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ABSTRACT

Parameter Estimation Using Markov Chain Monte Carlo Methods for Gravitational

Waves from Spinning Inspirals of Compact Objects

Vivien Raymond

Gravitational waves are on the verge of opening a brand new window on the Universe.

However, gravitational wave astronomy comes with very unique challenges in data analysis

and signal processing in order to lead to new discoveries in astrophysics. Among the

sources of gravitational waves, inspiraling binary systems of compact objects, neutron

stars and/or black holes in the mass range 1 M� - 100 M� stand out as likely to be detected

and relatively easy to model.

The detection of a gravitational wave event is challenging and will be a rewarding

achievement by itself. After such a detection, measurement of source properties holds

major promise for improving our astrophysical understanding and requires reliable meth-

ods for parameter estimation and model selection. This is a complicated problem, because

of the large number of parameters (15 for spinning compact objects in a quasi-circular

orbit) and the degeneracies between them, the significant amount of structure in the

parameter space, and the particularities of the detector noise.
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This work presents the development of a parameter-estimation and model-selection

algorithm, based on Bayesian statistical theory and using Markov chain Monte Carlo

methods for ground-based gravitational-wave detectors (LIGO and Virgo). This method

started from existing non-spinning and single spin stand-alone analysis codes and was

developed into a method able to tackle the complexity of fully spinning systems, and infer

all spinning parameters of a compact binary. Not only are spinning parameters believed

to be astrophysically significant, but this work has shown that not including them in the

analysis can lead to biases in parameter recovery.

This work made it possible to answer several scientific questions involving parameter

estimation of inspiraling spinning compact objects, which are addressed in the chapters

of this dissertation.
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CHAPTER 1

Introduction

This work does not reflect the scientific opinion of the LIGO Scientific Collaboration

and it was not reviewed by the collaboration. The results are under LIGO Scientific

Collaboration review and potentially subject to change.

1.1. Statement of the problem

Gravitational waves from coalescing compact binaries, a likely source for ground-based

gravitational-wave detectors, encode information about source physics. Detailed models

of the anticipated waveforms from these coalescences enable inference on parameters in-

cluding component masses, spins, sky location, and distance. Parameter estimation and

model selection in multi-dimensional parameter spaces are complex but necessary in order

to pursue gravitational-wave astronomy and astrophysics. The main goal of this disser-

tation is to provide an inference method for gravitational waves from spinning compact

binary coalescences as an improvement over the existing non-spinning methods. Using

this newly developed tool, the potentially significant biases from ignoring spinning effects

are shown and the measurability of spinning models and spinning parameter is discussed.
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1.2. Motivation and Methodology

Gravitational waves are a prediction from General Relativity [1, 2] and have been

indirectly observed in the Hulse-Taylor pulsar [3]. Their direct observation has tremen-

dous potential in constraining stellar models, testing gravity in the strong field regime

for the first time, measuring the equation of state of matter at densities unattainable in

laboratories and even observing phenomena where the two incompatible great theories of

modern physics, general relativity and quantum mechanics, are valid.

Among the sources of gravitational waves (GWs), inspiralling binary systems of com-

pact objects, neutron stars (NSs) and/or black holes (BHs) in the mass range ∼ 1 M� −

100 M� stand out as likely to be detected and relatively easy to model. For current first-

generation ground-based laser interferometers [4], LIGO (Laser Interferometer Gravitational-

wave Observatory) [5] and Virgo [6], the detection-rate estimates for compact object bi-

naries range from 4.7 ∗ 10−4 to 0.8 yr−1 [7]. Although the estimates are quite uncertain,

detection rates are expected to increase with the upgrade to Advanced LIGO/Virgo to

about 70yr−1.

The detection of a gravitational-wave event is challenging and will be a rewarding

achievement by itself. After such a detection, measurement of source properties holds

major promise for improving our astrophysical understanding and requires reliable meth-

ods for parameter estimation. This is a complicated problem because of the large number

of parameters (15 for spinning compact objects in a quasi-circular orbit) and the degen-

eracies between them [8], the significant amount of structure in the parameter space, and

the particularities of the detector noise.
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The parameter estimation of signals using non-spinning models is much easier and has

been accomplished, [9, 10, 11, 12, 13] but it provides potentially significant biases on

spinning sources which are believed to be astrophysically significant [14]. Including spins

adds 6 parameters (2 spin vectors) to originally 9 non-spinning parameters. However,

more relevant to data analysis difficulties, the change adds 6 intrinsic parameters to a

problem containing only 2 (the masses of the binary), while transforming another pa-

rameter (inclination) from separable to intrinsically linked to the evolution of the binary

system and the production of gravitational waves. Additional correlations and degener-

acy are also introduced (spin magnitudes and masses), while at the same time potentially

helping to differentiate between near degenerate modes [8].

The increased complexity required developing specific methods for exploring the spin-

ning parameter space in the case of LIGO-Virgo data from existing non-spinning [10, 15]

and single spin [16] stand-alone analysis codes. I use the Markov chain Monte Carlo

(MCMC) [17] algorithm in this Bayesian inference method to produce the complete prob-

ability density function (PDF) of the parameter set of the model used to match the data.

In addition, Bayes factors measuring the probability of one model versus another model

fitting the data can be obtained.

1.2.1. Gravitational waves

I give in this section a limited introduction to gravitational waves as they emerge from

general relativity. For a more detailed description, see for instance [18]. General relativ-

ity introduces the concept of a space-time curved by the presence of mass, energy and

momentum.
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In the following, the Einstein notation will be used, in which repeated vector indices

(vα) and covector indices (cα) imply a summation, i.e. cαv
α =

∑3
α=0 cαv

α. Space-time is

described by the metric tensor gαβ, as in for instance the metric tensor of flat space-time

(where c is the speed of light in vacuum):

(1.1) ηαβ(x) =



−1/c 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


From the metric gαβ one can construct the Christoffel symbols:

(1.2) Γδαβ = gδγ
1

2
(∂βgγα + ∂αgγβ − ∂γgαβ)

and the Riemann curvature tensor Rρ
σµν :

(1.3) Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµγΓ

γ
νσ − ΓρνγΓ

γ
µσ

which can be contracted to define the Ricci curvature tensor Rαβ:

(1.4) Rαβ = Rδ
αδβ

and yields the Einstein tensor Gαβ:
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(1.5) Gαβ = Rαβ −
1

2
Rαβ

Starting from the Einstein equation in vacuum:

(1.6) Gαβ = 0

we write a small perturbation of the metric of flat spacetime:

(1.7) gαβ(x) = ηαβ + hαβ(x)

To first order in the perturbation ||hαβ(x)|| � 1, using the gauge condition:

(1.8)
(
∂βh

β
α(x)− 1

2
∂αh

β
β(x) = 0

)
the Einstein equation in vacuum becomes:

(1.9) �hαβ = 0

where � ≡ −∂2/∂(ct)2 +∇2 is the flat-spacetime wave operator.

Equation 1.9 is a wave equation, and the resulting wave solution travels at the speed

of light, is transverse, and has two polarisations:
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�x

�y

�z
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�y

�z

T ime

T ime

Figure 1.1. Illustration of the effect a gravitational wave would have on
a ring of free falling test masses. For a wave propagating perpendicularly
to the plane in which the ring is arranged, the plus (+, top row) and cross
(×, bottom row) polarizations stretch and squeeze the ring in two patterns
related by a π/4 rotation.

(1.10) hαβ(x) =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


The effect such a wave has on a ring of free falling test masses is illustrated in Fig. 1.1.

The gravitational force is much weaker than the other three fundamental forces, and

as such couples weakly with matter. This means on the one hand that they propagate
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through the universe easily, and on the other hand that they interact weakly with a

detector. See Section 1.2.3 for magnitude estimates. In a ground-based interferometer

like the LIGO [5] or Virgo [6] observatories, the free falling masses are replaced with two

suspended mirrors at the end of the x- and y-axes of Fig. 1.1. A laser beam is shone

from the origin onto both mirrors to form a Michelson interferometer which measures

the stretching and squeezing along the x and y axes. An observatory set up this way is

sensitive to

(1.11) h(t) = 1
2
(hdxx − hdyy) = F+ h+ + F× h×

Where F+ and F× are the antenna beam patterns of the detector, relating the co-

ordinate system of the detector to the coordinate system of gravitational-wave source.

F+,×(α, δ, ψ) are functions of the hour-angle α (right ascension corrected for the earth’s

rotation), the declination δ and polarisation angle ψ of the source. They are also pa-

rameterised by the time at geocentre tc and the detector’s three dimensional 2nd-order

response tensor D (which relates the local coordinates of the detector to the geocentric

reference system where α,δ and ψ are defined).

F+(α, δ, ψ) = XT (α, δ, ψ) ·D ·X(α, δ, ψ)− Y T (α, δ, ψ) ·D · Y (α, δ, ψ)(1.12)

F×(α, δ, ψ) = XT (α, δ, ψ) ·D · Y (α, δ, ψ) + Y T (α, δ, ψ) ·D ·X(α, δ, ψ)(1.13)

Where the vectors X(α, δ, ψ) and Y (α, δ, ψ) are:
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X(α, δ, ψ) =


− cosψ sinα− sinψ cosα sin δ

− cosψ cosα + sinψ sinα sin δ

sinψ cos δ

(1.14)

Y (α, δ, ψ) =


sinψ sinα− cosψ cosα sin δ

sinψ cosα + cosψ sinα sin δ

cosψ cos δ

(1.15)

In the presence of matter, Eq. 1.6 becomes:

(1.16) Gαβ = 8π(G/c4)Tαβ

Where Tαβ is the stress-energy-momentum tensor, generalizing the stress tensor of

Newtonian physics. G is the gravitational constant. And Eq. 1.9 becomes the “relaxed”

Einstein equation:

(1.17) �hαβ = −16π(G/c4)ταβ,

Where ταβ is the“effective” energy-momentum pseudotensor:

(1.18) ταβ = (−||gαβ||)Tαβ + (16π)−1Λαβ,
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and Λαβ is the non-linear “field” contribution given by terms quadratic (and higher) in

hαβ and its derivatives

1.2.2. Post-Newtonian Expansion

The post-Newtonian (pN) approximation is an expansion of the Einstein equation in

powers of (v/c)2 where v denotes the characteristic velocity of the system and c is the

speed of light in vacuum.

Eq. 1.17 is called “relaxed” because it can be solved formally as a functional of source

variables without specifying the motion of the source, in the form

(1.19) hαβ(t,x) =
4G

c4

∫
C

ταβ(t− |x− x′|/c,x′)
|x− x′| d3x′,

where the integration is over the past flat-spacetime null cone C of the field point (t,x).

The motion of the source is then determined from the covariant equation of motion

∇βT
αβ = 0. This formal solution can then be iterated in the weak-field (||hαβ|| � 1)

approximation. First comes the substitution of hαβ0 = 0 into the source ταβ in Eq. (1.19),

and then solving for the first iteration hαβ1 . Then one repeats the procedure sufficiently

many times to achieve a solution of the desired accuracy. Post-Newtonian theory comes

from imposing the additional slow motion assumption (v � c).

Among the results of this approach are formulae for the equations of motion and

gravitational waveform of binary systems of compact objects, carried out to high orders

in a post-Newtonian expansion. For example, the relative two-body equation of motion
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has the form

dv

dt
=

Gm

r2

{
−n̂ +

1

c2
A1pN +

1

c4
A2pN +

1

c5
A2.5pN

+
1

c6
A3pN +

1

c7
A3.5pN + . . .

}
,(1.20)

where m = m1 + m2 is the total mass, r = |x1 − x2|, v = v1 − v2, and n̂ = (x1 − x2)/r.

The notation AnpN indicates that the term is O(εn) relative to the leading Newtonian

term −n̂. However, the post-Newtonian series has not been proven to formally converge.

Explicit formulae for non-spinning bodies through 3.5pN order have been calculated, and

a number of spin-orbit and spin-spin contributions have been obtained up to 2.5pN order

(see [19] for a review).

Another product is a formula for the gravitational field far from the system, whose

spatial components hαβ are used as templates in gravitational-wave data analysis.

hαβ(t,x) =
2Gm

dc4

{
Qαβ +

1

c
Qαβ

0.5pN +
1

c2
Qαβ

1pN +
1

c3
Qαβ

1.5pN

+
1

c4
Qαβ

2pN +
1

c5
Qαβ

2.5pN + . . .

}
,(1.21)

where d is the distance from the source, and the variables are to be evaluated at retarded

time t−d/c. Here {t,x} = x. The leading term is the so-called quadrupole formula, given

explicitly by

(1.22) hαβ(t,x) =
2G

dc4
Ïαβ(t− d/c) ,

where Iαβ is the quadrupole moment of the source, and overdots denote time derivatives.
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1.2.3. Compact Binary Coalescence

From Eq. 1.22, we see that in order to produce gravitational waves, the source needs to

have a time-varying quadrupole moment. One of the promising sources of gravitational

waves is the coalescence of two compact objects. In order to get an order-of-magnitude

estimate of the amplitude of gravitational wave from such a system, lets assume that both

compact objects have mass M , and each are moving about the centre of mass in a circular

orbit of period P and radius R. We then get for the quadrupole moment:

Iαβ ≈ MR2

Ïαβ ≈ MR2

P 2
(1.23)

From Newtonian dynamics we have:

(1.24)
(2πR/P )2

R
=

M

(2R2)

And from Eq. 1.22 we can estimate:

(1.25) ||hαβ(t,x)|| ≈M5/3P−2/3d−1

And with some astrophysically relevant units:
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(1.26) ||hαβ(t,x)|| ≈ 10−21

(
M

10 M�

)5/3(
1 s

P

)2/3(
1 Mpc

d

)

Which leads to a typical displacement of one part in 1021.

For a binary system Eq. 1.22 leads toQαβ = 2η(vivj−Gmn̂in̂j/r). Where η = M1M2

(M1+M2)2

is the symmetric mass ratio. For binary systems, explicit formulae for the waveform

through 3.5pN order have been derived (see [19] for a full review).

With the gravitational waveform, one can compute the rate at which energy is carried

off by the radiation. The lowest-order quadrupole formula leads to the gravitational wave

energy flux

(1.27) Ė =
8

15
η2G

2m4

r4c5
(12v2 − 11ṙ2).

This has been extended to 3.5pN order beyond the quadrupole formula [19]. Formulae for

fluxes of angular and linear momentum can also be derived. The 2.5pN radiation-reaction

terms in the equation of motion (1.20) result in a decrease of the orbital energy at a rate

that precisely balances the energy flux (1.27) determined from the waveform. Averaged

over one orbit, this results in a rate of increase of the binary’s orbital frequency given by

(1.28)
dfb

dt
=

192π

5
f 2

b

(
2πGMfb

c3

)5/3

F (e)

where

(1.29) F (e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4

)
,
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and M = (M1M2)3/5

(M1+M2)1/5
is the chirp mass. By making precise measurements of the phase

Φ(t) = 2π
∫ t
f(t′)dt′ of the gravitational waves (for which f = 2fb for the dominant

component) as a function of the frequency, one can measures the chirp mass of the system.

Using templates including higher order in the phase allows for more parameters to be

measured.

A circular binary inspiral with both compact objects spinning is described by a 15-

dimensional parameter vector ~λ ∈ Λ. A possible choice of independent parameters with

respect to a fixed geocentric coordinate system is:

(1.30) ~λ = {M, η, dL, tc, φc, α, δ, ι, ψ, aspin1, θspin1, φspin1, aspin2, θspin2, φspin2}

whereM and η are the chirp mass and symmetric mass ratio, respectively; dL is the lumi-

nosity distance to the source; φc is an integration constant that specifies the gravitational-

wave phase at the time of coalescence tc, defined with respect to the centre of the Earth;

α (right ascension) and δ (declination) identify the source position in the sky; ι defines

the inclination of the binary with respect to the line of sight; and ψ is the polarisation

angle of the waveform. The spins are specified by 0 ≤ aspin1,2 ≡ S1,2/M
2
1,2 ≤ 1 as the

dimensionless spin magnitude, and the angles θspin1,2,φspin1,2 for their orientations.

It is convenient to define two families of parameters. The intrinsic parameters:

(1.31)
−−−−−→
λintrinsic = {M, η, aspin1, θspin1, φspin1, aspin2, θspin2, φspin2}
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are intrinsically linked to the computation of the gravitational wave in any reference frame.

While the extrinsic parameters:

(1.32)
−−−−−→
λextrinsic = {dL, tc, φc, α, δ, ι, ψ}

control the projection of the gravitational wave onto the geocentric reference frame, in

which we can compute the response of each detector with Eq. 1.13. The parameter space

is significantly smoother in the extrinsic variables than the intrinsic ones. This leads to

increased difficulty in tackling the spinning parameter estimation problem beyond the

increase in dimensionality. The intrinsic parameters space goes from two dimensions to

eight, and inclination of the orbital plane is not constant anymore, causing the transfor-

mation from the source frame to the geocentric frame to be time-varying.

This qualitative difference between spinning and non-spinning leads to potential sys-

tematic biases in parameter recovery when not including spin in the analysis. For instance

the mass ratio as shown in an example in Section 2.3.3. In addition spin is believed to be

astrophically significant, see [14]. The classical stellar evolution scenario to form compact

objects binaries is believed to be the main sources of gravitational wave for LIGO-Virgo

and its upgrade, Advanced LIGO-Virgo, from [7]:

Table 1.1. Detection rates for compact binary coalescence sources.

IFO Source Nlow Nrealistic Nhigh Nupperlimit

yr−1 yr−1 yr−1 yr−1

NS-NS 2× 10−4 0.02 0.2 0.6
NS-BH 7× 10−5 0.004 0.1

Initial BH-BH 2× 10−4 0.007 0.5
NS-NS 0.4 40 400 1000
NS-BH 0.2 10 300

Advanced BH-BH 0.4 20 1000
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In this formation scenario, in very broad terms, a binary star evolves until the primary

member explodes as a supernova and leaves a spinning compact object around which a

star orbits. By the time the second star explodes, any misalignment between the spin of

the first compact object and the orbit should have decayed away due to mass transfer

between the binary components. Such mass transfer can also spin up further the first

compact object. With the second supernova, a second spinning compact object is formed.

Furthermore the supernova kick imparted to the second compact object does not just

alter the orbital size and eccentricity, but it can also tilt the orbital plane, leading to

a misalignment developing between the compact objects’ spins and the orbital angular

momentum. Since at this state the binary consists of two compact objects and hence no

subsequent mass transfer and spin alignment is possible. An alternative formation sce-

nario involving dynamical interaction in dense stellar environment (for instance globular

clusters) is also considered by the astrophysical community (see [20]). In this case, spin

orientations are believed to be random. In addition, misaligned spins are not believed to

significantly align due to gravitational radiations [21].

1.2.4. Bayesian framework and signal processing

The aim of this analysis is to determine the multi-dimensional posterior probability-

density function of the unknown parameter vector ~λ in equation 1.30, given the data sets

xa collected by a network of ndet detectors, a model M of the waveform and the prior

p(~λ) on the parameters. Our priors are uniform in the parameters of Eq. 5.1 (see [16] for
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details). One can compute the probability density via Bayes’ theorem

(1.33) p(~λ|xa,M) =
p(~λ|M) p(xa|~λ,M)

p(xa|M)
,

where

(1.34) L ≡ p(xa|~λ,M) ∝ exp

(
< xa|ha(~λ) > −1

2
< ha(~λ)|ha(~λ) >

)

is the likelihood function, which measures how well the data fits the model M for the

parameter vector ~λ. The term p(xa|M) is the marginal likelihood or evidence. In the

previous equation

(1.35) < x|y >= 4Re

(∫ fhigh

flow

x̃(f)ỹ∗(f)

Sa(f)
df

)

is the overlap of signals x and y, x̃(f) is the Fourier transform of x(t), and Sa(f) is the noise

power-spectral density in detector a. For future reference, I also define match between

two waveforms corresponding to different parameter values as the overlap between the

normalised waveforms:

(1.36) M(h( ~λ1), h( ~λ2)) =
< h( ~λ1)|h( ~λ2) >√

< h( ~λ1)|h( ~λ1) >< h( ~λ2)|h( ~λ2) >

The likelihood computed for the injection parameters Linj = p(xa|~λinj,M) is then a random

variable that depends on the particular noise realisation na in the data xa = h(~λinj) + na.

The injection parameters are the parameters of the waveform template added to the noise.
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I define the signal-to-noise ratio (SNR) of the injection to be:

(1.37) SNR =
< x|h(~λinj) >√
< h(~λinj)|h(~λinj) >

.

From here on, I use the expected value of the signal-to-noise ratio, which is equal to the

square root of twice the expectation value of logLinj:

(1.38) SNR =

√
< h(~λinj)|h(~λinj) >.

To combine observations from a network of detectors with uncorrelated noise realisa-

tions we have the likelihood p(~x|~λ,M) =
∏ndet

a=1 p(xa|~λ,M) , for ~x ≡ {xa : a = 1, . . . , ndet}

and

(1.39) p(~λ|~x,M) =
p(~λ|M) p(~x|~λ,M)

p(~x|M)
.

The numerical computation of the probability-density function involves the evaluation

of a large multi-modal, multi-dimensional integral. Markov chain Monte Carlo methods,

e.g. [17, 22] and references therein, have proved to be especially effective in tackling

this numerical problem. I developed an adaptive, see [23, 24] Markov chain Monte Carlo

Metropolis-Hastings algorithm to explore the parameter space Λ efficiently while requiring

the least amount of tuning for the specific signal analysed; the code is an extension of the

one developed by some collaborators to explore Markov chain Monte Carlo methods for

binaries without spin [9, 10] or one spin [16].

In the Markov chain Monte Carlo algorithm, a Markov chain crawl around the param-

eter space according to a specific set of rules:
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• At iteration n, the chain is in the state ~λn. Choose a proposal state ~λk with

probability qnk.

• Compute the acceptance probability α:

(1.40) α = min

{
1,
p( ~λk |~x,M)qkn

p( ~λn|~x,M) qnk

}

• Accept ~λk = ~λn+1 as the new state of the chain with probability α, otherwise

~λn + 1 = ~λn (with probability 1− α)

The set of states ~λn of the chain following this procedure converges towards the pos-

terior distribution.

I implemented parallel tempering [25, 26, 27] to improve the sampling. It consists

of running several Markov chains in parallel, each with a different “temperature”, which

can swap parameters under certain conditions. The likelihood Eq. 1.34 is then modified

to become:

(1.41) LT ≡ pT (~x|~λ,M) = p(~x|~λ,M)1/T

Which has the effect to reduce the contrast of the likelihood surface and allow for

an easier transition between modes. Only the T = 1 chain is used for estimating the

posterior.

In Eq. 1.39 we applied Bayes’ theorem to obtain the probability of a specific parameter

vector value (~λ) given the observed data ~x and the model M . The theorem can also be
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applied to compute the probability of a specific model Mi given the observed data:

(1.42) p(Mi|~x) =
p(Mi) p(~x|Mi)

p(~x)
.

We compare the two models Mi and Mj by computing the odds ratio:

(1.43) Oi,j =
p(Mi|~x)

p(Mj|~x)
=
p(Mi) p(~x|Mi)

p(Mj) p(~x|Mj)
=
p(Mi)

p(Mj)
Bi,j,

where

(1.44) Bi,j =
p(~x|Mi)

p(~x|Mj)

is the Bayes factor of the two models, and we recognise the evidence p(~x|Mi) from Eq. 1.39.

The evidence must be marginalised over the parameters of the model in order to compute

the Bayes factor:

(1.45) p(~x|Mi) =

∫
Λ

p(~λ|Mi) p(~x|~λ,Mi) d~λ.

There are existing algorithms dedicated to the computation of this integral, and of the

Bayes factor. For instance, nested sampling [28] has been shown to be very efficient in

the case of non-spinning gravitational-wave sources [13], and can in addition be used

to produce probability-density functions of the parameters. The odds ratio Eq. 1.43 is

the quantity to look at to distinguish between two models. However it is difficult to

estimate prior probabilities of models, unlike prior probabilities of parameters within a

model, which often have clear astrophysical justifications (uniform in the sky for instance).

Because of this I will quote Bayes factors (see Section 7.2) when trying to answer the
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question whether I can distinguish between models Mi and Mj, keeping in mind the

possible prior factor p(Mi)/p(Mj). As a by-product of the exploration of the parameter

space with Markov chain Monte Carlo, it is possible to compute the evidences of the

models used. For instance, the harmonic-mean method [29], in which the evidence is

approximated by:

(1.46) p(~x|Mi) ≈
N∑
k=1

p(~λk|Mi) p(~x|~λk,Mi)V~λk ,

where {~λk : k = 1, . . . , N} is the set of N points sampled by the Markov chain Monte

Carlo, and V~λk is the volume of parameter space associated with the point ~λk. Since

the Markov chain Monte Carlo algorithm samples according to the posterior (and, up

to a proportionality constant, converges towards posterior probability-density function),

the density of points in the chain at a certain location ~λk in the parameter space Λ will

become proportional to the posterior for large N . It follows that

(1.47) lim
N→∞

V~λk =
αi

p(~λk|Mi) p(~x|~λk,Mi)
,

with αi a proportionality constant. We then have p(~x|Mi) ≈
∑N

k=1 αi = N αi, and obtain

the estimate for αi by considering the whole parameter space volume Vt:

(1.48) Vt ≈
N∑
k=1

V~λk =
N∑
k=1

αi

p(~λk|Mi) p(~x|~λk,Mi)
.

Finally,

(1.49) p(~x|Mi) ≈ N Vt

[
N∑
k=1

1

p(~λk|Mi) p(~x|~λk,Mi)

]−1

,
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which is the harmonic mean of the posterior values sampled by the Markov chain Monte

Carlo. The issue with this method is that it gives too much weight to low-posterior points,

which lie in a part of the parameter space that is badly sampled, by design, by the Markov

chain Monte Carlo. The estimate of the evidence is then very sensitive to the quality of

the sampling of a particular run. Another approach used in this work and referred to as

direct integration [30] is to bin the samples obtained by the Markov chain Monte Carlo

using a k-d tree and compute the integral by summing the contribution from each box.

Lastly, I also use a well sampled subset of points [31] to estimate the probability constant

αi.

Throughout I will quote evidence relative to the Gaussian noise model, ln(Z) =

ln(p(~x|Mi)) − ln(p(~x|MGaussian)). The parameter spaces can be completely unrelated,

even of different dimensionality, which allows for the comparison of models (which range

from 9 parameters in the case of non-spinning systems, up to 15 in the case of a system

with two spinning components).

1.3. Structure and Contribution of the Dissertation

I did the work presented in this dissertation as a member of the LIGO-Virgo Col-

laboration. It is an international effort to detect gravitational waves with ground-based

observatories composed of ∼1380 members and ∼87 institutions. LIGO operates the

detectors in the Hanford and Livingston sites in Washington state and Louisiana state,

respectively. Virgo operates the detector in the Pisa site in Italy. My work took place in

the Data Analysis part of the collaboration, in the Compact Binary Coalescence group,

which focuses on the sources of the same name. Within this group I contributed mainly
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to the Parameter Estimation subgroup, whose goal is to extract astrophysical information

from triggers that detection pipelines will provide. The ground-based detector network

is entering its “Advanced” phase with Advanced LIGO and Advanced Virgo which will

deliver an ten-fold improvement on the network sensitivity over initial LIGO-Virgo, and

an increase by a factor of a thousand in the expect detection rate, see table 1.1, from [7].

The work presented in this dissertation consists on the development of methods and

algorithms able to estimate all parameters of circularised binaries, showing that the ex-

clusion of spin effects in the analysis leads to systematic biases greater than the typical

statistical uncertainty, and use the code to conduct studies on spinning parameter esti-

mation described in the following chapters.

1.4. Outline of the Chapters

Chapter 2 presents the results of the parameter estimation and model selection

method applied to data from LIGO’s sixth science run and Virgo’s VSR2-3 science runs

(July 07, 2009 to October 20, 2010). Even though no gravitational wave was detected, I

illustrate my method on hardware and software injections.

Chapter 3 discusses degeneracies in sky localisation for gravitational waves. In par-

ticular, I investigate the two-detector network case and the influence of spin in the sky

location recovery.

Chapter 4 presents some investigations on the effect of the inspiral-only waveform

model on gravitational waveforms including the later merger and ring-down. The biases

from using incomplete models are discussed.
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Chapter 5 presents the use of the Bayesian inference methods to assess the effect

real, non-Gaussian and non-stationary noise can have on parameter estimation under the

usual Gaussian noise assumption in the construction of the likelihood.

Chapter 6 presents the development of a physically motivated jump proposal to ex-

plore the extrinsic parameter space. I compute analytical formula to predict the extrinsic

parameters of the two modes present in a non-spinning, three-detector analysis.

Chapter 7 is an exploration of the discriminating power of the Bayes factor between

the spinning and non-spinning models.

Chapter 8 presents my contribution to several collaborative projects for which I

helped apply the method I developed.
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CHAPTER 2

Parameter estimation for compact binary coalescence events

with first-generation ground-based gravitational-wave

interferometers

In this chapter, I describe the application of tools that I developed for LIGO-Virgo

parameter estimation as part of the parameter-estimation sub-group of the LIGO-Virgo

Collaboration to several simulated signals in the most recent detector data. I demonstrate

that I can successfully recover the known parameters of these signals, subject to statisti-

cal measurement uncertainties and systematic biases due to differences between injected

waveforms and the waveform families used for analysis.

2.1. Introduction

Binary systems of compact objects like black holes or neutron stars lose energy through

the emission of gravitational radiation, as predicted by general relativity and confirmed

through binary-pulsar observations [2, 32]. During this process they emit a charac-

teristic “chirping” gravitational wave signal of predominantly increasing amplitude and

frequency that enters the observational band of the present generation of ground-based

laser-interferometer detectors at . 30 Hz, sweeping through the detection band for a few

seconds (depending on the masses of the objects) until they coalesce.
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The search for gravitational wave signatures of compact-binary coalescence in LIGO’s

most recent sixth science run and Virgo’s science runs 2 & 3 is described in [33]. Here, I

describe the status of the next stage after the detection searches: parameter estimation

and model selection.

Being able to accurately estimate the parameters of the merging binary, including

the masses of the components, their spins, and the location of the binary on the sky, is

a critical ingredient for enabling gravitational-wave astrophysics. Localizing the merger

on the sky is crucial for a successful electromagnetic follow-up of the gravitational-wave

detection, which is one of the possible approaches to multimessenger astronomy (see,

e.g., [34, 35]). Obtaining information about compact masses and spins could lead to

unexpected discoveries for individual events (for example, finding compact objects inside

the surmised mass gap between neutron stars and black holes [36, 37]). Eventually,

when multiple detections are available for analysis, inference about the distribution of

the population of coalescing compact binaries will allow us to probe the astrophysics of

binary evolution and dynamics of dense stellar environments (e.g., [38, 39]).

In Section 2.2 I give a brief overview of the analysis method. While no detections

were claimed in [33], I illustrate this analysis using 4 Hardware and Software injection

examples described in section 2.3. One of these hardware injections was performed without

the knowledge of the data analysis teams as part of the “blind injection challenge”; it was

successfully detected as reported in [33]. I conclude with the possible implications for

gravitational-wave astronomy in section 2.4.
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2.2. Analysis

Each data segment containing an injected signal was analysed using a Bayesian parameter-

estimation method, which calculates the joint posterior probability density functions of

the parameters of each model. The parameters form a parameter space for the model M ,

and a point in this space is denoted ~λ. Parameters for the signal model include the com-

ponent masses and spins (for some models), luminosity distance, location and orientation

of the source.

The posterior probability-density function is generated from a prior distribution func-

tion p(~λ|M), describing knowledge about the parameters within a model M before the

data is analysed, and a likelihood function p(~x|~λ,M), denoting the probability under

model M of obtaining the dataset ~x for a given parameter set ~λ. The model for the

likelihood function, described in Section 1.2.4, is based on the assumption that the noise

is stationary and Gaussian. Although it is not expected for this assumption to be pre-

cisely true for real detector noise, limited investigations suggest that this is an acceptable

approximation when the data is of good quality, see Section 5.3, [40].

The high dimensionality of the parameter space, and the complicated structure of

the likelihood function make it impractical to exhaustively calculate posterior quantities.

Instead I rely on stochastic sampling of the posterior probability-density function, which

then allows samples to be binned to produce histograms, which show the distributions.

The analysis is performed using the LALInference platform of the LSC Algorithm Library

[41], which allows calculation of the prior, likelihood and templates using standardised

functions. Ensuring accurate sampling of the posterior probability-density function is

a difficult task. The primary challenge of parameter estimation in a multi-dimensional
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parameter space lies in the difficulty of exploring a multi-modal posterior distribution

with partially degenerate parameters. I applied several convergence diagnostics to ensure

that the algorithm was indeed properly recovering the posterior distributions. I used 5

independent Markov chains to confirm convergence, and computed their Gelman-Rubin

statistics [42] and autocorrelation functions. I checked that all chains reached the same

maximum relative log likelihood, within the expected (number-of-parameters)/2 spread

(4.5 in a non-spinning analysis, 7.5 with precessing spins). This estimate comes from the

approximation of the likelihood surface to be Gaussian in the high signal-to-noise ratio

limit. I also computed the evidence from Markov chain Monte Carlo results using direct

integration [30].

I used a prior density functions uniform in the component masses with the range

1 ≤ m1,2 ≤ 30 M�, and with the total mass constrained by m1 + m2 ≤ 35 M�. The

prior density function on the location of the source was taken to be uniform in volume,

constrained between luminosity distances dL ∈ [1, 100] Mpc. I used an isotropic prior on

the orientation of the orbital plane of the binary. I define the inclination, ι, to be the

angle between the orbital angular momentum and the line of sight. For analyses using

waveform models that account for possible spins, the prior on the spin magnitudes, a1, a2,

was taken to be uniform in the range [0, 1], and the spin angular momentum vectors

were taken to be isotropic. The computational cost of the parameter-estimation pipeline

precludes from running it on all times; therefore, the parameter-estimation search relies

on an estimate of the coalescence time as provided by the detection pipeline [33]. In

practice, a 200 ms window around this trigger time is sufficient to guard against the

uncertainty in the coalescence time estimates from the detection pipeline, see for instance



48

Table 2.1. List of the waveform models used for the analysis. In all models,
the inspiral phase of the binary evolution is described by the post-Newtonian
(pN) expansion to 3.5pN order (2.5pN for spin effects when included) in
phase, and Newtonian order (0pN) in amplitude, unless otherwise specified.

Model Name Spin effects Ref.
TF2 TaylorF2 no [44]
TF2 2 TaylorF2 @ 2pN no [44]
TF2 25 1 TaylorF2 @ 2.5 pN no [44]
ST NS STPN noSpin no [45]
ST SA STPN spinAligned aligned [45]
ST STPN yes [45]
ST 25 1 STPN @ 2.5pN yes [45]

[1]Used only for the blind hardware injection

[43]. The results are not significantly affected by other astrophysically sensible choices

of priors. I present the results using the chirp mass, M = (m1m2)3/5(m1 + m2)−1/5, and

eta, η = (m1m2)/(m1 +m2)2, mass combinations.

I used seven different waveform models in this analysis. In all models, the inspiral

phase of the binary evolution is described by the post-Newtonian (pN) (see Section 1.2.2)

expansion to 3.5pN order (2.5pN for spin effects when included) in phase, and Newtonian

order (0pN) in amplitude, unless otherwise specified. The models terminate at the end

of the inspiral using a model-dependent condition to approximate the breakdown of the

post-Newtonian expansion. Table 2.1 lists the approximants used. “Aligned” refers to

both spin vectors being aligned to the orbital angular momentum of the binary. “STPN”

refers to the SpinTaylor post-Newtonian waveform for precessing binaries in LAL [41].

In the case of the blind injection analysis discussed in section 2.3.3, templates with

the inspiral phase computed up to 2.5pN order where also used, as the injected waveform

included terms only up to 2.5pN.
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Data from the multi-detector network consisting of two LIGO instruments (H1 and

L1) and Virgo (V1) were used coherently in the analysis. The sampling rate was 2048 Hz,

corresponding to a 1024 Hz Nyquist frequency, high enough to include the entire waveform

for all models, except in the case of waveforms including post-inspiral stages, which have

a negligible contribution to the signal-to-noise ratio at higher frequencies. The 32 second

segments of time-domain data were Tukey windowed, with a 0.4 s roll-off on either side of

the segment. The power spectral density (PSD) of the instrumental noise was estimated

using 1024 s of data after the end of the analyzed segment. I verified that varying the

methods of power-spectral-density estimation (using ±512 seconds spanning the signal

trigger time, and using median and mean estimation methods), had a negligible effect on

the parameter-estimation results, smaller than the systematic uncertainties of parameter

estimation.

Calibration errors, which can influence the reconstructed amplitude, phase, and tim-

ing of the data [46], have the potential to affect parameter-estimation results. An analysis

of the effect of calibration errors, which considered mock errors similar to those expected

during the S6 and VSR2/3 runs, concluded that such errors are unlikely to cause a sig-

nificant deterioration in parameter-estimation accuracy [47].

2.3. Simulations

Over the course of the LIGO S6 and Virgo VSR2/3 science runs a series of hard-

ware injections have been carried out where the arm lengths of the three detectors were

physically changed to simulate the passing of a gravitational wave.
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Table 2.2. Parameters of hardware (HW) and software (SW) injected sig-
nals. Non-spinning injections were generated using the EOBNR waveform
model, whereas spinning injections used the SpinTaylor model. The SNR
column shows optimal network signal-to-noise ratio.

§ HW/SW M m1 m2 dL ι |a1| |a2| SNR
2.3.1.1 HW 3.865 4.91 4.02 36.2 0.46 0 0 13
2.3.1.2 SW 3.865 4.91 4.02 36.2 0.46 0 0 13
2.3.2.1 SW 4.76 6 5 30.0 0.02 0.6 0.8 19
2.3.3 HW 4.96 24.81 1.74 24.37 1.91 0.57 0.16 16

Table 2.3. Logarithm of the evidence ln(Z) for each injection and each
waveform family obtained via direct integration. The numbers come with
error bars of ±5.

§ TF2 TF2 2 TF2 25 ST NS ST SA ST ST 25
2.3.1.1 66 68 - 67 70 68 -
2.3.2.1 155 151 - 158 160 163 -
2.3.3 - - 130 - - - 211

As an end-to-end test of the search pipeline during the science runs, a signal was added

to the data via a hardware injection, with parameters that were unknown (“blind”) to the

data analysts. The parameters and template family were revealed only after the search

was complete, and I include a retrospective analysis of this blind injection in section 2.3.3

(see [48] for parameter estimation carried out before the injection was revealed).

I have also made several simulated software injections into real detector noise from

those runs. Below, I describe the results of parameter-estimation analysis of several of

these injections, whose injection parameters are listed in Table 2.2.

I present the posterior probability density functions on the source parameters using a

coherent, multi-detector data model with the seven waveform families described above.

2.3.1. Non-spinning hardware injections
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2.3.1.1. Binary black hole. I first describe the analysis of a hardware injection cor-

responding to a non-spinning black-hole binary with 4.91M� and 4.02M� components,

injected at a network signal-to-noise ratio of 13. This injection was made with effective-

one-body – numerical-relativity (EOBNR) waveforms, using the EOBNRv1 version [49].

Figure 2.1 shows a comparison of the posterior probability-density function of the mass

parameters for different models. The chirp mass has a low statistical uncertainty of ∼ 1%,

with the greatest statistical uncertainty claimed by models that allow for non-zero spin

magnitudes due to inter-parameter degeneracies. The 90% confidence intervals on the

chirp mass obtained with TaylorF2 templates just exclude the true value, an indication

of the systematic bias due to the systematic waveform differences between the injected

EOBNR waveform and these templates. These differences are also responsible for the

particularly strong bias in the symmetric mass ratio η for 2.0pN TaylorF2 templates,

exceeding the statistical measurement uncertainty in this parameter. In contrast, I find

that by using the 3.5pN TaylorF2 templates the systematic bias is reduced to less than

the statistical error. The uncertainty in the mass ratio is typically larger than that in the

chirp mass, leading to the characteristic thin, correlated joint distribution for m1 and m2,

referred to as a “banana shape”.

Figure 2.2 shows the most relevant extrinsic parameters of the binary black hole source:

the recovered sky position, distance and inclination angle. The correlations between

intrinsic parameters (masses and spins) and extrinsic parameters are generally weaker

than correlations between different parameters within the same group. Thus, models that

include or exclude spins have similar statistical measurement uncertainties for extrinsic

parameters.
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Figure 2.1. (left) Posterior probability distributions for the chirp mass M
of the non-spinning binary black hole hardware injection (section 2.3.1.1)
for all signal models. The injected value is marked with a vertical red
line. (right) Overlay of 90% probability intervals for the joint posterior
distribution on the component masses m1, m2 of the binary. The true value
is marked by the green star. Models which allow for non-zero spins find
wider probability-density functions for the coupled mass parameters. The
true value is marked with a green star.

Finally, figure 2.3 shows individual posteriors for the two dimensionless spin magni-

tudes, obtained using the model ST (table 2.1), full-spin STPN waveforms. Although spin

is not very strongly constrained, particularly for the lower-mass secondary, both spin mea-

surements are consistent with the true value of 0 spin. The absence of strong constraint

is due to a combination of the low mass ratio m1/m2 and nearly face-on inclination, see

section 2.4 for details. This inability to constrain the spin is reflected in the evidence for

each template family, shown in table 2.3, where all models have the same evidence within

the error bars.

2.3.1.2. Comparison with software injections. To compare between results from

hardware injections and software injections, I replicated the non-spinning binary black

hole hardware injection (section 2.3.1.1) in software at three different times. Figure 2.4
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Figure 2.2. Joint posterior probability distributions for the location and
inclination angle of the non-spinning binary black hole hardware injection
(section 2.3.1.1). (left) The binary can be constrained to two contiguous
regions of the sky representing the reflection of the source location through
the plane of the detectors. (right) The distance and inclination, like the
sky location, are estimated with a similar accuracy in models that include
or exclude spins.
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Figure 2.3. Posterior probability distributions for the dimensionless spin
magnitude of the heavier (left) and lighter (right) components of the binary
from the non-spinning binary black hole hardware injection (section 2.3.1.1),
as inferred in the model ST (table 2.1), full-spin STPN.

shows the recovered probability-density functions for the chirp mass and the joint inclina-

tion and distance distribution for the hardware injection, and identical software injections
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Figure 2.4. (left) Posterior probability distributions for the chirp mass M
of the non-spinning binary black hole injection for signal model TF2 (ta-
ble 2.1), TaylorF2 at 3.5 pN order, for the hardware injection (section
2.3.1.1) and 3 software injections of the same parameters injected 100, 500
and 1000 seconds before the hardware injection (1a 100, 1a 500 and 1a 1000
respectively, section 2.3.1.2). The injected value is marked with a vertical
red line. (right) Overlay of 90% probability intervals for the joint posterior
distribution on the inclination and distance of the binary. Different reali-
sations of the noise, rather than differences between hardware and software
injections, are the likely reason for the variations in recovered probability-
density functions.

100, 500 and 1000 seconds before the hardware injection. There are some variations in

the recovered parameter probability-density functions, but the hardware injection is not

an outlier. Rather, these variations are likely due to differences in the realisation of the

noise between the segments being analysed. It appears that this effect dominates any

systematic error introduced by the method of performing the hardware injection, such as

the actuation function used in modelling the impulse applied to the mirrors to produce

the desired signal.

2.3.2. Spinning software injections
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2.3.2.1. Binary black hole. I simulated the signal from a binary black hole with mis-

aligned spinning components with a SpinTaylor software injection. This binary consists

of 6M� and 5M� black holes, with dimensionless spin magnitudes of 0.6 and 0.8, respec-

tively, and an optimal network signal-to-noise ratio of 19. The misalignment between

the spins and the orbital angular momentum cause the plane of the binary to precess,

producing modulations in the received gravitational-wave signal.

Figure 2.5 shows a comparison of the posterior probability-density functions of the

mass parameters inferred with different signal models. The mass ratio is again severely

biased for the 2pN TaylorF2 model, which is not surprising for a 3.5pN injection with

spinning components as both the post-Newtonian order and the spin alter the phase

evolution of the signal.

Figure 2.6 shows the recovered sky location, distance and inclination angle of the

source. The conclusions are quantitatively similar to those in section 2.3.1.1. The joint

distance-inclination posterior displays a characteristic “V-shape” degeneracy, which pre-

vents either parameter from being measured accurately.

The spin magnitudes are again poorly constrained, with non-zero support across the

entire allowed range, as shown in figure 2.7. Even though the injected signal was simulated

from a system with high spin magnitudes (0.6 and 0.8), the low mass ratio m1/m2, the

near anti-alignment of the spins with the orbital angular momentum and the face-on

inclination conspire to give the poor spin estimates, see section 2.4 for details. In addition,

with this weak precession effect, the spin tilts (angles between the spin vector and the

orbital angular momentum) are also poorly constrained. A comparison of the evidences
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Figure 2.5. (left) Posterior probability distributions for the chirp mass M
of the spinning binary black hole software injection (section 2.3.2.1) for all
signal models. The injected value is marked with a vertical red line. (right)
Overlay of 90% probability intervals for the joint posterior distribution on
the component masses m1, m2 of the binary.
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Figure 2.6. Joint posterior probability distributions for the location and in-
clination angle of the spinning binary black hole software injection (section
2.3.2.1). (left) The binary is localized well on the sky. (right) The char-
acteristic “V-shape” degeneracy in distance and inclination prevents either
parameter from being accurately constrained individually.

in table 2.3 indicated that all models have the same evidence within the error bars, with

a slight increase for spinning models.
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Figure 2.7. Posterior probability distributions for the dimensionless spin
magnitude of the heavier (left) and lighter (right) components of the binary
from the spinning binary black hole software injection (section 2.3.2.1), as
inferred in the model ST (table 2.1), full-spin STPN; the true values are
shown with vertical red lines.

2.3.3. Blind hardware injection

The search pipeline described in [33] identified a gravitational-wave candidate occurring

on 16 September 2010 at 06:42:23 UTC. A Bayesian analysis was performed using the

algorithms and implementations described above, where parameter estimates varied sig-

nificantly depending on the exact model used for the gravitational waveform.

Following the completion of the analysis, the event was revealed to be a blind injection.

Further investigation revealed several problems:

• The template signal included phase corrections only up to 2.5pN order, which is

an outlier in the post-Newtonian expansion, see [50]. Parameter estimation was

not carried out with templates at this order, leading to a significant bias in the

mass ratio, and hence the component masses.
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• The signal to be injected in the Hanford and Livingston sites had the wrong sign,

causing strong biases in the extrinsic parameters.

• Lastly, a software bug artificially set to zero one of the terms in the injected

waveform.

I present here an analysis using templates at 2.5pN order in phase. I artificially

introduce a sign flip in the templates for Hanford and Livingston detectors in order to

match the injected waveform. Figure 2.8 shows a comparison of the posterior probability-

density functions of the mass parameters for TaylorF2 and SpinTaylor waveform models.

The fully spinning, precessing analysis with SpinTaylor templates at 2.5pN order in phase

(i.e., the same template as used in the injection, up to the injection software bug) centres

on the correct masses for this neutron-star – black-hole system, 24.81M� and 1.74M�.

However, the systematic error due to fixing spin to zero in the analysis of this spinning

injection is significant, and leads to the wrong conclusion that a binary black hole system

is observed if the TaylorF2 model is used.

Figure 2.9 shows the recovered sky position, distance and inclination angle of the

source. The sky location recovered is contained in several distinct regions, spread in a

half circle on the sky. This behaviour is consistent with two detectors contributing the

majority of the signal-to-noise for this source. On top of this first-order constraint, spin

projection effects can break the degeneracy, as discussed in Section 3.4, [8].

The large mass ratio, m1/m2 = 25 : 1.7, and the high inclination allows for the

magnitude of the spin of the massive component to be measured with an accuracy . 10%.

Meanwhile, the spin of the light component is unconstrained, and the posterior on its
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Figure 2.8. (left) Posterior probability distributions for the chirp mass M
of the blind injection (section 2.3.3) for all signal models. The injected value
is marked with a vertical line. (right) Overlay of 90% probability intervals
for the joint posterior distribution on the component masses m1, m2 of the
binary. The bias introduced by an analysis with a model which disallows
spin is clear.
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Figure 2.9. Joint posterior probability distributions for the location and in-
clination angle of the blind injection (section 2.3.3). (left) The sky location
is constrained to several distinct regions lying along a half circle on the
sky. (right) Again, the characteristic “V-shape” degeneracy in distance and
inclination is evident.

magnitude is consistent with the prior. Correspondingly, the evidences in table 2.3 favour

the spinning model. See section 2.4 for further explanations on spin measurements.
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Figure 2.10. Posterior probability distributions for the dimensionless spin
magnitude (left) and tilt angle (angle between the spin vector and the orbital
angular momentum, measured at 40Hz, right) of the heavier component of
the binary from the blind injection (section 2.3.3), as inferred with model ST
(table 2.1), full-spin STPN; the true values are shown with vertical red lines.
The large mass ratio m1/m2 allows for the spin of the massive component
to be measured. On the other hand, the spin of the light component is
unconstrained.

2.4. Implications for gravitational-wave astronomy

In this section, I have demonstrated the application of a suite of Bayesian parameter-

estimation tools to hardware and software injections from the last initial LIGO and

Virgo science runs. I have shown that those tools are able to explore complicated multi-

dimensional parameter spaces, construct posterior probability distribution functions using

a variety of waveform models, and compare these alternative models.

For some parameters, such as the distance to the source and the binary’s sky location,

the accuracy of inference is limited by the measurement uncertainty of an observation with

finite signal-to-noise ratio, as well as by degeneracies between parameters. For example,

the overall signal amplitude may be measured with good accuracy, but the amplitude is
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affected by several physical parameters (e.g., distance, inclination angle, . . . ); so that while

the observed data do place constraints on the parameter space, significant uncertainties

remain in the estimates of individual parameters.

For other parameters, such as the chirp mass, which can be determined to an accuracy

of . few % within a given waveform model, the systematic errors (estimated as the

differences between results for different waveform families) can dominate the statistical

measurement uncertainties. Therefore, improvements in waveform accuracy, based on

a combination of analytical and numerical work, will be crucial for accurate parameter

reconstruction in the advanced detector era.

What properties are important in the source system in order to measure its spin

parameters is a very complex question. The work in this chapter is only looking at a few

examples while a complete answer requires a further systematic study currently underway,

see Section 7. I can however make the following statements based on theoretical grounds

and on the experiments described in this chapter as well as in other publications in

preparation. A signal from a non-spinning binary has both polarisations nearly identical,

regardless of inclination, while a signal from a spinning source has a greater difference

between its polarisations as the inclination gets close to edge-on, due to the precession

of the orbital plane. This key difference makes a spinning signal more distinguishable

and its spin more measurable in an edge-on configuration, for the same signal-to-noise

ratio. (To see if a plate is wobbling, one will want to see it from the side). In addition,

a high mass ratio m1/m2 allows for the spin magnitude of the most massive component

to be measured, while degrading the accuracy of the spin magnitude of the least massive
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component. Misalignment between the spins and the orbital angular momentum provide

additional information to constrain spins, both the magnitudes and angles.

Although there has been rapid progress in the field of gravitational-wave parameter

estimation, a number of key questions remain. Some of these are already being addressed,

or will be addressed over the next few years before advanced detectors come online. An

incomplete list includes:

• How precisely will we be able to measure spin magnitudes and spin tilt angles in

precessing neutron star-black hole and binary black hole systems?

• How important are systematic waveform errors due to imperfect waveform knowl-

edge for various system classes? What are the accuracy requirements on waveform

families for parameter estimation?

• What is the best way to handle the long-duration signals in advanced detectors

with their extended bandwidth?

• How accurately can we measure finite-size and tidal-dissipation effects for systems

involving neutron stars?

• How is parameter estimation affected when the background noise is not stationary

and Gaussian?

I anticipate that the analyses carried out here will be directly applicable to the first

detections from the advanced detector era, allowing for astrophysical inference and mea-

surement of masses, spins, and sky locations of coalescing compact binaries. This, in turn,

will improve searches for electromagnetic counterparts, and ultimately allow to solve a

key “inverse problem” of gravitational-wave astrophysics: to reconstruct binary evolution
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and dynamical binary formation from the observed distributions of masses and spins of

merging compact binaries.
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CHAPTER 3

Degeneracies in sky localisation determination from a spinning

coalescing binary through gravitational-wave observations: a

Markov chain Monte Carlo analysis for two detectors.

I present in this chapter a specific example of the power of parameter-estimation

methods, considering source localisation in the sky and analysing the degeneracy in it

when data from only two detectors are used. I focus on the effect that the black-hole spin

has on the localisation estimation. I also report on a comparative Markov chain Monte

Carlo analysis with two different waveform families, at 1.5 and 3.5 post-Newtonian order.

3.1. Introduction

The measurement of source properties holds major promise for improving our astro-

physical understanding and requires reliable methods for parameter estimation. This is a

challenging problem, however, because of the large number of parameters (9 for circular

non-spinning binaries, and more for spinning systems) and the significant amount of struc-

ture in the parameter space. In the case of high mass-ratio binaries (e.g. black hole-neutron

stars), these issues are amplified for significant spin magnitudes and large misalignments

between the black-hole spin and the orbital angular momentum [51, 52, 45]. However,

the presence of spins improves parameter estimation through the signal modulations, al-

though still presenting a considerable computational challenge. This was highlighted in
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the context of LISA observations [53, 54] and in a first study using Markov chain Monte

Carlo with spinning signals devoted to ground-based observations [55].

In this chapter I examine the potential for parameter estimation of spinning binary

inspirals with ground-based interferometers. [9, 10] explored parameter estimation for

non-spinning binaries, which requires 9 parameters. I focus here on black hole-neutron

stars binaries, which can exhibit significant coupling between the orbital angular momen-

tum and the black-hole spin, mainly because of the high mass-ratio [51], while at the

same time I am justified to ignore the neutron-stars spin, leading to a 12-dimensional

parameter space (and sky localisation is of special interest for binaries containing at least

one neutron star because of possible electromagnetic counterpart). I apply the Markov

chain Monte Carlo algorithm to spinning inspiral signals injected into synthetic noise and

I derive posterior probability-density functions (PDFs) of all twelve signal parameters. In

a previous study [55], the parameter-estimation group at Nothwestern University showed

the accuracy obtained in sky-position determination using data from a two-detector net-

work, where a degeneracy in the sky position exists, and from a three-detector network,

where the degeneracy is broken. Following this work, I analyse in further detail the de-

generacy which is present when data from only two detectors are used. In section 3.4.2 I

show that the degeneracy in the sky position is reduced but not lifted when a significant

spin is present (aspin ≥ 0.5), and that a sufficient angle between spin and orbital angular

momentum can break such a degeneracy (θSL ≥ 55◦). In this study, I demonstrate that

these degeneracies are due to a high degree of similarity between signals from sources with

significantly different parameter sets, while I made sure the observed effects are real and

not in fact artefacts due to potential errors in the analysis methodology.
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This study on extrinsic parameters was done with templates at 1.5 post-Newtonian

order. In section 3.4.3, I also demonstrate that the inclusion of higher post-Newtonian

orders in the waveform can improve the accuracy of intrinsic parameter estimation.

3.2. Signal and observables

In this chapter I analyse the signal produced during the inspiral phase of two compact

objects of masses M1,2 in circular orbit. I focus on a fiducial black hole-neutron star

binary system with M1 = 10 M� and M2 = 1.4 M�, and I ignore the neutron-star spin.

The black-hole spin S couples to the orbital angular momentum L, leading to amplitude

and phase modulations of the observed gravitational radiation due to the precession of

the orbital plane. Here I model gravitational waves by post-Newtonian (pN) waveforms,

either at 1.5pN order in phase and Newtonian amplitude or at 3.5pN order in phase and

Newtonian amplitude. For the latter waveform I use the implementation from the LSC

Algorithm Library (LAL) [56]. In the analysis I model the noise in each detector as

a zero-mean Gaussian, stationary random process, with one-sided noise spectral density

Sa(f), at the initial-LIGO design sensitivity [57].

3.2.1. Waveform template at the 1.5pN order

I adopt the simple-precession limit, Eqs. 51, 52, 59 & 63 in [51], appropriate for the single-

spin system considered here. For simplicity (to speed up the waveform calculation), I also

ignore the Thomas precession [51]. In this approximation, the orbital angular momentum

L and spin S precess with the same angular frequency around a fixed direction Ĵ0 ≈ Ĵ,

where J = L + S. During the inspiral phase the spin misalignment θSL ≡ arccos(Ŝ · L̂)
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and S = |S| are constant. These approximate waveforms retain (at the leading order)

all the prominent qualitative features introduced by the spins, while allowing to rapidly

compute the waveforms analytically. While this approach is justified for the exploration of

gravitational-wave astronomy and the development of parameter-estimation algorithms,

more accurate waveforms [58, 59, 60, 61]e.g. will be necessary for the analysis of real

signals (see section 3.4.3).

A circular binary inspiral with one spinning compact object is described by a 12-

dimensional parameter vector ~λ. With respect to a fixed geocentric coordinate system my

choice of independent parameters is:

(3.1) ~λ = {M, η,R.A., sin Dec, sin θJ0 , φJ0 , log dL, aspin, cos θSL, φc, αc, tc},

where M = (M1M2)3/5

(M1+M2)1/5
and η = M1M2

(M1+M2)2
are the chirp mass and symmetric mass ratio,

respectively; R.A. (right ascension) and Dec (declination) identify the source position in

the sky; the angles θJ0 ∈
[
−π

2
, π

2

]
and φJ0 ∈ [0, 2π[ identify the unit vector Ĵ0; dL is the

luminosity distance to the source and 0 ≤ aspin ≡ S/M2
1 ≤ 1 is the dimensionless spin

magnitude; φc and αc are integration constants that specify the gravitational-wave phase

and the location of S on the precession cone, respectively, at the time of coalescence tc,

defined with respect to the centre of the Earth.

3.2.2. Waveform template in the 3.5pN order

Although the 1.5pN, simple-precession waveform is useful to investigate the principal

effects of spin on parameter estimation, a more realistic waveform is needed to analyse

detected signals. The waveform I use for this is 3.5-pN in phase and Newtonian amplitude.
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Figure 3.1. (a) Part of the 1.5pN time-domain waveform from a source
with aspin = 0.5 and θSL = 20◦. (b) The 3.5pN waveform from a source
with the same parameters. The waveforms start at 40 Hz and are aligned
at the coalescence time.

The implementation in the LSC Algorithm Library closely follows the first section of

[45]. For comparison purposes I converted the usual set of parameters used in the LAL

software to the parameters in Eq. 3.1. In doing so, I fix 3 of the 15 parameters of the LAL

parameter set, setting the spin of the second member of the binary to be 0. The waveform

is generated using LALGenerateInspiral() from the injection package [56]. An example

of ha(t) for aspin = 0.5 and θSL = 20◦ for both waveforms is shown in figure 3.1.

3.3. Parameter estimation: Methods

The goal of this analysis is to determine the posterior probability density function

(PDF) of the unknown parameter vector ~λ in Eq. 3.1, given the data sets xa collected by

a network of ndet detectors and the prior p(~λ) on the parameters. I use wide, flat priors

(see [16] for details). Bayes’ theorem provides a rigorous mathematical rule to assign such
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a probability:

(3.2) p(~λ|xa) =
p(~λ)L(xa|~λ)

p(xa)
;

The details and justifications on the application of this theorem are described in Sec-

tion 1.2.4.

3.4. Parameter estimation: Results

3.4.1. Markov chain Monte Carlo runs

Here I present results obtained by injecting a signal into simulated interferometer noise

and computing the posterior probability-density functions with Markov chain Monte Carlo

techniques, for a fiducial source consisting of a 10M� spinning black hole and a 1.4M�

non-spinning neutron star in a binary system at a distance of about 16 Mpc (see sec-

tions 3.4.2 and 3.4.3 for parameter values). I consider a number of cases for which I

change the black-hole spin parameters. I run the analysis using the simulated data from

(i) the 4-km LIGO detector at Hanford (H1) alone, (ii) the LIGO Hanford (H1) and a

second detector with the initial-LIGO noise curve located and oriented in the same way

as the Virgo detector near Pisa, which I denote by (P).

The Markov chain Monte Carlo analysis that I carry out on each data set consists of 5

to 25 independent chains, each with a length of several million iterations. The chains are

sampled after a burn-in period see e.g. [17] that is determined automatically as follows:

I determine the absolute maximum likelihood log(Lmax), defined as the highest likelihood

log[L(~x|~λ)] obtained over the ensemble of parameters ~λ for which the overlap has been

computed, for any of the individual chains. Then for each chain I include all the iterations
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after the chain reaches a likelihood value of log(Lmax)−2 for the first time. All the Markov

chains start at offset (i.e., non-true) parameter values, unless specified otherwise. The

starting values for M and tc are drawn from a Gaussian distribution centred on the true

parameter value, with a standard deviation of 0.1M� and 30 ms respectively. The other

ten parameters are drawn uniformly from the allowed ranges.

3.4.2. A Ring in the Sky

For the study in this section, I use the 1.5pN waveform with the simple-precession pre-

scription only (see section 3.2.1). In order to further speed up the Markov chain Monte

Carlo runs, I fixed the mass and spin parameters to the true parameter values, and per-

formed test calculations to verify that this does not affect the conclusions.

As reference Markov chain Monte Carlo runs (experiment 1, see table 3.1), I injected

signals into two simulated detectors (H1 and P). I made three different injections, which

differed in the spin magnitude values (aspin = 0.0, 0.5) and the spin-misalignment values

(θSL = 20◦, 55◦) for aspin = 0.5 case; the remaining parameters were kept constant across

all three injections: M = 3.0M�, η = 0.11 (M1 = 10.0M�, M2 = 1.4M�), dL = 16 Mpc,

R.A. = 14.3 h, Dec = 11.5◦, θJ0 = 3.8◦, φJ0 = 289◦, φc = 305◦, αc = 4◦ and tc =

700009012.345 s GPS time.

For a detection with two interferometers, the sky position is degenerate; when no

spin is present in the source, the probability-density functions show an incomplete sky

ring where the source might be — long arcs separated by empty “gaps” — rather than

one tightly constrained ring. When the black hole is spinning, and especially when the

misalignment angle between orbital angular momentum and spin is significant, the sky
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Table 3.1. List of the experiments described in section 3.4.2. The sky ring
is defined as the ring produced by experiment 1, composed of arcs and gaps.

experiment injection position sky position starting values
(in the sky ring) parameters (in the sky ring)

1 arc free offset (non true values)
2a arc fixed true position (arc)
2b arc fixed gap position (©)
3 gap (©) free offset (non true values)

location constraint shrinks appreciably until much smaller arcs — or even a single arc —

are left (see figure 3.2a).

In order to probe the nature of the gaps in the sky ring, I devised a second experiment

(experiment 2, see table 3.1). For each run, I injected the same signal as before, but now

forced the Markov chain Monte Carlo code to search for the other parameters while keeping

the sky position fixed to either the true values (experiment 2a), or to the sky position

in the gap that is labelled by the circle in the first panel of figure 3.2a (experiment 2b).

Running the Markov chain Monte Carlo code in this way provides the combination of the

free parameters that fits the data best, given the constraint in sky position (the conditional

posterior distribution, conditional on the corresponding sky position). In particular, the

code provides the highest likelihood that can be obtained for this sky position. These

likelihoods are listed in table 3.2. They show that the maximum likelihood found in the

gap is very similar to the likelihood of the injection for the non-spinning signal, whereas

it is significantly lower in the case of the spinning signal. For the non-spinning signal, an

unfavourable binary orientation (inclination = 92.0◦) and hence a short distance (dL =

3.6 Mpc) are needed to give a good match for the given sky position (see Section 6.1 for
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Figure 3.2. Two-dimensional probability-density functions of the sky posi-
tion for the Markov chain Monte Carlo runs as labelled. The colours show
the different probability intervals (1-σ, 2-σ and 3-σ for red, yellow and blue
respectively). The black dashed lines mark the position in the sky of the
injection for each run. Left column (a): results for the reference runs, ex-
periment 1 (signal injection at R.A. = 14.3 h, Dec = 11.5◦). The symbol
© denotes the “gap” discussed in the text. Right column (b): results for
experiment 3: a Markov chain Monte Carlo run with a signal injection at
© (R.A. = 13.25 h, Dec = 23◦). For the non-spinning case, the probability-
density functions are very similar to those in the original run, whereas they
are very different for the spinning cases (notice the difference in the axis
ranges).
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Table 3.2. Likelihoods values recovered by the Markov chain Monte Carlo
runs of experiment 2b for the sky ring, described in section 3.4.2.

aspin = 0.0 aspin = 0.5, aspin = 0.5,
θSL = 20◦ θSL = 55◦

network SNR 17.0 18.3 18.4

log(L(xa|~λtrue)) 131 154 208
log(Lmax)(©) 131 125 152

Match M(h(~λtrue), h(~λLmax
)) 99.5% 89.6% 82.5% (between waveforms injected

(equation 1.36) in experiment 1 and
those corresponding to Lmax)

(reference parameters,
Lmax parameters : injected in experiment 1)
position (R.A. [h], Dec. [◦]) 13.25, 23 13.25, 23 13.25, 23 14.3, 11.5
orientation (θJ0

[◦], φJ0
[◦]) -65.4, 10.8 -59.5, 340.4 -21.8, 169.5 3.8, 289

inclination (arccos(J ·N)) [◦] 92.0 97.5 129.7 128.4
distance [Mpc] 3.7 11.1 18.3 16
tc−700009010 [s] 2.34955 2.34959 2.34960 2.34500

more details). The modulations of the signal due to the precession of the binary orbit

prevent this match in the spinning cases.

Thus, for a source with a non-spinning black hole, a high likelihood can be found in

the gaps of the sky ring. Therefore the absence of high likelihood values does not explain

the fact that the Markov chains hardly sample this part of the parameter space. Instead,

I find that the probability-density functions for some of the other parameters (especially

the distance dL and binary orientation arccos(J ·N)) are very narrow for experiment 2b

compared to those for experiment 2a (figure 3.3). This indicates that the overall volume

of parameter space in these parameters is very small for sky positions in the gap and this

is the reason that these gaps are not visited frequently by the chains. On a side note, the

priors are flat and can not be the cause for this effect. If the Markov chain Monte Carlo

runs had infinite length, they would sample this region in parameter space and bridge

the gaps in figure 3.2a with a thin line, i.e. the points “bridging” the gaps will form a
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set of very small measure. Even with a perfect sampling, the same behaviour is to be

expected: the chains would mainly sample the arcs and rarely the gaps. Interestingly,

the similarity in likelihood values between the true position and the gap for the case of a

non-spinning black hole also means that these two signals are virtually indistinguishable,

i.e. their match (equation 1.36) is very high (99.5% see table 3.2). This indicates that if

the source were truly in the gap, Markov chains of this length would not recover it, and

chains of any length would not have a significant probability-density function in the gaps.

To illustrate this, I did a third experiment (experiment 3, see table 3.1). I injected a

signal at the position in the gap labelled by© in figure 3.2a. I kept the same masses and

spin values as before, and set the other parameters to the values yielding the maximum

likelihoods from the second experiment, listed in table 3.2.

In the non-spinning case, the sky ring that is recovered is very similar to that of

the original run (see figure 3.2b); the small difference seen can be explained by the fact

that the match between the signal injected in experiment 3 and the signal injected in

experiment 1 was 99.5%, not 100% (table 3.2). This shows that there exist carefully

selected combinations of sky position, binary orientation and distance, which cannot be

easily recovered by the analysis (see Section 6.1 for a follow-up solution). However, this

reflects a real phenomenon; it is very improbable for a source to have the right orientation

to produce the gravitational-wave signal I injected and have its sky location in the gap.

And by giving preference to more likely solutions the parameter-estimation routine is in

fact doing the right, completely reasonable thing. The probability-density functions of the

relevant parameters for the comparison of experiments 1 and 3 are plotted in figure 3.4.
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Figure 3.3. One-dimensional probability-density functions for the runs
of experiment 2a (red, hatched upward) and of the runs in experiment 2b
(blue, hatched downward), in the non-spinning case. The black dashed lines
mark the values of the injected parameters. The level of support is indeed
smaller in the second case.

The probability-density functions in the other parameters are also very similar in both

the original run and the third experiment run.

When the black hole is spinning moderately, the two signals injected in experiment 1

and in experiment 3 are different (as can be inferred from the large difference in likelihood

in experiment 2b, and the smaller match, see table 3.2). The different injections yield
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Figure 3.4. One-dimensional probability-density functions for the refer-
ence run in experiment 1 (red, hatched from bottom-left to top-right) and
of the runs in experiment 3 (blue, hatched from top-left to bottom-right), in
the non-spinning case. The dashed lines mark the values of the injected pa-
rameters in experiment 1, while the dotted-dashed lines mark the values of
the injected parameters in experiment 3. The probability-density functions
for all parameters are very similar for the two injections.

significantly different probability-density functions for the sky position (figure 3.2b) as

well as for the other parameters, as I checked in the study.
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3.4.3. Comparison of Markov chain Monte Carlo runs with 1.5pN and 3.5pN

waveforms

So far in this chapter I have used 1.5pN waveforms for computational efficiency. However,

in this section I used the Markov chain Monte Carlo implementation to present the first

comparison of the accuracy of parameter estimation with the 1.5pN and 3.5pN waveform

families, as described in section 3.2. In both cases, I injected black hole-neutron stars

binary inspiral waveforms with a non-spinning black hole into the noise of a single interfer-

ometer (H1). I analysed the 1.5pN injected waveform with an Markov chain Monte Carlo

with 1.5pN waveform templates, and the 3.5pN injected waveform with 3.5pN waveform

templates. I scaled the distance to the source to obtain a signal to noise ratio of 20.0 in

both cases, which resulted in a distance of ∼11.9 Mpc for the 1.5pN waveform case, and

∼12.2 Mpc for the 3.5pN waveform case. The remaining injection parameters were set to

aspin = 0.0, M = 3.0M�, η = 0.11 (M1 = 10.0M�, M2 = 1.4M�), R.A. = 17.3 h, Dec

= −5◦, θJ0 = −23◦, φJ0 = 194◦, φc = 352◦ and tc = 894377000.500244 s for this study.

The three spin parameters (aspin, θSL and αc) were fixed, forcing the chains to explore a

parameter space that was effectively 9-dimensional.

Figure 3.5 compares the probability-density functions of the mass parameters for the

runs with the 1.5pN and 3.5pN waveforms for 1.5 ∗ 106 iterations in both cases. It is

evident that the estimation of the symmetric mass ratio η is more accurate in the 3.5pN

case, which results in better constraints on the individual masses. The 2-σ probability

ranges for the chirp mass are roughly similar in both cases (a factor of 1.2 narrower when

the 3.5pN waveform is used), whereas for η, and hence for the individual masses, the

ranges are narrower by a factor of 1.8 when the 3.5pN waveform is used. The additional
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information in the higher-order post-Newtonian waveforms results in a greater structure of

the parameter space. In principle this extra structure allows the estimation of the binary

parameters more accurately. However, a more structured parameter space also affects

the sampling efficiency of the Markov chain Monte Carlo code negatively, so that more

iterations are needed to obtain a well-sampled Markov chain Monte Carlo run. In addi-

tion, the computation of a single 3.5pN waveform template takes about 2.4 times longer

than that of a 1.5pN template. This effect prevented, for this study, from performing

this analysis in a full 12-dimensional or 15-dimensional parameter space in a reasonably

short computational time. The code and sampling methods were improved for the work

described in the other chapters of this dissertation.

3.5. Conclusions

I have explored the degeneracies in the sky position for a gravitational-wave observa-

tion of an inspiral of a black hole-neutron star binary with two non-collocated ground-

based interferometers. Whereas simple triangulation based on time delays alone would

result in a homogeneous sky ring, the Markov chain Monte Carlo runs show (in experi-

ment 1) an incomplete ring in the sky consisting of arcs separated by gaps. While the

arcs make up most of the circumference of the sky ring for an inspiral with a non-spinning

black hole, these arcs become smaller when spin is present and may be reduced to a single

arc for the case of moderate spin and a sufficient misalignment between the black-hole

spin and the orbital angular momentum. I demonstrated that in the spinning case, the

maximum likelihood values are in fact lower in the gaps than in the arcs. In the non-

spinning case the likelihood in the gaps can actually be as high as in the arcs; however
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Figure 3.5. probability-density functions from a run with chains starting
from the true values, with the 1.5pN waveform (red, hatched from bottom-
left to top-right) and the 3.5pN waveform (blue, hatched from top-left to
bottom-right) from a non spinning source. Only one detector (LIGO at
Hanford) is used.

the gaps can be explained by a smaller volume of support in the other extrinsic param-

eters, such as the binary orientation and distance (experiment 2). See Section 6.1 for

an analytical description and solution. It is then less likely for the chains to sample this

smaller volume in parameter space, resulting in gaps in the two-dimensional sky probabil-

ity density function. In the non-spinning case, if a source is located in a gap, the posterior

probability-density function still has a gap at the true source sky location (experiment 3).
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The subject of estimating the position of a gravitational-wave source on the sky has

been explored by many researchers, in the context of binary-inspiral and burst signals;

the assumed baseline for these studies corresponds to three detectors located at the three

LIGO-Virgo observatory positions, and operating at their design sensitivities. For de-

tectable burst sources (SNR>5), arrival-time techniques should allow a precision of about

1◦ for the source direction [62]. A method that takes into account burst-signal arrival

time and amplitude, plus arrival-time uncertainties equivalent to what is observed with

real LIGO and Virgo data, gives source uncertainties of a few degrees [63]. Coherent

techniques also exist for burst detection and sky-location determination, but by their own

admission these methods are computationally costly [64]. Many techniques have also been

developed for sky localisation for binary-inspiral events. It has been shown, using time

and mass parameter estimates, that the LIGO-Virgo network could localize the position

of a binary-neutron-star inspiral to an accuracy of 4◦ if it were located in M87 (16 Mpc),

or 2◦ for a source in NGC 6744 (10 Mpc) [65]; coherent methods, which also depend on

estimating the time and mass parameters, give similar accuracies [66].

Markov chain Monte Carlo parameter-estimation methods, like those used in this

study, are capable of estimating the sky parameters, along with all of the other signal

parameters; this is one reason why Markov chain Monte Carlo methods are computation-

ally intensive. Coherent Markov chain Monte Carlo methods applied to signals observed

by the LIGO-Virgo network will be able to resolve the sky location to 2◦ for signals with

an signal-to-noise ratio of 15 [15]. When the compact objects have spin, and the search

templates account for this parameter, sky localisation becomes relatively more accurate

for higher values of spin [55]. It is important to remember that, in principle, the Markov
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chain Monte Carlo results show the best constraints one could hope to place on signal pa-

rameters (including the sky location) by displaying the true posterior probability-density

functions. While comparisons with other particular sky-localisation results may be cum-

bersome because different waveforms were assumed at different signal-to-noise ratios in

different detectors, Markov chain Monte Carlo produced posterior probability-density

functions display the statistically correct and most precise localisation. Bayesian meth-

ods achieve better parameter-estimation accuracy when the template model describes the

functional form of the actual signal more accurately. When a gravitational-wave detec-

tion occurs, it is likely that all possible sky localisation algorithms will be used, and the

methods should be considered to be complementary.

In section 3.4.3, I compared Markov chain Monte Carlo results on software injections

using waveform families of 1.5pN and 3.5pN order for both the injections and the Markov

chain Monte Carlo parameter estimation. I have shown that the higher-order templates

have the potential for more accurate parameter estimation, but that sampling the param-

eter space with these templates is more computationally difficult.
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CHAPTER 4

Inspiral-Merger-Ringdown effects

4.1. Numerical INJection Analysis

The Numerical INJection Analysis (NINJA, [67]) project is a collaborative effort be-

tween members of the numerical relativity and gravitational-wave data analysis commu-

nities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave

search algorithms using numerically generated waveforms. The first NINJA analysis fo-

cused on gravitational waveforms from binary black hole coalescence. Numerical data

was used to generate a set of gravitational-wave signals. These signals were injected

into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo

gravitational-wave detectors. I analysed this data using Markov chain Monte Carlo ([67]).

Available numerical relativity signals were of short duration, and at most a few cycles of

the inspiral were included. Most of the Signal-to-Noise Ratio (SNR) was included in the

merger and ring-down portions of the waveform, for which no signal model was available

at the time. This lead to significant biases in the intrinsic parameter recovery. Inter-

estingly, the inspiral-only templates where able to recover the correct timing differences

between detectors. As such, the sky location is constrained to an arc of a ring containing

the true value.
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4.1.1. Analysis methods

I analysed a selection of the injected numerical signals with the Markov chain Monte

Carlo code. The signal model was based on waveforms with phase evolution at 1.5 post-

Newtonian order and leading-order amplitude evolution (see Section 3.2.1 for more de-

tails). Parameter estimation was successful on NINJA injections with relatively low total

mass in which the inspiral contained a significant fraction of the total signal-to-noise

ratio. For high-mass injections, the algorithm attempted to match the merger and ring-

down portions of the injected signal to inspiral templates, resulting in poor parameter

estimation.

The post-Newtonian waveforms used in this analysis include the spin of the larger body

m1, allowing us to use the analytical simple-precession waveform [51]. The parameter

space thus consists of twelve independent parameters:

(4.1) ~λ = {M, η, α, δ, ψ, ι, d, aspin, κ, φc, αc, tc},

where M and η are the chirp mass and symmetric mass ratio, respectively; α (right

ascension) and δ (declination) identify the source position in the sky; the angles ψ and ι

identify the direction of the total angular momentum of the binary; d is the luminosity

distance to the source; 0 ≤ aspin ≡ S1/m
2
1 ≤ 1 is the dimensionless spin magnitude; κ

is the cosine of the angle between the spin and the orbital angular momentum; and φc

and αc are integration phase constants that specify the gravitational-wave phase and the

location of the spin vector on the precession cone, respectively, at the time of coalescence

tc.
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The Markov chain Monte Carlo algorithm used for the NINJA analysis was optimised

by including a variety of features to efficiently sample the parameter space, such as parallel

tempering [16]. This Markov chain Monte Carlo implementation can be run on a data

set from a single detector, or on data sets from multiple detectors.

4.1.2. Results

The Markov chain Monte Carlo code was run on a selection of injected signals in the

NINJA data. It was found that although the Markov chain Monte Carlo runs are clearly

able to detect a signal whenever the inspiral contains a sufficient signal-to-noise ratio, they

were unable to correctly determine the signal parameters for many injections. For the high

masses typical of most NINJA injections, the signal-to-noise ratio is dominated by the

merger and ringdown, so that the inspiral-only templates tried to match the merger and

ringdown portions of the injected waveform. Typically, it is found that in such cases the

time of coalescence is overestimated since the injected ringdown is matched to an inspiral;

the chirp mass is underestimated since the merger/ringdown frequency is higher than the

inspiral frequency for a given mass, so that matching them to an inspiral requires the mass

to be lower; the mass ratio is underestimated, which allows the waveform to contain more

energy in the narrow frequency band corresponding to quasi-normal ringing; and the spin

rails against the upper prior of 1 since the innermost stable circular orbit frequency is

highest for an inspiral into a maximally-spinning Kerr black hole. I tried to circumvent the

problem of matching to the merger and ringdown by introducing more-restrictive priors

on spin and/or η. These efforts still failed when the total masses were too high, but were

successful in the case of lower total masses and longer inspiral signals.
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Figure 4.1 shows the probability density functions produced by runs on an injected

equal-mass non-spinning SpEC Cornell/Caltech waveform with M = 15.6M�. This par-

ticular injection was chosen because it had the lowest total mass, and SpEC waveforms

typically have more inspiral cycles; runs on other injections show comparable results,

with the general trend that the higher the total mass (and, thus, the lower the relative

fraction of the signal-to-noise ratio contributed by the inspiral), the poorer the parameter

estimation becomes.

Data from two detectors, H1 and L1, were used to compute the probability density

functions shown in the top row of Figure 4.1. I used wide, flat priors for intrinsic pa-

rameters (e.g., M ∈ [2M�, 100M�], η ∈ [0.03, 0.25], aspin ∈ [0, 1]). I find that the values

of the intrinsic parameters are not determined very accurately. In particular, the spin

rails against the upper bound of 1 while η is underestimated, as expected. I find that the

sky location is nevertheless constrained to an arc of a ring containing the true value; the

2-σ (∼ 95%) sky area of the ring shown in the bottom left of Fig. 4.1 is ∼ 10000 square

degrees.

In the middle row of Fig. 4.1, I plot the probability density functions based on data

from three detectors: H1, L1, and V1. The spin parameter was constrained to its true

value aspin = 0 for this run. This had the effect of forcing the Markov chains to match the

inspiral only, significantly improving the resolution of other parameters: for example, the

probability density function of η now rails against 0.25, which is its true value. The chirp

mass is still somewhat underestimated; a higher signal-to-noise ratio may be necessary

to improve the mass determination. Promisingly, it was found that the sky location is

constrained to a smaller patch on the sky: the 2-σ sky area in the bottom right of Fig. 4.1
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is 6300 square degrees. In fact, the sky localisation is even better when the spin parameter

is allowed to vary, allowing the Markov chain Monte Carlo to use the signal-to-noise ratio

contributed by the ringdown; removing the spin-parameter constraint reduces the 2-σ

sky area to 2750 square degrees. This ability to determine the source position will be

significant in any future searches for electromagnetic counterparts of gravitational-wave

triggers.

The next instance of the NINJA project, NINJA-2 will feature hybridised waveforms,

where a numerical relativity waveform is made longer by attaching early inspiral cycle from

post-Newtonian calculations. NINJA-2 is well on its way and I expect much better results

on those longer waveforms, with the added improvement of being able to use waveform

models for parameter estimation containing a prescription for merger and ringdown.
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Results from the first NINJA project 42

introducing more-restrictive priors on spin and/or η. These efforts still failed when
the total masses were too high, but were successful in the case of lower total masses
and longer inspiral signals.

Figure 21. Results of the MCMC analysis for one of the injected
NINJA waveforms. The top row shows the marginalised PDFs for M, η,
aspin, and d produced by a two-detector MCMC analysis on an injected non-
spinning equal-mass SpEC Cornell/Caltech waveform (true values M = 15.6 M!,
η = 0.25, tc = 4.7223 s, and aspin = 0). Middle row: the same PDFs (but with
aspin replaced by tc) for a three-detector run with constrained spin on the same
injection. Bottom row: two-dimensional PDFs for the sky position with the 2-
detector run on the left and the three-detector MCMC run on the right; the 1-σ,
2-σ and 3-σ probability areas are displayed in different colours, as indicated in
the top of each panel. Dashed lines denote the true values of injected parameters.

Figure 21 shows the PDFs produced by runs on an injected equal-mass non-
spinning SpECCornell/Caltech waveform with M = 15.6 M!. This particular injection
was chosen because it had the lowest total mass, and SpEC waveforms typically have
more inspiral cycles; runs on other injections show comparable results, with the general
trend that the higher the total mass (and, thus, the lower the relative fraction of the
SNR contributed by the inspiral), the poorer the parameter estimation becomes.

Data from two detectors, H1 and L1, were used to compute the PDFs shown in
the top row of Figure 21. We used wide, flat priors for intrinsic parameters (e.g.,

Figure 4.1. Results of the Markov chain Monte Carlo analysis for one of
the injected NINJA waveforms. The top row shows the marginalised prob-
ability density functions for M, η, aspin, and d produced by a two-detector
Markov chain Monte Carlo analysis on an injected non-spinning equal-mass
SpEC Cornell/Caltech waveform (true values M = 15.6M�, η = 0.25,
tc = 4.7223 s, and aspin = 0). Middle row: the same probability density
functions (but with aspin replaced by tc) for a three-detector run with con-
strained spin on the same injection. Bottom row: two-dimensional prob-
ability density functions for the sky position with the 2-detector run on
the left and the three-detector Markov chain Monte Carlo run on the right;
the 1-σ, 2-σ and 3-σ probability areas are displayed in different colours, as
indicated in the top of each panel. Dashed lines denote the true values of
injected parameters.
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CHAPTER 5

The effects of LIGO detector noise on a 15-dimensional Markov

chain Monte Carlo analysis of gravitational-wave signals

I present in this chapter parameter-estimation results on signals from binaries with

precessing spins. Two data sets are created by injecting simulated gravitational-wave

signals into either synthetic Gaussian noise or into LIGO detector data. I compute the

15-dimensional probability-density functions (PDFs) for both data sets, as well as for a

data set containing LIGO data with a known, loud artefact (“glitch”). I show that the

analysis of the signal in detector noise yields accuracies similar to those obtained using

simulated Gaussian noise. I also find that while the Markov chains from the glitch do

not converge, the probability-density functions would look consistent with a gravitational-

wave signal present in the data. While the parameter-estimation results are encouraging,

further investigations into how to differentiate an actual gravitational-wave signal from

noise are necessary.

5.1. Introduction

The detection of a gravitational-wave event is challenging and will be a rewarding

achievement by itself. After such a detection, measurement of source properties holds

major promise for improving our astrophysical understanding and requires reliable meth-

ods for parameter estimation. This is a complicated problem, because of the large number
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of parameters (15 for spinning compact objects in a quasi-circular orbit) and the degen-

eracies between them, see Section 3.4.2, [8], the significant amount of structure in the

parameter space, and the particularities of the detector noise.

In this section I use an example to illustrate the capabilities of the algorithm on the

effects of using LIGO detector data versus synthetic Gaussian noise.

In section 5.3.1 I describe the three data sets that I analyse in this study; a simulated

gravitational-wave signal injected into synthetic Gaussian noise, a gravitational-wave sig-

nal injected into LIGO detector data and a raw LIGO data set containing a known artefact

of terrestrial origin (“glitch”). I describe the details of the Markov chain Monte Carlo

simulations in section 5.3.2. The analyses of the first two data sets are compared in

section 5.3.3, and I present results on the glitch in section 5.3.4.

5.2. Gravitational-wave signal and observables

I analyse the signal produced during the inspiral phase of two compact objects of

massesM1,2 in quasi-circular orbit. I focus on a black-hole binary system withM1 = 10 M�

and M2 = 1.4 M�, where I do not ignore the second spin in order to explore the single

spin approximation. During the orbital inspiral, the general-relativistic spin-orbit and

spin-spin coupling (dragging of inertial frames) cause the binary’s orbital plane to precess

and introduce amplitude and phase modulations of the observed gravitational-wave signal

[51].

A circular binary inspiral with both compact objects spinning is described by a 15-

dimensional parameter vector ~λ ∈ Λ. My choice of independent parameters with respect

to a fixed geocentric coordinate system is:



90

~λ = {M, η, log dL, tc, φc, α, cos δ, sin ι, ψ,

aspin1, cos θspin1, φspin1, aspin2, cos θspin2, φspin2},(5.1)

where M = (M1M2)3/5

(M1+M2)1/5
and η = M1M2

(M1+M2)2
are the chirp mass and symmetric mass ratio,

respectively; dL is the luminosity distance to the source; φc is an integration constant

that specifies the gravitational-wave phase at the time of coalescence tc, defined with

respect to the centre of the Earth; α (right ascension) and δ (declination) identify the

source position in the sky; ι defines the inclination of the binary with respect to the

line of sight; and ψ is the polarisation angle of the waveform. The spins are specified

by 0 ≤ aspin1,2 ≡ S1,2/M
2
1,2 ≤ 1 as the dimensionless spin magnitude, and the angles

θspin1,2,φspin1,2 for their orientations. The parameter priors are uniform in the parameters

of Eq. 5.1.

The waveform used includes terms up to 3.5-post-Newtonian (pN) order in phase

and uses Newtonian amplitudes, with spin effects up to 2.5pN in phase. I generate the

waveform templates using the routine LALGenerateInspiral() with the approximant

SpinTaylor from the injection package in the LSC Algorithm Library (LAL) [56], which

closely follows the first section of [45].

5.3. Parameter estimation: Results

5.3.1. Data sets

For this chapter, I analyse three different data sets, each containing the data for the 4-km

LIGO detectors at Hanford (H1) and Livingston (L1):
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DS1:: a coherent software injection with a total signal-to-noise ratio of 11.3 into

synthetic Gaussian, stationary noise, simulated for the H1 and L1 detectors;

DS2:: a coherent software injection of the same signal, with a total signal-to-noise

ratio of 11.3, into “quiet” LIGO detector data from H1 and L1;

DS3:: raw LIGO data from H1 and L1, containing a known, coincident glitch of

seismic origin, with a total signal-to-noise ratio of 11.3.

For the data sets DS1 and DS2, the injected signal is that of a 10M� spinning black

hole and a 1.4M� spinning neutron star in an inspiralling binary system. A low-mass

Compact Binary Coalescence Group search [68] does not produce a gravitational-wave

trigger for the data segment DS2; hence I designate it “quiet”. The distance of each of the

injections is scaled to obtain an signal-to-noise ratio of 11.3, equal to that of the glitch in

DS3, but computed with different waveforms: a SpinTaylor waveform (see section 5.2) for

DS1 and DS2, and a non-spinning, 2pN waveform (see section 5.3.4) for DS3. The other

parameters of the injection are:

~λ = {M = 2.99M�, η = 0.107, dL, tc, φc = 85.9◦, α = 17.4h, δ = 61.6◦,

i = 52.8◦, ψ = 11.6◦, aspin1 = 0.6, θspin1 = 78.5◦, φspin1 = 63.0◦,

aspin2 = 0.4, θspin2 = 120.0◦, φspin2 = 315.1◦},(5.2)

where I assigned a spin of 0.4 to the neutron star, which is higher than astrophysically

plausible, for testing purposes only. In DS3, no signal is injected. For those analyses, I

use the data of both 4-km LIGO detectors H1 and L1.
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5.3.2. Markov chain Monte Carlo simulations

The Markov chain Monte Carlo analysis that I carry out on each data set consists of

10 independent Markov chains, each with a length of about a million iterations and

composed of 5 chains at different temperatures for parallel tempering. From now on, I

will refer to the T = 1 chain as the chain, since the hotter chains were not used in the

post-processing. The part of the chains that is analysed is that after the burn-in period

[17]see e.g., the length of which is determined automatically as follows: I determine the

absolute maximum likelihood log(Lmax), defined as the highest value for log[p(~x|~λ,M)]

obtained over the ensemble of parameter sets ~λ in any of the individual Markov chains.

Then for each chain I include all the iterations after the chain reaches a likelihood value of

log(Lmax)−2 for the first time. This results in a convergence test as well, since some of the

independent chains may not reach this threshold value. Typically, I demand that more

than 50% of the chains meet this condition before I consider the Markov chain Monte

Carlo run as converged, although I consider results as robust if they have a convergence

rate of 80% or more. This convergence test is a measure of the quality of the sampling in a

given number of iterations. All the Markov chains start at values that are randomly offset

from the injection values. The starting values for M and tc are drawn from a Gaussian

distribution centred on the injection value, with a standard deviation of 0.025M� and

10 ms respectively. In real analysis, the two Gaussian distributions are centred on the

values from the template bank based search of the Compact Binary Coalescence group

[68], which will have triggered the Markov chain Monte Carlo followup. The other thirteen

parameters are drawn uniformly from their allowed ranges.
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Figure 5.1. One-dimensional marginalised probability density functions
for all 15 parameters from the analysis of data sets DS1 (hatched upward;
red in the online colour version) and DS2 (hatched downward; blue in the
online colour version). The vertical dashed lines mark the injection values.

5.3.3. Analysis of data sets DS1 and DS2

I analysed the data sets DS1 and DS2 as described in section 5.3.1 and the results of both

analyses passed the convergence test described in section 5.3.2 with convergence rates

of 70% and 80%, respectively. The resulting one-dimensional marginalised probability

density functions from both analyses are shown in figure 5.1.

Table 5.1 shows the median and the width of the 95%-probability ranges for each

parameter. The differences I find between the results for DS1 and DS2 are attributed
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Table 5.1. Median and width of the 95%-probability ranges for each pa-
rameter of the analyses of data sets DS1 and DS2. The column recovered
indicates whether or not the 95% range includes the injection value.

DS1 (synthetic noise) DS2 (detector noise)
injection median 95% width recovered median 95% width recovered

M (M�) 2.99 3.006 0.294 yes 3.041 0.122 yes
η 0.107 0.133 0.145 yes 0.183 0.144 yes
dL (Mpc) 28.615 21.240 20.764 yes 24.144 17.238 yes
tc (s) 0.000 -0.013 0.024 yes 0.006 0.019 yes
φc (◦) 85.944 189.745 342.398 yes 185.482 343.175 yes
α (h) 17.380 11.684 5.349 no 17.786 6.320 yes
δ (◦) 61.642 49.326 64.346 yes 58.390 39.796 yes
i (◦) 52.753 67.056 110.735 yes 46.850 122.787 yes
ψ (◦) 11.459 93.162 176.358 yes 88.706 173.869 yes
aspin1 0.600 0.658 0.594 yes 0.804 0.478 yes
θspin1 (◦) 78.463 85.490 83.110 yes 89.225 85.787 yes
φspin1 (◦) 63.025 57.171 335.592 yes 263.014 345.700 yes
aspin2 0.400 0.532 0.945 yes 0.475 0.940 yes
θspin2 (◦) 120.000 94.687 150.544 yes 89.406 146.101 yes
φspin2 (◦) 315.127 181.959 327.603 yes 184.681 339.071 yes
M1 (M�) 10.002 8.533 8.849 yes 6.421 6.536 yes
M2 (M�) 1.400 1.598 1.277 yes 2.036 1.564 yes

to the particular noise realisations in this example, and most parameters yield similar

probability density functions and accuracies.

The probability density functions of the parameters that describe the spin of the NS

follow the prior distributions in both runs. This justifies ignoring the NS spin (by fixing

aspin2 to 0.0 in the recovery template) for this mass ratio, as in Section 3.2. For each of the

two data sets, DS1 and DS2, I computed the Bayes factor to compare the evidence for the

following two models using the harmonic-mean method, see Section 1.2.4, Eq. 1.49: M1: a

3.5pN inspiral waveform embedded in Gaussian noise, and M2: Gaussian noise only. The

values are listed in table 5.2. In both cases, the Bayes factor is large, providing strong

evidence for a gravitational-wave signal in the data. The difference in Bayes factor between
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Table 5.2. Bayes factors B1,2 between the models M1: a 3.5pN inspiral
waveform embedded in Gaussian noise, and M2: Gaussian noise only (sec-
tion 5.3.3) for data sets DS1 and DS2 (see section 5.3.1).

DS1 (Gaussian noise) DS2 (detector data) DS3 (glitch)
logeB1,2 52.9 43.5 68.5

DS1 and DS2 is attributed to an inherent spread due to different noise realisations, and

the uncertainties of the method to estimate the Bayes factor (Section 1.2.4). The results

in this section show an illustrative example, but cannot be used to draw firm conclusions.

However, it is clear that they warrant a larger, systematic study of these phenomena with

the methods described here.

5.3.4. Analysis of data sets DS2 and DS3

On November 2nd 2006, seismic activity at Hanford and Livingston resulted in a coin-

cident “glitch” in the data from the H1 and L1 LIGO detectors. These glitches were

recovered by the Compact Binary Coalescence detection pipeline at an signal-to-noise

ratio of 11.3, using non-spinning, stationary-phase-approximation templates, Newtonian

in amplitude and 2.0pN in phase [68]. I defined the corresponding data set as DS3

in section 5.3.1 and analysed the data as if it had yielded a gravitational-wave trigger.

The convergence test from section 5.3.2 yields a 20% convergence rate, which results in

the rejection of the results as not converged. However, when I nevertheless construct

the marginalised one-dimensional probability density functions from the data of the two

converged chains (because of the small number of data points, the resulting probability

density functions may not be very accurate), they are similar in appearance to those from

DS2 (see figure 5.2). The Bayes factors in table 5.2 even suggest that the data set DS3
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Figure 5.2. One-dimensional marginalised probability density functions of
a few selected parameters from the analysis of data set DS3. The vertical
dashed lines indicate the median of each probability density function.

is more consistent with containing a gravitational-wave signal than DS2 (with the caveat

that the signal-to-noise ratios of DS2 and DS3 were not computed the same way). On

the other hand, the low value for the median of η (0.05) corresponds to a mass ratio of

18, which is near the limit of the regime where post-Newtonian expansions are valid. In

particular, a small value for eta suggests a slow frequency evolution which may indicate

a spike in the frequency spectrum that dominates the signal. In addition, I find that the

sky map for DS3 does not display the (parts of a) sky ring that is expected for an analysis

using two non-co-located detectors, see Section 3.4.2, [8].

5.4. Conclusions

I presented an example of the analysis of software injections into both simulated

Gaussian noise (DS1) and LIGO-detector data (DS2). I also presented an analysis of a

data set containing no injection, but a “glitch” coincident in two LIGO interferometers

(DS3). These examples demonstrate a remarkable similarity between the results obtained

from a gravitational-wave signal injected in Gaussian noise and a similar signal in detector

data. The Bayes factors are also similar, where it is to be noted that the harmonic mean

technique for computing the Bayes factor yields estimates with significant variance, and
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more precise estimates are possible, see Section 1.2.4. In addition, I find that although

the Markov chains in the analysis of a coincident glitch in LIGO data do not converge, the

resulting probability density functions could look remarkably consistent with a simulated

gravitational-wave signal. I plan to run the code on a very large number of coincident

triggers from the LIGO Compact Binary Coalescence search pipeline (noise events that

are somehow being registered as resembling a binary inspiral) in order to get a good

sense of how to distinguish them from actual inspirals. The upcoming Engineering Run

2 organised by the LIGO-Virgo collaboration is a very good venue for such a campaign.



98

CHAPTER 6

Physically motivated exploration of parameter space

6.1. Extrinsic parameter exploration

6.1.1. Degeneracies

As discussed in Section 3.4.2, there exists a near-degeneracy in the detector response to

a gravitational wave involving the sky location, hour angle α, declination δ, and polar-

ization, ψ, of the source when three non-collocated detectors are used. In the following

discussion I will restrict myselves to the case of non-spinning signals for simplicity. Some

of my approximations are inapplicable to spinning signals, but I expect that my jump

proposal may still prove useful in the spinning case, particularly for signals that are weak.

The reflection of the true location of the source through the plane defined by the three

detectors conserves the arrival time at each detector. This is the reason why in most

three-detector analyses, two modes in the sky location are recovered, see Fig. 6.1 (top

left). The reflection condition keeps the arrival time of the signal at each detector, ∆1,

∆2 and ∆3, with ∆i(α, δ, tc), given by:

(6.1) ∆i(α, δ) = S · (−Li) + tc

constant. Here the detector location is labelled by the vector Li, and the source by

the vector S(α, δ):
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S(α, δ) =


cosα cos δ

− sinα cos δ

sin δ

(6.2)

This degeneracy artificially includes the time parameter tc as well, since the reference

time is at geocentre and the plane of the detectors does not in general include the centre

of the Earth.

This particular degeneracy has been well documented and a jump proposal has been

implemented involving the sky location and the reference time, see for instance [13].

However, the detector network sensitivity pattern is not uniform on the sky. Any change

in sky location will change the effective strength of the model template in each detector,

and changes in polarization, inclination and distance are needed to compensate. Both sky

positions in Fig. 6.1 (top left) correspond to different values of polarization, inclination

and distance. The top right plot shows the same blobs in the distance-inclination space,

and the bottom left the correlation between right ascension and distance. Note that

on the other hand, intrinsic parameters like masses m1,2 do not correlate with those

multidimensional blobs as illustrated in the bottom right plot for the chirp-mass Mc =

(m1m2)3/5

(m1+m2)1/5
.

6.1.2. Equations

The signal h is the sum of two polarisations (in the non-spinning case):
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Figure 6.1. Simulation of a parameter recovery analysis. The injected sig-
nal was a post-Newtonian non-spinning binary neutron star (m1 = 1.8 M�,
m2 = 1.6 M�) at a signal-to-noise ratio of 40, recovered with a post-
Newtonian frequency-domain non-spinning template model. Top left: two
dimensional probability density function in right ascension and declination.
The black cross marks the injected values. Two spots in the sky show a
high probability in this map. Top right: two dimensional probability den-
sity function in inclination and distance. Each blob corresponds to one of
the blobs in the top left figure. Bottom left: two dimensional probability
density function in distance and right ascension. Each blob corresponds to
one of the blobs in the top left figure. Bottom right: two dimensional prob-
ability density function in chirp mass and distance. Each blob corresponds
to one of the blobs in the top left figure.
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(6.3) h = F+(α, δ, ψ)H+(m1,m2, ι, φ, d, tc) + F×(α, δ, ψ)H×(m1,m2, ι, φ, d, tc)

Where the antenna beam pattern functions of the detectors F+,×(α, δ, ψ), (see Eq. 1.13),

are functions of the hour-angle α (right ascension corrected for the earth’s rotation), the

declination δ and polarisation angle ψ of the source. They are also parameterised by

tc and the detector three dimensional 2nd-order response tensor D. I recall here their

general form as a function of the polarisation angle ψ:

Fi+(α, δ, ψ) = xi(α, δ) cos(2ψ) + yi(α, δ) sin(2ψ)(6.4)

Fi×(α, δ, ψ) = yi(α, δ) cos(2ψ)− xi(α, δ) sin(2ψ)(6.5)

Where the functions xi(α, δ) and yi(α, δ) are complicated functions of the sky location.

The waveform polarisations H+,×(m1,m2, ι, φ, d, tc) are functions of the masses m1,2,

the inclination ι (angle between the line of sight and the orbital angular momentum),

the phase at a reference time (usually either time at coalescence or time at the start of

the template generation) φ, the distance to the observer d and the time at coalescence

tc. And they can be written in the non-spinning case, considering only the dominant 2-2

mode, as:
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H+(m1,m2, ι, φ, d, tc) = −1 + cos2(ι)

2 d
H+(m1,m2, φ)(6.6)

H×(m1,m2, ι, φ, d, tc) =
cos ι

d
H×(m1,m2, φ)(6.7)

Abusing notations, from now on H+,× refers to H+,×(m1,m2, φ), and I omit tc which

provides an overall sliding of the waveform (but enters the equation due to our definition

of right ascension and time being at geocentre). I define now the two quantities of interest:

Ai+(α, δ, ψ, ι, d) = −1 + cos2(ι)

2 d
Fi+(α, δ, ψ)(6.8)

Ai×(α, δ, ψ, ι, d) =
cos ι

d
Fi×(α, δ, ψ)(6.9)

To keep the detector response exactly fixed under a change of parameters, we want to

have for each detector:

Ai+(α, δ, ψ, ι, d) = Ai+(α′, δ′, ψ′, ι′, d′)(6.10)

Ai×(α, δ, ψ, ι, d) = Ai×(α′, δ′, ψ′, ι′, d′)(6.11)

And:

(6.12) ∆(α, δ, tc) = ∆(α′, δ′, t′c)
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There are 6 independent variables, with a total of 3 constraints for a 1 detector net-

work, 6 constraints for a 2 detector network and 9 constraints for a 3 detector network.

Using the Quadrupole approximation, and to keep the same likelihood values, I will

try to keep the amplitude of the signal constant for each detector i:

(6.13) R2
i = A2

i+ + A2
i×

constant. This gives in the 3 detector network three additional constraints to the time

delay constraints, and leads to a system of 6 equation and 6 variables. The solutions form

a set of measure zero as expected, see for instance the narrow blobs (no lines nor extended

surfaces) in Fig. 6.1. (The posterior distribution is composed of two blobs instead of two

points because of the finite signal-to-noise ratio.)

6.1.3. Solution

Starting from a set of parameters α, δ, tc, ψ, ι, d, we want to compute a new set α′, δ′, t′c, ψ
′, ι′, d′,

which conserves Eq. 6.13 and satisfies Eq. 6.12. We compute the R2
i from Eq. 6.13. Using

only Eq. 6.12 for each of the three detectors gives the new values α′, δ′, t′c from geomet-

ric arguments. The procedure consists of reflecting the sky position across the plane of

the detectors and computing the corresponding tc. This procedure is described in the

literature, see for instance [13] and references therein.

We know have the values of α′, δ′, t′c and:
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Fi+(α′, δ′, ψ′) = xi(α
′, δ′) cos(2ψ′) + yi(α

′, δ′) sin(2ψ′)= F ′i+(ψ′)(6.14)

Fi×(α′, δ′, ψ′) = yi(α
′, δ′) cos(2ψ′)− xi(α′, δ′) sin(2ψ′)= F ′i×(ψ′)(6.15)

In practice to determine the values of x′i and y′i, I just use:

Fi+(α′, δ′, 0) = xi(α
′, δ′)(6.16)

Fi×(α′, δ′, 0) = yi(α
′, δ′)(6.17)

We can now write:

(6.18) R2
i = A2

i+ + A2
i× =

(
−1 + cos2(ι′)

2 d
F ′i+(ψ′)

)2

+

(
cos ι′

d
F ′i×(ψ′)

)2

I arbitrarily choose detectors 1 and 2 to write:

(6.19)
R2

1

R2
2

=
(1 + cos2(ι′))

2
F ′1+(ψ′)2 + 4 (cos ι′)2 F ′1×(ψ′)2

(1 + cos2(ι′))2 F ′2+(ψ′)2 + 4 (cos ι′)2 F ′2×(ψ′)2

And detectors 2 and 3 to write:

(6.20)
R2

2

R2
3

=
(1 + cos2(ι′))

2
F ′2+(ψ′)2 + 4 (cos ι′)2 F ′2×(ψ′)2

(1 + cos2(ι′))2 F ′3+(ψ′)2 + 4 (cos ι′)2 F ′3×(ψ′)2
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Eq. 6.19 can be solved for (cos ι)2 to give:

(cos ι′)2 =
R2

1

(
2F ′2×(ψ′)2 + F ′2+(ψ′)2

)
−R2

2

(
2F ′1×(ψ′)2 + F ′1+(ψ′)2

)
F ′1+(ψ′)2R2

2 − F ′2+(ψ′)2R2
1

(6.21)

− 2

√√√√ (
F ′2×(ψ′)2R2

1 − F ′1×(ψ′)2R2
2

)(
F ′2+(ψ′)2R2

1 − F ′1+(ψ′)2R2
2

)2

×

√√√√(R2
1

(
F ′2×(ψ′)2 + F ′2+(ψ′)2

)
−R2

2

(
F ′1×(ψ′)2 + F ′1+(ψ′)2

))(
F ′2+(ψ′)2R2

1 − F ′1+(ψ′)2R2
2

)2

Plugging this solution into Eq. 6.20 gives the equation for ψ′, simple linear equation

of cos(4ψ′) and sin(4ψ′):

0 = (R2
3x

2
2y

2
1 −R2

2x
2
3y

2
1 −R2

3x
2
1y

2
2 +R2

1x
2
3y

2
2 +R2

2x
2
1y

2
3 −R2

1x
2
2y

2
3) cos(4ψ′)(6.22)

+ (−R2
3x1x

2
2y1 +R2

2x1x
2
3y1 +R2

3x
2
1x2y2 −R2

1x2x
2
3y2 +R2

3x2y
2
1y2

−R2
3x1y1y

2
2 −R2

2x
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2
2y3
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2
3 −R2

1x2y2y
2
3) sin(4ψ′)

Which I rewrite:

(6.23) 0 = a cos(4ψ′) + b sin(4ψ′)

And the solution is then:
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ψ′ =
1

2
arctan

b− a
√

a2+b2

a2

a


or

ψ′ =
1

2
arctan

b+ a
√

a2+b2

a2

a

(6.24)

Only one of the two solutions of Eq. 6.24 when plugged into Eq. 6.22 satisfy 0 ≥

cos(ι′)2 ≤ 1.

The distance d′ can be computed using Eq. 6.13 for any given detector:

(6.25) d′ =

√(
1+cos2(ι′)

2
Fi+(α′, δ′, ψ′)

)2

+ (cos (ι′)Fi×(α′, δ′, ψ′))2

Ri

6.1.4. Results from the jump proposal

I have implemented the equations described in Section 6.1.2 as a proposal in a Markov

chain Monte Carlo sampling code. I present the effect of including this proposal ver-

sus the old proposal including only the sky position and time parameters in Fig. 6.2 for

the distance parameter and Fig. 6.3 for the inclination parameter. I injected a known

waveform from a non-spinning binary neutron star system (m1 = 1.8 M�, m2 = 1.6 M�),

computed with post-Newtonian expansions, into simulated LIGO and Virgo noise. The

MCMC attempts to recover the posterior density using an equivalent frequency-domain
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template model. In both simulations I started in the reflected extrinsic parameter posi-

tion with respect to the true position. While the chain using the standard sky reflection

proposal (green) gets stuck in the wrong mode, the chain using our improved proposal

(blue) instantly finds the correct mode and is able to down-weight the wrong mode by

proposing and rejecting jumps towards it. Here the blue distribution is the correct proba-

bility density function of the problem, with the dot-dashed red line marking the injection

value.

Both cases use parallel tempering with 8 chains each and a maximum temperature of

10.0, which does not help to find the correct mode of the distribution by itself. Other

general improvements on the Markov chain Monte Carlo algorithm such as differential

evolution require some past samples of the chain to be in the correct location in order to

be helpful, and as such will need a proposal akin to the one described here. Both analysis

used a physically motivated prior, for instance uniform in inclination and volume. Small

distance have then a lower prior value, but the likelihood of the wrong mode at the shorter

distance is actually high enough for both modes to have a comparable maximum posterior

value (but the correct mode as a greater posterior volume).

This proposal allows for a much better exploration of the extrinsic parameter space

for non-spinning gravitational wave signals. It should still be helpful in the spinning

case for which leading order effects are equal to the non-spinning case in most occasions.

Continuing this work, it may be possible that using an approximation beyond Quadrupole

instead of Eq. 6.13 leads to a better handle the spinning case where there is not simple

relation between H+ and H×. Preliminary investigations have shown correlations between

spin parameters and extrinsic parameters due to the precession of the orbital plane in



108

0 1000 2000 3000 4000 5000 6000
Iteration number

1

2

3

4

5

6

7

8

9

10

d
is

t

Figure 6.2. Plots of the distance samples from two independent chains as
function of iteration number (left panel), using the standard sky reflection
proposal (green), and my new proposal (blue) described in Section 6.1.2,
and the corresponding sampled distributions (right panel). Both chains
start in the wrong mode, see Section 6.1.4. The new proposal enables the
chain to find and correctly weight both modes, and eventually sample the
probability density function. The dot-dashed red line marks the injection
value.

spinning systems. It may then be necessary to include some intrinsic parameters to

construct a more efficient proposal for spinning analyses.



109

0 1000 2000 3000 4000 5000 6000
Iteration number

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

io
ta

Figure 6.3. Plots of the inclination samples from two independent chains
as function of iteration number (left panel), for the standard sky reflection
proposal (green), and my new proposal (blue) described in Section 6.1.2,
and the corresponding sampled distribution (right panel). Both chains start
in the wrong mode, see Section 6.1.4. The new proposal enables the chain to
find and correctly weight both modes, and eventually sample the probability
density function. The dot-dashed red line marks the injection value.
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CHAPTER 7

The power of the Bayes factor to distinguishing between

spinning and non-spinning compact binary coalescences

Thanks in part to the work presented in this dissertation, it has now been accepted

within the LIGO-Virgo Collaboration that in order to extract astrophysical parameters of

source systems in Advanced LIGO/Virgo data, spin effects have to be included when doing

parameter estimation analysis. Given the complexity inherent to the high dimensions and

strong correlations of the spinning parameter space, one can ask what limits our ability

to distinguish non-spinning versus spinning signals. One way to answer this question is to

explore when a non-spinning signal becomes indistinguishable from a spinning signal. I

am using the Bayesian inference code to compute evidences for non-spinning and spinning

models on various injections, and to try to assess the location in parameter space where

non-spinning signals can hide.

7.1. Simulation setup

The simulation described in this section consists on injecting a signal with and with-

out spin into synthetic advanced detector noise simulated from two collocated Advanced

LIGO detectors in the Hanford site, one Advanced LIGO detector in the Livingston site

and one Advanced Virgo detector in the Pisa cite. I then compute the evidence for

the spinning model and the non-spinning model by using the same template, fixing the
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spin parameters to zero. For the work in this section I am using an inspiral-only, post-

Newtonian template, with phase effects up to 3.5pN and spin effects included up to 2.5pN

using the SpinTaylorT4 approximant (STPN, see table 2.1). It is important for this type

of study to use the same template family, as differences such as waveform termination

criterions can lead to differences in evidences that would contaminate the difference due

to the physical effect I am trying to measure. (For instance, templates generated in the

frequency domain on the one hand, and the time domain on the other hand will have by

nature different termination criterions and different effective length).

The discriminating power of the Bayes factor in the case of the spinning model versus

the non-spinning model (Bspin,nospin) will depend on the parameters of the signal present in

the data. This is a fifteen-dimensional parameter space and in this study I am presenting

results on only a few subspaces. The signal injected in the following analysis comes

from a binary of masses m1 = 8 M� and m2 = 4 M�. For the spinning injections, the

spins are set to a1 = 0.7 and a2 = 0.7, misaligned with the orbital angular momentum

by ~S1 · ~L = tilt1 = 0.85 rad and ~S2 · ~L = tilt2 = 0.62 rad. I vary the distance and

corresponding signal-to-noise ratio, the inclination of the orbital angular momentum with

the line of sight (defined at the beginning of the generated signal, at 30 Hz), and the sky

position of this fiducial binary.

7.2. Distinguishing between spin and no spin: results

For a binary system with inclination ι = π/8 rad located at α = 0.65 rad, δ = 0.58 rad

at GPS time tc = 894383679 s, I computed the Bayes factor of the spinning model versus
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Figure 7.1. Logarithm of the Bayes factor Bspin,nospin (Eq. 1.44) of the
spinning model versus the non-spinning model as a function of signal-to-
noise ratio. Bayes factors are obtained on a non-spinning injection (blue)
and the corresponding spinning injection (green), described in Section 7.1.
The error bars are obtained by bootstrapping. The inclination is fixed at
ι = π/8 rad.

the non-spinning model varying the distance as a proxy to vary the signal-to-noise ratio.

The results are summarised in Fig. 7.1.

In this case, the spinning hypothesis becomes undistinguishable from the spinning

hypothesis at a signal-to-noise ratio of about 20. Further investigations at random in-

clinations and sky positions seem to agree on average with this value, see for instance
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Figure 7.2. Probability density functions for the spin magnitude of the
most massive component of the binary a1, on a non-spinning injection
(right) and a spinning injection (left, the injection value is marked by the
vertical red dashed line) for the leftmost injections in Fig. 7.1. Even through
at this injection signal-to-noise ratio of 10 the Bayes factor cannot distin-
guish between the spinning and non-spinning hypotheses, the probability
density function favours a spin of zero on the non-spinning injection and a
significant spin on the spinning injection.

Fig. 7.3. However some special configurations can lower somewhat the threshold, see for

instance the inclination in Fig. 7.4. This number is to be compared with what is con-

sidered a minimum signal-to-noise ratio threshold of 8 for a detection. Even though for

signal-to-noise ratios below 20 the Bayes factor alone cannot distinguish between the two

hypotheses, looking at the individual probability density functions in Fig. 7.1 it is possible

to get some constraints on the spinning nature of the signal.

A spinning signals sends time-varying amount of power in the two polarisations due to

the precession of its orbital plane. The orbital plane of a non-spinning signal is constant.

This qualitative difference between the two cases becomes significant as the inclination

of the signal gets more and more towards edge-on. (In other words, it is easier to see
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Figure 7.3. Logarithm of the Bayes factor Bspin,nospin (Eq. 1.44) of the
spinning model versus the non-spinning model as a function of inclination.
Bayes factors are obtained on a non-spinning injection (blue) and the cor-
responding spinning injection (green), described in Section 7.1. The error
bars are obtained by bootstrapping. The signal-to-noise ratio is fixed at 20.

if the plane of the orbit is wobbling by seeing it from the side). In Fig. 7.3 I show the

logarithm of the Bayes factor as a function of inclination for a fixed signal-to-noise ratio

of 20. The distance is scaled down as the inclination increases to keep the signal-to-noise

ratio constant.
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Figure 7.4. Logarithm of the Bayes factor Bspin,nospin (Eq. 1.44) of the
spinning model versus the non-spinning model as a function of inclination.
Bayes factors are obtained on a non-spinning injection (blue) and the cor-
responding spinning injection (green), described in Section 7.1. The error
bars are obtained by bootstrapping. The distance is fixed at d = 237 Mpc
which results in the signal-to-noise ratio labelled on top of the graph.

The combined effect of the signal-to-noise ratio and inclination are show in Fig. 7.4

where I fixed the distance at d = 237 Mpc.

As the inclination gets more and more towards edge-on, the signal-to-noise ratio be-

comes too low for the Bayes factor to distinguish between the spinning and non-spinning
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models. Additionally, injecting the signal from five different sky locations did not change

the Bayes factor beyond the statistical error.

7.3. Conclusion and further work

This work allows to quantify the signal-to-noise ratio cut-off of the Bayes factor dis-

criminating power as a function of inclination. Further studies are needed to get a more

accurate estimate. Beyond sampling more densely the parameter space explored in this

study, further work should explore the following:

• The effect of merger and ring-down is to be investigated. The spin effects of

a waveform are stronger near its end, where the inspiral-only templates used in

this study are inaccurate and break down. There are no precessing template with

merger and ring-down available at the time of this writing, but recent advances

in numerical relativity should remedy this. In addition, since precession seems to

be the biggest contributing effect, a single spin analysis may be accurate enough

and simpler to execute.

• This analysis should be made on injections of varying masses and spin values. I

only did a coarse preliminary investigation with random masses and spin, which

was consistent with the findings above, but more complete work is needed.

• In the one detector case, the sky position of the injection matters in order to

distinguish spin due the strong asymmetry of the antenna beam pattern [69]. In

the case of a three-site network, the overall sensitivity pattern is more spherically

symmetric, which may explain the finding in this study that the Bayes factors
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can equally well discriminate in five random sky locations. However a denser sky

coverage is needed to fully answer this point.

• This investigation was done on ideal, stationary and Gaussian noise. However,

as soon as real Advanced LIGO-Virgo noise is available, the robustness of these

results has to be verified.
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CHAPTER 8

Collaborative projects

The work described in this chapter consists of projects where I had a significant con-

tribution, but I did not lead myself.

8.1. Estimating parameters of coalescing compact binaries with proposed

advanced detector networks

One of the goals of gravitational-wave astronomy is simultaneous detection of gravitational-

wave signals from merging compact-object binaries and the electromagnetic transients

from these mergers. With the next generation of advanced ground-based gravitational

wave detectors under construction, I participated in the examination of the benefits of

the proposed extension of the detector network to include a fourth site in Australia or In-

dia in addition to the network of Hanford, Livingston and Cascina sites. Using Bayesian

parameter-estimation analyses of simulated gravitational-wave signals from a range of

coalescing-binary locations and orientations, I studied the improvement in parameter es-

timation. It was found that a fourth detector site can break degeneracies in several

parameters; in particular, the localisation of the source on the sky is improved by a factor

of 4, with more modest improvements in distance and binary inclination estimates [70].

This enhanced ability to localise sources on the sky will be crucial in any search for elec-

tromagnetic counterparts to detected gravitational-wave signals. The study helped the
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National Science Foundation deliver an approval of the LIGO South project, in wait of

confirmation by the Indian government.

8.2. Sky localisation accuracy of gravitational-wave data analysis

The gravitational-wave detection with the most confidence would very possibly be

one accompanied with and electromagnetic counterpart. Intrinsically, gravitational-wave

detectors are not pointing instruments and are sensitive to (almost) the entire sky. The

best scenario would be a gravitational-wave detection informing electromagnetic obser-

vatories where to point, and being able to do so as quickly as possible. A LIGO-Virgo

collaboration-wide effort is ongoing trying to understand the tradeoffs between accuracy

and speed for several available sky localisation techniques. In particular, Bayesian infer-

ence techniques stand at one end of the spectrum, being the slowest but also the most

accurate, and hence most practical in identifying hosts galaxies electromagnetically. I am

part of a group hoping to quantify the tradeoffs faster methods are making.

8.3. Binary neutron stars, measurements of mass and tidal effects

Double neutron-star systems are of special interest in gravitational-wave astronomy

since one can safely ignore their spins (observed values are well below the dynamically in-

teresting spin regime), making detection and parameter estimation easier. Also, accurate

neutron-star mass estimates are the first step towards gravitational-waves observations

helping to solve the puzzle of neutron-star equation of state. However it is not clear ex-

actly what the most accurate but realistic neutron-star mass measurements and equation-

of-state constraints we can get out of the advance detector network are as a function of

the signal-to-noise ratio. I am part of the effort trying to answer this question.
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8.4. Effects of amplitude correction in gravitational-wave recovery templates

One common approximation in parameter estimation of gravitational waves using post-

Newtonian templates is to only compute post-Newtonian expansion terms for the phase

of the model template. But one can also compute the proper terms for its amplitude,

which can potentially reveal more information from the data, and break degeneracies

present in phase-only expansions. Several simulation campaigns are ongoing to estimate

the parameter-estimation benefits of including up to 1.5pN corrections in the amplitude

of the signal model.
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