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Sommario

Questa tesi affronta, seguendo un approccio ingegneristico, due problemi di fondamentale

importanza nell’ambito dell’esperimento LIGO-Virgo per la rivelazione di onde gravitazion-

ali attraverso antenne interferometriche a grande base. I problemi affrontati riguardano le

due principali sorgenti di rumore, che limitano attualmente la sensibilitá degli interferometri

ai segnali gravitazionali.

La prima sorgente di rumore considerata fa riferimento alla presenza nei dati di uscita

di frequenti segnali transitori spuri, glitch, di origine ambientale o strumentale. I glitch

riducono enormemente l’efficienza di rivelazione, specialmente nella ricerca di onde gravi-

tazionali impulsive non modellate, burst. Al fine di affrontare il problema dei glitch mediante

gli strumenti della teoria classica della rivelazione e della stima, ho sviluppato un modello

analitico per il rumore in uscita agli interferometri, e, in accordo a tale modello, ho proget-

tato due strategie (localmente) ottime, insieme alle corrispondenti versioni robuste rispetto

a incertezze e/o fluttuazioni delle caratteristiche del rumore, per la rivelazione di bursts

gravitazionali non modellati mediante i tre interferometri che costituiscono l’osservatorio

LIGO-Virgo. Tali strategie sono state testate sia in rumore simulato che nel rumore effetti-

vamente presente nel canale dati degli interferometri LIGO, risultando migliori in prestazioni

rispetto a quelle basate sull’ipotesi di rumore Gaussiano, che adottano procedure euristiche

ad hoc (data quality flagging) per individuare ed eventualmente escludere (vetoing) i dati

corrotti da glitch.

La seconda sorgente di rumore considerata ha origine nel coating dielettrico delle masse di

prova dei due bracci degli interferometri. Il rumore termico del coating é la componente di

rumore dominante nella banda di maggiore sensibilitá delle antenne interferometriche. Uti-

lizzando gli strumenti classici per lo studio di scattering elettromagnetico da strutture planari

stratificate, ho formulato una procedura di ottimizzazione per progettare coating a minimo

rumore termico, che soddisfino le specifiche di riflettivitá a una (disegno monocroico) o due

(disegno dicroico) lunghezze d’onda. Utilizzando tale procedura, ho in particolare progettato

due prototipi di coating: il primo prototipo, monocroico, é stato realizzato dai Laboratoires

des Materiaux Avances del CNRS (Lyon, FR), ed il relativo rumore termico é stato misurato
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nei laboratori LIGO del California Institute of Technology (Pasadena, USA). I risultati ot-

tenuti sono in eccellente accordo con i valori teorici attesi; il secondo prototipo, dicroico, é

stato ugualmente realizzato e le misure sperimentali sono in corso.

Parole chiave: rivelazione interferometrica di onde gravitazionali, rumore impulsivo, rive-

lazione in rete di sensori, rumore termico, coating dielettrici ottimizzati.



Resume

This thesis develops an engineering approach to two problems relevant to the LIGO-Virgo ex-

periment for the detection of gravitational waves using large baseline optical interferometers.

These problems are related to the two dominant noise sources, which limit the instruments’

sensitivity, and whose modeling and reduction is the target of this study.

The first considered noise source is related to the presence at the output channel of frequent

spurious transient signals, the glitches, of environmental or instrumental origin. Glitches

seriously spoil the detection efficiency, especially in the search of unmodeled bursts of grav-

itational radiation. To attack this problem in the frame of classical theory of detection and

estimation, I developed an analytical model for the interferometer noise, and designed two

(locally) optimum strategies, together with their robust implementations which are tolerant

against incomplete knowledge and/or fluctuations of the noise features, for the detection of

gravitational wave bursts in the presence of glitches, using the LIGO-Virgo network of three

interferometers. These strategies have been tested both in simulated and in real LIGO noise,

and featured better performance compared to those based on the Gaussian noise assump-

tion, currently adopted in the LIGO-Virgo data analysis pipelines, which rely on additional

heuristic ad hoc procedures of data quality flagging and/or vetoing.

The second considered noise source arises in the reflective dielectric coatings laid on top of

the test masses, placed at the two ends of both interferometers’ arms. Coating thermal noise

is the dominant noise component in the most sensitive frequency band of interferometric

antennas. Capitalizing on the canonical approach to the study of the EM wave scattering

from plane layered media, I formulated an optimization strategy to design coatings, featuring

a minimum amount of thermal noise, while exhibiting the required reflectivity level, for the

case of single (monochroic design) and double (dichroic design) wavelength operation. Using

the formulated strategy, I designed two coating prototypes: the first monochroic design was

manifactured by the CNRS Laboratoires des Materiaux Avances (Lyon, FR), a member of

the LIGO-Virgo cooperation, and its thermal noise was measured at California Instuitute

of Technology (Pasadena, USA), yielding results in excellent agreement with theoretical

predicitions; a second dichroic design was also prototyped, and is currently under test at
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Caltech.

Keywords: interferometric gravitational wave detectors, impulsive noise, multiple-sensor

detection, thermal noise, dielectric coatings optimization.
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Preface

At the beginning of my PhD program, I became a memebr of the american-european LIGO-

Virgo experiment, aimed at the detection of Gravitational Waves (GWs) through large-

baseline interferometric antennas. In the LIGO-Virgo context, I studied two engineering

issues of crucial importance for the experiment. These are in fact connected to the two

dominant sources of noise, limiting the sensitivity of the instruments, i.e. the presence of

spurious glitches at the output channel, and the thermal noise due to the dielectric coating,

laid on top of the mirror test masses terminating the interferometer arms.

• The detection efficiency is seriously spoiled by the frequent occurrence of glitches, i.e.

spurious transient signals due to environmental or instrumental disturbances of differ-

ent origin. Glitches can mimic the effect of GWs, especially those belonging to the

class of GW Bursts, i.e. bursts of gravitational radiation for which no model for the

expected waveform is available yet. Currently implemented detection algorithms are

designed ignoring such a disturbance, but equipping the data with quality flags, and

applying a posteriori vetoes on detected events.

I proposed a new way to tackle this problem, based on the developement of an ana-

lytical physically-driven model for the glitch noise component, which allows to derive

a more accurate statistical description of the total noise corrupting the output of the

interferometric antennas. Starting from the developed noise model, I designed two

locally (in the weak signal limit) optimal detection strategies for GW Bursts, together

with robust implementations which are tolerant against incomplete knowledge or fluc-

tuations of the noise features. These strategies have been tested on simulated noise,

first, and, then, on real LIGO noise. Furthermore, an existing pipeline, designed for

the detection of GW Bursts, has been modified according to the proposed approach

and tested. All experimental results agree with the expectations, proving the effective-

ness of the developed theory in improving the detection efficiency in the presence of

glitches, whose effect turns out to be sensibly reduced.

The experimental part of this activity has been conducted in collaboration with prof.
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S. Mohanty and S. Mukherjee from the University of Texas at Brownsville, where I

spent six month supported by a 2009/2010 Fulbright fellowship for Visiting Student

Researchers.

• Thermal noise due to dielectric coatings laid on top of the test masses is the dominant

noise contribution in the most sensitive frequency band of the interferometric anten-

nas. Therefore its reduction is crucial in increasing their sensitivity. Thermal noise

is caused by a fluctuational redistribution of thermal energy inside each test masses.

This energy redistribution produces a fluctuational change of the test masses’ shape

and thence a change of the position of their mirrored face, which mimics a GW-induced

motion.

In order to reduce such noise constribution, I formulated a systematic procedure to

design optimized coatings, featuring minimal thermal noise, at the prescribed reflectiv-

ity level at one (monochroic design) or at two (dichroic design) operation wavelengths.

Indeed the initial coating designs, based on the standard Bragg (quarter-wavelength)

multilayer structure, although being optimal as far as concerns the optical require-

ments, were found to not achieve the minimum of the thermal noise.

According to the formulated optimization strategy, two prototypes have been realized

by the Laboratoires des Materiaux Avances in Lyon (France), designed for the sin-

gle and double wavelength operation, respectively. Experimental measurements on the

monochroic prototype have been done at Caltech, Pasadena (USA), resulting in perfect

agreement with theoretical expectations. Measurements on the dichroic prototype are

currently under work at Caltech. The proposed optimization procedure will be likely

adopted to design coatings for the advanced configuration of LIGO interferometers.

The results obtained during theses activites have been published in 5 papers on international

scientific journals, in 6 LIGO technical reports, and presented at 6 international and 5 na-

tional conferences. Furthermore, I published 20 papers on internation scientific journal with

the LIGO-Virgo collaboration.

In 2008 I obtained the honorable mention ”Top three Junior Presentations” at XCIV na-

tional meeting of Societa Italiana di Fisica.

In 2009/2010 I obtained the Fulbright fellowship for Visiting Student Researchers.

I have been members of examination committes for Electromagnetic Fields classes.

I would like to thank my tutor, prof. Innocenzo M. Pinto, who always believed in my capa-

bilities, for his support during my PhD activities.
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I am also very thankful to all the people of the Waves group at University of Sannio, es-

pecially to ing. A. De Vita, prof. A. Borźı, ing. G. Castaldi, prof. V. Galdi and dr. M.

Wogrin, for their friendship and wise suggestions.

I acknowledge the Fulbright program and the tutors during my visit at University of Texas,

prof. S. Mohanty, prof. S. Mukherjee and prof. M. Diaz.

I heartly thank Marco, and my great family.

Last but not least, I thank God, Who made all this possible.

The present dissertation is organized as follows:

• chapter 1 deals with the basic properties of Gravitational Waves, and the main classes

of astrophysical sources. The principles at the base of GW antennas are introduced,

as well as the dominant sources of noise corrupting their output channel;

• chapter 2 deals with the main features of the noise occurring at the output of the

interferometric antennas. The developed model for the glitch component is described

in detail, as well as it statistical properties;

• chapter 3 treats the detection of unmodeled gravitational wave bursts in a multiple-

antenna context. Two locally optimum detection strategies are discussed;

• in chapter 4 numerical results about the performance of detection strategies proposed

in chapter 3 are shown, evaluated both in simulated and in real LIGO noise;

• chapter 5 deals with the theory of the thermal noise in LIGO test masses, starting

from the basic principles;

• in chapter 6 the optimization strategies to design minimal thermal noise coatings for

LIGO test masses are formulated in both single and double wavelength operation;

• chapter 7 holds the conclusions and a discussion about the obtained results.
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Chapter 1

Gravitational Waves

In this Chapter, I attempt a minimal outline of General Relativity theory, according to

which Gravitational Waves (GWs) exist. The main properties of the gravitational radiation

are then described, as well as the astrophysical systems which are supposed to emit GWs.

Interferometric GW antenna and the main sources of noise corrupting their output are

introduced.

19



Gravitational Waves

1.1 Historical Outline

The existence of Gravitational Waves (GWs) is one of the most interesting prediction of the

theory of General Relativity (GR) [126], formulated at the beginning of the XX century by

Albert Einstein.

Before Einstein’s theory, Newton’s theory of gravity stated that, when a mass changes

position, the entire gravitational field throughout the universe changes instantaneously, and

the resultant gravitational forces are instantly changed accordingly.

On the contrary, Einstein’s Theory of General Relativity asserts that no information can

travel faster than the speed of light, including information on the positions of mass in the

universe, which is communicated through the gravitational field. GR theory predicts that

a change in gravitational field will travel through the universe at the speed of light as a

gravitational wave.

In GR, gravity is described as curvature of the space-time, and in the presence of such

curvature objects move along geodetics which are no more straight lines. The dual role of

mass, as a measure of the inertia and as source of gravitation, which stays unexplained by

the Newton’s theory, is the key concept in the GR.

The existence of gravitational radiation has not been directly proved nor disproved up to

now. Einstein himself was doubtful about the possibility to detect a GW, due to its extreme

weakness. This challenge was accepted by Joseph Weber from University of Maryland, who

built the first antenna for detecting GWs, based on measuring their effect on the fundamental

mode of an alluminium cylinder [105]. Over 10 years he built different resonant antennas

placed in laboratories far apart, and tried to indentify coincident events, that could be

correlated with events of cosmic origin. Although his claims of detecting some events were

then disproved, he opened a way to new experiments. The italian research has played a

significant role in this context, first with the group of Edoardo Amaldi, and now with the

Virgo experiment.

Until now, the only valid, though indirect, evidence of the existence of GWs has been ob-

tained through the observation over a period of several years of the binary pulsar PSR1913+16

by Hulse and Tylor, who won for this study the Nobel prize in 1993 [94]. They measured the

orbital parameters of the binary system and the observed orbital period decrement turned

out to be consistent with GW energy loss within a fraction of 1%.
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1.2 GW Astronomy

Whenever a new observational window to the physical Universe has been opened, as e.g. with

the birth of radio-astronomy, and the observation of the nonvisible part of the EM spectrum,

our knowledge of it has substantially evolved. However the actual knowledge about the

Universe is almost entirely based on the observation of the electromagnetic radiation. The

direct observation of GWs of cosmic origin is expected to provide the next (r)evolution.

Indeed, differently from the electromagnetic radiation, gravitational radiation can travel

in space with only minimal absorbtion by the matter, carrying information about cosmic

systems, which would be otherwise concealed by the opacity of matter to the EM radiation.

Among the added or new insights brought by GW astronomy, I quote:

• Detailed information on the properties of neutron stars (henceforth NS), including the

equation of state of hadronic matter;

• Direct probing of the physics of collapsed objects (black holes) (henceforth BH);

• Tests of general relativity under extreme strong-field conditions;

• Measurement of the propagation speed and polarization properties of gravitational

radiation;

• Insights into the evolution of the early universe, from measurement of relic primordial

gravitational waves;

• Study of galactic evolution driven by the massive black holes forming at their centers;

In addition, there is quite a potential for discovering new and unanticipated phenomena.

1.3 GW Basics

A fundamental concept of the Special Theory of Relativity [14] is that the interval ds,

defined in eq. (1.1), between two points in the space-time structure is invariant for all

inertial reference frames,

ds2 = dr2 − c2dt2 = ηαβdx
αdxβ, (1.1)

where dr is the space distance and dt the time interval between the two events, c is the

speed of light, ηαβ = diag {1, 1, 1,−1} is the Minkownsky tensor, x = {rx, ry, rz, ct}, and

Einstein’s rule of summation over repeated suffixes/superfixes α, β = 0, 1, 2, 3 is implied.
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The invariance of ds is tantamount to state the invariance of the speed of light among all

inertial reference observers.

Due to the Galilei’s equivalence principle, gravity is locally canceled in a freely falling

reference frame (and in any frame obtained thereof by an inertial tranformation), since all

bodies fall in the same way under the same gravitational field. Hence, in such a frame eq.

(1.1) is valid. Applying a coordinate transformation, from the freely-falling reference xα to

the laboratory one ξα, where gravity is not canceled, ds reads

ds2 = gµνdξ
µdξν , (1.2)

where gµν = ηαβ
∂xα

∂ξµ
∂xβ

∂ξν . In the presence of gravity, spacetime (the events continuum) is thus

described as a 4-dimensional Riemannian manifold, with metric tensor gµν . The presence of

gravity implies the lack of a global (i.e. non local) transformation reducing the tensor gµν

to ηαβ, and this happens only if the space-time structure presents a curvature.

Einstein’s equations connect gµν to the mass and energy distributions of sources of gravity,

and they are highly complex and non linear. The interested Reader may refer to [109] for a

complete discussion. However, in a perturbative approach, it is possible to write

gµν = ηµν + hµν , (1.3)

where hµν represents a deviation from the Minkowsky metric, due to the presence of gravity.

In the weak field regime, Einstein’s equation can be linearized, and, as he proved first,

they admit as solutions transverse plane waves, propagating without dispersion at speed c.

A gauge freedom is connected to the choice of the laboratory reference frame. A particular

gauge makes very clear the representation of these waves, viz. the transverse traceless (TT)

gauge. With this choice of coordinates, in the weak field regime, Einstein’s equation becomes

an ordinary wave equation [109] (
∇2 − 1

c2
∂2

∂t2

)
hµν = 0. (1.4)

The metric deviation of a plane gravitational wave propagating in the z-direction can be

cast in the form

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (1.5)
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Gravitational waves are accordingly transverse, and are superpositions of two fundamental

linear polarization states, uniquely determined by the functions h+(z − ct) and h×(z − ct)

in (1.5). These latter, also called the TT components of hµν , are given by

h(TT )(r, t) =
2G

c4r
Q(TT )

(
t− r

c

)
, (1.6)

where Q is the reduced quadrupole moment of the source, viz.

Qij(t) =

∫
d3x

(
xixj −

1

3
x2δij

)
ρ(r, t), (1.7)

ρ being the source mass density.

The analogies between (weak-field) gravitational waves and electromagnetic (EM) waves

are evident. There are, however, several differences. The GW field is proportional to the

retarded quadrupole source moment (instead of the dipole, as in EM field). In addition,

the source motion is built in the (full, nonlinear) wave equations (Bianchi identities, [109]).

Finally, absorption and dispersion of GW by ordinary matter is extremely weak (as a direct

consequence of the equivalence principle [109]).

The following back of an envelope order of magnitude estimates of GW amplitude, fre-

quency and decay time as a function of the gross source parameters may be derived from

the above formulas, under extreme condition (compact, ultrarelativistic sources) [109]:

h ∼ 10−21
(

15Mpc
r

) (
M

2.8MS

)2 (
90Km
r

)
,

f ∼ 102
(

M
2.8MS

)1/2 (
90Km
r

)3/2
Hz,

τ ∼ 0.5
(

90Km
r

)−4
(

M
2.8MS

)−3

s,

(1.8)

where MS is the solar mass and r is the source-antenna distance.

Monochromatic weak GWs exert transverse tidal forces, which distort a ring of freely-

falling test particles in a plane orthogonal to the wave vector as shown in Figure 1.1. This

can be properly regarded as a wiggling of the test-particles geodesics.

If L is the diameter of the particles ring, the change ∆L due to the impinging GW, with

amplitude h, is

∆L = hL. (1.9)

A similar wiggling also affects the electromagnetic lines of force, and can be described as a

GW induced modulation of the dielectric properties of vacuum [109].
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Figure 1.1: A plane circular ring of test particles under the action of a plane monochromatic GW with
angular frequency ω = 2π/T

From eqs. (1.8) it is possible to compute roughly the amplitude of GWs produced by

typical astrophisical events, where very massive objects are involved. This turns out to be

in the range 10−26 − 10−21, requiring a very sensitive detection instrument.

1.4 GW Antennas

As already mentioned, GWs interact with matter by compressing objects in one direction

while stretching them in the perpendicular direction, with a frequency and an amplitude

connected to the properties of the wave. GW detectors are based on this interaction.

The first experimental apparatus for detecting GWs were acoustic detectors built by J.

Weber [105]. A few acoustic detectors are still in operation [1]. Acoustic detectors are high-Q

(cryogenic) mechanical resonators set into ringing by the action of a GW. Typical resonance

frequencies range from 800 Hz to 1 KHz, with bandwidths ∼ 10 Hz. Plans for wideband 2nd

generation acoustic detectors are presently in the R&D stage [62].

A second class of GW antennas, which are the most sensitive detectors presently in oper-

ation, are based on Michelson interferometers [130], and their operation scheme is schetched

in Figure 1.2. Interferometers (IFOs) have both higher sensitivity and larger bandwidhth

than acoustic resonators.

An interferometer performs a (differential) measure of the stretching-and- squeezing in-

duced by a GW in the distances between two couples of mirrors (test masses), which form

two optical cavities with orthogonal axes, coupling optimally to the quadrupole GW field.

A coherent monochromatic light beam is used to read off the differential displacement: it

is split in two beams traversing the two optical cavities and then recombining at the pho-
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Figure 1.2: The bare-bones of an interferometric GW antenna.

todetector. What is measured in practice is the intensity of the dark fringe, related to the

phase-difference acquired by the recombining beams. If the interferometer arms are of equal

length, the two beams interfere distructively at the photodetector, which sees ideally no

light at all, while they interfere constructively heading back to the laser source. If a GW

impinges the interferometer, it stretches and squeezes alternatively the two arms, producing

difference in the arms length and light intensity modulation at the photodetector, which is

the signature of the GW. In this case the phase difference of the recombined beams is

∆φ = 2π
2∆L

λ
, (1.10)

where ∆L is the difference in length of the two arms and λ is the wavelength of the light.

The differential arm length variation, according to eq. (1.9), is given by

∆L = L(F+h+ + F×h×), (1.11)

where L is the nominal cavity length, and the factors F+,× (which bear some analogy with

the effective height of EM antennas) describe the directional response of the interferometer,

depending on the orientation of the GW polarizations with respect to the IFO arms. To

increase the accuracy in measuring ∆L, actual instruments use Fabry-Perot cavity arms,

where the light beam folds many times, to increase the effective optical path by a factor

equal to the finesse of the cavities [130].

The following interferometric GW detectors are presently operational:

• LIGO - The US Laser Interferometer Gravitational-Wave Observatory built and op-

erated by Caltech and MIT, leading an international Scientific Collaboration [2], con-

sists of three instruments: a 4Km interferometer in Livingston, LA (nicknamed LLO),

and another two (4Km and 2Km long) in Hanford, WA (nicknamed LHO). The two
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sites are about 3000Km apart, and the instruments are engineered so as to support

coherent/coincidence analysis of events. In 2007 the two big LIGOs entered an ex-

tended upgrade phase, toward their advanced configuration (AdvLIGO, [145]), which

is planned to be in operation in both observatories by 2014;

• Virgo - The three kilometer French-Italian detector is located in Cascina (Pisa, IT) [3].

The main difference in Virgo interferometer with respect to LIGO ones is that it uses

a different, very sophisticated seismic isolation system, allowing higher sensitivity at

low frequencies;

• GEO600 - A six hundred meter interferometer constructed by a German-English col-

laboration near Hannover, Germany [4]. Despite its smaller size it incorporates several

advanced features from the beginning, and is being used as a technology testbed for

the next generation instruments;

• TAMA300 - The small (three hundred meter) interferometer operating at the National

Astronomical Observatory in Tokyo was the first to come into operation, in 1999

[5]. The Japanese TAMA Collaboration is presently designing a full scale cryogenic

interferometer [6], of which a 100m prototype has been already demonstrated [81].

An additional large facility, the Einstein telescope [7] is under development.

1.5 GW Sources

Gravitational waves of cosmic origin occupy an extremely wide spectral range, spanning

22 decades, from 10−18 to 104 Hz. In this Section I shall briefly review the main classes

of sources, emitting gravitational radiation in the spectral range accessible to Earthbased

detectors, viz. 101 − 104 Hz, to which the present study strictly applies1. The interested

Reader may address [109] for a complete coverage. GW sources of astrophysical nature

in the IFO observational band may radiate a variety of signals, including bursts, chirps,

long-coherency (quasi-monochromatic) waveforms, and stochastic backgrounds, as briefly

reviewed hereafter.

1Planned space-borne gravitational wave detection experiments, like LISA [8] and DECIGO [137] will be
able to explore the frequency range from 10−4 to 100 Hz.
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1.5.1 Binary Systems

Binary systems consist of two bodies orbiting around each other, through three successive

phases: 1) inspiral, where the orbit shrinks and circularizes adiabatically under the emission

of gravitational radiation; 2) merger, where the binary companion stars eventually collide

and coalesce; and 3) ringdown, where the final object settles into an equilibrium state.

During the inspiral phase, both the amplitude and frequency of the emitted GW rise in a

characteristic way, producing a chirp that sweeps across the detector’s band (from 10 Hz to

∼ 1 KHz during the final 15 min for a NS-NS inspiral). A NS-NS inspiral may be observed

by the LIGO detector (at the current nominal sensitivity) up to a distance of ∼ 20 Mpc

(350 Mpc for advanced-LIGO)2. For BH-BH inspirals, the visibility distance for LIGO may

be 100 to 1000 Mpc, depending on the companion masses. The estimated event rate for

NS-NS coalescences of 10−2 per year in the visibility sphere of the initial LIGO detectors;

the BH-BH rate being ∼ 10 times larger [19]. Advanced detectors will boost the visibility

volume (and event rates) by an expected factor of ∼ 103.

1.5.2 Spinning Neutron Stars

Non-axisymmetric spinning neutron stars will radiate nearly monochromatic GWs at twice

their spinning frequency. NS spinning frequencies span the whole observational window of

Earth based detectors [77]. The fastest spinning known pulsar has a rotation frequency of ∼
1114 Hz [74]. Upper limits on the GW amplitude (set by observing the spindown of known

pulsars, assuming the only mechanism for energy loss to be GW emission) are in the range

10−25 to 10−27, whereby coherent detection would require observations lasting several months

or years [129]. The nearly monochromatic GW signal of a pulsar undergoes a complicated

Doppler modulation at the detector, due to Earths rotational and orbital motion, in a way

which depends on the (unknown, in general) source position in the sky [129]. A worldwide

computer-farm has been recently set up to implement the numerically formidable task of

blind all-sky search of GWs from spinning NS [9].

1.5.3 Stellar Collapses and Supernovae Explosions

The collapse of a massive star, occurring after gravitation implosion overwhelms the pres-

sure sustained through nuclear burning, results in a supernova explosion, leaving a compact

remnant (NS or BH). The process, if sufficiently asymmetric, will produce bursts of GWs.

2One parsec (pc) is the distance traveled by the light in one second, in vacuum
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Extensive numerical simulations of supernova explosions based on general-relativistic hydro-

dynamics exist [44]. However, no such thing as a parametric GW template family is available.

Detection of unmodeled bursts from supernova explosions is complicated by the presence of

impulsive noise (glitches) of instrumental origin, and thus can be effectively implemented

only exploiting coherency among several detectors. Luckily, supernova explosions produce

strong optical and neutrino emissions, which can be used to trigger GW detection [73]. Out

to a distance of 10 Mpc, a supernova event occurs about once per year.

1.5.4 Gamma-Ray Bursters

Gamma-ray bursts (GRB) are the most luminous known astrophysical sources, releasing

about 1051 to 1054 erg in each flash, lasting from 1 to 102 s. Several competing source models

have been proposed [68], sharing consensus that BHs should be involved. The strength of

GWs radiated by GRB is yet uncertain. Estimates range from h ∼ 10−22 to h ∼ 10−25,

depending on the model. Burst of GW associated to GRB are being actively sought [48].

1.5.5 Stochastic GW Background

Similar to the (stochastic) cosmic microwave background, the GW stochastic background

originates from fundamental phenomena in the early Universe (phase transitions, inflation,

higher dimensions, topological defects etc. [116]). It would show up as an additional Gaussian

noise component in the detectors outputs, which correlates in a peculiar direction depen-

dent way [116]. Its strength is measured as a fraction ΩGW of the energy density ρc needed

to make the Universe gravitationally closed. Depending on the cosmological model [116]

ΩGW may range between 10−14 and 10−5. For the presently most credited model, the GW

background should be observable in the frequency range 0.1 to 1 Hz, which falls beyond the

reach of Earth-based detectors. Upper limit on the GW stochastic background are nonethe-

less sought, putting limits to alternative cosmological theories.

In order to detect GW signals buried in noise, accurate knowledge of the signal waveforms

is desirable. Calculating GW radiated waveforms is a difficult task3. Noteworthy successful

paradigms, directly related to the sought sources discussed above, include the analytic post-

3Solving the Einstein equations involves 10 coupled, nonlinear partial differential equations, subject to
dynamically evolving boundary conditions. The calculations are also complicated by the possible occurrence
of singularities [S.W. Hawking and G.F.R. Ellis, The large Scale Structure of Spacetime, Cambridge UK,
Cambridge Un. Press (1973).]. The coordinate system and gauge conditions may be freely chosen, but in
most cases the appropriate choice is not obvious, and may be physically questionable.
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Newtonian modeling of the compact 2- body systems [110], and the numerical studies of BH

mergers [51] and supernova explosions [66]. Gravitational radiation from spinning NS [103],

and the stochastic background of relic GW from the early Universe [116] are also credited as

being reasonably well understood. It should be noted that waveforms may be known except

for the actual values of a number of source parameters. In these cases, a bank of matched

filters is needed to implement the detection and the estimation of parameter [96], which may

be extremely large and computationally expensive. This is the case, e.g., of elliptical binaries

with spinning companions [89], and of spinning NS with unknown location in the sky, [129],

and consequently unknown Doppler modulation of the signal due to the Earths motion.

1.6 Noise Budget in IFOs

Earth-bound IFOs are affected by several sources of noise at the photodetector port in the

absence of a real GW signal. If Sn(f) is the Power Spectral Density of the output noise, this

latter mimics a GW signal whose amplitude spectral density is

hn(f) =
√
Sn(f)

1√
Hz

. (1.12)

This means that a GW to be detected must be at least one order of magnitude above the

noise level, or, equivalently, the Signal to Noise ratio, defined as

SNR =
√

2

∫ +∞

−∞

[
|hGW (f)|2

Sn(f)

]
df (1.13)

must be ≥ 10.

I describe briefly in this Chapter the main sources of noise, limiting the IFO sensitivity

and summing up in the total IFO noise curve, whose typical trend is shown in Figure 1.3.

1.6.1 Seismic Noise

Ground vibrations, due to both human activities and to phenomena of geophysical and

atmospherical nature, is the main disturbance at frequencies below 50 Hz. At a quite site on

Earth, seismic noise follows a spectrum in all three dimensions close to 10−7f−2m/
√
Hz. A

good suppression of this noise source is obtained by suspending the test masses at the ends

of the IFO arms through special pendulum system, whose transfer function falls off as f−2

above the resonance frequency. Due to seismic noise, the detection of low frequency GWs is

not possible with ground based IFO; it could be feasible with space-borne version IFOs [8].

29



Gravitational Waves

Figure 1.3: Main contributions to a typical noise curve of an IFO

1.6.2 Thermal Noise

Internal thermal noise is the dominant noise source in a interferometric GW detector in the

frequency range bewteen 10 Hz and 200 Hz. It is caused by a fluctuational redistribution

of thermal energy inside each of the IFO test masses. This energy redistribution produces

a fluctuational change of the measured test mass (differential) displacement, which in turn

mimics a GW-induced motion [130]. The fluctuation-dissipation theorem [25] describes a

relationship between thermal noise and the energy dissipation (entropy increase) that oc-

curs inside the test mass, when the front of the test mass is subjected to an oscillatory

driving force. There are various types of internal thermal noise, each one associated with a

specific dissipation mechanism, Brownian thermal noise, Thermo-Elastic noise, and Thermo-

Refractive noise. Beside the test masses, including the dielectric coating, their suspensions

are sources of thermal noise as well. Thermal noise will be treated in great detail in Chapter

5.

1.6.3 Shot Noise and Radiation Pressure Noise

Both shot noise and radiation pressure noise are due to the quantum nature of light. Shot

noise is the limiting factor at frequencies above 102 Hz and it is due to random fluctuations

in the number of detected photons. These fluctuations give rise to noise in the measured

phase shift, which can be reduced by increasing the input laser power.

The radiation pressure noise is due to the pressure exerted upon the mirrors by the light
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beam. It is larger at low frequencies, and increases with the input laser power. Hence an

optimal input power must be chosen, in order to minimize the shot noise and to prevent the

radiation pressure noise to limit sensitivity at low frequencies. A proposed way to reduce

this noise constribution is by using squeezed light (see e.g. [13]).

Other less relevant sources of noise affect the IFO output, e.g. laser frequency and power

fluctuations, random fluctuations of molecular gas density along the optical path of laser

beam resulting in refractive index fluctuations, etc.
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Chapter 2

Interferometer Noise: Toward a

Physically Driven Model

In this Chapter I describe the main features of the noise corrupting the data gathered at

the interferometer’s output. Its statistical properties are markedly different from those of a

pure Gaussian noise. Nonetheless, currently implemented detection pipelines are based on

the Gaussian model, mainly because of the lack of a rigorous statistical model for the non-

Gaussian noise component. I introduce a physically-driven model for such a non-Gaussian

component, in the perspective of deriving, in the next Chapter, optimal detection strate-

gies. The statistical characterization of the proposed noise model is presented, and its main

features are discussed.
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2.1 Gaussian or non-Gaussian Noise Model?

Most, if not all, currently implemented pipelines for the detection of GW signals are based

on detection statistics derived in the assumption that the corrupting noise is a pure Gaus-

sian random process (see e.g. [63, 72, 138]). Although this assumption entails a significant

simplification in the detection statistic structure, it is definitely unrealistic, since several

non-Gaussian features occur at the data channel of all interferometric GW antennas.

Looking at this noise, two main kinds of non-Gaussianities can be identified: narrowband

spectral lines, and transient spurious signals, known as glitches.

Many spectral lines are visible in the power spectrum, some due to deterministic known

sources, and others due to environmental and/or instrumental disturbances, occurring at

varying frequencies.

Among deterministic lines, it is possible to distinguish those due to coupling to power

supply conduits, occurring at integer multiples of the standard frequency (50/60 Hz) of the

power mains, from those originating from the high-Q mechanical resonances of the wire

slings hanging the terminal mirrors. The former may cause substantial deviations of the

noise distribution from the Gaussian assumption. The latter, known as violin-modes, are

linear responses to stochastic excitations, and as such, they may or may not produce a

(narrowband) Gaussian noise component, depending on whether the underlying stochastic

excitation of the wires is itself Gaussian (Brownian noise) or not (creep noise in the wires, due

to material dislocation [61]). This latter turns out to be negligble in fused silica suspensions

[11]. Efficient algorithms have been developed for tracking and subtracting from the data

the narrowband features due to both power lines [23, 45, 123], and violin-modes [93, 141].

Figure 2.1 shows a typical PSD trend corrupted by spectral lines.

An additional important source of non-Gaussianity is the occurrence of glitches, i.e.

short high-energy signals caused by events of different nature: man-made, environmental, or

instrumental. We can distinguish loud glitches, which are easily detectable against the noise

floor, from weak glitches, which are embedded in the noise background and cannot be easily

identified as such. Loud and weak glitches can be caused, e.g., by micro seismic due both to

natural and human activities, by coupling to magnetic fields, to acoustic signals, or to RF

fields, or by the presence of dust in the cavity. In order to distinguish spurious glitches from

real GW signals, hundreds of interferometer control (various servos for interferometer and

laser locking, suspension, cavity alignment, etc.) and auxiliary channels monitoring the local

environment (seismomters, acceleterometers, microphones, magnetometers, radio receivers

etc.) have been activated.

The control and auxiliary channels are analyzed in order to track the correlation of
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Figure 2.1: PSD corrupted by spectral lines.

specific noise sources with the data channel and to identify spourios events in this latter

which could be misidentified as GWs [60]. This analysis allows to implement two kinds

of data laundering procedures. The first one consists in identifying time stretches (from 1

to many seconds) where the instrument is not working properly for different reasons, and

exclude the corresponding chunks from the search. This procedure is called Data Quality

Flagging (DQ), and DQ flags are organized in few categories depending on the severity of

the associated problems and on our capability to understand their origin [60]. The second

procedure consists in identifying events exhibiting high correlation with the output of one

of the auxiliary channels, and vetoing out an interval (typically 100ms to 1s long) of data

around the corresponding trigger (Event-by-Event vetoes). However, there are still many

glitches appearing at the output channel, whose sources cannot be identified, and which do

not correlate with any of the auxiliary channels. Figures 2.2 and 2.3 show an example of

weak and loud glitches, respectively, which have been detected at the output GW channel

at LLO.

2.2 A Statistical Description of IFO noise

Glitches represent nowadays the main source of noise impairing the efficiency of the detection

algorithms. Their effect is particularly detrimental in the search for GWBs, for which no

model for the expected waveform exists. As already mentioned, the rejection of spurious
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Figure 2.2: Example of weak glitch occurring at LLO.

glitches is currently performed by vetoing out those events in the GW channel, which exhibit

high correlations with the output of some auxiliary channels.

However, the procedure for this selection is purely heuristic, and in view of the non-

stationarity of the data, it must be updated frequently.

The lack of a rigorous way to handle glitches poses the problem of developing a plausible

model for them. This would result into a model for the total IFO noise, which would take

into account the typical features, which are observed in all such instruments presently in

operation, and make the statistical properties of noise markedly different from those of an

ideal Gaussian process. Several research groups have engaged in the study of glitches, most

of which focused on identifying generic glitch features and classifying glitch waveforms (see

e.g. [140]). However, setting up a statistical model for the glitch component of the noise

is essential in deriving optimal detection strategies, which by construction embed glitch

rejection capabilities and therefore do not need ad-hoc checks or event vetoes. This is a

strong motivation for introducing a plausible statistical model for the glitch noise component,

and in this thesis I moved the very first steps toward this.

Glitch noise will be therefore modeled as an impulsive random process, represented as a

generalized shot-noise [40], viz.:

νg(t) =

K[T ]∑
k=1

ψ(t− tk;~ak), (2.1)

where K[T ] is a random variable, representing the total number of glitches occurring in the
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Figure 2.3: Example of loud glitch occurring at LLO.

analysis window, whose duration is denoted by T ; the tk form a set of (random) firing times,

while ψ(t;~a) is a function with compact time-support (a transient), representing individual

glitches, whose form is set by a (random) vector ~a of shape parameters, e.g. amplitude,

center frequency, time duration, etc.

Different glitches in eq. (2.1) are likely to be due to indepedent disturbances and it is

thus reasonable to assume the random firing times as being independent and identically

distributed. We shall denote by λ(t) the time-varying glitch rate, i.e. expected number of

glitches per unit time. Under the made assumptions, a theorem by Hurwitz and Kač [92]

entails that the total number of glitches in (2.1) will be ruled by a (non-homogeneous)

Poisson process [132], with

prob[K(T ) = Q] =
(λ̄TT )Q exp(−λ̄TT )

Q!
, where λ̄T = T−1

∫
T

dtλ(t), (2.2)

λ̄T being the average (local) glitch-rate in the data analysis window. We shall assume the

fluctuations of λ(t) and/or other parameters in eq. (2.1) to occur on time scales � T , so

that fo analysis windows we consider they can be taken as constants. Middleton in [40] noted

that a key parameter is γ = λτ , i.e. the product bewteen the glitch rate and the expected

glitch duration, which corresponds to the expected number of ”glitchy” samples per unit

time: if γ � 1 there are many glitches overlapping in a single time sample, the distribution

of (2.1) becomes Gaussian, by virtue of the Central Limit Theorem, irrespective of the glitch

shape; if, on the contrary, γ ≈ 1 the distribution presents heavy non-Gaussian tails whose
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behaviour depends on the glitch shape.

Strong glitches, defined as those which are clearly detectable against the noise floor (using,

e.g., a change-detection algorithm [42,95,114]), are found to occur at typical rates up to ∼ 1

s−1, such that γ ≤ 1, producing non-Gaussian heavy tails in the final distribution.

As a matter of fact, pruning real data from narrowband components and strong glitches,

leaves a residual noise floor which is found to be Gaussian (in the operational sense of passing

successfully some statistical test of Gaussianity) on sufficiently short timescales (typically

∼ 1sec). On longer timescales, the residual noise floor displays variance fluctuations 1

, and has been accordingly described pictorially as an (adiabatically) breathing Gaussian

noise [139].

This could be explained as due to weak undetectable glitches occurring at relatively high rates,

such that γ � 1, originating a non-stationary Gaussian noise component, whose variance

fluctuates adiabatically with the fluctuating glitch rate [40]. It is otherwise reasonable to

figure out that external disturbances will produce glitches with all amplitudes.

Summing up, the noise corrupting the data streams of large baseline interferometric

detectors of gravitational waves presently in operation is a stochastic process consisting of

three additive terms:

n(t) = nNB(t) + ng(t) + nfloor(t), (2.3)

representing a narrowband component nNB(t), a strong (detectable) glitch component ng(t),

and a residual, compound Gaussian component nfloor(t), respectively. Remarkably, none

of these terms is described by a Gaussian stationary distribution, although the first and

last term may in fact include such components, accounting respectively, for the Brownian

excitation of the violin modes, and for the pure thermal stationary (Johnson) noise in the

instrument.

While the first term is usually disposed of prior to data analysis, the non-Gaussianity of the

remaining two terms should be properly gauged, and duly taken into account when designing

and evaluating GW detection algorithms.

1Partial evidence suggests (R. Conte, ”A SIRP model for LIGO Noise,” (2008) PhD dissertation, Univer-
sity of Salerno, Italy) that such residual noise floor may be modeled as a compound-Gaussian spherically-
invariant random process (see T. J. Barnard and D. D. Weiner, ”Non-Gaussian Clutter Modeling with
Generalized Spherically Invariant Random Vectors,” IEEE Trans SP-44 (1996) 2384 and references therein).
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2.3 A Physical Model for Glitch Noise

Equation (2.1), as written, is a pure phenomenological model of glitch noise. It can be

endowed with physical content by noting that, according to accumulating evidence [50],

glitches arise from random transient excitations hitting specific noise-susceptible detector

subsystems, and reaching the data channel through a finite number (henceforth denoted by

L) of possible pathways. Any pathway is characterized by some specific canonical response

(transfer function), here denoted as wl(t), l = 1, . . . , L. This picture is corroborated by

the experimental finding that most glitches fall into a limited set of typical waveforms [131].

In this respect, important direct measurements of the transfer functions of pathways from

identified vulnerable areas of the IFO to the photodetector are under way, through the

injection of impulsive noise of different nature.

In the simplest case, each environmental disturbance (assumed impulsive in time, and

localized in space) will enter the instrument at some time θk, with amplitude Ak, through a

single (dominant) entry point. Hence, individual glitches in eq. (2.1) will consist of a single

canonical response, viz.

ψ(t− tk;~ak) = Akwk(t− θk), (2.4)

where tk = θk + τk, τk being the time the impulses takes to travel the path from the solicited

subsystem to the photodetector, and wk is the transfer function of this path selected from

the set {w1, w2, . . . , wL}. Ak and θk can be modeled as random variables, whose distribution

can be estimated from real data, as well as the probability of occurrence of each canonical

response wi, i = 1, 2, . . . , L.

More generally, a single (localized) impulsive environmental disturbance may enter the

instrument through several noise-susceptible entry points, with different couplings and prop-

agation delays. In this case an individual glitch in eq. (2.1) would be a cluster of canonical

response, viz.

ψ(t− tk;~ak) =
M∑
i=1

A
(k)
i wi(t− θ

(k)
i ), where θ

(k)
i = tk − τ

(k)
i , (2.5)

where A
(k)
i and τ

(k)
i are the strength and the delay whereby the wideband environmental

disturbance couples to M ≤ L different instrument’s entry points. A cluster of canonical

responses would be characterized by the fact that the A
(k)
i and θ

(k)
i in (2.5) i = 1, . . . ,M

are statisticallly correlated, in view of the common source, and all the θ
(k)
i in (2.5) lie in an

interval which is comparable to the maximum difference between the travel times from pos-
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sible entry points to the photodetector 2 Glitches consisting of clustered canonical responses

in real data could not be recognized by mere visual inspection. Prony [113] algorithm (or

robust variants thereof [106]) or Independent Component Analysis [128] may be used to

identify them, and resolve them into their canonical components.

One way to build a realistic noise simulator would consist in estimating the probability

of observing all possible clustered M -tuples of canonical responses, and the joint probability

distributions of the related amplitudes, and delays. This will yield setting up a Markov

model of glitchy real data [38].

Here, however, we shall adopt a different approach, which starts from physical and sta-

tistical considerations, yielding ultimately an analytical tractable approximation of the noise

first order distribution, which turns out to be adequate for the purpose of the present work.

The characteristic functions (CFs) of the glitch noise model (2.1) can be computed exactly

up to any order [40]. The first order one can be written

Fg(ξ, t) =
∞∑
K=0

prob {K[T ] = K}Fg(ξ, t|K), (2.6)

where Fg (ξ, t|K) is the conditional characteristic function, given K glitches in the analysis

window, viz.:

Fg(ξ, t|K) = E

{
exp

[
ıξ

K∑
k=1

ψ (t− tk;~ak)

]}
. (2.7)

The expectation in (2.7) is taken with respect to both the firing times, tk, and the shape

parameters, ~ak. The pertinent distributions being assumed as time-invariant in the analysis

window, and independent for each glitch occurrence, eq. (2.7) and (2.6) become, respectively

Fg(ξ, t|K) = B(t, ξ)K , (2.8)

and

Fg (ξ, t) = e−N
∞∑
K=0

N
K

K!
B(t, ξ)K = exp

[
N (B(t, ξ)− 1)

]
, (2.9)

where B(t, ξ) = E
[
ejξψ(t−t0;~a)

]
and N = λT . Adding a stationary Gaussian component of

zero mean and variance σ2
G, the total CF is given by the product of the two CFs, viz.

2In principle, an extension to the non linear case is possible using the Volterra series representation of
nonlinear responses (see, e.g. The Volterra and Wiener Theory of Nonlinear Systems, Wiley Interscience,
New York, 2004).
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Fn(ξ, t) = Fg (ξ, t) exp

[
−1

2
ξ2σ2

G

]
. (2.10)

From the characteristic function Fg (ξ, t) it is straightforward to compute the moments

of the process νg(t) in eq. (2.1):

µ(Q)
g = (−ı)Q ∂QFg (ξ, t)

∂ξQ

∣∣∣∣
ξ=0

, (2.11)

which, for some finite value of Q, might be used to approximate the PDF of νg(t) through

the Edgeworth expansion [91]. The first four moments are explicitly given by

µ
(1)
g = E[g(t)] = NE[ψ(t− t0;~a)],

µ
(2)
g = E[g(t)2] = N

2
E2[ψ(t− t0;~a)] +NE[ψ2(t− t0;~a)],

µ
(3)
g = E[g(t)3] = N

3
E3[ψ(t− t0;~a)] + 3N

2
E[ψ2(t− t0;~a)]E[ψ(t− t0;~a)] +NE[ψ3(t− t0;~a)],

µ
(4)
g = E[g(t)4] = N

4
E4[ψ(t− t0;~a)] + 6N

3
E2[ψ(t− t0;~a)]E[ψ2(t− t0;~a)] + 3N

2
E2[ψ2(t− t0;~a)]+

+4N
2
E[ψ(t− t0;~a)]E[ψ3(t− t0;~a)] +NE[ψ4(t− t0;~a)],

(2.12)

where, the expectations are taken with respect to both t0 and ~a. The correlation function of

νg(t) is instead given by:

E [νg(t1)νg(t2)] = NE [ψ(t1 − t0;~a)ψ(t2 − t0;~a)] +N
2
E [ψ(t1 − t0;~a)]E [ψ(t2 − t0;~a)] ,

(2.13)

Under the made assumptions, the moments in eqs. (2.12) are also time-independent, while

the correlation function (2.13) depends on |t1 − t2|.
The first-order probability density function (PDF) of the process νg(t) is obtained by

Fg(ξ, t) through the inverse Fourier transform, which is analytically unaffordable. In this

respect, many techniques have been proposed in the Literature to find an accurate approx-

imation of the generalized shot noise PDF, e.g. the Edgeworth series expansion [127], the

saddle point approximation [26] or by numerical evaluation [107] of the related integral equa-

tion. Here, I approximate the first-order PDF of the process in (2.1) using a weighted sum

of Gaussian PDFs, viz.
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f̂n(x) =
P∑
p=1

wpN(x;µp, σ
2
p), (2.14)

where the weights wp ≥ 0,
∑P

p=1wp = 1, the expected values µp and the variances σ2
p

of the single components have been determined by fitting the empirical distribution. An

alternative to such a fitting is to match the first terms of a suitable expansion of the exact

and the approximated characteristic functions, as in [153].

The density mixture in eq. (2.14) converge uniformly to any density function by letting the

number of terms P increase and each elemental covariance approach the zero matrix [98].

Middleton in [41] adopted the same kind of approximation for the impulsive noise arising in

the urban environment.

The approximant PDFs are obtained by generating long sets of impulsive data with a

priori assigned glitch rate, and glitch waveform parameters’ distributions and estimating the

parameters through the Expectation-Maximization algorithm (see e.g. [32]). The optimal

number of Gaussian components was found as the smallest one allowing to pass successfull

the Kolmogorov-Smirnoff test [147] between the empirical and the approximant distributions.

In this case, from 2 to 4 Gaussian PDFs were found to be sufficient to approximate the actual

non-Gaussian noise PDF.

Although the noise PDF is dependent on the glitch waveforms, we can identify two key

parameters on which the gross features of the PDF depend, i.e. i) the rate of occurrence

of glitches times their expected duration, viz. γ = λτ , and ii) the glitch maximum SNR

with respect to the Gaussian floor, SNR
(g)
max. These are the key parameters to determine the

weight of the glitchy component in the mixture, and the slope of the tails. These parameters

are all we need to adopt a robust approach in writing the detection statistics (see Chapter

3). The first order PDF is, of course, not enough to characterize the impulsive glitch noise,

since also higher order statistics would be required. However, as we shall see later, it is

enough to derive a better (close-to-optimal) detection strategy.

2.4 Simulating Glitch Noise

When it comes to generating glitch noise instances, the ψ(·) waveform in (2.1) should be

suitably chosen. The most salient feature of glitches is that of being waveforms with almost

compact time-frequency support, as seen from their time-frequency representations. Such

waveforms are called time-frequency atoms in the technical Literature [37]. In [118–120] we

used, to model spurious glitches, the simplest (un-chirped) minimum-spread Gabor atom [37]

42



2.4. Simulating Glitch Noise

ψ(t− t0;~a) = ψ(t− t0;A0, f0, φ0, σt) = A0 sin [2πf0(t− t0) + φ0] e
−(t−t0)2/σ2

t , (2.15)

known in the GW literature as Sine-Gaussians (SG). The choice of the SG dictionary is

suggested by the fact that a wide variety of observed glitches in the data channel are well

modeled as SG atoms [131], and is further motivated by its structural simplicity and its

minimum timefrequency spread, (σtσf = (4π)−1). These properties should likely permit to

represent the instrumental transients in a close-to-optimal (i.e., minimally redundant) way

(see, e.g., [100,149]).

The shape parameters in this case include the glitch amplitude A0, duration σt, center

frequency f0 and initial phase φ0. Figure 1 shows the PDFs of the random process in eq.

(2.1), obtained by fitting with the model (2.14) the empirical distribution of a set of simulated

data having different values of the glitch firing rate λ and of the maximum amplitude GM .

The amplitude of each glitch is assumed as uniformly distributed in [−GM , GM ], where GM

is derived by setting a maximum value for the glitch SNR with respect to the Gaussian floor,

SNR
(g)
max, the initial phase φ0 as uniformly distributed in [0, 2π], the center frequency f0

is uniformly distributed in [0, 1000]Hz, and the duration has uniform distribution between

zero and the length of the analysis window T .
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Figure 2.4: PDF of the glitch noise characterized by (2.10) using σG = 1 and SG glitches, fitted with the
model in (2.14). Effect of the glitch rate λ on its shape.

Figure 2.5: PDF of the glitch noise characterized by (2.10) using σG = 1 and SG glitches, fitted with the
model in (2.14). Effect of the maximum glitch SNR, SNR

(g)
max on its shape.
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Chapter 3

Locally Optimum Network Detection

of GW Bursts in Glitchy Noise

In this Chapter the detection of a special relevant class of GWs, GW Bursts, is discusses

from first principles. GWBs are short transients of gravitational radiation emitted by vi-

olent astrophysical events, but limited or no information about the radiated waveform is

available. Hence, multi-sensor detection based on different interferometers is in order, to

achieve acceptable level of detection efficiency. As a step beyond the assumption that the

corrupting noise is Gaussian, on which the currently implemented pipelines are based, I de-

rive two detection statistics in non-Gaussian glitch noise, exploiting the weak GW amplitude

assumption.
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3.1 Locally Optimum Detection of Known GW Signals

with Multiple Sensors

Detection of known signals with multiple sensors was originally developed in connection with

radar surveillance, and is a well established topic in Signal Processing technical Literature.

Two main muliple-sensor data analysis strategies can be envisaged, known as distributed and

centralized. Several (e.g., tree or serial) topologies of distributed analysis exist (see [135] for

a review), differing by the the extent to which local decisions at each sensor are taken and

combined in order to construct a final decision rule. Conversely, in the centralized approach

the data gathered from each sensor are sent to a central unit which merges them to form a

single statistic, which is used to reach a global decision.

Incoherent GWB detection methods (see e.g. [55,64,80,104]) for detecting GWBs belong

to this class. Coherent methods as proposed in [43,63,72,75,76,104,111,122,138,150] follow

the centralized approach, which may be expected to attain better performance compared to

the distributed one [56].

The possibility of operating the large-baseline optical interferometers presently in opera-

tion as a single GW observatory is of great importance in the perspective of GW astronomy,

and is almost mandatory when it comes to the detection of unmodeled GW bursts in an

impulsive (glitchy) noise background. The detection of a GW signal, using a network of D

interferometers, can be formulated as a binary decision problem as follows,{
H0 : Vd = nd

H1 : Vd = Sd + nd
, d = 1, . . . , D (3.1)

where boldface denotes vectors of Ns time-samples taken from the corresponding continuos

waveforms, e.g. Vd = {Vd1, Vd2, . . . , VdNs}, having defined Vdk = Vd(tk), k = 1, . . . , Ns. In

(3.1) nd is the additive noise corrupting the data at the output of detector-d and Sd is the

GW signal received by the same detector.

For a plane gravitational wave with linearly polarized components h+(~r, t) and h×(~r, t)

impinging on Earth,

Sd = F+
d (Ωs)h

+
d + F×

d (Ωs)h
×
d , d = 1, . . . , D (3.2)

where F+
d (Ωs) and F×

d (Ωs) are the pattern functions describing the directional response of

detector-d (see e.g. [150]), Ωs is the location of the emitting source on the celestial sphere,

and h+,×
d are the time-sampled linearly polarized TT wave components at detector-d, whose

position is denoted by ~rd.
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The GW signals h+,×
d , impinging on the interferometers, differ only by a time shift, depending

on ~rd and Ωs = (ϑd, ϕs)
1. In the following we restrict to the case of triggered detection, where

the direction of arrival is fiducially known from different (e.g. radio) observations 2. For this

reason, for data analysis purposes the output of detector-d must be time-shifted by the

(direction of arrival dependent) delay between the wavefront arrival times at ~rd and ~r = 0

(taken coincident with the Earth center), viz.,

τd(Ωs) = c−1n̂ · ~rd, (3.3)

where n̂ is the unit wave vector and c the speed of light in vacuum. The noise process nd

affecting the output of detector d, is described by a generic multivariate distribution fnd
(·),

representing the joint probability density function (PDF) of Ns noise time-samples. It is

reasonable to assume the noise processes in the outputs of different detectors as independent,

in view of the large separation among them. We further assume througout this Section that

the noise process in any interferometer is stationary for the typical analysis windows we

consider.

It is expedient to introduce a parameter θ ≥ 0 which measures the GW strength, by

letting Sd = θŜd in (3.1), where Ŝd denotes the unit norm template of the sought signal,

which in this Section is supposed to be known in advance.

The optimum (in the Neyman-Pearson sense) decision rule for the problem in (3.1), if

θ = θ0 > 0 is given, is based on the Likelihood Ratio (henceforth LR) test statistic [96], viz.

Λ =

D∏
d=1

f (d)
n (Vd − θ0Ŝd)

D∏
d=1

f (d)
n (Vd)

. (3.4)

In this Section it is further assumed that the noise time-samples at the output of any detector

d are i.i.d.3, so that f
(d)
n (Vd) =

∏Ns

k=1 f
(d)
n (Vdk), where f

(d)
n (·) denotes the PDF of a single

noise sample in the detector d. Thus, taking the logarithm of the LR above, we get

1The angular coordinates (ϑ,ϕ) represent the polar and azimuthal angles in an Earth-centered coordinate
system, where the polar axis points to the North Pole and ϕ = 0 identifies the Prime Meridian.

2In principle, if the DOA is unknown, (ϑd, ϕs) can be regarded as unknown parameters, to be estimated
according to the maximum likelihood principle, by picking up the largest statistic among those corresponding
to a suitable lattice of points in the (ϑd, ϕs) space. Setting up in an optimal manner such a lattice requires
knowledge of the related ambiguity function, which is left for a a future paper.

3This assumption is removed in the next Section.
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lg ΛLR =
D∑
d=1

Ns∑
k=1

{
lg f (d)

n [Vdk − θ0Sdk]− lg f (d)
n [Vdk]

}
. (3.5)

It is well known that for the special case of Gaussian noise, a uniformly most powerful (UMP)

hypotheses test, i.e. a test yielding the highest detection probability at a fixed false alarm

probability, exists, for which the choice of the threshold is independent of the actual value

of θ0, provided θ0 > 0, and is given by the matched-filter statistic [96], viz.

D∑
d=1

Vd · ŜTd
σ2
d

:: η (3.6)

where σ2
d is the noise variance at interferometer d and the value of the threshold η depends

only on the prescribed false-alarm probability.

On the other hand, for an arbitrary non-Gaussian noise, a UMP test does not exist in

general. One possibility to overcome this difficulty, in the light of the least favorable case

philosophy (see [96]), consistent with our expectations of dealing with weak GW signals, is

to seek local optimality in a neighborhood of θ = 0, by maximizing the slope of the test power

at θ = 0, for a given false alarm rate.

This results in the locally most powerful or locally optimum (LO) detection test [17].

As an additional benefit the LO detector features, usually, a reduced computational and

implementation burden.

The locally optimum detector (henceforth LOD) for the problem (3.1) is given by [17]

Λ(LO) =
Ns∑
k=1

D∑
d=1

d

dθ
lg f (d)

n (Vdk − θSdk)

∣∣∣∣
θ=0

=
Ns∑
k=1

D∑
d=1

Sdkg
(d)
LO(Vdk), (3.7)

where

g
(d)
LO(x) = − ∂

∂θ
lg f (d)

n (θ)

∣∣∣∣
θ=x

= −f
′
n
(d)(x)

f
(d)
n (x)

(3.8)

is a nonlinear memoryless function dependent on the noise distribution. The LOD test turns

out to be asymptotically optimal, when Ns →∞ and θ → 0 [17].

The statistic in (3.7) can be recognized as the first term in the Taylor expansion of the LR

in (3.5) around the point θ = 0, viz.

lg Λ =
D∑
d=1

∞∑
q=1

θq
(−1)q

q!

[
Ns∑
k=1

Sqdk
dq

dxq
log f (d)

n (x)

∣∣∣∣
x=Vdk

]
, (3.9)
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admitting a simple interpretation of lg Λ as a linear superposition of an infinite number

of linear correlators acting on suitable non-linear transformations of the data. In general,

according to the LO approach one should use as a detection statistic the lowest-order non-

vanishing term in the expansion above.

Accordingly, the LO statistic can be cast in the following simple form

Λ(LO) =
D∑
d=1

gd[Vd] · ŜTd (3.10)

where a superfix T denotes the transpose, and we used the shorthand

gd[Vd] =
{
g

(d)
LO(Vd1), g

(d)
LO(Vd2), . . . , g

(d)
LO(VdNs)

}
. (3.11)

The LOD in eq. (3.10) is the sum of the LODs corresponding to single-detector problems.

In the case of Gaussian noise g
(d)
LO(x) = x/σ2

d and the LOD reduces to the statistic in eq.

(3.6), which is obtained from the exact LR in eq. (3.5) by ignoring the second order term4,

i.e. the energy of the signal. Hence, in Gaussian noise case, if the sought signal has a priori

known waveform (and energy), the LOD coincides with the exact LR statistic5.

The LOD concept was introduced in the GW data analysis Literature, to the best of

our knowledge, by Creighton [36]. It was subsequently suggested by Anderson et al [54] in

connection with excess-power based detection statistics, and eventually discussed in consid-

erable depth by Allen et al. in [52, 53], where it was notably stressed that the same LOD

structure is obtained within both a frequentist and a Bayesian framework.

Equation (3.10) is clearly reminiscent of the linear correlator (3.6) (which is the optimal

detection statistic in Gaussian noise), except that in (3.10) the data are preliminarily filtered

by the static nonlinearity (3.8). Loosely speaking, this latter acts by trimming off large data

samples likely due to strong glitches, which make the noise PDF heavy tailed. In Figures

3.1-3.2 the functions gLO(x) obtained via (3.8) from the PDFs in Figure 2.4-2.5 are shown.

It is seen that gLO(x) is linear in a neighbourhood of x = 0, outside of which it deviates

significantly from the linear behaviour. The more the noise distribution departs from the

Gaussian, i.e., the larger the glitch rate and/or the maximum glitch signal-to-noise ratio, the

narrower this neighbourhood becomes.

4Higher order terms are zero for the Gaussian noise case.
5In this case the constant energy can be ignored and this is equivalent to a trivial shift in the threshold

to which the statistic is compared for the detection.
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Figure 3.1: gLO function obtained through eq. (3.8) for the PDFs in Figure 2.4. Effect of the glitch rate λ

on its shape.

3.2 Locally Optimum Detection of Unmodeled GW

Bursts with Multiple Sensors

I focuse on the detection of a special class of GW signals, i.e. GW Bursts (GWBs), char-

acterized by short time duration (≤ 1s) and relativey high energy (≈ 10−21). GWBs are a

paradigm of signals for which the knowledge about the generating astrophysical events and

the expected waveforms is very poor. As we anticipated in Section 1.5, GWBs are emitted

from relatively frequent violent astrophysical events, including supernova explosions, mergers

of binary systems, gamma ray bursters etc.

In principle we could capitalize on a priori available information about the sought GWB

waveforms coming from general-relativistic numerical simulations of collapsing/exploding

systems [44, 83, 136, 144], to construct signal templates to be used in (3.10). However the

available numerically computed waveforms are difficult to parameterize in a physically mean-

ingful fashion, and apply only to a few specific classes of sources, so that their use as templates

would yield poor detection efficiency. Therefore, it might make more sense to assume that

no information at all concerning the sought waveforms is available, and to seek detection

schemes which may work well irrespective of the shape of the sought signal. Under this

perspective, two basic approaches seem possible: a) estimating from the data themselves a
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Figure 3.2: gLO function obtained through eq. (3.8) for the PDFs in Figure 2.4. Effect of the maximum
glitch SNR, SNR

(g)
max, on its shape.

suitable set of parameters, describing uniquely the signal; b) using a random model for the

signal.

In the next two Subsections both approaches will be explored.

3.2.1 GWBs as Unknown Deterministic Signals

Under the assumption of no available a priori information, a possible set of parameters de-

scribing uniquely the GWB signal are the very time samples of its polarization components,

i.e.
{
h+
k , h

×
k

}
, ∀k = 1, . . . , Ns. This choice became known as the standard likelihood ap-

proach in the GW data analysis Literature [75], and can be traced back to Flanagan and

Hughes [46]. For an observational window including Ns time samples from D detectors,

there are accordingly 2 · Ns unknowns to be estimated from D · Ns time samples. Under

the accepted assumptions, it is readily seen that the estimation problem breaks up into Ns

(structurally identical) uncoupled problems, each yielding 2 unknowns (h+
k and h×k ) from D

data (Vdk, d = 1, 2, . . . , D). The following remark is in order here. The Maximum Likelihood

estimator is asymptotically optimal (in the Cramer-Rao sense [96]) when the number of data

goes to infinity. In our case the number of data is D, which is only a few units. We may

thus expect a poor performance of the standard likelihood estimator. Note that this applies
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both the Gaussian and the non-Gaussian noise case.

On the other hand, if we had a model (even a phenomenological one) for the sought GWBs

using only a finite number P of parameters (e.g., the principal components, as in [136]),

we would face the problem of retrieving P unknowns from D ·Ns time samples6. The esti-

mate would be accordingly accurate for Ns large enough, being asymptotically optimal for

Ns →∞, at the expense of being most likely workable only numerically.

Letting H = {h+,h×} the vector of unknown GW time samples (at ~r = 0), the ML

estimator maximizes the conditional PDF of the data f(x|H) over the space where H is

supposed to lie, x being the actual realization of the noisy data stream. The coordinates,

ĤML, of the supremum of the likelihood ratio in the parameter space provide our estimate of

the signal parameters, and the supremum itself is used as a detection statistic. In the Signal

processing literature this is known as a (Generalized Likelihood Ratio Test (GLRT) [96]).

The ML estimator of H, under the made assumption of i.i.d. noise samples, is accordingly

given by

ĤML =
argmax

H

D∏
d=1

Ns∏
k=1

f (d)
n (Vdk − Sdk) =

argmin

H

D∑
d=1

Ns∑
k=1

− lg f (d)
n (Vdk − Sdk),

(3.12)

where Sdk = F+
d h

+
k + F×

d h
×
k .

For Gaussian noise, ĤML is obtained by minimizing the following quantity

6A lower bound for P for GWB waveforms of a given class could be obtained from the related information
(Shannon) dimension. This can be obtained from numerical simulations pertaining to specific source classes
by using a well known property of quasi-bandlimited functions (D. Slepian, ”On Bandwidth,” Proc. IEEE
64 (1976) 292) Given the waveforms {Sp}, this amounts to computing

sup
p

εp(B), εp(B) =
∣∣∣∣∣∣Sk(t)− S

(B)
k (t)

∣∣∣∣∣∣
where

S(B)
p (t) = F−1 [ΠB(f)FSk(t)]

where ||·|| is the L2 norm on the finite time-support TS of the {Sp} family, F is the Fourier transform
operator, and ΠB(f) is the unit spectral window with support (−B,B). The function εp(B) typically
exhibits a steplike behaviour, with knee point at B = B∗

p , and decays exponentially in B − B∗
p afterwards.

The information dimension of Sp can be accordingly estimated by

Np ∼ 2B∗
pTS ,

and NS = supp Np gives the estimate of the information dimension of the whole family of functions {Sp}.
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R =
Ns∑
k=1

D∑
d=1

(Vdk − Sdk)
2

σ2
d

(3.13)

which is the sum of the σ2
d-weighted squared residuals of the linear systems

V(k) = Fh(k), ∀k = 1, . . . , Ns, (3.14)

where

V(k) = (V1k, V2k . . . VDk)
T , (3.15)

h(k) =
(
h+
k , h

×
k

)T
, (3.16)

and F is the D × 2 network response matrix, defined as follows

F =


F+

1 F×
1

F+
2 F×

2

. . .

F+
D F×

D

 . (3.17)

In this case, the ML estimator is the weighted LS solution of (3.14), viz.

ĥ(k) =
(
FTΣF

)−1
FTΣV(k),∀k = 1, . . . , Ns, (3.18)

where Σ is the D ×D diagonal matrix, whose non-zero elements are
{
σ−2

1 , σ−2
2 , . . . , σ−2

D

}
.

The ML estimator in (3.18), in Gaussian noise, is unbiased ; it is also efficient, in that

it attains the Cramer-Rao lower bound for the covariance matrix, and it is the Minimum

Variance Unbiased estimator [96].

If the noise is non-Gaussian, on the other hand, the rhs of eq. (3.12) yields a different

(non quadratic) measure of the residual error of (3.14), whose minimization can be quite

complicated. And indeed, in this case the accuracy of the LS solution (3.18) is too much

sensitive to the tail behaviour in the noise PDF, to be useful even as an approximate solution.

Several error metrics have been proposed for inverting over-determined linear systems like

(3.14), for the case where the noise in the data is non-Gaussian, including absolute, truncated

quadratic, and bisquared error metrics [79]. A general framework for constructing such error

metrics, while taking into account possible ill-conditioning of the problem, has been discussed

in [87], based on the minimization of the Kullback-Leibler distance (mutual information)

between the actual and estimated data-generating noise distribution. In practical cases
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the actual non-Gaussian noise distribution will be only loosely specified, due, e.g., to non-

stationarity in time, suggesting the use of robust estimators [101], which are not too much

sensitive to uncertainty and/or variation of the noise PDF in a given class.

Hereafter, in order to have a manageable expression for the ML estimator, we shall exploit

again the weak signal assumption. Expanding the logarithm of the LR up to second order

we obtain7:

lg Λ ≈
Ns∑
k=1

D∑
d=1

g
(d)
LO(Vdk)

(
F+
d h

+
k + F×

d h
×
k

)
+

+
Ns∑
k=1

D∑
d=1

1

2
Γ(d) (Vdk)

[(
F+
d h

+
k

)2
+
(
F×
d h

×
k

)2
+ 2F+

d F
×
d h

×
k h

+
k

]
,

(3.19)

where

Γ(d)(x) =
f
′′(d)
n (x)

f
(d)
n (x)

−

(
f (d)′

n(x)

f
(d)
n (x)

)2

. (3.20)

Setting the partial derivatives of eq. (3.19) w.r.t. to the unknown h+
k and h×k , equal to zero,

we obtain, a linear system whose solutions are
ĥ+
k =

∑D
d=1 g

(d)
LO(Vdk)

(
I+×
k F×

d − I××k F+
d

)
I++
k I××k − (I+×

k )2

ĥ×k =

∑D
d=1 g

(d)
LO(Vdk)

(
I+×
k F+

d − I++
k F×

d

)
I++
k I××k − (I+×

k )2

, k = 1, 2, . . . , Ns, (3.21)

where

I++
k =

D∑
d=1

Γ(d)(Vdk)(F
+
d )2

I××k =
D∑
d=1

Γ(d)(Vdk)(F
×
d )2

I+×
k =

D∑
d=1

Γ(d)(Vdk)F
+
d F

×
d

. (3.22)

Equations (3.21) represent the Locally Optimum Estimator (LOE, [33, 117]) of h(k). It can

be shown that if the number of data D in (3.21) goes to infinity and the GW amplitude

7We indeed maximize, for convenience, the ratio between the likelihood function and its value in the
absence of the GW signal, which is the Likelihood Ratio.
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go to zero as O(D−1/2), the LOE is asymptotically normal and efficient, in the Cramer-Rao

sense [33,78].

Eqs. (3.21) can be written as follows

ĥ(k) =
(
FTΣ(k)F

)−1
FTg(k), k = 1, . . . , Ns. (3.23)

where

g(k) =
(
g

(1)
LO(V1k), g

(2)
LO(V2k), . . . , g

(D)
LO (VDk)

)T
, (3.24)

and Σ(k) is a diagonalD×D matrix, whose non-zero elements are Σii
(k) = −Γ(i)(Vik). Equation

(3.23) shares the same structure as eq. (3.18), derived in the Gaussian noise case, except that

the matrix Σ(k) changes with the time sample k, and the output data are passed through

the g
(d)
LO(·) functions. For Gaussian noise, Γ(d)(x) = −σ−2

d , and g
(d)
LO(x) = x/σ2

d, so that eq.

(3.23) gives back eq. (3.18). Also, in the Gaussian noise case, eq. (3.18) reduces to the

Moore-Penrose pseudo-inverse matrix based solution [133], viz.

ĥ(k) =
(
F
T
F
)−1

F
T
V(k),∀k = 1, . . . , Ns, (3.25)

where

V(k) = (V1k/σ1, V2k/σ2 . . . VDk/σD)T ,

F =


F+

1 /σ1 F×
1 /σ1

F+
2 /σ2 F×

2 /σ2

. . .

F+
D //σD F×

D /σD

 .

(3.26)

are the noise-weighted counterparts of eqs. (3.15) and (3.17).

In the non-Gaussian case, whenever the matrices Σ(k) are negative semi-definite, the

estimator in eq. (3.23) minimizes a generalized weighted squared residual. We shall further

discuss this point in Section 3.4.

Regularization

The network response matrix may be ill-conditioned in some regions of the celestial sphere

[121], and the variance of the corresponding estimator of h can accordingly blow up dramat-

ically. Under these circumstances, with reference to a general linear system

b = Ξh, (3.27)
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the noise δĥ in ĥ can be larger than the noise δb in the data b, and the following upper

bound exists [57,58] ∥∥∥δĥ∥∥∥∥∥∥ĥ(0)

∥∥∥ ≤ cond[Ξ]
‖δb‖
‖b(0)‖

(3.28)

where b(0) and ĥ(0) are the noise-free data and reconstructed waveform, and cond[Ξ] =

‖Ξ‖ ‖Ξ−1‖ is the condition number of matrix Ξ. While this is only an upper bound, we

see that even for mild ill-conditioning (i.e., cond[Ξ] ∼ 10), waveform reconstruction via

(3.18) can be badly inaccurate8. Several approaches have been proposed to mitigate this

problem [75, 86]. In the simple regularization scheme á la Tikhonov, one minimizes the

following quantity

R+ γhΩhT . (3.29)

where R is a general residual of the linear system in eq. (3.27), Ω and γ are the so called

regulator matrix and intensity, respectively. This approach results in adopting a regularized

pseudo-inverse, such that

(Ξ)−1
reg =

(
ΞTΣΞ + γΩ

)−1
, (3.30)

where Σ is a diagonal matrix defining the possible non-unitary weights of the squared resid-

ual.

In its eigenvector space ΞTΣΞ is (
µ1 0

0 µ2

)
(3.31)

where µ1,2 are the eigenvalues with µ1 > µ2. Ill-conditioning occurs because µ2 ∼ 0.

Rakhmanov in [121] proposed using regulator matrix, which, in the same vector space, can

be written, (
0 0

0 (µ2µ1)
1/2 − µ1

)
(3.32)

and shew that a judicious choice of γ ∈ [0, 1] can make the condition number of the r.h.s. of

(3.30) as close to unity as desired. Obviously, some price is paid for, namely represented by

8As noted in [121], ill-conditioning will also amplify any error in the data due to inaccurate knowledge of
the direction of arrival.
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a bias in the waveform estimate (see [121] for a discussion).

Using a regulator as in (3.30) in the estimator in eq. (3.23), and using the resulting

estimate to compute the detection statistic (3.10), we obtain the locally optimum (LO) form

of the generalized likelihood ratio test, GLRT, viz.

GLRT =
Ns∑
k=1

1...D∑
d,d′

pdd
′

k g
(d)
LO(Vdk)g

(d′)
LO (Vd′k), (3.33)

where pdd
′

k is the (d, d′)-element of the D ×D matrix Pk = F
(
FTΣ(k)F

)−1
FT .

The generalized likelihood ratio test if the noise is assumed to be Gaussian, GLRTG, is

obtained by using a regulator as in (3.30) in the estimator in eq. (3.18), and substituting

the resulting estimate in the detection statistic (3.6).

3.2.2 GWB as a Random Signal

The complications affecting the estimation process discussed in Subsection 3.2.1, are sub-

stantially removed if the sought signals are modeled as realizations of a random processes.

Adopting a maximum uncertainty attitude, it is natural to consider the two polarization com-

ponents as independent random variables, having zero mean and impulsive auto-correlation,

Rh(τ) = σ2
hδ(τ). Under these assumptions, the locally optimum form of the LR statistic has

been derived by Kassam (see Appendix A for details) and is

Λ(LO) =
D∑
d=1

Ns∑
k=1

f
′′(d)
n (Vdk)

f
(d)
n (Vdk)

+ 2
D∑
d=1

D∑
p=d+1

Rdpgd [Vd] · gp [Vp]
T , (3.34)

where

Rdp = E[SdSp]. (3.35)

The first term in (3.34) is a measure of the total energy in the data. The second term is

a measure of the correlation between data from different detectors in the network, known

as Generalized Cross-Correlation (henceforth GCC). The first term in eq. (3.34) may be

large even if only spurious transients (glitches) are present in the data from individual in-

terferometers. On the other hand, the GCC term accounts only for transients which overlap

consistently to the assumption of having the same astrophisical origin. Therefore, following

Kassam, it is reasonable to drop the first term in (3.34) and retain only the GCC term, as

a detection statistic.

The coefficient Rdp in (3.36) is explicitly given by:

57



Locally Optimum Network Detection of GW Bursts in Glitchy Noise

Rdq = E[h2
+]F+

d F
+
q + E[h2

×]F×
d F

×
q + E[h+h×]

(
F+
d F

×
q + F×

d F
+
q

)
. (3.36)

The expectations in (3.36) depend on the structure of the GWB source. Assuming h+ and

h× as independent and identically distributed,

RSdSp =
(
F+
d F

+
p + F×

d F
×
p

)
, (3.37)

up to an irrelevant multiplying factor9. The GCC statistic can be accordingly written

GCC =
D∑
d=1

D∑
p=d+1

Rdpgd [Vd] · gp [Vp]
T , (3.38)

which sums the D · (D − 1) cross-correlations between any couple of detectors, with proper

weights.

Note that the structure of (3.38) is similar to (3.33), differing from this latter due to

the absence of the energy terms (d = p), which are instead included in the GLRT statistic.

Interestingly, the RSdSp coefficients in (3.38) display a behaviour similar to that of the non-

diagonal coefficients in (3.33), as functions of the source position on the celestial sphere,

as will be shown in the last Section. For Gaussian noise (3.38) becomes a sum of linear

correlators, LCC

LCC =
D∑
d=1

D∑
p=d+1

Rdp
Vd

σ2
d

· Vp

σ2
p

. (3.39)

Computing the GCC statistic requires no inversion, and accordingly no ill-conditioning

pathology may occur and needs to be taken into account. On the other hand, the GCC

provides no information about the shape of the detected signal, and as such it qualifies for

pure detection purposes only.

3.3 Locally Optimum Network Detection for Corre-

lated Noise

In the previous Section I assumed that the noise in each detector consists of a white Gaussian

process corrupted by a colored non-Gaussian (glitchy) component. Here we extend this

derivation to the realistic case where the Gaussian components are colored as well.

9This factor is the variance σ2
h which is a constant and it does not affect the detection performance.
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In general, there always exists a suitable linear transform of the data, yielding a set

of uncorrelated samples; this is known as Karhunen-Loeve transform [96] (KLT). If the

initial data are Gaussian distributed, the KLT yields a set of independent samples, and

allows to factorize the joint PDF. On the contrary, in non-Gaussian distributed samples,

non-correlation does not imply independence, so that the joint PDF cannot be factorized in

principle. Nonetheless, we shall neglect correlations beyond the second order, assuming the

data samples at the output of the KLT as being also independent. Under this assumption, all

results in Section 3.2 still hold, in terms of the KLT-filtered data samples. This assumption

was proposed and discussed by B. Allen in [52], who first introduced the LOD for the case

of colored non-Gaussian noise in the GW technical Literature.

In the engineering technical Literature, it has been shown that in a variety of cases, this

crude assumption still guarantees a sensible performance improvement compared to the plain

Gaussian noise (no impulsive component) assumption (see e.g. [17]). The general problem

of implementing an optimal detector structure in the case of colored non-Gaussian noise has

been studied by several authors (see e.g. [47] or [148] and references therein). Under certain

assumptions, it turned out that it is possible to keep the structure of this detector to be the

same as for uncorrelated noise, varying only the non linearity applied to the data, or adding

a correction term, depending not only on the first order but also on the higher order PDFs.

We reserve for future work a deeper investigation about the optimal detector in dependent

non-Gaussian noise samples, which will require a study of the correlation structure of the

glitch noise, and about the benefit of using the Independent Component Analysis (ICA) [128]

as a linear transform, to be used in place of the KLT, to provide a set of independent samples

even in non-Gaussian noise.

The proposed simplified approach allows to modify at minimum existing pipelines im-

plemented for the detection of GWBs, and the statistics for correlated time series are a

straightforward generalization of those obtained in the previous Section.

3.3.1 The Known Signal Case

As often conveniently done, the KLT is approximated by the Discrete Fourier Transform

(DFT) [124], which, for suitably long data sequences, gives an asymptotically diagonal cor-

relation matrix whose non-zero elements are the coefficients of the PSD of the sequence.

Let Vd be the correlated output time series corresponding to interferometer-d, and

Vdk =
(
Ṽ r
dk, Ṽ

i
dk

)
the vector whose components are the real and imaginary part of the

k-th complex DFT coefficient Ṽdk, denoted by a superfix r and i, respectively, and assume

similar definitions for Sdk, ndk and S̃dk, ñdk. In the case of an a priori known signal, the
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Likelihood Ratio can be approximated as follows

Λ =

∏D
d=1 fnd

(Vd − αSd)∏D
d=1 fnd

(Vd)
≈

∏D
d=1

∏Nb

k=1 fdk

(
Ṽdk − αS̃dk

)
∏D

d=1

∏Nb

k=1 fdk

(
Ṽdk

) , (3.40)

where fdk(·) is the PDF of ñdk, and Nb s the number of DFT coefficients. Note that in view of

the symmetry properties of the DFT of real sequences, the number of independent frequency

bins is Nb = (Ns − 1)/2 for odd Ns or Nb = Ns/2 − 1 for even Ns. fdk(Z) can be written

as the product pdk(Z
r)pdk(Z

i) of the two (identical) PDFs of the real and imaginary parts

of the argument. Furthermore, we assume that the fdk(·) are even functions10. To obtain

the Locally Optimum Detection (LOD) statistic, the LR in eq. (3.40) must be expanded in

Taylor series around the point α = 0 up to the first order terms, yielding

Λ ≈ Λ(LO) =
N∑
k=1

D∑
d=1

Gdk(Vdk) · STdk, (3.41)

where Gdk(Z), for Z = (Zr, Zi), is a vector defined as

Gdk(Z) =

(
−∂Z

rfdk(Z)

fdk(Z)
,−∂Z

ifdk(Z)

fdk(Z)

)
=

(
gdk(Z

r), gdk(Z
i)
)
, (3.42)

where ∂ denotes the partial derivative, the prime denotes the full derivative and gdk(·) =

−p′dk(·)/pdk(·).
In the case of pure Gaussian noise, we have

Gdk(Z) =
(
Zr/Pdk, Z

i/Pdk
)
, (3.43)

Pdk being the PSD coefficient corresponding to the k-th frequency bin of the d-th antenna,

so that eq. (3.41) becomes the matched filter statistic, viz.

Λ(LO) =
D∑
d=1

Ns∑
k=1

(
S̃rdk

Ṽ r
dk

Pdk
+ S̃idk

Ṽ i
dk

Pdk

)
. (3.44)

10This is reasonable if we assume that the first order PDFs of noise time samples are zero-mean even
functions. This entails the evenness also for the PDF of any Fourier coefficient, which results from the
convolution of N zero mean even PDFs.
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3.3.2 GWBs as Unknown Deterministic Signals

The discussion about the ML estimator in Section 3.2.1 applies to this case as well. Hence,

the weak signal assumption yields the LOE, which is obtained by maximizing only the first

two terms of the LR, viz.

lg Λ ≈
N∑
k=1

D∑
d=1

Gdk(Vdk) · STdk +
1

2
STdkHdk(Vdk)Sd =

N∑
k=1

D∑
d=1

Gdk(Vdk) · Fdh̃k +
1

2
h̃TkF

T
dHdk(Vdk)Fdh̃k, (3.45)

where, in the second equation, I used Sdk = Fdh̃k, obtained by eq. (3.2), which is also valid

in the frequency domain, and

Hdk(Z) =


∂ZrZrfdk(Z)

fdk(Z)
−
(
∂ZrZrfdk(Z)

fdk(Z)

)2 ∂ZrZifdk(Z)

fdk(Z)
− ∂Zrfdk(Z)∂Zifdk(Z)

fdk(Z)2

∂ZrZifdk(Z)

fdk(Z)
− ∂Zrfdk(Z)∂Zifdk(Z)

fdk(Z)2
∂ZiZifdk(Z)

fdk(Z)
−
(
∂Zifdk(Z)

fdk(Z)

)2

 , (3.46)

Fd =

(
F+
d F×

d 0 0

0 0 F+
d F×

d

)
, (3.47)

h̃k =


<h̃+

k

<h̃×

=h̃+

=h̃×

 . (3.48)

It is easy to show that the off-diagonal terms of the matrix Hdk(Z) are zero. Therefore,

the r.h.s. of eq. (3.45) can be written as the sum of two terms, depending on the real and

imaginary part of the GWB waveform separately, viz.

Λ ≈ Λr + Λi, (3.49)

where
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Λr =
∑Nb

k=1

∑D
d=1 gdk(Ṽ

r
dk)(F

+
d <h̃+

k + F×
d <h̃×k )+

1
2

∑Ns

k=1

∑D
d=1 Γdk(Ṽ

r
dk)
[
(F+

d <h̃+
k )2 + (F×

d <h̃×k )2 + 2F+
d F

×
d <h̃+

k <h̃
×
k

]
,

Λi =
∑Nb

k=1

∑D
d=1 gdk(Ṽ

i
dk)(F

+
d =h̃+

k + F×
d =h̃×k )+

1
2

∑Ns

k=1

∑D
d=1 Γdk(Ṽ

i
dk)
[
(F+

d =h̃+
k )2 + (F×

d =h̃×k )2 + 2F+
d F

×
d =h̃+

k =h̃
×
k

]
, (3.50)

and
{

Γdk(Ṽ
r
dk),Γdk(Ṽ

i
dk)
}

are the diagonal terms of the matrix Hdk(Ṽdk), viz.

Γdk(V
x
dk) =

p̈dk(Ṽ
x
dk)

pdk(Ṽ x
dk)

−

(
ṗdk(Ṽ

x
dk)

pdk(Ṽ x
dk)

)2

, x = r, i. (3.51)

Hence, the quantity in eq. (3.45) is maximized if Λr and Λi, are maximized with respect

to hrk =
(
<h̃+

k ,<h̃
×
k

)T
and hik =

(
=h̃+

k ,=h̃
×
k

)T
, respectively. Λr and Λi are structurally

identical to each other and to eq. (3.19), which is maximized by the solution in eq. (3.23).

Accordingly, eq. (3.49) is maximized by

ĥrk =
(
FTΣr

(k)F
)−1

FT G̃r
(k),

ĥik =
(
FTΣi

(k)F
)−1

FT G̃i
(k),

, k = 1, . . . , Ns. (3.52)

where F is the network response matrix defined in eq. (3.17),

G̃x
(k) =


g1k(Ṽ

x
1k)

g2k(Ṽ
x
2k)

. . .

gDk(Ṽ
x
Dk)

 , x = r, i, (3.53)

and Σx
(k) is a diagonal D×D matrix, whose non-zero elements are

{
Γ1k(Ṽ

x
dk),Γ2k(Ṽ

x
dk), . . . ,

. . . ,ΓDk(Ṽ
x
dk)
}
, x = r, i.

The Tikhonov regularization scheme can further be used to mitigate the ill-conditioning

of the problem, in the same way as described in the previous Section. However, the expression

of the LOE allows to adopt any other scheme of regularization as in the case of Gaussian

noise, which will affect the computation of the inverse matrix in eq. (3.52).
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3.3.3 The Random Signal Case

Alternatively as in Section 3.2.2 approach we can model the unknown GWB polarization

waveforms as two independent and identically distributed random processes, with zero mean

and flat PSD with level Ph, according to the maximum uncertainty approach.

Under the weak signal assumption, we expand the LR up to second order as in eq. (3.45),

where now the signal Sdk is considered a random process. Λ is a random process as well,

whose expected value is evaluated and considered as a detection statistic [17, 96]. The first

order term vanishes due to the zero mean assumption; the second order term consists of two

addends, one depending on the energies of single antennas, which is ignored as in Section

3.2.2, and an other one, depending on the cross-correlations between different antennas’

outputs, which is used as detection statistic, i.e. Generalized Cross-Correlation (GCC). The

procedure described in Appendix A can be easily extended to the present case, yielding the

following detection GCC statistics

GCC =

Nb∑
k=1

D∑
d=1

D∑
q>d

G(Vdk)E
[
SdS

T
q

]
G(Vq)

T , (3.54)

where the expectation E[·] is done w.r.t. the random GW amplitude. Eq. (3.54) is in

accordance with the locally optimum statistic for stochastic signals obtained by Allen in [52].

Writing explicitly eq. (3.54) yields

GCC =
∑Nb

k=1

∑D
d=1

∑D
q>d

(
E[S̃rdkS̃

r
qk]

ṗdk(eV r
dk)

pdk(eV r
dk)

ṗqk(eV r
pk)

pqk(eV r
qk)

+

+E[S̃rdkS̃
i
qk]

ṗdk(eV r
dk)

hdk(eV r
dk)

ṗqk(eV i
qk)

pqk(eV i
qk)

+ E[S̃idkS̃
r
qk]

ṗdk(eV i
dk)

pdk(eV i
dk)

ṗqk(eV r
qk)

pqk(eV r
qk)

+

+E[S̃idkS̃
i
qk]

ṗdk(eV i
dk)

pdk(eV i
dk)

ṗqk(eV i
qk)

pqk(eV i
qk)

)
.

(3.55)

Under the made assumptions on the random GW amplitude, we obtain that

E[S̃rdkS̃
r
pk] = E[S̃idkS̃

i
pk] = Rdp = Ph

(
F+
d F

+
p + F×

d F
×
p

)
,

E[S̃rdkS̃
i
pk] = E[S̃idkS̃

r
pk] = 0.

(3.56)

We note that the two statistics obtained in this Section, i.e. the GLRT, eq. (3.41) using

eq. (3.52), and the GCC, eq. (3.54), are the sum of the statistics derived in the previous

Section, applied to the real and imaginary parts separately. This is an obvious consequence

of the independence of the real and imaginary parts of the GWB signal.
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3.4 Robust and Nonparametric Implementation

In Sections 3.2 and 3.3 we derived the locally optimum GLRT and GCC detectors, assuming

the PDF of the noise processes affecting the output of all antennas as perfectly known in

writing the gLO(·) and Γ(·) functions in eqs. (3.8) and (3.20) respectively.

Whenever the noise distributions are not fully known or are varying in time, a workable

approach consists in identifying a functional class in which the noise distribution at any IFO

lies and/or fluctuates, and adopting a detector which performs well over the whole class.

Clearly, the coarser the knowledge about the noise, the wider the class where the noise

will supposedly belong to.. Depending on how large the noise class is, it is expedient to

distinguish robust form nonparametric detectors. Robust detectors are eligible when the noise

distribution is known to belong to a relatively small functional neighborhood of a nominal

PDF; in general, it is possible to compute a lower bound on performance in the specified

class. Nonparametric detectors, on the other hand, perform well over a much broader class

of noise distributions, exploiting minimal information about some gross features (e.g. zero

median, symmetry, etc.) of the noise distribution. They are structurally very simple, being

based on ranks and/or polarities of the observed data, and have the interesting property of

constant false alarm rate over the whole class of PDFs, which allows to fix the detection

threshold even if the actual noise distribution is unknown (see e.g. [18, 28]). Obviously,

nonparametric detectors are expected to achieve worse perforomance than robust detectors.

In this Section, I propose simple robust and nonparametric implementations of the net-

work detectors of unmodeled GWBs discussed in the previous Sections, identifying two

functional classes where the IFOs’ noise distributions can lie/fluctuate due to uncertainties

and/or non-stationarities.

Let the noise distributions be symmetric, and consist of a Gaussian component contam-

inated by a generic non-Gaussian one, viz.

fn(x) = (1− ε)fN(x) + εh(x) (3.57)

where fN(x) is a (zero mean and σ2
G variance) Gaussian PDF, h(·) is a generic, symmetric

non-Gaussian probability density and ε ∈ [0, 1] is a mixture parameter. The noise PDF

discussed in Chapter 2 can be recognized as a special case of (3.57), where

ε = 1− exp(−λT ) (3.58)

and (see eq. (2.9))

εh(x) = F−1 {exp(−λT ) [exp(λTB(ξ))− 1]} ∗ fN(x), (3.59)
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3.4. Robust and Nonparametric Implementation

F being the Fourier transform operator, and ∗ denoting convolution.

Let the PDF class, spanned by the unknown/fluctuating non-Gaussian component, be

denoted by C.

The following general result due to Huber [101] can be used to implement a robust

detector in C. The LOD computed for the particular noise distribution f̃n(x) ∈ C which

minimizes the Fisher information, defined as

I[fn] =

∫ ∞

−∞
dxfn(x)

(
f ′n(x)

fn(x)

)2

, (3.60)

has the property that its performance for any other fn ∈ C will not be worse. The above

criterion for building a robust detector is called Min-Max, and the related distribution f̃n is

called the least favourable one in the class C.

In [16] it is shown that the least favorable distribution in the class C has the following

form

f̃n = (1− ε)
exp [−g(x)]
σG
√

2π
, (3.61)

where

g(x) =


x2

2σ2
G
, |x| < K

K|x|
σ2

G
− K2

2σ2
G
, |x| ≥ K

. (3.62)

The corresponding non-linearity computed, according to eq. (3.8), is the Hard Limiter (HL)

function, viz.

gHL(x) =
1

σ2
G

{
x, |x| ≤ K

Ksgn(x), |x| > K
. (3.63)

In (3.63), sgn(·) is the Dirichlet signum function, and the parameter K is related to ε by [39]:∫ K

−K
fN (x) dx+

2σ2
G

K
fN (K) =

1

1− ε
, (3.64)

which follows from the obvious unit area property of f̃n. Equations (3.64) and (3.58) can be

combined to relate the parameter K in (3.63) to the glitch-rate λ as follows,∫ K

−K
fN (x) dx+

2σ2
G

K
fN (K) = exp(λT ). (3.65)

Assume that the only time-varying and/or uncertain parameter affecting the noise dis-

tribution is the glitch firing rate λ, which may take values in some known range [0, λmax], all

65



Locally Optimum Network Detection of GW Bursts in Glitchy Noise

other parameters being constant and known. The least favourable PDF in this case is the

one corresponding to the largest admissible glitch rate λmax. Therefore, letting λ = λmax

in (3.65) and solving for K, one obtains the Min-Max robust detector for the class of noise

distributions (3.57), for which (3.65) holds.

The Min-Max robust implementation, over the broadest class of noises C, of the detection

statistics in eq. (3.33) and (3.38) are obtained by using the Hard-Limiter non-linearity in

place of the g
(d)
LO(·) for any d.

For the least favorable distribution, f̃n in eq. (3.61), the corresponding quantity Γ(x),

computed via eq. (3.20), is zero for |x| ≥ K, and takes the constant value of −1/σ2
G for

|x| < K, so that the waveform estimator eq. (3.23) belongs to the class of M -estimators

introduced by Huber [101], minimizing a non-quadratic norm of the residual of the linear

system (3.14).

In deriving a nonparametric detector, as a rather extreme case yielding a fiducially mini-

mum performance detector, I may, e.g., give up any information about the noise PDF, except

that it has zero median. In this case, the simplest nonparametric detector is based on sign

coincidences of the output samples between different pairs of detectors, and in the statistics

in eqs. (3.33) and (3.38) the signum function is used in place of the the g
(d)
LO functions.

The nonparametric GCC statistic is the generalization to the case of D detectors of the

2 detectors polarity coincidence statistic, which is known to be asymptotically optimal for

double-exponential noise [17].

The noise PDF corresponding to the choice of the signum nonlinearity corresponds to the

rather extreme case of Laplace (double exponential)-distributed noise. This is an unphysical

case (infinite moments), for which Γ(x) is identically zero. Hence, we may assume that

Γ(d)(x), in this case, is a very small but nonzero constant for any d.

Remarkably, even the simplest nonparametric detector may outperform the linear corre-

lator in simulated non-Gaussian noise. However, more sophisticated nonparametric detectors

have been proposed for detection in non-Gaussian noise, which use nonlinear rank statistics

(see e.g. [27]) and achieve better performance. Alternative nonparametric detectors are dis-

cussed in [125] based on nonparametric estimators [125] of the underlying noise distribution.
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Chapter 4

Numerical Results

In this Chapter the detection performance of the statistics derived in Chapter 3 are evaluated

on simulated and real instrumental (LIGO) noise. Numerical results show that the proposed

statistics are effective in improving the detection efficiency compared to the Gaussian-noise

tailored statistics, removing the need of additional checks and/or ad hoc vetoes. An existing

implemented pipeline for the detection of GWBs has been accordingly modified, and the

resulting boost in efficiency is a further proof of the goodness of the proposed approach.
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Numerical Results

4.1 Simulated Noise

The performance of the detection statistics derived in Chapter 3 is evaluated here in sim-

ulated glitchy noise, first, and in real LIGO noise, then. In this Section numerical results

pertinent to simulated noise will be shown. In particular a Monte Carlo approach, by run-

ning 10000 noise realizations, has been adopted. For all cases the injected waveform is a

Sine-Gaussian GWB, whose amplitude is gauged by the intrinsic quantity

δh =
2hrss
N

(4.1)

where

hrss =

{∫ [
h2

+(t) + h2
×(t)

]
dt

}1/2

(4.2)

and N is the (two-sided) power spectral density of the white(ned) Gaussian component of

the noise floor, supposed here to be equal in all antennas. Note that the SG shape does not

affect the detector performance [118]. The actual SNR at the IFOs will be less than δh by a

direction-of-arrival dependent factor given by the antenna directivity pattern.

The noise instances are generated using the model described in Section 2, going through

the following steps: 1) fix the glitch rate λ, the glitch waveform (atom), and the probability

distributions of the glitch shape parameters (amplitude, center frequency, duration, etc.); 2)

fix the width T of the analysis window, and draw the number of glitches in it, according to

the Poisson law with parameter λ; 3) generate the random glitch firing times tk, uniformly

distributed in T ; 4) for each glitch draw the shape parameters values, using the chosen a

priori distributions; 5) add white bandlimited Gaussian noise with fixed variance, chosen to

be 1 for convenience. In all simulations we adopt the minimum-spread un-chirped Gabor

(aka, Sine-Gaussian) atom to represent all glitches. The glitch amplitude distribution is

assumed as uniform in [−GM , GM ], where GM is the glitch amplitude corresponding to the

maximum allowable glitch signal-to-noise ratio against the Gaussian floor, SNR
(g)
max. The

distributions of center-frequency and duration estimated from (unclustered) triggers collected

in 1 week of LIGO S51 data [34]. The distributions obtained for f0 and σt are sketched in

Figure 4.1.

The performance of all detectors discussed above is obviously dependent on the source

location. Note that in view of the direction-dependence of the coefficients weighting the single

terms in all considered detection statistics, i.e., eqs., (3.33), (3.38), even in the absence of

a signal (H0 hypothesis), the distribution of the statistics is direction-dependent, and hence

1S5 identifies the fifth science run (2005/2006) in which LIGO data were collected.
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4.1. Simulated Noise

Figure 4.1: Empirical distributions of the center frequency and the time duration of events, detected by the
Q-pipeline [34] during one week of LIGO S5 data.

the threshold corresponding to a fixed false alarm probability is also direction-dependent.

For illustrative purposes, we shall draw the sky maps of the detection probability PD, at the

same false alarm level of 10−2, for all proposed detectors. All sky maps are constructed by

evaluating PD over a grid of source positions Ω = (ϕ, ϑ) in the celestial sphere, uniformly

sampled in ϕ and cos(ϑ). Also, for all detectors we computed the Receiver Operating

Characteristics (ROCs) displaying PD versus PFA for a fixed source position, corresponding

to the maximum network sensitivity for both linear polarizations.

Note that, for sources located at or near the poles, i.e. at ϑ ≈ 0, π, the detector perfor-

mance oscillates with ϕ. This is not surprising: the variation of ϕ produces a rotation of the

(spherical) polarization basis (ûϑ, ûϕ), orthogonal to the wave propagation vector ûρ, which

defines the wave polarization components (see e.g. [150]). As a result, the antenna patterns

F+ and F× oscillate with ϕ, even in the limit ϑ → 0, π. For a source whose orientation is

kept fixed, the wave polarization components would oscillate with ϕ as well, in such a way to

make the signal at the output of the IFO independent from ϕ, in the limit ϑ→ 0, π. Here,

on the other hand, we keep the incoming wave (linear) polarization fixed, irrespective of the

direction of arrival, which implies rotating the source accordingly, so that, when ϕ is varied

in [0, 2π], the GW signal keeps linearly polarized along the + or × component. In this case,

the signal received by an IFO changes as ϕ is varied, since the GW polarizations components

remain constant by assumption, while the antenna patterns F+ and F× oscillate.

We start from the simplest ideal case of a pure Gaussian noise, where the glitch component

is absent. In this case the optimal detection statistics are given by GLRTG, obtained by using

the estimator in eq. (3.18) in eq. (3.6), and LCC in eq. (3.39). The relevant sky maps are

shown in Figures 4.2 and 4.3 for the + and × polarizations, respectively, for δh = 20.
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Numerical Results

Figure 4.2: Sky maps of detection probability at false alarm level of 10−2. Data corrupted by Gaussian
noise. Left: Gaussian-noise version of generalized likelihood ratio, GLRTG. Right: Gaussian-noise version
of generalized cross-correlation detector, LCC eq. (3.39). Linearly (+)-polarized GWB, δh = 20.

Figure 4.3: Sky maps of detection probability at false alarm level of 10−2. Data corrupted by Gaussian
noise. Left: Gaussian-noise version of generalized likelihood ratio, GLRTG. Right: Gaussian-noise version
of generalized cross-correlation detector, LCC eq. (3.39). Linearly (×)-polarized GWB, δh = 20.

The performance of the Gaussian noise tailored network detectors GLRTG and LCC

is seriously spoiled after switching on the (non-Gaussian) glitch-noise component. This is

illustrated in Figures 4.4 and 4.5, where δh = 20, λ = 0.5s−1, SNR
(g)
max = 102.

On the other hand, the locally optimum detectors GLRT and GCC, using the noise-

tailored non-linearity defined in eq. (3.8) to pre-filter data, behave reasonably well, as

shown in Figures 4.6 and 4.7.

The ROCs of the GLRT and GCC detectors in non-Gaussian noise are displayed in

Figures 4.8 and 4.9 for the two linear polarizations, and compared to those of the Gaussian-

noise tailored detectors GLRTG and LCC, both in Gaussian and non-Gaussian (glitchy)

noise. Here δh = 20, λ = 0.5s−1, SNR
(g)
max = 102, and the source is located at a position

corresponding to the best network performance, viz. {ϑ = 2.28rad, ϕ = 1.99rad} for the +
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4.1. Simulated Noise

Figure 4.4: Sky maps of detection probability at false alarm level of 10−2. Data corrupted by non-Gaussian
noise, with λ = 0.5s−1, SNR

(g)
max = 100. Left: Gaussian-noise version of generalized likelihood ratio,

GLRTG. Right: Gaussian-noise version of generalized cross-correlation detector, LCC eq. (3.39). Linearly
(+)-polarized GWB, δh = 20.

Figure 4.5: Sky maps of detection probability at false alarm level of 10−2. Data corrupted by non-Gaussian
noise, with λ = 0.5s−1, SNR

(g)
max = 100. Left: Gaussian-noise version of generalized likelihood ratio,

GLRTG. Right: Gaussian-noise version of generalized cross-correlation detector, LCC eq. (3.39). Linearly
(×-polarized GWB, δh = 20.

polarization, and {ϑ = 2.28rad, ϕ = 0.94rad} for the × polarization.

Notably, in the small PFA limit (below PFA ≈ 10−2), the GCC offers the best performance.

Only for false-alarm rates above ∼ 2 · 10−2, the GLRT takes over. The GCC detector differs

from the GLRT mainly due to the absence of the energy (auto-correlation) terms. Dropping

these terms, the performance of the GLRT improves, becoming comparable to that of the

GCC. Indeed, the sky maps of the coefficients Rdd′ and pdd′ , d 6= d′, these latter computed

using the matrix Σ in eq. (3.18), show a very similar behaviour, as shown in Figure 4.10.

Figures 4.11 and 4.12, show the influence of the glitch rate and the SNR
(g)
max on the

performance of the GLRT and GCC, respectively. Both detectors perform similarly, in this

respect.
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Figure 4.6: Sky maps of detection probability at false alarm level of 10−2. Data corrupted by non-Gaussian
noise, with λ = 0.5s−1, SNR

(g)
max = 100. Left: generalized likelihood ratio GLRT eq. (3.33). Right:

generalized cross-correlation detector, GCC eq. (3.38). Linearly (+)-polarized GWB, δh = 20.

Figure 4.7: Sky maps of detection probability at false alarm level of 10−2. Data corrupted by non-Gaussian
noise, with λ = 0.5s−1, SNR

(g)
max = 100. Left: generalized likelihood ratio GLRT eq. (3.33). Right:

generalized cross-correlation detector, GCC eq. (3.38). Linearly (×)-polarized GWB, δh = 20.

Figure 4.13 and 4.14, on the other hand, displays the ROCs of the GLRT and GCC

detectors for different values of δh (the intrinsic GWB strength), and fixed values of λ =

0.5s−1, SNR
(g)
max = 102, for linearly polarized radiation.

Overall, the GCC performs better than the GLRT in non-Gaussian glitchy noise, and has

the advantage that it is not plagued by the ill-conditioning problem, providing no estimate of

the possibly present GW signal. Figures 4.15 and 4.16 display the sky maps of the detection

probability PD, at a false alarm probability of 10−2 for the robust and non-parametric versions

of the GCC, GCCR and GCCNP , respectively. Here again, δh = 20, λ = 0.5s−1, SNR
(g)
max =

102, for both linear polarizations.

Finally, in Figures 4.17, the robust and non-parametric versions of the GCC are compared

to the GCC in terms of ROCs, at fixed δh = 20, λ = 0.5s−1, SNR
(g)
max = 102. The tradeoff
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4.2. Real LIGO S5 data

Figure 4.8: ROCs of the GLRT eq. (3.33) and GCC, eq. (3.38) in non Gaussian noise with λ = 0.5s−1,
SNR

(g)
max = 102 (red markers). ROCs of the Gaussian-noise versions GLRTG, and LCC are also shown for

comparison, both in (the same) non-Gaussian noise (black markers) and in Gaussian noise (blue markers).
Linearly (+)-polarized GWB with δh = 20 emitted by a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).

between the competing requirements for a detection statistic of applying to a broad noise

class and yielding good performance is clearly illustrated. The robust implementation based

on the Hard-Limiter non-linearity offers a good trade off between performance, and accuracy

in the noise model. Heuristic prescriptions to fix theK parameter in the HL filter, e.g. setting

K to 2 or 3 times the standard deviation of the Gaussian floor, have been also discussed in

the pertinent Literature. The GCCNP offers a worse performance. It is worth reminding here

that the GCCNP is optimal for the broadest class of noises with zero-median distribution,

and otherwise unspecified. As such it stands as a lower performance bound, yet significantly

better than the Gaussian-noise tailored detector.

4.2 Real LIGO S5 data

In this Section the proposed detection statistics are evaluated using a bunch of LIGO S5 data.

In dealing with real data we need to adopt the statistics designed for colored noise in Section

3.3. In this case, one should estimate the PDFs of uncorrelated samples (DFT coeffcients),

which in principle could be different, to derive the g
(d)
LO and Γd functions. Although this is

possible in principle [85], here I use a sub-optimum non-linearity, which is robust against

variations/uncertainties of the actual PDFs, namely the hard-limiter (HL) function gHL(x)

in eq. (3.63). The HL non-linearity is applied, as stated in Section 3.3, to the real and

imaginary parts of the DFT coefficients, and the value of the breakpoint K is chosen to be
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Figure 4.9: ROCs of the GLRT eq. (3.33) and GCC, eq. (3.38) in non Gaussian noise with λ = 0.5s−1,
SNR

(g)
max = 102 (red markers). ROCs of the Gaussian-noise versions GLRTG, and LCC are also shown for

comparison, both in (the same) non-Gaussian noise (black markers) and in Gaussian noise (blue markers).
Linearly (×)-polarized GWB with δh = 20 emitted by a source at (ϑ = 2.28 rad, ϕ = 0.94 rad).

3 times the standard deviation of the noise in each spectral single bin.

I use a set of S5 data collected at the output of the three LIGO interferometers and

inject linearly (+) polarized Sine-Gaussian bursts, whose energy is gauged by the quantity

δh defined in eq. (4.1). Figure 4.18 shows the PSDs of the three IFOs for the considered

data set.

For brevity, I show only the ROCs for one source position as in the previous Section.

Figures 4.19 and 4.20 show the performances, respectively, for δh = 20 and δh = 30, evaluated

on the chosen set of real data. For a better comparison, I plot the same ROCs, evaluated

on simulated Gaussian noises, featuring the same PSDs as in Figure 4.18.

It is evident that in pure Gaussian noise the GLRT outperforms the LCC, both, as

expected, achieving better performances than the corresponding statistics where the Hard-

Limiter non-linearity has been applied. In real LIGO noise, on the contrary, the LCC and

GCC outperform the GLRT statistics. This provides some evidence that the noise corrupting

even ”high” quality data behaves differently from a pure Gaussian noise.

As a next step, I added to both the simulated Gaussian and the real LIGO data sets, a

glitchy component, as described in Chapter 2, injecting first weak and then loud glitches,

having, respectively, SNR
(g)
max = 30, 300, with two values of the glitch rate λ = 0.2, 1s−1.

Figure 4.21 shows the performances of the detection statistics when weak artificial glitches

are added to the set of LIGO data, for two values of the firing rate. The maximum SNR

for glitches is set equal to that of the injected GWB, the center frequency is uniformly
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distributed in the whole considered range, and the duration is uniformly distributed from

zero and the length of the analysis window, viz. 0.5s. In this case, the GCC achieves the

best performance, which is comparable to that of the LCC for low glitch rate. Indeed, the

noise is non-Gaussian but the glitch amplitude is slighlty larger than the floor level, hence,

for low glitch rate, the effect of the Hard-Limiter non-linearity on the data is negligible.

If loud glitches are added, whose maximum SNR is one order of magnitude larger than

that of the injected GWB, the performances of all detection statistics, plotted in Figure 4.22,

deteriorate as expected, but the gain of the GCC w.r.t. the LCC increases. In this case, the

benefit of the applied clipping is clearly evident.

The larger the expected number of glitchy samples in the analysis window γ, i.e. (see

Chapter 2) the glitch rate times the expected glitch duration, and/or the larger the maximum

glitch SNR, SNR
(g)
max, the more evident the gain in performance due to the clipping non-

linearity. In the presence of loud and/or frequent glitches, the best statistic is the GCC. In

the presence of weak rare glitches, GCC and LCC achieve comparable performance. It is

important to note that the non-Gaussian tailored statistics, i.e. GLRT and GCC, are more

robust with respect to glitches than the Gaussian tailored ones, i.e. GLRTG and LCC, in the

sense that an increase in the glitch rate and/or maximum glitch SNR spoils the performance

of GLRTG and LCC more than that of GLRT and GCC (see Figures 4.21,4.22).

The results obtained in this Section are in accordance with those obtained in simulated

noise, shown in the previous Section.

4.3 The modified RIDGE pipeline

The GLRT and GCC statistics derived in Chapter 3 and tested in the previous Sections,

have the same basic structure as the (Gaussian-noise tailored) statistics, on which currently

implemented pipelines for the detection of unmodeled GWBs are based. The main clear

difference is the presence of the non-linearity gLO(·) clipping the data. This suggests that

such pipelines could be improved, at the minimum effort, by applying a properly chosen

non-linearity to the data before they are used to compute the detection statistics.

I implemented this modification in the RIDGE pipeline, developed by prof. S. Mohanty

of University of Texas at Brownsville, where I spent six months supported by a Fulbright

fellowship for Visiting Student Researcher. RIDGE pipeline is described in [72] and is based

on the Standard Likelihood [43,75,121] to perform a triggered search of GWBs. The statistics

RIDGE uses are the Correlation Map (CM) and the Radial Distance (RD), defined as follows

[72]:
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Numerical Results

CM =
maxΩL(Ω)

minΩL(Ω)
(4.3)

and

RD =

[(
maxΩL(Ω)

maxΩL0(Ω)
− 1

)2

+

(
CM

minΩL0(Ω)

maxΩL0(Ω)
− 1

)2
]−1/2

, (4.4)

where L(Ω) is the Likelihood statistic evaluated at source position Ω, and L(Ω)0 is the

expected value of L(Ω) in the H0 (no GW signal) hypothesis. The modification I introduced

consists in applying the gHL non linearity (3.63) to the DFT samples of the data set, before

computing the statistics (4.3) and (4.4). The breakpoint K is, as before, chosen to be 3

times the standard deviation of the noise affecting the DFT coefficients.

Figure 4.23 shows the ROC of the two statistics for the same LIGO S5 data set used in

the previous Section, for δh = 30, computed with and without the modification. ”Modified”

statistics are denoted with a subscript HL.

As before, I further tested the same statistics adding artificial glitches. For δh = 30 we add

weak glitches2, whose maximum SNR is SNR
(g)
max = 30. The pertinent results are shown in

Figure 4.24, from which it is clear that the application of the non-linearity entails a large

improvement in the detection efficiency of the RIDGE pipeline.

In Figure 4.25 the performances of modified RIDGE statistics are compared with the GLRT

and GCC.

2The addition of loud glitches deteriorates too much the performance of all the statistics.
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4.3. The modified RIDGE pipeline

Figure 4.10: Sky maps of coefficients pdd′
, d 6= d′ in GLRT (left) and Rdp in GCC (right) corresponding to

cross-correlation terms. First row: LHO-LLO; second row: LHO-Virgo; third row: LLO-Virgo.
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Numerical Results

Figure 4.11: ROC of GLRT detector, eq. (3.33), for different values of the glitch rate, at fixed SNR
(g)
max = 102

(left), and for different values of SNR
(g)
max at fixed λ=0.5 s-1 (right). Linearly (+)-polarized GWB with

δh = 20 emitted by a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).

Figure 4.12: ROC of GCC detector, eq. (3.38), for different values of the glitch rate, at fixed SNR
(g)
max = 102

(left), and for different values of SNR
(g)
max at fixed λ = 0.5s−1 (right). Linearly (+)-polarized GWB with

δh = 20 emitted by a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).
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4.3. The modified RIDGE pipeline

Figure 4.13: ROC of GLRT detector, eq. (3.33), for different values of the intrinsic SNR of the GWB,
δh = 20. Non-Gaussian noise with λ = 0.5s−1 SNR

(g)
max = 102 (left). Linearly (+)-polarized GWB emitted

by a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).

Figure 4.14: ROC of GCC detector, eq. (3.38), for different values of the intrinsic SNR of the GWB, δh = 20.
Non-Gaussian noise with λ = 0.5s−1 SNR

(g)
max = 102 (left). Linearly (+)-polarized GWB emitted by a source

at (ϑ = 2.28 rad, ϕ = 1.99 rad).
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Numerical Results

Figure 4.15: Sky map of detection probability at false alarm level of 10−2 of the robust version of GCC
detector, GCCR, based on the HL non-linearity. Data corrupted by non-Gaussian noise, with λ = 0.5s−1,
SNR

(g)
max = 102. Linearly (+)-polarized GWB, δh = 20.

Figure 4.16: Sky map of detection probability at false alarm level of 10−2 of the nonparametric version of
GCC detector, GCCNP , based on the signum non-linearity. Data corrupted by non-Gaussian noise, with
λ = 0.5s−1, SNR

(g)
max = 102. Linearly (+)-polarized GWB, δh = 20.
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4.3. The modified RIDGE pipeline

Figure 4.17: ROCs of GCC detector, eq. (3.38), vs its robust, GCCR, and non-parametric, GCCNP , versions.
Non Gaussian noise with λ = 0.5s−1, SNR

(g)
max = 102. Linearly (+)-polarized GWB with δh = 20 emitted

by a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).

Figure 4.18: Power Spectral Density of the noises at the three LIGO IFOs for the analyzed set of data: the
two IFOs at Hanford site (H1, H2), and the one at Livingston site (L1).
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Numerical Results

Figure 4.19: ROCs in real S5 data (left) and simulated colored Gaussian noise (right). (+)-polarized SG
GWB, δh = 20, emitted from a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).

Figure 4.20: ROCs in real S5 data (left) and simulated colored Gaussian noise (right). (+)-polarized SG
GWB, δh = 30, emitted from a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).

Figure 4.21: ROCs in real S5 data. Weak (SNR
(g)
max = 30) glitches added: λ = 0.2s−1 (left) and λ = 1s−1

(right). Linearly (+)-polarized SG GWB, δh = 30, emitted from a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).
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4.3. The modified RIDGE pipeline

Figure 4.22: ROCs in real S5 data. Loud (SNR
(g)
max = 300) glitches added: λ = 0.2s−1 (left) and λ = 1s−1

(right). Linearly (+)-polarized SG GWB, δh = 30, emitted from a source at (ϑ = 2.28 rad, ϕ = 1.99 rad).

Figure 4.23: ROCs of the unmodified (no subscript) vs modified (subscript HL) RIDGE statistics in LIGO
S5 data. Linearly (+)-polarized SG GWB, δh = 30, emitted from a source at (ϑ=2.28 rad, ϕ = 1.99 rad).
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Numerical Results

Figure 4.24: ROCs of the RIDGE statistics in real S5 data. Weak glitches added. Linearly (+)-polarized
SG GWB, δh = 30, emitted from a source at (ϑ=2.28 rad, ϕ=1.99 rad).

Figure 4.25: RIDGE statistics vs GCC in real S5 data. No Glitches and weak glitches (SNR
(g)
max = 30,

λ = 1s−1). Linearly (+)-polarized SG GWB, δh = 30, emitted from a source at (ϑ=2.28 rad, ϕ=1.99 rad).
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Chapter 5

Thermal Noise in Interferometers

In this Chapter I overview thermal noise theory, and describe the different components of

thermal noise, connected to different mechanisms of dissipation, viz. the Brownian, the

thermo-elastic and the thermo-refractive noises. Guidelines for the computation of such

contributions for the mirror (test-mass) substrate and for a multilayer coating are provided

as well.
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Thermal Noise in Interferometers

5.1 Basics of Thermal Noise Theory

Thermal Noise (TN) in mirror test masses is expected to be the limiting noise contribution

in the most sensitive bandwidth, i.e. between 40 Hz and few hundreds Hz, in advanced

interferometric GW antennas, as shown in Figure 5.1.

Figure 5.1: Projected noise floor of Advanced LIGO [97]. Brownian noise is limiting in the most sensitive
frequency band.

We can identify two broad categories of thermal noise sources: i) intrinsic (dissipative)

noise, arising when there is coupling of a mechanical motion to a heat reservoir, for which me-

chanical fluctuations are ruled by the Fluctuation-Dissipation theorem (to be stated below);

ii) extrinsic (non-dissipative) noise, arising when externally imposed temperature variations

(e.g. by heat absoprtion from the laser beam with fluctuating intensity [142]) drive thermal

fluctuations. We focus here on the intrinsic noise, which is the major contribution to TN in

the band of interest.

Intrinsic noise can arise in the thick transparent substrate of the IFO test masses, in

the thin dielectric coating grown on top of this latter, or in their suspensions. If the mass

suspensions are made by fused silica, as for Advanced LIGO (AdLIGO), their contribution

to TN turns out to be negligible [12,90]. TN fluctuations in the body of the mirror were first

observed in [15, 29, 151]. The importance of the coating contribution to TN was realized by

Levin in [151], and it has been throughly studied by several authors, in view of its importance

for second generation of GW antennae (see e.g. [69, 70, 82, 108]). Coating TN arises from
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5.1. Basics of Thermal Noise Theory

the fact that properties of the coating are quite different from those of the substrate1, and

the damping is not uniform in the entire test mass. Furthermore, while mirror substrates

are carefully chosen for their low thermal noise (high mechanical Q-factor), mirror coating

materials are chosen mostly for their optical properties (refraction index), and they do not

have necessarily good mechanical properties. The coating on the surface of test masses is

required in order to increase their reflectivity, which in turn increases the finesse of the

Fabry-Perot cavities formed by the couple of mirrors placed in any interferometer arm.

Test masses for AdLIGO are made by a cylindrical substrate, with transverse diameter

of about 30 cm, and thickness of about 20 cm. Preferred materials for the substrate are

silica dioxide and sapphire; however the former offers a series of advantages over the latter.

The coating is in general a multilayer dielectric structure, as it will be described in the next

Chapter, and proposed materials for the coating include: silica dioxide, plain tantala, tantala

pentoxide doped with Titania dioxide, titania, aluminum.

TN is also known as Brownian Noise, taking this name from the analogy with the jiggling

of a particle within a medium, due to random collisions with other molecules, that was noted

by R. Brown in 1827. This microscopic motion of molecules is the heat. In 1905, Einstein

predicted that the mean square position, 〈x2(t)〉, of a particle subjected to Brownian motion

obeys the following relation

〈
x2(t)

〉
= 2kBTBt, (5.1)

where kB is the Boltzmann’s constant2, T is the temperature, B the mobility of the particle,

depending on its size and the surrounding medium, t is the time. This expression was the

first link between fluctuation, x(t), and dissipation (due to collisions).

The fluctuations analogous to Brownian motion in any system with dissipation obey the

Fluctuation-Dissipation theorem (FDT), formulated by Callen et al [25]. The power spectral

density3 (PSD) of the thermal driving force (playing the role of the random collisions) is given

by

Sth(f) = 4kBT< [Z(f)] , (5.2)

where Z(f) is the mechanical impedance, defined as Z(f) = F (f)/v(f), F being a force

applied to the mass and v is its velocity. The FDT states that the PSD of the mass fluctua-

1To be precise, this is strictly true only for what will be called later thermo-optic noise. Coating Brownian
noise (see later), on the other hand, simply sums to the substrate contribution, but this latter is negligible
with respect to the former.

2kB= 1.3806504 10-23 J/K.
3Unless otherwise specified, throughout this Chapter, I will refer to the one-sided power spectral density.
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Thermal Noise in Interferometers

tions is directly proportional to the real part of the mechanical admittance Y (f) = Z(f)−1,

< [Y (f)], viz.

Sx(f) =
kBT< [Y (f)]

π2f 2
. (5.3)

The first method to compute the thermal noise was based on a normal-mode expansion

[15, 134], and on the Equipartition theorem4. Levin in [151] proposed a direct application

of the FDT to do the calculation, first introduced by Gonzalez and Saulson [99], which

turned out to be more powerful and less computationally expensive. This method consists

in i) mentally apply a pressure of amplitude F0 oscillating at given frequency f0 to the

mass surface (Levin used a Gaussian profile for the oscillating pressure mimicking that of

the Gaussian laser beam incident on the mirror), ii) compute the dissipated power Pd (the

average power converted to heat), which is connected to the real part of the admittance as

follows [151]

< [Y (f)] =
2Pd
F 2

0

; (5.4)

iii) evaluate the PSD of fluctuactions depending on the dissipated power through the follow-

ing equation, obtained by eqs. (5.3) and (5.4),

Sx(f) =
2kBT

π2f 2

Pd
F 2

0

. (5.5)

In the following Sections I analyze the different components of the TN, all due to the

thermal fluctuations, but associated to different mechanisms of dissipation, and provide the

guidelines to compute their PSDs.

5.1.1 Internal Friction

Internal friction in solids was identified by Kimball [112], who described it as a phase shift

between stress and strain. This is the TN component which is usually denoted, although

being not strictly precise, as Brownian (motion) noise. The figure of merit for internal

friction in a material is the loss angle, φ, defined as the phase of the complex elastic Young

modulus 5,

4According to the Equipartition theorem, the average energy is equally distributed over all mechanical
modes of the mirror. Hence the total TN is computed by summing the contributions of single modes.

5Young’s modulus, Y , describes tensile elasticity, or the tendency of an object to deform along an axis
when opposing forces are applied along that axis; it is defined as the ratio of tensile stress to tensile strain.
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5.1. Basics of Thermal Noise Theory

Y = Y0(1 + ıφ). (5.6)

One model for internal friction, identified by Saulson [134], is the structural damping, in

which φ is independent on frequency. In the case of homogenously distributed damping, as

in the case of the mirror substrate, the spectral density of fluctuations is [29]

SBx (f) =
4kBT

(2π)3/2f

φ(f) (1− σ2)

Y r0
, (5.7)

where σ is the Poisson’s ratio 6, and r0 is the radius of the laser beam (1/e of central power)7.

Here and henceforth φ will be assumed to be constant in frequency.

If a multilayer dielectric coating is laid on top of the mass, its contribution to SBx (f) is

taken into account by substituting φ, in eq. (5.7), with the effective loss angle φtot of the

mirror, given by the sum of the loss angle of the substrate, φ, and the effective loss angle of

the coating, φcoat, i.e.

φtot = φ+ φcoat, (5.8)

where φcoat is given by

φcoat = d/ (
√
πr0Y⊥) ·

((
Y/(1− σ⊥)− 2σ2

⊥Y Y||/
(
Y⊥ (1− σ2)

(
1− σ||

)))
φ⊥

+Y||σ⊥ (1− 2σ) /
((

1− σ||
)
(1− σ)

) (
φ|| − φ⊥

)
+Y||Y⊥ (1 + σ) (1− 2σ)2 /

(
Y
(
1− σ2

||

)
(1− σ)

)
φ||,

(5.9)

where d is the coating physical thickness, Y , σ and φ are the Young’s moduli, the Poisson’s

ratios and loss angles of the substrate (no subscript), the coating for stress perpendicular

(subscript ⊥), and parallel (subscript ||) to the optic face. The elastic constants of the

coating can be obtained from the bulk values of the materials making up the coating. If the

alternating dielectrics are two, denoted with the subscripts 1 and 2, the following equations

are valid

6Poisson’s ratio is the ratio of the contraction or transverse strain (perpendicular to the applied load), to
the extension or axial strain (in the direction of the applied load).

7Note that for some authors the definition of r0 can vary by a factor of
√

2.
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Y⊥ = (d1 + d2)/(d1/Y1 + d2/Y2)

Y|| = (Y1d1 + Y2d2)/(d1 + d2)

σ⊥ = (σ1Y1d1 + σ2Y2d2)/(Y1d1 + Y2d2)

φ⊥ = Y⊥(φ1d1/Y1 + φ2d2/Y2)

φ|| = (Y1φ1d1 + Y2φ2)/(Y||(d1 + d2)).

(5.10)

while σ|| satisfies the following equation

σ1Y1

(1 + σ1)(1− 2σ1)
+

(d2/d1)σ2Y2

(1 + σ2)(1− 2σ2)
= −

Y||(σ
2
⊥Y|| + σ||Y⊥)(1 + d2/d1)

(σ|| + 1)
(
2σ2

⊥Y|| − (1− σ||)Y⊥
) . (5.11)

If all Poisson’s ratios are small8, eq. (5.9) can be approximated by the following simpler

formula

φcoat ≈
d√
πr0

(
Y

Y⊥
φ⊥ +

Y||
Y
φ||

)
. (5.12)

From the approximation in eq. (5.12), it is evident that, as long as φ⊥ ≈ φ||, matching

coating and substrate Young’s moduli helps reducing the thermal noise from internal friction.

An acceptably good matching can be achieved using silica substrates. Furthermore, in this

case, the substrate contribution to Browanian noise is negligible with respect to that of the

coating, i.e. φ << φcoat and φtot ≈ φcoat.

With a little algebra, it is possible to write eq. (5.12) in the following convenient form

φcoat ≈ (b1d1 + b2d2), (5.13)

where

b1,2 =
λ0√
2πr0

φ1,2

n1,2

(
Y1,2

Y
+

Y

Y1,2

)
(5.14)

is the loss density for unit thickness of material 1 and 2, respectively.

8For the case of fused silica or sapphire substrates coated with alternating layers of Ta2O5 and SiO2, the
Poissons ratio of the coating may be small enough (≤ 0.25) to allow this approximation.
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5.1. Basics of Thermal Noise Theory

5.1.2 Thermo-Elastic Noise

Thermo-Elastic (TE) noise is the name given to the TN due to thermo-elastic dissipation, i.e.

the dissipation due to heat flow down temperature gradients, produced by inhomogeneous

compression and expansion of the test mass material. The method of calculation of such

noise is, as before, the one adopted in [151]: i) imagine applying a sinusoidally oscillating

pressure to one face of the test mass, with the same spatial profile as that of the laser beam;

ii) compute the energy dissipated by thermo-elastic flow and iii) use this latter quantity in

eq. (5.5).

For infinite size test masses, the thermoelastic noise in a homogeneous mass is given

by [30,143]

STEx (f) =
8(1 + σ)2κα2kBT

2

√
2πC2

V ρ
2r3

0(2πf)2
, (5.15)

where, here and throughout this Chapter, α is the linear thermal expansion coefficient,

defined as

α =
1

l

dl

dT
, (5.16)

κ is the thermal conductivity of the material, ρ is the volume density, and CV is the specific

heat per unit mass at constant volume. For finite size test-masses, the PSD of thermal noise

can be obtained by including in eq. (5.15) a correction factor [143], which is, however, only

several percents for typical mirror sizes.

Braginsky and Vyatchanin in [24] computed the PSD of TE noise due to thermodynam-

ical fluctuations in thin coating, with elastic properties different from those of the mirror

substrate. For a thin coating, the thickness d is much smaller than the diffusive heat transfer

characteristic length lc =
√
κ/ρCV 2πf , f being the frequency of observation; hence we may

consider TD temperature fluctuations in the coating to be the same, and independent on its

specific thickness. The simple way the authors in [24] adopted to do this calculation is the

following.

Using the definition of α in eq. (5.16), the displacement of the coating outer surface can

be written to first order in the temperature fluctuations ∆T 9,

∆xTE
∣∣
c
∼= −αeffd∆T, (5.17)

where αeff is the effective coating TE coefficient10. Denoting, as above, the quantities

9By definition, temperature does not fluctuate. Here, temperature fluctuations express energy fluctua-
tions.

10The x axis being oriented toward the substrate, ∆xTE
∣∣
c

should be negative, for positive αeff .
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referring to the two materials making up the coating with the subscripts 1 and 2, and no

subscript for the quantities of the substrate, αeff is given by

αeff = (1 + σ)2

(
α1d1

d1 + d2

Y1(1− 2σ)

Y (1− 2σ1)
+

α2d2

d1 + d2

Y2(1− 2σ)

Y (1− 2σ2)
− α

)
, (5.18)

and the PSD of surface fluctuations due to TE damping in the coating is

STEc (f) =

(
∆xTE

∆T

)2

S∆T (f) =
4
√

2

π

α2
effd

2kBT
2

r2
0

√
κρCV 2πf

. (5.19)

Taking into account the finite size of the mirror, a multiplicative factor must be included

in eq. (5.19), which for realistic values of LIGO coating is slightly larger than 1 [24].

For fused silica substrates, the substrate TE contribution is more than one order of

magnitude smaller than that of the coating, and hence can be ignored; while for sapphire

substrates, it is dominant with respect to the coating TE contribution.

5.1.3 Thermo-Refractive Noise

Thermodynamical fluctuations of temperature in mirrors produce additional noise, not only

through thermal expansion, but also through the dependence on the temperature of the

refraction indexes of materials composing the test masses. This change in the refraction

indexes produce change in the phase of the reflected wave, which is seen at the photodetector

as fluctuations of the mirror surface. These fluctuations are known as Thermo-Refractive

(TR) noise, and the associated loss mechanism is the electrocaloric dissipation [142]. While

reflecting, the optical wave penetrates in the test mass on a certain depth, which, for the

LIGO experiment, is of the order of magnitude of ∼ 1µ. In view of the presence of a

multilayer dielectric coating on the mass’ surface, the penetration depth involves only the

very first few layers of the coating, which are the only ones contributing to TR noise11. The

penetration depth is much smaller than the characteristic length of diffusive heat transfer, lc;

hence, as before, we may consider the fluctuations of temperature as correlated in the layers.

The dependence of the refraction indexes ni of the coating materials is measured by the

thermo-refractive coefficients βi = dni/dT . We can use the reflection coefficient transport

equation [102] to find that, to first order in the temperature fluctuations ∆T , the following

approximation is valid

∆xTR ∼= λ0βeff∆T, (5.20)

11Other contributions to TR noise are given by the optics laser beam passes through, e.g. the beamsplitter.
However these are not major contributions [142].
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where βeff is the effective coating thermo-refractive coefficient and λ0 is the operation wave-

length in vacuo. Braginsky et al. in [31] computed the PSD of TR noise in IFO test masses

to be

STRx (f) = β2
effλ

2

√
2kBT

2

πr2
0

√
2πρCV κf

, (5.21)

where βeff for the case of coatings made of cascaded quarter-wavelength (QWL) low-high

index doublets is given by

βeff |QWL =
n2
HβL + n2

LβH
4(n2

L − n2
H)

. (5.22)

I generalized this formula to the case of non-QWL coatings, which is of interest in view of the

coating optimization described in the next Chapter. Such a generalization is given by [10]

βeff = − 1

2π

(
∆B

1 +B
2

0

)
, (5.23)

where Y
(0)

= ıB0 and ∆Y = ı∆B are, respectively, the (normalized) input admittance of

the coating at the reference temperature (T = T0) and its variation due to temperature

deviation from T0, to first order in ∆T . The derivation of formulas in eq. (5.22) and (5.23)

is reported in Appendix B.

5.2 Thermo-Optic versus Brownian Noise

A crucial assumption implicitly made above is the adiabaticity, i.e. the temperature in

the coating does not fluctuate on characteristic time scales whereby the multiply reflected

field in the coating builds up. This assumption, togheter with the already mentioned spa-

tial uniformity of the temperature fluctuations across the coating thickness, suggests that

thermo-elastic and thermo-refractive fluctuations should be coherently summed to form what

is called thermo-optic (TO) noise, whose PSD would be

STOx (f) =

(
∆xTE

∆T
+

∆xTR

∆T

)2

S∆T (f) = (αeffd+ βeffλ)2

√
2kBT

2

πr2
0

√
2πfCV ρκ

. (5.24)

However, the coherent versus the incoherent sum of TE and TR noises is still matter of

debate. In [67] the authors showed that TE and TR have opposite signs when summed
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coherently, and there exists a frequency where they sum to zero. However, preliminary mea-

surements under work at Caltech laboratories do not confirm this result.

For its low mechanical loss angle and low TE contribution, the substrate for AdLIGO

will be made by fused silica, so that becomes crucial the optimization of the coating, in order

to reduce the total amount of thermal noise.
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Chapter 6

Coating Optimization for minimal

Thermal Noise

After a brief review of multilayer dielectric mirrors, the problem of coating optimization is

formulated. First, the optimization strategy for single-wavelength operation is described and

the results of experimental measurements of Brownian noise on an optimized monochroic

prototype are discussed. Then, the optimization strategy is extended to the more compli-

cated case of double-wavelength operation, and applied to the design of optimized coatings

for the end and inner test masses of AdLIGO.
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6.1 AdLIGO Coating Requirements

The test masses in GW interferometers (IFOs) (Figure 6.1) are coated with dielectric layers

in order to guarantee low optical losses and high reflectance, Γ, (or reduce their power

transmittance τ) at the operation wavelength(s). The higher the reflectivity of these masses,

the higher the finesse of the Fabry-Perot cavity, formed in any arm by a couple of masses

(mirrors). In turn, a high value of the finesse allows a better resolution of the interference

fringes at the photodetector placed at the output of the instrument [115]. The masses closer

to the beamsplitter in any arm are called inner or input test masses, ITMs, while the ones

at the opposite ends of the arms are called end test masses, ETMs (see Figure 6.1). The

reflectivity requirements are different for ITMs and ETMs.

Figure 6.1: Simplified optical scheme of a Michelson-Morley interferometer for GW detection.

The operation wavelength is λ0 = 1024 nm, at which the initial LIGO design required

a transmittance of 3% on the ITMs and between 5 and 10ppm for the ETMs. For the

Advanced LIGO (AdLIGO) design [146], the requirements on the transmittances become

more stringent, i.e. 1.4% for the ITMs and < 6ppm for the ETMs. Furthermore, AdLIGO

is required to operate at double-wavelength, where the second wavelength (532 nm, second

harmonic of the main beam) is needed by the new cavity alignment locking system. In

addition, sufficient high reflectance is recommended on a third wavelength (e.g. 670 nm)

used for Hartmann sensors, as well as optical levers at some wavelength to be chosen among

670, 946, 980, 1319, 1550 nm [22]. Table 6.1 summarizes the AdLIGO optical requirements.

As of today, the coating is made by alternating layers of two dielectric materials, with

low and high refraction index, respectively. Currently preferred materials (see Table 6.2 for

their properties of interest here) are: silica dioxide, for the low index material, and tantala
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Table 6.1: AdLIGO Requirements on test masses optical properties. Source: AdLIGO wiki.

ITM ETM
τ@1064nm 14000 ppm < 6 ppm

Γ@532nm > 0.99 0.85 to 0.99 (pref 0.95)
Γ@670nm > 0.05 unsp

Table 6.2: Refraction index, loss angle and Young modulus of candidate materials for coatings.

n@1064nm φ Y

Silica dioxide (SiO2) 1.46 4 10−5 72 109

Tantala pentoxide (Ta2O5) 2.09 4 10−4 140 109

Titania dioxide-doped Tantala pentoxide (TiO2 :: Ta2O5) 2.12 2 10−4 -

pentoxide doped with titania dioxide1, for the high index material. This latter exhibits

lower mechanical loss (and lower optical absorption) than pure tantala [71]. While the use of

the silica dioxide for the low-index material has no controversies, other materials have been

proposed in the past for the high-index material in the coatings, e.g. niobia, hafnia, alumina.

Indeed, silica exhibits a very low mechanical loss angle, while the greatest contribution to TN

is given by the high-index material, whose loss angle is about one order of magnitude larger

than that of silica. In this respect, it is anticipated that the optimal coating configuration

will use less high-index (more lossy) material compared to the standard quarter-wavelength

design. For protective purposes, the first layer of any coating is silica, because of its hardness.

The coating optimization problem consists in finding the coating configuration that, while

satisfying the optical requirements, features minimal thermal noise.

We consider here only the Brownian component, since, as I will show in Section 6.3, the

thermo-optic (TO) component if relevant will be minimized at the same time. The PSD of

Brownian noise due to coating is given by

SBcoat(f) =
4kBT

(2π)3/2f

φcoat (1− σ2)

E0r0
, (6.1)

where φcoat is given by eq. (5.9) or approximated by (5.12). From the expression above,

it is evident that, to minimize SBcoat by varying the structure of the coating, the quantity

to be minimized is the effective loss angle, φcoat, which is the only factor depending on

1The doped tantala is obtained using the Formula 5 of Laboratoires des Materiaux Avances in Lyon,
France, corresponding to an incorporation of 14% of titania in a tantala layer [65].
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the coating configuration. There are two possible directions to minimize φcoat: i) fix the

materials and find the optimal set of layers’ thicknesses; ii) synthesize new low-loss materials

through proper mixture techniques [21], e.g. using pure titania dioxide, which exhibits higher

refraction index and lower loss angle than titania-doped tantala, but is prone to crystalization

for regular values of thickness used for coatings.

Note that a reduction of p% in φcoat means an increase of p−3/2% in the event rate and

the visibility volume, assuming an isotropic source distribution2.

In this study I explored the first direction to solve the coating optimization problem,

while the second direction is being currenlty investigated in collaboration with Caltech [84].

6.2 Multilayer Coating Reflectivity

We consider the general stack, shown in Figure 6.2, constisting of an arbitrary number M

of dielectric slabs with refraction indexes ni and arbitrary phase thicknesses δi = kili =

2πnili/λ, where li is the physical thickness of slab i and λ is the operation wavelength. The

left and right most media are semi-infinite and the corresponding quantities are denoted with

subscripts a and b, respectively. We assume a plane wave incident on the structure from the

medium a, a time-harmonic dependence as exp(ıωt).

Figure 6.2: General multilayer dielectric slab stracture.

The (dimensionless) transmission matrix T for the i-th dielectric layer, relating the com-

plex electric E and magnetic H field amplitudes at its terminal interfaces, viz.[
Ei

Z0Hi

]
= T

[
Ei+1

Z0Hi+1

]
, i = M,M − 1, . . . , 1, (6.2)

2This can be easily obtained from the fact that the minimum detectable GW amplitude hmin ∝ S
1/2
x , and

hmin ∝ r−1
max. Hence the event rate in the visibility volume r3

max, assuming an isotropic soucre distribution
is proportional to S

−3/2
n .
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6.2. Multilayer Coating Reflectivity

is given by [102]

T =

[
cos(δi) ın−1

i sin(δi)

ınisin(δi) cos(δi)

]
(6.3)

where Z0 =
√
µ0/ε0 is the vacumm characteristic impedance. One way to compute the

electromagnetic fields at the left-most interface (i = 1) is to recursively evaluate it at each

interface, starting from the (M + 1)-th interface

[
EM+1

Z0HM+1

]
=

[
1

nM+1

]
E ′
M+1,+. (6.4)

From {E1, H1} it is possible to compute the input impedance Z1 = E1/H1, and the reflection

coefficient R of the whole multilayer structure at the leftmost interface, viz.

R =
Za − Z1

Za + Z1

. (6.5)

We shall focus on (truncated) periodic multilayer structure, made of M/2 identical dou-

blets, whose transmission matrix is given by

TD = T1 ·T2, (6.6)

where T1,2 are the transmission matrices of the two layers, computed via eq. (6.3). In this

case the recursive evaluation reduces to

[
E1

Z0H1

]
= T

M/2
D

[
EM+1

Z0HM+1

]
, (6.7)

and the behavior of the multilayer coating is ruled by the eigenvalues of TD [102], which are

most conveniently written as exponentials, i.e.

β = exp ıB, (6.8)

where B is the Bloch exponent. In the absence of optical losses, there are two values for

B, either purely real or imaginary, differing only by the sign. A lossless infinite periodic

structure exhibits an infinite sequence of alternating frequency bands where propagation is

either allowed (transmission bands) or forbidden (reflection bands), according to whether

the B is either purely real or imaginary, respectively.
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6.3 Monochroic Optimization

The coating multilayer structure, represented schematically in Figure 6.2, must be properly

designed in order to satisfy the AdLIGO requirements. In this section I consider the single-

wavelength operation. Here and henceforth, subscripts L andH are used to denote quantities

corresponding, respectively, to the low and high index material.

6.3.1 The Reference Design

The coating structure achieving a desired value of transmittance with the minimum number

of doublets, ND = M/2, M being the total number of layers is the (truncated) periodic

quarter-wavelength (QWL) configuration, where δi = π/2,∀i = 1, . . . , 2ND. In this case, it

is possible to write the exact expression of the coating reflection coefficient R at λ0, viz.

R(λ0) =
1−

(
nH

nL

)ND n2
H

nanb

1 +
(
nH

nL

)ND n2
H

nanb

, (6.9)

which, for ND →∞, approaches −1, i.e. total reflection, and whose bandwidth can be easily

computed as the separation between the wavelenghts where the Bloch exponent changes from

pure real to pure imaginary and viceversa. This results in [102]

∆λ

λ0

=
π

2

[
1

acos(ρ)
− 1

acos(−ρ)

]
, ρ =

nH − nL
nH + nL

. (6.10)

Figure 6.3 shows the reflectivity of the ETM design over the whole useful range of fre-

quency3

6.3.2 The Optimized Design

In [49] genetic algorithms [152] were used for synthesizing minimal noise coatings where

all layer thicknesses were treated as free parameters. It was found that the optimal coating

configuration converges to a cascade of identical doublets, each of which has a phase thickness

is about π, i.e. half-wavelength (HWL). Deviations from the above are confined only to

the terminal layers. This suggests restricting the optimization study to coating geometries

consisting of identical cascaded doublets, each having a total phase thickness of π, thus

3Throughout this Chapter the reflectivity spectra are computed by using for the real part of the refraction
index, a function of the frequency obtained by interpolating some known values at few frequencies [35]. The
extintion coefficient is ignored in the analysis, since it is several order of magnitude smaller than the refraction
index in the frequency band of interest.
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Figure 6.3: Power reflectivity spectrum for the QWL design satisfying ETM requirement in single-wavelength
operation.

reducing dramatically the dimensionality of the optimization problem from 1 + 2ND to ND,

the two degrees of freedom being the total number of doublets ND and a quantity ξ in [0,

1/4] such that

zH =
1

4
− ξ, zL =

1

4
+ ξ, (6.11)

where zi is the layer thickness in units of local wavelength, defined as zi = nili/λ0.

The suggested optimization strategy consists in the following steps: i) start from the

QWL design achieving the desired transmittance; ii) add one doublet4, and adjust the layers’

thicknesses varying ξ, until the desired value of the transmittance is recovered; iii) calculate

the φcoat of the current coating configuration according to eq. (5.12); iv) repeat steps ii)-iii)

until the minimum of φcoat is found. At the end of this procedure, further improvement can

be obtained by tweaking the thicknesses of the two terminal layers5

The Thermal Noise Interferometer (TNI) [59] is a small-scale interferometer built at

Caltech to measure accurately the coating thermal noise. A TNI tailored prototype has been

designed to validate experimentally the efficacy and accuracy of the optimization strategy.

then realized by the Laboratoires des Materiaux Avances (LMA) in Lyon, France, in order

to test

The required transmittance for the TNI at λ0 = 1064nm is 300ppm. To achieve this

transmittance value, the reference QWL design consists of 14 silica/tantala doublets (Figure

4Since the QWL configuration is the one achieving a given value of transmittance with the minimum
number of doublets, any deviation from the QWL configuration must imply an increase in the number of
doublets to conserve the same transmittance.

5In [49] it was shown that tweaking the further layers next to the first and last terminal layers produces
less dramatic improvement.
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6.4), and exhibits a transmittance of 278ppm at the operation wavelength6.

The optimized coating was constrained to have the same transmittance value at the operation

wavelength, in order to measure the net effect of the optimized layers’ thicknesses. Figure 6.5

shows the effective coating loss angles (normalized to that of the reference design) computed

at step iii) of the optimization strategy, as ND is increased (and ξ is correspondigly adjusted).

The minimum noise configuration stems from a balance between the reduction in the amount

of tantala, which reduces noise, and the parallel increase in the amount of silica, which

increases noise. The minimum thermal noise is achieved at ND = 17, when these two effects

balance (Figure 6.5).

Figure 6.4: The structure of the reference quarter-wavelength TNI coating.

Figure 6.5: Coating loss angle reduction factor as a function of the number of doublets ND. The correspond-
ing values of the ration zH/zL are shown at the top of the plot. The QWL and the optimized coatings are
indicated.

6Note that, in this reference design, a HWL silica cap is included for protective purposes.
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Further reduction of the coating loss angle can be achieved by tweaking the design ob-

tained above, by adjusting the thicknesseses of the two terminal layers, as suggested by GAs,

while keeping the reflectance unchanges [88].

The optimized TNI coating configuration is shown in Figure 6.6. Using the approximated

formula in eq. (5.12), and a value for bH/bL ≈ 7, the predicted ratio between the effective

coating loss angle of the optimized and reference QWL configuration is 0.843.

Figure 6.6: Structure of the optimized TNI coating.

6.3.3 Direct Measurements

The optimized design for the TNI was manufactured by LMA (Laboratoires des Materiaux

Avances, CNRS, Lyon FR, a member of LIGO-Virgo collaboration), and tested at Caltech to

verify the compliance of actual (measured) with theoretically expected values of the coating

loss angle reduction. Figure 6.7 shows the spectral density of TNI cavity length noise for

the QWL design, and the analysis region, where the effective coating loss angle has been

estimated from measurements for both designs.

The measurement setup and data analysis procedure is described in detail in [88]. The

measured loss angle reduction factor was (0.82 ± 0.04). Comparing such a result with the

predicted ratio of 0.843, this latter turns out to be within the uncertainty range of the

measures, confirming the validity of the theoretical model and the effectiveness of the opti-

mization strategy. In Figure 6.8 the measured spectra of the QWL (light) and the optimized

(dark) cavity length noise are plotted, after a Savitzky-Golay smoothing filter [20] was ap-

plied to them, showing clearly that the optimized design entails a sensible reduction on

φcoat.

Inclusion of thermo-optica noise does not yield a different optimized design, as shown in

Figure 6.9, irrespective of how the thermo-elastic and thermo-refractive components combine.
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Figure 6.7: Measured spectral density of the cavity length noise for the QWL design along with the shot
noise (dashed line) and Brownian noise (solid line). The two vertical lines identify the analysis region, where
the fit was done to extract the loss angle.

Figure 6.8: Plot of the measured spectra in the analysis region after the Savitzky-Golay smoothing filter was
applied.

6.4 Dichroic Optimization

In AdLIGO, high reflectivity is required at two wavelengths, λ0 = 1064nm and λ1 = 532nm,

according to Table 6.1, and the optimization strategy described in the previous Section must

be suitably reformulated.

6.4.1 The Reference Design

The simplest dichroic design, which was proposed first and used as a reference, consists of a

first stack grown on top of the substrate, where

lLnL =
λ0

8
=
λ1

4
, lHnH =

3λ0

8
=
λ1

4
+
λ1

2
, (6.12)

104



6.4. Dichroic Optimization

Figure 6.9: Square root of coating noise PSD versus the number of doublets. Left: Brownian noise only.
Right: Brownian and thermo-optic noise.

and a second stack, grown on top of the first one, where

lLnL =
λ0

4
=
λ1

2
, lHnH =

λ0

4
=
λ1

2
. (6.13)

The first stack provides the required reflectance at λ1; the second one, while being ideally

transparent at λ1, provides the required reflectance at λ0
7.

The reference design for the ETMs and ITMs, satisfying the AdLIGO requirements, are

schematically represented in Figure 6.10, its key features are summerized in Table 6.3, and

the corresponding reflectivity spectra are plotted in Figures 6.11, 6.12. For the ITMs, a

single
(
λ0

8
, 3λ0

8

)
-stack is enough to achieve the required transmitance at both λ0 and λ1.

Figure 6.10: Schematic representation of the ETM reference dichroic design. The ITM reference design
consists only of the bottom stack. Parameters of both designs are in Table 6.3.

7Note, however, that this reasoning is only approximate, since the dispersion of the materials is ignored.
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Table 6.3: Parameters of ETM and ITM reference dichroic designs.

ITM ETM
N1 11 7
N2 0 14

τP @1064nm 11300ppm 4.45ppm
ΓP @670nm 0.999 0.949

φcoat 3.055 10−9 7.422 10−9

Figure 6.11: Power reflectivity spectrum of ETM reference dichroic design. A close-up around the second
operation wavelength is shown in the inset.

6.4.2 The Optimized Design

Extensive implementations of genetic algorithms, where any layer thickness is a free pa-

rameter, showed that the optimal configuration, even in this case, features an end-tweaked

stacked doublets structure, where the total doublet thickness deviates from the HWL, unlike

the single-wavelength case. Hence, as before, it is possible to reduce the number of free

parameters, from 1 + 2ND to 3, namely the number of doublets ND and the deviations, ξL

and ξH , from QWL of the low and high index layers, viz.

zH =
1

4
− ξH , zL =

1

4
+ ξL, (6.14)

where ξH , ξL vary independently in the range [0, 1/4]. Indeed, in view of the additional optical

requirement on the second wavelength, one more free parameter is needed with respect to

the single-wavelength operation.

The optimization strategy, in this case, consists in i) fixing the number of doublets,

identify, for several values of the number of doublets ND, the (non-empty) region in the

(ξL, ξH)-plane where the AdLIGO reflectance requirements are satisfied; ii) pick, in this
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Figure 6.12: Power reflectivity spectrum of ITM reference dichroic design. A close-up around the second
operation wavelength is shown in the inset.

region, the minimal Brownian noise point, identified by the triplet (ND, ξ0
L, ξ

0
H), and compute

the corresponding effective coating loss angle, φcoat; iii) identify the triplet exhibiting the

minimum value of φcoat, among all disegns corresponding to different values of ND. Further

improvement of the design can be achieved by tweaking properly the two extreme layers.

Instead of considering the whole acceptable ranges, indicated in Table 6.1 for the power

transmittance at 1064nm (τ@1064nm) and power reflectance at 532 nm (Γ@532m), which

would yield a 2D (bounded) admissibility region in the (ξL, ξH)-plane, I consider here two

preferred values for τ@1064nm and Γ@532m, so that the admissibility region is actually a

set of two points in the (ξL, ξH)-plane. The chosen preferred values are τ (p) = 5.5ppm and

Γ(p) = 0.95, in order to leave a margin, where the actual values of τ@1064nm and Γ@532m

might vary, because of errors of different kinds (e.g. fluctuations of laser wavelength, errors

on layers’ thicknesses, inaccuracy of refraction index values, etc.).

The optimization strategy, in this case, was applied to design the silica/titania-doped

tantala coating for the ETMs and ITMs. The minimum number of doublets yielding a non-

empty admissibility region, for the ETM design, is 19. Figure 6.13 shows, in the (ξL, ξH)-

plane, the iso-reflectance at 532 nm and iso-transmittance at 1064 nm curves, corresponding

to the preferred values. The two intersections between these curves are acceptable operation

points, satisfing the optical requirements at both operation wavelengths. Figure 6.14 shows

the behavior of φcoat in the same region of the (ξL, ξH)-plane.

Increasing the number of doublets yields a larger φcoat, as Table 6.4 shows. Hence, the

best design is given by the configuration with 19 doublets.

The design can be tweaked in order to further reduce its loss angle, by adjusting the

thickness of the first and last layers; however, such a reduction is of the order of 0.1%. For

this reason, it is more convenient to adjust the thicknesses of the two terminal layers in
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Figure 6.13: Iso-reflectance (0.95 @532nm) and iso-transmittance (5.5 ppm @1064nm) curves in (ξL, ξH)-
plane for 19 doublets, corresponding to the preferred values. The two intersections are acceptable operating
points.

Table 6.4: Minimal Brownian noise points in (ξL, ξH)-plane for different number of doublets for the ETM
design.

ND ξL ξH φcoat

19 0.0201 0.0294 6.742 10−9

20 0.0262 0.0442 6.777 10−9

. . . . . . . . . . . .

order to minimize the amplitude of the total electric field on the face of the coating. A

low amplitude of the electric field on of the outermost surface prevents a large amount of

dust to be attracted on it, thus reducing the scattering of the radiation incident on the

mass. Minimizing the amplitude of the total electric field, viz. |Esur| = |Ei||1 + R|, Ei
being the incident electric field, keeping R unchanged, is tantamount to let the phase of the

reflection coefficient R be as close as possible to π. Figure 6.15 shows the iso-reflectance at

λ1 = 532nm and iso-transmittance at λ0 = 1064nm curves, corresponding to the preferred

values, in (ξfirstL , ξlastH )-plane, in a neighbourhood of the intersection point, where ξfirstL and

ξlastH , represent the deviation from the QWL thickness of first (low index) and last (high

index) layers.

The configuration with minimum |Esur| is searched along a segment belonging to the line

tangent at the intersection point to the two curves in Figure 6.15. The segment in centered
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Figure 6.14: Level map of φcoat for the dichroic design in the (ξL, ξH)-plane for 19 doublets. Dark colour
implies low value of φcoat.

Table 6.5: Parameters of final dichroic optimized design for the ETM coating.

ND ξL ξH ξfirst
L ξlast

H φcoat

19 0.0201 0.0294 −0.2286 0.0459 6.742 10−9

at the same intersection point, and is relatively small , in order to conserve the reflectivity

values as close as possible to the preferred values. The trend of |Esur| on this segment is

plotted in Figure 6.16, and the configuration reaching its minimum gives the final optimized

dochroic design. The parameters are summarized in Table 6.5, the reflectivity spectrum

is plotted in Figure 6.17, and Table 6.6 shows the value of the power reflectivity at other

potentially interesting wavelengths. The optimization strategy entails a reduction of φcoat of

about 10% for the ETM coating.

The same strategy has been implemented to derive the minimal noise design for the ITM

coating. I used as preferred values: 14000 ppm for the power transmittance at the main

wavelength (1064 nm) and 0.99 for the power reflectance at the second harmonic (532 nm).

Figure 6.18 shows the curves in the (ξL, ξH)-plane, in a neighbourhood of the intersection

point, where these two constraints are satisfied separately for ND = 9, which is the mini-

mum number of doublets for the AdLIGO specifics to be matched; the intersection points

correspond to the acceptable coating configurations where both requirements are satisfied.

Table 6.7 lists the minimal Brownian noise points for different number of doublets, where
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Figure 6.15: Iso-reflectance (0.95 at 532 nm) and iso-transmittance (5.5 ppm at 1064 nm) curves in
(ξfirst

L , ξlast
H )-plane of the dichroic design for 19 doublets.

the first row, corresponding to 9 doublets, is the best design.

Even in this case, it is possible to adjust the thicknesses of the two terminal layers, in

order to minimize the amplitude of the total electric field at the coating face. Figure 6.19

shows the iso-reflectance at λ1 = 532nm and iso-transmittance at λ0 = 1064nm curves,

corresponding to the preferred values, in (ξfirstL , ξlastH )-plane, where ξfirstL and ξlastH represent,

as before, the deviation from the QWL thickness of first (low index) and last (high index)

layers, according to eq. (6.14).

Figure 6.20 shows the behavior of |Esur| on a segment of the tangent line at both the

curves in Figure 6.19 centered at their intersection point. The configuration corresponding

Table 6.6: Reflectivities of ETM optimized dichroic design at the two operation wavelengths and other
potentially useful wavelengths.

τ@1064nm = 5.59ppm
Γ@532nm = 0.947
Γ@670nm = 0.176
Γ@946nm = 0.996
Γ@980nm = 0.999
Γ@1319nm = 0.337
Γ@1550nm = 0.030
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Figure 6.16: Amplitude of the total electric field on top of the ETM coating as function of ξfirst
L . ξlast

H is
accordingly identified by the equation of the tangent line at the intersection point of the two curves in Figure
6.15.

Figure 6.17: Power reflectivity spectrum of dichroic ETM optimized design. A close-up around the second
operation wavelength is shown in the inset.

to the minimum of |Esur| is the optimized ITM coating. Its key relevant parameters are

summarized in Table 6.8, the reflectivity spectrum is plotted in Figure 6.21, while Table 6.9

shows the values of the power reflectivity at other potentially interesting wavelengths. The

optimization strategy entails a reduction of φcoat of about 16% for the ITM coating.

Taking into account the noise reductions in all coatings, the reduction in the total inter-

ferometer’s noise is about 11% and the increase in the event rate is of 19%, with respect to

the reference design.

An optimized dichroic prototype for the TNI with parameters as in Table 6.5, has been

manufactured by LMA and is presently under test at the Caltech Thermal Noise Interferom-

eter. The prototype is a scaled version of the optimised ETM design, where the number of

doublets was reduced to 13, to let the power transmittance at λ0 = 1064nm to be as close as

possible to the nominal value required for best opertaion of the TNI, i.e. 300ppm. Prelim-
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Table 6.7: Minimal Brownian noise points in (ξL, ξH)-plane for different number of doublets for the ITM
design.

ND ξL ξH φcoat

9 0.0768 0.0907 2.614 10−9

10 0.0793 0.1026 2.776 10−9

. . . . . . . . . . . .

Table 6.8: Parameters of final dichroic optimized design for the ITM coating.

ND ξL ξH ξfirst
L ξlast

H φcoat

9 0.0768 0.0907 −0.1952 0.1272 2.586 10−9

Table 6.9: Reflectivities of ITM optimized dichroic design at the two operation wavelengths and other po-
tentially useful wavelengths.

τ@1064nm = 14907ppm
Γ@532nm = 0.986
Γ@670nm = 0.039
Γ@946nm = 0.913
Γ@980nm = 0.977
Γ@1319nm = 0.121
Γ@1550nm = 0.046
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Figure 6.18: Iso-reflectance (0.99 at 532 nm) and iso-transmittance (14000 ppm at 1064 nm) curves in
(ξL, ξH)-plane of the dichroic design for 9 doublets.

inary results, yet unpublished, indicate an excellent agreement with theoretically expected

values.
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Figure 6.19: Iso-reflectance (0.99 at 532 nm) and iso-transmittance (14000 ppm at 1064 nm) curves in
(ξfirst

L , ξlast
H )-plane of the dichroic design for 9 doublets.

Figure 6.20: Amplitude of the total electric field on top of the ITM coating as function of ξfirst
L . ξlast

H is
accordingly identified by the equation of the tangent line at the intersection point of the two curves in Figure
6.19.
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Figure 6.21: Power reflectivity spectrum of dichroic ITM optimized design. A close-up around the second
operation wavelength is shown in the inset.
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Chapter 7

Conclusions

This thesis summarizes my research work during the three years of my PhD. Within the

LIGO-Virgo experiment, I implemented an engineering approach to two important problems

in gravitational wave detection experiments based on large baseline optical interferometers.

These problems deal with the two sources of noise that presently limit the antennas’ sensi-

tivity, i.e. the presence of spurious transient signal, glitches, at the output channel due to

disturbances of several environmental or instrumental origins, and the thermal noise origi-

nated in the test-mass (end-mirror) reflective coatings.

As regards the first issue, I identified as a major limitation for the efficiency of the

currently implemented pipelines for Gravitational Waves (GWs) detection the common sim-

plifying assumption that the background noise is Gaussian, even if data quality flagging and

event vetoing are allowed. Indeed, glitches make the noise distinctively non-Gaussian, pro-

ducing heavier tails in the total noise probability density function. If not properly treated,

glitches are detrimental in the search for GW signals, especially for unmodeled GW Bursts.

Accordingly, I introduced an analytical physically-motivated statistical model for the im-

pulsive component (the glitches), described in Chapter 2, which allowed a more accurate

statistical characterization of the total noise in the output (data) channel. An accurate

model for the noise is crucial in designing an optimal detection strategy, which, I derived in

the weak signal limit (local optimality), in Chapter 3 following two alternative approaches:

i) estimating the GWB waveform from the data themselves, yielding the generalized likeli-

hood ratio test, GLRT; and ii) modeling the GWB waveform as a random process, yielding

the generalized cross-correlation test, GCC. In Chapter 4 the detection performance of the

proposed strategies are evaluated in simulated glitch noise, first, and, then, in real LIGO

data. Numerical simulations show clearly the effectiveness of the proposed approach in im-
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proving the detection efficiency in the presence of glitches. The GCC statistic turns out to

outperform the GLRT in non-Gaussian noise. These results are corroborated by numerical

evaluations on a bunch of S5 real LIGO noise. I further modified, according to the locally

optimum approach, one of the existing pipelines (the RIDGE pipeline) for the detection of

GWBs, and compared the performance of the modified and the unmodified statistics. The

former outperform the latter, confirming the effectiveness of the proposed method and the

fact that the instrument noise is essentially non-Gaussian, even in high-quality non-vetoed

data segments.

Thermal noise originated in the reflctive coatings of the interferometer test mass end-

mirrors turns out to limit the instrument sensitivity in the observationally most important

spectral band, as discussed in Chapter 5. Hence, the coating optimization is a crucial issue.

The originally proposed coating designs, based on the Bragg (quarter-wavelength) multilayer

structure, do not achieve the minimum of thermal noise under the AdLIGO prescribed

reflectances. In Chapter 6 I formulated an optimization strategy to design coatings, achieving

the minimum of thermal noise for a prescribed reflectance. Such a strategy was formulated

first for single-wavelength operation, and it has been adopted to design coatings for the

Thermal Noise Interferometer (TNI), a small-scale interferometer built at Caltech. The

coating has been then prototyped by the Laboratoires des Materiaux Avances (LMA), Lyon

FR, and tested at Caltech using the Thermal Noise Interferometer (TNI) facility. The

measured reduction in the coating thermal noise level, compared to the Bragg configuration,

was in excellent agreement with theoretical predictions.

The optimization strategy was further extendend to the double-wavelength operation case,

required by the new AdLIGO cavity locking system. Compared to the initially proposed

dichroic design, made by a stack of two cascaded Bragg multilayer structures operating

at the two design wavelengths, the optimized design achieved a thermal noise reduction

of about 10% for the end test masses and 6% for inner test masses, resulting in a total

interferometer noise reduction of 11% and a consequent boost in the event rate of 18%. A

dichroic prototype has been also manufactured by LMA and its noise properties are currently

under test at Caltech.
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Appendix A

Derivation of the GCC detection

statistic

The derivation of the Generalized Cross-Correlation (GCC) statistic is derived in detail in

this Appendix. It is based on the assumption that the sough GW signal is a random process,

with minimal a priori assumption.
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Derivation of the GCC detection statistic

In this Appendix we summarize the derivation of the Generalized Cross-Correlation

statistic, following Kassam [17].

In the hypotheses test in eq. (3.1) we assume: i) that the noise samples, nd(k) =

nd(tk), ∀k = 1, . . . , Ns, are i.i.d. with probability density functions, f
(d)
n (x) featuring zero

mean and variance σ2
n; ii) each of the two GW polarization components, h+ and h×, is a

random process; iii) the GW signal and the noise process are independent. iv) f
(d)
n (·) is

regular enough to allow the results to be valid. Under these assumptions the PDF of the

output data matrix V = {V1, . . . ,VD} in the two hypotheses can be written as

H0 : fV(V) =
Ns∏
k=1

D∏
d=1

f (d)
n (Vdk)

H1 : fV(V|θ) = E

[
Ns∏
k=1

D∏
d=1

f (d)
n (Vdk − θSdk)

]
, θ 6= 0

, (A.1)

where the expectation E [·], here and henceforth, is taken with respect to the random GW

polarization components. Let

P (θ) =
Ns∏
k=1

D∏
d=1

f (d)
n (Vdk − θSdk) (A.2)

whence

fV(V) = P (0), fV(V| θ) = E [P (θ)] . (A.3)

To obtain the LO detection statistic, we must differentiate fV(·|θ) with respect to θ, and

evaluate it at θ = 0. The derivative of fV(V| θ) is

d

dθ
fV(V| θ) = E

[
dP (θ)

dθ

]
=

−E

[
Ns∑
k=1

D∑
d=1

P (θ)
f

(d)
n

′(Vdk − θSdk)

f
(d)
n (Vdk − θSdk)

Sdk

]
, (A.4)

which for θ = 0 becomes

d

dθ
fV(V| θ)

∣∣∣∣
θ=0

= −P (0)
Ns∑
k=1

D∑
d=1

E[Sdk]
f

(d)
n

′(Vdk)

f
(d)
n (Vdk)

. (A.5)

The LO test statistic is thus
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d

dθ
lnfn(V)

∣∣∣∣
θ=0

=
d
dθ
fV(V| θ)

∣∣
θ=0

fV(V)
=

Ns∑
k=1

D∑
d=1

E[Sdk]g
(d)
LO(Vdk), (A.6)

the gLO(·) function being defined in eq. (3.8). This result has the same structure of the LO

statistic in the case of deterministic signal, exept that its amplitude has been replaced with

the expected value. We make no a priori assumption about the sought GW signal except

that:

E [Sdk] = 0, ∀d = 1, . . . , D ∀k = 1, . . . , Ns

E [SdkSpm] = Rdpδk−m, ∀d, p = 1, . . . , D ∀k,m = 1, . . . , Ns

. (A.7)

This results in an identically null first order LO statistic (A.6). In this case, according to

the generalization of the Neymann-Pearson lemma [17], the LO detection statistic is the one

maximizing the second-order derivative of the power function of the test in θ = 0, viz.

d2

dθ2
fV(V|θ)|θ=0

fV(V|θ = 0)
> η. (A.8)

The second order derivative of fV(V| θ) with respect to θ computed from eq. (A.4), and

evaluated in θ = 0, yields

d2

dθ2
fV(V|θ)

∣∣∣∣
θ=0

= P (0)
Ns∑
k=1

D∑
d=1

E[S2
dk]
f

(d)
n

′′(Vdk)

f
(d)
n (Vdk)

+

+P (0)
Ns∑
k=1

D∑
d=1

(p,m)6=(d,k)
Ns∑
m=1

D∑
p=1

E[SdkSpm]
f

(d)
n

′(Vdk)

f
(d)
n (Vdk)

f
(d)
n

′(Vpm)

f
(d)
n (Vpm)

. (A.9)

Hence in view of (A.7), we get

d2

dθ2
fV(V|θ)

∣∣∣∣
θ=0

= P (0)
Ns∑
k=1

D∑
d=1

E[S2
dk]
f

(d)
n

′′(Vdk)

f
(d)
n (Vdk)

+

P (0)
Ns∑
k=1

D∑
d=1

p6=d
D∑
p=1

Rdp
f

(d)
n

′(Vdk)

f
(d)
n (Vdk)

f ′(Vpk)

f(Vpk)
, (A.10)

which, upon substitution in eq. (A.8), gives back the LO detection statistic in eq. (3.34).
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Appendix B

Thermo-Refractive Noise in non-QWL

Coatings

The formula proposed by Bragisky and co-workers for the effective coating thermo-refractive

coefficient in the case of periodic QWL coating, is extended in this Appendix to the more

general case of periodic non-QWL coating, i.e. where the identical stacked doublets consist

of layers of arbitrary thicknesses.
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Thermo-Refractive Noise in non-QWL Coatings

Following Braginsky et al. in [31], and assuming a TEM incidence and a exp(ıωt) depen-

dence on time, I introduce the (dimensionless) transmission matrix relating the transverse

components of the electric and magnetic field at the input and output faces of a low-high

index doublet, viz.[
Eout

Z0Hout

]
=

[
Θ11 Θ12

Θ21 Θ22

][
Ein

Z0Hin

]
, i = M,M − 1, . . . , 1, (B.1)

where [102]

Θ11 = cosδHcosδL − (nH/nL)sinδHsinδL,

Θ12 = −ı(n−1
H sinδHcosδL + n−1

L sinδLcosδH),

Θ21 = −ı(nHsinδHcosδL + nLsinδLcosδH),

Θ22 = cosδHcosδL − (nH/nL)sinδHsinδL,

(B.2)

having defined

δL,H =
2π

λ0

nL,H lL,H (B.3)

the phase thicknesses of the low/high index layers. To first order in the temperature fluctu-

ations, one has

nL,H = n
(0)
L,H + β

(0)
L,H∆T, (B.4)

and1

δL,H =
2π

λ0

n
(0)
L,H l

(0)
L,H

[
1 +

β
(0)
L,H

n
(0)
L,H

∆T

]
, (B.5)

where βL,H = dnL,H/dT are the thermo-refractive coefficients of the coating materials. In

eqs. (B.4) and (B.5) the superfix (0) denotes the values at the reference temperature T0.

The key idea behind Braginsky and co-workers for computing the coating effective thermo-

refractive coefficient βeff , is that the input admittance2 Y of a highly reflective coating,

which consists of a high large number of identical doublets, does not change sensibly upon

the addition of a further doublet, so that

1In eq. (B.5) only the thermo-refractive noise component is taken into account, ignoring the thermo-
elastic one, which would yield in δL,H the additional term 2πn

(0)
L,H l

(0)
L,HαL,H∆T , where αL,H/λ0 is the linear

expansion coefficient, defined in eq. (5.16).
2This must not be confused with the elastic Young’s modulus introduced in Chapter 5.
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Z0Hin

Ein
=
Z0Hout

Eout
= Z0Y = Y . (B.6)

This is strictly the case, obviously, only for coatings with infinite number of doublets. How-

ever, for transmittance as low as planned for AdLIGO, the (normalized) input admittance

computed using eqs. (B.6) and (B.1) matches the exact one to more than five decimal digits,

which is enough for our present purpose3. Using eqs. (B.4) and (B.5) in eq. (B.2), one

obtains

Θij = Θ
(0)
ij + ∆Θij, i, j = 1, 2. (B.7)

Expanding Y to first order in ∆T ,

Y = Y
(0)

+ ∆Y , (B.8)

and using eqs. (B.7) in (B.6) and (B.1), one readily obtains

Θ
(0)
12 (Y

(0)
)2 + (Θ

(0)
11 −Θ

(0)
22 )Y

(0)
+ Θ

(0)
21 = 0, (B.9)

and

∆Y =
∆Θ21 + Y

(0)
(∆Θ22 −∆Θ11)− (Y

(0)
)2∆Θ12

Θ
(0)
11 −Θ

(0)
22 + 2Y

(0)
Θ

(0)
12

. (B.10)

Equation (B.9) has two roots, but the only one satisfying the physical requirement of van-

ishing in the limit where zL = zH → 1/4 is

Y
(0)

=
−(Θ

(0)
11 −Θ

(0)
22 ) +

√
(Θ

(0)
11 −Θ

(0)
22 )2 + 4Θ

(0)
12 Θ

(0)
21

2Θ
(0)
12

. (B.11)

Neglecting optical losses, both Y
(0)

and ∆Y are purely imaginary, viz.

Y
(0)

= ıB
(0)
, ∆Y = ı∆B. (B.12)

The coating reflection coeffcient is accordingly given, to first order in ∆T , by

R =
1− Y

1 + Y
=

1− ıB
(0) − ı∆B

1 + ıB
(0)

+ ı∆B
=

1− ıB
(0)

1 + ıB
(0)

(
1− ı

2∆B

1 + (B
(0)

)2

)
. (B.13)

3In principle, one could use the exact, though unhandy, expression of the input admittance to derive the
exact expression of the βeff coefficient for layers of arbitrary thicknesses.
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Thermo-Refractive Noise in non-QWL Coatings

The first factor on the r.h.s. of eq. (B.13) is the coating reflection coefficient in the absence of

thermal fluctuations. The factor in brackets accounts for the thermo-refractive effect, which

can be described as an equivalent displacement, ∆xTR, of the (coated) mirror front-face, by

comparing eq. (B.13) with the reflection-coefficient transport equation, viz.

R(∆x) = R(0) exp

(
ı
4π

λ0

∆x

)
. (B.14)

Hence, we obtain

∆xTR = −λ0

2π

∆B

1 + (B
(0)

)2
, (B.15)

from which the generalization of eq. (5.22), given in eq. (5.23), is easily derived.
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