
On inter-satellite laser ranging, clock
synchronization and gravitational

wave data analysis

Von der QUEST-Leibniz-Forschungsschule der
Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation
von

M. Sc. Yan Wang



Referent: Prof. Karsten Danzmann
Korreferent: Dr. Jonathan R. Gair
Korreferent: Prof. Domenico Giulini
Tag der Promotion: 28/04/2014



Abstract

Gravitational waves (GWs) are propagating space-time ripples on the static
space-time background. LISA (Laser Interferometer Space Antenna) is a
space-based GW detector concept, which consists of three spacecraft forming
an equilateral triangle orbiting the Sun. This thesis consists mainly of two
parts: (i) chapter 2 to chapter 9 focus on the first stage (e)LISA data analysis,
(ii) chapter 10 to chapter 13 are about different topics on GW data analysis.

GWs introduce changes in the proper distances between the spacecraft,
which will be measured by (e)LISA through heterodyne interferometers.
Thus, the GW signals are encoded in the phase evolution of the lasers. The
phasemeter raw data of (e)LISA are not directly usable for time-delay in-
terferometry techniques and astrophysical data analysis, since clock jitter
contaminates the ranging measurements and introduces noise into the time
stamps of the measurements. In the first part of the thesis, algorithms are
developed to bridge this gap by synchronizing the clocks and improving the
ranging accuracy via post-processing algorithms. Several Kalman-like opti-
mal filters have been designed to address different issues, e.g. broken links,
numerical stability, etc. Different system models and clock noise models have
been designed, studied and compared. The designed algorithms have signifi-
cantly improved the ranging precision and are able to sufficiently synchronize
the clocks.

In the second part of the thesis, several aspects of GW detection and
data analysis in general, not resticted to (e)LISA, are studied. An octa-
hedral displacement-noise-free space-based GW detector has been proposed
and studied in chapter 10. A phenomenological waveform is proposed for
extreme-mass-ratio inspirals (EMRIs) in chapter 11. A data analysis pipeline,
including particle swarm optimization, Markov chain Monte Carlo, genetic
algorithm and clustering algorithms, is designed to search for EMRI signals.
In chapter 12, a novel method is designed, which can quickly detect GW
signals and estimate the parameters automatically. In the last chapter, the
likelihood transform is defined, which gradually modifies and traces the ge-
ometry of the likelihood surface, hence makes the search easier.
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Kurzfassung

Gravitationswellen (GW) sind sich ausbreitende Schwingungen der Raum-
Zeit in einem statischen Hintergrund. Diese sollen mit der zuknftigen LISA
(Laser Interferometer Space Antenna) Mission detektiert werden, welche aus
drei Satelliten besteht. Die Satelliten spannen dabei ein gleichseitiges Dreieck
auf und umkreisen die Sonne.
Die vorliegende Arbeit ist in diesem Zusammenhang erarbeitet worden und
gliedert sich in folgende zwei Teile: (i) Kapitel 2 bis Kapitel 9 konzentrieren
sich auf die erste Stufe der (e)LISA Datenanalyse. Kapitel 10 bis Kapitel 13
behandeln weitere Themen der Datenanalyse von GW.
GW bewirken Änderungen der Abstände zwischen den Satelliten, die bei
(e)LISA mit Hilfe von Heterodyn-Interferometern gemessen werden. Dadurch
sind die Signale der GW in der zeitlichen Entwicklung der Phase des Heterodyn-
Signals enthalten. Diese Phasen werden mit einem (e)LISA Phasenmeter aus-
gelesen, dessen Rohdaten sich jedoch nicht direkt für die sog. Time-Delay In-
terferometrie Techniken oder astrophysikalische Datenanalyse nutzen lassen.
Insbesondere durch sog. Jitter der beteiligten Uhren, welches Rauschen in
die Entfernungsmessungen einfügt und die Zeitstempel der Messungen ver-
schiebt.
Im ersten Teil der Arbeit werden Algorithmen entwickelt, die die Sychro-
nisierung der Uhren sicherstellen und durch Nachbearbeitung der Daten-
ströme die Entfernungsmessungen verbessern. Mehrere optimale Kalman-
ähnliche Filter wurden entwickelt, um verschiedenen Problemen zu begegnen,
z.B. Verbindungsabbrüchen oder numerischen Instabilitäten. Verschiedene
Modelle der Systeme und des Uhrenrauschens wurden entwickelt, untersucht
und verglichen. Die entworfenen Algorithmen haben die Genauigkeit der
Entfernungsmessung signifikant erhöht und die Uhren ausreichend genau syn-
chronisiert.
Im zweiten Teil der Arbeit werden verschiedene Aspekte der GW Detektion
und der Datenanalyse im Allgemeinen untersucht. In Kapitel 10 wird ein
oktaedrischer GW Detektor im Weltraum vorgeschlagen und untersucht, der
sog. displacement-noise-free Messungen ermöglichen soll.
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In Kapitel 11 wird eine phänomenologische Wellenform für EMRIs (extreme-
mass-ratio inspirals) vorgestellt. Zudem wurden Methoden der Datenanalyse
mit Partikelschwarm-Optimierungen, Markov-Chain-Monte-Carlo-Verfahren,
genetischen Algorithmen und Clusteranalyse entworfen, um nach EMRI Sig-
nalen zu suchen. In Kapitel 12 wird eine neuartige Methode entwickelt um
möglichst schnell GW Signale zu detektieren und automatisch zugehörige
Parameter abzuschätzen. Im letzten Kapitel wird eine Wahrscheinlichkeit-
stransformation (Likelihood-Transformation) definiert, welche schrittweise
die Wahrscheinlichkeitsoberfläche und damit die Suche nach GW vereinfacht.

Schlagwörter: Datenanalyse von Gravitationswellen, Präzisions Laser Rang-
ing, Uhrensynchronisation
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Chapter 1

Introduction

1.1 Gravitational wave physics

Albert Einstein’s general theory of relativity was published in 1916. It pre-
dicts the existence of gravitational waves (GWs). Analogous to electromag-
netic waves, which are time-varying electromagnetic fields, GWs are nothing
but varying gravitational fields. Phenomenologically, a GW can be viewed
as a space-time ripple propagating on the static space-time background as a
wave, see Fig. 1.1.

The existence of GW was predicted almost a century ago, and the math-
ematical description as well as the foundations were being refined for many
more years [1, 2]. Due to the extreme mathematical complexity, especially
the nonlinearity, of general relativity, we still do not even have a full solution
of a two-body system today. In many cases, it seems impossible to find the
exact solution. Instead, people constructed many approximate solutions and
are continuously trying to extend and improve them.

Peters and Mathews derived the gravitational radiation from a nonrela-
tivistic binary system of two point masses in 1963 [3], where they assumed
Keplerian orbits and computed the GW with the so-called quadrupole for-
mula. Mark Zimmermann and Eugene Szedenits, Jr. first computed the
gravitational radiation from rotating and processing bodies with a simplified
model in 1979 [4].

The post-Newtonian treatment of the source leads to more accurate re-
sults. Non-relativistic sources are characterized by v/c� 1, which is a small
quantity. Thus, one can in principle expand the Einstein equations in orders
of v/c and solve them order by order. Although the post-Newtonian approx-
imation was already introduced by Einstein himself almost a century ago,
there were still many practical difficulties when applying it to gravitation-
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Figure 1.1: Illustration of gravitational waves from a binary as a space-
time ripple propagating on the static space-time background. [Image: T.
Carnahan]

al radiation. Early works on this aspect were done after the 1970s [5, 6, 7].
Many techniques have been invented to compute additional terms and extend
the results to higher post-Newtonian order, such as the DIRE (direct integra-
tion of the relaxed Einstein equation) method [8, 9, 11, 12, 10], the Blanchet-
Damour approach [13, 14, 15, 16, 17, 18], the ADM-Hamiltonian formalism
[20, 21, 19], etc. Post-Newtonian waveforms have been calculated to the
third post-Newtonian order in the conserved energy [22, 25, 23, 24, 26, 27]
and 3.5 post-newtonian order in the energy flux [24, 28, 30, 29]. Since there
are still other free choices, the same post-Newtonian order can lead to differ-
ent phase evolutions in gravitational waveforms. T. Damour et al [31] and A.
Buonanno et al [32, 33] have compared different waveforms for data analysis
consideration.

As one goes to higher and higher post-Newtonian order, post-Newtonian
waveforms are more and more accurate in the non-relativistic case (or even
in mildly relativistic cases). But in the strongly relativistic case, when the
typical velocity is approaching a significant fraction of the speed of light,
the post-Newtonian approximation fails. The effective-one-body approach
[34, 35, 36, 37] has been developed to effectively solve for the behaviour near
the last stable orbit, bridging the adiabatic [38] inspiral and the plunge.

In the extreme-mass-ratio inspiral (so-called EMRI) case with mass ratios
of about 1 : 100, 000 to 1 : 1000, 000, one can also expand the Einstein
equation in term of the small mass ratio. This approach is valid even when
the velocity of the small compact body is a large fraction of the speed of
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light. But there are other issues to be solved in this approach. We will come
to EMRIs in detail later.

One can also try to solve the Einstein equations numerically, which leads
to an important branch of general relativity — numerical relativity [39, 40,
41, 42]. Although numerical relativity can in principle solve a relativistic
system accurately and provide precise gravitational waveforms, it is compu-
tationally very expensive, hence often requiring supercomputers. The first
stable, relatively long-term evolution and merger of a binary black hole sys-
tem was obtained in 2005 by Frans Pretorius [39]. Up to now, numerical
relativity waveforms are still too expensive for data analysis use.

The very short review of gravitational waveform calculation above is by
no means exhaustive. There are still many aspects left in this field, which I
did not have a chance to mention in this introduction. Instead, I will describe
the very basic formulae in the next section.

1.2 Gravitational waves in linearized general

relativity

The famous Einstein equations read as follows

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.1)

where the cosmological constant has been set to zero for what is to follow.
It basically says that matter (Tµν) tells the spacetime how to curve and the
spacetime (Rµν , gµν) curvature tells the matter how to move. In linearized
theory, Eq. 1.1 can be cast into the following form

�h̄µν = −16πG

c4
Tµν , (1.2)

where h̄µν = hµν − 1
2
ηµνh, and we have assumed the harmonic gauge ( some-

times also called the Lorentz gauge)

∂ν h̄µν = 0. (1.3)

Notice that the linearization takes place around the Minkowski space and
the indices are raised and lowered by using the Minkowski metric. Eq. 1.2
can be solved with the help of the so-called retarded Green’s function [43],
and the solution is

h̄µν(t, ~x) =
4G

c4

∫
dx′

3 1

|~x− ~x′|
Tµν

(
t− |~x−

~x′|
c

, ~x′

)
. (1.4)
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In GW physics, it is convenient to work in the transverse-traceless gauge (TT
gauge),

h0µ = 0, (1.5)

hµµ = 0, (1.6)

∂jhij = 0. (1.7)

These conditions reduces the 10 degrees of freedom of hµν to 2 degrees of free-
dom, namely h+, h×, which are usually referred to as the ‘plus’-polarization
and the ‘cross’-polarization. In the transverse plane, the GW in the TT
gauge takes the following form

hTTab =

(
h+ h×
h× −h+

)
(1.8)

For a certain propagation direction ~n, we can define a projector

Pij = δij − ninj, (1.9)

where δij is the Kronecker delta function. With the help of this projector
Pij, GWs in TT gauge can be easily expressed as

hTTij = (PikPjl −
1

2
PijPkl)hkl, (1.10)

= (PikPjl −
1

2
PijPkl)h̄kl. (1.11)

Therefore, we have the solution of the linearized Einstein equation in the TT
gauge

hTTij (t, ~x) =
4G

c4
(PikPjl −

1

2
PijPkl)

∫
dx′

3 1

|~x− ~x′|
Tkl

(
t− |~x−

~x′|
c

, ~x′

)
.(1.12)

Usually, one can make use of the following condition: the distance between
the detector and the gravity source is much longer than the scale of the
gravity source, i.e. |~x−~x′| � |~x′|. This would allow us to replace the distance
|~x − ~x′| by a single averaged distance r and to make a Taylor expansion to
the leading order of |~x′|/r. For non-relativistic sources, the typical velocity
inside the gravity system is much smaller the speed of light. Basically, this
tells us that the wavelength of the GW is much longer than the size of the
gravity source. Hence, we do not need to know the finer structure of the
gravity source. In this approximation, it gives rise to the famous quadrupole
formula [3]

hTTij (t, ~x) =
1

r

2G

c4
(PikPjl −

1

2
PijPkl)Q̈kl(t− r/c), (1.13)

≡ 1

r

2G

c4
Q̈TT
ij (t− r/c), (1.14)
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where the traceless quadrupole moment Qij is defined as

Qij =
1

c2

∫
dx3T 00(t, ~x)(xixj − 1

3
r2δij). (1.15)

It is instructive to make an order of magnitude estimation

h ∼ 1

r

2G

c4
Mv2 ∼ 2

(
GM

c2r

)(
GM

c2R

)
, (1.16)

which is roughly the product of the dimensionless internal gravitational po-
tential and the dimensionless external gravitational potential. The external
potential mainly depends on the distance from the gravity source. The in-
ternal potential depends on how compact the gravity source is. So compact
gravity sources tend to be easier to detect by a GW detector.

For a compact binary in fixed circular orbit, the GW form in Newtonian
approximation reads[43]

h+(t) =
4

r

(
GMc

c2

)5/3(
πf

c

)2/3
1 + cos2 ι

2
cos(2πft+ Φ0), (1.17)

h×(t) =
4

r

(
GMc

c2

)5/3(
πf

c

)2/3

cos ι sin(2πft+ Φ0), (1.18)

where

Mc =
(m1m2)3/5

(m1 +m2)1/5
(1.19)

is the so-called chirp mass, and ι is the inclination angle. The GW frequency
f is twice the orbital frequency. In practice, the orbit is shrinking due to
the energy loss caused by the emission of GWs. As a result, there will be a
frequency drift

ḟ =
96

5
π8/3

(
GMc

c3

)5/3

f 11/3. (1.20)

It depends only on f and Mc. That is why Mc is named chirp mass. From

Eq. 1.17 and 1.18, we find that 4
r

(
GMc

c2

)5/3
serves as a common amplitude in

the two polarizations. This implies that one cannot distinguish between the
distance r and the chirp mass Mc. Luckily, there is always a frequency chirp
in the GW signal. After determining this chirp, Eq. 1.20 helps to break the
degeneracy between the distance and the chirp mass.
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1.3 Gravitational wave astronomy and sources

GW astronomy aims at collecting information about astrophysical sources
using GWs. The significance of GW astronomy is undoubted. In fact, the
GW spectrum provides very distinct and complementary astrophysical infor-
mation compared to electromagnetic waves (γ-ray, X-ray, optical, infrared,
radio, etc). See the GW spectrum in Fig. 1.2. Sathyaprakash and Schutz
gave a nice explanation as follows,

“The primary emitters of electromagnetic radiation are charged
elementary particles, mainly electrons; because of overall charge
neutrality, electromagnetic radiation is typically emitted in small
regions, with short wavelengths, and conveys direct information
about the physical conditions of small portions of the astronom-
ical sources. By contrast, GWs are emitted by the cumulative
mass and momentum of entire systems, so they have long wave-
lengths and convey direct information about large-scale regions.
Electromagnetic waves couple strongly to charges and so are easy
to detect but are also easily scattered or absorbed by material be-
tween us and the source; GWs couple extremely weakly to matter,
making them very hard to detect but also allowing them to travel
to us substantially unaffected by intervening matter, even from
the earliest moments of the Big Bang.” [2]

The most important category of GW sources is binary systems. The
frequency of the emitted GW largely depends on the mass of the binary.
A super massive black hole (SMBH) is indicated by observations to reside
in the center of every galaxy. Since SMBH binaries have a total mass of
106 − 109 M�, they are the strongest binary GW sources. Usually, SMBH
binaries can be detected from a cosmological distance. Thus, SMBH bi-
nary signals provide cosmological information as well as information of the
SMBHs. The frequency range of these sources is from nHz to mHz. An
intermediate-mass black hole (IMBH) lies in the mass range 100 − 106 M�,
with a frequency in the mHz−10 Hz range. Currently, IMBH is still a hypo-
thetical class of black holes. Observations of GWs from such sources bring
information about galaxy formation, merger trees [44, 45, 46] etc. Stellar
mass black hole binaries are in the frequency range of 1 Hz-kHz. They are
important sources for ground-based interferometric detectors.

Extreme-mass-ratio inspirals (EMRIs) stand for the systems that consist
of an MBH or SMBH and a stellar mass compact object captured by it. The
mass ratio is about 1 : 106. Near the SMBH in the galactic center there are
expected to be a large amount of stellar mass neutron stars and black holes.
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Figure 1.2: The GW spectrum from extremely low frequency to high fre-
quency. [Image: Chris Henze]
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So it is very likely that from time to time one of these compact objects
is captured by the SMBH, forming an EMRI system. A more extensive
introduction to EMRIs is given in Chapter 11.

White dwarf binaries are believed to be important GW sources in the
frequency range 0.1 mHz – 0.1 Hz. Since the GWs from these sources are
weaker than those from the sources mentioned above, these sources are only
visible within our galaxy to the space-based detector LISA. There are so
many such systems in our galaxy that the unresolved can form a stochastic
astrophysical gravitational foreground [47]. One other stochastic GW signal
is the cosmological background. It was generated by various mechanisms in
the early universe [48, 49, 50]. We will talk about this later in detail.

The neutron star – neutron star binary coalescence, neutron star – (stellar-
mass) black hole binary coalescence and (stellar-mass) black hole – (stellar-
mass) black hole binary coalescence are the main GW sources for ground-
based detectors, such as LIGO. Since these systems are more massive than
white dwarf binaries and a binary system in the merger phase emits much
stronger GWs than in the inspiral phase, the event horizon of these compact
binary coalescence for ground-based detectors, such as LIGO and VIRGO, is
about a few tens of Mpc.

Spinning neutron stars are also GW sources. When there is asymmetry in
the mass distribution of the spinning neutron star, it radiates GWs. They are
important sources for ground-based detectors. Since the asymmetric mass
distribution is constrained to be very small (ε < 10−6 [51]), this kind of
GWs is relatively weak. So it needs to be observed for quite a long time to
accumulate sufficient SNR. Beside the GW sources mentioned above, there
are other sources, such as burst gravitational radiation from gravitational
collapses, cosmic string cusps, quasi-normal modes of black holes, etc.

1.4 Gravitational wave detectors

Due to the weakness of typical GWs h ∼ 2∆L/L ∼ 10−22, there is no direct
detection yet since the first attempt by Joseph Weber in the 1960s, when
he built resonant-bar detectors to search for cosmic GWs [52, 53]. During
those early years, people had very limited knowledge about the strength of the
cosmic GWs. A resonant-bar detector has a relatively narrow detection band
and poor sensitivity. In today’s point of view, there is almost no matching
source of GWs except the very unexpected violent events. Later on, people
started to use large interferometers as GW observatories, which in general
have much better sensitivities and broader detection bands. However, they
were still not sensitive enough to have a reasonable detection rate. After
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decades of hard work, the sensitivity of the large interferometers is improved
dramatically, and close to the guaranteed GW sources for the first time. In
this section, we will briefly review different kinds of existing and planned
GW detectors.

1.4.1 Bar detectors

The first GW detector was built by Joseph Weber in the 1960s. It was a large
metal bar, hence being referred as a bar detector or Weber bar. The metal bar
is well isolated from outside perturbing forces. When there are GWs of proper
frequencies passing by, the bar will be exited at the resonant frequency, thus
amplifying the effect and allowing the detection of GWs through sensitive
displacement sensors. Modern bar detectors are even cryogenically cooled
down to extremely low temperatures (e.g. a few K to mK) to reduce the
thermal noise, e.g. the Allegro detector [54, 55, 56]. MiniGrail [58, 59, 57]
is the first spherical GW detector operating in 2 − 4 kHz high frequency
range at Leiden University in the Netherlands, see Fig. 1.3. Generally, bar
or spherical metal detectors aim at high frequency sources (around or above
kHz).

1.4.2 Ground based interferometers

Currently, large laser interferometers are the most sensitive GW detectors.
There are already several existing ground-based detectors all around the
world.

LIGO (Laser Interferometer Gravitational-Wave Observatory) [60, 61] is
the largest ground-based GW detector for the time being. LIGO has two
sites: One is located in Hanford near Richland in Washington state, see
Fig. 1.4; the other is in Livingston, Louisiana, see Fig. 1.5. Each site has an
L-shape ultra high vacuum chamber, holding a 4 km armlength Michelson-
type laser interferometer in it. Fig. 1.6 shows the strain sensitivity of the
LIGO detectors from science run 1 to science run 6. Notice that each curve
is the sensitivity of either LIGO Livingston or LIGO Hanford (but not the
joint sensitivity). Science run 1 began in 2002, and science run 6 ended in
2010. Each science run has an improved sensitivity compared to previous sen-
sitivity, by implementing better techniques. Science run 5 roughly fulfilled
the design sensitivity of initial LIGO. Science run 6 has outperformed the ini-
tial LIGO sensitivity high-frequency range with the help of techniques such
as homodyne detection, output mode cleaner, in-vacuum readout hardware,
increased laser power etc. [62]. Thus, science run 6 is sometimes referred to
as enhanced LIGO. LIGO has many noise sources. Contributions from all
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Figure 1.3: MiniGrail, the first spherical GW detector, is operating in 2 −
4 kHz high frequency range at Leiden University in the Netherlands.
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Figure 1.4: Laser Interferometer Gravitational-Wave Observatory (LIGO)
at Hanford.

Figure 1.5: Laser Interferometer Gravitational-Wave Observatory (LIGO)
at Livingston.

these noise sources add up to the sensitivity curve in Fig. 1.6. The main
limiting noise sources for initial LIGO and most other current ground-based
interferometric detectors are: 1. seismic noise, which limits the low-frequency
sensitivity; 2. shot noise, which is the quantum mechanical photon counting
noise at the photon detector, limiting the sensitivity at high frequency; 3.
thermal noise, which limits the sensitivity in the middle frequency range.
Currently, LIGO is being upgraded to advanced LIGO. Advanced LIGO in-
tends to outperform the initial LIGO sensitivity by a factor of 10, hence
increasing the detectable volume by a factor of 1000, see Fig. 1.6. Hopefully,
advanced LIGO will have the first GW detection when it reaches its design
sensitivity. This will open up a new era of GW astronomy.

VIRGO [64, 65] is an L-shape Michelson interferometer located in Italy
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Figure 1.6: Strain sensitivity of the LIGO detectors from science run 1 to
science run 6 [63].
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Figure 1.7: VIRGO interferometer located near Pisa in Italy.

Figure 1.8: GEO600 detector, with an armlength of 600 m, located at
Sarstedt near Hannover, Germany.

with an armlength of 3 km, see Fig. 1.7. VIRGO has been operating since
2007. It has a sensitivity comparable to LIGO. Currently, it is being upgraded
to advanced VIRGO.

GEO600 [66] is another GW detector with an armlength of 600 m, lo-
cated near Sarstedt in Hannover, Germany, see Fig. 1.8. Since GEO600 has
a shorter armlength than LIGO and VIRGO, its sensitivity is worse than
LIGO’s and VIRGO’s at low frequencies and comparable to LIGO at high
frequencies. Many advanced techniques have been developed at and applied
to GEO600, such as squeezing etc.

TAMA300 is a Japanese GW detector. Since it has an arm length of 300
m, its sensitivity is not comparable to any of the above detectors.

There are also planned second-generation ground-based GW detectors.
Besides advanced LIGO and advanced VIRGO mentioned before, GEO-

13



Figure 1.9: Comparison of design sensitivity curves of different ground-based
GW detectors [70].

HF[67] is an upgrade version of GEO 600. LIGO-India, a joint India-US
advanced GW detector to be located in India, has been proposed. The
Kamioka Gravitational Wave Detector (KAGRA) [68], formerly called the
Large Scale Cryogenic Gravitational Wave Telescope (LCGT), is a planned
Japanese GW detector. It has been approved in 2010. Now it is under
construction. Einstein Telescope (ET) [69] is a proposed third-generation
ground-based GW detector. Unlike other ground-based detectors, ET forms
an equilateral triangular shape underground. See Fig. 1.9 for the compari-
son of sensitivity curves of different existing and planned ground-based GW
detectors.

1.4.3 Space-borne interferometers

LISA [71, 72] is short for Laser Interferometer Space Antenna, which is a
space-based detector with three spacecraft forming an equilateral triangular
constellation with 5× 109 m arm length orbiting the Sun trailing behind the
Earth, see Fig. 1.10. Some variations of the LISA concept are called eLISA
[73, 74] or NGO (New Gravitational wave Observatory). Unlike ground-based
detectors, LISA operates at the richest GW signal band 0.1 mHz−0.1 Hz,
where there are plenty of gravitational wave signals, including massive black
hole mergers, extreme mass ratio inspirals, white dwarf binaries, GW cos-
mic background etc. LISA data analysis is more a question of astrophysical
parameter estimation than of mere detection. As for the experimental prepa-

14



Figure 1.10: Orbits and configuration of classic LISA [78]. [Image: S. Barke].

ration, LISA/eLISA is much more mature than other space-based detectors
(or space-based detector concepts) that we are going to talk about below.
We will discuss LISA in more details in the next chapters. LISA pathfinder
[75, 76, 77] is planned to be launched by the end of 2015. When it is suc-
cessful in demonstrating the key technologies required by LISA, LISA itself
(or eLISA) will hopefully be launched in twenty years.

Decigo (DECI-Hertz Interferometer Gravitational wave Observatory)
[79, 80] is a proposed Japanese space-borne GW detector. It consists of four
equilateral triangular constellations, with an armlength of 1000 km each. It
plans to use a Fabry-Pérot cavity along each arm to increase the effective
armlength and the sensitivity. However, Fabry-Pérot cavities in space set
much more demanding requirements. Decigo is designed to be sensitive in
the 0.1 Hz–10 Hz band.

ALIA (Advanced Laser Interferometer Antenna) and BBO (Big Bang
Observer) [81] are follow-on concepts to LISA. ALIA requires moderately
better techniques than LISA, while BBO requires much better techniques
than LISA. So, BBO is actually a far-future space-borne concept, which
gives excellent sensitivity. ALIA is an intermediate concept bridging the
LISA concept and BBO.

ASTROD-GW (Astrodynamical Space Test of Relativity using Optical
Devices) [82] is also a proposed space-based detector. It consists of three
spacecraft, that are located near Lagrange points L3, L4, and L5. Thus,
ASTROD-GW has a much longer armlength (about 1.7 AU) compared to
other space-based detectors. So, it is sensitive in a lower frequency band
than LISA.

OGO (Octahedral Gravitational Observatory) is a recently proposed space-
borne gravitational wave detector [83]. Unlike other space-borne detectors,
OGO consists of 6 spacecraft forming a 3-dimensional octahedron configura-
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Figure 1.11: OGO (Octahedral Gravitational Observatory), a newly pro-
posed space-borne GW detector [83].

tion with an armlength of about 1400 km, see Fig. 1.11. The acceleration
noise is a limiting noise for space-borne detectors; and, the drag-free system
for space detectors is one of the bottleneck difficult technologies. With 6
spacecraft, OGO has the ability to remove the acceleration noise while re-
taining GW signals. Thus, in principle, OGO needs no drag-free systems,
which greatly simplifies the engineering technology. An alternative OGO
configuration with 2× 109 m armlengths is also proposed in paper [83].

1.4.4 Pulsar timing array

A PTA (Pulsar Timing Array) uses a set of millisecond pulsars to detect
GWs [84]. Since millisecond pulsars are emitting pulses to the Earth ex-
tremely regularly, they can be viewed as an emitter and the Earth’s radio
telescope can be viewed as a receiver. So each pulsar forms an arm with
the Earth (more precisely, with the radio telescope). When there is a GW
passing through these arms, the time of arrival of the pulses is altered. Thus,
the GW signal is encoded in the time of arrival of these pulses. Since the
distance between the Earth and the pulsar is astronomically long, the arm-
length formed by them is in turn much longer than man-made GW detectors.
In principle, the sensitive frequency range determined by these armlengths
can extend to extremely low frequencies. However, in practice, the observa-
tion time is limited to the order of 10 years. Therefore, the actual sensitive
frequency range of PTA is usually from nHz to µHz.

Currently, there are three major PTAs operating and recording data: (i)
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the European Pulsar Timing Array (EPTA) [85], (ii) the North American
Nanohertz Observatory for Gravitational waves (NANOGrav) [86] and (iii)
the Parkes Pulsar Timing Array (PPTA) [87]. The collaboration of these
three PTAs is called the International Pulsar Timing Array (IPTA) [84],
which has better sensitivity than any of the three individual PTAs.

1.4.5 Doppler tracking

Doppler tracking of spacecraft has been also used to search for GWs [88, 89].
Similar to PTA, the method takes the Earth as one end and the deep space
spacecraft as the other, hence forming an arm between the two by sending
and receiving signals. The distance between the spacecraft and the Earth
is of the order of about 1 AU, thus the sensitive frequency band of Doppler
tracking is similar to that of ASTROD-GW.

1.4.6 High frequency detectors

There are two high frequency GW detectors for the time being. One of them
is located at INFN Genoa, in Italy. The other [90] is located at the University
of Birmingham in England. They are aiming at MHz to GHz range GW
signals. Another high frequency detector [91] is proposed by Fangyu Li at
Chongqing University, China. This detector aims to detect relic gravitational
radiation around 1010 Hz.

1.5 Gravitational wave data analysis

GW data analysis [92, 93] is a crucial integral part of GW astronomy. Due
to the weakness of GWs, most of the time GW signals are buried in strong
detector noise. One needs to design sophisticated algorithms and efficient
codes to detect GW signals. Even when the signal is strong (e.g. massive
black hole mergers for LISA), one still needs to design sophisticated data
analysis algorithms to extract physical information (e.g. the masses of the
black holes, the spins, the sky positions) from the observed signals. Generally
speaking, the analysis of the measurement data of GW detectors mainly
involves two stages:

1. The pre-processing stage (or the data preparation stage), whose main
task is to use various auxiliary measurement data (e.g. the data channel
that is used to monitor the environment surrounding the GW detec-
tors) or additional information to calibrate the science data (i.e. the
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data stream that is supposed to contain GW signals and used to de-
tect GW signals) and to reduce or remove various noise in the science
data. Chapter 2 – Chapter 9 of this thesis are devoted to this kind
of data analysis for (e)LISA. Since the pre-processing stage is different
for different kinds of GW detectors, such as space-borne interferome-
ters, ground-based interferometers, PTAs, the background knowledge
for LISA data preparation is specific. Its introduction will be given in
Chapter 2 and Chapter 3.

2. The astrophysical data analysis stage (or the ‘usual’ GW data analy-
sis), in which we try to detect GW signals from the science data and
estimate the physical parameters of the detected GW signals. The
works in Chapter 10 – Chapter 13 are of this type of data analysis.
Since the astrophysical data analysis for space-borne interferometers,
ground-based interferometers and PTAs, relies on more or less common
background knowledge and techniques, we will give a general introduc-
tion below.

1.5.1 The general problem in astrophysical data anal-
ysis

The general problem in the astrophysical data analysis stage is to detect
the GW signal from the detector output x(t) and estimate the (physical)
parameters � that describe the GW signal. For a compact binary, these
parameters � can be the masses, the spins, the sky position of the binary,
the angle between the orbital momentum of the binary and the line of sight,
etc. The detector output x(t) can usually be expressed as

x(t) = s(t, �) + n(t), (1.21)

where n(t) denotes the noise time series, s(t, �) the detector response to
a gravitational wave signal h(t, �). For linear measurement system, s(t, �)
equals the convolution of the gravitational wave signal h(t, �) and the impulse
response of the system. In the next subsections, we will look in detail into
the detector response and the noise, which are the two important elements
of the detector output.

1.5.2 Properties of a random process

The detection and parameter estimation algorithms depend largely on the
property of the noise n(t), which is a random process. The property of a
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random process is usually characterized by its moments. The first moment
is defined as the mean of the process

µ(t) =< n(t) >, (1.22)

where < · · · > denotes the ensemble average. The second moment is also
known as the autocorrelation

A(t, τ) =< n(t)n(t+ τ) > . (1.23)

The higher moments are defined as

< n(t)n(t+ τ1)n(t+ τ2) >,

< n(t)n(t+ τ1)n(t+ τ2)n(t+ τ3) >,

. . .

A random process is said to be stationary if its joint probability distribution
is invariant under a shift in time. Therefore, for a stationary random process,
its moments do not depend on the time t. If only its mean and autocorrelation
do not change when shifted in time, the random process is call wide-sense
stationary (WSS).

The Wiener-Khinchin theorem [94, 95] states that if a noise process n(t)
is WSS, the Fourier transform of its autocorrelation A(τ) exists

Sn(f) ≡
∞∫

−∞

A(τ)ei2πfτdτ,

=

∞∫
−∞

< n(t)n(t+ τ) > ei2πfτdτ, (1.24)

where Sn(f) is usually called the two-sided power spectral density (PSD)
of the noise process, and we have adopted the following convention of the
Fourier transform x̃(f) =

∫
x(t)ei2πftdt. With the help of inverse Fourier

transform, we can easily obtain the variance of the noise process

< n(t)2 > = A(0),

=

∞∫
−∞

Sn(f)df. (1.25)

A random process is called Gaussian, if it is uniquely characterized by
its first and second moments. In GW data analysis, the noise process n(t) is
usually assumed to be Gaussian stationary with a zero mean. Such a noise
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process is uniquely characterized by its autocorrelation function, hence by
its PSD.

In the following, we will discuss the noise process in a more intuitive and
less rigorous way, which assumes the Fourier transform ñ(f) of the Gaussian
stationary noise process n(t) exists. It is easy to verify that

< ñ∗(f ′)ñ(f) > =

∫ ∫
< n(t1)n(t2) > e−i2πf

′t1ei2πft2dt1dt2,

=

∫ ∫
< n(t1)n(t1 + τ) > ei2π(f−f ′)t1ei2πfτdt1dτ,

= Sn(f)δ(f − f ′), (1.26)

which is the usual definition of the two-sided PSD of the Gaussian stationary
noise in GW literatures. For a total observation time T , the above equation
leads to

Sn(f) =
1

T
< |ñ(f)|2 >, (1.27)

which can be used to quickly estimate the PSD of the noise. For white-
Gaussian stationary noise process, another useful formula can be obtained
from Eq. 1.25

Sn(f) = σ2∆t, (1.28)

where σ is the standard deviation of the noise process, ∆t the sampling
interval. This can be used to simulate white-Gaussian noise at a given PSD
level. Simulation of noise with arbitrary PSD will be discussed in Chapter 9.

1.5.3 Detector responses

Now let us calculate the response of the basic element of an arbitrary inter-
ferometer – a single (laser) link to a gravitational wave signal. Suppose
the emitter locates at X(j), where subscript j = 1, 2, 3 . . . indicates the
j-th spacecraft for space-borne detectors, the j-th vertex of ground-based
detectors, or the j-th pulsar for PTAs. Similarly, we denote the location
of the receiver as X(k) and the unit vector pointing from the emitter to
the receiver by n(jk) = (X(k) −X(j))/L(jk), where the so-called armlength
L(jk) = |X(k) − X(j)| is the distance between the emitter and the receiv-
er. Without loss of generality, we assume the gravitational wave propagates
along ez direction, which can be expressed as

h(t,X) = h+(t− ez ·X/c)e+ + h×(t− ez ·X/c)e×, (1.29)
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where e+ = (ex ⊗ ex − ey ⊗ ey)/2, e× = (ex ⊗ ey + ey ⊗ ex)/2 are the
two polarization tensors, c is the speed of light. The detector response to
gravitational radiations can be strictly derived with the help of the three
Killing vectors of the radiation field, which lead to three constants of motion.
See [96, 89] for more details. Up to the leading order in h, the phase change
induced by GWs to a single-way laser link is

∆φ(jk)(te) =
∑
p=+,×

F p
(jk)

L(jk)/c∫
0

hp[(te − ez ·X(j)/c) + (1− ez · n(jk))t
′]ωLdt

′

(1.30)

where F+
(jk) = [n(jk) ⊗ n(jk)] : e+, F

×
(jk) = [n(jk) ⊗ n(jk)] : e× are the antenna

pattern functions of the single-way link, ‘:’ denotes tensor contraction, ωL is
the angular frequency of the laser, and te is the time of emission. The recep-
tion time can be written as tr = te +L(jk)/c. Physically, this equation means
the total phase change results from the summation of gravitational pertur-
bation of different phases along the laser link. The dimensionless response of
the detector is also quite useful in many cases, which is given by

s(jk)(te) =
∑
p=+,×

F p
(jk)

L(jk)/c∫
0

hp[(te − ez ·X(j)/c) + (1− ez · n(jk))t
′]
cdt′

L(jk)

.(1.31)

The antenna pattern functions in these responses basically indicate which
directions the gravitational wave detector is sensitive to. Fig. 1.12 shows the
antenna pattern functions of a single laser link. Fig. 1.13 shows the antenna
pattern functions of a Michelson interferometer, which has two orthogonal
arms. It is apparent from these figures that gravitational wave detectors are
sensitive to a very large fraction of the sky, hence they are usually referred
to as omni-directional detectors.

The Fourier transform of the dimensionless response can be obtained
easily

s̃(jk)(f) =
∑
p=+,×

F p
(jk)

exp{2πif [1− ez · n(jk)]L(jk)/c} − 1

2πif [1− ez · n(jk)]L(jk)/c
e−2πiez ·X(j)h̃p(f).

(1.32)

Let us consider a special case when the laser beam is along x-axis (ex), GWs
propagate in ez direction and have only the plus polarization h = h(t)e+.
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Figure 1.12: Antenna pattern functions of a single laser link. (Left) Antenna
pattern function for h+ polarization, F+ = 1

2
(cos2 θ cos2 ϕ− sin2 ϕ). (Right)

Antenna pattern function for h× polarization, F× = cos θ cosϕ sinϕ.

Figure 1.13: Antenna pattern functions of a Michelson interferometer. (Left)
Antenna pattern function for h+ polarization, F+ = 1

2
(cos(2ϕ)(1 + cos2 θ)).

(Right) Antenna pattern function for h× polarization, F× = sin(2ϕ) cos θ.

22



Figure 1.14: Transfer function of a single-link one-way detector.

Then the detector response in frequency domain can be simplified as

s̃(jk)(f) ≡ T (f)h̃(f)

=
1

2

exp{2πifL(jk)/c} − 1

2πifL(jk)/c
e−2πiez ·X(j)h̃(f), (1.33)

where

T (f) =
1

2

exp{2πifL(jk)/c} − 1

2πifL(jk)/c
e−2πiez ·X(j) (1.34)

is the transfer function. Figure. 1.14 shows the amplitude of the transfer
function for an arm length L = 5 × 109m (LISA arm length). If the detec-
tor is limited by some noise floor with a PSD Sfloor

n (f), the effective strain
sensitivity can then be written as√

Sn(f) =

√
Sfloor
n (f)

|T (f)|
. (1.35)

Figure. 1.15 shows an example of the strain sensitivity.
In more general case, the transfer function depends on the propagation

direction of GWs, while the noise floor usually does not. We need to aver-
age the gravitational wave transfer function over all directions. The strain
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Figure 1.15: Strain sensitivity of a single-link one-way detector with an arm
length of L = 5 × 109m. Here we assume the sensitivity of the detector is
limited only by white noise.

sensitivity of a GW detector is then given by

√
Sn(f) =

√
Sfloor
n (f)

< |T (f)|2 >sky

, (1.36)

where < · · · >sky means averaging over all sky positions. Next we give an
simple example of the sensitivity of a GW detector. According to [97], mock
LISA data challenge (MLDC) adopts a simplified model to characterize LISA
noise. The one-sided PSD of the position noise is modelled as

S1/2
pos (f) = 20× 10−12m/

√
Hz. (1.37)

The one-sided PSD of the acceleration noise is modelled as

S1/2
acc (f) = 3× 10−15

√
1 + (10−4Hz/f)2 m/s2/

√
Hz. (1.38)

Then, the total noise floor can be calculated as

Sfloor
n (f) =

√
Spos(f)/L2 + Sacc(f)/(4π2f 2L)2. (1.39)

By inserting this into Eq. 1.36, we obtain LISA strain sensitivity of a single-
link averaged over all sky positions plotted in Fig. 1.16. In practice, we
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Figure 1.16: Strain sensitivity of a single-link one-way detector with an arm
length of L = 5× 109m averaged over all sky positions.

need to eliminate the otherwise overwhelming laser frequency noise through
post-processing, which will be discussed in Chapter 2. The post-processing
algorithms will introduce a small correction to the sensitivity curve, which
accounts for the small difference between the single-link sensitivity curve here
and the official LISA sensitivity curve.

1.5.4 Detection statistic

In the following, we follow the Bayesian approach to construct a detection
statistic [98, 99]. We denote the conditional probability of realizing x(t) in
the absence of the signal as P (x|0). The conditional probability of realizing
x(t), when a signal s(t) is present, is denoted by P (x|s). Similarly, the
conditional probability of realizing x(t), when the signal s(t, �) characterized
by parameters � is present, is denoted by P (x|s(�)). The a priori probabilities
that no signal is present in the data and a signal s(t) is present in the data
are denoted by P (0) and P (s) respectively. The a priori probability density
of the signal parameters is denoted by P (�). According to the law of total
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probability, we can express the probability of measuring x(t) as

P (x) = P (x|0)P (0) + P (x|s)P (s),

= P (x|0)P (0) + P (s)

∫
dN�P (�)P (x|s(�)), (1.40)

where N is the dimension of the parameter space. By inserting this into the
relation given by the Bayes’ theorem, we obtain the probability that a signal
is present given the data x(t)

P (s|x) =
P (x|s)P (s)

P (x)
,

=
Λ

Λ + P (0)/P (s)
, (1.41)

where we have defined

Λ =

∫
dN�Λ(�), (1.42)

Λ(�) = P (�)
P (x|s(�))

P (x|0)
. (1.43)

Since P (0)/P (s) is a positive constant in Eq. 1.41, P (s|x) is a monotone in-
creasing function of the likelihood ratio Λ. In addition, since P (0)/P (s) does
not depend on any physical parameters, Λ is a sufficient statistic. Ideally,
it is nice to use Λ as a detection statistic. However, the high dimensional
integral over the signal parameters � is usually computationally prohibitive.
Instead, one uses Λ(�) as a detection statistic. In practice, one calculates
this likelihood ratio Λ(�) for many possible parameters �. If the maximum
Λ(�) is above a certain prescribed threshold, we claim a detection. And the
parameter set �∗ that maximize the likelihood ratio is usually taken as the
estimate of the parameters. This procedure is called the maximum likelihood
estimator in statistics.

1.5.5 Matched filtering

Now we try to express the probability densities explicitly. In the absence of
the signal, the data should follow the probability distribution of the noise,
which is usually assumed to be Gaussian with a zero mean. Suppose there
are M discrete measurements xj, where j = 1, 2, . . . ,M . Notice that these
measurements can be nonuniform in time. The autocorrelation matrix of the
corresponding noise nj is denoted by

Ajk =< njnk >, (1.44)
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whose inverse matrix is denoted by A−1
jk , which satisfies

M∑
k=1

AjkA
−1
kl = δjl. (1.45)

Then the probability density of the data xj in the absence of the signal is

P (x|0) =
1√

‖ 2πAjk ‖
exp

[
−1

2

∑
j,k

xjA
−1
jk xk

]
, (1.46)

where ‖ · · · ‖ denotes the determinant. Similarly, the probability of observing
xj, when the signal sj is present, can be expressed as

P (x|s) =
1√

‖ 2πAjk ‖
exp

[
−1

2

∑
j,k

(xj − sj)A−1
jk (xk − sk)

]
. (1.47)

The likelihood ratio can be easily calculated from the above two equations.
If this likelihood ratio is above a prescribed threshold, a detection is claimed.
In this procedure, the calculation of the inverse of the large autocorrelation
matrix and the matrix production is computationally expensive, especially
when the number of samples is large. PTA data analysis, whose data is
unevenly sampled, usually adopts the above procedure.

For ground-based and space-borne interferometers, the measurements are
usually uniformly sampled. Assuming the noise is Gaussian stationary, there
is a much more efficient way to evaluate the exponents in the above two
equations. In the limit of the total observation time T →∞ and the sampling
interval ∆t→ 0, it is straightforward to prove [98]∑

j,k

xjA
−1
jk xk →

∞∫
−∞

x̃∗(f)x̃(f)

Sn(f)
df, (1.48)

where Sn(f) is the two-sided PSD of the noise. In this way, one can avoid
calculating the inverse of large matrices. It is convenient and traditional to
define a inner product of two time series a(t), b(t) as follows

〈a|b〉 =

∞∫
−∞

ã∗(f)b̃(f)

Sn(f)
df = 2Re

 ∞∫
0

ã∗(f)b̃(f)

Sn(f)
df

 , (1.49)

where Re denotes the real part. Insert the data and the GW signal into this
inner product, we have

〈x|s(�)〉 =

∞∫
−∞

x̃∗(f)× s̃(f, �)

Sn(f)
df, (1.50)
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which can also be written in time-domain as a convolution. This is a linear
time-invariant filter, which is the optimal linear filter in the sense that it
maximizes the signal-to-noise ratio (SNR). It is usually called the matched
filter in GW literatures. Essentially, it is a Wiener filter [100]. The optimal
SNR for a signal s(�) present in the data is

SNR2 = 〈s(�)|s(�)〉 =

∞∫
−∞

|s̃(f, �)|2

Sn(f)
df. (1.51)

With the help of the inner product, the probability of observing the mea-
surements x(t) in the absence and presence of the signal can be reexpressed
as

P (x|0) = e−
1
2
〈x|x〉, (1.52)

P (x|s(�)) ∝ e−
1
2
〈x−s(�)|x−s(�)〉. (1.53)

Up to a constant, the likelihood ratio can be reexpressed as

Λ(�) ∝ P (�)
P (x|s(�))

P (x|0)

∝ P (�)e〈x|s(�)〉− 1
2
〈s(�)|s(�)〉. (1.54)

Since the exponential function is a monochromatically increasing function,
one usually uses the log likelihood ratio as the detection statistic

L(�) ≡ log Λ(�),

= 〈x|s(�)〉 − 1

2
〈s(�)|s(�)〉+ logP (�). (1.55)

For a uniform a priori probability density, the last term in the above equation
vanishes.

1.5.6 Parameter estimation

For a given parameter space, one needs to evaluate the log likelihood ra-
tio at all possible parameter sets � in the parameter space and identify the
parameters �∗ that maximize the log likelihood ratio as the most probable
parameters of the signal (assuming its likelihood ratio is above some thresh-
old). As mentioned before, this is called the maximum likelihood estimator.
In practice, it is computationally extremely intensive to do this for all the
parameters. Actually, some of the parameters in the parameter set � can be
maximized over analytically. These parameters are usually called extrinsic
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parameters in GW literatures. The parameters that cannot be maximized
over analytically are called intrinsic parameters. The extrinsic parameters
usually do not modulate the phase of the GW signals, while the intrinsic pa-
rameters do. In the following, we give a few typical examples of maximization
over extrinsic parameters.

Consider � = (Θ, A), where the amplitude A of the signal is an extrinsic
parameter. The rest parameters are denoted by Θ. The sinal is s = Ah(t,Θ)
and the detector output is x = Ah(t,Θ) +n, where h(t,Θ) is the normalized
signal 〈h|h〉 = 1. We assume a uniform a priori probability density P (�)
throughout this subsection. Then, the log likelihood ratio is

L(�) = 〈x|s(�)〉 − 1

2
〈s(�)|s(�)〉,

= 〈x|h(Θ)〉A− 1

2
A2. (1.56)

Let ∂L/∂A = 0, we obtain A = 〈x|h(Θ)〉. Therefore, we have

L(Θ) ≡ max
A

L(�) =
1

2
〈x|h(Θ)〉2. (1.57)

This implies that L′(Θ) ≡ 〈x|h(Θ)〉 is a sufficient statistic for the maximum
likelihood estimator, hence we only need to calculate the inner product of
the data and the normalized signal.

Now let us consider � = (Θ, A, φa, ta), where the initial phase φa of
the signal is also an extrinsic parameter, ta denotes the time of arrival, and
the rest parameters are denoted by Θ. (Notice that the following algorithm
works equally for the coalescence time tc and the coalescence phase φc.) The
Fourier transform of the signal can now be expressed as

s̃(f ; Θ, A, φa, ta) = Ah̃(f ; Θ)ei2πfta+iφa . (1.58)

The maximization over the extrinsic parameters and the fast parameter ta
can be done as follows

max
A,φa,ta

L(�) → max
φa,ta

L′(Θ, φa, ta),

= max
φa,ta

< x|h(Θ, φa, ta) >,

= 2 max
φa,ta

Re

 ∞∫
0

x̃∗(f)h̃(f ; Θ)

Sn(f)
ei2πfta+iφadf

 ,
= 2 max

ta

∣∣∣∣∣∣
∞∫

0

x̃∗(f)h̃(f ; Θ)

Sn(f)
ei2πftadf

∣∣∣∣∣∣ , (1.59)
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which is simply twice the largest absolute value of the Fourier transform of
x̃∗(f)h̃(f ; Θ)/Sn(f). Therefore, the maximization over the parameter ta can
be efficiently calculated via a fast Fourier transform.

Next we consider � = (Θ, Aµ), where Aµ = (A1, A2, . . . , An) are extrinsic
parameters, and the signal is in the following form

s(t, �) = Aµhµ(t,Θ), (1.60)

where we have assumed Einstein summation convention, and hµ(t,Θ) are
functions of the intrinsic parameters Θ. The corresponding log likelihood
ratio of this type of signals can be expressed as

L(�) = 〈x|s(�)〉 − 1

2
〈s(�)|s(�)〉,

= Aµ〈x|hµ(Θ)〉 − 1

2
Aµ〈hµ(Θ)|hν(Θ)〉Aν ,

= Aµxµ −
1

2
AµMµνA

ν , (1.61)

where we have defined xµ(Θ) ≡ 〈x|hµ(Θ)〉 and Mµν(Θ) ≡ 〈hµ(Θ)|hν(Θ)〉.
This is a quadratic form of the parameters Aµ, hence it can be maximized
easily. Let ∂L/∂Aµ = 0, we obtain Aµ = (M−1)µνxν . Therefore, we have

max
Aµ

L(�) =
1

2
xµ(Θ)(M−1)µν(Θ)xν(Θ). (1.62)

This is the so-called F-statistic in GW literatures. See more discussions on
it in Chapter 11.

All in all, the maximization over extrinsic parameters helps a lot in ac-
celerating the search for the signal. However, the exploration in the intrinsic
parameter space is still computationally very expensive. There are main-
ly two categories of search algorithms for the intrinsic parameters: (i) the
incoherent and semi-coherent search and (ii) the coherent search. The inco-
herent and semi-coherent search are computationally more efficient, but they
are less sensitive to the signals. Time-frequency methods (see Chapter 11
for more details about this method), short Fourier transforms, and wavelet
transforms all belong to this category. The coherent search is more sensitive
to the signals, but it is computationally more expensive. There are mainly
two types of algorithms in this category: (i) grid-based algorithms and (ii)
stochastic algorithms. The grid-based algorithms employ a mesh grid in the
intrinsic parameter space, and calculate the likelihood ratio for each of the
parameter set on the grid. This kind of algorithms is very sensitive to the sig-
nals, but it is computationally extremely expensive. Therefore, it is usually
run on big clusters. Sometimes, grid-based algorithms are computationally
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prohibitive. In this case, one could turn to stochastic algorithms, which are
computationally more efficient. These heuristic algorithms include Markov
chain Monte Carlo, particle swarm optimization, genetic algorithms, etc. See
more discussions about these algorithms and coherent searches in Chapter
11 – 13.

The uncertainty of the parameter estimation is usually characterized by
the Fisher matrix [101], which is defined by

Fjk(�) =< ∂j logP (x|s(�))∂k logP (x|s(�)) >, (1.63)

where ∂j ≡ ∂/∂θj denotes the partial derivative with respect to the j-th
component in �. With the help of the definitions of P (x|s(�)) and the noise
PSD, it is straightforward to prove that

Fjk(�) = 〈∂js|∂ks〉. (1.64)

The inverse of the Fisher matrix F−1
jk (�) serves as a lower bound, which is

well-known as the Cramér-Rao bound [101], for the parameter-estimation
error of all unbiased estimators.

One other important concept, that is closely related to the Fisher matrix,
is the metric on the likelihood surface [102]. Let us consider the mismatch
between two normalized signals (which satisfy 〈s|s〉 = 1) separated by a small
distance d� in the parameter space.

〈s(�)|s(� + d�)〉 = 1 +
1

2
〈s(�)|∂j∂ks(�)〉dθjdθk + . . . , (1.65)

where the linear order vanishes due to the fact that the inner product has
its maximum at d� = 0, and we have assumed Einstein summation over
repeated indices. By taking the second partial derivative of 〈s|s〉 = 1, it is
easily obtained that

〈s(�)|∂j∂ks(�)〉 = −〈∂js(�)|∂ks(�)〉. (1.66)

Therefore, the mismatch up to the second order in d� can be expressed as

1− 〈s(�)|s(� + d�)〉 =
1

2
〈∂js(�)|∂ks(�)〉dθjdθk,

= Gjkdθ
jdθk, (1.67)

where the metric Gjk is one half of the Fisher matrix Fjk. At a given mis-
match (say 0.03), the metric describes a hyper ellipse in the parameter space,
which is used to place the templates in the parameter space [102]. The hyper
ellipse determines the resolution of a template bank, and the ratio between
the volume of the parameter and the volume of the hyper ellipse determines
the number of templates required by a given mismatch. See more discussions
in Chapter 13.
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1.6 Thesis summary

This thesis is devoted to the development and applications of various gravita-
tional wave data analysis algorithms. Chapter 2 – 9 focus on the development
of the first stage data analysis algorithms for (e)LISA, which calibrate and
synchronize the phasemeter raw data, estimate the inter-spacecraft distances
and the clock errors, hence making the raw measurements usable for time-
delay interferometry techniques and astrophysical data analysis algorithms.
Chapter 10 describes a new design of the space-borne gravitational wave de-
tector and investigates the scientific potential of such detectors. Chapter 11
– 13 design miscellaneous algorithms for astrophysical data analysis.

In Chapter 2, the complete LISA data processing chain is described, which
consists of the simulation of the orbits, the simulation of GW signals, the
simulation of various LISA measurements, the pre-processing stage, the time-
delay interferometry techniques, and the astrophysical data analysis. The
role and the goal of the pre-processing stage is thus established for the first
time. In Chapter 3, a simplified LISA problem is considered as an example,
where the pseudo-ranging measurements and the Doppler measurements from
a single link of LISA are processed via a standard Kalman filter. The clock
errors have been ignored in this simple example. The simulation results
show that the Kalman filter is able to reduce the ranging noise under these
assumptions. In Chapter 4, the inter-spacecraft measurements are described
and carefully modelled. The clock errors and the frequency errors of the
clocks are also introduced in this chapter.

In Chapter 5, the hybrid-extended Kalman filter is described, which is
then applied to the LISA inter-spacecraft measurements (from all the six
laser links). The clock errors have been simulated in the measurements, but
ignored in the time stamps of the samples. According to the simulation, the
algorithm has significantly improved the ranging accuracy and synchronized
the clocks, hence it makes the phasemeter raw measurements usable for time-
delay interferometry algorithms. In Chapter 6, three reduced versions of the
state vector for LISA have been designed and investigated to alleviate the
degeneracy problem that the number of the measured variables is less than
the number of the variables to be determined by the Kalman filter.

Chapter 7 investigates the effects of broken laser links. Different combi-
nations of broken laser links have been simulated and studied via a sequential
Kalman filter. As a special case, eLISA configuration can be viewed as the
standard LISA with two broken laser links in the same arm. Simulation
shows that the arm-length determination and clock synchronization algo-
rithm works well for eLISA. In addition, the square-root Kalman filter has
been introduced and implemented in this chapter to reduce the condition
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number of the large matrices in the filter, hence making the algorithm more
robust.

In Chapter 8, two effective dynamic models have been designed and s-
tudied. These effective dynamic models employ smaller state vector and
simplified dynamic functions, hence they are numerically more efficient and
more robust. The degeneracy in the previous Kalman filter model can be
eliminated by these effective models. The posterior measurements have been
used via a RTS smoother and a modified iterative smoother to improve the
estimates of the algorithms. Simulation shows that the posterior measure-
ments can further reduce the estimation errors significantly.

In Chapter 9, we have studied different types of clock noise including the
realistic clock noise measured in the lab (which is several orders of magni-
tude more noisy than the current best space-qualified clocks). Simulation
indicates that the clock noise can significantly affect the performance of the
filter algorithms. More sophisticated dynamic models have been designed for
the clock noise, which are then incorporated in the filter algorithms. The
filter algorithm with the sophisticated model turns out to work well in the
presence of stronger and more complicated clock noise. In addition, the ef-
fects of the clock noise on the sampling time stamps have been simulated and
investigated. It turns out that the errors in the time stamps can introduce
biases in the estimates of the arm lengths and the clock errors. We have
invented a hybrid interpolated filter to solve this problem. Simulation shows
that in the presence of complicated strong clock noise, in both the measure-
ments and the sampling time stamps, the filter algorithms designed in this
thesis can still accurately determine the inter-spacecraft distances and syn-
chronize the clocks. This work has two main implications: (i) it bridges the
gap between the phasemeter raw data and the well-studied time-delay inter-
ferometry algorithms and the astrophysical data analysis algorithms, hence
contributing to the readiness and maturity of the (e)LISA-like missions, (ii)
it demonstrates the possibility of using less expensive clocks, hence it can
potentially reduce the cost of the (e)LISA-like missions.

In Chapter 10, we study for the first time a three-dimensional octahe-
dron constellation for a space-based gravitational wave detector, which we
call the octahedral gravitational observatory (OGO). With six spacecraft
the constellation is able to remove laser frequency noise and acceleration
disturbances from the gravitational wave signal without needing LISA-like
drag-free control, thereby simplifying the payloads and placing less stringent
demands on the thrusters. We generalize LISAs time-delay interferometry to
displacement noise free interferometry (DFI) by deriving a set of generators
for those combinations of the data streams that cancel laser and acceleration
noise. However, the three-dimensional configuration makes orbit selection
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complicated. So far, only a halo orbit near the Lagrangian point L1 has been
found to be stable enough, and this allows only short arms up to 1400 km.
We derive the sensitivity curve of OGO with this arm length, resulting in
a peak sensitivity of about 2 × 10−23

√
Hz near 100 Hz. We compare this

version of OGO to the present generation of ground-based detectors and to
some future detectors. We also investigate the scientific potentials of such a
detector, which include observing gravitational waves from compact binary
coalescences, the stochastic background, and pulsars as well as the possibility
to test alternative theories of gravity. We find a mediocre performance lev-
el for this short arm length detector, between those of initial and advanced
ground-based detectors. Thus, actually building a space-based detector of
this specific configuration does not seem very efficient. However, when al-
ternative orbits that allow for longer detector arms can be found, a detector
with much improved science output could be constructed using the octahe-
dron configuration and DFI solutions demonstrated in this paper. Also, since
the sensitivity of a DFI detector is limited mainly by shot noise, we discuss
how the overall sensitivity could be improved by using advanced technologies
that reduce this particular noise source.

Extreme mass ratio inspirals (EMRIs) [capture and inspiral of a compact
stellar mass object into a massive black hole] are among the most interest-
ing objects for gravitational wave astronomy. It is a very challenging task
to detect those sources with the accurate estimation parameters of binaries
primarily due to a large number of secondary maxima on the likelihood sur-
face. Search algorithms based on matched filtering require computation of
the gravitational waveform hundreds of thousands of times, which is cur-
rently not feasible with the most accurate (faithful) models of EMRIs. In
Chapter 11, we propose to use a phenomenological template family which
covers a large range of EMRI parameter space. We use these phenomenolog-
ical templates to detect the signal in the simulated data and then, assuming a
particular EMRI model, estimate the physical parameters of the binary. We
have separated the detection problem, which is done in a model-independent
way, from the parameter estimation. For the latter one, we need to adopt
the model for inspiral in order to map phenomenological parameters onto the
physical parameters characterizing EMRIs.

The detection of gravitational wave usually requires to match the mea-
surement data with a large number of templates, which is computationally
very expensive. Compressed sensing methods allow one to match the data
with a small number of templates and interpolate the rest. However, the
interpolation process is still computationally expensive. In Chapter 12, we
designed a novel method that only requires to match the data with a few
templates, yet without needing any interpolation process. The algorithm
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worked well for signals with relatively high SNRs. It also showed promise for
low SNRs signals.

A practical issue in GW data analysis is that when the parameter space
is large and the available data is noisy, the geometry of the likelihood sur-
face in the parameter space will be complicated. This makes searching and
optimization algorithms computationally expensive, sometimes even beyond
reach. In Chapter 13, we define a likelihood transform which can make the
structure of the likelihood surface much simpler, hence reducing the intrinsic
complexity and easing optimization significantly. We demonstrate the prop-
erties of likelihood transform by apply it to a simplified gravitational wave
chirp signal search. For the signal with an signal-to-noise ratio 20, likelihood
transform has made a deterministic template-based search possible for the
first time, which turns out to be 1000 times more efficient than an exhaustive
grid- based search. The method in principle can be applied to other problem-
s in other fields as the spirit of parameterized optimization and parameter
estimation problem is the same.
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Chapter 2

LISA data processing chain

2.1 Introduction

LISA (Laser Interferometer Space Antenna) [71, 72] is a proposed space-borne
gravitational wave (GW) detector, aiming at various kinds of GW signals in
the low frequency band between 0.1 mHz and 1 Hz. LISA consists of three
identical spacecraft (S/C), each individually following a slightly elliptical
orbit around the sun, trailing the Earth by about 20◦. These orbits are chosen
such that the three S/C retain, as much as possible, an equilateral triangular
configuration with an arm length of about 5×109 m. This is accomplished by
tilting the plane of the triangle by about 60◦ out of the ecliptic. Graphically,
the triangular configuration makes a cartwheel motion around the Sun. As
mentioned before, eLISA [73, 74] is a (evolving) variation of LISA, which
consists of one mother S/C and two daughter S/C, separated from each other
by 1×109 m. Although the configurations are slightly different, the principles
and the techniques are equally applicable. Therefore, we will mainly focus
on LISA hereafter.

Since GWs are propagating spacetime perturbations, they induce proper
distance variations between test masses (TMs) [103], which are free-falling
references inside the S/C shield. LISA measures GW signals by monitoring
distance changes between the S/C. Spacetime is very stiff. Usually, even a
fairly strong GW still produces only spacetime perturbations of order about
10−21 in dimensionless strain. This strain amplitude can introduce distance
changes at the pm level in a 5× 109 m arm length. Therefore, a capable GW
detector must be able to monitor distance changes with this accuracy. The
extremely precise measurements are supposed to be achieved by large laser
interferometers. LISA makes use of heterodyne interferometers with coherent
offset-phase locked transponders [104]. The phasemeter [105] measurements
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at each end are combined in postprocessing to form the equivalent of one or
more Michelson interferometers. Information of proper-distance variations
between TMs is contained in the phasemeter measurements.

Unlike the several existing ground-based interferometric GW detectors [60,
61, 66, 67, 65], the armlengths of LISA are varying significantly with time
due to celestial mechanics in the solar system. As a result, the arm lengths
are unequal by about 1% (5 × 107 m), and the dominating laser frequency
noise will not cancel out. The remaining laser frequency noise would be
stronger than other noises by many orders of magnitude. Fortunately, the
coupling between distance variations and the laser frequency noise is very
well known and understood. Therefore, we can use time-delay interferom-
etry (TDI) techniques [106, 107, 108, 109, 110, 111, 112, 113, 114], which
combine the measurement data series with proper time delays, in order to
cancel the laser frequency noise to the desired level.

However, the performance of TDI [111, 115] depends largely on the knowl-
edge of armlengths and relative longitudinal velocities between the S/C,
which are required to determine the correct delays to be adopted in the
TDI combinations. In addition, the raw data are referred to the individual
spacecraft clocks, which are not physically synchronized but independently
drifting and jittering. This timing mismatch would degrade the performance
of TDI variables. Therefore, they need to be referred to a virtual common
“constellation clock” which needs to be synthesized from the inter-spacecraft
measurements. Simultaneously, one also needs to extract the inter-spacecraft
separations and synchronize the time-stamps properly to ensure the TDI per-
formance.

2.2 Simulating the whole LISA data process-

ing chain

In this section, I will talk about the perspective of a complete LISA simula-
tion. The future goal is to simulate the entire LISA data processing chain as
detailed as one can, so that one will be able to test the fidelity of the LISA
data processing chain, verify the science potential of LISA and set require-
ments for the instruments. The flow chart of the whole simulation is shown
in Fig. 2.1. In the following, I will discuss the role and the main task of each
step.
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Figure 2.1: LISA data processing chain.

2.2.1 LISA orbits simulator

The first step is to simulate LISA orbits under the solar system dynamics.
It should provide the position and velocity of each TM, or roughly S/C,
as functions of some nominal time, e.g. UTC (Coordinated universal time)
for subsequent simulations. Since TDI requires knowledge of the delayed
armlengths (or light travel times) to meter accuracies [116], and the pre
data processing algorithms could hopefully determine the delayed armlengths
to centimeter accuracies, the provided position information should be more
accurate than centimeters. Recall that 1 AU is of order 1011 m. The dynamic
range here is 13 orders of magnitude, which is smaller than the machine
accuracy (15 to 16 digits). However, the GW-induced arm-length variation
for LISA is at the picometer level [116], which is 25 orders of magnitude
smaller than 1 AU. One could in principle use extended precision, but that
might be computationally too expensive. Luckily, GWs in the TT gauge do
not change the coordinates of the TMs. Thus, one can ignore GWs when
simulating LISA orbits.

One other issue is the sampling rate. The LISA onboard measurements
will be down-sampled and transferred to the Earth at about Hz sampling rate
(e.g. 3 Hz). So the position and velocity information should be provided to
the centimeter precision at Hz sampling rate. In one year, there are about 108

samples at this sampling rate. One can design an orbit integrator with sub
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second integration time-steps, but it is inefficient. Instead, one can design
an orbit integrator with adaptive large integration steps and then interpolate
the orbits to centimeter precision. However, the accuracy of the interpolation
scheme needs to be checked carefully.

The last issue in this step is to choose a model of dynamics. In principle,
one should use the best known ephemeris (with trajectories of all the solar
system planets) and the solar system dynamics to a sufficient PN order [117].
For simplicity and speed concern, sometimes one can also use Kepler orbits, or
even simpler, analytical orbits (Taylor expansion of Kepler orbits to certain
order of eccentricity) in the right place. One should make sure that it is
consistent with all other steps.

2.2.2 Simulating GWs

The second step is to simulate GWs. There are various kinds of GW sources
[116, 118] in the LISA band, such as massive black hole (MBH) binaries,
extreme-mass-ratio inspirals (EMRIs), intermediate-mass-ratio inspirals (IM-
RIs), galactic white dwarf binaries (WDBs), gravitational wave cosmic back-
ground etc. In the source frame, these GW waveforms are generated either
from the dynamic equations or phenomenological waveform models. For some
purposes, one can also simply use sinusoidal GW signals as test signals.

2.2.3 Simulating measurements

The third step is to simulate the measurements as detailed as needed, which
in turn requires the simulation of the evolution of the S/C internal environ-
ments, e.g. how does the attitude of TMs evolve, how does the frequency of
the ultra-stable oscillator (USO) evolve, how does the temperature evolve,
how does the laser frequency evolve? Since there are many sources of distur-
bance [119, 120, 121], one should first only take into account the critical ones.
The less critical features can be ignored selectively. The irrelevant features
should be ignored.

The TMs are drag-free in only one dimension each, which is along the
direction of the laser beam. The other two transverse dimensions are con-
trolled. Hence, their actual orbits may deviate from geodesics (i.e. orbits of
three dimensional drag-free TMs). The deviation is small over short periods,
but sizable after a few months accumulation.

Usually, these deviations are ignored in simulations. If one wants to
simulate this effect, the orbits calculation and the measurements simulation
must be integrated. Whenever the TMs tends to fall off the orbits, one
should make corrections and calculate the new orbits. Mathematically, the
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equations of motion are augmented with the equations of the active control
and the disturbances. The whole set of differential equations should be solved
and evolved together.

There are many measurements in LISA. The main ones are science mea-
surements, ranging measurements, clock side band beatnotes, S/C positions
and clock offsets observed by the deep space network (DSN). There are many
more measurements, such as various auxiliary measurements, incident beam
angle measured by differential wavefront sensing (DWS). In principle, all the
relevant measurements need to be simulated. The simulation in turn can
guide the experiments and the design, telling us which measurements are
useful and which ones need to be transferred back to the Earth at which
sampling rate.

Another important issue is to simulate various kinds of noise sources, such
as the laser-frequency noise, clock jitters, the readout noise, the acceleration
noise. These noises are generated either from their PSD or from physical
models. In the end, the noises and the GWs signals are both added to the
measurements. For simplicity, usually stationary Gaussian noise (white or
colored) is used, although real instruments in general produce more compli-
cated noise.

2.2.4 Down link

The ‘down link’ is referred to as a procedure of transferring the onboard
measurement data back to Earth, which is also an important step in the
simulation. Since the beat-notes between the incoming laser beam and the
local laser are in the MHz range, the sampling rate of ADCs should be at least
twice that, i.e. at least 40–50 MHz. The phasemeter prototype developed in
the Albert Einstein Institute Hannover for ESA uses 80 MHz [122]. Due
to the limited bandwidth of the down link to Earth, measurement data at
this high sampling rate cannot be transferred to Earth. Instead, they are
low-pass filtered and then down-sampled to a few Hz (e.g. 3 Hz). The raw
data received on Earth are at this sampling rate.

For simulation concerns, generating measurement data at 80 MHz with
a total observation time of a few years is computationally expensive and
unnecessary. Instead, these measurements are simulated at a few tens to a
few hundreds of Hz.

It is worth clarifying that, up to this point, the simulation of the S/C and
GWs was done with complete knowledge of ‘mother nature’. From the next
subsection ‘pre data processing’ on, comes the the simulated processing of
the down-linked data, where we have only the raw data received on Earth,
but other informations such as the S/C status are unknown.
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2.2.5 Pre data processing

The next step is the so-called pre data processing. The main task is to
synchronize the raw data received at the Earth station and to determine the
armlength accurately. In addition, pre data processing aims to establish a
convenient framework to monitor the system performance, to compensate
unexpected noise and to deal with unexpected cases such as when one laser
link is broken for a short time.

The armlength information is contained in the ranging measurements,
which compare the laser transmission time at the remote S/C and the recep-
tion time at the local S/C. Since these two times are measured by different
clocks (or USOs), which have different unknown jitters and biases, the rang-
ing data actually contain large biases. For instance, high-performance (not
necessarily the best) space-qualified crystal oscillators, such as oven con-
trolled crystal oscillators [123], have a frequency stability of about 10−7∼−8.
This would lead to clock biases larger than one second in three years, which
would result in huge biases in the ranging measurements.

In fact, all the measurements taken in one S/C are labeled with the clock
time in that S/C. This means all the time series contain clock noise. Time
series from different S/C contain different clock noise. These unsynchronized,
dirty and noisy time series need to be pre-processed in order to become usable
for TDI.

Pre data processing has been ignored for long. It is one of the main topics
of this thesis.

2.2.6 TDI simulation

As mentioned previously, TDI has been well studied in the literature [107,
108, 109, 110, 111, 112, 113, 114]. Laser frequency noise is the frequency
instability of the laser source. For a normal Michelson interferometer, the
laser beams travelling in the two arms originate from the same laser source,
thus they share common laser frequency noise. At the photon detector, one
measures the phase (or frequency) variation of the beatnote of the two laser
beams. The frequency noise is canceled out when the two arms have the
same length, hence not degrading the measurements.

However, in the LISA case, the S/C are far apart. The telescope can cap-
ture only a very small fraction of the remote laser beam, thus it is impossible
to reflect the same laser light back to the remote S/C. The local photon de-
tector measures the beatnote between the received weak laser beam and the
local laser. Without the offset phase locking scheme, the two laser beams are
generated by different laser sources, hence they contain different frequency
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noise. As a consequence, the laser frequency remains in the measurements.
With the offset phase locking scheme [104], the laser frequency noise still
remains, due to the unequal arm lengths. Its power spectral density is about
8 − 9 orders of magnitude higher than the designed sensitivity. Current-
ly, the only solution is to phase-lock the remote laser, record each single-way
measurement, properly recombine these single-way measurements in the TDI
post-processing stage, virtually forming an equal-arm Michelson interferom-
eter. In this step, one uses the ranging and the time information from pre
data processing to properly shift the phasemeter measurements accordingly
and recombine them.

2.2.7 Astrophysical data analysis

In this final step, the task is to dig out GW signals from the data and extract
astrophysical information — in short, detection and parameter estimation.
At this stage, we have relatively clean and synchronized data labeled with
UTC time stamps. Still, the GW signals are weak compared to the remaining
noise. As a result, one needs to implement matched filtering techniques to
obtain optimal SNR. We will come to this again in detail in other chapters.
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Chapter 3

Applying the Kalman filter to a
simple case

3.1 Introduction

As mentioned in the previous chapter, in the whole LISA data processing
chain, pre data processing is a crucial step, which has been ignored for long
time. It is one of the main tasks of this thesis. The main goal of this step is to
synchronize the clocks and to extract the ranging information. We expect this
problem to be solved by an optimal filter (Kalman-like) [124, 125], since we
know the dynamic model of the whole LISA constellation (i.e. solar system
dynamics, the power spectral density of clock jitters, etc). This kind of
knowledge is complementary to phasemeter raw measurements [126]. Thus,
if one combines the information from the measurements and that from the
system model, it is possible to continuously calculate optimal estimates for
the armlengths, the Doppler velocities and the clock jitters. In this chapter,
we will introduce the basic form of Kalman filter, and then apply it to a
simplified LISA ranging problem.

3.2 Kalman filter

A very natural and clever way to combine complementary information is
the famous Kalman filter, a data analysis technique named after Rudolf E.
Kalman. Kalman filter is the optimal linear filter in the least square error
sense on condition that both the dynamics of the system and the observation
function are linear and the noises are white Gaussian. To be specific, the
linearly dependent dynamics can be expressed as

xk = Fk−1xk−1 +Bk−1uk−1 + wk−1 (3.1)
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where xk is the state vector (a column vector here) of the system at time
t = tk, describing the instantaneous state of the system (e.g. the positions,
the velocities, the clock jitters); uk is the so-called control vector with known
components, which can be ignored in the simplified case; wk is the process
noise vector and assumed to be a zero-mean white-Gaussian random variable
with known covariance matrix; Fk and Bk are matrices of proper size (deter-
mined by the dimension of xk and uk) which describe how the control input
and the state at an earlier time affect the state at present. Furthermore,
if the observations are linearly dependent on the state vector, they can be
modeled as

yk = Hkxk + vk (3.2)

where Hk is a matrix of proper size, describing the relation between the state
vector xk and the measurements yk; vk is the measurement noise which is also
zero-mean, white-Gaussian, and in addition uncorrelated with wk. Hereafter,
we denote the covariance matrices of wk and vk respectively by Wk and Vk.
Furthermore, we denote the estimates of the state vector along with their
covariance matrices at time tk excluding and including the measurements at
that time respectively by

x̂−k = E[xk|y1, y2, ..., yk−1], (3.3)

P−k = E[(xk − x̂−k )(xk − x̂−k )T ] (3.4)

and

x̂+
k = E[xk|y1, y2, ..., yk], (3.5)

P+
k = E[(xk − x̂+

k )(xk − x̂+
k )T ]. (3.6)

If we can propagate the estimate from x̂+
k−1 to x̂−k then to x̂+

k , we should be
able to filter all the data set step by step starting from an initialization such
as x̂+

0 = E[x0], P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]. It’s quite straightforward to

calculate x̂−k from x̂+
k−1. In this step, there are no additional measurements

taken, hence the only thing we can make use of is the dynamic equation.
Since wk is zero-mean white Gaussian, its most probable value is wk = 0.
Therefore,

x̂−k = Fk−1x̂
+
k−1 +Bk−1uk−1, (3.7)

P−k = Fk−1P
+
k−1F

T
k−1 +Wk−1. (3.8)

To obtain x̂+
k from x̂−k , we need to minimize the trace of P+

k , which is the
sum of the squares of the estimation errors after including the measurements
at time tk. A linear filter can be put into the following form

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k ), (3.9)
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which means that if the prediction Hkx̂
−
k perfectly matches the measurements

yk, the estimates after the observation of yk should be the same as before this
observation. Kk is a matrix to be determined. (It is usually called Kalman
gain when determined.) It can be easily shown that

P+
k = E[(xk − x̂+

k )(xk − x̂+
k )T ]

= (I −KkHk)P
−
k (I −KkHk)

T +KkVkKk (3.10)

Letting ∂ (trP+
k )/∂Kk = 0, we obtain

Kk = P−k H
T
k (HkP

−
k H

T
k + Vk)

−1 (3.11)

With this Kalman gain, we can update x̂−k and P−k to x̂+
k and P+

k . Up to
now, we have derived all the formulae of the standard Kalman filter.

For a given discrete system model,

xk = Fk−1xk−1 +Bk−1uk−1 + wk−1, (3.12)

yk = Hkxk + vk, (3.13)

E(wkw
T
j ) = Wkδk,j, (3.14)

E(vkv
T
j ) = Vkδk,j, (3.15)

E(wkv
T
j ) = 0, (3.16)

we summarize the basic Kalman filter formulae as follows:

1. Initialize the state vector and the covariance matrix

x̂+
0 , P

+
0 . (3.17)

2. Calculate the a priori estimate of the subsequent state

x̂−k = Fk−1x̂
+
k−1 +Bk−1uk−1, (3.18)

P−k = Fk−1P
+
k−1F

T
k−1 +Wk−1. (3.19)

3. Calculate the Kalman gain

Kk = P−k H
T
k (HkP

−
k H

T
k + Vk)

−1. (3.20)

4. Correct the a priori estimate with the new measurements

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k ), (3.21)

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkVkK
T
k . (3.22)
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3.3 A GPS example

The Kalman filter derived above is extremely useful in the tracking problem
in global positioning system (GPS) [127, 128] user data processing. The
goal here is to estimate the user’s position and clock bias continuously. The
measurements can be formulated as follows

ρi = |(~xi − ~xu)|+ cδtu, (3.23)

where the so-called pseudo-range ρi (i = 1, 2, . . . , nsat, withnsat ≥ 4) are
the ranging measurements from four different satellites, ~xi are the position
of these satellites, ~xu and δtu are the position and clock bias of the user.
There are four unknowns in the state vector (three components of ~xu and
δtu) to be estimated and at least four measurements. These unknowns are
functions of the same time or time step. Thus, the problem is quite well posed
for a Kalman filter after a straightforward linearization of the observation
equations. However, we will see in the next section that the LISA system is
way more complicated.

3.4 The LISA case

LISA consists of three identical spacecraft sending laser beams to each other.
Each spacecraft in the constellation follows a nearly ellipsoidal orbit. For that
reason, the whole constellation appears to proceed in a cartwheel motion.
Hence, the travel time of the laser beam transmitted from spacecraft i to
spacecraft j differs from that of the laser beam traveling in the opposite
direction (the so-called Sagnac effect). Consequently, there are six laser links
in total, monitoring the inter-spacecraft quantities. For the convenience of
data analysis, we model these quantities respectively as the arm lengths
Lij , the longitudinal Doppler velocities vij , the differences of clock jitters
(derived from clock sideband to clock sideband beat note) cij , measured by
the laser traveling from spacecraft i to spacecraft j, where i, j = 1, 2, 3, i 6= j.
There is additive measurement noise in all of these quantities. In addition,
cij contains the difference of clock bias, which also can be treated as noise
sometimes. The final goal is now to suppress all this noise and estimate the
difference of the clock bias in order to make TDI variables work properly.

In principle, if we want to reduce the noise in the measurements purely
through data analysis techniques, we need additional information or knowl-
edge. What we have in hand are the LISA orbits, which are determined
by the dynamics of the solar system, as well as the power spectral density
(PSD) of the clock jitter, which can be measured on the earth before launch.
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Besides, we temporarily assume all the measurement noise to be zero-mean
white Gaussian noise. Under this assumption, we may somehow roughly esti-
mate the covariance matrices of the noise by analyzing the raw data, because
gravitational wave signals are much weaker than the noise sources before the
cancelation of laser frequency noise and the annual change caused by the so-
lar system dynamics is out of band. In fact, we can also get some very rough
idea of these noise spectra even from the experiments on the earth. With
the help of this additional information, we have somehow complementary
knowledge about the whole LISA system.

The next thing to do is to fuse all the information to get less noisy esti-
mates with a Kalman filter. As indicated before, the Kalman filter for LISA
is much more complicated than that for GPS ranging. The raw ranging
measurements of LISA in Newton limit can be put into the following form

ρij = |(~xj(T + δtj(T ))− ~xi(T + δtj(T )− Lij/c)|
+c(δti(T + δtj(T )− Lij/c))− δtj(T )) (3.24)

where ρij, (i, j = 1, 2, 3, i 6= j) stands for the raw ranging data measured by
the laser link from spacecraft i to spacecraft j, T is the unknown fiducial
time, δti is the clock jitter of each clock, c is the speed of light and the po-
sition of spacecraft i is denoted by ~xi which of course is a function of time.
Obviously, the position and the clock jitter of each spacecraft appear at three
different unknown times. Thus, there are in total 3 × 4 × 3 = 36 unknowns
while only 6 measurements are performed. Mathematically, this means the
system is not fully determined. Physically, the change in position and orien-
tation of the LISA triangle as a whole in fact does not affect the results of
ranging measurements, so they can not be determined purely from ranging
measurements. Another problem is that the state of each spacecraft (the
position and the clock jitter as functions of time) appears several times at
different unknown time. This makes the LISA problem significantly different
from the standard Kalman filter model. Furthermore, the strong nonlinearity
also make the problem more complicated.

3.5 Simulation results

As a first step, we build a separate Kalman filter for each link. Therefore,
there are in total six Kalman filters running separately. The state vector in
each Kalman filter consists of the position, velocity and clock jitter of the
receiver spacecraft at present and that of the transmitter spacecraft at an
unknown delayed time. If we artificially shift the time of the transmitter to
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make it roughly the same as the receiver, the state vector specified for each
laser link involves only the status of two spacecrafts at the same time step.
The advantage of this method is that it fits in the Kalman filter form (3.1)
and (3.2) while keeps closely tracking the states of the pair of spacecrafts.
However, it has the disadvantage that different Kalman filters for different
laser links do not exchange information even though they have at least one
spacecraft in common. The number of components of the state vector is still
much bigger than the number of measurements for each laser link.

In the simulation, we temporarily ignore the DC values of all clock biases
and focus on the noise suppression in armlengths and Doppler velocities,
since six separate Kalman filters without communication between the small
filters would not be adequate for clock biases correction.
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Figure 3.1: Noise suppression in the
armlength measurements.
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Figure 3.2: Noise suppression in the
Doppler velocity measurements.

Figure 3.1 and 3.2 show the simulation results of noise reduction for arm-
length measurements and Doppler velocity measurements. In figure 3.2,
the blue points display the deviation of the raw measurements from the true
longitudinal velocities, while the red points show the differences between
the filter outputs and the true values. It can be seen clearly that the filter
outputs converge very fast to the true Doppler velocities. The standard de-
viation of the filtered Doppler velocities is more than an order of magnitude
below the raw measurements. Figure 3.1 shows roughly the same behavior
for the armlength estimation except for the small bump of the red line in
the beginning part. This is because the influence of the dynamics on the
armlengths is weaker than that on the Doppler velocities, which leads to a
slower convergence in armlength estimation. What can be done is to take the
last filtered state as the new initial state and run the Kalman filter backward
in time, since the dynamical model is reversible. This technique is usually
called ’smoothing’.
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Chapter 4

The inter-spacecraft
measurements

4.1 Introduction

Previously, we have designed a Kalman filter for a single link of LISA, where
we have assumed Newtonian links (meaning that we calculate the light travel-
ling time between spacecraft purely under Newtonian dynamics) and ignored
clock noise. In this chapter, we start to build a Kalman filter for all the laser
links of LISA with clock noise in the measurements.

Let us first look at the inter-spacecraft measurements in details. There
are altogether six drag-free test masses in LISA constellation, two within
each S/C. The distance variations between remote test masses are measured
by heterodyne laser interferometry (with laser wavelength λ = 1064 nm) with
a designed noise level of 1− 10 pm/Hz1/2 [126].

Due to the solar system dynamics, the whole LISA constellation cannot
be a perfect rigid equilateral triangle. In fact, the arm lengths vary by about
one percent [129] annually; the relative longitudinal velocities between S/Cs
are minimized to a level below 15 m/s [130]. This variation can cause a
Doppler shift in the frequency beatnote of about 15 MHz for a λ = 1064 nm
laser. Just to have some margin, it is designed in LISA that one needs to be
able to measure the frequency beatnote at 20 MHz. On the other hand, the
1 pm/Hz1/2 requirement for the λ = 1064 nm laser approximately translates
to 1µcycle/Hz1/2 precision. To measure a frequency beatnote at 20 MHz at
1µcycle/Hz1/2 accuracy requires the timing stability of the sampler in the
phasemeter to be better than 50 fs/Hz1/2. Such a space-qualified stable clock
does not exist. This is really a sorry situation. To solve this problem, we try
to measure the clock noise and eliminate it in a post-processing stage. Using
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about ten percent of the total laser power, one up-converts the master clock
frequency to GHz frequencies and modulates it onto the carrier laser as phase
modulation sidebands. The clock noise is then measured by the sideband-to-
sideband beatnote, which carries identical information as the main beatnote
except that the clock jitter is amplified by the up-conversion factor.

As mentioned in previous sections, one other dominating noise is the
laser frequency noise. It is to be eliminated by the postprocessing TDI tech-
niques [107, 108, 109, 110, 111, 112, 113, 114]. However, TDI techniques
require the knowledge of the arm length information to about 1 m [131, 132].
This absolute arm length information is determined by the pseudo-random
noise (PRN) phase modulation. The PRN modulation uses about 0.1−1% of
the light power [126, 133, 134, 135, 136]. The distance information is revealed
by the correlation between the received PRN code and the local copy of the
same PRN code. Although the measurement noise of the of ranging signal is
below 1 m [126], it has not accounted for the clock noise. Since the distance
is determined by comparing the transmission time and the reception time,
the distance information is contaminated with the clock noise. The 1 m pre-
cision means we can determine the distance plus the relative clock noise very
precisely. But we still need to break the degeneracy of the two and to ex-
tract the absolute arm length and the relative clock noise information. This
is supposed to be addressed by the previously defined pre data processing.

4.2 The inter-spacecraft measurements

Now, let us look into these inter-spacecraft measurements. In the middle of
Fig. 4.1, the two peaks are the local carrier and the weak received carrier.
They form a carrier-to-carrier beatnote, which is usually called the science
measurement, denoted by fsci.

fsci = fDoppler + fGW + fnoise, (4.1)

where fDoppler is the Doppler shift, fGW is the frequency fluctuation induced
by GWs, fnoise is the noise term, which contains various kinds of noise, such
as laser frequency noise, optical path-length noise, clock noise, etc. As men-
tioned before, fDoppler can be as large as 15 MHz. However, fGW is usually at
the µHz level. Among the noise terms, the laser frequency noise is the dom-
inating one. The free-running laser frequency noise is expected to be above
MHz/Hz1/2 at about 10 mHz. After pre-stabilization, the laser frequency
noise is somewhere between 30− 1000 Hz/Hz1/2 at about 10 mHz [137, 126].

On the two sides of Fig. 4.1 are the two clock sidebands. The clock
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Figure 4.1: Schematic power spectral density plot of LISA carrier laser beam,
clock-sideband modulation and the PRN modulation. Horizontal direction
denotes frequency and vertical direction denotes power. In the middle, the
two peaks are the two beating carriers. Around the carriers are the PRN
modulations. On the sides of the figure are the clock sidebands modulation.

sideband beatnote is given by the following

fsidebandBN = fDoppler + fGW + fnoise +m∆fclock, (4.2)

where ∆fclock is the frequency difference between the local USO and the
remote USO, m is an up-conversion factor. Except for the intentionally am-
plified clock term, the clock sideband beatnote contains the same information
as the carrier-to-carrier beatnote does.

The PRN modulations are around the carriers in Fig. 4.1. The two PRN
modulations shown in the figure in yellow and in red are orthogonal to each
other such that no correlation exists for any delay time. At the local S/C, one
correlates the PRN code modulated on the remote laser beam with an exact
copy, hence obtaining the delay time between the emission and the reception.
This light travel time tells us the arm length information. However, the PRN
codes are labelled by their own clocks at the transmitter and the receiver,
respectively. Thus, the ranging signal τranging also contains the time difference
of the two clocks.

τranging = L/c+ ∆Tclock + Tnoise, (4.3)

where L is the arm length, c is the speed of light, ∆Tclock is the clock time
difference, Tnoise denotes the noise in this measurement. The ranging mea-
surement noise Tnoise is around 3 ns (or 1 m) RMS [126]. However, since the
clock is freely drifting all the time, after one year ∆Tclock could be quite large.
One needs to decouple the bias from the true armlength term to a level better
than 3 ns.
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4.3 Formulation of the measurements

In this section, we try to formulate the exact expressions of Eqs. 4.1, 4.2 and
4.3. Let us first clarify the notation. The positions of the S/C are denoted by
~xi = (xi, yi, zi)

T , their velocities are denoted by ~vi = (vxi, vyi, vzi)
T in the SSB

frame, where i = 1, 2, 3 is the S/C index. Each S/C has its own USO. The
measurements taken on each S/C are recorded according to their own USO.
Let us denote the nominal frequency of the USO in the i-th S/C as fnom

i (the
design frequency) and denote its actual frequency (the true frequency it runs
at) as fi. The difference

δfi = fi − fnom
i (4.4)

is the frequency jitter of each USO. The USOs are thought to be operating
at fnom

i . The actual frequencies fi are unknown to us. Also, we denote the
nominal time of each USO as T nom

i (the readout time of the clock) and the
actual clock time (the true time at which the clock reads T nom

i ) as Ti. We
have

T nom
i =

φi
2πfnom

i

=

∫
fi(t)dt

fnom
i

, (4.5)

Ti =

∫
dt, (4.6)

φi = 2π

∫
fi(t)dt, (4.7)

where φi denotes the readout phase in the i-th S/C. The time difference

δTi = T nom
i − Ti,

=
1

fnom
i

∫
(fi − fnom

i )dt,

=
1

fnom
i

∫
δfidt (4.8)

is the clock jitter of each USO. This leads to

˙δTi =
δfi
fnom
i

. (4.9)

The above two equations mean that the clock jitter (or time jitter) is the
accumulative effect of frequency jitters. For the convenience of numerical
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simulations, we write the discrete version of the above formulae as follows

δTi(k) =
1

fnom
i

k∑
a=1

δfi(a)∆ts + δTi(0), (4.10)

˙δTi(k) =
δTi(k)− δTi(k − 1)

∆ts

=
δfi(k)∆ts/f

nom
i

∆ts

=
δfi(k)

fnom
i

, (4.11)

where k in the parentheses means the value at the k-th step or at time k∆ts,
δTi(0) stands for the initial clock bias.

Now, we are ready to write the measurement equations. Ideally, all the
measurements should be formulated within the framework of General Rel-
ativity. In the solar system, gravity is relatively weak, so one can expand
the relativistic equations in orders of the small parameter v/c and solve it
with a perturbation method [138]. However, the full relativistic treatment is
computationally too expensive for our testing of Kalman filters. Therefore,
we plan to investigate it in future work. Here, we make an approximation
that all the inter-spacecraft measurements are instantaneous, meaning that
the laser beam takes no time to travel from one S/C to other S/C. As will
be explained below, this is a better approximation for the inter-spacecraft
measurements than calculating everything in Newtonian theory with a finite
speed of light. The whole LISA constellation is trailing the Earth at a speed
vc that is much higher than the relative speed vr within the constellation.
Thus, in Newton’s framework with a finite speed of light, the ranging (or
armlength) measurements from S/C i to S/C j differ from the ranging mea-
surements from S/C j to S/C i by a length of about Lvc/c, which is much
larger than the true value[138]. The order of magnitude of the true difference
between the forward and the backward ranging measurements can be quickly
estimated within special relativity framework, where only the relative speed
matters. So, the difference in ranging measurements is roughly about Lvr/c,
which is two orders of magnitude smaller than Lvc/c.

To this point, we try to formulate the ranging measurements. For conve-
nience, we write it in dimensions of length and denote the armlength mea-
surements measured by the laser link from S/C i to S/C j (measured at S/C
j) as Rij. Thus, we have

Rij(k) = Lij(k) + [δTj(k)− δTi(k)]c+ noise, (4.12)

53



where Lij(k) is the true armlength we want to obtain from the ranging mea-
surements, [δTj(k)−δTi(k)]c is the armlength bias caused by the clock jitters,
and ‘noise’ denotes the effects of other noise sources.

Next, we want to consider Doppler measurements or science measure-
ments. They are phase measurements recorded at the phasemeter. For con-
venience, we formulate them as frequency measurements, since it is trivial
to convert phase measurements to frequency measurements. First, we take
into account only the imperfection of the USO and ignore other noises. We
denote the true frequency we want to measure as ftrue and the frequency
actually measured as fmeas. The USO is thought to be running at fnom. The
recorded frequency fmeas is compared to it. However, the frequency at which
the USO is really running is f = fnom + δf . This is what the true frequency
ftrue is actually compared to. Thus, we have the following formula

fmeas

fnom
=

ftrue

f

=
ftrue

fnom + δf
. (4.13)

For a normal USO, δf/fnom is usually a very small number (< 10−8), there-
fore the second order in it is smaller than machine accuracy. Thus, we can
write the above equation in linear order of δf/fnom for numerical simulation
concern without loss of precision:

fmeas =
ftrue

1 + δf/fnom

= ftrue

(
1− δf

fnom

)
. (4.14)

We denote the average carrier frequency (the average laser frequency over
certain time) as f carrier, the laser frequency noise as δf c and the unit vector
pointing from S/C i to S/C j as n̂ij. Let us consider the laser link sent from
S/C i to S/C j. When transmitted, the instantaneous carrier frequency is
actually f carrier

i +δf c
i . When received at S/C j, this carrier frequency has been

Doppler shifted and the GW signals are encoded. Therefore, its frequency
can be written as

(f carrier
i + δf c

i )

[
1− (~vj − ~vi) · n̂ij

c

]
− fGW

ij . (4.15)

This carrier is then beat with the local carrier f carrier
j + δf c

j of S/C j. The
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resulting beatnote is the science measurement

f sci
ij (k) =

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij (k)

](
1− δfj(k)

fnom
j

)
+

[
δf c

j − δf c
i

(
1− (~vj − ~vi) · n̂ij

c

)](
1− δfj(k)

fnom
j

)
+ noise,

=

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij (k)

](
1− δfj(k)

fnom
j

)
+ noise,

(4.16)

where in the last step we have absorbed the laser frequency noise into the
noise term. In practice, the carrier frequencies are adjusted occasionally
(controlled by a pre-determined frequency plan) to make sure that the carrier-
to-carrier beatnote is within a certain frequency range. Hence, f carrier

i is also
a function of time.

Now, let us consider the clock sidebands. At S/C i, the clock frequency
fnom
i + δfi is up-converted by a factor mi, which is about 40 − 50, and

modulated onto the carrier through an electro optical modulator (EOM).
Therefore, we have an upper clock sideband and a lower clock sideband as
follows

fUSB
i = f carrier

i + δf c
i +mi(f

nom
i + δfi), (4.17)

fLSB
i = f carrier

i + δf c
i −mi(f

nom
i + δfi). (4.18)

When received by S/C j, the Doppler effect and GWs are present[
f carrier
i + δf c

i ±mi(f
nom
i + δfi)

] [
1− (~vj − ~vi) · n̂ij

c

]
− fGW

ij . (4.19)

The clock sideband beatnote is obtained by beating this frequency with the
local clock sideband

f sidebandBN
ij (k) =

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij (k)

](
1− δfj(k)

fnom
j

)
+

[
mj(f

nom
j + δfj(k))−mi(f

nom
i + δfi(k))

(
1− (~vj − ~vi) · n̂ij

c

)]
·
(

1− δfj(k)

fnom
j

)
+ noise,

=

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij (k)

](
1− δfj(k)

fnom
j

)
+ [αjδfj(k)− αiδfi(k)] + (mjf

nom
j −mif

nom
i ) +mif

nom
i

(~vj − ~vi) · n̂ij
c

,

+ noise (4.20)
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where αi and αj are some known constants. Notice that we have neglected
some minor terms in the last step. For simulation purposes, we temporar-
ily ignore the constant term mjf

nom
j −mif

nom
i and the small Doppler term

mif
nom
i (~vj − ~vi) · n̂ij/c. Furthermore, we write αi and αj as a uniform up-

conversion factor m for simplicity. Then, we have the simplified formula

f sidebandBN
ij (k) =

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij (k)

](
1− δfj(k)

fnom
j

)
+ m(δfj(k)− δfi(k)) + noise. (4.21)

Up to now, we have formulated all the inter-spacecraft measurements in
Eqs. 4.12, 4.16 and 4.21.
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Chapter 5

Design a hybrid extended
Kalman filter for the entire
LISA constellation

5.1 Introduction

Previously, we have introduced the basic formulae of Kalman filter and for-
mulated the inter-spacecraft measurements of LISA. In this chapter, we in-
tend to design a Kalman filter for the entire LISA constellation. The basic
Kalman filter formulae only apply to discrete and linear systems. Since LISA
measurements are not linear and the dynamics of LISA is neither discrete
nor linear, we first introduce the so-called hybrid extended Kalman filter,
and then try to design such a Kalman filter for LISA.

5.2 The hybrid extended Kalman filter

The hybrid extended Kalman filter [125] is designed for a system with con-
tinuous and nonlinear dynamic equations along with nonlinear measurement
equations. First, we describe the model of such systems as follows

ẋ = f(x, t) + w(t) (5.1)

yk = hk(xk, vk) (5.2)

E[w(t)wT (t+ τ)] = Wcδ(τ) (5.3)

vk ∼ (0, Vk), (5.4)

where both the dynamic function f(x, t) and the measurement function
hk(xk) are nonlinear, w(t) is the continuous noise. As in previous chap-
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ters, x, f(x, t), w, yk, hk(xk), vk are column vectors. Wc,Wk are covariance
matrices. If we discretize the noise with a step size ∆t, we have

wk ∼ (0,Wk), (5.5)

where it can be proven that Wk = Wc(k∆t)/∆t. In order to fit Eqs. 5.1,
5.2, 5.3, 5.4 into the standard Kalman filter frame, we need to linearize and
discretize the formulae and solve the dynamic equation. Eq. 5.1 is expanded
to linear order in x0 as follows

ẋ ≈ f(x0, t0) +
∂f

∂x

∣∣∣∣
x0,t0

(x− x0) + w(t)

= f(x0, t0) + F (x0, t0)(x− x0) + w(t), (5.6)

where we have defined F (x0, t0) ≡ ∂f
∂x

∣∣
x0,t0

, and assumed ∂f
∂t
� 1. The

expectation of this linearized equation (where E[w(t)] = 0 is used) can be
solved exactly as follows

x(t2) = eF (x0,t0)∆tx(t1) +
[
eF (x0,t0)∆t − I

] [
F−1(x0, t0)f(x0, t0)− x0

]
,(5.7)

where ∆t = t2 − t1, and the matrix exponential is defined as

eF∆t ≡
+∞∑
n=0

(F∆t)n

n!
. (5.8)

Now, let us switch to the standard Kalman filter notation and denote x(t2), x(t1)
and F (x0, t0) as x̂−k , x̂

+
k−1 and Fk−1, respectively. Eq. 5.7 can be rewritten as

x̂−k = eFk−1∆tx̂+
k−1 + (eFk−1∆t − I)

[
F−1
k−1f(x0, t0)− x0

]
. (5.9)

Notice that x0 is a nominal trajectory, around which the Taylor expansion is
made. Based on the above solution, the propagation equation of the covari-
ance matrices is obtained

P−k = eFk−1∆tP+
k−1e

FTk−1∆t +Wk−1, (5.10)

where P−, P+ are the a priori and a posteriori covariance matrices as be-
fore. Alternatively, Eq. 5.6 can be solved approximately by converting the
differential equation to a difference equation. The corresponding formulae
are

x̂−k = (I + Fk−1∆t)x̂+
k−1 + [f(x0, t0)− Fk−1x0] ∆t, (5.11)

P−k = (I + Fk−1∆t)P+
k−1(I + Fk−1∆t)T +Wk−1. (5.12)
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The above two equations can also be obtained from the exact solutions by
replacing eFk−1∆t with I + Fk−1∆t. The advantage of these formulae is that
they are computationally less expensive. On the other hand, they are less
accurate. The measurement formula can be linearized similarly

yk = Hkxk + [hk(x̂
−
k , 0)−Hkx̂

−
k ] +Mkvk, (5.13)

where Hk ≡ ∂hk
∂x

∣∣
x̂−k
,Mk ≡ ∂hk

∂v

∣∣
x̂−k

. Now, the Kalman filter can be applied

without much effort. We summarize the hybrid extended Kalman filter for-
mulae for the model described by Eq. 5.1, 5.2, 5.3, 5.4 as follows:

1. Initialize the state vector and the covariance matrix

x̂+
0 , P

+
0 . (5.14)

2. Calculate the a priori estimate x̂−k from the a posteriori estimate x̂+
k−1

at the previous step, using the dynamic equation

ẋ = f(x, t). (5.15)

Use either of the following two formulae to update the covariance matrix

P−k = eFk−1∆tP+
k−1e

FTk−1∆t +Wk−1, (5.16)

P−k = (I + Fk−1∆t)P+
k−1(I + Fk−1∆t)T +Wk−1. (5.17)

3. Calculate the Kalman gain

Kk = P−k H
T
k (HkP

−
k H

T
k +MkVkM

T
k )−1. (5.18)

4. Correct the a priori estimate

x̂+
k = x̂−k +Kk[yk − hk(x̂−k , 0)], (5.19)

P+
k = (I −KkHk)P

−
k ,

= (I −KkHk)P
−
k (I −KkHk)

T +KkVkK
T
k . (5.20)
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5.3 Kalman filter model for LISA

In this section, we want to design a hybrid extended Kalman filter for LISA.
First, we define a 24-dimensional column state vector

x = (~x1, ~x2, ~x3, ~v1, ~v2, ~v3, δT1, δT2, δT3, δf1, δf2, δf3)T , (5.21)

where ~xi = (xi, yi, zi)
T are the S/C positions, ~vi = (vxi, vyi, vzi)

T are the S/C
velocities, δTi and δfi are the clock jitters and frequency jitters, i = 1, 2, 3
is the S/C index. Please note the difference between the state vector xk,
the measurements yk and the position components (xi, yi, zi), since the latter
index is the S/C label and can only take three values 1, 2, 3. For convenience,
we rewrite the measurement formulae derived in previous chapters. The
ranging measurements from S/C i to S/C j are

Rij = Lij + (δTj − δTi)c+ nRij

=
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 + (δTj − δTi) · c+ nRij,

(5.22)

where nRij is the ranging measurement noise. The Doppler measurements are
denoted as Dij,

Dij =

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij

](
1− δfj

fnom
j

)
+ nDij ,

(5.23)

where nDij is the Doppler measurement noise. Since the sideband measure-
ments contain the same information as the Doppler measurements, in addi-
tion the amplified differential clock jitters, we take the difference. Then, we
divide both sides of the equation by the up-conversion factor m and denote
it as the clock measurements Cij.

Cij = δfj − δfi + nCij, (5.24)

where nCij is the corresponding measurement noise, and the up-conversion
factor m has already been absorbed into nCij. Altogether, we have 18 mea-
surement formulae, summarized in the 18-dimensional column measurement
vector

y = h(x, v),

= (R31, D31, C31, R21, D21, C21, R12, D12, C12, ...

R32, D32, C32, R23, D23, C23, R13, D13, C13)T , (5.25)
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where v is the measurement noise. The 18-by-24 matrix Hk and the 18-
by-18 matrix Mk can thus be calculated analytically. We omit the explicit
expressions of the 432 components in Hk here. As an example, we show the
[1, 1] component of Hk omitting the step index k as follows

H[1, 1] =
∂R31

∂x1

=
x1 − x3√

(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2
. (5.26)

As for Mk, if the dependence of the measurements yk on the noise is linear
and without cross coupling, it is simply an identity matrix.

Next, we want to construct the dynamic model for the Kalman filter. Let
us consider the solar system dynamics for a single S/C. To Newtonian order
the solar system dynamics can be written as∑

i

GMi

r3
i

~ri = ~̈x (5.27)

where ~x is the position of one LISA S/C, Mi, ~xi are the mass and the coordi-
nates of the ith celestial body (the Sun and the planets) in the solar system,
~ri = ~xi − ~x is a vector pointing from that S/C to the ith celestial body,
ri = |~xi − ~x|. The dynamic equation can be written in a different form

d

dt

[
~x
~v

]
= f(~x,~v)

=

[
~v∑

iGMi(~xi − ~x)/r3
i

]
. (5.28)

We denote θ = (~x,~v)T , thus

F =
∂f

∂θ
=

[
O3 I3

A O3

]
, (5.29)

where O3 denotes a 3-by-3 zero matrix, I3 denotes a 3-by-3 identity matrix,
and the 3-by-3 matrix A is defined as follows

A = −
∑
i

GMi

r3
i

I3 +
∑
i

3GMi

r5
i

(~xi − ~x)(~xi − ~x)T . (5.30)

The dynamic equation for the clock jitters and frequency jitters depends on
the specific clock and how well we characterize the clock. A simple dynamic
model is shown as follows

d

dt

[
δT
δf

]
=

[
δf/fnom

0

]
, (5.31)
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where δT, δf denote clock jitters and frequency jitters. For the whole LISA
constellation, the dynamic matrix F = ∂f

∂x

∣∣ is 24-by-24. We omit its explicit
expression here, since it can be obtained straightforwardly from the above
formulae.

5.4 Simulation results

We simulated LISA measurements of about 1400 seconds with a sampling
frequency of 3 Hz. Since there are only two independent clock biases out of
three, we set one clock bias to be zero, thus defining this clock as reference.
The other two initial clock biases are randomly drawn from a Gaussian dis-
tribution with a standard deviation of 0.1 s. This would in turn cause a bias
of about 4.2 × 107 m in the ranging measurements. The (unknown) initial
frequency offset of each USO is randomly drawn from a Gaussian distribu-
tion with a standard deviation of 1 Hz. The frequency jitter of each USO
has a linear spectral density (9.2× 10−6Hz/f) Hz/

√
Hz. Additionally, we as-

sume the ranging measurement noise to be white Gaussian with a standard
deviation of 1 m. The linear spectral density of the pre-stabilized laser is
assumed to be 400 Hz/

√
Hz. ( The noise of the Doppler measurement is as-

sumed to be white Gaussian with a standard deviation of 1 kHz. ) The clock
measurement noise is white Gaussian with a standard deviation of 1 Hz.

We show the scatter plots of the measurements Rij, Dij, Cij in Figs. 5.1,
5.2, 5.3 and 5.4. Notice that the average of all the measurements has been
removed in the plots for clarity. Fig. 5.1 is a scatter plot of the clock mea-
surements Cij. The frequency drifts within 1400 s are much smaller than the
clock measurement noise. Thus, they are buried in the uncorrelated clock
measurement noise in the plot. The diagonal histograms show that each
clock measurement channel behaves like Gaussian noise during short obser-
vation times. The off-diagonal scatter plots are roughly circular scattering
clouds, showing that different clock measurement channels are roughly un-
correlated within short times. Unlike clock measurements, scatter plots of
Doppler measurements in Fig. 5.2 exhibit elliptical clouds. This is because
the Doppler shift whin 1400 s is sizable, which leads to the trend in the plot.
The slope of the major axis of the ellipse indicates whether the two Doppler
measurement channels are positively correlated or anti-correlated. The re-
al armlength variation is much larger than the ranging measurement noise.
Therefore, we see only lines in the off-diagonal plots in Fig. 5.3, which mainly
show the armlength changes. The ranging measurement noise is too small
compared to the armlength change to be visible in the plot. Fig. 5.4 shows
scatter plots of different measurements Cij, Dij, Rij. It is seen from the plot
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Figure 5.1: Scatter plot of clock measurements Cij.

that ranging measurements are correlated with Doppler measurements, but
neither of them are correlated with clock measurements.

We then apply our previously designed hybrid extended Kalman filter to
these measurements. The progress of the Kalman filter can be characterized
by looking at the uncertainty propagation. Fig. 5.5 shows a priori covariance
matrices at different steps k = {1, 2, 5, 10, 50}. The absolute value of each
component of the covariance matrix is represented by a color. The color map
indicates the magnitude of each component in logarithmic scale. The first
covariance matrix P−1 is diagonal, since we do not assume prior knowledge
of the off-diagonal components. As the filter runs, the off-diagonal compo-
nents emerge automatically from the system model, which can be seen from
Fig. 5.5. The initial uncertainties are relatively large. In fact, the initial
positions are known only to about 20 km through the deep space network
(DSN). The uncertainties are significantly reduced after taking into accoun-
t the precise inter-spacecraft measurements. However, the uncertainties are
not being reduced continuously. Instead, they stay roughly at the same level.
This is because there are only 18 measurements at each step, whereas there
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Figure 5.2: Scatter plot of Doppler measurements Dij. Unlike clock mea-
surements, scatter plots of Doppler measurements exhibit elliptical clouds.
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Figure 5.3: Scatter plot of ranging measurements Rij. The armlength vari-
ation is much larger than the ranging measurement noise. Therefore, we
see only lines in the off-diagonal plots, which mainly show the armlength
changes. The ranging measurement noise is too small compared to the arm-
length change to be visible in the plot.
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Figure 5.4: Scatter plot of different measurements Cij, Dij, Rij. Ranging
measurements are correlated with Doppler measurements, but neither of
them are correlated with clock measurements.
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are 24 variables in the state vector to be determined. There is not enough
information to precisely determine every variable in the state vector.

Similar behavior can be observed from the a posteriori covariance matrices
in Fig. 5.6, where the uncertainties also roughly stay at the same level. By
comparing Fig. 5.6 with Fig. 5.5, we find that the uncertainties are only
slightly reduced from P−k to P+

k with the help of the measurements yk. This
is again because there are fewer measurements than variables in the state
vector. Seemingly, this hybrid extended Kalman filter does not work well.
However, our aim is actually to reduce the noise in the measurements. Let
us denote the Kalman filter estimate of the measurements yk as ŷk, which
can be calculated from the a posteriori state vector as follows

ŷk = Hkx̂
+
k . (5.32)

It is easy to show that the estimation error of yk can be expressed as
HkP

+
k H

T
k , which is shown in Fig. 5.7. Notice that the color bar shrinks

with steps. It is apparent that estimation errors of the measurements are
significantly reduced by the hybrid-extended Kalman filter. This is what is
expected, since the number of the measurements yk is now the same as the
number of variables ŷk to be estimated in this case.

Detailed simulation results are shown in Fig. 5.8, 5.9, 5.10. Fig. 5.8 (a)
shows a comparison of true armlengths, raw arm-length measurements and
Kalman filter estimates during a short time. The initial clock bias in the raw
arm-length measurements is not included in this figure, otherwise the raw
arm-length measurements are out of scope of the figure. The armlength vari-
ations due to the orbital dynamics are much larger than the residual measure-
ment noise (excluding the initial clock bias). Thus, the three curves appear
very close to each other. It still can be seen that the Kalman filter estimates
are closer to the true arm-length curve. Fig. 5.8 (b) exhibits histograms of
errors of raw armlength measurements and Kalman filter estimates, where
the deviations of both raw arm-length measurements (excluding the initial
clock bias) and the Kalman filter estimates from the true armlengths are
shown. The designed Kalman filter has not only decoupled the arm length-
s from the clock biases, but also reduced the measurement noise by more
than one order of magnitude to the centimeter level. This precise arm-length
knowledge is necessary to allow excellent performance of TDI techniques,
which subsequently permits optimal extractions of the science information
from the measurement data.

Fig. 5.9 (a) shows typical results of estimates of relative clock jitters and
biases, where the blue curve stands for the raw measurements, the green curve
exhibits the true time difference between the clock in S/C 1 and S/C 2, the
red curve plots the Kalman filter estimates of the clock time differences. It is
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(a) P−
1 . (b) P−

2 .

(c) P−
5 . (d) P−

10.

(e) P−
50.

Figure 5.5: A priori covariance matrices P−k at different steps. The absolute
value of each component of the covariance matrix is represented by a color.
The color map indicates the magnitude of each component in logarithmic
scale ln(|P−k |).
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(a) P+
1 . (b) P+

2 .

(c) P+
5 . (d) P+

10.

(e) P+
50.

Figure 5.6: Posteriori matrices P+
k at different steps. The absolute value

of each component of the covariance matrix is represented by a color. The
color map indicates the magnitude of each component in logarithmic scale.
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(a) Step 1. (b) Step 2.

(c) Step 5. (d) Step 10.

(e) Step 50.

Figure 5.7: The estimation error of the measurements, HkP
+
k H

T
k at different

steps. The absolute value of each component is represented by a color. The
color map indicates the magnitude of each component in logarithmic scale.
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clear from the figure that the Kalman filter estimates resemble the true values
quit well. Fig. 5.9 (b) shows the deviations of the raw measurements and the
Kalman filter estimates from the true values in histograms. Notice that the
standard deviations in the legend have been converted to equivalent lengths.
It is apparent that the designed Kalman filter has reduced the measurement
noise by about an order of magnitude. These accurate clock jitter estimates
enable us to correct the clock jitters in the postprocessing step. Hence, it
potentially allows us to use slightly poorer clocks, yet still achieving the same
sensitivity. This would potentially help reduce the cost of the mission.

Fig. 5.10 (a) shows the raw measurements, Kalman filter estimates and
the true values of frequency differences between the USO in S/C 1 and the
USO in S/C 2. The Kalman filter estimates are so good that they overlap
with the true values. Fig. 5.10 (b) exhibits a zoomed-in plot of Fig. 5.10
(a). The true USO frequency differences and the Kalman filter estimates can
clearly be seen in this figure. Fig. 5.10 (c) shows the histograms of the devia-
tions of the raw measurements and the Kalman filter estimates from the true
values. With the help of the designed Kalman filter, the measurement noise
has been reduced by 3-4 orders of magnitude. As shown in previous chapters,
frequency jitters are directly related to the first differential of the clock drifts.
Therefore, such precise estimates of the USO frequency differences will allow
a very accurate tracking of the relative clock drifts.

(a) (b)

Figure 5.8: Arm-length plots. Fig. (a) shows a comparison of true arm-
lengths, raw arm-length measurements and Kalman filter estimates during
short time. Fig. (b) exhibits histograms of errors of raw armlength mea-
surements and Kalman filter estimates, where the deviations of both raw
arm-length measurements (excluding the initial clock bias) and the Kalman
filter estimates from the true armlengths are shown.
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(a) (b)

Figure 5.9: Plots of relative clock jitter and biases. Fig. (a) shows typical
results of estimates of relative clock jitters and biases. Fig. (b) shows the
deviations of the raw measurements and the Kalman filter estimates from
the true values in histograms. Notice that the standard deviations in the
legend have been converted to equivalent lengths.

5.5 Discussions

We have modeled LISA inter-spacecraft measurements and designed a hybrid-
extended Kalman filter to process the raw measurement data. In the designed
Kalman filter model, there are 24 variables in the state vector and 18 vari-
ables in the measurement vector. Simulations show that our hybrid-extended
Kalman filter can well decouple the arm lengths from the clock biases and
significantly improve the relative measurements, such as arm lengths, relative
clock jitters and relative frequency jitters etc. However, the absolute vari-
ables in the state vector cannot be determined accurately. These variables
include the absolute positions and velocities of the spacecraft, the absolute
clock drifts and the absolute frequency drifts. This is mainly due to the fact
that only the differences are measured and the number of measurements is
lower than the number of variables in the state vector.

It can be better understood by taking a closer look at the measure-
ment equations 5.22, 5.23 and 5.24. In fact, only the relative positions√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 and the relative longitudinal velocities
(~vj − ~vi) · n̂ij appear in the measurements. Neither absolute positions nor
absolute velocities are directly measured. Thus, it is impossible to fully con-
strain the entire LISA configuration only with these inter-spacecraft mea-
surements. The clock jitters only appear in Eq. 5.22 in the form of δTj− δTi,
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(a) (b)

(c)

Figure 5.10: Plots of USO frequency differences. Fig. (a) shows the raw
measurements, Kalman filter estimates and the true values of frequency d-
ifferences between the USO in S/C 1 and the USO in S/C 2. The Kalman
filter estimates are so good that they overlap with the true values. Fig. (b)
is a zoomed-in plot of Fig. (a). The true USO frequency differences and the
Kalman filter estimates can clearly be seen in this figure. Fig. (c) shows the
histograms of the deviations of the raw measurements and the Kalman filter
estimates from the true values.
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which means the common clock drifts are undetermined. The relative USO
frequency jitters δfj − δfi are measured in Eq. 5.24. The absolute USO fre-
quency jitters δfj appear in Eq. 5.23. However, δfj/f

nom
j is far less than 1,

hence Eq. 5.23 can provide only very limited information about δfj. As a
result, the absolute USO frequency jitters δfj are poorly determined.

5.6 Supplementary A: A limitation on the

common clock drift

As mentioned before, the relative clock drifts can be estimated very accu-
rately, whereas the common clock drift cannot be determined. This would
result in errors in the time labels of the measurements. The errors in the
time labels will introduce modulations to GW signals, hence they may affect
the detection and the parameter estimation of GW signals. In this appendix,
we try to estimate this effect and to set a limit on the permissible common
clock drifts.

We define a quantity σT (τ) to characterize the timing stability

σT (τ) =

√
1

2τ 2
〈(δT (k + 1)− δT (k))2〉, (5.33)

where τ is the nominal time increment between the sample k and the sample
k + 1. Notice that this is different from the Allan variance [139]

σ2
A(τ) =

1

2

〈(
δf(k + 1)

fnom
− δf(k)

fnom

)2
〉

=
1

2τ 2
〈(δT (k + 2)− 2δT (k + 1) + δT (k))2〉, (5.34)

which characterizes the frequency stability of the clock.
For a GW signal with frequency fGW and a total observation time Tobs,

if the mismatch caused by the common clock drift is less than ε cycle, the
effect on physical data analysis is negligible. Thus, we have a limitation on
the common clock drift

σT (τ)fGWTobs < ε. (5.35)

For physical data analysis concern, a sampling time of τ = 1 s will suffice.
By considering the worst scenario, we take fGW = 0.1 Hz, Tobs = 108 s and
ε = 0.1, hence the timing stability should satisfy σT (1) < 10−8.
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5.7 Supplementary B: A proof of the opti-

mality

In the Kalman filter derivation, the Kalman gain Kk is chosen such that the
estimation error tr(P+

k ) in the state vector is minimized. However, in the
LISA case we are interested in reducing the noise in the measured variables
rather than reducing the uncertainties in the state vector. Hence, the optimal
filter in this case should minimize the estimation error in the measurements
yk.

In this appendix, we prove that minimizing the estimation error in the
state vector xk is equivalent to minimizing the estimation error in yk to
the linear order. As shown in previous sections, the estimation error in
yk is tr(HkP

+
k H

T
k ) in the linearized model. To minimize the trace of this

covariance matrix, we have

∂[tr(HkP
+
k H

T
k )]

∂Kk

=
∂[tr(HT

k HkP
+
k )]

∂Kk

=
∂{tr[HT

k Hk(I −KkHk)P
−
k (I −KkHk)

T +HT
k HkKkVkKk]}

∂Kk

.

= 0 (5.36)

To be concise, we omit the step index k and use the subscripts for the com-
ponent indices.

∂{tr[HTH(I −KH)P−(I −KH)T ]}
∂K

=
∂{tr[HT

niHij(Ijl −KjkHkl)P
−
lm(I −KH)Tmn]}

∂Kab

=
∂{tr[HinHij(Ijl −KjkHkl)P

−
lm(Inm −KncHcm)]}

∂Kab

= HinHij(−δajδbkHkl)P
−
lm(Inm −KncHcm) +HinHij(Ijl −KjkHkl)P

−
lm(−δanδbcHcm)

= −HT
aiHin(I −KH)nmP

−T
ml H

T
lb −HT

aiHij(I −KH)jlP
−
lmH

T
mb

= −2HTH(I −KH)P−HT , (5.37)

where we have adopted Einstein summation convention and used the fact
that P+ is symmetric. Similarly, we have

∂{tr(HTHKVK)}
∂K

= 2HTHKV. (5.38)
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By putting back the step index k, we have

0 =
∂[tr(HkP

+
k H

T
k )]

∂Kk

= 2HT
k Hk[KkVk − (I −Kkhk)P

−
k H

T
k ]. (5.39)

The Kalman gain is then solved as follows

Kk = P−k H
T
k (HkP

−
k H

T
k + Vk)

−1, (5.40)

which is the same as what we have used.
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Chapter 6

Alternative Kalman filter
models

6.1 Introduction

In the last chapter, we have designed a hybrid-extended Kalman filter to pre-
process LISA raw measurements. The noise in the measurements has been
significantly reduced by the filter. The initial clock biases have been decou-
pled from the arm lengths. However, the state vector cannot be determined
well due to the insufficient number of measurements. In this chapter, we
will explore alternative Kalman filter models to reduce the ambiguity in the
state vector, while using the same measurements. We investigate in detail
how different Kalman filter models affect the accuracy of the estimates.

6.2 A Kalman filter model with a 23 dimen-

sional state vector

As mentioned in the last chapter, the initial clock biases δTi appear in the
measurement equations only in the form of time difference δTj − δTi. There-
fore, the absolute clock biases δTi cannot be determined. To eliminate this
degeneracy in the Kalman filter model, we replace the three clock bias vari-
ables δT1, δT2 and δT3 by two time difference variables δT1−δT2 and δT2−δT3.
Hence, the state vector is now a 23-dimensional column vector

x = (~x1, ~x2, ~x3, ~v1, ~v2, ~v3, δT1 − δT2, δT2 − δT3, δf1, δf2, δf3)T , (6.1)

where ~xi = (xi, yi, zi)
T are the S/C positions, ~vi = (vxi, vyi, vzi)

T are the S/C
velocities, δTi and δfi are the clock jitters and frequency jitters, i = 1, 2, 3
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is the S/C index as before. The third initial clock bias difference δT1 − δT3

can be expressed as (δT1− δT2) + (δT2− δT3). The dynamic equation for the
clock biases can simply be modified as

d

dt
(δTj − δTi) =

δfj
fnom
j

− δfi
fnom
i

. (6.2)

The dynamic matrix Fk and the observation matrix Hk are then modified
accordingly.

We carried out simulations to compare the performance of this Kalman
filter model with the performance of the model designed in the previous
chapter with a 24-dimensional state vector. The two filters have been run
over the same simulated measurement data. Fig. 6.1 shows a comparison of
the arm length determination between the two Kalman filter models. It can
be seen that the performance of the two Kalman filter models is comparable
in determining the arm lengths. Both models can successfully decouple the
arm lengths from the initial clock biases and reduce the noise in the arm-
length roughly by one order of magnitude. Notice that the performance of
a Kalman filter depends on the specific noise realization. Therefore, a small
difference between the two models in the estimation error is not significant.
Fig. 6.2 shows histograms of estimation errors in relative clock jitters. Both
models are able to reduce the noise in the relative clock jitters roughly by an
order. The Kalman filter model with a 23-dimensional state vector performs
slightly better. Fig. 6.3 shows histograms of estimation errors in relative USO
frequency jitters. Both Kalman filter models have greatly reduced the noise
in the raw measurements. The performances turn out to be comparable.

All in all, the Kalman filter model with a 23-dimensional state vector
designed in this section performs slightly better than the model with a 24-
dimensional state vector. The reason is that the Kalman filter model with
a smaller state vector has reduced the ambiguity in the system model, while
retaining the full information on the measurement mechanism.

6.3 A Kalman filter model with a 22 dimen-

sional state vector

In this section, we try to simplify the state vector further. From the sim-
ulation, we know that the absolute frequency jitters cannot be determined
accurately. The only information about the absolute frequency jitters comes
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(a) (b)

Figure 6.1: A comparison of the arm length determination. Fig. (a) shows
histograms of errors in raw arm-length measurements and Kalman filter es-
timates with a 24-dimensional state vector. Fig. (b) shows histograms of
errors in raw arm-length measurements and Kalman filter estimates with
a 23-dimensional state vector. Notice that the initial clock biases are not
included in the raw measurement errors for better vision.

(a) (b)

Figure 6.2: Histograms of estimation errors in relative clock jitters. Fig. (a)
shows histograms of errors in the raw data and Kalman filter estimates with
a 24-dimensional state vector. Fig. (b) shows histograms of errors in the raw
data and Kalman filter estimates with a 23-dimensional state vector.
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(a) (b)

Figure 6.3: Histograms of estimation errors in relative USO frequency jit-
ters. Fig. (a) shows histograms of errors in the raw data and Kalman filter
estimates with a 24-dimensional state vector. Fig. (b) shows histograms of
errors in the raw data and Kalman filter estimates with a 23-dimensional
state vector.

from the term 1− δfj/fnom
j of the following measurement equation

Dij =

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij

](
1− δfj

fnom
j

)
+ nDij .

(6.3)

Usually, δfj/f
nom
j is several orders of magnitude smaller than 1, thus term

provides very limited information about the absolute frequency jitters of the
USOs. As we mentioned before, this is the reason why the absolute frequency
jitters cannot be determined accurately.

We can actually approximate this term by 1 without losing much infor-
mation. Then, the Doppler measurement equation becomes

Dij
.
=

[
f carrier
j − f carrier

i

(
1− (~vj − ~vi) · n̂ij

c

)
+ fGW

ij

]
+ nDij . (6.4)

Now, in all the three inter-spacecraft measurement equations 5.22, 6.4 and
5.24 the frequency jitters only appear in the form of frequency difference
δfj − δfi. Therefore, we can replace the three frequency jitter variables δfi
by two frequency difference δf1 − δf2 and δf2 − δf3. The state vector is
correspondingly reduced to 22 dimensions:

x = (~x1, ~x2, ~x3, ~v1, ~v2, ~v3, δT1 − δT2, δT2 − δT3, δf1 − δf2, δf2 − δf3)T .

(6.5)
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The dynamic model for the clock jitters and the frequency jitters is approx-
imated as follows

d

dt

[
δTj − δTi
δfj − δfi

]
=

[
2(δfj − δfi)/(fnom

j + fnom
i )

0

]
. (6.6)

The main advantages of this Kalman filter model are (i) the reduction of the
near degeneracy in the system model, (ii) the reduction of the nonlinearity
in the measurement equations. On the other hand, the use of approximate
measurement equations could also be disadvantageous at the same time.

We implement this Kalman filter model to process the same simulated
measurement data used in the last section. We have set the nominal fre-
quencies of the USOs in different S/C to be identical in the simulation, i.e.
fnom
j = fnom

i . If the nominal frequencies are not identical, the performance of
this Kalman filter model would be degraded depending on how different the
nominal frequencies are. The simulation results are summarized in Fig. 6.4,
where the estimation errors in the arm lengths, clock jitters and USO fre-
quency jitters are shown. Comparing these results with Fig. 6.1, 6.2 and
6.3, we find that the estimation errors of this model in the arm lengths are
slight larger than those of the other two Kalman filter models. However, this
Kalman filter model performs slightly better than the other two models in
determining the clock jitters. Overall, the performances are similar.

6.4 A simplified Kalman filter model with on-

ly clock variables

In this section, we show a greatly simplified Kalman filter model only for the
USOs. The main benefits from such a model are the simplicity of the linear
mathematical model and the efficient implementation. On the other hand,
this model is accurate only when the inter-spacecraft laser links are instan-
taneous, hence not straightforward to be generalized to the full-relativistic
treatment with relativistic inter-spacecraft delays. At any rate, in this model
we need not to deal with large matrices with hundreds of nonlinear compo-
nents but only small constant matrices.

Let us first define a 4-dimensional state vector

x =


δT1 − δT2

δT2 − δT3

δf1 − δf2

δf2 − δf3

 ≡

x1

x2

x3

x4

 , (6.7)
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(a) (b)

(c)

Figure 6.4: Simulation results of the Kalman filter model with a 22-
dimensional state vector. Fig. (a) histograms of errors in raw arm-length
measurements and Kalman filter estimates. Fig. (b) shows histograms of
errors in the clock jitters. Fig. (c) shows histograms of errors in the USO
frequency jitters.
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which consists of only the relative clock jitters and the relative USO frequency
jitters. The dynamic equations can be simply modeled as

d

dt


x1

x2

x3

x4

 =


x3/f

nom

x4/f
nom

0
0

+ noise, (6.8)

where we have assumed the nominal frequencies of the three USOs are identi-
cal, i.e. fnom

i = fnom. Since these dynamic equations are linear, the dynamic
matrix is simply

F =
∂f

∂x
=


0 0 1/fnom 0
0 0 0 1/fnom

0 0 0 0
0 0 0 0

 . (6.9)

Next, let us look into the measurement equations. For instantaneous laser
links, the relative clock jitters can be obtain in the following way

δTj − δTi =
1

2c
(Rij −Rji − nRij + nRji), (6.10)

where the ranging measurements Rij are given in Eq. 5.22. The relative USO
frequency jitters are indirectly inferred by the modified clock measurements,
see Eq. 5.24. As mentioned before, the Doppler measurements (see Eq. 5.23)
contain little information on the frequency jitters, hence for this Kalman
filter model with only clock variables they are nearly irrelevant. Therefore,
the measurement equations are simplified to the following linear form

y =


δT1 − δT2

δT2 − δT3

δT3 − δT1

δf1 − δf2

δf2 − δf3

δf3 − δf1

+ noise =


x1

x2

−x1 − x2

x3

x4

−x3 − x4

+ noise, (6.11)

which leads to a constant measurement matrix

H =
∂y

∂x
=


1 0 0 0
0 1 0 0
−1 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 −1

 . (6.12)
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We implement the above simplified Kalman filter model to process the
same simulated measurement data used in previous sections. The simulation
results are shown in Fig. 6.5. It can be seen that in the considered case the
simplified Kalman filter has significantly reduced the noise in the relative
clock jitters and greatly reduced the noise in the relative USO frequency
jitters. Comparing these results with Fig. 6.2, 6.3 and 6.4, the performance
of this simplified Kalman filter is a few times worse than other Kalman filter
models in determining the relative clock jitters and about ten times worse in
determining the relative USO frequency jitters.

(a) (b)

Figure 6.5: Simulation results of the simplified Kalman filter model with
only clock variables. Fig. (a) shows histograms of errors in the relative clock
jitters. Fig. (b) shows histograms of errors in the relative USO frequency
jitters.

6.5 Summary

In this chapter, we have designed and tested several alternative Kalman filter
models. The Kalman filter models with 24-dimensional, 23-dimensional and
22-dimensional state vectors are comparable in reducing the measurement
noise. The greatly simplified Kalman filter model with only clock variables
performs a few times worse than the other filters as expected. All the filter
models have successfully and significantly reduced the measurement noise.
Each Kalman filter model has its own advantages and disadvantages. One
should select the proper one for the specific case.
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Chapter 7

Broken laser links and
robustness

7.1 Introduction

In previous chapters, we have described LISA inter-spacecraft measurements
and designed several hybrid-extended Kalman filter models to process the raw
measurements of the classic LISA configuration. Simulations showed that the
designed filters are able to reduce the measurement noise significantly, hence
precisely determining the arm lengths and the relative clock drifts.

In this chapter, we will look into two issues. (i). The Kalman filter mod-
els designed in previous chapters assume all the six laser links of the classic
LISA concept are functioning properly all the time. However, in case of im-
proper performances of some laser links, what could we do? The improper
performances during some certain time period refer to much more noisy mea-
surements than required or even a breakdown of some laser link. Although
these situations are unexpected to happen in practice, a successful treatmen-
t of this issue will significantly increase the robustness of the whole LISA
project. The solution will also be directly applicable to eLISA by assuming
two laser links of the classic LISA to be broken. (The arm length difference
is inconsequential.) (ii). The dynamic range of the simulation is very large.
For example, the distance from the S/C to the sun is 1.5× 1011 m, which is
13 orders of magnitude larger than the arm length accuracy we finally reach
via data processing. Moreover, Kalman filters usually rely on propagating
of different covariance matrices, which essentially square the dynamic range.
For the LISA problem, there are many variables that differ from each other
by many orders of magnitude. Unfortunately, there is no way to rescale all
the variables to have them with comparable values, since there are four type-
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s of variables (i.e. positions, velocities, time, and frequency), but only two
physical dimensions (i.e. [m] and [s]). Therefore, the four types of variables
are essentially dependent. Rescaling one type of variables would rescale other
types of variables accordingly, leaving the dynamic range unchanged. The
large difference in orders of magnitude between different components of the
covariance matrices results in large condition numbers, which cause numeri-
cal instabilities and errors. Therefore, it is important to reduce the condition
number. We try to address these problems to enhance the robustness of the
algorithms via the square root Kalman filter formulation.

7.2 Sequential Kalman filtering

7.2.1 Sequential Kalman filter formulation

By its name, the sequential Kalman filter [125] proposes to process the mea-
surement data one after another. It requires the covariance matrix of the
measurement noise to be diagonal, which we denote as

Vk = diag(V1k, V2k, . . . ). (7.1)

When this requirement is satisfied, the set of measurements yk at step k are
essentially independent. Hence, we can view each datum yik in yk as a single
measurement. The measurement equation then becomes

yik = Hikxk + vik. (7.2)

By replacing the standard measurement equation with this single-datum
measurement equation, we obtain the so-called sequential Kalman filter,
which only processes one measurement at a step. One other advantage of
the sequential Kalman filter is that this formulation requires no matrix in-
version in the calculation. Moreover, this formulation easily accommodates
individual measurements that are corrupt or broken.

We summarize the sequential Kalman filter formulations as follows:

1. Initialize the state vector and the covariance matrix

x̂+
0 , P

+
0 . (7.3)

2. Calculate the a priori estimate x̂−k from the a posteriori estimate x̂+
k−1

at the previous step, using the dynamic equation

ẋ = f(x, t). (7.4)
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Use either of the following two formulae to update the covariance matrix

P−k = eFk−1∆tP+
k−1e

FTk−1∆t +Wk−1, (7.5)

P−k = (I + Fk−1∆t)P+
k−1(I + Fk−1∆t)T +Wk−1. (7.6)

3. Initialize the posteriori state vector and the covariance matrix as

x̂+
0k = x̂−k (7.7)

P+
0k = P−k (7.8)

4. Process each measurement datum yik (i = 1, 2, . . . , l) one after another
at the step k

Kik =
P+
i−1,kH

T
ik

HikP
+
i−1,kH

T
ik + Vik

(7.9)

x̂+
ik = x̂+

i−1,k +Kik[yik − hik(x̂+
i−1,k)] (7.10)

P+
ik = (I −KikHik)P

+
i−1,k (7.11)

5. Set the posteriori state vector and covariance matrix after processing
a set of measurements yk as

x̂+
k = x̂+

lk (7.12)

P+
k = P+

lk (7.13)

7.2.2 Classic LISA with broken links, eLISA-like con-
figuration, and GRACE-like configuration

In this section, we apply the sequential Kalman filter described in the last sec-
tion to the classic LISA with broken laser links. As special cases, eLISA-like
configuration (i.e. with only two arms, or four laser links) and GRACE-like
configuration (i.e. with only one arm, or two laser links) are also consid-
ered. In the simulation, the standard LISA arm length is used for these two
special configurations. That is why they are referred to as eLISA-like and
GRACE-like. Still, the simulation results could justify the principles and
show potentials of the designed algorithms for these two missions. At any
rate, we will see how the missing links would affect the Kalman filter esti-
mates. The inter-spacecraft measurements for each laser link are similar to
that used in previous chapters. The difference is that we sometimes only use
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parts of the laser links in this section instead of all the six laser links. For
clarity, all the histograms of estimation errors in this section are for the laser
link from S/C 2 to S/C 1, namely (a) the relative clock jitters δT1− δT2, (b)
the arm length L21, and (c) the relative frequency jitters δf1 − δf2.

First, we apply the sequential Kalman filter to the standard LISA, with
all the six laser links working properly. The simulation results are shown
in Fig. 7.1. For comparison, the estimation errors of the hybrid-extended
Kalman filter applying to the same measurement data are shown in Fig. 7.2.
Apparently, both algorithms have accurately estimated the relative clock jit-
ters, the arm lengths and the relative frequency jitters. In this case, the
performances of the two algorithms are very similar. On one hand, the
hybrid-extended Kalman filter is able to deal with the cross-correlations be-
tween the noise of different measurements, which has been ignored by the
sequential Kalman filter. On the other hand, the sequential Kalman filter
algorithm has avoided the matrix inversion, which helps increase numerical
accuracies, especially when the condition number of the matrix is large.

Next, we consider the situation when one laser link of LISA is broken or
too noisy to be used. This can be classified into two cases: how a broken laser
link affects the estimates of the inter-spacecraft measurements in a different
arm, and how a broken laser link affects the estimates of the inter-spacecraft
measurements in the same arm. The simulation results for these two cases
are shown in Fig. 7.3 and Fig. 7.4, respectively. From Fig. 7.3 we see that
a single missing laser link in a different arm hardly affects the estimates of
the inter-spacecraft measurements. However, Fig. 7.4 tells us that a missing
laser link in the same arm significantly affects the estimates of the relative
clock jitters and the arm lengths. The estimation errors in the clock jitters
are about 25 percent larger, and the estimation errors in the arm lengths
about twice larger. This is reasonable, since the laser link in the same arm
directly measures the quantities to be estimated.

In principle, the situation when two laser links are shut down can be
classified into four cases: (i). the two broken laser links are in one arm,
which is different from the arm to be estimated, (ii). the two broken laser
links are in two different arms, while neither arm is the one to be estimated,
(iii). the two broken laser links are in two different arms, one of which is the
arm to be estimated, and (iv). the two broken laser links are in one arm,
which is the arm to be estimated. The last case is not interesting, since we
need to estimate the arm length (or the delay time) for the TDI techniques,
which requires there is a laser link in the same arm in the first place.

The simulation results for the first three cases are respectively shown in
Fig. 7.5, 7.6 and 7.7. Among them, Fig. 7.5 shows the estimation errors
for the eLISA-like configuration, where the arm between S/C 2 and S/C 3
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(a) (b)

(c)

Figure 7.1: Histograms of sequential Kalman filter estimation errors in (a)
relative clock jitters (b) arm lengths and (c) relative frequency jitters for the
laser link from S/C 2 to S/C 1, given that all laser links are working properly.
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(a) (b)

(c)

Figure 7.2: Histograms of hybrid-extended Kalman filter estimation errors
in (a) relative clock jitters (b) arm lengths and (c) relative frequency jitters
for the laser link from S/C 2 to S/C 1, given that all laser links are working
properly.
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(a) (b)

(c)

Figure 7.3: Histograms of sequential Kalman filter estimation errors in (a)
relative clock jitters (b) arm lengths and (c) relative frequency jitters for the
laser link from S/C 2 to S/C 1, when the laser link from S/C 3 to S/C 2 is
broken.
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(a) (b)

(c)

Figure 7.4: Histograms of sequential Kalman filter estimation errors in (a)
relative clock jitters (b) arm lengths and (c) relative frequency jitters for the
laser link from S/C 2 to S/C 1, when the laser link from S/C 1 to S/C 2 is
broken.
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is missing. Compared to Fig. 7.1, we find that the relative clock jitter esti-
mates for the eLISA-like configuration is slightly better, while the arm length
estimates for the eLISA-like configuration is slightly worse. Overall, the two
performs similarly. This implies the designed Kalman filter algorithms can
also help estimate inter-spacecraft quantities for eLISA.

In the case (ii), when the two broken laser links are in two different arms,
the designed Kalman filter still works well, as shown in Fig. 7.6. However, the
estimates of all the three quantities (the relative clock jitters, the arm lengths
and the relative frequency jitters) are slightly worse than the estimates for
the eLISA-like configuration. In the case (iii), when a second broken link is
in the arm we want to estimate for, it turns out that the relative clock jitters
and the arm length cannot be estimated well. Actually, the large estimation
errors in Fig. 7.7 result from the degeneracy between the relative clock jitters
and the arm length in the ranging measurements, when there is not enough
information to decouple them. Compared to Fig. 7.4, which also has a broken
laser link in the arm to be estimated, we see the second missing laser link in
this case is crucial. It contains the information to decouple the arm lengths
from the relative clock jitters.

The situation when three laser links are broken is not interesting, since
LISA-like missions require at least four laser links to perform TDI algorithms
to achieve the designed sensitivities. In the end of this section, we consider
the case when there is only one arm, which resembles the GRACE mission
in some aspects. We will see whether the designed algorithms could help the
GRACE-like configuration. We simulate this special case by shutting down
all the four laser links in the other two arms and only using the measurements
from one arm. The simulation results are shown in Fig. 7.8. It turns out
that the designed sequential Kalman filter algorithms work well in this case.

7.3 Square-root sequential Kalman filtering

7.3.1 Square root Kalman filter formulation

As mentioned before, square-root Kalman filters [140, 141, 125] aim to in-
crease the numeric stability and the robustness of the algorithms. In this sec-
tion, we briefly describe the derivation of the square-root sequential Kalman
filter formulae following [125]. ( An error in the formulation in [125] has been
corrected here.)

We first define the square roots S+
k and S−k of the covariance matrices P+

k
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(a) (b)

(c)

Figure 7.5: Histograms of sequential Kalman filter estimation errors in (a)
relative clock jitters (b) arm lengths and (c) relative frequency jitters for the
laser link from S/C 2 to S/C 1, given that the arm between S/C 2 and S/C
3 (i.e. the laser link from S/C 3 to S/C 2 and the laser link from S/C 2 to
S/C 3) is broken, which is the eLISA-like configuration.
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(a) (b)

(c)

Figure 7.6: Histograms of sequential Kalman filter estimation errors in (a)
relative clock jitters (b) arm lengths and (c) relative frequency jitters for the
laser link from S/C 2 to S/C 1, when both the laser link from S/C 3 to S/C
2 and the laser link from S/C 1 to S/C 3 are broken.

95



(a) (b)

(c)

Figure 7.7: Histograms of sequential Kalman filter estimation errors in (a)
relative clock jitters (b) arm lengths and (c) relative frequency jitters for the
laser link from S/C 2 to S/C 1, when both the laser link from S/C 3 to S/C
2 and the laser link from S/C 1 to S/C 2 are broken.
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(a) (b)

(c)

Figure 7.8: Histograms of sequential Kalman filter estimation errors in (a)
relative clock jitters (b) arm lengths and (c) relative frequency jitters for the
laser link from S/C 2 to S/C 1, when only the arm between S/C 1 and S/C
2 is working properly. This resembles the GRACE configuration.
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and P−k by the relation

P+
k = S+

k (S+
k )T , (7.14)

P−k = S−k (S−k )T . (7.15)

This is possible because P+
k and P−k are symmetric positive-definite matrices,

allowing a Cholesky decomposition. Then, the propagation formula

P−k = eFk−1∆tP+
k−1e

FTk−1∆t +Wk−1 (7.16)

can be rewritten as

S−k (S−k )T = eFk−1∆tS+
k−1(S+

k−1)T eF
T
k−1∆t +W

1/2
k−1W

T/2
k−1 . (7.17)

The above formula can be summarized in matrix form[
S−k 0

] [(S−k )T

0

]
=

[
eFk−1∆tS+

k−1 W
1/2
k−1

] [(S+
k−1)T eF

T
k−1∆t

W
T/2
k−1

]

=
[
eFk−1∆tS+

k−1 W
1/2
k−1

]
QTQ

[
(S+

k−1)T eF
T
k−1∆t

W
T/2
k−1

]
, (7.18)

where we have assumed Q to be a unitary matrix, satisfying QTQ = I.
Therefore, if we can find a unitary matrix Q, which fulfils the following
requirement

Q

[
(S+

k−1)T eF
T
k−1∆t

W
T/2
k−1

]
=

[
R
0

]
, (7.19)

it is straightforward to show that RTR = P−k . Thus, we can let (S−k )T = R.
The above equation is then rewritten as[

(S+
k−1)T eF

T
k−1∆t

W
T/2
k−1

]
= QT

[
(S−k )T

0

]
. (7.20)

Hence, we can calculate S−k from S+
k−1 by implementing a QR decomposition

of the matrix on the left hand side of the above equation. The Modified
Gram-Schmidt algorithm will be used to achieve a better numerical stability
of the QR decomposition in the simulation.

We define the square root of P+
ik as S+

ik, i.e.

P+
ik = S+

ik(S
+
ik)

T . (7.21)
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Now, the task is to calculate S+
ik from S+

i−1,k. When this relation is derived,
we have closed the square root Kalman filter propagation loop. First, we
rewrite the Kalman gain in Eq. 7.9 as

Kik = aiS
+
i−1.kφi, (7.22)

where we have defined

φi ≡ S+T
i−1,kH

T
ik, (7.23)

ai ≡
1

φTi φi + Vik
. (7.24)

Eq. 7.11 then becomes

S+
ik(S

+
ik)

T =
(
I − aiS+

i−1.kφiHik

)
S+
i−1,k(S

+
i−1,k)

T

= S+
i−1,k(I − aiφiφ

T
i )(S+

i−1,k)
T . (7.25)

Letting

I − aiφiφTi = (I − aiγiφiφTi )2, (7.26)

it is straightforward to solve the above equation

γi =
1

1±
√
aiVik

. (7.27)

Hence, we obtain the propagation formula

S+
ik = S+

i−1,k(I − aiγiφiφ
T
i ). (7.28)

All the key formulae of the square root Kalman filter have been derived up
to here. We summarize the square root Kalman filter algorithm as follows:

1. Initialize the state vector, the covariance matrix and its square root
matrix

x̂+
0 , P

+
0 = S+

0 (S+
0 )T . (7.29)

2. Calculate the a priori estimate x̂−k from the a posteriori estimate x̂+
k−1

at the previous step, using the dynamic equation

ẋ = f(x, t). (7.30)

Obtain S−k by implementing a QR decomposition of the following ma-
trix via the modified Gram-Schmidt algorithm.[

(S+
k−1)T eF

T
k−1∆t

W
T/2
k−1

]
. (7.31)
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3. Initialize the posteriori state vector and the square root of the covari-
ance matrix as

x̂+
0k = x̂−k (7.32)

S+
0k = S−k (7.33)

4. Process each measurement datum yik (i = 1, 2, . . . , l) one after another
at the step k to calculate the Kalman gain, Kalman estimates and the
square root of the posteriori covariance matrix

φi = S+T
i−1,kH

T
ik (7.34)

ai =
1

φTi φi + Vik
(7.35)

γi =
1

1±
√
aiVik

(7.36)

Kik = aiS
+
i−1,kφi (7.37)

S+
ik = S+

i−1,k(I − aiγiφiφ
T
i ) (7.38)

x̂+
ik = x̂+

i−1,k +Kik(yik −Hikx̂
+
i−1,k) (7.39)

5. Set the posteriori state vector and the square root of the covariance
matrix after processing a set of measurements yk as

x̂+
k = x̂+

lk (7.40)

S+
k = S+

lk (7.41)

7.3.2 Simulation results

We applied the derived square-root sequential Kalman filter formulations to
the standard LISA configuration. The condition number of the matrices have
been reduced from about 1020 to 1010, thus making the algorithms numer-
ically more stable and more accurate. The simulation results are shown in
Fig. 7.9. Compared to previous results, we find that the square-root sequen-
tial Kalman filter provides slightly better estimates. This improvement is
purely numerical, since mathematically the square-root sequential formula-
tion is equivalent to the sequential Kalman filter formulation. The square-
root sequential filter can also be directly applied to LISA with broken laser
links. As expected, the simulation results are similar to that given by the
sequential Kalman filter in the previous section. For brevity, we omit the
results.
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(a) (b)

(c)

Figure 7.9: Histograms of square-root sequential Kalman filter estimation
errors in (a) relative clock jitters (b) arm lengths and (c) relative frequency
jitters for the laser link from S/C 2 to S/C 1, with all laser links working
properly.
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7.4 Summary

We have derived the formulations of the sequential Kalman filter and the
square-root sequential Kalman filter. The designed filters were then applied
to the standard LISA. Both filters are able to estimate the inter-spacecraft
quantities accurately. The square-root sequential Kalman filter has greatly
reduced the condition number of the matrices, hence achieving better nu-
merically stability and better accuracy. LISA with several different possible
combinations of broken laser links has been investigated with the sequential
filter. Simulations have shown that a single broken laser link will not af-
fect the estimates of the inter-spacecraft quantities. When there are more
than two broken laser links, the estimates of the inter-spacecraft quantities
are greatly jeopardized only if one the broken laser link is in the arm we
want to estimate the inter-spacecraft quantities for. The designed sequen-
tial Kalman filter has successfully processed the measurement data for the
eLISA-like configuration. It also showed greatly potential in the application
to the GRACE-like configuration.
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Chapter 8

Optimal filtering for LISA with
effective system models

8.1 Introduction

We have designed and implemented several Kalman filter models to process
the raw data for LISA. Most of the designed models use physical parameters,
such as the positions and the velocities of the S/C, in the state vector to
characterize the motion of the LISA constellation. The advantage of using
these physical parameters is that they automatically fit into the physical laws,
hence we can directly use Newton’s equations or relativistic equations as the
dynamic equations to evolve the state vector of the Kalman filter. However,
LISA inter-spacecraft measurements contain only relative quantities, such as
the arm lengths, relative tangential velocities, relative clock jitters and rela-
tive frequency jitters. Therefore, the number of variables in the state vector
is larger than the number of measurements, the physical variables in the s-
tate vector cannot be fully determined, and the measurement equations are
very nonlinear. All of these add up complexities and numerical inaccuracies
to the Kalman filter.

In this chapter, we explore two effective models with phenomenological
parameters to deal with these issues. The effective models try to use variables
that are directly measured, thus reducing the nonlinearities in the measure-
ment equations and increasing the numerical accuracies of the Kalman filter
algorithms. The number of variables in the state vector of these effective
models is also significantly smaller. The matrices in these filter models are
better conditioned. It turns out that the effective models are simpler and
more efficient.

Previously, the designed algorithms calculate best linear estimates of the
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inter-spacecraft quantities based only on prior measurements. Therefore,
those algorithms could be run on board. In reality, the LISA pre-processing
stage is expected to be carried out on the ground. The raw measurements
can be analyzed off-line or at least with some latency. This allows to use the
measurements posterior to the time of the estimates, which could potentially
improve the estimates. In this chapter, we use a Kalman filter formulation
similar to that of the so-called RTS smoother [142, 125] to calculate the best
linear estimates based on measurements both prior to and posterior to the
time of the estimates. Simulation results show that the use of the extra
measurements can significantly improve the accuracy of the estimates.

8.2 A periodic system model

If each S/C of LISA would follow a Kepler orbit, the variations of the arm
lengths of LISA were strictly periodic. Even for relativistic orbits under
consideration of all the planets in the solar system, the variations of the
arm lengths are also nearly periodic. Using the Kepler orbital setup in the
paper [129], the annual evolutions of the LISA arm lengths are shown in
Fig. 8.1 (a). The arm-length variations resemble sinusoidal functions within
6 months. In the subsequent half year, the arm length variation remains a
roughly sinusoidal shape, but with a different amplitude. By optimizing the
inclination angle between the ecliptic plane and the LISA constellation plane
[143], the arm-length variations can be further reduced, and we obtain the
arm-length variations shown in Fig. 8.1 (b). These arm-length variations are
similar to a sinusoidal function with a period of one year. In either cases, we
can phenomenologically model the arm-length evolutions as follows

L(t) = L̄+ A sin(ωt), (8.1)

where L̄ is the average arm length, and ω is angular frequency with either a
half-year period or a one-year period. If we define the arm length change as
below

∆L(t) ≡ L(t)− L̄ = A sin(ωt), (8.2)

the dynamic equation of the arm length change is the same as that of a
simple harmonic oscillation

d2∆L

dt2
+ ω2∆L = 0. (8.3)
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(a) (b)

Figure 8.1: The annual arm-length variations of the LISA constellation for
Kepler orbits. Fig. (a) has fixed the inclination angle between the ecliptic
plane and the constellation plane of LISA as 60◦. Fig. (b) has varied and op-
timized this inclination angle to minimize the annual arm-length variations.

A Kalman filter based on this simple periodic dynamic model can thus
be designed. We define a 11-dimensional state vector as follows

x = (∆L21, v21,∆L32, v32,∆L13, v13, δT1 − δT2, δT2 − δT3, δf1, δf2, δf3)T .

(8.4)

The dynamic equations for the arm-length variations and the relative tan-
gential velocities can be obtained from Eq. 8.3 by rewriting it as first order
differential equations

d

dt

[
∆L
v

]
=

[
0 1
−ω2 0

] [
∆L
v

]
+ noise. (8.5)

The dynamic equations for the clock variables are given as follows

d

dt


δT1 − δT2

δT2 − δT3

δf1

δf2

δf3

 =


0 0 1/fnom

1 −1/fnom
2 0

0 0 0 1/fnom
2 −1/fnom

3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



δT1 − δT2

δT2 − δT3

δf1

δf2

δf3

+ noise.

(8.6)

In order to make the system model fit better into the Kalman filter frame,
we subtract the average arm length from the ranging measurements, thus
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obtaining the following observation vector

y′ = (R31 − L̄,D31, C31, R21 − L̄,D21, C21, R12 − L̄,D12, C12, ...

R32 − L̄,D32, C32, R23 − L̄,D23, C23, R13 − L̄,D13, C13)T , (8.7)

where the inter-spacecraft measurements are

Rij = Lij + (δTj − δTi)c+ nRij, (8.8)

Dij =
[
f carrier
j − f carrier

i

(
1− vij

c

)
+ fGW

ij

](
1− δfj

fnom
j

)
+ nDij , (8.9)

Cij = δfj − δfi + nCij. (8.10)

The Measurement matrix H ′k =
∂h′k
∂x

∣∣∣
x̂−k

is 18-by-11. We explicitly give its

first three rows below0 . . . 0 1 0 c c 0 0 0

0 . . . 0 0
fcarrier3

c

(
1− δf1

fnom1

)
0 0

fcarrier3 −fcarrier1

fnom1
− fcarrier3 v31

fnom1 c
0 0

0 . . . 0 0 0 0 0 1 0 −1


x̂−k

,

where we have omitted the step index k in the components of the matrix.
Notice that the dynamic matrix Fk for this model is a constant matrix,
and most components of the measurement matrix H ′k are constant. The
nonlinearity of the Kalman filter model has been significantly reduced. Also,
the number of the variables in the state vector is 11, which is less than
the number of measured quantities 18. Except for the absolute frequency
jitters, all other variables in the state vector are directly constrained by the
measurements, hence in principle they can be determined by the Kalman
filter.

We design a hybrid-extended Kalman filter based on the model described
above to process simulated LISA measurement data. The estimation errors
in the relative clock jitters, arm lengths and the relative frequency jitters are
plotted in Fig. 8.2. With this phenomenological periodic model, the designed
Kalman filter has successfully estimated these three kinds of inter-spacecraft
quantities. We also find that the designed Kalman filter model is not sensitive
to the actual orbits of the LISA constellation. With either angular velocities
ω = 2π rad/year or ω = 4π rad/year and with either LISA orbits shown in
Fig. 8.1 (a) or (b), the performance of the designed Kalman filter turns out
to be similar in terms of estimation errors.
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(a) (b)

(c)

Figure 8.2: Histograms of the estimation errors of a hybrid-extended Kalman
filter with a periodic system model in (a) relative clock jitters (b) arm lengths
and (c) relative frequency jitters for the laser link from S/C 2 to S/C 1.
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8.3 An effective system model

In this section, we try to design an other effective system model, whose errors
can be accessed analytically. This form of system model is expected to be
directly applicable to relativistic LISA orbits. The arm lengths of LISA are
smooth, slowly varying and (nearly) periodic functions of time, no matter
whether they are calculated in the non-relativistic or relativistic framework.
The smooth arm-length functions of time can be decomposed into harmonics

L(t) = L̄+
∞∑
n=1

An sin(nωt+ φn), (8.11)

where L̄ is the average arm length, and A1 is the lowest order arm-length
variation, whose value is about L̄/100 according to the orbit design of LISA.

The arm-length function can be expanded in polynomials around any
time t0

L(t) = L̄+
∞∑
n=1

An sin(nωt0 + φn) +
∞∑
n=1

An cos(nωt0 + φn)(nω∆t)

−1

2

∞∑
n=1

An sin(nωt0 + φn)(nω∆t)2 +O[∆t3], (8.12)

where ∆t ≡ t− t0. For elliptical Kepler orbits, An decays exponentially with
n. For relativistic orbits, An also decays much faster than linearly, which
leads to (n+ 1)An+1 � nAn. For a short time ∆t = 1000 s, we estimate the
contribution of each order as follows

A1ω∆t ∼ 104 m, (8.13)
1

2
A1(ω∆t)2 ∼ 1 m, (8.14)

1

6
A1(ω∆t)3 ∼ 10−4 m. (8.15)

As a consequence, if we want to design a Kalman filter to process 1000 s
LISA measurement data, the following polynomial model characterize the
LISA arm lengths to 0.1 mm accuracy.

L(t) = L̄+
∞∑
n=1

An sin(nωt0 + φn) + v∆t+
1

2
a∆t2 +O[∆t3], (8.16)

where v and a are phenomenological variables.
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According to the above phenomenological model, we define a 14-dimensional
state vector in the Kalman filter as follow

x = (L21, v21, a21, L32, v32, a32, L13, v13, a13, δT1 − δT2, δT2 − δT3, δf1, δf2, δf3)T .

(8.17)

The dynamic model for the arm-length phenomenological variables is simply
as follows

d

dt

Lv
a

 =

0 1 0
0 0 1
0 0 0

Lv
a

+ noise. (8.18)

The dynamics for the clock variables are the same as Eq. 8.6.
The measurement matrix Hk = ∂hk

∂x

∣∣
x̂−k

is 18-by-14 and a bit different

from that in the last section, we therefore again explicitly write its first three
rows as below0 . . . 0 1 0 0 c c 0 0 0

0 . . . 0 0
fcarrier3

c

(
1− δf1

fnom1

)
0 0 0

fcarrier3 −fcarrier1

fnom1
− fcarrier3 v31

fnom1 c
0 0

0 . . . 0 0 0 0 0 0 1 0 −1


x̂−k

,

where we have omitted the step index k in the matrix components.
We design a hybrid-extended Kalman filter with the phenomenological

polynomial system model described above to process the simulated LISA
measurement data. The results of the simulation are summarized in Fig. 8.3.
Comparing these estimation errors with that given in the last section, we find
that the overall performance of this phenomenological polynomial model is
slightly better. Since this model is directly applicable to relativistic cases,
we expect it to outperform the periodic model in general.

Usually, the trace of the posteriori matrix tells how large the overall esti-
mation error is. The trace of the posteriori matrix at each Kalman filter step
is shown in Fig. 8.4 (a), where we see that the overall estimation error is not
improving much with time. After the first few steps, the overall estimation
error roughly stays at the same level. This is because the absolute frequency
jitters δfi cannot be determined well. As explained in previous chapters, the
measurements contain very limited information about the absolute frequen-
cy jitters. Fig. 8.4 (b) shows the trace of the posteriori matrices excluding
the frequency jitters. If we use the relative frequency jitters δf1 − δf2 and
δf2− δf3 in the state vector instead of the absolute frequency jitters δf , the
trace of the full posteriori matrix behaves similar to Fig. 8.4 (b). We see that
the overall estimation error is significantly decaying with time. During the
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(a) (b)

(c)

Figure 8.3: Histograms of the estimation errors of a hybrid-extended Kalman
filter with a phenomenological polynomial system model in (a) relative clock
jitters (b) arm lengths and (c) relative frequency jitters for the laser link
from S/C 2 to S/C 1.
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700 seconds shown in the figure, the estimation error is reduced by more than
three orders of magnitude. Since the Kalman filter calculate the best linear
estimates of the state vector based on the measurements prior to the time of
the estimates, the estimates at a later time actually use more measurements.
Therefore, the estimates at a later time are much more accurate.

The pre-processing stage of LISA data is expected to be done on the
earth. Thus, we can estimate the state vector also using the measurements
posterior to it. This can potentially further reduce the estimation errors.
In the next setion, we will describe the algorithms and apply them to LISA
measurements.

(a) (b)

Figure 8.4: (a). The trace of the posteriori matrices. (b). The trace of the
posterior matrices excluding frequency jitters.

8.4 Improving the estimates by using poste-

rior measurements

There are several existing algorithms that generate the best estimates based
on a fixed amount of data [125]. These algorithms are usually referred to as
optimal smoothers. The so-call RTS smoother [142, 125] is an efficient algo-
rithm among them. In the following, we directly describe a similar iterative
algorithm without going through the lengthy derivation.

1. Initialize the state vector and the covariance matrix

x̂+
1,0, P

+
1,0, (8.19)
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where in x̂a,k and Pa,k the index a stands for the a-th iteration, and k
is the normal step index.

2. Calculate the a priori estimate x̂−a,k from the a posteriori estimate x̂+
a,k−1

at the previous step, using the dynamic equation

ẋ = f(x, t). (8.20)

Use either of the following two formulae to update the covariance matrix

P−a,k = eFa,k−1∆tP+
a,k−1e

FTa,k−1∆t +Wa,k−1, (8.21)

P−a,k = (I + Fa,k−1∆t)P+
a,k−1(I + Fa,k−1∆t)T +Wa,k−1, (8.22)

where Fa,k−1 ≡ ∂f
∂x

∣∣
x+a,k−1

.

3. Calculate the Kalman gain

Ka,k = P−a,kH
T
a,k(Ha,kP

−
a,kH

T
a,k +Ma,kVkM

T
a,k)
−1, (8.23)

where Ha,k ≡ ∂hk
∂x

∣∣
x̂−a,k

,Ma,k ≡ ∂hk
∂v

∣∣
x̂−a,k

.

4. Correct the a priori estimate

x̂+
a,k = x̂−a,k +Ka,k[yk − hk(x̂−a,k, 0)], (8.24)

P+
a,k = (I −Ka,kHa,k)P

−
a,k,

= (I −Ka,kHa,k)P
−
a,k(I −Ka,kHa,k)

T +Ka,kVkK
T
a,k. (8.25)

5. Let a→ a+ 1, initialize the new iteration backwards as the following

x̂a,N = x̂+
a−1,N (8.26)

Pa,N = P+
a−1,N (8.27)

6. Filter the posteriori estimates obtained in the last iteration backwards
for k = N − 1, N − 2, . . . , 0

Ka,k = P+
a−1,kF

T
a−1,k(P

−
a−1,k+1)−1 (8.28)

Pa,k = P+
a−1,k −Ka−1,k(P

−
a−1,k+1 − Pa,k+1)KT

a−1,k (8.29)

x̂a,k = x̂+
a−1,k +Ka−1,k(x̂a,k+1 − x̂−a−1,k+1) (8.30)
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7. Let a→ a+ 1, initialize the new iteration as follows

x̂+
a,0 = x̂a−1,0, (8.31)

P+
a,0 = Pa−1,0, (8.32)

and repeat the calculations from step 2.

We want to elaborate a few points about the above algorithm: (i). The
first iteration of the algorithm is the same as a hybrid-extended Kalman
filter algorithm, where each posteriori estimate is obtained based on the
measurements prior to it. (ii). The first two iterations together are similar
to a nonlinear version of the RTS smoother, where the posteriori estimates are
obtained based on measurements both prior to and posterior to them. (iii).
When the dynamic equations or the measurement equations are nonlinear,
additional iterations from the third on help increase the estimation accuracy.
This is because we need to expand the nonlinear dynamic equations or the
nonlinear measurement equations around some estimate of the state vector.
New iterations calculate the expansions around better estimates, hence the
nonlinear functions are better approximated. (iv). From the third iteration
on, the measurements are used more than once. Effectively, we are using more
measurements than we have. As a result, the posteriori covariance matrices
(the uncertainty of the estimates) are underestimated from the third iteration
on. (v). The uncertainty of the dynamic equation is characterized by Wa,k,
which is tunable. We can start with slightly larger W1,k in the first iteration
to increase the robustness of the algorithm, and use smaller Wa,k in the
subsequent iterations, when we can expand the dynamic equations around
better estimates. (vi). It is not recommended to go beyond the fourth
iteration, unless the measurements or the dynamic equations are strongly
nonlinear.

We implement the designed algorithm to process simulated LISA mea-
surement data up to the fourth iteration. The trace of the posteriori matrices
in each iteration is plotted in Fig. 8.5. Similar as before, we have exclud-
ed the absolute frequency jitters from the trace. The second iteration has
significantly improved the overall estimation accuracy and brought the esti-
mates at all time to a similar precision. The third and the fourth iterations
have further reduced the trace of the posteriori matrices. As we explained
above, the uncertainties of the estimates after the third iteration are under-
estimated, therefore the improvements in the third and the fourth iterations
are not that large. This is mainly because the dynamic equations are linear
and the measurement equations in the polynomial phenomenological vari-
ables are almost linear. So the linear expansion of the dynamic equations is
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Figure 8.5: The trace of the posteriori matrices as a function of time in each
iteration.

the same around any state estimates, and that of the measurement equations
only weakly depends on the location of the expansion. Fig. 8.6 and Fig. 8.7
respectively show histograms of posteriori estimation errors after two itera-
tions and after four iterations. Comparing the two figures, we see that the
estimates of the relative clock jitters have been significantly improved by the
third and the fourth iterations, while the estimates of the arm lengths and the
relative frequency jitters almost remain the same. Comparing Fig. 8.7 with
previous results, we find that the iterative algorithm designed in this section
significantly outperforms other algorithms. The uncertainty in the relative
clock jitters can be reduced by this algorithm by an order of magnitude. The
arm length uncertainty is reduced to millimeter level. However, due to the
approximate dynamics, the estimate in the arm lengths sometimes has a bias
about 1−2 cm. Still, the arm-length estimates are much more accurate than
before and sufficiently accurate for TDI algorithms. The relative frequency
jitters are estimated to the sub-mHz level, which are also more accurate than
the results in the previous sections. All in all, the designed iterative algo-
rithm has successfully enhanced the robustness and improved the estimation
accuracy of the inter-spacecraft quantities.
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(a) (b)

(c)

Figure 8.6: Histograms of the posteriori estimation errors after two iterations
in (a) relative clock jitters (b) arm lengths and (c) relative frequency jitters
for the laser link from S/C 2 to S/C 1.
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(a) (b)

(c)

Figure 8.7: Histograms of the posteriori estimation errors after four itera-
tions in (a) relative clock jitters (b) arm lengths and (c) relative frequency
jitters for the laser link from S/C 2 to S/C 1.
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Chapter 9

Clock noise and disordered
measurements

9.1 Introduction

So far, we have designed several Kalman filter algorithms, including the
hybrid-extended Kalman filter, the sequential Kalman filter and the square-
root sequential Kalman filter, to process LISA measurement data. In addi-
tion, we designed an iterative algorithm that is similar to the RTS smoother.
For the standard LISA configuration, we have investigated several Kalman
filter models, including the models with 24-dimensional, 23-dimensional and
22-dimensional state vectors, and a simplified model which separates and only
deal with the clock jitters and the frequency jitters. We have also considered
several possible combinations of broken laser links in the LISA constellation,
along with the eLISA-like configuration and the GRACE-like configuration.

In the case of physical system model, all the hundreds of components in
the large matrices Hk and Fk have been calculated analytically. Many control
parameters are investigated and carefully tuned. These allow the designed
algorithms to accurately estimate the arm lengths, the relative clock jitters
and the relative frequency jitters. We have designed two phenomenological
system models, where the measurement matrix Hk and the dynamic matrix
Fk are greatly simplified. The iterative algorithm has significantly improved
the estimates of the inter-spacecraft quantities. For the arm lengths, we have
been able to estimate the quantities of about 5 × 109 m to an accuracy of
centimeters or even millimeters, which is 11 or 12 orders of magnitude in
difference.

We have assumed and used clock jitters and frequency jitters that follow
power-law PSDs, which exactly obeys the clock dynamic model we have used
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in the Kalman filter model. In reality, the clocks usually have more compli-
cated PSDs, that follow different clock dynamic models. In this chapter, we
will investigate how different types of clock noise, including the clock noise di-
rectly measured in the lab, would affect the Kalman filter estimates, and how
the discrepancy between the clock dynamic model used in the Kalman filter
algorithms and the real clock dynamic model would affect the performance
of the designed algorithms.

As mentioned in previous chapters, although we have included the clock
noise in the measurements, we have made the approximation that the record-
ing time of the measurements is perfect, meaning that all the measurements
taken in the same Kalman filter step are assumed to be measured at the same
time, and the sampling rate is uniform. In other words, we have neglected
part of the clock noise. In face, this is usually required by the Kalman filter
formulations. In this chapter, we will take into account this effect, simu-
late it and analyze it. We will simulate the measurements that are recorded
according to their own imperfect clocks. The measurements are taken non-
uniformly with unknown record time. The Kalman filter formulations do
not fit it in this case. We will investigate how and whether the previously
designed algorithms work and design new algorithms to analyze the data.

9.2 Clock noise with power a law decay LSD

9.2.1 Frequency noise with a 1/ν slope

We have been using frequency jitters with a linear spectral density (LSD)
that follows a 1/ν slope. Here, we denote ν as the Fourier frequency to make
a distinction from the clock jitters δf . This 1/ν-slope LSD is a good and
simple approximation, since we find the LSDs of many measured frequency
jitters of USOs have a slope close to 1/ν. This kind of frequency jitters can
be described by the following simple model

˙δf(t) = n(t), (9.1)

where n(t) is a white-Gaussian noise process. Thus, the LSD of the frequency
jitters is√

Sδf (ν) =

√
Sn(ν)

2πν
, (9.2)

where the PSD of the white-Gaussian noise Sn(ν) is a constant at all Fourier
frequency ν. From the relation ˙δT = δf/fnom, we know that the LSD of the
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clock jitters has a slope of 1/ν2

√
SδT (ν) =

√
Sn(ν)

(2πν)2fnom
, (9.3)

where fnom is the nominal frequency of the USO.
The clock model we have been using in the Kalman filter is the following

d

dt

[
δT
δf

]
=

[
δf/fnom

0

]
+

[
n1

n2

]
, (9.4)

where n1, n2 are uncorrelated white-Gaussian noise processes. By converting
the above two first-order differential equations into a single second-order
differential equation

δ̈T = ṅ1 + n2/f
nom, (9.5)

the LSD of the clock jitters for this Kalman filter model is√
SδT (ν) =

[
Sn1(ν)

(2πν)2
+

Sn2(ν)

(fnom)2(2πν)4

]1/2

. (9.6)

When Sn1(ν) is much smaller than Sn2(ν), the above LSD approximates a
1/ν2 slope. However, Sn1 cannot be arbitrarily small in numerical simulation,
since n1 is at least at the numerical precision level of the first-order different
equation it appeared in. As shown in previous chapters, this system model
works well for frequency jitters with a 1/ν slope.

9.2.2 Clock noise LSD with a higher-order decay

We can generalize the system model described in the previous subsection
to higher-order differential equations, which can be converted to a set of
first-order equations

d

dt


x
x1
...
...
xN

 =


x1
...
...
xN
0

+


n1
...
...
nN
nN+1

 , (9.7)

where nk are uncorrelated white Gaussian noise, (k = 1, . . . , N + 1). By
eliminating xk, we obtain

x(N+1) =
N+1∑
k=1

n
(N+1−k)
k , (9.8)
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Figure 9.1: A schematic diagram of measuring the clock noise.

where x(N) denotes the n-th derivative of x, and x(0) = x. It is straightforward
to calculate the LSD of x from the above formulae

√
Sx(ν) =

[
N+1∑
k=1

Snk(ν)

(2πν)2k

]1/2

. (9.9)

When the noise processes nk, (k = 1, . . . , N) are negligible compared to nN+1,
x approximately has a LSD as√

Sx(ν) ≈
√
SnN+1

(ν)

(2πν)k
. (9.10)

9.3 Measure and characterize laboratory clock

noise

9.3.1 Measured clock noise

The clock noise is a key ingredient for the inter-spacecraft measurements and
the LISA project, thus it is important to measure and analyze realistic clock
noise. We try to characterize the clock noise by measuring the beat-note
of two USOs. The schematic plot is shown in Fig. 9.1, where two analog
signals respectively from two USOs are mixed, and then low-pass filtered.
The beat-note signal is digitized by an analog-to-digital converter (ADC)
and recorded.

Instead of using high-quality space-qualified USOs, we first measure the
clock noise of low-quality cheap oscillators. Some realistic features of the
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clock noise would appear from the measurements. By using these realistic
clock noise measurements in the LISA data pre-processing simulation, we
will be able to see how the realistic clock noise would affect the ranging
accuracy and the time labels of LISA raw measurements. Consequently,
we can tell whether the realistic clock noise would affect the extraction of
the astrophysical information from LISA data. The requirements on the
performance of LISA USOs can then be set. If we can still achieve sufficient
ranging accuracy and precisely calibrate LISA raw measurements with these
clock noise measurements, it would permit using less precise clocks instead
of high-quality USOs in the LISA projects. This will both greatly reduce the
budget and increase the robustness of the LISA project.

We designed breadboard circuits to measure the beat-note of two oscilla-
tors, as shown in Fig. 9.2 (a). The sampling rate of the ADC is 20 kHz. The
nominal frequency of the two oscillators is fnom = 20 MHz. The signals from
the two oscillators are

si ∝ cos[2π(fnom + δfi)t+ Φi], (9.11)

where i = 1, 2 is the oscillator label, δfi denotes the frequency jitters of the
oscillators, and Φi are the initial phases. After the mixer and the low-pass
filter, the measured signal can be formulated as

s ∝ cos[2π(δf1 − δf2)t+ (Φ1 − Φ2)]. (9.12)

When the frequency jitters δf1 and δf2 are independent, the measured fre-
quency jitters δf1 − δf2 is statistically

√
2-times as large as the frequency

jitters of a single oscillator. The time-frequency plot of the measured fre-
quency jitters is shown in Fig. 9.2 (b), where the strongest signal at about
450 Hz is the beat-note of the two oscillators. Other weak harmonics in the
plot are due to the imperfection of the sinusoidal signal. In order to extract
the frequency jitters and calculate the its linear spectral density (LSD), we
first get rid of the DC component of the measured raw data by a high-pass
filter. The time of the ascendant crosses of the filtered data with the x-axis
tk is then interpolated and calculated. The instantaneous period of the mea-
sured signal is the difference between two successive cross time tk+1 − tk.
The instantaneous frequency jitters are the inverses of the instantaneous pe-
riods, which is plotted in Fig. 9.2 (c). Notice that the recording time of
these instantaneous frequency jitters is uneven. Also, the uneven sampling
frequencies of these frequency jitters are quite high. Therefore, we low-pass
filter these frequency jitters, average the jitters over short time, and down-
sample the averaged frequency jitters. The LSD of the frequency jitters is
calculated based on these down-sampled data. In Fig. 9.2 (d), the LSDs of
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the frequency jitters during four different time periods are shown. From the
figure, we see that the frequency jitters of the oscillators we used are actually
several orders of magnitude more noisy than the best space-qualified USOs.

(a) (b)

(c) (d)

Figure 9.2: Clock noise measurements. (a). The designed breadboard cir-
cuits that measure the clock noise. (b). The time-frequency plane of the
measured beat-notes between the two oscillators. (c). The frequency differ-
ence between the two oscillators as a function of time. (d). The LSDs of the
beat-note frequency noise measured at four different time periods.
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9.3.2 Characterizing and modelling the clock noise

Usually, a stationary noise process can be modelled by a high order differen-
tial equation

x(N+1) +
N∑
j=0

ajx
(N−j) =

M∑
k=0

bku
(M−k), (9.13)

where N and M are two positive integers , aj, bk are real coefficients, x(t)
is the noise process, and u(t) is a white-Gaussian noise process. This model
is also called the autoregressive-moving-average (ARMA) model in the time
series analysis. In the Fourier domain, the relation between x̃(ν) and ũ(ν) is

x̃(ν) =

∑M
k=0 bk(i2πν)M−k

(i2πν)N+1 +
∑N

j=0 aj(i2πν)N−j
ũ(ν),

=
b0

∏M
k=1(i2πν − zk)∏N+1

j=1 (i2πν − pj)
ũ(ν), (9.14)

where zk are zeros, and pj are poles of the transfer function. Since the
coefficients aj and bk are real, the zeros zk and the poles pj are either real
or forming a complex pair (e.g. when zk is complex, there exists one other
zero zk′ that satisfies zk′ = z∗k), respectively. Therefore, the LSD of the noise
process x(t) is

√
Sx(ν) =

∣∣∣∣∣
∑M

k=0 bk(i2πν)M−k

(i2πν)N+1 +
∑N

j=0 aj(i2πν)N−j

∣∣∣∣∣√Su(ν),

=

∣∣∣∣∣b0

∏M
k=1(i2πν − zk)∏N+1

j=1 (i2πν − pj)

∣∣∣∣∣√Su(ν), (9.15)

where | . . . | denotes the absolute value. Notice that, by definition, the PSD
Su(ν) of a white-Gaussian noise process is constant at all frequencies.

Given a measured LSD of the phase noise or the frequency jitters, we want
to fit it to the model described by Eq. 9.13, while minimizing the fitting error.
In other words, we need to calculate the coefficients aj, bk or the zeros zk,

poles pj and b0. For a given
√
Sx(ν), there is degeneracy between b0 and√

Su(ν). Thus, we require
√
Su(ν) = 1 to avoid the ambiguity. By requiring

the total power of the noise process x(t) to be finite, we have M ≤ N .
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Therefore, the measured LSD can be reexpressed as√
Sx(ν) =

∣∣∣∣∣b0

∏M
k=1(i2πν − zk)∏N+1

j=1 (i2πν − pj)

∣∣∣∣∣ ,
=

∣∣∣∣∣
N+1∑
j=1

rj
i2πν − pj

∣∣∣∣∣ , (9.16)

where rj are the residues. When the phase of the LSD is known, we denote
the complex LSD with phase evolutions as Lx(ν), which is

Lx(ν) =
b0

∏M
k=1(i2πν − zk)∏N+1

j=1 (i2πν − pj)
=

N+1∑
j=1

rj
i2πν − pj

. (9.17)

For a measured Lx(ν), the residues rj and the poles pj can be calculated,
using the iterative vector fitting method invented in the paper [144]. Here,
we only explain the main idea of the algorithm. By inserting the initial guess
of the poles p̄m into the above equation, we can rewrite it as∏N+1

j=1 (i2πν − pj)∏N+1
m=1(i2πν − p̄m)

Lx(ν) =
b0

∏M
k=1(i2πν − zk)∏N+1

m=1(i2πν − p̄m)
. (9.18)

The above equation can be expressed in the residues and poles form(
N+1∑
j=1

r̄j
i2πν − p̄j

+ 1

)
Lx(ν) =

N+1∑
j=1

rj
i2πν − p̄j

. (9.19)

This equation is linear in its unknown residues r̄j and rj, hence the residues
can easily be calculated by minimizing the square error or the weighted square
error. Once the residues are known, the zeros z̄j of the left hand side of the
above equation can also be calculated. Notice that the zeros of the left hand
side of the above equation are poles of Lx(ν). The zeros of

∑N+1
j=1

r̄j
i2πν−p̄j + 1

are just the eigenvalues of the following matrix

H =


p̄1 − r̄1 −r̄2 . . . −r̄N+1

−r̄1 p̄2 − r̄2 . . . −r̄N+1
...

...
. . .

...
−r̄1 −r̄2 . . . p̄N+1 − r̄N+1

 . (9.20)

A brief proof is shown in the Supplementary A. Then, we set the new poles
p̄j as the calculated z̄j and repeat the whole calculation until the square error
is sufficiently small. The estimates of the residues rj and the poles pj are
obtained after the convergence.

124



Usually, the phase of the LSD is not known or even defined. The above
method does not work in this case. One can use the software LISO [145]
designed by Gerhard Heinzel to fit the LSD without phase. Instead of an
iterative deterministic algorithm, LISO uses a combination of stochastic op-
timization algorithms to fit the LSD without phase by minimizing the square
error in the amplitude of the LSD. It starts with an initial run of the Parti-
cle Swarm Optimization (PSO) [146, 147] algorithm, followed by an iterated
combination of Nelder-Mead Simplex [148] and Levenberg-Marquardt algo-
rithms [149] to polish the solution obtained from the PSO algorithm.

Alternatively, one could use the algorithm described in the papers [150,
151] to fit the LSD without phase to zero-pole models. I separately derived
a similar algorithm to accomplish the same task, which fits the LSD without
phase iteratively. Instead of fitting the LSD |Lx(ν)| without phase, we first
fit the PSD Sx(ν) = Lx(ν)L∗x(ν), which is

Sx(ν) =
|b0|2

∏M
k=1(i2πν − zk)(i2πν − zk)∗∏N+1

j=1 (i2πν − pj)(i2πν − pj)∗
. (9.21)

For real poles pj, we have the following

(i2πν − pj)(i2πν − pj)∗ = (2πν)2 + p2
j . (9.22)

For a complex pole pj and its complex conjugate pole pj′ = p∗j , we have the
following

(i2πν − pj)(i2πν − pj)∗(i2πν − pj′)(i2πν − pj′)∗

= (i2πν − pj)(−i2πν − p∗j)(i2πν − p∗j)(−i2πν − pj)
=

[
(2πν)2 + p2

j

] [
(2πν)2 + (p2

j′)
]
. (9.23)

The same principle applies to the zeros. Therefore, the PSD can be reorga-
nized as

Sx(ν) =
|b0|2

∏M
k=1 [(2πν)2 − Zk]∏N+1

j=1 [(2πν)2 − Pj]
=

N+1∑
j=1

Rj

(2πν)2 − Pj
, (9.24)

where we have defined the modified zeros Zk ≡ −z2
k and the modified poles

Pj ≡ −p2
j , and Rj denote the modified residues. We can fit the modified

poles and residues in an iterative way. Starting from some initial guess of
the modified poles P̄j, we can fit for the unknown modified residues Rj and
R̄j from the equation below[

N+1∑
j=1

R̄j

(2πν)2 − P̄j
+ 1

]
Sx(ν) =

N+1∑
j=1

Rj

(2πν)2 − P̄j
. (9.25)
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The modified poles R̄j in the next iteration are then set as the modified
zeros Z̄j of the left hand side of the above equation in the current iteration.
After convergence (i.e. the fitting error is sufficiently small), we obtain the
estimates of Pj and Rj. The zeros and poles of Lx(ν) can be calculated from
the modified poles and the modified residues.

9.3.3 Generating clock noise with given LSD

Using the methods described in the last subsection, we can fit the measured
LSD of the clock noise and obtain the coefficients of Eq. 9.13. Thus, we have
the model for the clock noise

x(N+1) +
N∑
j=0

ajx
(N−j) =

N∑
k=0

bku
(N−k), (9.26)

where we have changed the upper index of the summation on the right hand
side to N so that the total energy of the noise process x(t) is finite. Notice
that some of the coefficients aj and bk can be zero. The amount of the
measured clock noise data is limited. It is useful to simulate clock noise
with the same LSD. Then, we will be able to generate clock noise series with
arbitrarily long time and to study how different noise realizations affect the
measurements and the data pre-processing algorithms.

However, generating clock noise from the high-order differential equation
model is not a trivial task. A direct clock noise generation from this model
will cause numerical instabilities. Therefore, we first rewrite this equation as
a set of first order differential equations as follows

d

dt


x
x1
...

xN−1

xN

 =


0 1

0 1
. . . . . .

0 1
d0 d1 . . . dN−1 dN




x
x1
...

xN−1

xN

+


c1

c2
...
cN
cN+1

u, (9.27)

where the new coefficients dk and cj are calculated from the old coefficients

dk = −aN−k (k = 0, . . . , N) (9.28)

cj+1 = bj −
j∑

m=1

aj−mcm (j = 0, . . . , N). (9.29)

The proof of the equivalence of this set of first-order differential equations to
the high-order differential equation is given in Supplementary B. Eq. 9.27 is

126



continuous in time. To simulate the noise, one needs to discretize it. How-
ever, a naive direct discretization will likely cause instability and divergence.
Therefore, we try to analytically solve it and propagate the state from time
tk−1 to tk.

To be brief, we rewrite Eq. 9.27 as the following compact form

ẋ = Dx + cu, (9.30)

where x is a column state vector, c a constant column vector, and D is a
constant matrix. A direct integration of the above vector differential equation
from time tk−1 to tk gives

xk = eD∆txk−1 + eD∆t

tk∫
tk−1

eD(tk−1−t)u(t)dt c,

= eD∆txk−1 + eD∆t

∆t∫
0

e−Dtu(t+ tk−1)dt c, (9.31)

where xk = x(tk), and we have denoted the sampling time ∆t = tk− tk−1. In
the end, when we have generated the noise process x(tk) (the scalar noise)
according to the given LSD, its total power should be finite, which should also
be guaranteed by the LSD itself. In the sampling process, the sampling time
should be chosen such that the component of x(t) with frequencies higher
than the Nyquist frequency 1/2∆t is negligible, to avoid aliasing. Meanwhile,
u(t) is a white-Guassian noise process, which has power contributions from
all frequencies. Therefore, the calculated matrix D and the column vector c
should have the property to suppress the high-frequency components of u(t)
to some negligible level. Hence, in Eq. 9.32 the variation of u(t) during time
between tk−1 and tk is less important. We take it out of the integral and
obtain the approximate solution

xk ≈ eD∆txk−1 + eD∆t

∆t∫
0

e−Dtdt cu(tk−1),

= eD∆t xk−1 +
(
eD∆t − I

)
D−1cuk−1, (9.32)

where we have denoted uk−1 = u(tk−1), and I is a unit matrix. This discrete
form of the noise propagation equation is numerically stable, hence it can be
used to generate the clock noise. Fig. 9.3 shows the LSDs of the measured
frequency jitters, the fitted noise model with six poles and the simulated
frequency noise with the method described in this subsection. The three
curves agree with each other well.
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Figure 9.3: The LSDs of the measured frequency noise, the fitted noise
model and the simulated frequency noise.

9.3.4 Kalman filters for the clock noise

In this subsection, we will test how different clock noise would affect the
Kalman filter estimates and how different clock noise model can amend it. For
test and simplicity concern, we will adopt the simplified measurement model
used in the last section but one of Chapter 6. The simplified measurements
are in the following form

y =


δT1 − δT2

δT2 − δT3

δT3 − δT1

δf1 − δf2

δf2 − δf3

δf3 − δf1

+ noise. (9.33)

Instead of using simulated frequency jitters with 1/f -slope, we directly
use the measured clock noise in this section, which is several orders of mag-
nitude more noisy than the best space-qualified USOs. Notice that the clock
noise is what we want to predict and estimate. Beside the measured clock
noise, there are simulated ranging measurement noise and clock side-band
measurement noise in the raw data. We first use the simplified Kalman filter
model in the last section but one of Chapter 6 to process the measuremen-
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t data. The simulation results are shown in Fig. 9.4. It is clear that the
simplified Kalman filter model cannot estimate the relative clock jitters and
the relative frequency jitters accurately. This is due to the oversimplified
dynamic model, which includes only clock jitters and frequency jitters.

(a) (b)

(c) (d)

Figure 9.4: Using the simplified Kalman filter model with only clock vari-
ables, designed in a previous chapter, to process the clock noise measured
in the laboratory. (a). Relative clock jitters as time series. (b). Histogram-
s of measurement noise on relative clock jitters and Kalman filter estimate
errors. (c). Relative frequency jitters as time series. (d). Histograms of
measurement noise on relative frequency jitters and Kalman filter estimate
errors.

We extend the model for the clock to three variables, including the deriva-
tive of the frequency jitters δa. Therefore, we have the following dynamic
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model for a single clock

d

dt

δTδf
δa

 =

δf/fnom

δa
0

+

n1

n2

n3

 , (9.34)

where can be converted to a single three-order differential equation
...
δT = n̈1 + (ṅ2 + n3)/fnom. (9.35)

For uncorrelated noise processes n1(t), n2(t), n3(t), the LSD of the clock
jitters are as follows√

SδT (ν) =

[
Sn1(ν)

(2πν)2
+

Sn2(ν)

(fnom)2(2πν)4
+

Sn3(ν)

(fnom)2(2πν)6

]1/2

. (9.36)

By adjusting the expected relative strengths of the noise n1(t), n2(t), n3(t),
this model can approximate more complicated noise processes than the mod-
el we used in the previous simplified Kalman filter. We design a Kalman
filter based on this clock model to process the same measured clock noise.
The simulation results are shown in Fig. 9.5. The estimation errors based on
this extended clock model are greatly reduced comparing to the performance
of the previous clock model. The Kalman filter estimates have significant-
ly improved the knowledge of the relative frequency jitters. However, the
estimates of the relative clock jitters are still not satisfying.

We can try to add another parameter to the clock model in a similar way,
hence we have the following model

d

dt


δT
δf
δa
δb

 =


δf/fnom

δa
δb
0

+


n1

n2

n3

n4

 . (9.37)

The performance of this dynamic model in the Kalman filter is summarized
in Fig. 9.6. We see that this additional parameter does not improve the esti-
mates of the relative clock jitters and the relative frequency jitters. Therefore,
it is not advisable to add more parameters to the model in the same way.

We need turn to more sophisticated clock models. We fit the LSD of
the measured clock noise with a three-poles model using the algorithms we
described previously. Then, the model is converted to three first-order dif-
ferential equations as follows

d

dt

δTδf
δa

 =

 0 1/fnom 0
0 0 1
d0 d1 d2

δTδf
δa

+

c1

c2

c3

u, (9.38)
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(a) (b)

Figure 9.5: Using the Kalman filter model based on the clock model with
an additional frequency-derivative parameter to process the clock noise mea-
sured in the laboratory. (a). Histograms of measurement noise on relative
clock jitters and Kalman filter estimate errors. (b). Histograms of measure-
ment noise on relative frequency jitters and Kalman filter estimate errors.

(a) (b)

Figure 9.6: Using the Kalman filter model based on the clock model with
two additional frequency-derivative parameters to process the clock noise
measured in the laboratory. (a). Histograms of measurement noise on rel-
ative clock jitters and Kalman filter estimate errors. (b). Histograms of
measurement noise on relative frequency jitters and Kalman filter estimate
errors.
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where dj and cj are constant coefficients, and u is a white-Gaussian noise
process. We use Eq. 9.32 to discretize these equations. A Kalman filter based
on this new clock model is then designed and used to process the simplified
measurements. Fig. 9.7 shows the estimation errors of the relative clock
jitters and relative frequency jitters. This fitted clock model works much
better than previous models and has successfully improved the accuracy of
the clock-jitter measurements and the frequency-jitter measurements.

(a) (b)

Figure 9.7: Using the Kalman filter model based on the fitted clock model
with three poles to process the clock noise measured in the laboratory. (a).
Histograms of measurement noise on relative clock jitters and Kalman filter
estimate errors. (b). Histograms of measurement noise on relative frequency
jitters and Kalman filter estimate errors.

In a similar way, we can fit the measured LSD of the clock noise with a
four-pole model. The discrete dynamic equations for the clock noise can then
be constructed. We design a Kalman filter model based on these equations
to process the measurement data. The results are plotted in Fig. 9.8. This
model has also successfully suppressed the errors in the estimates of the rela-
tive clock jitters and the relative frequency jitters. However, comparing with
the performance of the three-pole model, the extra pole does not help much.
We have also tested with six-pole and seven-pole models, which led to insta-
bilities of the Kalman filter. The reason is that those more complex models
use more variables in the state vector, but among them, only the relative
clock jitters and the relative frequency jitters are observed. Sophisticated
noise models with much more unobserved variables than observed variables
are usually numerically unstable. Therefore, it is important to design simple
models that characterize the main features of the dynamics.

132



(a) (b)

Figure 9.8: Using the Kalman filter model based on the fitted clock model
with four poles to process the clock noise measured in the laboratory. (a).
Histograms of measurement noise on relative clock jitters and Kalman filter
estimate errors. (b). Histograms of measurement noise on relative frequency
jitters and Kalman filter estimate errors.

9.3.5 Iterative Kalman filter with a fitted clock noise
model

We have designed and tested several clock noise models in simplified circum-
stances where we apply Kalman filters with only clock variables to simpli-
fied LISA measurements with real clock jitters measured in the laboratory.
Among them, the fitted clock models with three poles and four poles are
significantly better than other models. In this subsection, we try to process
all the inter-spacecraft measurements of LISA with measured clock jitters
in the laboratory and simulated measurement noise. We replace the clock
model of the previously designed iterative Kalman filter with the fitted clock
model with three poles, therefore, we have the following 15-dimensional state
vector

x = (L21, v21, a21, L32, v32, a32, L13, v13, a13, δT1 − δT2, δf1 − δf2, δa1 − δa2,

δT2 − δT3, δf2 − δf3, δa2 − δa3)T . (9.39)

The dynamics of Lij, vij, aij are designed in the previous chapter. We use
this iterative Kalman filter with the fitted clock model to process standard
LISA measurements with clock noise measured from the laboratory. The
simulation results are plotted in Fig. 9.9. Even with clocks several orders
of magnitude more noisy than the best space-qualified USOs, the designed
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iterative Kalman filter and the clock models have still determined the arm-
lengths, the relative clock jitters and the frequency jitters precisely. This kind
of accurate information will help better extract the astrophysical information
from the LISA data. Our designed algorithms also potentially permit to use
low-standard clocks in the LISA project, while still achieving the designed
science goal.

(a) (b)

(c) (d)

Figure 9.9: Using the iterative Kalman filter model with fitted three-pole
clock model to process the standard LISA measurements with clock noise
measured in the laboratory. (a). Histograms of measurement noise on rela-
tive clock jitters and Kalman filter estimate errors. (b). Histograms of the
estimation errors in the armlengths. (c). Relative frequency jitters as time
series. (d). Histograms of the estimation errors in the relative frequency
jitters
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9.4 Disordered LISA measurements

Clock noise (i.e. the USO noise) has its effects on the LISA measurements
in two ways. On the one hand, the USOs serve as the time reference and
the frequency reference of the measurements, hence the clock noise enters
directly into the ranging measurements, the Doppler measurements (i.e. the
main science measurements) and the clock side-band measurements. On
the other hand, the USOs are driving the ADCs on board, controlling the
sampling time. Therefore, the clock noise also affects the time stamps of
LISA measurements. We have been dealing with the first kind of effects of
the clock noise in different circumstances successfully. However, the second
kind of effects has been neglected so far. In this section, we will investigate
the second kind of effects of the clock noise.

9.4.1 Effects of the clock noise on the time stamps

Ideally, the three USOs (i.e. clocks) of LISA constellation are infinitely ac-
curate and perfectly synchronized to each other. In this case, the ideal time
stamps of LISA measurements are plotted in Fig. 9.10 (a), where all the
measurements are sampled uniformly at the nominal sampling frequency (we
use 3 Hz as an example), and the data measured in different spacecraft are
recorded at the same UTC time. However, in practice, the clocks of LISA
are jittering all the time and are unsynchronized. Fig. 9.10 (b) shows the
actual recording time of the measurements taken in different spacecraft with
exaggerated clock noise. We see that the measurements at different space-
craft are not recorded at the same time. Even the measurements recorded
in the same spacecraft are not sampled perfectly uniformly. Furthermore,
the actual recording time of these measurements are unknown to us, since
the absolute clock jitters and frequency jitters are impossible to measure.
We only get the nominal time stamps of the measurements which look like
Fig. 9.10 (a).

To study this effect, we first need to simulate it. According to the LSD
of the clock noise, we can simulate the clock jitters and the frequency jitters
of each clock at a sampling frequency much higher than the actual sampling
frequency 3 Hz of the down-link of LISA. From the clock jitters, the true
recording time of the measurements at each SC can be calculated, such as the
true recording time shown in Fig. 9.10. The inter-spacecraft measurements
are calculated at the true recording time. In the calculation, the positions
and the velocities of the SC can be obtained at arbitrary time according to
the dynamics. The clock jitters and the frequency jitters are filtered by a low-
pass filter with a corner frequency much higher than the nominal sampling
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(a) (b)

Figure 9.10: The time stamps of LISA measurements with nominal sampling
frequency at 3 Hz. The vertical axis indicates the spacecraft index. (a). The
time stamps with perfectly stable clocks that are also ideally synchronized
to each other. (b). The exaggerated plot of time stamps with unstable and
unsynchronized clocks.

frequency 3 Hz. Then, these jitters can also be interpolated to arbitrary
time. In the end, we have several time series of measurements from each SC
sampled according to its own clock.

9.4.2 Performances of the designed algorithms

In this subsection, we will apply the previously designed algorithms to sim-
ulated LISA measurements with unknown jittering time stamps, and inves-
tigate how the jittering time stamps will influence the performances of the
algorithms. Firstly, we generate frequency jitters whose LSD has a 1/ν-
slope, and the corresponding clock jitters. We simulate LISA measurements
with unknown jittering time stamps calculated from these frequency jitter-
s and clock jitters. We apply the hybrid-extended Kalman filter with the
24-dimensional state vector to the simulated data. The results are shown in
Fig. 9.11. Although, the estimates of the relative frequency jitters are still
accurate, the estimates of the relative clock jitters and the arm lengths are
significantly biased. This is partly because the measurements are already
biased by the unknown jittering time stamps. We also apply the previous-
ly designed Kalman filter with effective system models to similar simulated
LISA measurements with a different noise realization. The results are sum-
marized in Fig. 9.12. Similarly, we observe that the unknow jittering time
stamps have led to biases in the relative clock jitters and the arm lengths,
which cannot be corrected by the designed Kalman filter the effective system
models.

We also use stronger and more complicated clock noise to test other de-
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(a) (b)

(c)

Figure 9.11: Application of the hybrid-extended Kalman filter with the
24-dimensional state vector to simulated LISA measurements with unknown
jittering time stamps. (a). Histograms of estimation errors of relative clock
jitters. (b). Histograms of estimation errors of arm lengths. (c). Histograms
of estimation errors of relative frequency jitters.
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(a) (b)

(c)

Figure 9.12: Application of the Kalman filter with the effective system
dynamics to simulated LISA measurements with unknown jittering time s-
tamps. (a). Histograms of estimation errors of relative clock jitters. (b).
Histograms of estimation errors of arm lengths. (c). Histograms of estima-
tion errors of relative frequency jitters.
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signed algorithms. We generate clock noise that has a LSD 40-times weaker
than the measured clock noise in the last section. Notice that this clock
noise is still much stronger than the 1/ν-slope frequency noise. LISA mea-
surements with unknown jittering time stamps are simulated based on this
clock noise. We then apply the iterative Kalman filter with fitted three-pole
clock models to the simulated LISA measurements. The results are shown
in Fig. 9.13. Similarly, the estimates of the relative clock jitters and the arm
lengths are significantly biased. However, the influences of the jittering time
stamps on the relative frequency jitters are not apparent.

(a) (b)

(c)

Figure 9.13: Application of the iterative Kalman filter with fitted three-
pole clock models to simulated LISA measurements with unknown jittering
time stamps. (a). Histograms of estimation errors of relative clock jitters.
(b). Histograms of estimation errors of arm lengths. (c). Histograms of
estimation errors of relative frequency jitters.
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9.4.3 Properties of the jittering time stamps

We denote the time span of LISA measurements, to be processed by the
designed Kalman filter-like algorithms, as Tobs, which is usually of the order
of 1000 s. The initial time biases of the clock in the i-th SC at the beginning of
this time span are denoted by ∆Ti. The instantaneous clock biases excluding
the initial clock biases are denoted by δTi. The relation between the true
time tUTC and the nominal time ti of the i-th clock is given by

tUTC = ti + ∆Ti + δTi(tUTC). (9.40)

Notice that the initial clock bias ∆Ti can be as large as a fraction of a
second, while the instantaneous clock bias δTi within the time span is several
orders of magnitude smaller (e.g. δTi < 10−6 s). Also notice that all the
measurements and related quantities are ’uniformly’ sampled in the nominal
time ti. Therefore, we expand the instantaneous clock biases in a Taylor
series

δTi(tUTC) = δTi(ti + ∆Ti + δTi)

= δTi(ti + ∆Ti) + ˙δTi(ti + ∆Ti)δTi +O(δT 2
i ). (9.41)

To make an order of magnitude estimation, we assume the PSD of the in-
stantaneous clock biases to be SδT ≈ A/ν4, where ν is the Fourier frequency,
and A is an amplitude. The standard deviation of the instantaneous clock
bias can then be estimated

√
E[δT 2

i ] =

√√√√√2

∞∫
1/Tobs

SδT (ν)dν ≈
√

2

3
AT 3

obs. (9.42)

The magnitude of the derivative of the instantaneous clock bias is

˙δTi ∼
√

E[ ˙δTi
2
] =

√√√√√2

∞∫
1/Tobs

4π2ν2SδT (ν)dν

≈
√

8π2ATobs ≈

√
12π2

T 2
obs

√
E[δT 2

i ] ≤ 10−8. (9.43)

Hence, we make the following approximation

δTi(ti + ∆Ti + δTi) ≈ δTi(ti + ∆Ti) + noise, (9.44)
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where the noise term is several orders of magnitude smaller than δTi. Simi-
larly, we can justify the following

Lij(tj + ∆Tj + δTj) ≈ Lij(tj + ∆Tj) + noise, (9.45)

vij(tj + ∆Tj + δTj) ≈ vij(tj + ∆Tj) + noise, (9.46)

δfi(ti + ∆Ti + δTi) ≈ δfi(ti + ∆Ti) + noise, (9.47)

where Lij and vij respectively denote the arm length and the relative tangen-
tial velocity between SC i and SC j measured at SC j. By choosing the time
span Tobs properly, we can approximately treat the inter-spacecraft measure-
ments as uniformly sampled at the cost of introducing extra noise. This is
almost the best we could do, since the absolute values of δTi are impossible
to be recovered from the inter-spacecraft measurements. In principle, the d-
ifferential clock bias (δTi− δTj)/2 can be estimated, while the common clock
bias (δTi+δTj)/2 cannot be. For independent instantaneous clock biases δTi
and δTj, the differential clock bias and the common clock bias are compa-
rable. Therefore, adding the correction of the differential clock bias to the
nominal sampling time stamps does not help much.

However, the initial clock biases ∆Ti are much larger, hence they cannot
simply be treated as noise. Since the initial clock biases differ from each
other, the quantities measured at different SC are not sampled at the same
time. The approximate model of the inter-spacecraft measurements does not
directly fit into the designed algorithms. Before running any Kalman filter-
like algorithms, the relative initial clock biases can be roughly estimated as

∆Tj −∆Ti =
Rij −Rji

2c
− Lij − Lji

2c
+ noise

≈ Rij −Rji

2c
, (9.48)

where we have neglected the second term on the right hand side, which is
small even in the full relativistic treatment

Lij − Lji
2c

∼ vij
c

Lij
2c
∼ 10−7 s. (9.49)

Notice that, although this term can be neglected in the time stamps by
introducing extra noise, it cannot be neglected in the ranging measurements.
It is clear that this term can cause ∼ 30 m error in the arm length estimates.

9.4.4 Hybrid interpolated filters

With the help of the rough estimates of ∆T1−∆T2 and ∆T2−∆T3, we can sort
the inter-spacecraft measurements from all the three SC in sequence. We run
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the sequential Kalman filter previously designed to process the LISA mea-
surements in sequence. The measurements that recorded at the same time
(at the same SC) are processed together in one step. Ideally, this modified
sequential Kalman filter would work, since the data fit into its frame. How-
ever, for the ultra-precise multi-scale problem we consider here, this modified
filter turns out to be numerically unstable. Therefore, we need to design new
algorithms.

Instead of a single Kalman filter, we propose to design three similar but
separate filters respectively to estimate the quantities measured in one SC
at its own recording time. For instance, one filter is to estimate the arm
lengths L21 and L31 observed by SC 1 recorded at the approximate time
t1 + ∆T1. We first design a low-order (e.g. three-order) low-pass digital
filter to polish the measurements recorded at the other two SC. The filter
is run forward and then backward in order to have zero-phase distortion.
The corner frequency of the filter is set above 1 Hz. These measurements are
then interpolated to the recording time t1 + ∆T1 of SC 1, using Lagrange
fractional-delay filters [152, 153, 154], based on the rough estimates of the
relative initial clock biases ∆T1 −∆T2 and ∆T2 −∆T3. We run the hybrid-
extended Kalman filter to process these interpolated measurements. The
estimates of the quantities measured at SC 1 are obtained, whose estimation
errors are plotted in Fig. 9.14. Comparing with Fig. 9.11, we see that the
biases caused by the unknown jittering time stamps have been corrected by
this hybrid interpolated filter. Similarly, we apply the Kalman filter with
the effective system models to the interpolated measurements. The results
are shown in Fig. 9.15. The estimates of the interpolated filter have also
corrected the big biases in the measurements. Notice that the frequency
jitters in these two cases have a 1/ν-slope LSD.

For the clock noise that has a similar LSD as the measured clock noise
(but 40-times weaker), we apply the iterative Kalman filter with the fitted
three-pole clock model to the interpolated LISA measurements. The simu-
lation results are shown in Fig. 9.16. Even for this stronger and more com-
plicated clock noise, the hybrid interpolated algorithm has also successfully
estimate the relative clock jitters, the arm lengths and the relative frequen-
cy jitters, while eliminating the big biases in the measurements, comparing
with Fig. 9.13. However, the hybrid interpolated algorithms does not apply
to arbitrarily strong clock noise. For the measured original clock noise from
the laboratory, the hybrid interpolated algorithms sometimes become unsta-
ble. As long as one uses slightly better clocks, the newly designed algorithms
work properly.
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(a) (b)

(c)

Figure 9.14: Application of the interpolated hybrid-extended Kalman filter
with the 24-dimensional state vector to simulated LISA measurements with
unknown jittering time stamps. (a). Histograms of estimation errors of
relative clock jitters. (b). Histograms of estimation errors of arm lengths.
(c). Histograms of estimation errors of relative frequency jitters.
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(a) (b)

(c)

Figure 9.15: Application of the interpolated Kalman filter with the effective
system model to simulated LISA measurements with unknown jittering time
stamps. (a). Histograms of estimation errors of relative clock jitters. (b).
Histograms of estimation errors of arm lengths. (c). Histograms of estimation
errors of relative frequency jitters.
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(a) (b)

(c)

Figure 9.16: Application of the interpolated iterative Kalman filter with the
fitted three-pole clock model to simulated LISA measurements with unknown
jittering time stamps. (a). Histograms of estimation errors of relative clock
jitters. (b). Histograms of estimation errors of arm lengths. (c). Histograms
of estimation errors of relative frequency jitters.
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9.5 Supplementary A: calculation of the ze-

ros from the residues and poles

Here, we want to prove that the zeros of
∑N+1

j=1
r̄j

i2πν−p̄j +1 are the eigenvalues

of the following matrix

H =


p̄1 − r̄1 −r̄2 . . . −r̄N+1

−r̄1 p̄2 − r̄2 . . . −r̄N+1
...

...
. . .

...
−r̄1 −r̄2 . . . p̄N+1 − r̄N+1

 . (9.50)

The eigenvalues of the matrix H are the roots of the determinant |λI−H|,
hence we have the following

0 = |λI −H|,

=

∣∣∣∣∣∣∣∣∣
λ− p̄1 + r̄1 r̄2 . . . r̄N+1

r̄1 λ− p̄2 + r̄2 . . . r̄N+1
...

...
. . .

...
r̄1 r̄2 . . . λ− p̄N+1 + r̄N+1

∣∣∣∣∣∣∣∣∣ ,

=

∣∣∣∣∣∣∣∣∣
λ− p̄1 + r̄1 r̄2 . . . r̄N+1

p̄1 − λ λ− p̄2 . . . 0
...

. . . . . .
...

0 . . . p̄N − λ λ− p̄N+1

∣∣∣∣∣∣∣∣∣ ,
= (λ− p̄1 + r̄1)

N+1∏
j=2

(λ− p̄j) +
N+1∑
j=2

(−1)j−1r̄j

j−1∏
k=1

(p̄k − λ)
N+1∏
m=j+1

(λ− p̄m),

=
N+1∏
k=1

(λ− p̄k)

[
N+1∑
j=1

r̄j
λ− p̄j

+ 1

]
,

=
N+1∏
j=1

(λ− z̄j). (9.51)

Hence, the eigenvalues λj are identical to the zeros z̄j.
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9.6 Supplementary B: a proof of the clock

model

In this supplementary, we show a way of decomposing the following high-
order differential equation into a set of first-order differential equations.

x(N+1) +
N∑
j=0

ajx
(N−j) =

N∑
k=0

bku
(N−k). (9.52)

Notice that there are in total 2(N + 1) coefficients aj and bk. We assume the
above equation can be decomposed into the following form

d

dt


x
x1
...

xN−1

xN

 =


0 1

0 1
. . . . . .

0 1
d0 d1 . . . dN−1 dN




x
x1
...

xN−1

xN

+


c1

c2
...
cN
cN+1

u, (9.53)

where cj and dk are unknown coefficients to be determined. Notice that there
are 2(N + 1) unknown coefficients in total. In principle, these unknowns can
be completely determined from the coefficients of the high-order differential
equation. For k = 1, . . . , N , it is easy to obtain the following

xk = x(k) −
k∑
j=1

cju
(k−j). (9.54)

Therefore, the set of first-order differential equations is equivalent to

x(N+1) −
N∑
k=0

dkx
(k) =

N∑
j=0

cj+1u
(N−j) −

N∑
k=1

k∑
l=1

dkclu
(k−l). (9.55)

For the last term of the above equation, we define the following new summa-
tion indices

j = N − k + l ∈ [1, N ],

m = l ∈ [1, j]. (9.56)

It can be proved that

N∑
k=1

k∑
l=1

dkclu
(k−l) =

N∑
j=1

j∑
m=1

dN+m−jcmu
(N−j). (9.57)
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By inserting the above equation into Eq. 9.55, we have

x(N+1) −
N∑
k=0

dkx
(k) =

N∑
j=0

(
cj+1 −

j∑
m=1

dN+m−jcm

)
u(N−j). (9.58)

Compare with Eq. 9.52, we can solve the unknown cofficients

dk = −aN−k (k = 0, . . . , N) (9.59)

cj+1 = bj −
j∑

m=1

aj−mcm (j = 0, . . . , N). (9.60)
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Chapter 10

Octahedron configuration for a
displacement noise-canceling
gravitational wave detector in
space

Collaborate with the authors of the published paper: Phys. Rev. D 88, 104021
(2013).
I had the original idea to study an octahedral detector in space. I participated
in deriving the DFI solutions and obtained Y1, Y2 and Y3. The Si solutions
are obtained by S. Babak and A. Petiteau. I calculated the noise level, the
response functions and the sensitivity of the detector. I optimized over the
mirror size and the laser power, calculated the response functions and sensi-
tivity curves for alternative theories of gravity, and estimated the detection
of stochastic background gravitational radiation. I also participated in the
discussion of other sections, such as the technological feasibility, orbits etc.

10.1 Introduction

The search for gravitational waves (GWs) has been carried out for more
than a decade by ground-based detectors. Currently, the LIGO and Virgo
detectors are being upgraded using advanced technologies [155, 156]. The
ground-based detectors are sensitive in quite a broad band from about 10 Hz
to a few kHz. In this band possible GW sources include stellar-mass com-
pact coalescing binaries [157], asymmetric core collapse of evolved heavy
stars [158], neutron stars with a nonzero ellipticity [159] and, probably, a
stochastic GW background from the early Universe or from a network of
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cosmic strings [160, 161].
In addition, the launch of a space-based GW observatory is expected in

the next decade, such as the classic LISA mission concept [72] (or its re-
cent modification known as evolved LISA (eLISA) / NGO [74]), and DECI-
GO [80]. LISA has become a mission concept for any heliocentric drag-free
configuration that uses laser interferometry for detecting GWs. The most
likely first GW observatory in space will be the eLISA mission, which has an
arm length of 109 m and two arms, with one “mother” and two “daughter”
spacecraft exchanging laser light in a V-shaped configuration to sense the
variation of the metric due to passing GWs.

The eLISA mission aims at mHz frequencies, targeting other sources than
ground-based detectors, most importantly supermassive black hole binaries.
In a more ambitious concept, DECIGO is supposed to consist of a set of
four smaller triangles (12 spacecraft in total) in a common orbit, leading to
a very good sensitivity in the intermediate frequency region between LISA
and advanced LIGO (aLIGO).

Here we want to present a concept for another space-based project with
quite a different configuration from what has been considered before. The
concept was inspired by a three-dimensional interferometer configuration in
the form of an octahedron, first suggested in Ref. [162] for a ground-based
detector, based on two Mach-Zehnder interferometers.

The main advantage of this setup is the cancellation of timing, laser fre-
quency and displacement noise by combining multiple measurement channels.
We have transformed this detector into a space-borne observatory by placing
one LISA-like spacecraft (but with four telescopes and a single test mass) in
each of the six corners of the octahedron, as shown in Fig. 10.1. Therefore,
we call this project the Octahedral Gravitational Observatory (OGO).

Before going into the mathematical details of displacement-noise free in-
terferometry (DFI), we first consider possible orbits for a three-dimensional
octahedron constellation in Sec. 10.2. As we will find later on, the best
sensitivities of an OGO-like detector are expected at very long arm length-
s. However, the most realistic orbits we found that can sustain the three-
dimensional configuration with stable distances between adjacent spacecraft
for a sufficiently long time are so-called “halo” and “quasihalo” orbits around
the Lagrange point L1 in the Sun-Earth system.

These orbits are rather close to Earth, making a mission potentially
cheaper in terms of fuel and communication, and corrections to maintain
the formation seem to be reasonably low. On the other hand, a constellation
radius of only 1000 km can be supported, corresponding to a spacecraft-to-
spacecraft arm length of approximately 1400 km.

We will discuss this as the standard configuration proposal for OGO in
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the following, but ultimately we still aim at using much longer arm lengths.
As a candidate, we will also discuss OGO orbits with 2×109 m arm lengths in
Sec. 10.2. However, such orbits might have significantly varying separations
and would require further study of the DFI technique in such circumstances.
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Figure 10.1: Left: Graphical representation of the proposed halo orbit around
L1. Right: OGO’s spacecraft constellation along the halo orbit, with a radius
of 1000 km and spacecraft separation of L =

√
2 r ≈ 1400 km. [Image by S.

Barke]

The octahedron configuration gives us 24 laser links, each corresponding
to a science measurement channel of the distance (photon flight-time) vari-
ation between the test masses on adjacent spacecraft. The main idea is to
use a sophisticated algorithm called displacement-noise free interferometry
(DFI, [163, 162, 164]), which proceeds beyond conventional Time-Delay In-
terferometry techniques (TDI, [113, 114]), and in the right circumstances can
improve upon them.

It can cancel both timing noise and acceleration noise when there are
more measurements than noise sources. In three dimensions, the minimum
number of spacecraft for DFI is 6, which we therefore use for OGO: this gives
6− 1 relative timing (clock) noise sources and 3× 6 = 18 components of the
acceleration noise, so that 24 > 5 + 18 and the DFI requirement is fulfilled.
On the one hand, this required number of links increases the complexity of
the detector. On the other hand, it provides some redundancy in the number
of shot-noise-only configurations, which could be very useful if one or several
links between spacecraft are interrupted.

After applying DFI, we assume that the dominant remaining noise will
be shot noise. For the case of an equal-arm-length three-dimensional constel-
lation, we analytically find a set of generators for the measurement channel
combinations that cancel simultaneously all timing and acceleration noise.
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We assume that all deviations from the equal-arm configuration are smal-
l and can be absorbed into a low-frequency part of the acceleration noise.
We describe the procedure of building DFI combinations in Sec. 10.3. This
will also allow us to quantify the redundancy inherent in the six-spacecraft
configuration. The technical details of the derivation can be found in Sup-
plementary A.

In Sec. 10.4, we compute the response functions of the octahedron DFI
configuration and derive the sensitivity curve of the detector. We assume
the conservative 1400 km arm length, a laser power of 10 W and a telescope
diameter of 1 m, while identical strain sensitivity is achievable for smaller
telescopes and higher power.

Unfortunately, those combinations that cancel acceleration and timing
noise also suppress the GW signal at low frequencies. This effect shows up
as a rather steep slope ∼ f 2 in the response function.

We present sensitivity curves for single DFI combinations and find that
there are in principle 12 such noise-uncorrelated combinations (corresponding
to the number of independent links) with similar sensitivity, leading to an
improved network sensitivity of the full OGO detector. We find that the
best sensitivity is achieved around 78 Hz, in a range similar to that of ground-
based detectors. The network sensitivity of OGO is better than that of initial
LIGO at this frequency, but becomes better than that of aLIGO only below
10 Hz. The details of these calculations are presented in Sec. 10.4.2.

At this point, in Sec. 10.4.3, we briefly revisit the alternative orbits with a
longer arm length, which would result in a sensitivity closer to the frequency
band of interest for LISA and DECIGO. For this variant of OGO, we assume
LISA-like noise contributions (but without spacecraft jitter) and compare
the sensitivity of an octahedron detector using DFI with one using TDI,
thus directly comparing the effects of these measurement techniques.

Actually, we find that the 2 × 109 m arm length is close to the point of
equal sensitivity of DFI and TDI detectors in the limit of vanishing jitter.
This implies that DFI would be preferred for even longer arm lengths, but
might already become competitive at moderate arm lengths if part of the
jitter couples into the displacement noise in such a way that it can also be
canceled.

A major advantage of the OGO concept lies in its rather moderate require-
ment on acceleration noise, as detailed in Sec. 10.4.4. For other detectors,
this limits the overall performance, but in this concept it gets canceled out
by the DFI combinations. Assuming some improvements in subdominant
noise sources, our final sensitivity thus depends only on the shot-noise level
in each link.

Hence, we can improve the detector performance over all frequencies by
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reducing solely the shot noise. This could be achieved, for example, by
increasing the power of each laser, by introducing cavities (similar to DECI-
GO), or with nonclassical (squeezed) states of light. We briefly discuss these
possibilities in Sec. 10.4.5.

In Sec. 10.5, we discuss the scientific potentials OGO would have even
using the conservative short-arm-length orbits. First, as a main target, the
detection rates for inspiraling binaries are higher than for initial LIGO, but
fall short of aLIGO expectations. However, joint detections with OGO and
aLIGO could yield some events with greatly improved angular resolution.
Second, due to the large number of measurement channels, OGO is good
for probing the stochastic background. Furthermore, the three-dimensional
configuration allows us to test alternative theories of gravity by searching for
additional GW polarization modes. In addition, we briefly consider other
source types such as pulsars, intermediate mass (102 < M/M� < 104) black
hole (IMBH) binaries and supernovae.

Finally, in Sec. 11.6, we summarize the description and abilities of the
Octahedral Gravitational Observatory and mention additional hypothetical
improvements. In this article, we use geometric units, c = G = 1, unless
stated otherwise.

10.2 Orbits

The realization of an octahedral constellation of spacecraft depends on the ex-
istence of suitable orbits. Driving factors, apart from separation stability, are
assumed to be (i) fuel costs in terms of velocity ∆v necessary to deploy and
maintain the constellation of six spacecraft, and (ii) a short constellation-to-
Earth distance, required for a communication link with sufficient bandwidth
to send data back to Earth. As described in the introduction, OGO features a
three-dimensional satellite constellation. Therefore, using heliocentric orbits
with a semimajor axis a = 1 AU similar to LISA would cause a significant
drift of radially separated spacecraft and is in our opinion not feasible.

However, in the last decades orbits in the nonlinear regime of Sun/Earth-
Moon libration points L1 and L2 have been exploited, which can be reached
relatively cheaply in terms of fuel [165]. A circular constellation can be
deployed on a torus around a halo L1 orbit. The radius is limited by the
amount of thrust needed for keeping the orbit stable. A realistic ∆v for orbit
maintenance allows a nominal constellation radius of r = 1000 km [166]. We
assume the spacecraft B, C, E and F in Fig. 10.1 to be placed on such a torus,
whereby the out-of-plane spacecraft A and D will head and trail on the inner
halo. The octahedron formation then has a base length L =

√
2 r ≈ 1400 km.
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The halo and quasihalo orbits have an orbital period of roughly 180 days and
the whole constellation rotates around the A-D line.

We already note at this point that a longer baseline would significantly
improve the detector strain sensitivity. Therefore, we also propose an alter-
native configuration with an approximate average side length of 2 × 109 m,
where spacecraft A and D are placed on a small halo or Lissajous orbit around
L1 and L2, respectively. The remaining spacecraft are arranged evenly on a
(very) large halo orbit around either L1 or L2. However, simulations using
natural reference trajectories showed that this formation is slightly asymmet-
ric and that the variations in the arm lengths (and therefore in the angles
between the links) are quite large. Nevertheless, we will revisit this alterna-
tive in Sec. 10.4.3 and do a rough estimation of its sensitivity. To warrant a
full scientific study of such a long-arm-length detector would first require a
more detailed study of these orbits.

Hence, we assume the 1400 km constellation to be a more realistic base-
line, especially since the similarity of the spacecraft orbits is advantageous
for the formation deployment, because large (and expensive) propulsion mod-
ules for each satellite are not required as proposed in the LISA/NGO mis-
sion [167, 116]. The 2 × 109 m formation will be stressed only to show the
improvement of the detector sensitivity with longer arms.

Formation flight in the vicinity of Lagrange points L1 and L2 is still
an ongoing research topic [168]. Detailed (numerical) simulations have to
be performed to validate these orbit options and to figure out appropriate
orbit and formation control strategies. In particular the suppression of con-
stellation deformations using non-natural orbits with correction maneuvers
and required ∆v and fuel consumption needs to be investigated. Remaining
deformations and resizing of the constellation will likely require a beam or
telescope steering mechanism on the spacecraft.

In addition, the formation will have a varying Sun-incidence angle, lead-
ing to further issues for power supply, thermal shielding and blinding of
interferometer arms. These points need to be targeted at a later stage of the
OGO concept development as well as the effect of unequal arms on the DFI
scheme.

10.3 Measurements and noise-canceling com-

binations

In this section we will show how to combine the available measurement chan-
nels of the OGO detector to cancel laser and acceleration noise.
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Each spacecraft of OGO is located at a corner of the octahedron, as shown
in Fig. 10.1, and it exchanges laser light with four adjacent spacecraft. We
consider interference between the beam emitted by spacecraft I and received
by spacecraft J with the local beam in J , where I, J = {A,B,C,D,E,F}
refer to the labels in Fig. 10.1. For the sake of simplicity, we assume a rigid
and nonrotating constellation. In other words, all arm lengths in terms of
light travel time are equal, constant in time and independent of the direction
in which the light is exchanged between two spacecraft. This is analogous to
the first generation TDI assumptions [113]. If the expected deviations from
the equal arm configuration are small, then they can be absorbed into the
low-frequency part of the acceleration noise. This imposes some restrictions
on the orbits and on the orbit correction maneuvers. We also want to note
that the overall breathing of the constellation (scaling of the arm length) is
not important if the breathing time scale is significantly larger than the time
required for the DFI formation, which is usually true. All calculations below
are valid if we take the arm length at the instance of DFI formation, which
is the value that affects the sensitivity of the detector.

The measurement of the fractional frequency change for each link is then
given by

stot
IJ = hIJ + bIJ +DpI − pJ +D (~aI · n̂IJ)− (~aJ · n̂IJ) , (10.1)

where we have neglected the factors to convert displacement noise to optical
frequency shifts. Here, we have the following:

1. hIJ is the influence of gravitational waves on the link I → J ,

2. bIJ is the shot noise (and other similar noise sources at the photo de-
tector and phase meter of spacecraft J) along the link I → J .

3. pI is the laser noise of spacecraft I.

4. ~aI is the acceleration noise of spacecraft I.

5. n̂IJ = (~xJ − ~xI)/L is the unit vector along the arm I → J (with
length L). Hence, the scalar product ~aI · n̂IJ is the acceleration noise
of spacecraft I projected onto the arm characterized by the unit vector
n̂IJ .

This is similar to TDI considerations, but in addition to canceling the laser
noise pI , we also want to eliminate the influence of the acceleration noise,
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that is all terms containing aI . Following Ref. [113], we have introduced a
delay operator D, which acts as

Dy(t) = y(t− L) . (10.2)

Note that we use a coordinate frame associated with the center of the octa-
hedron, as depicted in Fig. 10.1.

The basic idea is to find combinations of the individual measurements
(Eq. 10.1) which are free of acceleration noise ~aI and laser noise pI . In other
words, we want to find solutions to the following equation:∑

all IJ links

qIJ sIJ = 0 . (10.3)

In Eq. (10.3), qIJ denotes an unknown function of delays D and sIJ contains
only the noise we want to cancel:

sIJ ≡ stot
IJ (bIJ = hIJ = 0)

= DpI − pJ +D (~aI · n̂IJ)− (~aJ · n̂IJ) . (10.4)

If a given qIJ is a solution, then f(D)qIJ is also a solution, where f(D) is a
polynomial function (of arbitrary order) of delays. The general method for
finding generators of the solutions for this equation is described in Ref. [113]
and we will follow it closely.

Before we proceed to a general solution for Eq. (10.3), we can check
that the solution corresponding to Mach-Zehnder interferometers suggested
in Ref. [162] also satisfies Eq. (10.3):

Y1 = [ (sCD +DsAC)− (sCA +DsDC) + (sFD +DsAF )

− (sFA +DsDF ) ]− [ (sBD +DsAB)− (sBA +DsDB)

+ (sED +DsAE)− (sEA +DsDE) ] . (10.5a)

Using the symmetries of an octahedron, we can write down two other solu-
tions:

Y2 = [ (sCE +DsBC)− (sCB +DsEC) + (sFE +DsBF )

− (sFB +DsEF ) ]− [ (sAE +DsBA)− (sAB +DsEA)

+ (sDE +DsBD)− (sDB +DsED) ] , (10.5b)

Y3 = [ (sDF +DsCD)− (sDC +DsFD) + (sAF +DsCA)

− (sAC +DsFA) ]− [ ((sEF +DsCE)− (sEC +DsFE)

+ (sBF +DsCB)− (sBC +DsFB) ] . (10.5c)
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We can represent these solutions as 24-tuples of coefficients for the delay
functions qIJ :

q1 = {1, 1,−1,−1,−1,−1, 1, 1,−D,D, 0, 0,−D,D, 0, 0,
D,−D, 0, 0,D,−D, 0, 0} , (10.6a)

q2 = {−D,D, 0, 0,−D,D, 0, 0, 1, 1,−1,−1,−1,−1, 1, 1,

0, 0,D,−D, 0, 0,D,−D} , (10.6b)

q3 = {0, 0,D,−D, 0, 0,D,−D, 0, 0,−D,D, 0, 0,−D,D,
−1,−1, 1, 1, 1, 1,−1,−1} . (10.6c)

The order used in the 24-tuples is {BA, EA, CA, FA, BD, ED, CD, FD,
AB, DB, CB, FB, AE, DE, CE, FE, AC, DC, BC, EC, AF , DF , BF ,
EF}, so that, for example, the first entry in q1 represents the sBA coefficient
in the Y1 equation.

These particular solutions illustrate that not all links are used in produc-
ing a DFI stream. Multiple zeros in the equations for q1, q2, q3 above indicate
those links which do not contribute to the final result, and each time we use
only 16 links. We will come back to the issue of “lost links” when we discuss
the network sensitivity.

In the following, we will find generators of all solutions. The first step is to
use Gaussian elimination (without division by delay operators) in Eq. (10.3),
and as a result, we end up with a single (master) equation which we need to
solve:

0 = (D − 1)2qBC + (D − 1)DqCE + (1−D)(D − 1)DqDB
+ (D − 1)((1−D)D − 1)qDC

+ (D − 1)qDF + (D − 1)qEF . (10.7)

In the next step, we want to find the so-called “reduced generators” of E-
q. (10.7), which correspond to the reduced set (qBC , qCE, qDB, qDC , qDF , qEF ).
For this we need to compute the Gröbner basis [169], a set generating the
polynomial ideals qIJ . Roughly speaking, the Gröbner basis is comparable to
the greatest common divisor of qIJ . Following the procedure from Ref. [113],
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we obtain seven generators:

S1 = {0,D2 +D, 0,−D −D2, 1−D,D2 + 1,−1 +D,−1−D2,

D −D2, 0,−D,D2,−D2 − 1,−D − 1, 1, 1 +D +D2,

−D +D2, 0,D,−D2,D2 + 1, 1 +D,−1,−D −D2 − 1}, (10.8a)

S2 = {D + 1,D + 1,−D − 1,−D − 1,−1 +D,D − 1, 1−D, 1−D,
−2D, 0,D,D,−2D, 0,D,D, 2D, 0,−D,−D, 2D, 0,−D,−D},(10.8b)

S3 = {0,D,−D, 0,−1,D − 1, 1−D, 1, 1−D, 1,−1 +D,−1,−D,
0,D, 0,D, 0, 0,−D,D − 1,−1, 1,−D + 1}, (10.8c)

S4 = {D,−D +D2,D,−D −D2, 2,−2D +D2 + 2,−2 + 2D,
−2−D2, 2D − 2−D2,−2, 2− 2D, 2 +D2,D −D2,

−D,−D,D +D2,−2D +D2, 0, 0, 2D −D2,−D +D2 + 2,

2 +D,−2−D,D −D2 − 2}, (10.8d)

S5 = {0,D2 +D,−D2,−D, 1−D,D2 + 1,D −D2 − 1,−1,

D −D2, 0,−D +D2, 0,−1−D2,−D − 1, 1 +D2, 1 +D,
D2,D, 0,−D2 −D,−D +D2 + 1, 1,D − 1,−1−D2}, (10.8e)

S6 = {D + 2 +D2,D +D3 + 2,−D +D2 − 2,−D − 2− 2D2 −D3,

−2 + 2D, 2D −D2 +D3 − 2,−2D + 2D2 + 2, 2− 2D −D2 −D3,

D2 − 4D −D3, 0, 2D − 2D2, 2D +D2 +D3,−3D −D3,D −D2,

D −D2, 2D2 +D +D3,−D2 + 2D +D3,−2D, 0,D2 −D3,

5D +D3,D +D2,−3D −D2,−3D −D3}, (10.8f)

S7 = {1, 1 +D,−1,−1−D, 0,D, 0,−D,−D, 0, 0,D,−1−D,−1,

1, 1 +D,D, 0, 0,−D, 1 +D, 1,−1,−1−D}. (10.8g)

As before, these operators have to be applied to sIJ , using the same
ordering as given above. All other solutions can be constructed from these
generators. A detailed derivation of expressions (10.8a)–(10.8g) is given in
Supplementary A.
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Before we proceed, let us make several remarks. The generators found
here are not unique, just like in the case of TDI [113]. The set of generators
does not necessarily form a minimal set, and we can only guarantee that
the found set of generators gives us a module of syzygies and can be used
to generate other solutions. The combinations S1 to S7 applied on 24 raw
measurements stot

IJ eliminate both laser and displacement noise while mostly
preserving the gravitational wave signal. Note that again in those expressions
we do not use all links – for example, if the link BA is lost due to some
reasons, we still can use S1, S3, S5 to produce DFI streams.

10.4 Response functions and sensitivity

In the previous section we have found generators that produce data streams
free of acceleration and laser noise. Now we need to apply these combinations
to the shot noise and to the GW signal to compute the corresponding response
functions.

10.4.1 Shot noise level and noise transfer function

We will assume that the shot noise is independent (uncorrelated) in each
link and equal in power spectral density, based on identical laser sources and
telescopes on each spacecraft. We denote the power spectral density of the
shot noise by S̃sn. A lengthy but straightforward computation shows that the
spectral noise S̃n,i corresponding to the seven combinations Si, i = 1, . . . , 7
from Eqs. (10.8a–10.8g) is given by

S̃n,1 = 16 S̃sn ε
2 (9 + 2 cos 2ε+ 3 cos 4ε) , (10.9a)

S̃n,2 = 160 S̃sn ε
2 , (10.9b)

S̃n,3 = 48 S̃sn ε
2 (2− cos 2ε) , (10.9c)

S̃n,4 = 16 S̃sn ε
2 (24− 13 cos 2ε+ 6 cos 4ε) , (10.9d)

S̃n,5 = 16 S̃sn ε
2( 9− 2 cos 2ε+ 3 cos 4ε) , (10.9e)

S̃n,6 = 16 S̃sn ε
2 (45− 6 cos 2ε+ 17 cos 4ε) , (10.9f)

S̃n,7 = 48 S̃sn ε
2 (2 + cos 2ε) , (10.9g)

where ε ≡ ωL/2, with the GW frequency ω. In the low frequency limit

(ε� 1), the noise S̃n,i for each combination Si is proportional to ε2.
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Let us now compute the shot noise in a single link. We consider for OGO a
configuration with LISA-like receiver-transponder links and the following pa-
rameters: spacecraft separation L = 1414 km, laser wavelength λ = 532 nm,
laser power P = 10 W and telescope diameter D = 1 m. For this arm length
and telescope size, almost all of the laser power from the remote spacecraft is
received by the local spacecraft. Hence, the shot-noise calculation for OGO
is different from the LISA case, where an overwhelming fraction of the laser
beam misses the telescope [116].

For a Michelson interferometer, the sensitivity to shot noise is usually
expressed as [43]√

S̃h(f) =
1

2L

√
~cλ
πP

[1/
√

Hz] , (10.10)

where we have temporarily restored the speed of light c and the reduced
Planck constant ~. Notice that the effect of the GW transfer function is not
included here yet. For a single link I → J of OGO as opposed to a full two-

arm Michelson with dual links,

√
S̃h,IJ is a factor of 4 larger. However, our

design allows the following two improvements: (i) Since there is a local laser
in J with power similar to the received laser power from I, the power at the
beam splitter is actually 2P , giving an improvement of 1/

√
2. This is also

different from LISA, where due to the longer arm length the received power
is much smaller than the local laser power. (ii) If we assume that the arm
length is stable enough to operate at the dark fringe, then we gain another
factor of 1/

√
2.

So, we arrive at the following shot-noise-only sensitivity for a single link:

√
S̃h,IJ(f) =

1

L

√
~cλ
πP

[1/
√

Hz] . (10.11)

As mentioned before, almost all of the laser power from the remote s-
pacecraft can be received by the telescope with a radius 0.5 m for OGO.
Alternatively, if we want to use a smaller telescope, we could increase the
transmitted laser power to achieve the same sensitivity as the standard OGO
design (with a 10 W transmitted laser power and a 0.5 m telescope radius).
As a rough estimate, we assume the laser beam to be Gaussian

E(x, y, z) =
1

w(z)

√
2P0

π
exp

[
−ikz + iη(z)− x2 + y2

w2(z)
− ik(x2 + y2)

2R(z)

]
,

(10.12)
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where η(z) is the Gouy phase shift, R(z) is the radius of curvature of the
wavefront, and w(z) is the radius at which the magnetic field decays to e−1

of the central value. Therefore, the intensity of the beam is

I(x, y, z) = |E(x, y, z)|2 =
2P0

πw2(z)
exp

[
−2(x2 + y2)

w2(z)

]
, (10.13)

which satisfies∫ ∫
I(x, y, z)dxdy = P0. (10.14)

Along the propagation direction z-axis, we have

w(z) = w0

√
1 +

(
z

zR

)2

, (10.15)

where w0 is the beam waist, zR is the so-called Rayleigh range

zR =
πw2

0

λ
, (10.16)

where λ is the wavelength. We put the transmission telescope at the waist
of the laser beam and assume the reception telescope is roughly at the axial
center of the beam. By calculating the received laser power at the remote
spacecraft, we can calculate the sensitivity level. The relative sensitivities
for different combinations of transmitted laser powers and telescope radii are
shown in Fig. 10.2, where the sensitivity of the standard OGO design (with
a 10 W transmitted laser power and a 0.5 m telescope radius) is normalized
to unity. From the figure, we see that the same sensitivity can roughly be
achieved by a transmitted laser power 15 W and a telescope with a radius
0.4 m.

10.4.2 GW signal transfer function and sensitivity

Next, we will compute the detector response to a gravitational wave signal.
We assume a GW source located in the direction n̂ = −k̂ = (sin θ cosφ, sin θ sinφ, cos θ)
as seen from the detector frame. We choose unit vectors

û =

 cos θ cosφ
cos θ sinφ
− sin θ

 , v̂ =

 sinφ
− cosφ

0

 (10.17)
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Figure 10.2: The relative sensitivities for different combinations of transmit-
ted laser powers and telescope radii.

orthogonal to k̂ pointing tangentially along the θ and φ coordinate lines to
form a polarization basis. This basis can be described by polarization tensors
e+ and e×, given by

e+ ≡ û⊗ û− v̂ ⊗ v̂ , e× ≡ û⊗ v̂ + v̂ ⊗ û . (10.18)

The single arm fractional frequency response to a GW is [170]

hIJ =
HIJ(t− k̂ · ~xI − L)−HIJ(t− k̂ · ~xJ)

2
(

1− k̂ · n̂IJ
) , (10.19)

where ~xI is the position vector of the I-th spacecraft, L the (constant) dis-
tance between two spacecraft and

HIJ(t) ≡ h+(t) ξ+(û, v̂, n̂IJ) + h×(t) ξ×(û, v̂, n̂IJ) . (10.20)

Here h+,×(t) are two GW polarizations in the basis (10.18) and

ξ+(û, v̂, n̂IJ) ≡ n̂T
IJe+n̂IJ = (û · n̂IJ)2 − (v̂ · n̂IJ)2 , (10.21)

ξ×(û, v̂, n̂IJ) ≡ n̂T
IJe×n̂IJ = 2 (û · n̂IJ) (v̂ · n̂IJ) . (10.22)
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In order to find the arm response for arbitrary incident GWs, we can
compute the single arm response to a monochromatic GW with Eq. (10.19)
and then deduce the following general response in the frequency domain,

hIJ(f) = ε sinc
[
ε(1− k̂ · n̂IJ)

]
e−iε[k̂·(~xI+~xJ )/L+1]

× [ξ+(n̂IJ)h+(f) + ξ×(n̂IJ)h×(f)] , (10.23)

where we used the normalized sinc function, conventionally used in signal
processing: sinc(x) := sin(πx)/(πx).

Hence, the transfer function for a GW signal is

T GW
IJ+,×(f) = ε sinc

[
ε(1− k̂ · n̂IJ)

]
× e−iε[k̂·(~xI+~xJ )/L+1]ξ+,×(n̂IJ) . (10.24)

For the sake of simplicity, we will from now on assume that the GW has
“+” polarization only. This simplification will not affect our qualitative end
result. Substituting the transfer function for a single arm response into the
above 7 generators [Eqs. (10.8a)-(10.8g)], we can get the transfer function
T GW
i for each combination. The final expressions are very lengthy and not

needed here explicitly.
Having obtained the transfer function, we can compute the sensitivity for

each combination i = 1, . . . , 7 as

√
S̃h,i =

√
S̃n,i

〈(T GW
i )2〉

, (10.25)

where the triangular brackets imply averaging over polarization and source
sky location.

We expect up to 12 independent round trip measurements, correspond-
ing to the number of back-and-forth links between spacecraft. It is out of
the scope of this work to explicitly find all noise-uncorrelated combinations
(similar to the optimal channels A,E, T in the case of LISA [113]). However,
if we assume approximately equal sensitivity for each combination (which is
almost the case for the combinations S1, . . . , S7), we expect an improvement
in the sensitivity of the whole network by a factor 1/

√
12.

Therefore, we simply approximate the network sensitivity of the full de-

tector as

√
S̃h,net =

√
S̃h,5/12. Note that the potential loss of some links

would imply that not all generators can be formed. We can lose up to 6
links and still be able to form a DFI stream (but probably only one). The
number of lost links (and which links are lost exactly) will affect the network
sensitivity. In our estimations below we deal with the idealized situation and
assume that no links are lost.
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Figure 10.3: Sensitivities for two single DFI combinations (S1, blue crosses
and S5, green plus signs) of OGO (with L ≈ 1400 km) and for the full OGO
network sensitivity (scaled from S5, red solid line). For comparison, the
dashed lines show sensitivities for initial LIGO (H1 during science run S6,
from Ref. [171], cyan dashed line) and aLIGO (design sensitivity for high-
power, zero detuning configuration, from Ref. [172], magenta dash-dotted
line).
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We plot the sensitivity curves for individual combinations and the network
sensitivity in Fig. 10.3. For comparison we also show the design sensitivity
curves of initial LIGO (S6 science run [171]) and advanced LIGO (high laser
power configuration with zero detuning of the signal recycling mirror [172]).
Indeed one can see that the sensitivities of the individual OGO configurations
are similar to each other and close to initial LIGO. The network sensitivity of
OGO lies between LIGO and aLIGO sensitivities. OGO as expected outper-
forms aLIGO below 10 Hz, where the seismic noise on the ground becomes
strongly dominant.

10.4.3 General performance of the DFI scheme
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Figure 10.4: Network sensitivities, scaled from S5, of standard OGO (with
DFI, arm length 1414 km, red solid line) compared to an OGO-like detector
with spacecraft separation of 2 · 109 m, with either full DFI scheme (blue
crosses) or standard TDI only (green plus signs). Also shown for comparison
are (classic) LISA (5 · 109 m, network sensitivity, magenta dashed line, from
Ref. [208]) and DECIGO (using the fitting formula Eq. (20) from Ref. [209],
cyan dash-dotted line).

Having derived the full sensitivity curve of the OGO mission design with
L ≈ 1400 km as an exemplary implementation of the three-dimensional DFI
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scheme in space, let us take a step back and analyze the general performance
of a DFI-enabled detector. These features are also what led us to consider
the octahedron configuration in the first place.

Specifically, let us look in more detail at the low frequency asymptotic
behavior of the transfer functions and sensitivity curves. We consider a
LISA-like configuration with two laser noise free combinations: an unequal
arm Michelson (TDI-X) and a Sagnac combination (TDI-α). Let us assume
for a moment that the only noise source is shot noise, which at low frequencies

(ε � 1) scales as

√
S̃n,X ∼ ε2 and

√
S̃n,α ∼ ε1 for those two combinations,

respectively.
The GW transfer function, for both TDI combinations, scales as Tα, TX ∼

ε2; therefore, the sensitivity curves scale as

√
S̃h,α ∼

√
S̃n,α/Tα ∼ ε−1 for

TDI-α and

√
S̃h,X ∼

√
S̃n,X/TX ∼ ε0 for TDI-X. We see that a LISA-

like TDI-X-combination has a flat shot-noise spectrum at low frequencies,
corresponding to a flat total detector sensitivity if all other dominant noise
sources can be canceled – which looks extremely attractive.

Thus, a naive analysis suggests that the acceleration and laser noise free
combinations for an octahedron detector could yield a flat sensitivity curve
at low frequencies. Checking this preliminary result with a more careful
analysis was the main motivation for the research presented in this article.

In fact, as we have seen in Sec. 10.4.2, the full derivation delivers transfer
functions that, in leading order of ε, go as T1,2,...,7 ∼ ε3. This implies that
the sensitivity for laser and acceleration noise free combinations behaves as√
S̃h,1,2,...,7/T1,2,...,,7 ∼ ε−2, which is similar to the behavior of acceleration

noise. In other words, the combinations eliminating the acceleration noise
also cancel a significant part of the GW signal at low frequencies.

In fact, we find that a standard LISA-like TDI-enabled detector of the
same arm length and optical configuration as OGO could achieve a similar
low-frequency sensitivity (at few to tens of Hz) with an acceleration noise
requirement of only ∼ 10−12 m/s2

√
Hz. This assumes negligible spacecraft

jitter and that no other noise sources (phase-meter noise, sideband noise,
thermal noise) limit the sensitivity, which at this frequency band would be-
have differently than in the LISA band. In fact, the GOCE mission [173] has
already demonstrated such acceleration noise levels at mHz frequencies [174],
and therefore this seems a rather modest requirement at OGO frequencies.
We therefore see that such a short-arm-length OGO would actually only be
a more complicated alternative to other feasible mission designs.

In addition, it is hard to see from just the comparison with ground-based
detectors in Fig. 10.3 how exactly the DFI method itself influences the final
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noise curve of OGO, and how much of its shape is instead determined by the
geometrical and technical parameters of the mission concept (arm length,
laser power, telescope size). Also, the secondary technological noise sources
of a space mission in the comparatively high-frequency band of this exem-
plary OGO implementation are somewhat different from more well-studied
missions like LISA and DECIGO.

Therefore, to disentangle these effects, we will now tentatively study a
different version of OGO based on the alternative orbit with an average arm
length of 2 · 109 m, as mentioned in Sec. 10.2. It requires further study to
determine whether a stable octahedron constellation and the DFI scheme
are possible on such an orbit, but assuming they are, we can compute its
sensitivity as before.

In Fig. 10.4, we then compare this longer-baseline DFI detector with an-
other detector with the same geometry and optical components, but without
the DFI technique, using instead conventional TDI measurements. Here, we
are in a similar frequency range as LISA and therefore assume similar values
for the acceleration noise of 3 · 10−15 m/s2

√
Hz [116] and secondary noise

sources (phase meter, thermal noise, etc.; see Sec. 10.4.4).
However, there is another noise source, spacecraft jitter, which is consid-

ered subdominant for LISA, but might become relevant for both the TDI
and DFI versions of the 2 · 109 m OGO-like detector. Jitter corresponds to
the rotational degrees of freedom between spacecraft, and its coupling into
measurement noise is not fully understood. We have therefore computed
both sensitivities without any jitter. It seems possible that at least the part
of jitter that couples linearly into displacement noise could also be canceled
by DFI, or that an extension of DFI (e.g. more links) could take better care
of this, and therefore that the full OGO with DFI would look more favorable
compared to the TDI version when nonvanishing jitter is taken into account.

Generally, as one goes for longer arm lengths, the DFI scheme will perform
better in comparison to the TDI scheme. At the high-frequency end of the
sensitivity curves, both schemes are limited by shot noise and the respective
GW transfer functions. Since the shot-noise level does not depend on the arm
length, it remains the same for all relevant frequencies. Therefore, as the arm
length increases, the high-frequency part of the sensitivity curves moves to
the low-frequency regime in parallel (i.e. the corner frequency of the transfer
function is proportional to 1/L). This is the same for both schemes.

On the other hand, in the low-frequency regime of the sensitivity curves
the two schemes perform very differently. For TDI, the low-frequency behav-
ior is limited by acceleration noise, while for DFI this part is again limited by
shot noise and the GW transfer function. When the arm length increases, the
low-frequency part of the sensitivity curve in the TDI scheme moves to lower

167



frequencies in proportion to 1/
√
L; while for DFI, it moves in proportion to

1/L.
Graphically, when the arm length increases, the high-frequency parts

of the sensitivity curves in both schemes move toward the lower-frequency
regime in parallel, while the low-frequency part of the sensitivity curve for
DFI moves faster than for TDI.

Under the assumptions given above, we find that an arm length of 2·109 m
is close to the transition point where the sensitivities of TDI and DFI are
almost equal, as shown in Fig. 10.4. At even longer arm lengths, employing
DFI would become clearly advantageous.

Of course, these considerations show that a longer-baseline detector with
good sensitivity in the standard space-based detector frequency band of in-
terest would make a scientifically much more interesting case than the default
short-arm OGO which we presented first. However, as no study on the re-
quired orbits has been done so far, we consider such a detector variant to be
highly hypothetical and not worthy of a detailed study of technological fea-
sibility and scientific potential yet. Instead, for the remainder of this paper,
we concentrate again on the conservative 1400 km version of OGO. Although
the sensitivity curve in Fig. 10.3 already demonstrates its limited potential,
we will attempt to neutrally assess its advantages, limitations and scientific
reach.

10.4.4 Technological feasibility

Employing DFI requires a large number of spacecraft but on the other hand
allows us to relax many of the very strict technological requirements of other
space-based GW detector proposals such as (e)LISA and DECIGO. Specifi-
cally, the clock noise is canceled by design, so there is no need for a compli-
cated clock tone transfer chain [135]. Furthermore, OGO does not require a
drag-free technology, and the configuration has to be stabilized only as much
as required for the equal arm length assumption to hold. This strongly re-
duces the requirements on the spacecraft thrusters. Also, for the end mirrors,
which have to be mounted on the same monolithic structure for all four laser
links per spacecraft, it is not required that they are freefalling. Instead, they
can be fixed to the spacecraft.

Still, to reach the shot-noise-only limited sensitivity shown in Fig. 10.3,
the secondary noise contributions from all components of the measurement
system must be significantly below the shot-noise level. Considering a shot-
noise level of about 2 · 10−17 m/

√
Hz – which is in agreement with the value

derived earlier for the 1400 km version of OGO – this might be challenging.
When actively controlling the spacecraft position and hence stabilizing

168



the distance and relative velocity between the spacecraft, we will be able to
lower the heterodyne frequency of the laser beat notes drastically. Where
LISA will have a beat note frequency in the tens of MHz, with OGO’s short
arm length we could be speaking of kHz or less and might even consider a
homodyne detection scheme as in LIGO. This might in the end enable us to
build a phase meter capable of detecting relative distance fluctuations with
a sensitivity of 10−17 m/

√
Hz or below as required by OGO.

As mentioned before, temperature noise might be a relevant noise source
for OGO: The relative distance fluctuations on the optical benches due to
temperature fluctuations and the test mass thermal noise must be significant-
ly reduced in comparison to LISA. But even though the LISA constellation
is set in an environment which is naturally more temperature stable, stabi-
lization should be easier for the higher-frequency OGO measurement band.
A requirement of 10−17 m/

√
Hz could be reached by actively stabilizing the

temperature down to values of 1 nK/
√

Hz at the corner frequency.
Assuming future technological progress, optimization of the optical bench

layout could also contribute to mitigating this constraint, as could the inven-
tion of thermally more stable materials for the optical bench. Most likely,
this challenge can be solved only with a combination of the mentioned ap-
proaches.

The same is true for the optical path length stability of the telescopes.
We estimate the required pointing stability to be roughly similar to the LISA
mission requirements.

10.4.5 Shot-noise reduction

Assuming the requirements from the previous section can be met, the timing
and acceleration noise free combinations of the OGO detector are dominat-
ed by shot noise, and any means of reducing the shot noise will lead to a
sensitivity improvement over all frequencies. In this subsection, we discuss
possible ways to achieve such a reduction.

The most obvious solution is to increase laser power, with an achievable
sensitivity improvement that scales with

√
P . However, the available laser

power is limited by the power supplies available on a spacecraft. Stronger
lasers are also heavier and take more place, making the launch of the mission
more difficult. Therefore, there is a limit to simply increasing laser power, and
we want to shortly discuss more advanced methods of shot-noise reduction.

One such hypothetical possibility is to build cavities along the links be-
tween spacecraft, similar to the DECIGO design [80]. The shot noise would
be decreased due to an increase of the effective power stored in the cavity.
Effectively, this also results in an increase of the arm length. Note, howev-
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er, that the sensitivity of OGO with cavities cannot simply be computed by
inserting effective power and arm length into our previously derived equa-
tions. Instead, a rederivation of the full transfer function along the lines of
Ref. [175] is necessary.

Alternatively, squeezed light [176] is a way to directly reduce the quantum
measurement noise, which has already been demonstrated in ground-based
detectors [177, 178]. However, squeezing in a space-based detector is chal-
lenging in many aspects due to the very sensitive procedure and would require
further development.

10.5 Scientific perspectives

In this section, we will discuss the science case for our octahedral GW de-
tector (with an arm length of 1400 km) by considering the most important
potential astrophysical sources in its band of sensitivity. Using the full net-
work sensitivity, as derived above, the best performance of OGO is at 78 Hz,
between the best achieved performance of initial LIGO during its S6 science
run and the anticipated sensitivity for advanced LIGO. OGO outperforms
the advanced ground-based detectors below 10 Hz, where the seismic noise
strongly dominates. In this analysis, we will therefore consider sources emit-
ting GWs with frequencies between 1 Hz and 1 kHz, concentrating on the low
end of this range.

Basically, those are the same sources as for ground-based detectors, which
include compact binaries coalescences (CBCs), asymmetric single neutron
stars (continuous waves, CWs), binaries containing intermediate-mass black
holes (IMBHs), burst sources (unmodeled short-duration transient signals),
and a cosmological stochastic background.

We will go briefly through each class of sources and consider perspec-
tives of their detection. As was to be expected from the sensitivity curve in
Fig. 10.3, in most categories OGO performs better than initial ground-based
detectors, but does not even reach the potential of the advanced generation
currently under commissioning.

Therefore, this section should be understood not as an endorsement of
actually building and flying an OGO-like mission, but just as an assessment
of its (limited, but existing) potentials. This demonstrates that an octahedral
GW detector employing DFI in space is in principle capable of scientifically
interesting observations, even though improving its performance to actually
surpass existing detectors or more mature mission proposals still remains a
subject of further study.

In addition, we put a special focus on areas where OGO’s design offers
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some specific advantages. These include the triangulation of CBCs through
joint detection with ground-based detectors as well as searching for a stochas-
tic GW background and for additional GW modes.

Note that the hypothetical 2 · 109 m variant of OGO (see Secs. 10.2 and
10.4.3) would have a very different target population of astrophysical sources
due to its sensitivity shift to lower frequencies. Such a detector would still be
sensitive to CBCs, IMBHs, and stochastic backgrounds, probably much more
so. But instead of high-frequency sources like CW pulsars and supernova
bursts, it would start targeting supermassive black holes, investigating the
merging history of galaxies over cosmological scales.

However, as this detector concept relies on an orbit hypothesis not stud-
ied in any detail, we do not consider it mature enough to warrant a study of
potential detection rates in any detail, and we therefore only refer to estab-
lished reviews of the astrophysical potential in the frequency band of LISA
and DECIGO, e.g. Ref. [2].

10.5.1 Coalescing compact binaries

Heavy stars in binary systems will end up as compact objects (such as NSs
or BHs) inspiralling around each other, losing orbital energy and angular
momentum through gravitational radiation. Depending on the proximity of
the source and the detector’s sensitivity, we could detect GWs from such a
system a few seconds up to a day before the merger and the formation of a
single spinning object. These CBCs are expected to be the strongest sources
of GWs in the frequency band of current GW detectors.

To estimate the event rates for various binary systems, we will follow the
calculations outlined in Ref. [157]. To compare with predictions for initial and
advanced LIGO (presented in Ref. [157]), we also use only the inspiral part
of the coalescence to estimate the horizon distance (the maximum distance
to which we can observe a given system with a given signal-to-noise ratio
(SNR)). We use here the same detection threshold on signal-to-noise ratio, a
SNR of ρ = 8, as in Ref. [157] and consider the same fiducial binary systems:
NS-NS (with 1.4 M� each), BH-NS (BH mass 10 M�, NS with 1.4 M�), and
BH-BH (10 M� each).

For a binary of given masses, the sky-averaged horizon distance is given
by

Dh =
4
√

5G
5
6 µ

1
2 M

1
3

√
96π

2
3 c

3
2 ρ

√√√√√ fISCO∫
fmin

f−
7
3

S̃h(f)
df . (10.26)
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NS-NS NS-BH BH-BH
OGO (0.002, 0.2, 2.2) (0.001, 0.06, 2.0) (0.003, 0.1, 9)
LIGO (2e-4, 0.02, 0.2) (7e-5, 0.004, 0.1) (2e-4, 0.007, 0.5)
aLIGO (0.4, 40, 400) (0.2, 10, 300) (0.4, 20, 1000)

Table 10.1: Estimated yearly detection rates for CBC events, given in triplets
of the form (lower limit, realistic value, upper limit) as defined in Ref. [157].

Here, M = M1 + M2 is the total mass and µ = M1M2/M is the reduced
mass of the system. We have used a lower cutoff of fmin = 1 Hz, and at the
upper end the frequency of the innermost stable circular orbit is fISCO =
c3/(63/2π G M) Hz, which conventionally is taken as the end of the inspiral.

Now, for any given type of binary (as characterized by the component
masses), we obtain the observed event rate (per year) using Ṅ = R · NG,
where we have adopted the approximation for the number of galaxies inside
the visible volume from Eq. (5) of Ref. [157]:

NG =
4

3
π

(
Dh

Mpc

)3

(2.26)−3 · 0.0116 , (10.27)

and the intrinsic coalescence rates R per Milky-Way-type galaxy are given
in Table 2 of Ref. [157].

A single DFI combination Si has annual rates similar to initial LIGO,
and the results for the network sensitivity of full OGO are summarized in
Table 10.1. For each binary, we give three numbers following the uncertain-
ties in the intrinsic event rate (“pessimistic”, “realistic”, “optimistic”) as
introduced in Ref. [157].

From this, we see that OGO achieves detection rates an order of mag-
nitude better than initial LIGO. But we still expect to have only one event
in about three years of observation assuming “realistic” intrinsic coalescence
rates. The sensitivity of aLIGO is much better than for OGO above 10 Hz,
and the absence of seismic noise does not help OGO much because the abso-
lute sensitivities below 10 Hz are quite poor and only a very small fraction of
SNR is contributed from the lower frequencies. This is the reason why OGO
cannot compete directly with aLIGO in terms of total CBC detection rates,
which are about two orders of magnitude lower.

However, OGO does present an interesting scientific opportunity when
run in parallel with aLIGO. If OGO indeed detects a few events over its
mission lifetime, as the realistic predictions allow, it can give a very large
improvement to the sky localization of these sources. Parameter estimation
by aLIGO alone typically cannot localize signals enough for efficient elec-
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tromagnetic follow-up identification. However, in a joint detection by OGO
and aLIGO, triangulation over the long baseline between space-based OGO
and ground-based aLIGO would yield a fantastic angular resolution. As sig-
nals found by OGO are very likely to be picked up by aLIGO as well, such
joint detections indeed seem promising. Additionally, the three-dimensional
configuration and independent channels of OGO potentially allow a more ac-
curate parameter estimation than a network of two or three simple L-shaped
interferometers could achieve.

10.5.2 Stochastic background

There are mainly two kinds of stochastic GW backgrounds [160, 161]: The
first is the astrophysical background (sometimes also called astrophysical
foreground), arising from unresolved astrophysical sources such as compact
binaries [47] and core-collapse supernovae [179]. It provides important sta-
tistical information about distribution of the sources and their parameters.
The second is the cosmological background which was generated by various
mechanisms in the early Universe [48, 49, 50]. It carries unique information
about the very beginning of the Universe (∼ 10−28 s). Thus, the detection of
the GW stochastic background is of great interest.

Currently, there are two ways to detect the stochastic GW background.
One of them [180] takes advantage of the null stream (e.g. the Sagnac combi-
nation of LISA). By definition, the null stream is insensitive to gravitational
radiation, while it suffers from the same noise sources as the normal da-
ta stream. A comparison of the energy contained in the null stream and
the normal data stream allows us to determine whether the GW stochas-
tic background is present or not. The other way of detection is by cross-
correlation [160, 181] of measurements taken by different detectors. In our
language, this uses the GW background signal measured by one channel as
the template for the other channel. In this sense, the cross-correlation can be
viewed as matched filtering. Both ways require redundancy, i.e. more than
one channel observing the same GW signal with independent noise.

Luckily, the octahedron detector has plenty of redundancy, which poten-
tially allows precise background detection. There are in total 12 dual-way
laser links between spacecraft, forming 8 LISA-like triangular constellations.
Any pair of two such LISA-like triangles that does not share common links
can be used as an independent correlation. There are 16 such pairs within
the octahedron detector. Within each pair, we can correlate the orthogonal
TDI variables A, E and T (as they are denoted in LISA [113]). Altogether,
there are 16× 32 = 144 cross-correlations.

And we have yet more information encoded by the detector, which we
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can access by considering that any two connected links form a Michelson
interferometer, thus providing a Michelson-TDI variable. Any two of these
variables that do not share common links can be correlated. There are in
total 36 such variables, forming 450 cross-correlations, from which we can
construct the optimal total sensitivity.

Furthermore, each of these is sensitive to a different direction on the sky.
So the octahedron detector has the potential to detect anisotropy of the
stochastic background. However, describing an approach for the detection of
anisotropy is beyond the scope of this feasibility study.

Instead, we will present here only an order of magnitude estimation of
the total cross-correlation SNR. Usually, it can be expressed as

SNR =
3H2

0

10π2

√
Tobs

2
∑
k,l

∞∫
0

df
γ2
kl(f)Ω2

gw(f)

f 6S̃h,k(f)S̃h,l(f)

 1
2

, (10.28)

where Tobs is the observation time, Ωgw is the fractional energy-density of the

Universe in a GW background, H0 the Hubble constant, and S̃h,k(f) is the
effective sensitivity of the k-th channel. γkl(f) denotes the overlap reduction
function between the k-th and l-th channels, introduced by Flanagan [182].

γkl(f) =
5

8π

∑
p=+,×

∫
dΩ̂ e2πifΩ̂·∆x/cF p

k (Ω̂)F p
l (Ω̂) , (10.29)

where F p
k (Ω̂) is the antenna pattern function. As mentioned in the previous

section, there might be 12 independent DFI solutions. These DFI solutions
can form 12 × 11/2 = 66 cross-correlations. According to Ref. [160], we
know γ2

kl(f) varies between 0 and 1. As a rough estimate, we approximate∑
k,l γ

2
kl(f) ∼ 10; hence, we get the following result for OGO:

SNR = 2.57

(
H0

72 km s−1

Mpc

)2(
Ωgw

10−9

)(
Tobs

10 yr

) 1
2

. (10.30)

Initial LIGO has set an upper limit of 6.9 ·10−6 on Ωgw [183], and aLIGO will
be able to detect the stochastic background at the 1 ·10−9 level [183]. Hence,
our naive estimate of OGO’s sensitivity to the GW stochastic background
is similar to that of aLIGO. Actually, an optimal combination of all the
previously-mentioned possible cross-correlations would potentially result in
an even better detection ability for OGO.
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10.5.3 Testing alternative theories of gravity

In this section we will consider OGO’s ability to test predictions of General
Relativity against alternative theories. In particular, we will estimate the
sensitivity of the proposed detector to all six polarization modes that could
be present in (alternative) metric theories of gravitation [184]. We refer to
Ref. [185] for a discussion on polarization states, and Refs. [186, 187] for re-
views on alternative theories of gravity. The six possible polarizations are (i)
two transverse-traceless (tensorial) polarizations usually denoted as e+ and
e×, (ii) two scalar modes called breathing (or common) eb and longitudinal
el and (iii) two vectorial modes ex and ey, which are given explicitly in the
following

e+ = û⊗ û− v̂ ⊗ v̂, (10.31a)

e× = û⊗ v̂ + v̂ ⊗ û, (10.31b)

eb = û⊗ û+ v̂ ⊗ v̂, (10.31c)

el = k̂ ⊗ k̂, (10.31d)

ex = û⊗ k̂ + k̂ ⊗ û, (10.31e)

ey = v̂ ⊗ k̂ + k̂ ⊗ v̂. (10.31f)

The corresponding antenna pattern functions for a single arm along (1, 0, 0)
direction are given as follows

ξ+ = cos2 θ cos2 φ− sin2 φ, (10.32a)

ξ× = cos θ sin 2φ, (10.32b)

ξb = cos2 θ cos2 φ+ sin2 φ, (10.32c)

ξl = sin2 θ cos2 φ, (10.32d)

ξx = − sin 2θ cos2 φ, (10.32e)

ξy = − sin θ sin 2φ, (10.32f)

which are plotted in Fig. 10.5.
As a comparison, the antenna pattern functions for a Michelson inter-

ferometer with two arms along (1, 0, 0) and (0, 1, 0) directions are given as
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(a) (b)

(c) (d)

(e) (f)

Figure 10.5: Antenna pattern functions for a single arm along (1, 0, 0) direc-
tion. (a). + mode. (b). × mode. (c). Breathing mode. (d). Longitudinal
mode. (e). Vector-x mode. (f). Vector-y mode.
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follows

ξ+ = (cos2 θ + 1) cos 2φ, (10.33a)

ξ× = 2 cos θ sin 2φ, (10.33b)

ξb = − sin2 θ cos 2φ, (10.33c)

ξl = sin2 θ cos 2φ, (10.33d)

ξx = − sin 2θ cos 2φ, (10.33e)

ξy = −2 sin θ sin 2φ, (10.33f)

which are plotted in Fig. 10.6.
We have followed the procedure for computing the sensitivity of OGO,

as outlined above, for the four modes not present in General Relativity, and
we compare those sensitivities to the results for the +,× modes as presented
in Fig. 10.3. The generalization of the transfer function used in this paper
[Eq. 10.24] for other polarization modes is given in Ref. [188].

We have found that all seven generators show similar sensitivity for each
mode. OGO is not sensitive to the common (breathing) mode, which is not
surprising as it can be attributed to a common displacement noise, which we
have removed by our procedure. The sensitivity to the second (longitudinal)
scalar mode scales as ε−4 at low frequencies and is much worse than the
sensitivity to the +,× polarizations below 200 Hz. However, OGO is more
sensitive to the longitudinal mode (by about an order of magnitude) above
500 Hz. The sensitivity of OGO to vectorial modes is overall similar to the
+,× modes: it is by factor few less sensitive to vectorial modes below 200 Hz
and by similar factors more sensitive above 300 Hz. These sensitivities are
shown in Fig. 10.7.

10.5.4 Pulsars – Continuous Waves

CWs are expected from spinning neutron stars with nonaxisymmetric defor-
mations. Spinning NSs are already observed as radio and gamma-ray pulsars.
Since CW emission is powered by the spindown of the pulsar, the strongest
emitters are the pulsars with high spindowns, which usually are young pul-
sars at rather high frequencies. Note that the standard emission model [189]
predicts a gravitational wave frequency fgw = 2f , while alternative models
like free precession [190] and r-modes [191] also allow emission at fgw = f
and fgw = 4

3
f , where f is the NS spin frequency.

OGO has better sensitivity than initial LIGO below 133 Hz, has its best
sensitivity around 78 Hz, and is better than aLIGO below 9 Hz. This actually
fits well with the current radio census of the galactic pulsar population, as
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(a) (b)

(c) (d)

(e) (f)

Figure 10.6: Antenna pattern functions for a Michelson interferometer. (a).
+ mode. (b). × mode. (c). Breathing mode. (d). Longitudinal mode. (e).
Vector-x mode. (f). Vector-y mode.
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given by the ATNF catalog [192]. As shown in Fig. 10.8, the bulk of the
population is below ∼ 10 Hz, and also contains many low-frequency pulsars
with decent spindown values, even including a few down to ∼ 0.1 Hz.

We estimate the abilities of OGO to detect CW emission from known
pulsars following the procedure outlined in Ref. [193] for analysis of the Vela
pulsar. The GW strain for a source at distance D is given as

h0 =
4π2GIzzεf

2

c4D
, (10.34)

where ε is the ellipticity of the neutron star and we assume a canonical
momentum of inertia Izz = 1038 kg m2. After an observation time Tobs, we
could detect a strain amplitude

h0 = Θ

√
Sh

Tobs

. (10.35)

The statistical factor is Θ ≈ 11.4 for a fully coherent targeted search with
the canonical values of 1 % and 10 % for false alarm and false dismissal prob-
abilities, respectively [194]. We find that, for the Vela pulsar (at a distance
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of 290 pc and a frequency of fVela,gw = 2 · 11.19 Hz), with Tobs = 30 days of
observation, we could probe ellipticities as low as ε ∼ 5 · 10−4 with the net-
work OGO configuration. Several known low-frequency pulsars outside the
aLIGO band would also be promising objectives for OGO targeted searches.
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Figure 10.8: Population of currently known pulsars in the frequency-
spindown plain (f -ḟ). OGO could beat initial LIGO left of the red solid
line and Advanced LIGO left of the green dashed line. Data for this plot
were taken from Ref. [192] on March 2, 2012. [Image by D. Keitel]

All-sky searches for unknown pulsars with OGO would focus on the low-
frequency range not accessible to aLIGO with a search setup comparable
to current Einstein@Home LIGO searches [195]. As seen above, the sen-
sitivity estimate factors into a search setup related part Θ/

√
Tobs and the

sensitivity
√
Sh. Therefore, scaling a search with parameters identical to

the Einstein@Home S5 runs to OGO’s best sensitivity at 76 Hz would reach
a sensitivity of h0 ≈ 3 · 10−25. This would, for example, correspond to a
neutron star ellipticity of ε ∼ 4.9 · 10−5 at a distance of 1 kpc. Since the
computational cost of such searches scales with f 2, low-frequency searches
are actually much more efficient and would allow very deep searches of the
OGO data, further increasing the competitiveness. Note, however, that for
low-frequency pulsars the ellipticities required to achieve detectable GW sig-
nals can be very high, possibly mostly in the unphysical regime. On the other
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hand, for “transient CW”-type signals [196], low-frequency pulsars might be
the strongest emitters, even with realistic ellipticities.

10.5.5 Other sources

Many (indirect) observational evidences exist for stellar mass BHs, which are
the end stages of heavy star evolution, as well as for supermassive BHs, the
result of accretion and galactic mergers throughout the cosmic evolution, in
galactic nuclei. On the other hand, there is no convincing evidence so far for
a BH of an intermediate mass in the range of 102 − 104 M�. These IMBHs
might, however, still exist in dense stellar clusters [197, 198]. Moreover,
stellar clusters could be formed as large, gravitationally bound groups, and
collision of two clusters would produce inspiralling binaries of IMBHs [199,
200].

The ISCO frequency of the second orbital harmonic for a 300 M�-300 M�
system is about 7 Hz, which is outside the sensitivity range of aLIGO. Still,
those sources could show up through the higher harmonics (the systems are
expected to have non-negligible eccentricity) and through the merger and
ring-down gravitational radiation [201, 202, 203]. The ground-based LIGO
and VIRGO detectors have already carried out a first search for IMBH signals
in the 100 M� to 450 M� mass range [204].

With its better low-frequency sensitivity, OGO can be expected to detect
a GW signal from the inspiral of a 300 M�-300 M� system in a quasicircular
orbit up to a distance of approximately 245 Mpc, again using Eq. (10.26).
This gives the potential for discovery of such systems and for estimating
their physical parameters.

As for other advanced detectors, unmodeled searches (as opposed to the
matched-filter CBC and CW searches; see Ref. [205] for a LIGO example) of
OGO data have the potential for detecting many other types of gravitational
wave sources, including, but not limited to, supernovae and cosmic string
cusps. However, as in the case for IMBHs, the quantitative predictions are
hard to produce due to uncertainties in the models.

10.6 Summary and Outlook

In this paper, we have presented for the first time a three-dimensional grav-
itational wave detector in space, called the Octahedral Gravitational wave
Observatory (OGO). The detector concept employs displacement-noise free
interferometry (DFI), which is able to cancel some of the dominant noise
sources of conventional GW detectors. Adopting the octahedron shape in-
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troduced in Ref. [162], we put spacecraft in each corner of the octahedron.
We considered a LISA-like receiver-transponder configuration and found mul-
tiple combinations of measurement channels, which allow us to cancel both
laser frequency and acceleration noise. This new three-dimensional result
generalizes the Mach-Zehnder interferometer considered in Ref. [162].

We have identified a possible halolike orbit around the Lagrange point L1
in the Sun-Earth system that would allow the octahedron constellation to be
stable enough. However, this orbit limits the detector to an arm length of
≈ 1400 km.

Much better sensitivity and a richer astrophysical potential are expected
for longer arm lengths. Therefore, we also looked for alternative orbits and
found a possible alternative allowing for ≈ 2 · 109 m arms, but is is not clear
yet if this would be stable enough. Future studies are required to relax the
equal-arm-length assumption of our DFI solutions, or to determine a stable,
long-arm-length constellation.

Next, we have computed the sensitivity of OGO-like detectors – and have
shown that the noise-cancelling combinations also cancel a large fraction of
the GW signal at low frequencies. The sensitivity curve therefore has a
characteristic slope of f−2 at the low-frequency end.

However, the beauty of this detector is that it is limited by a single noise
source at all frequencies: shot noise. Thus, any reduction of shot noise alone
would improve the overall sensitivity. This could, in principle, be achieved
with DECIGO-like cavities, squeezing or other advanced technologies. Also,
OGO does not require drag-free technology and has moderate requirements
on other components so that it could be realized with technology already
developed for LISA Pathfinder and eLISA.

When comparing a DFI-enabled OGO with a detector of similar design,
but with standard TDI, we find that at ≈ 1400 km, the same sensitivity
could be reached by a TDI detector with very modest acceleration noise
requirements.

However, at longer arm lengths DFI becomes more advantageous, reach-
ing the same sensitivity as TDI under LISA requirements but without drag-
free technology and clock transfer, at ≈ 2 · 109 m. Such a DFI detector
would have its best frequency range between LISA and DECIGO, with peak
sensitivity better than LISA and approaching DECIGO without the latter
mission concept’s tight acceleration noise requirements and with no need for
cavities.

Finally, we have assessed the scientific potentials of OGO, concentrating
on the less promising, but more mature short-arm-length version. We es-
timated the event rates for coalescing binaries, finding that OGO is better
than initial LIGO, but does not reach the level of advanced LIGO. Any bi-
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nary detected with both OGO and aLIGO could be localized in the sky with
very high accuracy.

Also, the three-dimensional satellite constellation and number of indepen-
dent links makes OGO an interesting mission for detection of the stochastic
GW background or hypothetical additional GW polarizations. Further as-
trophysically interesting sources such as low-frequency pulsars and IMBH
binaries also lie within the sensitive band of OGO, but again the sensitivity
does not reach that of aLIGO.

However, we point out that the improvement in the low-frequency sensi-
tivity with increasing arm length happens faster for DFI as compared to the
standard TDI. Therefore, searching for stable three-dimensional (octahedron)
long-baseline orbits could lead to an astrophysically much more interesting
mission.

Regarding possible improvements of the presented setup, there are several
possibilities to extend and improve the first-order DFI scheme presented here.
One more spacecraft could be added in the middle, increasing the number
of usable links. Breaking the symmetry of the octahedron could modify the
steep response function at low frequencies. This should be an interesting
topic for future investigations.

In principle, the low-frequency behavior of OGO-like detectors could also
be improved by more advanced DFI techniques such as introducing artificial
time delays [206, 207]. This would result in a three-part power law less steep
than the shape derived in Sec. 10.4.2. On the other hand, this would also
introduce a new source of time delay noise. Therefore, such a modification
requires careful investigation.

10.7 Supplemenary A: Details on calculating

the displacement and laser noise free com-

binations

Here we will give details on building the displacement (acceleration) and laser
noise free configurations. The derivations closely follow the method outlined
in [113]. We want to find the generators solving Eq. (10.7), so called reduced
generators because they correspond to the reduced set (qBC , qCE, qDB, qDC , qDF , qEF ).

183



We start with building the ideal Z:

Z =



f1 = (D − 1)2

f2 = (D − 1)D
f3 = (1−D)(D − 1)
f4 = (D − 1)((1−D)D − 1)
f5 = D − 1
f6 = D − 1

. (10.36)

The corresponding Gröbner basis to this ideal is:

G = {g1 = D − 1}. (10.37)

The connection between fi and gj is defined by two transformation ma-
trices

d =


D − 1
D

1−D
(1−D)D − 1

1
1

 (10.38)

and c with (at least) two possible solutions

c(1) = (0 0 0 0 1 0) or c(2) = (0 0 0 0 0 1) . (10.39)

The resulting basis is not unique and not necessarily independent. The first
6 reduced generators are given by the row vectors of the matrix A(1) = a

(1)
i =

I − d · c(1) :

a
(1)
1 = {1, 0, 0, 0, 0, 1−D} , (10.40a)

a
(1)
2 = {0, 1, 0, 0, 0,−D} , (10.40b)

a
(1)
3 = {0, 0, 1, 0, 0, (D − 1)D} , (10.40c)

a
(1)
4 = {0, 0, 0, 1, 0, 1 + (D − 1)D} , (10.40d)

a
(1)
5 = {0, 0, 0, 0, 1,−1} , (10.40e)

a
(1)
6 = {0, 0, 0, 0, 0, 0} . (10.40f)

These reduced generators correspond directly to values for (qBC , qCE, qDB, qDC , qDF , qEF ).
As the Gröbner basis contains only one element, we cannot form other gen-
erator from S-polynomial.
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We can form 6 other generators using c(2) instead of c(1). After applying
those generators we have the following acceleration-free combinations:

a
(1)
1 sn = 2(pB − pC + pE − pF +D(−pA + pB − pD + pE

+ (pB − pC + pE − pF )qBA)), (10.41a)

a
(1)
2 sn = −2D(pA + pD + pC(−1 + qBA) + pF (−1 + qBA)

− (pB + pE)qBA), (10.41b)

a
(1)
3 sn = 2D((1 +D)pA + pD − pE −D(pC − pD + pF )

+ pB(−1 + qBA)− (pC − pE + pF )qBA), (10.41c)

a
(1)
4 sn = 2(pB − pC + pE +D2(pA − pC + pD − pF )

− pF +D(pB − pC + pE − pF )qBA), (10.41d)

a
(1)
5 sn = 2D(pA + pD + pB(−1 + qBA) + pE(−1 + qBA)

− (pC + pF )qBA), (10.41e)

a
(1)
6 sn = 2D(pB − pC + pE − pF )qBA, (10.41f)

where snIJ are given by Eq. (10.4). Note that we have a free (polynomial)
function of delay qBA which we can choose arbitrary. We will omit subscripts
BA and use q ≡ qBA. The arbitrariness of this function implies that terms
which contain q and terms free of q are two independent sets of generators.
We will keep q until we obtain laser noise free combinations, and then split
each generator in two. After some analysis only two out of six acceleration
free generators are independent, so we can rewrite them as

s1 = y12 +D(y13 + qy12), (10.42a)

s3 = −y13 +D(y12 − y13) + qy12, (10.42b)

s4 = y12 +Dqy12 +D2(y12 − y13), (10.42c)

s2 + s5 = y12 − 2y13, (10.42d)

s2 − s5 = (2q − 1)y12, (10.42e)

s6 = qy12, (10.42f)

where

s1 =
a

(1)
1 sn

2
, s2 = −D

−1(a
(1)
2 sn)

2
, s3 =

D−1(a
(1)
3 sn)

2

s4 =
a

(1)
4 sn

2
, s5 =

D−1(a
(1)
5 sn)

2
, s6 =

D−1(a
(1)
6 sn)

2
(10.43)
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and

y12 = pB + pE − pC − pF , y13 = pB + pE − pA − pD . (10.44)

We have introduced the inverse delay operator, D−1, for mathematical con-
venience, which obeys DD−1 = I. One can easily get rid of it by applying the
delay operator on both sides. The final result will not contain the operator
D−1. Next we use Eqs. (10.42d) and (10.42e) to express y12, y13 and eliminate
them from the other equations. The resulting combinations that eliminate
both acceleration and laser noise are

(1− 2q)s1 + (−1− 2Dq)s2 + (1 +D)s5 (10.45a)

(1− 2q)s3 +D(q − 1)s2 + (−1 + 2q + qD)s5 (10.45b)

(1− 2q)s4 − (1 +Dq)(s2 − s5)−D2((1− q)s2 − qs5) (10.45c)

(1− 2q)s6 − q(s2 − s5). (10.45d)

Out of these solutions we obtain seven independent generators which we
have rewritten in the final form similar to the Y -equations from Sec. 10.3.
They are explicitly given by Eqs. (10.8a)–(10.8g).
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Chapter 11

EMRI data analysis with a
phenomenological waveform

Collaborate with the authors of the published paper: Phys. Rev. D 86, 104050
(2012).
I tested the fidelity of of the phase expansion of the phenomenological wave-
form. I simulated LISA orbits, the gravitational wave in the source frame
and the detector response, i.e. LISA measurement data. I characterized the
data with the cumulative F-statistic and the time-frequency plots. I wrote
an MCMC code to search the signal with the phenomenological waveform.
Then, I analyzed the found local maxima, filtered the corresponding cumula-
tive F-statistics and identified their significantly increasing slopes. After that,
I clustered the time-frequency tracks and calculated the mean frequencies and
the standard deviations of the identified strong harmonics at a few instants.
In the end, I wrote a PSO code to search for the physical parameters.

11.1 Introduction

Stellar compact objects like a black hole, neutron star or white dwarf in
the cusp surrounding the massive black hole (MBH) in the galactic nuclei
could be deployed on a very eccentric orbit due to N-body interaction. Such
an object could either plunge (directly or after few orbits) into MBH or
form an EMRI: inspiralling compact object on originally very eccentric orbit
which shrinks and circularizes due to loss of the energy and angular orbital
momentum through gravitational radiation. The compact object spends ∼
105−6 orbits in the very strong field of a MBH before it plunges, all this orbital
evolution will be encoded in the phase of emitted gravitational waves (GWs).
Space based GW observatories, like LISA or similar planned missions, will
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observe those sources few years before the plunge. By fitting precisely the
GW phase one can extract extremely accurate parameters of a binary system
[210] (like mass and spin of MBH M,a, mass of a small object m, inclination
of the orbital plane (to the spin of MBH), orbital eccentricity and semi-latus
rectum (ι0, e0, p0) at some fiducial moment of time t0, location of the source
on the sky (θ, φ) and more).

Precise tracking of the GW phase implies that we can also test the nature
of the central massive object. The general belief is that it should be a MBH
with surrounding spacetime described by a Kerr solution. The nature of
the spacetime affects the orbital evolution of the compact object which in
turn could be extracted from the GW phase. Kerr spacetime is described by
only two parameters: black hole’s mass and spin, as stated by a “no-hair”
theorem. The spacetime could be decomposed in the multipole moments of a
central massive object, and, for Kerr BH, all moments depend only on M,a:
Ml + iSl = (ia)lM , where Ml and Sl are mass and current moments. Here
S1 = J is the spin of MBH and a = J/M is the usual Kerr spin parameter. We
could measure three first moments (mass, spin and quadrupole moment)[211],
and check the “Kerrness” of a spacetime. In general, the deviations from
Kerr could come in several ways: (i) it is Kerr BH but there is an additional
perturber (gas disk, another MBH) (ii) it is not Kerr BH but some other
object satisfying GR (boson star, gravastar), (iii) there are deviations from
GR. For discussion on the topics we refer the reader to [212, 213, 214] and
references therein.

Modeling orbital evolution even within GR is not yet fully complete.
Large mass ratio allows us to consider a small compact object as a perturba-
tion on the Kerr background spacetime, and treat the problem perturbatively
in orders of the mass ratio. In zero order approximation the compact object
moves on a geodesic orbit, however, as soon as we assign the mass to it, it
creates its own gravitational field interacting with the background and this
system emits gravitational radiation. The force resulting from the interac-
tion of the self field with the background is called self force, and the motion
of the compact object could be seen as the forced geodesic motion. Alter-
native interpretation is that the motion is governed by a geodesic motion
but in the perturbed spacetime. Calculation of the self force is a compli-
cated task which is accomplished for the orbits around Schwarzschild BH
only [215, 216], the Kerr spacetime is underway. There are also questions
concerning the calculation of the orbital evolution under the self force: the
self force depends on the past history of the compact object (which is usually
assumed to be a geodesic in the background spacetime). To compute the mo-
tion under the self force one can use the osculating elements approach [217],
or self-consistent approach of direct integration of the regularized equations
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[218]. For more details on this subject we refer to [219].
All in all, the modeling of the orbital evolution and the GW signal is a

complex task which requires significant theoretical and computational devel-
opments. The latter prevents us currently from using the state-of-art GW
models of EMRIs in our data analysis explorations. In majority of the cases
the phenomenological model suggested in [210], so called “analytic kludge”
(AK), is used. It is based on Post-Newtonian expressions and puts togeth-
er all relevant physics of EMRIs. However, this model has restrictions in
the number of harmonics and in their strength, and any search algorithm
which relies on its specific harmonic content will not work for a more realis-
tic model of GW signal. The main motivation of this work is to create the
phenomenological search template family which would fit a very large range
of EMRI-like signals. The typical EMRI signal consists of a set of harmonics
of three (slowly evolving) orbital frequencies, and we will use it as a basis of
our template. The phenomenological template consists of Nh harmonics with
constant amplitude and slowly evolving phase which we decompose in a Tay-
lor series. Truncation of the Taylor series and the assumption about constant
amplitude set restrictions on the duration over which the phenomenologi-
cal template can fit an EMRI signal. The amplitude of EMRI’s harmonics
changes due to shrinking of the orbit (overall amplitude increases), circular-
ization of the orbit (power is shifted to lower harmonics) and slight change
in the inclination of the orbit to the spin of MBH. Using more terms in the
Taylor series helps to track phase of the EMRI signal for longer time (which
is more important than accurate description of the amplitude). Finally, we
decide on the number of harmonics to use in the template (and their indices)
based on the analysis of the harmonic structure of the Numerical Kludge
(NK) model [220] of EMRI in different parts of the parameter space. The
restriction that the phenomenological waveform (PW) is valid only for a lim-
ited period of time is very weak since we can fit the signal piecewise, as long
as the accumulated signal-to-noise ratio (SNR) over that time is significant
to claim presence of the signal. In this work we consider only those parts of
the EMRI signal where the orbital frequencies are not decreasing which is
true over almost all time of the inspiral and breaks quite close to the plunge.
However, this is not really necessary since we did not restrict the values of
frequency derivatives to positive values during the search.

The PW family is quite generic and does not depend on the orbital evo-
lution, or, in other words, the orbital evolution of the binary is encoded in
the Taylor coefficients of phase of each harmonic. This allows us to detect an
EMRI signal in a model independent way. Once the harmonics of the signal
are recovered we can analyze them using a specific EMRI model to recover
physical parameters of the system. It is at this point we need the orbital
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evolution with high accuracy, which involves computation of the self-force
and tests of possible deviations from the “Kerrness”.

After constructing the phenomenological waveform we perform blind search-
es on the simulated data without noise (to avoid stochastic errors in the pa-
rameter estimation) and with the noise. We have used the NK waveform (as
described in [220]) as a model of our signal and the orbital evolution accord-
ing to [221]. We have also used Markov chain Monte-Carlo (MCMC) search
with phenomenological waveforms on the simulated three month of data.
This search has provided us with multiple local maxima in the likelihood
which we gathered and analyzed in a similar way as described in [222]. We
associate local maxima in the likelihood with partial detections of the signal
and construct the time-frequency map of the detected (patchy) harmonics of
the source. The next step is to assume the model for the orbital evolution
and, by matching the found time-frequency tracks to the harmonics of the
signal, estimate parameters of the binary system. We have used the same
model for the orbital evolution as in the simulated data sets and recovered
physical parameters with precision better than few percent.

The paper is organized as follows. In the next Section we will give a
brief overview of available models for GWs from EMRIs. In Section 11.3,
we introduce PW family in details. We describe MCMC search with PWs
in Section 11.4. Analysis of MCMC results and mapping to the physical
parameters are done in the Section 11.5. Finally we conclude with a summary
Section 11.6.

11.2 Review of EMRI waveforms

As was already mentioned in the Introduction, accurate computation of the
GWs from EMRIs and the orbital evolution is a complex and computation-
ally intensive task. The most promising approach probably is the coupled
integration of the compact object dynamics and GW emission taken in [218].
Alternatively, one could have a separate evolution of the orbital motion using
self force computed across various geodesic orbits and employ osculating ele-
ments approach [223, 217]. The waveform at infinity could be obtained from
the Teukolsky equations [224] in time or in frequency domain [225, 226].

The above methods are computationally expensive and several approxi-
mations were suggested. Less accurate but still quite reliable are Numeri-
cal Kludge (NK) waveforms: original NK [220] and extended/improved NK
called “Chimera” [227, 228]. Those methods combine accurate prescription
for the orbital evolution with approximate (Post-Newtonian) waveform gen-
eration formalism.
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The less precise model, which captures all relevant physics of EMRIs
(orbital precession, three orbital frequencies) was suggested in [210], so called
Analytic Kludge waveform. These waveforms are very fast to generate, and
even though they cannot be used for searching for actual GW signals, they are
used to develop data analysis algorithms and to evaluate their performance
[210, 211, 229].

In this work, we used NK waveform. In the original paper [220], the
waveform was generated in the time domain, we have reimplemented it in
the frequency domain following suggestions of S. Drasco who did it first (pri-
vate communications). Let us give a brief explanation of this procedure.
We start with an initial geodesic characterized by initial position and three
other constants of motion which could be chosen to be either energy (E), ax-
ial orbital angular momentum (Lz) and Carter constant (Q) or eccentricity,
semi-latus rectum and inclination [220]. These three constants could be used
to compute three fundamental frequencies of the orbital motion: fr, fθ, fφ.
The geodesic motion is periodic in those three frequencies and therefore any
function of the orbital coordinates can be decomposed into Fourier series.
That is exactly what we do: for a given geodesic we decompose the wave-
form into Fourier series of harmonics of the fundamental frequencies. We
truncate the series when adding extra harmonics does not change the sig-
nal by more that 0.1% in the overlap. Under the self-force the motion is
not geodesic anymore, however it can still be accurately described as slow
drift from one geodesic to another. In oscillating element approach, we evolve
three constants defining initial position of the compact object (due to conser-
vative part of the self-force) as well as {E,Lz, Q} or equivalently {fr, fθ, fφ}
[223, 217]. We evolve {E,Lz, Q} according to PN expressions suggested in
[221], and, like in the original NK paper we dropped evolution of the initial
positions. This does not affect our search results, since PW is model indepen-
dent, however we have to use the same model (as in the simulated data) for
mapping the phenomenological parameters onto the physical parameters of
the binary. Mismatch in the models would result in the undesirable bias. So
we have computed the evolution of the fundamental frequencies, then we have
calculated the amplitudes of the harmonics at discrete (sparse) moments of
time with consequent interpolation in between. We have computed the phase
of each harmonic as a numerical integral of time dependent frequencies. It
takes about a few minutes on 2.80 GHz single core CPU to generate 3-month
long template which is definitely too slow for the data analysis purposes.

Finally we want to avoid using in this work the Analytic Kludge mod-
el, because it predicts somewhat simplified (detectable) harmonic content of
the waveform. The NK waveforms for generic orbits were compared against
waveforms based on the Teukolsky equation and they show quite good agree-
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ment. We believe that NK deviates from the true EMRI signal in the phase
but not so much in the number and strength of harmonics. Therefore we use
NK model as a representation of the EMRI signal throughout this paper.

11.3 EMRI phenomenological waveform fam-

ily

There are several algorithms which have been proven to be successful in
detecting EMRIs in the simulated LISA data [230, 229, 222]. However, those
algorithms partially utilize the features of AK waveform which was used
in the simulation of the data and in the data analysis. As explained in
Section 11.2, we want to avoid it by building a generic phenomenological
template family.

11.3.1 Phenomenological waveform in the source frame

The model we want to propose is based on the following assumptions about
GW signals from EMRIs:

1. The orbital motion can be effectively described by six slowly chang-
ing quantities. Explicitly, three time-dependent initial phases are gov-
erned by the conservative part of the self force; three fundamental
time-dependent frequencies are governed by the radiative part of the
self force.

2. The waveform is represented by harmonics of three frequencies (phe-
nomenologically, these frequencies are the summation of the funda-
mental orbital frequencies and the evolution of the initial phases) with
slowly changing intrinsic amplitude:

h(t) =
∑
l,m,n

hlmn(t)

= Re

(∑
l,m,n

Almn(t)eiΦlmn(t)

)

= Re

(∑
l,m,n

Almn(t)ei(lΦr+mΦθ+nΦϕ)

)
, (11.1)

where Φr,Φθ,Φϕ are the phase evolutions corresponding to the three funda-
mental motions. Here we omitted the tensorial spatial indices for simplicity.
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Figure 11.1: The time-frequency plot of a typical EMRI signal without noise.
There are 30 dominant harmonics in total.

The first assumption basically expresses that the motion is described by
a slow drift from one geodesic to another. The initial phases correspond to
the initial position of a compact object on a given geodesic and the orbital
frequencies are functions of the energy, azimuthal component of the orbital
momentum and Carter constant. The slow drift ensures that phases Φlmn

are slowly varying functions of time.
Fig. 11.1 shows the time-frequency plot of a typical EMRI signal. There

are 30 clearly separated frequency tracks in the noiseless plot, which display
the dominant harmonics. It can also be seen that the frequencies of harmonics
are smooth and vary slowly. It is generally true that both amplitude and the
phase are slowly varying functions of time, thus we can safely make the Taylor
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expansion:

Φr(t) = Φr(t0) + ωr(t0)(t− t0) +
1

2
ω̇r(t− t0)2 + . . .

= Φr(t0) + 2πfr(t0)(t− t0) + πḟr(t− t0)2 + . . . ,

(11.2)

Φθ(t) = Φθ(t0) + ωθ(t0)(t− t0) +
1

2
ω̇θ(t− t0)2 + . . .

= Φθ(t0) + 2πfθ(t0)(t− t0) + πḟθ(t− t0)2 + . . . ,

(11.3)

Φϕ(t) = Φϕ(t0) + ωϕ(t0)(t− t0) +
1

2
ω̇ϕ(t− t0)2 + . . .

= Φϕ(t0) + 2πfϕ(t0)(t− t0) + πḟϕ(t− t0)2 + . . . ,

(11.4)

Almn(t) = Almn(t0) + Ȧlmn(t0)(t− t0) + . . . . (11.5)

Since the amplitudes Almn are even smoother than the phase over extended
period of time, and because the detection techniques are more sensitive to
mismatch in the phase than in the amplitude, we can neglect the time evo-
lution in the amplitudes and treat all of them as constant. It is a very good
assumption over three months of the simulated data which we analyze in this
paper. As for the phase expansion, we calculate the so-called fitting factor
(FF) for the different orders of polynomial approximations of the phase to
check the fidelity of the PW. Numerical results show that the Taylor expan-
sion for three months data, up to f̈ order, gives the FF around 0.9, and up
to

...
f order the FF is larger than 0.999. So it is sufficient to expand the phase

to
...
f order. This is the phenomenological waveform family which we propose

to analyze an EMRI signal. To summarize, the phenomenological waveform
is a summation of individual harmonics with constant (or linear) amplitudes
and polynomial (in time) phases.

11.3.2 From the source frame to the LISA frame

First we will express the GW wavefrom in the solar system barycenter frame
and then translate it to the frame attached to LISA (or a LISA-like space
based observatory). In the source frame, an arbitrary gravitational wave (G-
W) signal in the TT gauge can be written in the following form:

h(t) = hS+(t)e+ + hS×(t)e×, (11.6)

where the superscript ’S’ denotes the source frame. Since the LISA constel-
lation is orbiting the sun, it is convenient to express the GW signal in the
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solar system barycenter (SSB) frame.

h(t) = h+(t)ε+ + h×(t)ε×, (11.7)

ε+ = θ̂S ⊗ θ̂S − φ̂S ⊗ φ̂S (11.8)

ε× = θ̂S ⊗ φ̂S + φ̂S ⊗ θ̂S, (11.9)

where (θS, φS) denotes the direction of the GW source in the SSB frame,
θ̂S, φ̂S are the unit vectors along longitudinal and latitudinal directions. The
principal polarization vectors attached to the solar system barycenter frame,
θ̂S, φ̂S are connected to the principal polarization vectors in the source frame
via rotation angle ψ (since they lie in the same plane orthogonal to the
GW propagation direction). The polarization components h+ and h× are
transformed under this rotation according to

h+ = hS+ cos(2ψ) + hS× sin(2ψ) (11.10)

h× = −hS+ sin(2ψ) + hS× cos(2ψ). (11.11)

Now we will add LISA response. LISA measures the Doppler shift of the
inter-spacecraft lasers induced by a gravitational wave. The single-link full
response to this frequency shift can be derived with the help of three Killing
vectors [231]. However, this single-link signal is orders of magnitude smaller
than the dominating laser frequency noise. Thus, we need to use the so-called
Time-Delay-Interferometry (TDI) variables [108], which cancel the laser noise
through the recombination of the artificially delayed single-link signals. In
the low frequency limit, the two orthogonal TDI (noise independent) variables
of Michelson type can be expressed as [232, 233]

hI(t) = [δL1(t)− δL2(t)]/L

= h(ζ) : DI (11.12)

hII(t) =
1√
3

[δL1(t) + δL2(t)− 2δL3(t)]/L

= h(ζ) : DII (11.13)

where L stands for the average arm length. The retarded time ζ(t) = t−k̂·x/c
defines the wavefront, where k̂ is the GW propagation direction. The two
detector tensors are defined asDI ≡ 1

2
(n̂1⊗n̂1−n̂2⊗n̂2),DII ≡ 1

2
√

3
(n̂1⊗n̂1+

n̂2 ⊗ n̂2 − 2n̂3 ⊗ n̂3), where n̂1, n̂2, n̂3 denote the unit vectors along each arm
of LISA. Here we assume LISA-like setup which has six links (three arms).
Even though the EMRI signal could reach quite high frequencies and require
full response, we adopt the low-frequency approximation for our exercises.
This does not restrict ability of our analysis as long as the simulated signal
and the search template use the same response function.
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11.3.3 Data analysis with phenomenological wavefor-
m.

We start with a brief overview of our notations and basics of data analysis.
We denote the Fourier transform of a time series a(t) by ã(f) and adopt the
following convention

ã(f) =

∫
a(t)ei2πftdt. (11.14)

We assume that the detector is characterized by a Gaussian, stationary noise
n(t) and its two-sided noise power spectral density is defined as ñ∗(f ′)ñ(f) =
Sn(f)δ(f − f ′), where the over bar denotes the ensemble average. With this
power spectral density, it is conventional to define an inner product of two
time series a(t), b(t) as follows

< a|b >=

∞∫
−∞

ã∗(f)b̃(f)

Sn(f)
df. (11.15)

The signal-to-noise ratio is defined as

SNR2 ≡< h|h >=

∞∫
−∞

|h̃(f)|2

Sn(f)
df, (11.16)

where h is the GW signal. Let us denote the probability of a gravitational
wave signal h(θ) being present in the data s(t) by P (s|h(θ)), where θ is the
set of parameters that characterizes the gravitational wave signal. Similarly,
the probability of no gravitational wave signal present in the data s is denoted
by P (s|0). Likelihood ratio Λ(θ) is the ratio between these two probabilities

Λ(θ) =
P (s|h(θ))

P (s|0)

= e<s|h(θ)>− 1
2
<h(θ)|h(θ)>. (11.17)

It is conventional to consider rather logarithm of the likelihood ratio as a
detection statistic: L(θ) = log Λ(θ) =< s|h(θ) > −1

2
< h(θ)|h(θ) >. This

is the quantity we want to maximize over the parameter set θ.
The likelihood ratio could be further simplified if we use PW. A single

harmonic with polynomial phase up to
...
f order in the source frame takes the

following form

h(t) = A+ cos(Φ(t) + Φ0)e+ + A× sin(Φ(t) + Φ0)e×,

(11.18)

Φ(t) = 2πf(t− t0) + πḟ(t− t0)2 +
π

3
f̈(t− t0)3 +

π

12

...
f (t− t0)4, (11.19)
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where we have omitted harmonic indices l,m, n. After simple algebra, LISA’s
response to this single harmonic GW signal without noise can be put in a
simple form

hI(t) = AµhIµ(t), hII(t) = AµhIIµ (t) (11.20)

where we follow summation convention over repeated indices, and µ = 1, 2, 3, 4.
The four amplitude parameters Aµ depend only on (A+, A×,Φ0, ψ), which
are usually called extrinsic parameters, while hIµ(t), hIIµ (t) are functions of

(θS, φS, f, ḟ , f̈ ,
...
f ), which are usually called intrinsic parameters. From now

on, we denote the intrinsic parameters by θ. The extrinsic parameters
(being constants in our approximation) can be maximized over analytical-
ly [234, 235], which we will show explicitly below. We denote the measured
data with noise corresponding to hI(t), hII(t) by sI(t), sII(t). Since the joint
probability of a GW signal present in both sI and sII is just the product of
the individual probabilities, the joint log likelihood is just the summation of
the individual log likelihoods

L(θ, Aµ) = < sI |hI(θ) > −1

2
< hI(θ)|hI(θ) >

+ < sII |hII(θ) > −1

2
< hII(θ)|hII(θ) > . (11.21)

Substituting (11.20) into this expression we arrive at

L(θ, Aµ) = AµsIµ(θ)− 1

2
AµM I

µν(θ)Aν

+ AµsIIµ (θ)− 1

2
AµM II

µν(θ)Aν , (11.22)

where we have used the following conventions: sIµ =< sI |hIµ >, sIIµ =<
sII |hIIµ >, M I

µν =< hIµ|hIν >, M II
µν =< hIIµ |hIIν >. We can maximize the

log-likelihood over extrinsic parameters by solving

∂L(θ, Aµ)

∂Aµ
= (sIµ + sIIµ )− (M I

µν +M II
µν)A

ν = 0, (11.23)

which is straightforward to find Aµ = [(M I + M II)−1]µν(sIν + sIIν ). The
log-likelihood maximized over the extrinsic parameters is called F-statistic:

F (θ) ≡ max
Aµ

L(θ, Aµ)

=
1

2
(sIµ + sIIµ )[(M I +M II)−1]µν(sIν + sIIν ). (11.24)

Its expectation value is connected to the SNR in the following way

E[F (θ)] =
1

2
SNR2 + 2. (11.25)
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Since h(θ) is narrow band signal, the inner product can be written in the
following form

< a|b >=

∞∫
−∞

ã∗(f)b̃(f)

Sn(f0)
df =

1

Sn(f0)

T∫
0

a(t)b(t)dt, (11.26)

where T is the observation time, f0 is the middle frequency of h(θ). The
inner product is a function of T , and so is F-statistic. By varying T from 0
to the total observation time, we define a cumulative F-statistic F (T,θ). The
cumulative F-statistic for 30 dominant harmonics without detector noise is
plotted in Fig. 11.2. The case with the simulated detector noise is shown in
Fig. 11.3, the total SNR of the signal in this case is SNR = 50. Those are
two data sets which we will analyze in the next section.

The cumulative F-statistic provides much more information than F-statistic.
Actually, if θ∗ is the true parameter set of the signal, one can argue that

E

[
∂F (T,θ∗)

∂T

]
∝ h2(T )ξ2(T ), (11.27)

where ξ(T ) =
√
ξ2

+(T ) + ξ2
×(T ) is the geometrical mean of the antenna

pattern functions for two polarizations. When there is no detector noise,
∂F (T,θ∗)

∂T
= E

[
∂F (T,θ∗)

∂T

]
is nonnegative. Thus, E[F (T,θ∗)] is always increas-

ing over the entire time span when the GW signal is present, as can be seen in
Fig. 11.2. It is not necessarily so in presence of the noise and during analysis
of the data. There are three types of oscillations on the cumulative F-statistic
curve F (T,θ). (i). The (non-negative) oscillation due to the oscillatory na-
ture of the gravitational wave signal. It is at twice the GW frequency, which
makes it hard to see in Fig. 11.2. (ii). In reality, we do not know the exact
true parameters of the GW signal. That means, in most cases, the parameter
set θ we try differs from the true parameter set θ∗. This introduce beat-notes
to F (T,θ). This kind of oscillation happens at beat-note frequency, which is
much lower than the GW frequency itself. (iii). The third type of oscillation
is due the noise. The presence of the noise makes the cumulative F-statistic
uneven, see Fig. 11.3. Comparing to the former two types, this kind of oscil-
lation is irregular; it oscillates at all frequencies and could cause temporary
(for a short time) decrease in the cumulative F-statistic.

We have found that over three months of simulated data we can consider
all harmonics as being completely independent with virtually zero overlap
between them, < hlmn|hl′m′n′ >= δll′δmm′δnn′ . The total F-statistic is there-
fore a sum of F-statistics from each harmonic. In the next section we describe
the search where we use Eq. (11.24) as a detection statistic, and we will use
cumulative F-statistic later on to analyze our findings.
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Figure 11.2: The cumulative F-statistic of 30 dominant harmonics with
true parameters without noise. Since there is no noise, the F-statistic is not
normalized.

11.4 Search with the phenomenological wave-

form

In this section, we use the PW as described above together with the intro-
duced detection statistic. We will use two 3 month worth simulated data
sets: with and without noise. We use the same GW signal (based on NK
model) in both cases. The total SNR of the source in the noisy case is 50.
We have taken the following parameters for the EMRI : the mass of the MBH
M = 106M�, the mass of the compact object (stellar mass BH) m = 10M�,
the initial orbital eccentricity e = 0.4, the semi-latus rectum p = 8M , the
inclination angle ι = π/9, the spin of the MBH a = 0.9M , the sky posi-
tion of the source (θS, φS) = (π/4, π/4), the polarization angle ψ = 0. In
our analysis we assume that the sky location is known. Our primary goal
here is to recover the intrinsic parameters of the source. For the Michelson
TDI channel hI , we show the signal and the measurement data with noise
in Fig. 11.4. The signal is totally buried in the noise with an instantaneous
amplitude much smaller than the noise amplitude. The modulation of the
envelop of the signal is due to the time-varying antenna pattern function of
the LISA constellation. The time-frequency plane of the measurement data
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Figure 11.3: The cumulative F-statistic of 30 dominant harmonics with
true parameters and detector noise. Note that the F-statistic is converted
to SNR in the figure. The strong harmonics are cumulating gradually with
local spikes. The low-SNR harmonics behave similar to noise, hence made
undetectable.
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Figure 11.4: The measurement time series (in blue) and the signal time
series of SNR 50 (in red), for the Michelson TDI channel hI .

(with an SNR of 50) is shown in Fig. 11.5 (a), where the signal is covered by
the strong noise. Even in the zoom-in Fig. 11.5 (b), the location of a very
strong harmonic and the location of pure noise are very hard to tell apart.

In the simulation, the noiseless case is used to avoid any possible bias
in the final result due to stochastic nature of the noise, and assess possible
restrictions of our search technique and PW family. Next, we apply the
same search method to the same GW signal buried in the noise, which would
justify its effectiveness in practice.

Here, we describe the search for individual harmonics with Markov chain
Monte Carlo (MCMC) method. For completeness and future references we
give a brief introduction to MCMC. Like a standard Monte Carlo integra-
tion, MCMC is a random sampling method. It is nothing but Monte Carlo
integration with a Markov chain. By properly constructing a Markov chain,
MCMC can draw samples from the searching parameter space more effi-
ciently. Among all the methodologies of constructing a Markov chain, the
Metropolis-Hastings scheme would be the most general one. The main idea
of Metropolis-Hastings algorithm is to cleverly construct a Markov chain that
satisfy the detailed balance equation, so that the sampling distribution will
converge to the likelihood surface we want to estimate. If the shape of the
likelihood surface is known, the parameter set that corresponds to the max-
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(a) (b)

Figure 11.5: (a). The time-frequency plane of the measurement data (with
an SNR of 50). (b). A zoom-in plot of (a), where a location of a very strong
harmonic and a location of pure noise are indicated. It is very hard to tell
the signal by eye in the time-frequency plot.

imum likelihood is automatically known. Thus, MCMC is also widely used
as a stochastic optimization tool in GW data analysis (we refer the reader to
a very nice overview and discussion on Bayesian methods in [236], see also
references therein).

If the likelihood surface is multimodal (i.e. contains large number of
separated local maxima) then simple version of the MCMC finds a maximum
and does not move off it to explore larger parameter space. Many ways
around this problem were suggested but we will not use any of them here
(besides simulated annealing which we will discuss a later). As we will see,
a simple Metropolis-Hastings algorithm is sufficient. The likelihood surface
of an EMRI signal is very rich in “wall” and “needle” like structures, which
make it very hard to find a global maximum. We are interested in detecting
as many local maxima as possible. Therefore we run multiple independent
chains and harvest the results after they converge to various maxima of the
likelihood surface. If we are lucky, the global maximum could be among
multiple maxima we have found.

To understand the Metropolis-Hastings algorithm, first consider a stochas-
tic process denoted by {θk|k = 0, 1, 2...} which belongs to the parameter
space B in Rn. Here we defined θk as a set of parameters at step k, which
can also be viewed as a point in the parameter space B. If there exists a
transition probability P (θk+1|θk) depending only on the current point θk for
the stochastic process to be in state θk+1, we call this stochastic process
{θk|k = 0, 1, 2...} a Markov chain with a transition probability P (θk+1|θk).
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In a Bayesian viewpoint, we can take this transition probability as conditional
probability and immediately see that

∫
B

P (θk+1|θk)dθk+1 = 1 . (11.28)

A Markov chain satisfying the detailed balance equation

Λ(θk)P (θk+1|θk) = Λ(θk+1)P (θk|θk+1) (11.29)

will (up to some relatively weak conditions) be equivalent to the samples
from the distribution Λ(θ) after a certain initial period (often called burn-in
stage). We can easily estimate the distribution Λ(θ) with the Markov chain
samples and hence the most probable parameter set θ̂ for given observed
data s, where

Λ(θ̂|s) = max
θ

Λ(θ|s) (11.30)

is usually called the maximum likelihood estimator.
By virtue of Metropolis-Hastings algorithm, we can construct a Markov chain
that satisfies the detailed balance equation and make use of the corresponding
property to estimate our template parameters θ. To do this, we randomly
choose a parameter set θ0 in the parameter space as the starting point.
Then one can pick a proposal distribution q(θk+1|θk) (as long as there is no
forbidden region in the prescribed parameter space to the point θk+1) and
sample a candidate point θk+1 from this distribution. Then we calculate the
acceptance probability defined by the following formula (we have assumed the
uniform priors on parameters)

α(θk,θk+1) = min

(
1,

Λ(θk+1)q(θk|θk+1)

Λ(θk)q(θk+1|θk)

)
. (11.31)

By accepting the point θk+1 according to the above probability, we have, in
fact, succeeded to construct a transition probability,

P (θk+1|θk) = q(θk+1|θk)α(θk,θk+1) . (11.32)

It is easy to see that the Markov chain generated by the above transition
probability satisfies the detailed balance equation:
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Λ(θk)P (θk+1|θk) = min (Λ(θk)q(θk+1|θk),Λ(θk+1)q(θk|θk+1))

= min (Λ(θk+1)q(θk|θk+1),Λ(θk)q(θk+1|θk))
= Λ(θk+1)P (θk|θk+1). (11.33)

Thus, such a Markov chain will eventually serve as a succession of samples
from Λ(θ). The best performance is achieved if the proposal probability
q(θk+1|θk) resembles the target distribution Λ(θ) over the entire parameter
space. Without prior knowledge about the kind of probability distribution
around the true parameter location, it is natural to choose it as a multivariate
normal distribution centered at the present point θk with covariance matrix
C,

q(θk+1|θk) =
1√

(2π)Ndet[C]
exp

[
−1

2
(θk+1 − θk)TC−1(θk+1 − θk)

]
,(11.34)

where N denotes the dimension of the parameter space and det[C] the de-
terminant of the covariance matrix C. The likelihood surface has usually
multimodal (multiple local maxima) structure, and, therefore, a single mul-
tivariate normal distribution cannot describe the probability density over the
entire template space but only a very small region around the local maxi-
mum. Since the probability distribution at the local maximum is usually very
sharp, a Markov chain easily gets trapped there for many steps. To avoid
insignificant maxima we use the so-called annealing scheme, originating from
simulated annealing. We adopt two types of annealing techniques. (i) We
introduce a temperature T1 to the acceptance rate α [equation (11.31)] so
as to have a larger possibility to accept the proposal point in the beginning.
By combining equations (11.17), (11.24), (11.31), (11.34), the acceptance
probability is now written as

α(θk,θk+1) = min
(
1, e[F (θk+1)−F (θk)]/T1

)
. (11.35)

where the temperature T1 = T1(k) is a function of the step index k, it starts
from some relatively large number and gradually decays to unity. (ii). We
introduce a second temperature T2 to the proposal distribution q(θk+1|θk).
The covariance matrix C is replaced by C × T2. Same as T1, T2 is also a
function of the step index k, decaying gradually to unity. Hence, the chain
take large steps in the beginning and explores large volume in the parameter
space. Explicitly, we choose T1 and T2 both as a linear function of k with
negative slope.
Let us summarize the algorithm:

204



1. k = 0. Choose a random parameter set θ0 as the starting point and
calculate the F-statistic F (θ0).

2. k → k + 1. Calculate the temperature T1(k), T2(k).

3. Generate the next candidate parameter set θc from the proposal dis-
tribution with modified covariance C × T2.

4. Calculate the F-statistic of the new parameter set F (θc).

5. Calculate the acceptance probability α(θk,θc) = min
(
1, e[F (θc)−F (θk)]/T1

)
.

6. Draw a random number u from unity distribution U(0, 1). If u < α,
accept the candidate parameter set θk+1 = θc, else, stay at the current
point θk+1 = θk.

In the search we have used a diagonal form of the covariance matrix in
the gaussian proposal distribution (11.34), with the following elements: C =
[diag(10−4, 10−12, 10−20, 10−28)]2 corresponding to the parameter set {f, ḟ , f̈ ,

...
f }.

And T2 used to scale the covariance matrix decays linearly with the number
of members in the chain from 1 to 5 × 10−4. We have found that the use
of the actual Fisher information matrix as C did not improve significantly
the search results. We run about 50 chains on both noiseless data and noisy
data. All the parameter sets that generate an SNR larger than a certain
threshold (we have used SNR > 4.5) are recorded. Notice that there are
possibly many such qualified parameter sets in a single chain. Thus, we have
hundreds to thousands of qualified parameter sets or local maxima. These
local maxima contain information about the signal. We will analyze these
local maxima in the next section.

11.5 Analysis of the search results and map-

ping to the physical parameters

In this section we will explain how we use the results of MCMC search de-
scribed in the previous section and reconstruct harmonics of the GW signal.
Furthermore, we use the model of EMRI (NK) to estimate the physical pa-
rameters of the system.

11.5.1 Clustering algorithms

In this subsection we extract information from the local maxima detected by
MCMC search. We first focus on the noiseless data to explain the algorithm,

205



then modify it a bit and apply it to the noisy data. Since this work is the
first of a series of papers, the main task here is to establish the framework
and justify the method. Hence, as mentioned above, we have assumed that
the sky position of the source is known and concentrate on the intrinsic
parameters only. This will save us some time, yet maintain all the main
features of the problem. As a result, each local maximum is characterized
only by the frequency and its derivatives (f, ḟ , f̈ ,

...
f ).

Let us look at one example to understand how we extract the informa-
tion about the source from the detected local maxima. We take a particular
solution of MCMC search and for each harmonic of PW we can compute
cumulative F-statistic according to the prescription given in Section 11.3.3.
We concentrate only on those harmonics which give significant contribution
to the total F-statistic. If the harmonics of PW match perfectly the harmon-
ics of a signal we should observe something similar to Fig. 11.3, however it
is rare when we detect a full harmonic (only sometimes for the strongest).
More frequently, we detect a part of a harmonic (frequency and derivatives
close to true but not exact) or even several harmonics at different instances
of time as shown in Fig. 11.6. The black and green curves are two strong
harmonics of a signal (black being stronger), and the blue is a harmonic of
PW. In the pink regions, our template matches for a short period of time
the frequency of a signal (two distinct harmonics at two instances). The
corresponding cumulative F-statistic is shown in Fig. 11.7. There are two
positive jumps in the accumulation of the F-statistic which correspond to
two instances of intersection. Therefore, we can conclude that the positive
slope in the cumulative F-statistic (if it happens over a significant duration)
corresponds to the part of the frequency and time where a harmonic of P-
W matches (at least partially) some harmonics of a signal. We collect such
events of matching and display them on the time-frequency plane, resembling
the mosaic of a true signal.

The violent oscillation in Fig. 11.7 is one of the three types of oscillations
on the cumulative F-statistic curve mentioned in the previous section. In
fact, it is the beat note between the true harmonics and the local maximum.
Observe that the beat notes happen at relatively higher frequency, while
the increasing slopes (where the local maximum matches the frequencies of
the true harmonics) have relative low frequency. Thus, we design a third-
order Butterworth low pass filter to get rid of the beat notes. After the
low-pass filter, the cumulative F-statistic has only few extrema, as shown in
Fig. 11.8. After clearing up the cumulative F-statistic, we apply two criteria
for identifying a significant F-statistic accumulation: (i) the slope must be
larger than certain threshold; (ii) the accumulation time must be over longer
than certain period. As it is seen by eye tuning those two parameters should
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Figure 11.6: Time-frequency plot of harmonics. The black and green tracks
are two strong harmonics of the EMRI signal (black being stronger). The
blue track corresponds to a harmonic of PW that accumulates a significant
F-statistic. It intersects the true harmonics at the pink segments, those
correspond to times of increase of F-statistic, see Fig. 11.7, 11.8.

be sufficient to get the right parts of cumulative F-statistic. In our search we
have made the following choice for those parameters. In the case of noiseless
data, we require the slope to be larger than one-tenth of the largest slope of
the cumulative F-statistic of that trial harmonic, and the cumulative time
(over which we observe steep positive slope) to be longer than three days.

We plot all recovered patches on the time-frequency plane in Fig. 11.9,
where we can identify by eye 13 strong harmonics. For comparison, the time-
frequency plane of all the 30 harmonics of the signal without noise is shown
in Fig. 11.10, where the F-statistic value of each harmonic is indicated by its
color. Although the weaker harmonics are lost in Fig. 11.9, the strong ones
retain enough information about the EMRI system evolution, hence allowing
us to recover the physical parameters we are interested in. Zooming at a
specific harmonic in time and frequency, one will see that there are many
patches from different results and at each instant we observe a finite spread
in the frequencies for a given harmonic. This is due to various solutions from
MCMC search matched a given harmonic of a signal with different precision.
However, we expect that the distribution of found frequencies at each instant
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Figure 11.7: Unfiltered cumulative F-statistic corresponding to the PW
harmonic and data given in Fig. 11.6. The F-statistic labeled on the vertical
axis has only relative meaning, since we work with the noiseless data. The
green and red squares mark the extremes of the curve, thus distinguishing
between the increasing and the decreasing slopes. The large number of the
extremes is due to the beating between the true harmonics and the trial
harmonic.
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Figure 11.8: Filtered cumulative F-statistic corresponding to the situation
depicted in Fig. 11.6. It is similar to Fig. 11.7, but after applying the low
pass filter to remove the beatings (high frequency oscillations).

of time will be centered at the true frequency of the signal’s harmonic. As an
example, we show distribution of found frequencies at a particular instance
of time for two harmonics in Fig. 11.11. In that plot we show the histogram
of detected frequencies at that time in blue and Gaussian fit as smooth green
curves. This is to be compared with frequencies of two harmonics of a signal
at the same time in red. As mentioned above, different solutions of MCMC
search vary in precision of matching the signal at different instances, and we
can use accumulation time as a measure of goodness of match of a signal
by a given solution. The relative accumulation time of different solutions
are shown as pink points in Fig. 11.11. First, one can see that Gaussian
fit lies on the top of the true frequency, and second, that the distribution
of pink points is similar to the blue histogram, so either can be taken to
characterize the found harmonics of a signal. Similarly, we can do at each
instance of time for all found tracks in the time-frequency plane. For the
noiseless search we picked uniformly 10 instances and made a Gaussian fit
around each harmonic. We identify the mean of the Gaussian fit as the most
likely frequency of a signal’s harmonics at that instance and we identify the
spread (standard deviation) of a distribution as an error in our evaluation of
a frequency. The result of this clustering is given in Fig. 11.12.
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Figure 11.9: Time-frequency plot of all patches corresponding to strong
accumulation of F-statistic. We can identify parts of frequency tracks of
13 EMRI harmonics. Each track in this plot has a finite width coming
from different solutions of MCMC search which have different precision of
matching the signal.

Figure 11.10: Time-frequency plot of all the 30 harmonics of the signal
without noise. The F-statistic of each harmonic is indicated by its color.
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(a) (b)

Figure 11.11: (a). Zoom at two harmonics at a specific instance of time.
The red stems denote the frequencies of the true harmonics of a signal, while
the blue histogram shows the detected frequencies at this instant. The green
curves display the Gaussian fit to the frequency data with re-scaled am-
plitudes. The vertical axis of pink points indicates the relative time over
which we have observed strong accumulation of F-statistic for each solution.
(b). Similar plot for all the harmonics at the same instant, where 13 harmon-
ics out of 30 are identified.
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(a) (b)

Figure 11.12: (a). Gaussian fit to the detected frequencies at ten instants.
The red points represent the mean of a Gaussian fit as shown in Fig. 11.11
for each harmonic at ten instants . The blue error bars show the 1σ uncer-
tainties of the Gaussian fits. Note the tiny error bars are along the frequency
dimension which indicates that the MCMC search localizes quite well fre-
quencies of the EMRI’s harmonics. (b). A zoom-in plot of (a) at two strong
harmonics. Most of the red points are clustered and overlapping with each
other.
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In the case of data with the detector noise, the basics and the strategy
are roughly the same as in the noiseless case with minor modifications. In
the beginning, we record the local maxima with SNR greater than 4.5. Next,
we select the significant increasing slopes of the cumulative F-statistic with
three requirements: (i) the maximum F-statistic along the cumulative F-
statistic curve is larger than 50, (ii) the minimum slope of the significant
increasing segment is larger than 4×10−6s−1, (iii) the duration of a monotonic
increase is longer than about a week. Those conditions are more stringent
than for the noiseless case and eliminate several found weak harmonics of
the EMRI signal. However, at the same time they significantly reduce the
false events (and that is what we want). From this selection, we identify 5
strong harmonics in the noisy case. After that the procedure is similar to
the noiseless case.

11.5.2 Search for physical parameters

Now we are in a position to recover the physical parameters of the binary
system. First, we need to adopt the model for the orbital evolution, and here
we have employed the same model as used in the simulation of the data sets.
In the noiseless case the only reason for the deviation of recovered parameters
from the true values is due to inaccurate identification of the tracks in the
time-frequency plane or due to ambiguity in solving the inverse problem
(mapping harmonic tracks onto the physical parameters, m/M, a, e, ι, p/M).
We have performed the search on the time-frequency plane similar in spirit
to [237]. We have used the weighted chi-square test

χ2 =
∑

min
flmn

(
flmn − fmean

σf

)2

between the signal tracks (for different parameters) and the recovered tracks
(Fig. 11.12). We have used particle swarm optimization (PSO) and genetic
algorithm (GA) as two independent search methods to test the robustness
of our result. We start with describing the PSO method, and then give brief
overview of GA.

Particle swarm optimization (PSO) is a stochastic optimization method
introduced by Kennedy and Eberhardt in 1995 [146]. In gravitational wave
data analysis, PSO was first applied to a binary inspiral signal [147]. In this
section, we briefly describe the algorithm, while further details can be found
in the references [146, 147].
The goal of PSO is to find the global minimum/maximum (here we minimize
the chi-square test) of a parameterized functional κ(θ) and the corresponding
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parameter set θ∗, where θ stands for an arbitrary parameter set in Rn. The
idea is to evaluate κ(θi) simultaneously at different parameter sets θi, i =
1, 2, ..., treating them as particles in the parameter space, and evolve them
according to certain dynamics until the stable solution is reached. Let us
denote the i-th particle out of a swarm of Np particles during k-th iteration
in the search by θi[k]. Its position in the parameter space in the next iteration
is determined by its velocity in the current iteration vi[k],

θi[k + 1] = θi[k] + vi[k]. (11.36)

Usually, the particles start with randomly chosen positions θi[1] and velocities
vi[1]. Up to k-th iteration, we denote the i-th particle’s best location by θpi [k],
in the sense that

κ(θpi [k]) = min
j≤k

κ(θi[j]). (11.37)

The global best location θgi [k] up to the k-th iteration is defined by

κ(θg[k]) = min
i
κ(θpi [k]). (11.38)

Note that particle best locations and the global best location are the best pa-
rameters respectively found by the individual particles and the whole swarm
in the entirely history of the search up to the k-th iteration. They are updat-
ed only when a better parameter set is found. These best locations contain
a lot of information about the functional κ(θ), so they are used to guide the
particle’s motion in the future. Explicitly, the velocities are updated with
the following equation

vi[k + 1] = wvi[k] + c1χ1(θpi [k]− θi[k]) +

c2χ2(θg[k]− θi[k]), (11.39)

where w is called the inertia weight, c1, c2 are called the acceleration con-
stants (we take them to be the same as in [147]) and χ1, χ2 are random
numbers drawn from U(0, 1). We run PSO search several times until the
return result is confirmed by several searches.

The second search method is called Genetic Algorithm (GA) and there we
evolve a number of parameter sets (points in the parameter space Rn). Each
parameter set θi is called an organism, individual parameters are called the
genes of this organism and the set of organism at k-th search iteration step
is called k-th generation. We evolve generations according to the prescribed
rules called “parents selection”, “breading” and “mutation”. The main idea
of this optimization technique is to evolve colony of organisms toward the
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better fitness (which could be likelihood ratio or, in our case, chi-square
value) like in Darwin’s theory of natural selection. The strong organisms
(with better fitness) participate more often in breading and therefore drag
the colony toward the better values (lower) of chi-square. Mutation brings
element of randomness in the search and occasional “positive” mutations
help to avoid trapping around local minimum. For use of GA in GW data
analysis we refer to [238, 239] and references therein.

Let us give few more details specific to the implementation used in here.
We use χ2 value as a measure of fitness for each organism (smaller value is
better). In each generation we use the roulette method with the selection
probability proportional to the fitness of each organism. For breeding we have
used the one random point crossover rule. The probability mutation rate is
monotonically decreasing function of the generation number: we have started
with high probability of mutation to explore a large part of the parameter
space and decrease it gradually as organisms converge to a particular part of
the parameter space. We have used “children” and “parents” sorted in the
fitness to make a new generation: we use 50% of the best organisms. We
automatically achieve the “elitism” in a way that the best χ2 value is never
increasing from one generation to the next.

We use the multi-step method to accelerate the search. In each step we
evolve the colony for 500 generations as described above, but each new step
uses the last generation of the previous step as the initial state. We have
started evolution in the first step with completely random distribution of
the organisms. The evolution of the colony at each step finishes with a very
small mutation probability and with organisms confined to a quite small vol-
ume of the parameter space. The consequent search steps ensure that the
found solution is a robust solution with respect to increase of the mutation
probability which disperses organisms forcing them to explore the parameter
space for presence of a solution with better fitness. This helps to avoid being
trapped in the local minima. The termination condition is the stability of
the best solution over several steps of the search.

We have applied both those methods to fit the found tracks on the time
frequency plane with the harmonics of EMRI signal. The search is done in
5 dimensional parameter space with quite broad priors on (e, p/M, ι, a, µ =
m/M), those are the eccentricity, the semi-latus rectum, the orbital inclina-
tion angle at the moment of beginning of observation, the spin of the MBH,
and, the mass ratio between the stellar BH and the MBH. The total mass
is not present here, we have kept it fixed to M = 106M�. For a given set
of parameters, our search algorithm computes three fundamental orbital fre-
quencies as functions of time, then a weighted chi-square goodness of fit test
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Table 11.1: Recovered parameters of EMRi against actual parameters used
in simulated data sets.

description e(t0) p(t0) ι(t0) a µ
True parameters 0.4 8.0 0.349 0.9 10−5

Recovered parameters (with noise) 0.395 8.029 0.342 0.891 9.79× 10−6

Recovered parameters (no noise) 0.402 7.991 0.360 0.901 1.002× 10−5

is preformed on harmonics of the signal. We use the means and standard
deviations from the Gaussian fit as found point and its error in the time-
frequency plane. The best fit corresponds to the lowest value of χ2. We
have used harmonics of the signal, which are expected to be strong over the
large part of the parameter space, and have found this “harmonic table” by
intensive monte carlo with NK models generated in the frequency domain.
The index table has been truncated by choosing harmonics contributing (in
total) 90% of the overlap with a total signal 1.

The recovered parameters are given in the table 11.1.

11.6 Summary

In this paper we have introduced the phenomenological family of waveforms
(PW) for detecting EMRI signals in the data from the LISA-like observatory.
The template is constructed out of independent (over the time interval we
have applied our analysis) harmonics of slowly evolving three orbital frequen-
cies. We have neglected the amplitude evolution and presented the phase as
a Taylor series up to the third derivative of frequency. Our analysis was re-
stricted to the case of monotonically increasing frequencies. This condition
will break only close to the plunge. The number of harmonics and range of
indices were taken from the analysis of dominant harmonics of our model
signal, though we have found at the end that the search only weakly depends
on the number of used harmonics (only through the accumulated total SNR,
which should be sufficient to claim detection).

Constructed phenomenological templates allows us to search for EMRI
signals in a model independent way. This way we avoid complexity of accu-
rate modeling the orbital evolution and gravitational waveform during the
search. In addition PW cover also all possible small deviations of the back-

1The total signal here to be a NK waveform with a large number of harmonics. We
still truncate the number of harmonics used to build the signal: we stop if the inclusion
of the next harmonic does not change overlap with the already built signal by more than
0.1%.
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ground spacetime from the Kerr solution which would influence the signal’s
phase and could lead even to loss of the signal if the template assumes pure
Kerr background geometry.

We have used MCMC based search to find a large number of local maxima
of the likelihood surface. We were not that lucky to find the global maximum.
We have analyzed the found solutions by means of cumulative F-statistic
over the time and identified the patches of the signal which were match by
templates. As a result, we have constructed a time-frequency map of (parts
of) the signal’s harmonics. Each track could be characterized by the best
guess and the error bar at each instance of time (by fitting Gaussian profile
to found frequencies at that time for each track). The next step is to assume a
model for the binary orbital evolution, and check if the found time-frequency
picture corresponds to the strongest harmonics of a signal. In other words,
we want to find the physical parameters of the binary system which strong
GW harmonics could leave the found imprint. We do that by conducting
a search using particle swarm optimization techniques and, independently,
genetic algorithm. We have used weighted chi-square goodness of fit test to
choose the best matching harmonics of the signal. We have assumed the
same model as was used in the simulated data, and the recovered parameters
are within 2% of the true values.

We want to make few final remarks.
(i) The found time-frequency tracks of the GW signal from EMRI did not

assume any particular model. The mapping of these tracks to the physical
parameters could be done in post processing using several models. We have
chosen on purpose rather short (3 month) duration of the data. The search
procedure could be repeated for each three months and then one can check
consistency of a given model or further improve accuracy in the recovered
parameters (if our model gives consistent parameters of the system across dif-
ferent data segments). This could be a powerful method to search deviations
from “Kerness”.

(ii) We have neglected the amplitude evolution of the harmonics which
is justifiable on the considered short span of time, where the change in am-
plitude is small (less than 20% for the detectable strong harmonics in our
case). As mentioned above, for high SNR signals we can analyze the data
piecewise. However, for weak signals we need to extend the validity of the
PW by introducing the amplitude evolution and higher order derivatives of
frequencies. The amplitude evolution is also important in case of the high
eccentricity. We will delegate this issue to the next publication.

(iii) In the mapping of the time-frequency tracks to the physical parame-
ters of the binary, we have only weakly used information about the strength
of each track/harmonic. We have found that the information stored in the

217



frequency evolution is sufficient to recover parameters of EMRI. However,
additional information about the strength of the recovered harmonics and
harmonics of the modeled GW signal could give us additional confidence in
the result and/or distinguish between several solution, if ambiguity happens.

(iv) Mapping from the found time-frequency tracks onto the physical
parameters might turn out to be the most computationally intensive task.
However, one might use the information about the strength and a number
of found harmonics to restrict a volume of the searched parameter space.
In addition, to perform mapping we require mainly the computation of the
orbital evolution, not the full waveform. However, it is then important to
know which harmonics are the strongest for a given parameter set.

(v) In the future work we intend to include the sky location and the MBH
mass into the search and investigate the possibility to differentiate between
different models of EMRIs based on the results of MCMC search with PW
(as discussed in (i)).

11.7 Supplementary A: Calculate the evolu-

tion of the fundamental frequencies of

EMRIs and numerical kludge waveform-

s

For test particles, the geodesics in the Kerr spacetime in the Boyer-Lindquist
coordinates (r, θ, φ, t) can be described by the following set of differential
equations(

Σ
dr

dτ

)2

= [E(r2 + a2)− Lza]2 −∆[r2 + (Lz − aE)2 +Q]

≡ Vr(r), (11.40)(
Σ

dθ

dτ

)2

= Q− cos2 θ

[
a2(1− E2) +

L2
z

sin2 θ

]
≡ Vθ(θ), (11.41)

Σ
dφ

dτ
=

a

∆
[E(r2 + a2)− Lza] +

Lz
sin2 θ

− aE

≡ Vφ(r, θ) ≡ Vφ1(r) + Vφ2(θ), (11.42)

Σ
dt

dτ
=

r2 + a2

∆
[E(r2 + a2)− Lza] + a(Lz − aE sin2 θ)

≡ Vt(r, θ) ≡ Vt1(r) + Vt2(θ), (11.43)
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where we have defined

Σ = r2 + a2 cos2 θ, (11.44)

∆ = r2 − 2Mr + a2, (11.45)

and E, Lz, Q respectively denote the energy, the angular momentum along
the z-axis and the Carter constant. To prevent the occurrence of closed time-
like lines in the spacetime, the spin of the black hole satisfies a/M ∈ [0, 1].
The evolutions of r and θ can be separated by introducing the so-called Mino
time λ,(

dr

dλ

)2

= Vr(r), (11.46)(
dθ

dλ

)2

= Vθ(θ), (11.47)

dφ

dλ
= Vφ(r, θ) = Vφ1(r) + Vφ2(θ), (11.48)

dt

dλ
= Vt(r, θ) = Vt1(r) + Vt2(θ). (11.49)

For bounded motions, the solutions of r and θ in the Mino time are strictly
periodic functions, with periods given by the following

Tr = 2

rmax∫
rmin

dr√
Vr(r)

, (11.50)

Tθ = 2

π−θmin∫
θmin

dθ√
Vθ(θ)

. (11.51)

The corresponding frequencies are defined as

Fr = 1/Tr, (11.52)

Fθ = 1/Tθ. (11.53)

Since r and θ are strictly periodic functions of λ, the terms Vφ(r, θ) and
Vt(r, θ) can be expanded in Fourier series with fundamental frequencies Fr
and Fθ in the Mino time λ. Hence, φ and t as functions of λ can be easily
obtained. Ignoring the oscillating terms, the average accumulating frequency
for φ is

Fφ =
1

2π

 Tr∫
0

Vφ1[r(λ)]
dλ

Tr
+

Tθ∫
0

Vφ2[θ(λ)]
dλ

Tθ

 . (11.54)
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The average ratio between the coordinate time t and the Mino time λ can
also be calculated

Rt =

Tr∫
0

Vt1[r(λ)]
dλ

Tr
+

Tθ∫
0

Vt2[θ(λ)]
dλ

Tθ
. (11.55)

Therefore, the three fundamental frequencies of the geodesics are

fr = Fr/Rt, (11.56)

fθ = Fθ/Rt, (11.57)

fφ = Fφ/Rt. (11.58)

For a given Kerr black hole with mass M and spin a, the three fundamental
frequencies of its geodesics can be calculated from the three constants of
motion E, Lz, Q, whose evolutions can be obtained from the post-Newtonian
formulae in the following form

dE

dt
= fE(a,M,m, p, e, ι), (11.59)

dLz
dt

= fL(a,M,m, p, e, ι), (11.60)

dQ

dt
= fQ(a,M,m, p, e, ι). (11.61)

To generate numerical kludge waveforms, we need to solve for r(t), θ(t)
and φ(t) numerically. Once these functions are obtained, the waveforms can
be generated with the help of the quadrupole formula or the quadrupole-
octupole formula, etc. Here, we will briefly describe the way of calculating
r(t), θ(t) and φ(t) The derivatives of r and θ can be written as

Σ
dr

dτ
= ±

√
Vr(r), (11.62)

Σ
dθ

dτ
= ±

√
Vθ(θ). (11.63)

Due to the flipping signs, these equations cannot be directly integrated. We
need to use new variables to avoid the flipping signs. We first define an
eccentricity e and a semilatus p as follows

p =
2rmaxrmin

rmax + rmin

, (11.64)

e =
rmax − rmin

rmax + rmin

, (11.65)
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which imply the following

rmin =
p

1 + e
, (11.66)

rmax =
p

1− e
. (11.67)

We also define an inclination angle

tan2 ι =
Q

L2
z

. (11.68)

Then, we can replace the variable r by ψ through the following relation

r =
p

1 + e cosψ
. (11.69)

This is valid, since the evolutions of e and p are much slower than the evolu-
tion of r. Similarly, we wish to replace θ by χ through the following relation

cos2 θ = z− cos2 χ, (11.70)

where z− is defined by the following formula

−a2(1− E2)(z+ − z)(z − z−)

= a2(1− E2)z2 − z[Q+ L2
z + a2(1− E2)] +Q. (11.71)

Instead of directly evolving r and θ, we evolve ψ and χ. The evolution
equations for ψ, χ and φ are given by

dψ

dt
= M

√
1− E2[(p− r3(1 + e))− e(p+ r3(1− e) cosψ)]1/2

[(p− r4(1 + e)) + e(p− r4(1 + e) cosψ)]1/2/[γ + a2Ez− cos2 χ](1− e2),

(11.72)

dχ

dt
=

√
a2(1− E2)[z+ − z− cos2 χ]

γ + a2Ez− cos2 χ
, (11.73)

dφ

dt
=

Vφ
Vt
, (11.74)

where we have defined

γ = E

[
(r2 + a2)2

∆
− a2

]
− 2MraLz

∆
, (11.75)

and r3 and r4 are defined by the following formula

Vr = (1− E2)(rmax − r)(r − rmin)(r − r3)(r − r4). (11.76)
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Chapter 12

Fast detection and automatic
parameter estimation of a
gravitational wave signal with a
novel method

12.1 Introduction

While gravitational wave (GW) signals contain invaluable physical informa-
tion, extracting this information from the noisy data is quite challenging.
Most of the time, GW signals are weaker than the instrumental noise at any
instant, but they are predictable and long lived [2]. This gives a way to build
up signal-to-noise ratio (SNR) over time by tracking the signals coherent-
ly with matched filtering [240]. However, this requires the templates to be
exactly the same as the true signal to recover the optimal SNR, or at least re-
semble the true signal sufficiently in order not to lose much SNR [102]. Since
the template waveforms depend on several parameters, one needs to match
the data with a huge number of templates in the high dimensional parameter
space. Therefore, a normal grid-based search is usually computationally ex-
tremely expensive, or even prohibitive. The reduction of the computational
cost lies in the center of the modern GW data analysis.

There are several categories of algorithms, successfully reducing the com-
putational cost, such as reduced bases (RB) [241], singular value decompo-
sition (SVD) [242] and principal component analysis (PCA) [243]. These
methods make use of the fact that each template is strongly correlated with
the templates in its neighbourhood in the parameter space. Therefore, its
SNR can be effectively interpolated from the SNRs of the templates in it-
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s neighbourhood. In other words, the likelihood surface on the grid of the
template bank has special properties (sparsity), which allows the compressed
sensing [244] algorithms to apply. Instead of using all the templates in the
bank, one only needs to calculate the SNRs of a few so-called basis templates
(which are different from the original templates), and then interpolate the
SNRs of all the other templates in the bank. It is extremely fast to perform
matched filtering on that few basis templates comparing to the original bank
of templates. However, the interpolation (or sometimes referred to as the
reconstruction) process is still computationally expensive.

We wish to design a novel method, which requires to perform matched
filtering on a few templates, and in the meantime does not require any in-
terpolation stage (or can automatically reconstruct the parameters of the
GW signal). However, this method currently requires a relatively high SNR
of the signal. The detailed description of the method and the preliminary
simulation results are shown in the following.

12.2 Review of the GW data analysis prob-

lem

First of all, we briefly review the convention and notations of the GW data
analysis. Usually, the measurement data can be expressed as s = Ah∗ + n,
where n is the noise, A is the amplitude of the signal, h∗ is the normalized
signal in the measurement, which satisfies 〈h∗|h∗〉 = 1. The inner product of
two time series a(t) and b(t) is defined as follows

〈a|b〉 =

∞∫
−∞

ã∗(f)b̃(f)

Sn(f)
df, (12.1)

where ã(f), b̃(f) are the Fourier transforms of a(t) and b(t). Sn(f) is the
so-called two-sided noise power spectral density (PSD), usually defined as
E[ñ∗(f ′)ñ(f)] = Sn(f)δ(f − f ′).

The GW data analysis problem that we want to solve is formulated as
follows. For a set of normalized candidate templates hi = h(Θi) (we choose
the template index i = 1, . . . , 2N for convenience) characterized by param-
eters Θi, we want to determine which one is present in the measurement,
hence obtaining the parameters Θ∗ of the signal. Notice that Θ denotes a set
of waveform parameters. For clarity, we require the templates to be nearly
independent 〈hi|hj〉 � 1, (i 6= j). This is not generally true for a whole
template bank. However, one can easily divide the entire template bank into
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a group of smaller template banks, within which the templates are nearly
independent.

We assume that the true signal h∗ belongs to the template family, ∗ ∈
{1, 2, . . . , 2N}. The inner product between the measurement data and a
template is denoted as

xi ≡ 〈s|hi〉
= A〈h∗|hi〉+ 〈n|hi〉, (12.2)

thus the expectation and the variance are

E(xi) = Aδ∗,i (12.3)

Var(xi) = E[〈hi|n〉〈n|hi〉]
= 〈hi|hi〉 = 1. (12.4)

By identifying the largest inner product x∗, we can detect the signal h∗ and
estimate its parameters Θ∗. When the inner product x∗ is much larger than
its standard deviation

√
Var(x∗) = 1, the significance is high. The above

shows a normal search strategy, which requires to perform 2N inner products.

12.3 The new algorithm

In this section, we will describe a novel search algorithm. First, we express the
waveform indices i in binary, hence each index is an N -digit binary number
(e.g. 001011011 . . . ). Then, we define N sets Pk (k = 1, 2, . . . , N) such that
Pk consists of all the indices i whose k-th digit is 1. A new template family
is defined based on these sets

Hk =
∑
i∈Pk

hi. (12.5)

The inner products of these new templates with the measurement data are

Xk ≡ 〈s|Hk〉
=

∑
i∈Pk

〈s|hi〉. (12.6)

The expectation of Xk is

E(Xk) =

{
A, ∗ ∈ Pk
0, ∗ /∈ Pk

(12.7)
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The variance can be calculated as follows

Var(Xk) = E[〈n|
∑
i∈Pk

hi〉2]

=
∑
i,j∈Pk

〈hi|hj〉. (12.8)

Since the templates hi are nearly independent, we have

Var(Xk) =
∑
i∈Pk

〈hi|hi〉

= 2N−1. (12.9)

Suppose ∗ ∈ Pa and ∗ /∈ Pb, then

E(Xa −Xb) = A (12.10)

Var(Xa −Xb) = E[〈n|
∑
i∈Pa

hi −
∑
j∈Pb

hj〉]

=
∑

i∈{Pa∪Pb−Pa∩Pb}

〈hi|hi〉

= 2N−1. (12.11)

When the expectation A is much larger than the standard deviation 2(N−1)/2,
we can set some threshold T betweenA and 2(N−1)/2. Based on this threshold,
a binary number can be obtained as follows: if Xk > T , the k-th bit of this
binary number is 1, otherwise its k-th digit is set as 0. This binary number
can be converted to a decimal number i0. The method identifies the waveform
hi0 with parameters Θi0 to be most probably present in the data. In this new
approach, we have used N templates instead of 2N templates to detect the
signal and estimate its parameters. The computational cost is thus reduced
from C · 2N to C · N . Notice that, if each inner product of the data and a
template provides one bit of information (above or below a certain threshold),
N is the minimum required number of templates to distinguish 2N sets of
candidate parameters.

12.4 Simulation

To exemplify the performance of the novel method, we consider the following
chirp waveform family

h(t; f, ḟ) = A cos(2πft+ πḟt2), (12.12)
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where A is the normalization constant, f and ḟ are the two intrinsic param-
eters to be estimated. We have simulated 100 seconds measurement data at
1 kHz with different SNRs. The parameters of the true signal are f∗ = 100 Hz
and ḟ∗ = 0.2 Hz/s. We have considered 26 candidate waveforms with the pa-
rameter mesh grid

f = {70, 80, 90, 100, 110, 120, 130, 140}Hz,

ḟ = {−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4}Hz/s.

The threshold is simply chosen as T = c ·max(Xk), where we have tried
several values of the coefficient c. The SNR varies from 8 to 50 with a
uniform spacing 3. For each combination of SNR and the threshold, we
carried out a Monte Carlo simulation with 1000 different noise realizations. If
the algorithm identifies the true signal and its true parameters, the detection
is successful. The success rate is called the detection rate. Fig. 12.1 shows
the detection rate at different SNRs and thresholds, where the color bar
indicates the value of the coefficient c. The best performance is realized by
setting the coefficient c around 0.5. For signals with SNR higher than 30,
the detection rate of the algorithm is above 99%. Thus, the algorithm with
the least number of new templates works efficiently at relatively hight SNRs.
However, at low SNRs, the detection rate is low. We will see whether we
could improve the detection rate by slightly increase the computational cost.

12.5 Features of the algorithm

Let us take a close look at the features of the algorithm to better understand
it. First, we review some concepts and conventions, which will be used later
on. The error function erf(x) is usually defined as follows

erf(x) =
2√
π

x∫
0

e−x
2

dx. (12.13)

The cumulative distribution function F (a) is defined as follows

F (a) = P (x ≤ a)

=

a∫
−∞

p(x)dx, (12.14)

where p(x) is the probability density function. For a Gaussian random vari-
able x with an expectation µ and a standard deviation σ, we denote its
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Figure 12.1: Detection rate at different SNRs and thresholds. The color bar
indicates the value of the coefficient c. The algorithm achieves the optimal
performance, when c is around 0.5. The detection rate is above 99%, when
SNR is above 30.
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cumulative distribution function as Fµ,σ(x). It is straightforward to show
that

Fµ,σ(x) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
. (12.15)

For the set of 2N independent templates hi, if 2N is smaller than the
number of samples in the observation data, xi = 〈s|hi〉 are also independent.
To characterize the performance of the algorithms, we want to examine to
what extent can the noise mimic a signal. Since the signal part of xi only
contributes a DC bias to its probability distribution, we can ignore the DC
part and only consider the random part of xi, which is 〈n|hi〉. It can be shown
without much effort that the probability density function of the maximum
of these 2N random variables xi is the following

pmax(x) =
2N√

22N+1−1π

[
1 + erf

(
x√
2

)]2N−1

e−
x2

2 . (12.16)

Since these random variables follow Gaussian distribution with a zero mean,
which is symmetric about the y-axis, the minimum of these random variables
has a probability density function as follows

pmin(x) =
2N√

22N+1−1π

[
1 + erf

(
−x√

2

)]2N−1

e−
x2

2 . (12.17)

By contrast, the random variables Xk are correlated. The analytical expres-
sion (if there exists) of the probability density function of the maximum of
these random variables is not easy to calculate. Instead, this probability
density function is calculated numerically via Monte Carlo simulations later
on. If we artificially ignore the correlation between Xk for the moment, an
analytical approximate expression can be obtained as follows

pmax(X)
N√

23N−2π

[
1 + erf

(
X√
2N

)]N−1

e−
X2

2N . (12.18)

For the case we considered, we have N = 6. The probability density functions
of the maximum of the random part of xi and Xk are shown in Fig. 12.2,
where for Xk we have plotted both an analytical approximate curve and the
results from Monte Carlo simulation of 5 × 104 different noise realizations.
This figure tells us to what extent SNRs could be mimicked by pure noise.
As expected, in case of Xk, the noise could mimic larger SNRs. This can also
be seen from the larger standard deviation of Xk. In fact, this is the reason
for the drop in the detection rate at low SNRs in Fig. 12.1.
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Figure 12.2: The probability density functions of the random part of xi and
Xk, which are 〈n|hi〉 and 〈n|Hk〉.

Next, let us examine the role of the threshold T = 1
2

max(Xk). In the
previous simulations, we have six inner products Xk, (k = 1, . . . , 6), each
corresponding to an SNR achieved by Hi. Since the detection criteria only
depends on the ratio between the inner products, it is convenient to look
at their pie charts. In Fig. 12.3, we show the pie charts for different S-
NRs, where the color bar represents the indices of the inner products. Take
Fig. 12.3 (a) for instance. The inner products X1, X3, X4 contribute most
part of the summation

∑6
k=1Xk, while X2, X5, X6 are much smaller. Ac-

cording to the criteria we designed before, only X1, X3, X4 are above the
threshold. Therefore, we obtain the index 1011002 = 44 of the template,
which most resembles the signal in the data. Similarly, Fig. 12.3 (b)-(e) all
successfully identify the correct template in case of different SNRs. Fig. 12.3
(f) shows a failure case. According to the previous criteria, this pie chart
gives a wrong index 1010012 = 41. In fact, even if one bit of the binary is
wrongly determined, we end up with a completely different template (and
its corresponding parameters). This is also a main reason why the detec-
tion rate at low SNRs drops so quickly. We will discuss how to improve the
performance of the algorithm in the next section.
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(a) SNR=50 (b) SNR=40

(c) SNR=30 (d) SNR=20

(e) SNR=10 (f) SNR=10

Figure 12.3: Pie charts of Xk for different SNRs. (e) and (f) are for the
same SNR with different noise realizations. The color bar denotes the index
of Xk.
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12.6 Improve the performance of the algo-

rithm

In this section, we will discuss a simple and straightforward way to improve
the performance of the algorithm by slightly increasing the computational
cost. Let us look at the failure case in Fig. 12.3 (f) again. The largest inner
product is X1, which contributes 30 percent of the entire SNR pie. The
threshold, which was set to half of the largest inner product, turns out to be
15 percent. Therefore, among the six inner products, X1, X3 are significantly
above the threshold, X2, X5 are significantly below, while X4, X6 are close to
the threshold. In the end, the binary bits corresponding to X4 and X6 were
determined wrongly, which leads to a detection failure. However, the binary
bits corresponding to X1, X2, X3 and X5 are correctly determined, and we
are confident about that in the blind search. In fact, we are not so confident
about the bits corresponding to X4 and X6, since they are just slightly above
or below the threshold. If we leave these two binary bits undetermined,
we end up with a binary number 101y0y2, where we have used y to denote
undetermined bits. It implies that the true signal might match one of the four
templates 1010002 = 40, 1011002 = 44, 1010012 = 41 and 1011012 = 45. By
simply calculating the inner products of the data and these four templates,
we will know which one matches the true signal.

Hence, we can modify the algorithm according to the above procedure.
In the beginning, we calculate Xk, (k = 1, . . . , 6) and the threshold T =
c · max(Xk). Then, we identify two Xk, which are closest to the threshold
T , and leave two binary bits corresponding to these two Xk undetermined.
We determine other binary bits in the same way as before. A binary number
with two unknown bits is thus constructed. It corresponds to four original
templates hi. In the end, we calculate the inner product between the data
and these four templates, and detect the signal. Following this procedure,
we carry out a similar simulation as before. The detection rate is plotted in
Fig. 12.4 with different combinations of c values and SNRs. Comparing with
Fig. 12.1, the modified algorithm has significantly improved the performance.
The detection rate is increased at all SNRs. We also observe that c = 0.5
is still the optimal choice. For the curve c = 0.5, the detection rate is 100%
above SNR 30 and 96% at SNR=20. This strategy can be easily generalized
by assigning a probability to each binary bit according to Xk, hence obtaining
the probability of each hi present in the data. We reserve this for the future
work.
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Figure 12.4: Detection rate at different SNRs and thresholds. The color bar
indicates the value of the coefficient c.

12.7 Conclusion and future work

We have designed a novel algorithm for GW data analysis. Instead of using
2N normal waveform templates, this new algorithm uses only N combinations
of the original waveforms as the new templates. By calculating the inner
products between these N new templates with the data and comparing these
inner products with some threshold, we can construct a binary number with
N bits. From this binary number, we can determine which normal template
in the original template bank best matches the signal in the data, without any
reconstruction process. Therefore, this new algorithm can greatly reduce the
computational cost in certain circumstances. However, it requires relatively
high SNRs. We have discussed a simple and straightforward way to improve
the performance of the algorithm. By leaving two most unconfident binary
bits undetermined and calculating four additional inner products, we can
significantly improve the performance of the algorithm at low SNRs. The
detection rate of the modified algorithm is 100% for 1000 different noise
realizations for each SNR larger than 25. For SNR lower than 25, further
improvements are demanded. We reserve that for future work.

One possible way to improve the algorithm is to construct additional
Hk, (k = N+1, . . . ) for auxiliary use, such as to determine unconfident binary
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bits, to suppress the noise in Xk, etc. One can also set more sophisticated
thresholds. We have used a threshold only depending on the relative values
between the inner products Xk for simplicity. A threshold also depending on
the absolute values of the inner products would help, since the probability
distribution of the random part of Xk depends only on the absolute SNRs.

We have only carried out simulations for a bank of nearly independent
templates. In the future, we will do a simulation for an entire template bank.
The correlation between templates need also to be studied, since it could be
used to reduce the noise in the detection statistic.
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Chapter 13

Likelihood transform: making
optimization and parameter
estimation easier

13.1 Introduction

Parameterized optimization and parameter estimation is a general importan-
t problem in almost every branch of modern science, technology and engi-
neering [245, 246, 247, 248, 249]. The general problem can be described as
follows. Let us denote � = (θ1, θ2, ..., θk) ∈ P as the parameters to be esti-
mated, where P is the k-dimensional parameter space. The figure of merit
F(�,x) ≡ M · (�,x) is usually some functional of the parameters � and the
data x (e.g. measurement data from experiments). In practice, the function-
alM can be viewed as a set of operations on the parameters � and the data
x. The goal is to find the best estimate �∗ that maximizes the functional
F(�∗,x). Since minimization can be cast into maximization by just adding a
minus sign, we will focus only on maximization problems. Also, for brevity,
we omit x and denote F(·,x) as F(·) from now on. The mapping M · (·,x)
from � to F defines a hypersurface in the k-dimensional parameter space P .
Hereafter, we refer it as the likelihood surface in general, although sometimes
it does not have to be related to the likelihood.

By definition, the likelihood surface should peak at the best estimate �∗.
When the peak is broad and smooth, there are less structures in this region.
Hence, the search is relatively easy and the resolution is poor (i.e. the error
bar in the estimate is large). When the peak is sharp and narrow, the resolu-
tion is high, but the search is much more difficult. In general, the structure of
the likelihood surface determines the difficulty of the optimization problem.
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By modifying the surface structure, we may alter the innate difficulty of the
problem.

13.2 Likelihood transform

We introduce a set of functionals Y� acting on the mapping functional M,
where � can be either a scalar variable or a set of variables.

F�(·) ≡ Y�[M(·,x)]

= (Y�M)(·,x), (13.1)

By varying �, we obtain a set of modified likelihood surfaces F�(·). We want
to find a proper set of functionals Y�(l), where the index l ∈ [0, l∗] ⊂ R,
such that as l running from l∗ to 0, Y�(l) modifies the sharp narrow peak
at the best estimate �∗ gradually (or continuously) to broader and smoother
hills. We require that Y�(l∗) is a unity functional, i.e. F�(l∗)(·) = F(·). When
such a proper set of functionals is identified, one can search on the broadest
and smoothest likelihood surface, F�(0)(·) , since its (local) maximum �� is
usually easiest to find. Notice that this maximum �� needs not to be the
global maximum on the modified likelihood surface and it needs not to be
exactly at �∗. However, as l going from 0 to l∗, �� should gradually converge
to �∗ due to the continuity of the transform. This means after identifying
the maximum ��(0) in the smoothest likelihood surface, the transform Y�(l)

can help lead us to the best estimate �∗.
Following the conventions [240] used by the gravitational wave (GW) data

analysis community, it is convenient to define the inner product of two time
series a(t), b(t) as below

〈a|b〉 =

∞∫
−∞

ã∗(f)b̃(f)

Sn(f)
df, (13.2)

where ã(f), b̃(f) are the Fourier transforms of a(t) and b(t). Sn(f) is the
so-called two-sided power spectral density of Gaussian noise, usually defined
as E[ñ∗(f ′)ñ(f)] = Sn(f)δ(f − f ′).

We denote the normalized GW waveform with parameters � by h(�, t),
thus 〈h(�)|h(�)〉 = 1. The measured data x(t) containing a GW signal with
parameters �∗ and Gaussian noise n(t) can be expressed as x(t) = Ah(�∗) +
n(t), where A is the strength of the signal.
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The figure of merit is the signal-to-noise ratio (SNR)

F(�) = M(�,x)

≡ 〈x|h(�)〉

=

∞∫
−∞

x̃∗(f)h̃(�, f)

Sn(f)
df. (13.3)

Although F(�) here is not the likelihood, it is directly related to the like-
lihood L(�) ∝ exp[F(�)2/2]. The functional M can be interpreted as two
operations: first, to generate a waveform with parameters �; second, to cal-
culate the inner product of this waveform and the data x. Usually, F(·) has
a sharp narrow peak at the best estimate �∗. As an example, we define the
functionals Y� as convolution operators

F�(�) = (Y�M)(�,x)

≡ 〈x|(K� ? h)(�)〉
= (K� ? F)(�), (13.4)

where K� is the kernel function. The last equality is because convolution is
a linear operation and F(�) is linear in h(�). Since the convolution can be
viewed as a smoothing functional, the modified likelihood surface F�(·) is
smoother than the original one. For brevity’s sake, we temporarily assume
� is a scaler parameter and choose the kernel function as one-dimensional
Gaussian function K� = 1√

2π�
exp(− �2

2�2 ). The argument below can be triv-
ially generalized to multi-dimensional case. When � is large, the kernel is a
very broad Gaussian function, hence making the likelihood surface F�(·) very
smooth. As � decays to 0, F�(·) converges to the original likelihood surface
F(·). Notice that when � → 0, we have K� → δ(�). In practice, we can set
�(l) = �(0)(l∗ − l)/l∗. As l goes from 0 to l∗, F�(l)(·) evolves gradually from
very smooth modified likelihood surface to the original likelihood surface.

From another point of view, K� ? h(�) in Eq. 13.4 is just a weighted
average of many waveforms. Since waveforms with similar parameters are
correlated, by using a summation of nearby waveforms one can smooth the
original likelihood surface. As the number of averaged waveforms goes to 1,
the modified likelihood surface converges to the original likelihood surface.

13.3 How to use likelihood transforms

Likelihood transform Y�(l) can gradually modify the likelihood surface, hence
changing the intrinsic complexity of the optimization problem. In the mean-
time, it retains the relation between the modified likelihood surfaces and the
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original likelihood surface. Therefore, likelihood transform can be used in
many ways. For instance, it can accelerate stochastic optimization method-
s, such as Markov chain Monte Carlo [236, 250], particle swarm optimiza-
tion [147, 250], genetic algorithm [238, 239, 250], etc. It can help design
hierarchical search algorithms. In some circumstances, it can even make a
deterministic search possible.

13.3.1 Comparison with simulated annealing

Likelihood transform is different from simulated annealing [251], which is also
a technique to accelerate stochastic optimization algorithms. In the follow-
ing, we will compare the two. Simulated annealing employs a temperature
parameter T to heat the likelihood surface from L(�) ∝ exp[F(�)2/2] to
exp[F(�)2/2T ]. As the stochastic search algorithms proceed, the tempera-
ture cools down gradually. Therefore, the heuristics can escape from local
maxima more easily and explore the whole parameter space more thorough-
ly, hence being accelerated. As an example, we simulated a sinusoidal signal
with only one parameter ω = 0.2 rad/s buried in white Gaussian noise. The
SNR was 9. Fig. 13.1 (a) shows how simulated annealing gradually modifies
the likelihood surface (or more rigorously the SNR surface). As seen from the
figure, the likelihood surface is less spiky at high temperatures. Notice that
the number of local maxima (including the global maximum) is the same at
all temperatures, and the locations of these maxima are unchanged.

As for likelihood transform, it modifies the likelihood as exp[F�(l)(�)2/2].
For simplicity, we choose the functional Y� to be convolution operators with
a Gaussian kernel. We then applies it to the same simulated data. The
modified likelihood surface F�(l)(�) are shown in Fig. 13.1 (b). Notice that
both the number of local maxima and their locations are changed by the
likelihood transform. In addition, the likelihood surfaces are smoother with
less structures comparing to the cases of simulated annealing. These fea-
tures of likelihood transform may help accelerate the stochastic optimization
algorithms more efficiently.

13.3.2 Manipulation of the intrinsic complexity of the
likelihood surface

In this subsection, we applied likelihood transform to a toy model in gravi-
tational wave data analysis. Although it is a somehow simplified model, it
captures important features of the general problem and can demonstrate the
method in a more general (less background-dependent) way.
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(a) Simulated Annealing (b) Likelihood Transform

Figure 13.1: A comparison of simulated annealing and likelihood transform.

Suppose the normalized gravitational wave chirp signal is in the following
form

h(�, t) =

√
2

T
cos[ω0α0(t) + ω1α1(t)], (13.5)

where � = (ω0, ω1) are the two parameters to be estimated, the two time
functions are defined as α0(t) ≡ t − T

2
and α1(t) ≡ (t − T

2
)2, T is the total

observation time, which we choose to be 5120 seconds in the simulation. We
inject a signal with parameters ω0 = 0.0628 rad/s, ω1 = 6.136× 10−6 rad/s2.
Notice that ω0 is an angular frequency. The searching parameter ranges
for ω0 and ω1 are (ωlow

0 , ωupp
0 ) = (1.2 mrad/s, 0.126 rad/s) and (ωlow

1 , ωupp
1 ) =

(−3.07× 10−6 rad/s2, 1.23× 10−5 rad/s2) respectively.
As an example, we use convolution operators as the functionals Y�(l)

and assume the kernel function to be a Gaussian function with diagonal
covariance. Then, we have

H�(l)(�) = (K�(l) ? h)(�),

=

∫ ∫
K[ω0 − ω′0, ω1 − ω′1, σ0(l), σ1(l)]

·h(ω′0, ω
′
1)dω′0dω′1,

= h(�)e−
1
2

[σ0(l)2α0(t)2+σ1(l)2α1(t)2], (13.6)

F�(l)(�) = 〈x|H�(l)(�)〉. (13.7)

We set l∗ = 1 and choose (σ0(l), σ1(l)) = (1− l)(ωupp0 − ωlow0 , ωupp1 − ωlow1 ) to
be a fraction of the entire searching parameter range. We will see how this
parameter l can modify the likelihood surface and adjust the difficulty of the
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Figure 13.2: The original likelihood surface F(ω0, ω1). It peaks at the true
signal parameter with an optimal SNR 8. It is very fluctuant. Optimal
template layout requires 69620 templates.

optimization problem. In general, the difficulty of the search can be very
well described by the required number of templates for a certain mismatch
by template-based search. Following conventions, we set the mismatch to be
0.03. By calculating the metric of the likelihood surface on the parameter
space [102], it’s straightforward to estimate the number of templates required
by optimal layout (we choose rectangular layout here). When l = l∗ = 1,
we have the original likelihood surface F(ω0, ω1) shown in Fig. 13.2. On this
likelihood surface, the optimal layout requires 69,620 templates. This large
required number is due to the noise-like features of the likelihood surface.

The structure of the likelihood surface can be greatly simplified through
the likelihood transform. Fig. 13.3 (a)-(d) shows the several transformed
likelihood surfaces F�(l)(ω0, ω1) with different values of l. When l = 3/4,
the modified likelihood surface is very smooth. It is extremely simple to
characterize the structure of this likelihood surface or find its maximum.
As l increases, more and more structures appear on the likelihood sur-
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face F�(l)(ω0, ω1). It gradually converges to the original likelihood surface
F(ω0, ω1). These figures show how the difficulty of the optimization problem
can be modified by the likelihood transform. More precisely, we have calcu-
lated the required number of templates for different values of l in Fig. 13.4.

(a) 1− l = 1/4 (b) 1− l = 1/16

(c) 1− l = 1/64 (d) 1− l = 1/128

Figure 13.3: The modified likelihood surfaces F�(l)(ω0, ω1) after likelihood
transforms.

For 1− l > 0.1, the 0.03-mismatch rule gives an error rectangular, which
is comparable to the area of the entire search parameter space. However, the
error rectangular may have very different shape from the search parameter
space. Therefore, in 1 − l > 0.1 region, the required number of templates
shown in Fig. 13.4 only serves as a rough estimate of the complexity of the
modified likelihood surface. In the more interesting 1 − l < 0.1 region, the
dependence of the required number on 1 − l roughly follows a power law.
The required number decreases rapidly in this region, hence the difficulty of
search decreases rapidly.
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Figure 13.4: Number of templates required by the optimal layout for different
values of l. Notice that the original case l = 1 is not plotted here.

These features of likelihood transform can potentially help the optimiza-
tion algorithms. For example, it may help in the design of efficient hierar-
chical algorithms to search for GW signals.

13.3.3 A deterministic search

In this subsection, we will show that in some cases the likelihood transform
can even make deterministic optimization methods such as Newton’s method
possible. Hence, the search algorithm will be much more efficient.

In the neighbourhood of a (local) maximum ��(l) on modified likelihood
surface F�(l)(·), the geometry can be described by a Taylor series

F�(l)(��(l) + ∆�) = F�(l)(��(l))

+
1

2

∂2F�(l)

∂θµ∂θν
∆θµ∆θν +O(∆�3). (13.8)

where we have assumed the Einstein summation convention. The first deriva-
tive vanishes and the modified Fisher information matrix I

�(l)
µν = −∂2F

�(l)

∂θµ∂θν
|�=�

�(l)

is positive definite due to the fact that F(��(l)) is a maximum stationary
point. Notice that, when l = l∗, the Taylor expansion is on the original like-

lihood surface around the best estimate �∗, and Iµν = I
�(l∗)
µν = − ∂2F

∂θµ∂θν
|�=�∗
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is the Fisher information matrix at the best estimate �∗. For each modified
likelihood surface F�(l)(·), there exists a neighbourhood Bl ⊆ P of ��(l) where
the geometry of the likelihood surface can be approximated by a quadrat-
ic form quite well (say, the percentage error caused by higher order term
is less 1%). According to our design, the smaller the l the smoother the
modified likelihood surface F�(l)(·), hence the larger the neighbourhood Bl.
Sometimes, B0 can be as large as the entire parameter space P .

Starting from any point �′l ∈ Bl on modified likelihood surface F�(l)(·),
one can easily find the best estimate ��(l) via some deterministic local-search
algorithms. For instance, by neglecting higher order terms in Eq. 13.8 and
differentiating both sides with respect to θν , we get

∂F�(l)(�′l)

∂θν
=
∂2F�(l)

∂θµ∂θν
∆θµ. (13.9)

Thus, we calculate the best estimate in just one step

θµ�(l) = θ′µl −∆θµ

= θ′µl −
[
∂2F�(l)

∂θµ∂θν

]−1
∂F�(l)(�′l)

∂θν
, (13.10)

where
∂2F

�(l)

∂θµ∂θν
is constant in Bl, so it can be calculated at �′l. Observe that as

l gradually runs from 0 to l∗, Bl shrinks smoothly. Also, since Bl is roughly
a quadratic region, �l should be near the center of Bl. So, there must exist
a smaller region Bl1 (with l1 > l) which contains ��(l) in it. One can take
��(l) as the starting point in Bl1 and repeat Eq. 13.10 to calculate the best
estimate ��(l1) on F�(l1)(·). By iterating the above process, one will find the
best estimate �∗ on the original likelihood surface F(·).

Usually, we need to study the properties of the neighbourhood Bl in order
to design an efficient deterministic algorithm. However, in some cases, likeli-
hood transform can change the likelihood surface to be so smooth and regular
that we can simply choose a set of Y� to perform a deterministic search. As
an example, we still use the waveform model introduced in the last subsec-
tion and set the SNR to 20. Six transformed likelihood surfaces are shown
in Fig. 13.5. Notice that the global maxima on these surfaces are normalized
to 1. We start from 10 points in the parameter space uniformly sampled
in ω0 with random ω1. Then, we calculate the values of F�(�) at these 10
points on the smoothest transformed likelihood surface. The maximum a-
mong these 10 points is set as the initial location for the Newton’s method
with 10 iterations. Fig. 13.6 shows the simulation result of this deterministic
algorithm. After 7 iterations, this algorithm converges to the location of the
global maximum of the original likelihood surface. In this process, we have
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Figure 13.5: A plot of six transformed likelihood surfaces F�(l).

only used a few tens of templates. Comparing to 69,620 templates required
by a grid-based search algorithm, the deterministic algorithm is about 1,000
times more efficient.

13.4 Discussion and further work

We have introduced the likelihood transform as a general tool to make op-
timization and parameter estimation easier. The likelihood transform can
gradually transform the likelihood surface to a smoother shape with less com-
plex structure. On these modified likelihood surfaces, the local and global
maxima are much easier to find. Since these modified likelihood surfaces are
directly related to the original likelihood surface by the likelihood transform,
one can find the global maximum of the original likelihood surface more effi-
ciently based on knowledge of the transformed likelihood surfaces. We have
shown the possibility to use likelihood transform to accelerate stochastic
optimization methods. Compared to simulated annealing, likelihood trans-
form gives indications that it would accelerate the heuristics more efficiently.

243



(a) (b)

Figure 13.6: A deterministic search with the help of likelihood transform.
The pink points identify the trajectory of θµ�(l). (b). is a zoom-in version of

(a).

We applied likelihood transform to a GW data analysis problem with a toy
waveform model. Simulation results show that likelihood transform can ma-
nipulate the structure of the original likelihood surface, hence allowing it
to combine with and accelerate a hierarchical search. We have also shown
that for the toy waveform model with SNR= 20, likelihood transform make
a deterministic search possible, which turns out to be 1,000 times more effi-
cient than the exhaustive grid-based search for GW signals. With the help of
likelihood transform, a template-based deterministic search for GW signals
is shown to be possible for the first time.

In this work, we have only considered linear functionals, or more specif-
ically, convolutions with Gaussian kernels with uncorrelated covariances. In
the future, we will study other linear functionals and even nonlinear func-
tionals Y�, which would potentially exhibit better properties.

244



Bibliography

[1] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, (W.H.
Freeman, San Francisco, 1973).

[2] B. S. Sathyaprakash and B. F. Schutz, Physics, Astrophysics and Cos-
mology with Gravitational Waves, Living Rev. Relativity, 12 (2009), 2
[arXiv:0903.0338].
http://www.livingreviews.org/lrr-2009-2

[3] P. C. Peters and J. Mathews, Gravitational Radiation from Point Masses
in a Keplerian Orbit, Phys. Rev. 131, 435-440 (1963).

[4] Mark Zimmermann and Eugene Szedenits, Jr., Gravitational waves from
rotating and precessing rigid bodies: Simple models and applications to
pulsars, Phys. Rev. D 20, 351C355 (1979).

[5] R. Epstein, R.V. Wagoner, Post-Newtonian generation of gravitational
waves, Astrophysical Journal, vol. 197, May 1, 1975, pt. 1, p. 717-723.

[6] R.V. Wagoner, C.M. Will, Post-Newtonian gravitational radiation from
orbiting point masses, Astrophysical Journal, vol. 210, Dec. 15, 1976,
pt. 1, p. 764-775.

[7] Kip S. Thorne, Multipole expansions of gravitational radiation, Rev.
Mod. Phys. 52, 299C339 (1980).

[8] Alan G. Wiseman and Clifford M. Will, Christodoulou’s nonlinear
gravitational-wave memory: Evaluation in the quadrupole approxima-
tion, Phys. Rev. D 44, R2945CR2949 (1991).

[9] Alan G. Wiseman, Coalescing binary systems of compact objects to
(post)5/2-Newtonian order. II. Higher-order wave forms and radiation
recoil, Phys. Rev. D 46, 1517C1539 (1992).

245

http://www.arxiv.org/abs/0903.0338
http://www.livingreviews.org/lrr-2009-2


[10] Lawrence E. Kidder, Clifford M. Will and Alan G. Wiseman, Coalescing
binary systems of compact objects to (post)5/2-Newtonian order. III.
Transition from inspiral to plunge, Phys. Rev. D 47, 3281C3291 (1993).

[11] Alan G. Wiseman, Coalescing binary systems of compact objects to
(post)5/2-Newtonian order. IV. The gravitational wave tail, Phys. Rev.
D 48, 4757C4770 (1993).

[12] Clifford M. Will and Alan G. Wiseman, Gravitational radiation from
compact binary systems: Gravitational waveforms and energy loss to
second post-Newtonian order, Phys. Rev. D 54, 4813C4848 (1996).

[13] T. Damour, The problem of motion in Newtonian and Einsteinian grav-
ity, Three Hundred Years of Gravitation, 1987.

[14] T. Damour and B. R. Iyer, Multipole analysis for electromagnetism and
linearized gravity with irreducible Cartesian tensors, Phys. Rev. D 43,
3259C3272 (1991).

[15] L. Blanchet, T. Damour, Post-Newtonian generation of gravitational
waves, Annales de l’IHP Physique théorique, 1989.
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