rejects a fixed fraction of signals and an
increasing fraction of glitches. The purpose of this tuning is to robustly
reject all loud glitches. This fixed fraction of loud signal rejection is
the reason for tuning at the ε = 95% efficiency, otherwise the detection
efficiency curves could saturate far from the 100% efficiency point.

• In the second step of tuning the family of separation functions is used
with α = 0.8, while the separation function chosen in the first step is
applied. The choice of detection statistic in the first part of the tuning
is not taken into account. The purpose of this step is to reject the
remaining glitches while keeping the best detection sensitivity, here
characterized by the 50% detection efficiency point.

In both cases the threshold r to which the separation function is compared
to is optimized over a discrete grid of values

πgrid = {0,1,1.01,1.03,1.06,1.1,1.15,1.2,1.27,1.35,

1.45,1.57,1.71,1.9,2.1,2.4,2.7,3,3.3,3.6,4}. (7.9)
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7.2 Analysis pipeline description 161

Figure 7.11: Scatter plot of the incoherent circular null energy versus the
circular null energy, the decimal logarithm of the detection statistic (here the
robust one) is color coded. The data from the first GRB listed in table B.1 of
appendix B are used as an example. The background triggers are marked by
pluses and injected signals at the amplitude corresponding to a 90% efficiency
are shown as squares. The dashed magenta line show the tuned separation
line, with triggers below this line being rejected as glitches. This line is
formed by the common effect of two rejection lines (7.8) with (α, r) = (1,2.1)
selected by the first part of the tuning and (α, r) = (0.8,3.5) for the second
part of the tuning. The first part is dominating at high energies and is
parallel to the diagonal, the second part dominates at low energies and slowly
approaches the diagonal as the energies increase. The transition between
the two can be seen as a small kink at circular energy ∼ 200. Note that
the background triggers that are passing the coherent cuts in the lower left
corner of the plot are of no importance, as their detection statistic value is
very small.
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162 GRB analysis for S6/VSR2-3

Hence in total the tuning parameter space in each step is

R = {circular, robust}det stat × πcirculargrid × πcircular nullgrid × πnullgrid, (7.10)

and an optimal point in that grid is chosen for each step. An example of
the separation in the incoherent versus coherent energy plane is shown on
figure 7.11.

This automatic tuning procedure defines the shape of cuts on each co-
herent/incoherent energy couple and chooses one of the two detection statis-
tic. This tuning is done independently for each GRB trigger, as the result
strongly depends on the interferometers present in the network, the antenna
patterns for the particular sky location of the GRB and the rate of glitches
in each detector at that time. Note that this tuning procedure is safe, in the
sense that it does not look at triggers in the GRB on-source window, only at
background and signal samples. For this reason it is called closed-box tuning
in contrast with the final open-box results which look at the loudest event in
the on-source window.

7.2.4 Analysis optimization procedure

In the previous section we have discussed the details of the analysis used
for the GRB search in S6/VSR2-3 data and the automatic tuning procedure
used. There was actually a long development process that eventually lead
to these particular choices of detection statistics and coherent cuts shapes,
which we have considerably improved compared to the ones used for the
analysis of the previous data run [85].

The main goal of these changes was to improve the detection sensitivity
of the search, and we choose each incremental improvement by manually
repeating the automatic tuning idea on a larger scale. That is, by performing
the automatic tuning analysis on a dozen of GRBs with two different choices
of non-automatic analysis changes, and including an improvement whenever
it had a significant7 improvement in detection sensitivity for some GRBs in
the sample and no decrease in the sensitivity for any GRB in the sample. We
will not give the detailed results of all this development tests, which would
easily double the length of this thesis, but describe several features among
the most important.

The starting point for the construction of the robust detection statistic
was to realize that coherent consistency tests are needed because glitches
are not considered when constructing usual detection statistics. In its initial
version the noise was modeled by a Gaussian core with a Gaussian tail, the
resulting statistic was improving cases where detectors are very glitchy but it
also decreased the sensitivity for cases where data quality is good. Actually

7The typical threshold for “significant” improvement is > 10% change in the 50% effi-
ciency amplitude.
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7.2 Analysis pipeline description 163

the resulting statistic for the 2-detector case was quite close to taking the
minimum of the SNR in each detector, compared to the typical quadratic sum
of SNRs used in detection statistics based on the Gaussian noise hypothesis.

This motivated us to explore other kinds of SNR averages, like arithmetic,
geometric and harmonic mean, as an ad-hoc detection statistic. The geo-
metric mean

√
SNR1SNR2 (see equation (5.75)) proved to be quite effective,

and the idea of changing the exponents from fixed 1/2 to adaptive αi which
depends on the detector glitchiness (see equation (5.74)) followed naturally
from the definition of the geometric mean. In practice it is just a weighted
geometric average, and the particular weight choice procedure described in
section 5.8.3 was selected from several other procedures which proved to be
less effective. The interpretation of the robust static as a likelihood ratio
was done a posteriori once it has proved to be an effective statistic.

As another example, we introduced the two coherent tests which include
the circular polarization because frequently the two LIGO detectors and
Virgo are sensitive to independent polarizations for a given sky position.
That is the scalar product (F+

LIGOF
×
LIGO) ⋅ (F+

VirgoF
×
Virgo) is close to zero.

In that case gravitational wave strains as seen by the LIGO and the Virgo
detectors have a priori no reason to be coherent. This issue has affected only
a few GRBs in the 2005-2007 data run as in most cases at least two LIGO
detectors were present and the antenna patterns scalar product was far from
zero. However, for the 2009-2010 data set, frequently the gravitational wave
network is formed of one of the LIGO detectors from one side and the Virgo
detector from the other side, due to the good duty cycle of Virgo.

The coherent tests developed for the 2005-2007 run are completely inef-
ficient in that case. On the contrary for this analysis the circular polariza-
tion assumption introduces expected correlations between the different linear
projection seen by the detectors. This assumption allowed us to construct
the circular energy and null circular energy coherent tests based on the same
method as the previously used coherent tests. We remind the reader that this
assumption is astrophysically reasonable as shown by the thorough study of
the γ-ray and gravitational wave emission models as discussed in chapters 3
and 4.

As a final example, the two step procedure for tuning the shape of the
separation line in the incoherent versus coherent energy plane started from
the choice made in the previous data run to use a single step using a shape
very close to the family of function (7.8) with α = 0.5. This choice was very
effective for obtaining low gravitational wave amplitude upper limits from
non detection results. However, as it effectively fits the glitch distribution
uniformly over the detection statistic, very loud glitches are having the same
chances at passing the coherent consistency cut as quiet ones, which is disas-
trous for any potential detection claims. In order to prevent any loud glitch
from passing coherent consistency we tried first the simple case of using a
single step with α = 1 with the 50% efficiency amplitude as a figure of merit,
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164 GRB analysis for S6/VSR2-3

Figure 7.12: Comparison between the sensitivity of the analysis as used
during the 2005-2007 run and of the analysis described on the subset of ana-
lyzed GRBs that happened during S6A. As a figure of merit of the detection
sensitivity we use the 50% efficiency amplitude A50%

99%
(old) at 99% detection

confidence for the 2005-2007 analysis and A50%
99%

(new) for the current analysis.
The histogram shows [A50%

99%
(old) −A50%

99%
(new)]/A50%

99%
(new) for the circular

sine-Gaussian waveforms at 150 Hz.

which came with the unsightly drawback of some efficiency curves saturating
at ∼ 70%. Then we determined that α ≃ 0.8 is a good middle ground be-
tween the two solutions above, by testing a set of different values in [0.5, 1] .
Finally we included the additional first step with α = 1 to provide additional
robustness against loud glitches.

In all those developments the driving goal was to obtain an analysis which
systematically rejects all loud glitches, which means that any potential de-
tection candidate will not be masked by a long low probability background
tail. As a summary of the obtained gain in detection sensitivity the his-
togram on figure 7.12 shows how much sensitivity would have been lost if
the analysis from 2005-2007 was used on the current data. This comparison
does not show that the 2005-2007 analysis was poorly performed, but that
it is inadequate for the current data set. That is poorly sky localized GRB
triggers, gravitational wave networks with only non-aligned detectors and a
focus on gravitational wave detection.

Another part of the optimization concerns minimizing the computational
load of performing the analysis. The main challenge here was coming from
the large sky location error boxes provided by the GBM on Fermi. The
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7.3 Circular polarization assumption validation 165

analysis of such an error box is in principle a factor ∼ 100 slower than for
a well localized GRB, as the sky location error box to scan occupies a few
hundreds square degree on the sky and roughly one point per square degree
is needed to cover an error box. However we implemented several computa-
tional optimizations to reduce this factor to only ∼ 10.

Not only the computation time is limited but also the random access
memory available on a typical computing node is not sufficient to hold time-
frequency maps for the whole coincidence window (4.12), which is much
longer than the one used previously. We needed develop some book-keeping
to split the window into manageable blocks that are 256 s long, and con-
catenate the results from them. The implementation is flexible enough that
the analysis pipeline we describe here, is currently being adapted to perform
gravitational wave searches in association with nearby supernovae which re-
quire days long coincidence windows.

In this whole development process also many small technical issues were
found and fixed, such as improving the data whitening robustness when large
fluctuations at low frequency (∼ 10 Hz) are present or correcting the way data
quality flags are used.

7.3 Circular polarization assumption validation

In the analysis we just described, we use the assumption of circular polariza-
tion of the incomming gravitational waves to separate the signal from noise.
In section 4.4 we have shown by theoretical arguments that gravitational
waves coming from GRBs should be approximately circularly polarized, and
the effect of deviation from circularity is smaller or equal to the effects of
calibration errors. In this section we validate these theoretical arguments
by actually testing the sensitivity of the analysis. We focus here on the
model for which the theoretical argument is the most tenuous, the coales-
cence model of spinning compact objects, where for large jet opening angles
and black hole tilt angles the precession of the orbital plane can lead to oscil-
lation between linearly and circularly polarized gravitational wave emission.
To confirm that this borderline case is not an issue, we analyze a sample of
spinning inspiral signals.

For spinning inspiral injections we use the same mass distribution as
for the neutron star – black hole injections described in section 7.2.3. We
consider dimensionless spin magnitude to be uniformly distributed in the
[0, 0.98] range for black hole and in the [0, 0.4] range for neutron stars,
these values cover the astrophysically reasonable range as described in sec-
tion 3.3.2. We assume the neutron star spin direction to be uniformly dis-
tributed, but for black holes we consider two cases: a uniform distribution
of spin direction8, and a top-hat distribution with the black hole tilt angle

8That is a uniform distribution in cos(κ).
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166 GRB analysis for S6/VSR2-3

Figure 7.13: Detection efficiency curve e99%(A) for three distribution of
neutron star - black hole coalescence: uniform spin distribution (blue dashed
line), black hole tilt angle limited to below 60° (green dotted line) and non-
spinning objects (red solid line). See text for details on the distribution
parameters, these curves show the detection efficiency for the first GRB
listed in table B.1 of appendix B. For the three curves, A = 1 correspond to
a reference distance of 20 Mpc.

κ < 60° which we derived as being astrophysically reasonable and relatively
safe from the point of view of circular polarization. In both cases we assume
the initial total angular momentum inclination ζ to be uniformly distributed
within the typical jet opening angle of 30°. For a reminder on the different
angle definition see figure 4.5. The inspiral waveforms were generated using
the SpinTaylor generator from the LAL package [117] which implements the
waveform generation procedure described in [118] and has a 3.5PN order in
phase evolution.

The efficiency curve for both sets of waveforms are shown on figure 7.13.
The test case was chosen to represent an a priori bad scenario in which a
stringent test on circularity has been chosen by the automatic tuning. The
separation line used is shown on figure 7.11, and the two detectors in the
network for that case see independent linear polarizations. Compared to a
non-spinning inspiral signals the decrease in sensitivity is modest: the 50%
efficiency amplitude is higher by only 10%, the 90% efficiency amplitude is
higher by 20% and a few percent of spinning injections are always rejected by

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



7.4 Results 167

coherent cuts regardless of the amplitude. This is an acceptable loss consid-
ered the tremendous glitch rejection gain coming from coherent consistency
cuts. Moreover these efficiency curves convolute two effects: the rejection by
the circular polarization test and the modification of amplitude/frequency
evolution by the spin. For instance the SNR of the spinning injections is
lower by 2% in the median case and by 10% in the lower quartile, when
compared to non-spinning injections with the same parameters. Hence the
actual effect of the coherent test is even smaller than what is suggested by
the figure. More surprisingly, the limitation of the κ distribution does not
have any visible effect, which means that the astrophysical assumption on
the tilt angle κ given in section 4.4 are not actually necessary.

A similar study was performed for typical double neutron star coalescence
parameters, and as expected a completely negligible effect was observed.

7.4 Results

When LIGO and Virgo were taking data in 2009-2010 various γ-ray satellites
have reported on the detection of 407 GRBs, these include GRBs reported
through the GCN but also taken from GRB catalogs of the Fermi and Swift
spacecrafts. Out of these, 164 GRBs had sufficient good quality data avail-
able from at least two gravitational wave detectors, but we report results
for only 153 of them. The discarded GRBs come from cases of 2-detector
networks where the GRB sky location is near the blind spot of one of the
detectors, which means that the network is essentially containing only one
detector, and data cannot be cleaned by coherent consistency tests. The
rejection criterion is based on the behavior of the background distribution
after all quality and coherent consistency tests are applied. The time and
coordinates of the 153 GRBs along with the analysis results are given in
table B.1 of appendix B.

For a gravitational wave analysis in association with external triggers 4
main results can be derived. Two detection statements: either on a GRB
per GRB basis, or by taking all GRBs as a population. When the recovered
candidate events are not significant for both detection statements, exclusion
limits on GRB parameters or on the GRB population parameters can be set.
We discuss these 4 statements in the sections below.

7.4.1 Per GRB detection

The per GRB results are relatively simple to derive. The gravitational wave
candidate event is defined as the loudest trigger found in the on-source win-
dow which passes all quality and coherent consistency tests. The p-value,
that is the probability of the loudest event to be due to background fluctua-
tions only, can be easily computed from the cumulative background loudest
event statistic distribution C(Smax). If we note Son-source

max the statistic of the
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168 GRB analysis for S6/VSR2-3

Figure 7.14: Distribution of observed p-values for the analyzed GRBs listed
in table B.1 of appendix B. The red dot marks the largest deviation of the
low p-value tail from the uniform distribution null hypothesis. As a visual
guideline of the consistency with the null hypothesis the black line shows the
threshold for a 2-sigma detection with the binomial test (7.13) described in
section 7.4.3. Any point of the p-value distribution above and to the left of
this curve would be unusual.

loudest on-source event, its p-value is p = C(Son-source
max ). The p-value can

be reinterpreted in terms of Gaussian standard deviations: for p-values be-
low the 3-sigma level (p ≤ 2.7 × 10−3) the candidate event can be considered
as gravitational wave “evidence” and for p-values below the 5-sigma level
(p ≤ 5.7×10−7) as gravitational wave “detection”. One should note that these
per GRB p-values do not take into account the trial factor of analyzing mul-
tiple GRBs. As an example of trial factors if we set a 10−5 p-value threshold
on an experiment and repeat the experiment 100 times the probability of
obtaining an event below this p-value threshold is 10−3 and the trial fac-
tor is 100. We properly take this into account in the population detection
statement described in section 7.4.3.

To select significant events that deserve a more detailed followup we set
a priori a threshold of p-value at 1%. In only one case, GRB100917 which
happened on September 17 2010, this threshold was crossed as can be seen
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7.4 Results 169

Figure 7.15: Time frequency representation of the signal energy deviation
from the Gaussian hypothesis in the photo-diode read out of the output port
of the Virgo interferometer at the time of the event candidate of GRB100917.
The upper red blob of energy corresponds to the Virgo contribution to the
triple detector candidate event.

on figure 7.14 and found in table B.1 of appendix B. The event was found
in a network of three detectors H1, L1 and V1, and is formed by a trigger of
SNR ∼ 11 in V1 that spans the 60 − 80 Hz frequency range and is ∼ 200 ms
long. The data in H1 is slightly deviating from the Gaussian hypothesis with
SNR ∼ 4 and data in L1 are completely consistent with Gaussian noise. At
this time and for that particular sky location9 the L1 sensitivity is about a
factor 2 poorer than in H1 and V1 at the frequency band of the trigger, the
latter two being roughly equal. Hence the lack of signal in L1 is consistent
with the SNR found in H1, however the large discrepancy in SNR between
H1 and V1 is not consistent with a gravitational wave signal, unless the
calibration is erroneous by 2-sigma in H1 and V1 and in opposite directions
(see table 7.1). The trigger in V1 could be due to micro-seismic up-conversion
through scattered light which form a characteristic arch shape [106], with a
single bounce fringe at 30 Hz and a double bounce fringe 60 Hz visible in the
interferometer output photo-diodes at the time of the candidate shown on

9This GRB was well localized in the sky by Swift.
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170 GRB analysis for S6/VSR2-3

figure 7.15. However the two triggers corresponding to the arches are not well
aligned in time and it remains unclear whether the higher frequency trigger
in V1 forming the gravitational wave candidate is due to the up-conversion.
In conclusion, this event cannot be ruled out as being due to a gravitational
wave signal. However this is event is suspicious given that it is possibly
explained by seismic up-conversion in V1 and not well consistent between
H1 and V1. In any case this event is not statistically significant given the
number of analyzed GRBs as shown in section 7.4.3.

7.4.2 Per GRB exclusion

Whenever the loudest event found in the on-source window is not a detection
candidate a loudest event exclusion on some model can be drawn. As a source
model we assume each of the 5 waveform families described in section 7.2.3.
For the compact binary coalescence model the only free parameter left is the
distance, hence naturally the exclusion sets a lower limit on the distance. For
the sine-Gaussian model the only free parameter is the amplitude, however
it can be cast in terms of the easier to interpret distance using the hrss -
gravitational wave energy relation (1.44), which we recall here

h2
rss = ∫ (h2

+ + h
2
×)dt ≃

1

ω2
GW

10G

r2c3
EGW. (7.11)

For the distance exclusions considered here we use EGW = 10−2 M⊙c2 as
an energy reference, but the distance exclusion for other energies can be
easily obtained, given that changing the energy by a factor x will change the
distance exclusion by a factor

√
x.

For a given waveform model the loudest event statistic is used as the
detection threshold Sthreshold = Son-source

max defining the loudest event efficiency
curve eloudest which directly yields the exclusion limit. If the efficiency curve
eloudest(r) is drawn in terms of distance instead of amplitude, the distance
r90% at which the curve passes through the 90% efficiency point gives the
exclusion distance at 90% confidence level. This is the distance at which in
90% of cases the event corresponding to the signal would be louder that the
loudest event found in the data, and this exclusion is performed according
to frequentist statistics.

The detailed 90% exclusion distances on a per GRB basis are given in
table B.1 of appendix B. Summary histograms of the exclusion distance for
each waveform are given on figure 7.16 for circular sine-Gaussian waveforms
and on figure 7.17 for binary inspiral waveforms. The median and quartiles
of these distributions are given in table 7.2.

7.4.3 Population detection

The goal of the population detection is to combine the loudest event p-values
from the sample of analyzed GRBs to determine whether their distribution
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7.4 Results 171

Figure 7.16: Histograms across the sample of analyzed GRBs of the distance
exclusions at the 90% confidence level for the 3 families of circular sine-
Gaussian models considered. A standard siren gravitational wave emission
of EGW = 10−2 M⊙c2 is assumed. The lower exclusion distances for the
highest frequency family is well explained by the hrss - EGW relation (7.11)
and the sensitivity dependence as a function of frequency.

Figure 7.17: Histograms across the sample of analyzed GRBs of the distance
exclusions at the 90% confidence level for the 2 families of binary inspiral
models considered.
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172 GRB analysis for S6/VSR2-3

CSG100 CSG150 NSBH CSG300 NSNS
Quartile Exclusion distance (Mpc)
25% 9.8 10.5 9.6 5.3 4.3
50% (median) 15.5 17.3 15.7 7.1 6.9
75% 22.8 25.0 23.0 10.3 10.1

Table 7.2: Shown are the three quartiles of the 90% confidence distance
exclusions for the 5 considered signal models. The three quartiles are the
points where the cumulative distribution crosses respectively the 25%, 50%
and 75% point, in particular the second quartile is the median.

significantly deviates from the null hypothesis, which is p-values uniformly
distributed in [0,1]. This deviation might be either due to a single very loud
event (with a very small p-value) or to a population of several moderately
loud events.

For detecting this deviation from the null hypothesis a binomial dis-
tribution based test was used in recent searches for gravitational waves in
association with GRBs [109, 85]. The binomial test looks at the tail of low
p-values from the sample of N analyzed GRBs, that is the left most part of
the p-value distribution shown on figure 7.14. The length Ntail ≃ fN of the
tail is chosen as a fraction f of the total sample. A larger fraction allows
to look for a tail of more numerous weaker events at the price of loosing
sensitivity to the single loud event case. For the analysis presented here we
choose f = 5%.

The binomial test considers the Ntail lowest p-values sorted in increasing
order: p1, ..., pNtail . For each k ≤ Ntail the binomial probability of obtaining
k or more p-values below pk is

P≥k(pk) =∑
l≥k

(
N

l
)plk(1 − pk)

N−l. (7.12)

These probabilities are combined by just taking their minimum, that is the
largest deviation from the null hypothesis for each of the Ntail different tails
considered. In order to obtain a population detection statistic that grows
with the signal we use

Sbinomial = − log min
1≤k≤Ntail

P≥k(pk). (7.13)

The main drawback of the binomial test is that it does not include in
any way the difference in sensitivity for different GRBs in the sample. These
variations in sensitivity come from differences in antenna pattern factors and
noise levels. For a given GRB k the a priori probability for the presence of a
detectable signal from a family i is proportional to the volume to which the
search is sensitive Vk(i)∝ (1/A50%

99%
(i))3. For this reason we have developed

an enhancement of the binomial test to include this sensitivity information
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7.4 Results 173

and reduce the trial factor by effectively removing the GRBs for which the
available network of detectors is not sensitive at all. Given the absolute
detection prior is hard to quantify, we use the relative probability

Rk(i) =
Vk(i)

maxk Vk(i)
, (7.14)

and average it over the 5 waveform families considered

Rk =
1

5

5

∑
i=1

Rk(i), (7.15)

to account for our ignorance on the exact progenitor model. In total, a more
refined population detection statistic is

Spop det = − log min
1≤k≤Ntail

(
N

k
)∏
l≤k

pl
Rl
, (7.16)

where the fractions pl/Rl are arranged in increasing order, and the inclusion
of a low sensitivity GRB is penalized by an 1/Rl factor. As the fractions pl/Rl
can be greater than 1 we replaced the binomial probability by a binomial
trial factor times the product of the fractions, the motivation being that the
p-values in the tail are small, hence the approximation

P≥k(p) ≃ (
N

k
)pk (7.17)

is valid. Moreover this detection statistic includes not only the information
on the number of p-values in the tail but also some information about their
distribution.

In order to assess the difference in sensitivity between Spop det (7.16)
and Sbinomial (7.13), we performed a usual signal versus background sensitiv-
ity estimation. The background samples for N GRBs are simply generated
from a uniform distribution on [0,1], and the population detection threshold
is chosen at the 99.7 percentile (3-sigma level) of the obtained population
detection statistic background distribution. Whereas signal samples for N
GRBs are generated using the injections already used for the per GRB effi-
ciency curve estimation. These injections are performed on a discrete grid
of distances corresponding to the grid of amplitudes (7.4). To translate the
detection statistic of these injections into p-values we use a power-law fit to
the background distribution C(Smax) of each GRB and retrieve the p-value
corresponding to the detection statistic. To create one sample of p-values for
N GRBs with signal at fixed distance, we pick randomly for each GRB one
injection at that distance, and take the minimum of the retrieved p-value
and a random number drawn from a uniform distribution on [0,1]. This last
step corresponds to our choice of considering only the loudest event coming
from the analysis of a GRB time window, which might be a noise event.
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174 GRB analysis for S6/VSR2-3

Figure 7.18: Efficiency of detecting a population of CSG150 signals as a
function of distance for various population detection tests. Black curve –
the standard binomial test (7.13), red curve – the weighted binomial test
(7.16), green dashed curve – the standard binomial test but with f = 0.25,
magenta dotted curve – p-value of most significant event and blue dotted
curve – the Mann–Whitney U test. Note that the two binomial test curves
are almost exactly the same.

In principle this signal generation is not representative of a reasonable
signal population model as the signal for each GRB is at the same distance
and not uniformly distributed in a volume. However we verified that this
effect is not important by generating uniformly distributed in volume dis-
tances, and interpolating the detection statistic from the adjacent points in
the distance grid to obtain the detection statistic of an injection at that ran-
dom distance. With this cross-check study we obtained the same conclusions
as the ones presented below for the simpler signal population model.

The obtained efficiency curve for the sample of GRBs analyzed in S6
is shown on figure 7.18. Along with the standard binomial test (7.13) and
the weighted binomial test (7.16) three other tests are shown: the standard
binomial test with f = 0.25 which shows that the test sensitivity is not
strongly dependent on the choice of the fraction f , the loudest event p-
value and the more general purpose Mann-Whitney U test [119]. Three
of these tests have been used in previous searches for gravitational waves
associated with GRBs: the standard binomial test in the 2005-2007 search
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7.4 Results 175

for gravitational wave bursts [85], the binomial test with f = 0.25 in the
2003-2005 search for gravitational wave bursts [109] and the Mann-Whitney
U test in the 2005-2007 search for binary inspirals [110]. The loudest event p-
value, that is the smallest single GRB background probability, corresponds
to the binomial test with a Ntail = 1. The comparison shows that most
population detection tests are more sensitive than just looking at the most
significant GRB. The U test is a non-parametric test for deciding whether
two samples are drawn from two different distributions, one being uniformly
larger than the other. Here we compared the tested sample to a background
sample drawn from a uniform distribution. The poor sensitivity of the U
test is not very surprising given that this test is not specifically constructed
for the uniform distribution null hypothesis.

In principle the population detection statistic (7.16) could be further
improved by using absolute detection priors instead of relative ones, or as
a further step by deriving a likelihood ratio detection statistic. We have
derived such a likelihood ratio detection statistic but no significant gain
in sensitivity was obtained and the detection statistic became more model
depended. Given how uncertain the models are, we will use the weighted
binomial test (7.16) as a good trade-off between sensitivity and simplicity.

The p-value distribution from table B.1 of appendix B is shown on fig-
ure 7.14, and the 2-sigma threshold of the standard binomial test is shown
as a visual guideline of the consistency of the distribution with the uniform
null hypothesis. However for population detection the weighted binomial test
(7.16) is actually used, and the value of the detection statistic along with the
background distribution is shown on figure 7.19. The observed population of
p-value is consistent with the background distribution, and the probability
of being due to background is ≃ 25%. Hence no evidence for gravitational
waves is found in the analyzed sample of GRBs.

7.4.4 Population exclusion

Analogously to the per GRB case, the lack of significant signal motivates an
exclusion statement. As a population model we will assume that all GRBs are
standard sirens as discussed in section 7.4.2 and that the distance distribution
has two components: a fraction F of GRBs are uniformly distributed within
a volume of radius R, the rest being effectively located at infinity.

This population may seem very ad-hoc at first glance, but it can be
interpreted in several astrophysically relevant ways.

• There are indications of a local population of under-luminous long
GRBs whose rate density would be ∼ 1000 higher than the more com-
monly observed cosmological GRBs [83, 84]. The fraction F can be
interpreted as the fraction of analyzed GRBs being in that local popu-
lation. Note however that the existence of this population is based on
only a few outlying GRBs.
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176 GRB analysis for S6/VSR2-3

Figure 7.19: The black line shows the cumulative background distribution of
the weighted binomial test (7.16), the overlaid red cross is the point resulting
from the analyzed sample of GRBs. As can be read from this figure the
observed distribution of p-values has a ≃ 25% probability of being due to the
null hypothesis.

• More generally the local population can also be interpreted as the
fraction F of analyzed GRBs that emit a large energy in gravitational
waves. The remaining GRBs are then interpreted as having effectively
a negligible gravitational wave emission instead of an infinite distance.

• Most GRB distance distribution models predict a uniform rate density
at close distances and only at cosmological distances a more complex
shape. Given that gravitational wave detectors are not sensitive at
those large distances a simple information on the fraction of GRBs
within a distance where the distribution is uniform is sufficient to pa-
rameterize these models.

As in the per GRB case the starting point is the loudest event efficiency
curve eloudest(r). For a single GRB with our model of uniform distribution
within volume of radius R the marginalized loudest event efficiency is

E(R) = ∫

R

0
eloudest(r)

3r2dr
R3

. (7.18)

If we writeMk(R) = 1−Ek(R) the probability of missing the signal for GRB
k, the probability of missing the signal for all GRBs is simply

1 − EN(R) =MN(R) =
N

∏
k=1

Mk(R), (7.19)
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7.4 Results 177

Figure 7.20: The red solid curve shows the observed distribution of red-
shifts in Swift GRBs [120, 121]. The black solid curve shows the 90%
confidence level distribution exclusion limit drawn from the analyzed sam-
ple (7.20) of GRBs assuming a sine-Gaussian at 150 Hz signal model with
EGW = 10−2 M⊙c2, and the magenta line shows the 90% confidence level dis-
tribution exclusion after marginalizing over the number of close-by GRBs in
the analyzed sample (7.22). Finally, the blue dashed curve is the extrapo-
lation of the black curve to advanced LIGO/Virgo, here modeled by simply
rescaling the per GRB exclusion distance by a factor 10.

where E(R) is the population loudest event efficiency. That is the probability
that an event louder than the loudest event in any of the analyzed GRB on-
source window would be present due to the assumed GRB population. The
90% confidence level exclusion of the population model with radius R90%

and F = 1 is then the solution of EN(R) = 0.9.
This argument can be expanded to the case where only J out of N GRBs

are distributed uniformly within the radius R, the probability of missing
them is then

1 − EJ(R) =MJ(R) =
1

(
N
J
)

∑
{k1,... kJ}⊂⟦1,N⟧

J

∏
j=1

Mkj(R), (7.20)

where we average over our ignorance of which J GRBs from the whole sample
are close-by. For a model with a fraction F of GRBs in the local population
the number J of local GRBs in the sample is binomially distributed

p(J) = (
N

J
)F J(1 − F )

N−J , (7.21)
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178 GRB analysis for S6/VSR2-3

and by marginalizing over J we obtain the population efficiency

1 − EF (R) =
N

∑
J=0

[1 − EJ(R)]p(J) (7.22)

=
N

∑
J=0

F J(1 − F )
N−J

∑
{k1,... kJ}⊂⟦1,N⟧

J

∏
j=1

Mkj(R). (7.23)

The 90% confidence level exclusion of the population model with radius R90%

and fraction F is the solution of EF (R) = 0.9.
An example of the obtained fractional exclusion radii in terms of redshift

is shown on figure 7.20 along with a sample of 122 GRBs with measured
redshifts. To convert our exclusions which are on the luminosity distance
into redshift we use a simple flat ΛCDM cosmological evolution [122] with
Hubble’s constant H0 = 70 km s−1Mpc−1, a matter fraction Ωm = 0.3 and
dark energy fraction ΩΛ = 0.7. For this cosmological evolution the luminosity
distance - redshift relationship is

dL(z) =
c(1 + z)

H0
∫

z

0

dz′

[Ωm(1 + z′)3 +ΩΛ]
1/2
. (7.24)

Unsurprisingly the unmarginalized exclusion (7.20) and the marginalized
exclusion (7.22) are very similar for large fractions. Only in the low fraction
limit where the binomially distributed number of close-by GRBs can deviate
from its expectation value there is a significant deviation. The marginalized
exclusion requires that at least a few close-by GRB are expected so that in
at least 90% of cases there is one close-by GRB. One should note that these
exclusions are on the cumulative distribution under the assumption that the
distribution is uniform in volume up to the considered point in the radius vs
fraction plane.

As expected the obtained exclusion is quite far from the observed distri-
bution. However the extrapolation to advanced LIGO/Virgo shows a promis-
ing overlap between observed GRB redshift and gravitational wave exclusion
potential, which will result hopefully into a gravitational wave detection in
association with a GRB. This extrapolated exclusion can also be achieved
with current detectors if one assumes an overly optimistic EGW = 1 M⊙c2

standard siren energy, as increasing the energy by a factor 100 also increases
the exclusion distance by a factor 10.

7.5 Comparison with other gravitational wave searches

The search for gravitational wave bursts associated with GRBs we presented
here inserts into a broader picture of analyzes performed by the LIGO and
Virgo collaborations on the 2009-2010 gravitational wave data. In particular
some of these searches are also sensitive to gravitational waves potentially
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7.5 Comparison with other gravitational wave searches 179

emitted by GRB progenitors. We briefly present two main analyzes which
overlap with the one we presented here: the search for gravitational inspiral
waveforms associated with short GRBs, and the all-sky all-time search for
generic gravitational wave bursts which is broad in scope. We also discuss
how the search we presented here compares with those two searches as far as
detection of gravitational waves produced by GRB progenitors is concerned.
In particular we try to quantify the gain of the GRB triggered search with
respect to the all-sky search.

7.5.1 Dedicated inspiral search

As we have discussed in chapter 4 there are indications that the progenitors
of short GRBs are coalescences of compact objects where at least one of
the objects is a neutron star. The total mass of the objects involved in the
coalescence is thought to be lower than a few dozen solar masses, hence the
gravitational wave signal seen by current interferometers would be dominated
by the inspiral part as discussed in section 3.3.2.

The gravitational wave signal produced by an inspiral of compact objects
is well known, and matched filtering techniques that use a grid of templates
in the signal space can be used. These template based techniques are able
to recover inspiral signals more efficiently than the general short signals
techniques described in this chapter. For this reason a dedicated matched
filtered based analysis has been developed for search for inspiral gravitational
wave signals in association with short GRBs and short looking GRBs (the
distinction between short and long GRBs is not clear as we have seen on
figure 4.1).

This analysis has already been performed on the previous 2005-2007 joint
LIGO-Virgo run [110], but its application to the latest 2009-2010 run has not
been completed at the time of this thesis writing. Beside the specific signal
space, this search also uses a tight coincidence window [−5,1] s between the
GRB trigger and the coalescence time estimated from the gravitational wave
signal. This window is much shorter than the one we use, as there are
no complex precursors and stellar envelopes delaying the emission of γ-rays
compared to gravitational waves as in the case of stellar collapses, and the
propagation delay is small if one discards the most pessimistic predication
of the electromagnetic emission model (see section 4.3.1).

This search and the one presented here are complementary, as one is
broad in scope and open to a very wide range of progenitors, and the other
is concentrated on a specific emission model to which it is more sensitive. A
preliminary assessment was performed on a single GRB and analyzing the
same sample of injected inspiral signals, with the two analysis as used for
processing the 2009-20101 data. This preliminary comparison indicates that
the inspiral specific search is a factor ∼ 2 more sensitive for double neutron
star system than the more general search presented here. The sensitivity
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180 GRB analysis for S6/VSR2-3

Figure 7.21: Efficiency curve eall-sky
96%

(r) for ∼ 96% confidence detection by
the all-sky search of elliptical sine-Gaussian waveforms at central frequency
f0 = 150 Hz and quality factor Q = 9 [123]. This efficiency is marginalized
over the sky position and orientation of the rotator. To convert injected
signal amplitude into distance we assume that an energy EGW = 10−2 M⊙c2

is emitted by the rotator.

difference between the two is smaller for higher mass systems, as for higher
masses the signals are shorter and the distinction between them and detector
glitches performed using the signal shape knowledge is more difficult.

7.5.2 All-sky gravitational wave burst search

As in previous data sets [99, 100, 101] an all-sky all-time search for gravita-
tional wave bursts is being performed on the 2009-2010 data from the LIGO
and Virgo detectors. Such an analysis is among others sensitive to gravita-
tional wave bursts emitted by GRB progenitors, and contrarily to the GRB
triggered search the all-sky search is sensitive to the emission of gravitational
waves even if the gamma-ray emission cone does not include any of the γ-
ray spacecrafts. In section 4.6 we used a toy model to discuss how a search
triggered by GRB observations is relevant compared to an all-sky search.
In this section we perform a similar comparison based on actual results of
theses analysis on data from the LIGO-Virgo network.

Comparisons of analyzes are notoriously difficult, especially if their stated
goals are different. Here we limit the scope to only the S6C period as there
was only one network configuration (H1L1) available during that time. The
all-sky search has been performed by collaborators using the coherent Wave-
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7.5 Comparison with other gravitational wave searches 181

Burst pipeline [124, 101], and among others they performed an estimation
of the sensitivity to elliptical sine-Gaussian waveforms (7.2) with a central
frequency f0 = 150 Hz and a quality factor Q = 9. The inclination angles for
these waveform is distributed uniformly in cos(ι). The efficiency was com-
puted for a threshold on false alarm rate ∼ 8 × 10−9 Hz, which corresponds
to a false alarm probability ∼ 4 × 10−2 given the ∼ 50 days of observational
time available in S6C. The obtained efficiency curve eall-sky

96%
is shown on fig-

ure 7.21. Following the lines of the discussion in section 4.6 the effective
detection volume at 96% confidence for the all-sky search can be obtained
from the efficiency curve cast in terms of distance

V all-sky
eff = ∫

∞

0
eall-sky

96%
(r)4πr2dr. (7.25)

To make a fair comparison we need to estimate efficiency curves for the
externally triggered search presented in this chapter with a comparable de-
tection confidence as for the all-sky search. If we use a per GRB detection
confidence of 99.9%, we obtain with the 48 GRBs analyzed during S6C a
detection confidence of about 95% when taking account the trial factor of
analyzing multiple GRBs. This detection confidence level is comparable to
the one used for the all-sky search. For each GRB we can compute the
effective detection volume to CSG150 waveforms

V trig
eff (circular) = ∫

∞

0
etrig

99.9%
(r)4πr2dr, (7.26)

these waveforms correspond to the particular case of ι = 0 for the elliptical
sine-Gaussian waveforms used in the all-sky search. For inclination angles ι
between 0° and 30° the elliptical sine-Gaussian waveforms stay approximately
circularly polarized and are only rescaled in amplitude by the inclination
dependent factor F 1/2(ι) shown on figure 7.8. Hence as in section 4.6 we
can assume that the effective detection volume to GRB progenitors with
rotator gravitational wave emission and gamma-ray emission opening angle
θc is simply a rescaling of the effective detection volume for face-on rotators.
Thus we obtain

V trig
eff (θc) = I(θc)V

trig
eff (circular) (7.27)

where as in section 4.6 we use the integral

I(θc) = ∫
θc

0
F (ι)3/2 sin ιdι. (7.28)

To obtain the effective detection volume averaged over the source sky
position we take the average of the effective detection volumes from the
sample of 48 GRBs analyzed in S6C. This is not a complete sampling of
the distribution of gravitational wave interferometer sensitivity as a function
of sky position. To estimate the statistical error of the effective volume
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182 GRB analysis for S6/VSR2-3

Figure 7.22: Histograms of the effective detection volume which is aver-
aged over 48 random sky position relative to the effective detection volume
when averaged over a sample of 5 × 105 sky positions. The blue histogram
shows the relative effective volume distribution when the quadratic detection
statistic (7.29) is used, and the red histogram shows the relative effective vol-
ume distribution when the minimum detection statistic (7.30) is used. This
Monte Carlo simulation has been performed using 104 trials and the antenna
patterns of the H1 and L1 detectors.

computation due to this limited sample of sky positions we perform a Monte
Carlo simulation.

For a circularly polarized signal the SNR in a single detector depends on
antenna pattern functions as SNR2 ∝ (F +)2 + (F×)2. For the two detector
case which is of interest here the exact dependence of the analysis sensitiv-
ity is more complicated. To estimate the effect on the effective volume we
consider two simplified cases: an analysis which uses the quadratic sum of
SNRs as a detection statistic, and an analysis which uses the minimum of
the two SNRs as a detection statistic. In the first case the dependence of the
detection statistic on antenna patterns is

Squadratic ∝ [(F+
H1)

2
+ (F ×

H1)
2
+ (F+

L1)
2
+ (F×

L1)
2]

1/2
, (7.29)

and in the second case it is

Sminimum ∝ min [(F+
H1)

2
+ (F ×

H1)
2, (F+

L1)
2
+ (F ×

L1)
2]

1/2
. (7.30)

In both cases the detection statistic is proportional to the gravitational
wave amplitude. Hence the effective detection volume for a given sky location
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7.5 Comparison with other gravitational wave searches 183

Figure 7.23: Ratio of expected number of detections between the GRB trig-
gered search and the all-sky search in the S6C period as a function of the
assumed GRB jet opening angle. The dashed black line shows the fraction
I(θc)/I(π/2) of the number of expected detections for the all-sky search
which have an progenitor inclination angle lower than the opening angle on
the x-axis. The difference between the two curves shows the fraction of ex-
pected additional detection by the GRB triggered search relative to the total
number of expected detections by the all-sky search.

will scale as the cube of the antenna patterns dependence given in either
equation (7.29) or (7.30). The scatter of the average effective volume coming
from drawing 48 random sky locations is shown on figure 7.22. The width of
the distribution depends weakly on which of the two statistic (7.29) or (7.30)
is considered, and we conclude that in the comparison performed below a
statistical error of ∼ 20% is due to considering only the sky locations of the
48 GRBs analyzed during S6C.

As a result the ratio of the expected numbers of detections between the
two searches is

R(θc) =
Ntrig

Nall-sky
= I(θc)

V trig
eff (circular)

V all-sky
eff

. (7.31)

The value of this ratio for θc < 30° is shown on figure 7.23. The typical
measured γ-ray emission opening angles are in the 5 − 30° range, thus this
comparison shows that the GRB triggered search should detect between
0.1 and 6 times the number of gravitational wave event coming from GRB
progenitors detected by the all-sky search. The reference curve shows the
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184 GRB analysis for S6/VSR2-3

fraction of events detected by the all-sky search that have an inclination
angle smaller than the γ-ray emission opening angle, and this reference is
much lower than the obtained curve. Hence most of the gravitational wave
events found by the GRB triggered search should be new detections that
would not be found by the all-sky search.

One should note that in this discussion we assumed, as in section 4.6,
that all GRBs whose progenitors are within the horizon of gravitational wave
detectors are detected by γ-ray spacecrafts. This assumption is not valid if
only GRB observation from Fermi and Swift are considered, as their fields
of view do not cover the whole sky. Hence, in practice one should divide the
expected detection ratio (7.31) by a factor ∼ 1.4 to account for GRBs that are
missed by both Fermi and Swift. However, this factor should be recovered by
analyzing GRBs found by the Interplanetary Network of spacecrafts which
has a roughly isotropic sensitivity.

In conclusion the GRB triggered search is relevant compared to the all-
sky search: in the optimistic case it may provide the majority of gravitational
wave detections due to GRB progenitors; and in the pessimistic case it may
provide the rare but rich in astrophysical interpretations joint observation
of γ-rays and gravitational waves of a GRB progenitor, that would most
probably be missed otherwise.
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Conclusion

We have performed a search for gravitational wave bursts associated with
gamma-ray bursts (GRB) in the 2009-2010 data (S6/VSR2-3) from the LIGO
and Virgo gravitational wave interferometric detectors. The main content
of this thesis is the description and results of this analysis. Similar analyzes
had been previously performed by the two collaborations on earlier data sets
of LIGO and Virgo, but we have improved all aspects of this search with
up-to-date astrophysical inputs and goals.

The first change in paradigm concerns the astrophysical priors, mainly
the question of coincidence time window and gravitational waveform models.

On the question of relative time arrivals, only contemporaneous emis-
sion or γ-ray emission delayed by at most 100 s by the stellar envelope had
been previously considered. We showed with a careful study of the scenarios
leading to GRB precursors that a time coincidence window larger by about
a factor 5 is actually needed to include all possible cases. To account for
this larger coincidence window we developed some flexible segment book-
keeping. As a result our analysis pipeline is currently being adapted to per-
form a search for gravitational waves in association with optically detected
supernovae which requires up to days long time coincidence windows.

On the question of gravitational waveform models, we performed a thor-
ough study of gravitational wave emission scenarios to confirm that any
significant emission is approximately circularly polarized. This allowed us to
use the circular polarization of gravitational waves associated with GRBs as
a search constraint, and to develop new coherent tests which were necessary
for analyzing the new gravitational wave interferometer network configura-
tions available in the 2009-2010 data set. Previously, the circular polarization
had only been used for the interpretation of results.

The second change in paradigm concerns the search goals. Although
the intent of every previous search had been the detection of gravitational
waves, the analysis tuning had been geared towards obtaining the best upper
limits from null results. On the contrary we have focused on optimizing the
analysis towards detection. We changed the figure of merits for the coherent
cuts tuning, developed a detection statistic which is robust against noise

te
l-0

06
10

30
2,

 v
er

si
on

 1
 - 

21
 J

ul
 2

01
1



186 Conclusion

transients, and expanded the background estimation.
As a side project related to the focus on gravitational wave detection we

have explored the limitations of the time slide method of background estima-
tion, a crucial issue when ascertaining the significance of a gravitational wave
candidate. These results should be useful for any gravitational wave tran-
sients searches and have already been used when estimating the background
of an event candidate coming from the blind gravitational wave injection
challenge performed by the collaboration in the 2009-2010 data taking run.

Some improvements were also necessary in the collecting of results across
the GRB sample. We improved the population detection statistic to increase
the detection sensitivity but also to lessen the arbitrariness of removing some
GRBs from the sample, such as cases where only one gravitational wave de-
tector is available. In total we have searched for gravitational waves associ-
ated with 153 GRBs in the S6/VSR2-3 data set. We found no gravitational
wave candidate for any of the 153 GRBs, and the obtained loudest events are
consistent with the expected background distribution in this GRB sample.

From this null result we placed a median exclusion on the GRB pro-
genitor distance between 7 Mpc and 17 Mpc depending on which model is
considered. A completely novel aspect that we have developed is the GRB
population models exclusion, which finally closes the loop on what we can
learn from a non detection of gravitational waves in association with a GRB
sample. We were able to exclude GRB distance distributions which are a fac-
tor 10 closer than the one currently observed through redshift measurements.
Hence the factor 10 improvement in sensitivity expected for advanced LIGO
and Virgo should probably lead to first detections of gravitational waves as-
sociated with GRBs.

The careful checks of the analysis procedure we performed and the change
in focus give us confidence that the analysis and detection procedure will be
ready when advanced LIGO and Virgo start taking data anew around 2015,
with much improved sensitivity and likely occurrence of detectable gravita-
tional waves associated with GRBs. We should note that in this readiness
preparation we have participated during the 2009-2010 run in an effort lead
by collaborators to automatically perform the analysis we described here as
GRBs are reported through GCN. The typical latency was of ≲ 24 hours after
the GRB trigger time for the complete analysis, which included the careful
human check of the analysis results. This latency is planned to be reduced
in the future so that the result of the gravitational wave data analysis can
be used to motivate extensive followup by astronomers, for instance in cases
of gravitational wave candidates or relevant distance exclusions. Hopefully,
such a program will yield a rich multi-messenger observation of GRB pro-
genitors, and a deep understanding of their nature.

But before this new field of gravitational wave astronomy can be opened
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187

a tremendous amount of work will be necessary over the next few years to
construct, commission and operate the required gravitational wave detectors.
A good understanding of these detectors will be a stepping-stone for a better
understanding of violent phenomenas in the local universe.
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Appendix A

Background estimation
computations

In this appendix we give the details of the more cumbersome computations
which are used in chapter 6.

A.1 Two-detector integral

To compute the integral

M2 = ∫
x1
⋯∫

xN
∫
y1
⋯∫

yN
[

1

R
∑
π
∑
k

1(xk < p)1(yπ(k) < q)]

2

= ∫ ⋯∫
1

R2∑
π1

∑
π2

∑
k

∑
l

1(xk < p)1(xl < p)1(yπ1(k) < q)1(yπ2(l) < q),

(A.1)

we move the sums in front of the integrals. When k ≠ l, the integrals on
xk and xl are independent, and the integration over x1, . . . , xN gives a p2

contribution. Otherwise the integration gives a p contribution. Analogously
for the y variables we get q2 or q depending on whether π1(k) ≠ π2(l) or not.

Thus we get four types of integrals

integral × number of such integrals

k = l,π−1
2 ○ π1(k) = l

1

R2
pq ×NR (A.2a)

k ≠ l,π−1
2 ○ π1(k) = l

1

R2
p2q ×NR(R − 1) (A.2b)

k = l,π−1
2 ○ π1(k) ≠ l

1

R2
pq2

×NR(R − 1) (A.2c)

k ≠ l,π−1
2 ○ π1(k) ≠ l

1

R2
p2q2

×N [R(R − 1)(N − 2) +R(N − 1)]

(A.2d)
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190 Background estimation computations

Here we used the fact that the composition of two circular permutation is
a circular permutation, and that the only circular permutation with a fixed
point is the identity.

The details of the combinatorics are as follows.

• k = l, π−1
2 ○ π1(k) = l : There are N different k values. For each of

them there is only one l that is equal to k. Here π−1
2 ○ π1 is a circular

permutation with a fixed point, i.e. the identity. There are R different
π1, and for each of them only π2 = π1 gives the identity.

• k ≠ l, π−1
2 ○ π1(k) = l : There are N different k values. For every pair

π1 ≠ π2 we get π−1
1 ○ π2(k) ≠ k. And the choice of this pair determines

a unique l that is not equal to k. There are R(R − 1) such pairs.

• k = l, π−1
2 ○ π1(k) ≠ l : There are N different k values. The value of l

is determined by the equality k = l. And there are R(R − 1) pairs of
π1, π2 such that π−1

1 ○ π2(k) ≠ k.

• k ≠ l, π−1
2 ○π1(k) ≠ l : There are N different k values. In the case where

π1 ≠ π2, we need that l ≠ k and l ≠ π−1
2 ○ π1(k), there are N − 2 such l.

In the case where π1 = π2 we get k = π−1
2 ○ π1(k), so there is only one

inequality on l, and there are N − 1 possible l.

By summing the four terms above and subtracting Mean2 we obtain

Var =
1

R
Npq [1 + p(R − 1) + q(R − 1) + pq((R − 1)(N − 2) + (N − 1))] − (Npq)2

(A.3)

= Npq [
1

R
+ p + q +

pq − (p + q)

R
− 2pq] (A.4)

≃ Npq [
1

R
+ p + q] , (A.5)

A.2 Three-detector integral

We want to compute the integral

M2 = ∫ ⋯∫
1

R2∑
π1

∑
π2

∑
k

∑
l

[XYX ′Y ′
+XZX ′Z ′

+ Y ZY ′Z ′
+ 4XY ZX ′Y ′Z ′

+ 2XYX ′Z ′
+ 2XY Y ′Z ′

+2XZY ′Z ′
− 4XYX ′Y ′Z ′

− 4XZX ′Y ′Z ′
− 4Y ZX ′Y ′Z ′] , (A.6)

where the ′ denotes whether the hidden variables are π1, k or π2, l.
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A.3 “OR” case for D detectors 191

Similarly to A.1 we have here eight types of integrals.

X Y Z number of such integrals
k = l, π−1

2 ○ π1(k) = l, π2 ○ π
−1
1 (k) = l, NR

k = l, π−1
2 ○ π1(k) = l, π2 ○ π

−1
1 (k) ≠ l, 0

k = l, π−1
2 ○ π1(k) ≠ l, π2 ○ π

−1
1 (k) = l, 0

k = l, π−1
2 ○ π1(k) ≠ l, π2 ○ π

−1
1 (k) ≠ l, NR(R − 1)

k ≠ l, π−1
2 ○ π1(k) = l, π2 ○ π

−1
1 (k) = l, 0

k ≠ l, π−1
2 ○ π1(k) = l, π2 ○ π

−1
1 (k) ≠ l, NR(R − 1)

k ≠ l, π−1
2 ○ π1(k) ≠ l, π2 ○ π

−1
1 (k) = l, NR(R − 1)

k ≠ l, π−1
2 ○ π1(k) ≠ l, π2 ○ π

−1
1 (k) ≠ l, NR [(R − 1)(N − 3) + (N − 1)]

In these combinatoric computations we need to assume that all translations
are smaller than N/4, to ensure that π−1

2 ○ π1 ○ π
−1
2 ○ π1(k) = k ⇒ π1 = π2.

This assumption is indeed reasonable, and the final result would not be
significantly different without it.

The final result is

M2 =
N

R
{(pq + pr + qr − 2pqr)

+ (R − 1) [pq(p + q + pq) + pr(p + r + pr) + qr(q + r + qr) + 6pqr

−4pqr(p + q + r)]+ [(R − 1)(N − 3) + (N − 1)] (pq + pr + qr − 2pqr)2
},

(A.7)

A.3 “OR” case for D detectors

Using the same heuristic as in section 6.1.2 and 6.1.3 we compute the variance
of the time slide estimation method for D detectors in the “OR” case. This
heuristic yielded the same results as the exact computation for the 2 and 3
detector case, thus we may expect it to stay true in the general case.

As in equation (6.16), the variance is the sum of the normal Poisson
variance

VarPoiss = N
⎛

⎝

D

∑
j=1

j−1

∑
i=1

pipj
⎞

⎠

1

R
, (A.8)

and the variance due to time slides.
The estimate of the mean rate is

Mean = N

⎡
⎢
⎢
⎢
⎢
⎣

D

∑
j=1

j−1

∑
i=1

(pi + δpi) (pj + δpj)

⎤
⎥
⎥
⎥
⎥
⎦

(A.9)

≃ N

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D

∑
j=1

j−1

∑
i=1

pipj +
D

∑
j=1

δpj

⎛
⎜
⎜
⎝

D

∑
i=1
i≠j

pi

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.10)
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192 Background estimation computations

which leads to a variance due to multiple reuse of the data (assuming ⟨δp2
i ⟩ =

pi
N )

VarSlides/N =
D

∑
j=1

pj

⎛
⎜
⎜
⎝

D

∑
i=1
i≠j

pi

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

D

∑
k=1
k≠j

pk

⎞
⎟
⎟
⎠

(A.11)

=

⎛
⎜
⎜
⎝

D

∑
j=1

D

∑
i=1
i≠j

pipj

⎞
⎟
⎟
⎠

(
D

∑
k=1

pk) −
D

∑
j=1

p2
j

D

∑
i=1
i≠j

pi (A.12)

=
⎛

⎝

D

∑
j=1

j−1

∑
i=1

pipj
⎞

⎠
(
D

∑
k=1

pk) +
1

2

D

∑
j=1

D

∑
i=1
i≠j

pipj

⎛
⎜
⎜
⎝

pj + pi +
D

∑
k=1

k≠i, k≠j

pk

⎞
⎟
⎟
⎠

−
D

∑
j=1

D

∑
i=1
i≠j

pip
2
j (A.13)

=
⎛

⎝

D

∑
j=1

j−1

∑
i=1

pipj
⎞

⎠
(
D

∑
k=1

pk) +
1

2

D

∑
j=1

D

∑
i=1
i≠j

D

∑
k=1

k≠i, k≠j

pipjpk. (A.14)

This general formula (A.14) is correctly giving back the extra terms in equa-
tions (6.8) and (6.16) for respectively the 2 and 3 detector case.

A.4 Monte Carlo for all-sky background estimation

In section 6.1 we discuss the limitation in the background estimation coming
from Poisson distribution of triggers in each detector. However as noted be-
fore, this limitation is not valid when the same data are used for background
estimation and for the final zero lag results, which is the case for instance
of an all-sky all-time search. The reason is that the number of single de-
tector triggers is exactly the same in the zero lag and the time slides used
for background estimation, and their is no statistical fluctuations in their
number.

As a check of this statement with performed a Monte Carlo simulation in
the same condition as the realistic case of section 6.1.4, but with one major
difference. For each trial we generate a fixed number of triggers N1 = α1T
and N2 = α2T distributed uniformly in time for each detector, instead of
generating Poisson distributed triggers with rates α1 and α2. The equivalent
of figure 6.3 for this Monte Carlo simulation is shown on figure A.1. One
can clearly see that in this case the Monte Carlo variance is following the
standard deviation coming from the naive variance prediction (6.12), which
confirms that in the case of background estimation as used for an all-sky
search the single detector Poisson rate error is not a limitation.
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A.5 Estimation error variance computation 193

Figure A.1: The cross markers are the standard deviations of the time slide
estimator F̂A taken from a Monte Carlo simulation, the dashed green line is
the standard deviation coming from the exact theoretical formula (6.11), the
dotted red line is coming from the naive formula (6.12), and the solid cyan
line is the expected false alarm rate. The parameters used are: N1 = 2× 103,
α2 = 5 × 102, ∆t = 20 ms, and a T = 107 s. 500 trials are used for the Monte
Carlo simulations.

A.5 Estimation error variance computation

We want to compute the variance of

αErr =
1

RP

P

∑
i=1
∑
π

αi1α
π(i)
2 ∆t −

1

P

P

∑
i=1

αi1α
i
2∆t. (A.15)

Its mean being zero, the variance is equal to the second moment

M2 = ⟨
∆t2

P 2 ∑
i
∑
j

[∑
π1

∑
π2

1

R2
αi1α

j
1α

π(i)
2 α

π(j)
2 −

2

R
∑
π

αi1α
π(i)
2 αj1α

j
2 + α

i
1α

i
2α

j
1α

j
2]⟩ .

(A.16)
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194 Background estimation computations

Using a method similar to the one used in A.1 and A.2 we obtain the mean
values of the three terms in the equation above

∆t2

P 2
{
P

R
α2

1α
2
2a

′
1

2
a′2

2
+
P

R
(R − 1)α2

1α
2
2(a

′
1

2
+ a′2

2
) (A.17)

+
P

R
[(R − 1)(P − 2) + (P − 1)]α2

1α
2
2} ,

−
∆t2

P 2

2

R
[PRα2

1α
2
2(a

′
1

2
+ a′2

2
) + P (P − 2)Rα2

1α
2
2] , (A.18)

∆t2

P 2
[P (P − 1)α2

1α
2
2 + Pα

2
1α

2
2a

′
1

2
a′2

2
] , (A.19)

where a′1
2
= 1 + a2

1 and a′2
2
= 1 + a2

2. After collecting the terms we obtain

M2 =
∆t2

P 2
[
P

R
α2

1α
2
2(a

′
1

2
a′2

2
− a′1

2
− a′2

2
+ 1) + α2

1α
2
2P (a′1

2
a′2

2
− a′1

2
− a′2

2
+ 1)]

(A.20)

=
∆t2

P
α2

1α
2
2 (1 +

1

R
)a2

1a
2
2. (A.21)
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Appendix B

Detailed S6/VSR2-3 GRB
analysis results

In this appendix we give the details of the sample of 153 GRBs analyzed
by the search for gravitational wave bursts associated with GRBs in the
S6/VSR2-3 data which is discussed in chapter 7.

Table B.1 gives the details and limits on associated gravitational wave
emission for each of the studied GRBs. The first four columns are: the GRB
data in YYMMDD format, the trigger time, and sky position (right ascension
and declination). The next two columns are the analysis parameters: the
gravitational wave detector network used and the analyzed time window.
The remaining columns display the result of the search. The p-value of
the loudest on-source event and the number of background trials used to
estimate this p-value. A p-value of “–” indicates that no event survived all
the consistency cuts. The 90% confidence lower limits on the distance to the
GRB for different waveform models are given. For the black hole - neutron
star and neutron star - neutron star inspirals the distribution of parameters
discussed in section 7.2.3 is assumed. For the three sets of circular sine-
Gaussian a standard siren energy emission of EGW = 10−2 M⊙c2 is assumed.

Table B.2 gives some additional details about the analyzed sample of
GRBs. The first two columns are: the GRB date in YYMMDD format
and the trigger time. The columns three through five give the magnitude
of the antenna patterns functions (2.9) for each detector characterized by
the value of

√
F 2
+ + F

2
× for the sky location of the GRB, a dash “–” means

that the given detector was not used in the analysis. The sixth column give
the 1-sigma sky location probability coverage radius as used in the analysis,
this radius includes both statistical and systematic errors of the given γ-ray
detector. The remaining columns provide additional information about the
GRB trigger: the duration T90 of the γ-ray light curve, the measured redshift
if available, and the name of the γ-ray detector providing the sky location
used in the analysis.
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196 Detailed S6/VSR2-3 GRB analysis results
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202 Detailed S6/VSR2-3 GRB analysis results

Table B.2: Additional information on the GRB sample

UTC antenna response error T90 γ-ray
Date time H1 L1 V1 (deg) (sec) redshift detector
090709 15:07:42 – 0.78 0.74 0.021 27.2 – Swift
090717 00:49:32 0.74 – 0.82 7.6 70 – Fermi
090719 01:31:26 0.89 – 0.47 7.6 16 – Fermi
090720 06:38:08 – 0.48 0.80 0.036 7 – Swift
090720 17:02:56 – 0.57 0.41 8 20 – Fermi
090726 05:14:07 0.95 0.75 0.10 10 n/a – Fermi
090726 22:42:27 0.72 – 0.81 0.02 67.0 2.7 Swift
090727 22:42:18 – 0.28 0.92 0.026 302 – Swift
090727 23:32:29 – 0.81 0.10 0.72 25 – IPN
090802 05:39:03 0.37 0.35 0.99 9 0.128 – Fermi
090802 15:58:23 0.89 0.77 0.57 13 n/a – Fermi
090807 15:00:27 0.59 – 0.39 0.021 140.8 – Swift
090809 17:31:14 0.54 0.82 0.33 0.024 5.4 2.7 Swift
090809 23:28:14 – 0.48 0.53 7.6 15 – Fermi
090810 15:49:07 0.74 – 0.63 9.3 n/a – Fermi
090814 00:52:19 – 1.00 0.49 0.024 80 0.7-2.2 Swift
090814 01:21:01 – 0.38 0.73 0.035 50 – Integral
090814 22:47:28 0.46 0.42 1.00 7.8 n/a – Fermi
090815 07:12:12 0.14 0.41 0.56 11 200 – Fermi
090815 10:30:41 0.97 – 0.45 9.4 30 – Fermi
090815 23:21:39 0.85 0.80 0.68 0.032 0.6 – Swift
090815 22:41:46 – 0.81 0.78 7.9 n/a – Fermi
090820 12:13:16 0.47 – 0.86 12 11.2 – Fermi
090823 03:10:53 – 0.66 0.43 13 n/a – Fermi
090824 22:02:19 0.54 – 0.63 14 n/a – Fermi
090826 01:37:31 0.11 – 0.51 12 8.5 – Fermi
090827 19:06:26 0.82 – 0.71 0.033 7 – Swift
090829 16:50:40 0.40 – 0.47 8.2 100 – Fermi
090831 07:36:36 0.15 – 0.87 7.7 69.1 – Fermi
090926 21:55:48 0.98 0.96 0.35 0.012 109.7 1.2 Swift
090927 10:07:16 0.56 0.45 0.89 0.019 2.2 1.4 Swift
090929 04:33:03 0.23 – 0.59 7.6 8.5 – Fermi
091003 04:35:45 – 0.26 0.50 0.15 21.1 0.9 FermiLAT
091017 20:40:24 0.93 – 0.29 11 n/a – Fermi
091018 22:58:20 – 0.48 0.22 15 n/a – Fermi
091019 18:00:40 0.79 0.67 0.71 15 n/a – Fermi
091020 21:36:44 – 0.50 0.43 0.012 34.6 <2.1 Swift
091022 18:03:27 0.50 – 0.32 15 n/a – Fermi
091026 11:38:48 0.49 – 0.18 11 n/a – Fermi
091030 19:52:26 0.43 – 0.69 7.6 160 – Fermi
091031 12:00:28 0.30 – 0.94 0.17 100 – FermiLAT
091103 21:53:51 – 0.21 0.59 7.9 n/a – Fermi
091109 04:57:43 0.43 – 1.00 0.025 48 3.1 Swift
091109 21:49:03 0.91 – 0.58 0.014 0.3 – Swift
091115 04:14:50 0.84 0.64 0.53 11 n/a – Fermi
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Table B.2: continued

UTC antenna response error T90 γ-ray
Date time H1 L1 V1 (deg) (sec) redshift detector
091122 03:54:20 0.45 – 0.74 19 n/a – Fermi
091123 01:55:59 – 0.90 0.48 9.6 n/a – Fermi
091127 23:25:45 – 0.13 0.53 0.014 7.1 0.5 Swift
091128 06:50:34 0.16 – 0.48 7.6 n/a – Fermi
091202 01:44:06 0.32 – 0.70 14 n/a – Fermi
091202 05:15:42 0.78 – 0.51 9.5 n/a – Fermi
091202 23:10:04 0.44 – 0.75 0.03 45 – Integral
091215 05:37:26 0.45 0.66 – 12 n/a – Fermi
091219 11:04:45 0.49 0.36 0.86 9.3 n/a – Fermi
091220 10:36:50 0.65 0.89 0.43 7.7 n/a – Fermi
091223 12:15:53 0.73 0.75 – 7.9 n/a – Fermi
091224 08:57:36 0.51 0.69 – 17 n/a – Fermi
091227 07:03:13 0.63 0.84 0.40 8.3 n/a – Fermi
100101 00:39:49 0.44 0.44 – 19 n/a – Fermi
100103 17:42:32 0.81 0.97 0.59 0.019 40 – Integral
100111 04:12:49 0.54 0.67 – 0.014 12.9 – Swift
100112 10:01:17 0.76 0.59 – 17 n/a – Fermi
100201 14:06:17 0.59 0.70 – 8.7 n/a – Fermi
100206 13:30:05 0.55 0.68 – 0.018 0.12 – Swift
100212 13:11:45 0.45 0.22 – 7.6 n/a – Fermi
100213 22:27:48 0.99 0.84 – 0.017 2.4 – Swift
100213 22:58:34 0.50 0.49 – 0.017 48.0 – Swift
100216 10:07:00 0.94 0.74 – 0.036 0.3 – Swift
100219 15:15:46 0.33 0.68 – 0.03 18.8 4.7 Swift
100221 08:50:26 0.69 0.94 – 11 n/a – Fermi
100225 05:59:05 0.49 0.70 – 20 n/a – Fermi
100225 13:55:31 0.26 0.65 – 7.6 n/a – Fermi
100228 20:57:47 0.51 0.50 – 13 n/a – Fermi
100301 05:21:46 0.42 0.68 – 9 n/a – Fermi
100315 08:39:12 0.89 1.00 – 9.3 n/a – Fermi
100316 02:23:00 0.48 0.36 – 0.02 7.0 – Swift
100316 08:57:59 0.91 0.81 – 0.024 9.3 – Swift
100322 07:06:18 0.57 0.35 – 0.048 1.5 – Swift
100324 00:21:27 0.60 0.79 – 0.03 6 – Swift
100324 04:07:36 0.43 0.59 – 0.1 15 – IPN
100325 05:54:43 0.68 0.54 – 10 n/a – Fermi
100325 06:36:08 0.93 0.84 – 0.44 9 – FermiLAT
100326 07:03:05 0.38 0.40 – 15 n/a – Fermi
100327 09:43:15 0.59 0.41 – 16 n/a – Fermi
100328 03:22:44 0.89 0.94 – 8.9 n/a – Fermi
100331 21:08:38 0.35 0.52 – 0.1 30 – AGILE
100401 07:07:31 0.50 0.31 – 0.024 100 – Swift
100401 18:34:10 0.67 0.76 – 0.036 n/a – Swift
100410 08:31:57 0.41 0.03 – 13 n/a – Fermi
100410 17:45:46 0.94 0.72 – 14 n/a – Fermi
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204 Detailed S6/VSR2-3 GRB analysis results

Table B.2: continued

UTC antenna response error T90 γ-ray
Date time H1 L1 V1 (deg) (sec) redshift detector
100418 21:10:08 0.59 0.77 – 0.023 7.0 0.62 Swift
100420 00:12:06 0.63 0.82 – 8 n/a – Fermi
100420 05:22:42 0.45 0.36 – 0.055 48 – Swift
100423 05:51:25 0.56 0.38 – 7.6 21.6 – Fermi
100425 02:50:45 0.92 0.79 – 0.029 37.0 1.8 Swift
100427 08:31:55 0.57 0.85 – 0.03 26 – Swift
100502 08:33:02 0.21 0.33 – 7.8 n/a – Fermi
100507 13:51:15 0.66 0.52 – 7.9 n/a – Fermi
100508 09:20:42 0.90 0.94 – 0.036 52 – Swift
100515 11:13:09 0.94 0.88 – 7.8 n/a – Fermi
100516 08:50:41 0.62 0.80 – 20 n/a – Fermi
100516 09:30:38 0.72 0.96 – 16 n/a – Fermi
100517 01:43:08 0.39 0.40 – 8.4 n/a – Fermi
100517 03:42:08 0.16 0.51 – 8.6 n/a – Fermi
100517 05:49:52 0.62 0.67 – 14 n/a – Fermi
100517 15:19:58 0.67 0.53 – 7.8 n/a – Fermi
100517 03:09:50 0.78 0.89 – 9.1 n/a – Fermi
100526 19:00:38 0.40 0.39 – 0.036 64.0 – Swift
100604 06:53:34 0.53 0.42 – 8.3 n/a – Fermi
100608 09:10:06 0.50 0.52 – 9.2 n/a – Fermi
100628 08:16:40 0.46 0.46 – 0.036 0.036 – Swift
100701 11:45:23 0.26 0.64 – 7.5 27.5 – Fermi
100709 14:27:32 0.50 0.51 – 8.7 n/a – Fermi
100717 08:55:06 0.66 0.65 – 12 n/a – Fermi
100717 10:41:47 0.82 0.64 – 12 n/a – Fermi
100719 23:44:04 0.55 0.38 – 7.6 n/a – Fermi
100722 06:58:24 0.59 0.54 – 11 n/a – Fermi
100725 07:12:52 0.66 0.91 – 0.036 141 – Swift
100725 11:24:34 0.79 0.62 – 0.036 200 – Swift
100727 05:42:17 0.54 0.84 – 0.036 84 – Swift
100802 05:45:36 0.66 0.71 – 0.036 487 – Swift
100804 02:29:26 0.91 0.99 – 7.6 n/a – Fermi
100814 03:50:11 0.63 0.32 0.59 0.036 174.5 – Swift
100814 08:25:25 – 0.48 0.85 7.9 6.4 – Fermi
100816 00:12:41 – 0.79 0.70 7.6 n/a – Fermi
100816 00:37:51 – 0.43 0.95 0.036 2.9 0.8 Swift
100819 11:56:35 0.73 0.79 0.81 8.4 n/a – Fermi
100820 08:56:58 0.42 0.59 0.80 7.8 n/a – Fermi
100823 17:25:35 0.06 0.41 0.49 0.036 16.9 – Swift
100825 06:53:48 0.52 0.45 0.97 9.8 n/a – Fermi
100826 22:58:22 – 0.28 0.44 8.4 n/a – Fermi
100829 21:02:08 0.47 0.13 0.51 7.6 n/a – Fermi
100904 01:33:43 – 0.53 0.84 0.036 31.3 – Swift
100905 15:08:14 0.59 0.30 – 0.036 3.4 – Swift
100905 21:46:22 0.37 0.73 0.56 8.5 n/a – Fermi
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Table B.2: continued

UTC antenna response error T90 γ-ray
Date time H1 L1 V1 (deg) (sec) redshift detector
100906 13:49:27 0.88 0.61 – 0.036 114.4 1.7 Swift
100916 18:41:12 0.30 0.21 0.85 8.3 20 – Fermi
100917 05:03:25 0.44 0.50 0.82 0.036 66 – Swift
100918 20:42:18 0.78 0.44 0.44 7.6 n/a – Fermi
100919 21:12:16 0.71 0.60 0.61 7.7 n/a – Fermi
100922 14:59:43 0.53 – 0.68 17 n/a – Fermi
100924 03:58:08 0.45 0.80 – 0.036 96.0 – Swift
100926 14:17:03 0.83 0.63 – 8.4 n/a – Fermi
100926 16:39:54 0.30 0.57 0.68 14 n/a – Fermi
100928 02:19:52 0.49 0.50 – 0.036 3.3 – Swift
100929 21:59:45 0.40 – 0.92 11 n/a – Fermi
101002 06:41:26 0.32 – 0.91 18 n/a – Fermi
101003 05:51:08 0.68 0.82 0.54 11 n/a – Fermi
101004 10:13:49 1.00 0.93 – 10 n/a – Fermi
101010 04:33:46 – 0.76 0.84 20 n/a – Fermi
101013 09:52:42 0.78 0.85 0.75 7.7 n/a – Fermi
101015 13:24:02 0.79 0.63 – 9.6 n/a – Fermi
101016 05:50:16 – 0.56 0.66 8 n/a – Fermi
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