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Search for Gravitational Waves from a nearby neutron star using

barycentric resampling

by

Pinkesh K. Patel

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

Rapidly spinning neutron stars in our Galactic neighborhood are promising sources

of quasi-monochromatic continuous gravitational waves observable by the current

LIGO detectors. I describe a search done on the LIGO S5 data, looking for an

isolated neutron star hypothesized to be at a distance of about 100 parsecs. This

kind of search is computationally bound and is made possible by the implemen-

tation of barycentric resampling, which is described here as well. I also describe

the work done at the Hanford LIGO site, while taking data for the Astrowatch

program.
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Chapter 1

Thesis overview and introduction to

Gravitational Waves

This thesis describes a search done for gravitational waves (GW) from a nearby

neutron star using LIGO (Laser Interferometer Gravitational-Wave Observatory)

data. This suspected neutron star is called Calvera, which is hypothesized to be

between 80-260 parsecs from Earth. The search for GWs from Calvera falls in

between the traditional all-sky searches for GWs from neutron stars and targeted

searches for known pulsars. In the case of Calvera, the sky location is known, but

there is no information about its age, its spin frequency or frequency derivatives.

Certain assumptions are made about the age and distance of the suspected neutron

star and a broadband frequency and frequency derivative search is conducted.

Such broadband searches are computationally bound and this thesis describes the

technical challenges involved in conducting such a search. It also describes the

implementation of barycentric resampling, without which this search would have

been impossible to conduct, given current computational resources.

This chapter briefly introduces GWs and their effects on a detector like LIGO.

Also discussed in this chapter are the potential sources of GWs which include

compact binary coalescences (CBC) of neutron star-neutron star, neutron star-

black hole and black hole-black hole systems, bursts of gravitational radiation from

sources like core collapse supernovae, a gravitational wave stochastic background

and continuous quasi-periodic GWs (CW). The LIGO detectors are introduced



3

in Chapter 2. The interferometers are described from an operations perspective

and a procedure for maintaining them in data collection mode is also described.

Chapter 3 describes neutron stars and CW sources. Chapter 4 is a summary of

techniques used to search for GWs from CW sources. Chapter 5 focuses on one

of these techniques and the implementation of barycentric resampling. Calvera is

introduced in Chapter 6 and a search for CWs from it using barycentric resampling

is presented in Chapter 7. Conclusions and future work prospects are discussed in

Chapter 8.

1.1 General Relativity and Gravitational Waves

General Relativity (GR) is one of the pillars of modern physics. It was developed by

Albert Einstein in 1915. It is a theory that describes gravity as a curvature in the

four dimensional spacetime. It predicts the existence of exotic objects like neutron

stars and black holes and it forms the basis of our understanding of cosmology. One

of its predictions is the existence of gravitational waves (GW), which are a strain of

spacetime propogating at the speed of light. These GWs are practically unaffected

by intervening matter between the source and us and are exceedingly weak by the

time they reach us. They have been indirectly observed by noting the evolution of

the orbits of the binary pulsar system PSR 1913+16, discovered by Russell Hulse

and Joseph Taylor. For this discovery, they received the Nobel Prize in Physics in

1993. The evolution of the orbits matches the theoretical predictions of GR, which

predicts the loss of angular momentum carried away by GWs, to within 0.3%

[1]. However, given the weak nature of GWs, their direct detection has been a

challenge. LIGO, the Laser Interferometer Gravitational–Wave Observatory aims

to detect and study GWs.

The major result in GR is Einstein’s equation, which in geometrized units of

G = c = 1 is written as [2]

Gαβ = 8πTαβ , (1.1)

where Gαβ is the Einstein tensor and Tαβ is the stress energy tensor. The indices α



4

and β run from 0 to 3 and correspond to the spacetime coordinates of time and the

three spatial axes. The Einstein tensor which also contains the metric, specifies

the geometry of spacetime. The stress-energy tensor Tαβ specifies the source terms

from all forms of matter and energy. The stress-energy tensor, which is symmetric,

can be divided into three parts, with T00 specifying the energy density, T0µ = Tµ0

being the energy flux or the momentum densities and the remaining 3 × 3 matrix

being the stress tensor. While equation 1.1 looks compact and elegant, it is non-

linear and has not been completely solved analytically.

The Einstein equation 1.1 can be solved under certain assumptions. One such

assumption is the linearized weak field limit of gravitational waves far from a source

such that Tαβ = 0. The metric can then be written as a small perturbation hαβ(x)

of the metric of flat spacetime ηαβ , also known as the Minkowski metric [2]. This

means

gαβ(x) = ηαβ + hαβ(x), (1.2)

where the Minkowski metric can be written as

ηαβ =

















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















. (1.3)

Here the definition is that the coordinates are in the order of (t, x, y, z), with t

being time and the remaining being the three spatial coordinates. By choosing a

transverse-traceless gauge, Einstein’s equation can be written as a flat space wave

equation
(

− ∂2

∂t2
+ ~∇2

)

hαβ(x) = 0 (1.4)

where ~∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . The generic solution to equation 1.4 is the general

wave solution

hαβ(x) = Aαβe
ik·x, (1.5)
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where, Aαβ is a 4 × 4 amplitude matrix and k is a four dimensional wave vector,

such that k · x is

k · x = ωt+ ~k · ~x. (1.6)

Using equations 1.4 and 1.5, the fact that we have chosen a transverse-traceless

gauge and orienting the propogation of the wave along the z axis, the amplitude

matrix becomes

Aαβ =

















0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0

















. (1.7)

Using equations 1.7 and 1.4 we can write the gravitational wave strain amplitude

hαβ as

hαβ(t, z) =

















0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

















eiω(t−z). (1.8)

Here h+ and h× are the “plus” and “cross” polarizations of the gravitational wave.

There are only two polarizations that exist according to GR. A schematic of their

effect on a ring of particles if a gravitational wave incident into the page and

consisting of only one of the two polzarizations can be seen in Figure 1.1. As

can be seen in Figure 1.1, gravitational wave polarizations are invariant under a π

radian rotation. In the language of quantum gravity this means that the exchange

particle for gravity, the graviton has a spin of 2π
π = 2.

Electromagnetic radiation can be produced by accelerating charge dipoles,

charge-current dipoles and other multipoles. However in the case of gravitational

radiation, the conservation of mass prevents radiation due to an accelerating mass

monopole. The emission of gravitational radiation via an accelerated mass dipole

is forbidden by conservation of linear momentum. Conservation of angular mo-

mentum similarly prevents radiation due to the acceleration of current dipoles.
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Figure 1.1: The effect of a gravitational wave consisting of only one of the two

polarizations “+” and “×” on a ring of particles. The lines are just a guide to the

eye. The GW would be passing perpendicularly through the page and the figure

shows snapshots in time as the wave passes. It shows one whole wavelength for

each polarization.

Thus the first multipole that can produce gravitational radiation is from the ac-

celeration of a mass quadrupole. Such accelerating mass quadrupoles are common

in nature; examples include orbiting binary stars, rotating non-axisymmetric stars

etc.

1.2 Gravitational Wave Sources

The plausible gravitational wave sources that have been studied so far can be

divided into four broad categories. Compact Binary Coalescences (CBC) have

a transient, but well modeled waveform, usually divided into three parts called

the Inspiral, Merger and Ringdown phases. Unmodeled transient waveforms are

known as gravitational wave bursts. Among the long-lived forms are the modeled

sinuosoidal waveforms emitted by spinning neutron stars, known as continuous

waves (CW) and the stochastic gravitational wave background from the Big Bang

or from a large number of weak astrophysical sources. Thus far, no searches for
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GWs from these searches have yielded plausible detections.

1.2.1 Compact Binary Coalescences

Compact binary coalescences are perhaps the most highly anticipated sources of

gravitational waves detectable by LIGO. They consist of three distinct phases of

gravitational wave emission. The first stage consists of the inspiralling of two

compact objects like two neutron stars, one neutron star and one black hole or

two black holes. These compact objects lose energy and angular momentum in the

form of gravitational radiation and inspiral in, eventually merging. The waveform

is well understood for the inspiral phase and it depends on the masses of the two

objects inspiralling. The merger waveform is however not well understood, but

it is under active research in the field of numerical relativity. After the merger

phase, the distorted black hole relaxes to a stationary Kerr state through a strong

emission of gravitational waves, which is known as a ringdown.

An inspiral produces a signal that is commonly known as a chirp, which is

a sinusoid increasing in amplitude and frequency until the merger phase begins.

Since the frequency of the signal increases as a function of time, inspiral signals

enter the LIGO band of interest from about 40 Hz onwards only in the last few

minutes or seconds (depending on the masses) before the merger. This makes these

signals transient in nature. A binary neutron star system consisting of two typical

neutron stars of mass 1.4M⊙ would undergo about 1630 cycles in the LIGO band

before merging in 26 seconds. A typical chirp signal can be seen in Figure 1.2.

The analysis of LIGO data for CBC waveforms includes a match filtering step,

where analytical or phenomenological waveforms are used as filter templates. The

output of the filter is then thresholded. Events whose SNR crosses the threshold

are considered triggers for further analysis. The threshold is set low enough to let

a potential signal through, but keep the number of triggers to a manageable value.

The triggers are first generated independently for each detector. This is followed

by a coincidence analysis, with appropriate sized windows allowing for light travel

time between the the detectors involved. Such coincidence analysis helps reduce
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Figure 1.2: An example of an inspiral gravitational wave signal, emitted by a CBC.

This plot is in arbitrary units and only to give a qualitative idea.

the number of total triggers by suppressing the background. These triggers are

then subjected to consistency checks like the χ2 [3] and r2 [4] tests. CBC searches

conducted by the LSC are optimized for detection of a signal (i.e. the cuts are

loose). If no signals are found, then upper limits are set on the rate of CBCs

per Milky Way Equivalent Galaxy or per sensitive search volume in Mpc3. The

searches conducted so far for CBCs can be found in [5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15].

1.2.2 Bursts

A second category of transient searches involve unmodeled “bursts” of gravita-

tional radiation. These bursts are usually assumed to be shorter than about 1

second, but with significant enough power to rise above the noise fluctuations in

the detector. The possible astrophysical sources include asymmetric core collapse
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supernovae [16], ringdowns of black hole-black hole mergers [13], whose inspiral

phases are not within the LIGO band and thus only the high frequency ringdowns

can be seen, and disturbances along hypothesized structures known as cosmic

strings. Some other astrophysical phenomena are used as external triggers for

burst searches such as extra-galactic Gamma-ray bursts (GRBs) and galactic Soft-

Gamma repeaters (SGRs), both of which are highly energetic events and which

could potentially emit prodigious amounts of gravitational radiation. Short GRBs

(lasting only a few seconds to minutes) are suspected to be neutron star-neutron

star or neutron star-black hole mergers. SGRs are believed to be neutron stars

with huge magnetic fields which flare up from time to time and emit prodigious

amounts of electromagnetic radiation. A discussion of an SGR search in which

I contributed with vetoes will be discussed in Chapter 2. Besides all this, burst

searches aim to be inclusive in case a completely unmodeled and ill-understood

source is emitting gravitational radiation.

The search techniques for burst searches always include a correlation between

detectors, since the LIGO and Virgo detectors undergo numerous “glitches”, which

can mimic a burst signal. These glitches and other noise fluctuations are how-

ever unlikely to happen within the light travel time between any two detectors

and thus coincidence is an efficient technique to reduce the background noise.

The LIGO Scientific Collaboration (LSC) has developed many different search

pipelines, which include techniques like excess power, cross-correlation and coher-

ent methods. Some of the searches done by the LSC for burst sources can be found

in [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

1.2.3 Stochastic Background

Since gravitational waves couple weakly with matter, most of the gravitational

radiation produced just after the Big-Bang would still exist as a stochastic back-

ground. Detecting these GWs would provide unique information on the earli-

est moments of the universe. Other sources of stochastic GWs include phase-

transitions in the early universe, cosmic strings, topological defects formed during
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the symmetry-breaking phase transitions in the early universe, or other unresolved

astrophysical sources like CBCs, neutron stars or supernovae. Most models of the

spectra expected for a stochastic background approximate it by a power law such

that ΩGW(f) ∝ fα, where α is different for different mechanisms. The standard

“slow roll inflation” cosmological model predicts predicts a flat spectrum and thus

an α = 0.

GW stochastic background is expected to be so weak that it would not rise

above the noise floor of the detector, thus requiring an integration over time to

increase the SNR. If two independent detectors are used for a cross-correlation

measurement, then the signal would increase as a function of the integration time

T , while the noise would only increase as
√
T . However in the case of some

detectors, the noise is not independent, for example the two co-located detectors

at Hanford (H1 and H2, to be discussed in Chapter 2) share a lot of noise sources.

Even in the case of detectors which are seperated geographically like L1 and H1,

there is a price to pay in the form of a reduction of the signal due to the separation

time delay between the two detectors and the misalignment of their arms. The

LSC’s stochastic background searches can be found in [34, 35, 36, 37, 38, 39].

1.2.4 Continuous Waves

Continuous GWs are expected to be emitted by neutron stars, which are observed

as pulsars spinning at frequencies ranging from a few milli-Hz to about a kHz.

Spinning neutron stars would emit gravitational radiation if there were some non-

axisymmetric asymmetry in their crust, or due to some fluidic asymmetries or due

to accretion of matter. These and other mechanisms of emission are discussed

in Chapter 3. The detection of continuous GWs involves the integration of long

stretches of data to dig out signals buried deep in the noise. The search methods

are discussed in detail in Chapter 4.
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Chapter 2

LIGO Detectors and their Operation

This chapter discusses the basics of the LIGO interferometric detectors and their

operation. It will discuss how an interferometer is brought into a resonance lock

and maintained there. A brief discussion of the data readout scheme then follows.

After a short history of LIGO’s science runs, Astrowatch is introduced and my

participation in it is discussed. Improvements and detector characterization work

done during Astrowatch follow.

2.1 LIGO overview

The LIGO detectors were constructed in the 1990’s by the California Institute of

Technology and the Massachusetts Institute of Technology, with funding from the

National Science Foundation (NSF). Three kilometer scale detectors were built

with one 4-kilometer interferometer each in Hanford, Washington (H1) and Liv-

ingston, Louisiana (L1). At the Hanford site, one 2-kilometer interferometer called

H2 was also built.

A timeline showing the progress of LIGO over the years is shown in Figure

2.1. This figure shows the three stages of LIGO, Initial LIGO which ran from

about 2000 to the end of 2007, enchanced LIGO from 2009 to the present and the

construction and funding of advanced LIGO which is expected to start operation

in 2014. Figure 2.1 also shows the strain sensitivities achieved over the years in

the most sensitive part of the LIGO spectrum. The detectors have been operated
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Figure 2.1: A timeline of LIGO. The figure shows the three stages of LIGO, Initial

LIGO from 2000 to the end of 2007 (science runs S1 through S5), followed by

Enhanced LIGO from 2009 to the present (science run S6) and Advanced LIGO,

which is currently under construction. Astrowatch took place in 2008 between S5

and S6. The strain senstivities achieved over the years in the most sensitive part

of the LIGO spectrum are also shown.

in an observational mode from time to time, during which they are run for data

collection for a significant amount of time. There have been six such official science

runs that have been called S1 through S6. The senstivities achieved during S5 met

the initial LIGO design sensitivity requirement and these are shown in Figure 2.2.

S5 was the longest science run with approximately one year of triple coincidence

time (time during which all three LIGO detectors were operational). S5 ran for a

calendar time of about 2 years from November 2005 to October 2007. At the end

of S5, the H1 and L1 detectors were taken offline and upgraded to enhanced LIGO

during 2008. During that time H2 was run under an Astrowatch mode. For more

details please see Section 2.3.
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Figure 2.2: Strain sensitivities, expressed as amplitude spectral densities of detec-

tor noise converted to equivalent GW strain. The vertical axis denotes the rms

strain noise in 1 Hz of bandwidth. Shown are typical high sensitivity spectra for

each of the three interferometers (red: H1; blue: H2; green: L1), along with the

design goal for the 4-km detectors (dashed grey). Figure and caption courtesy [40].



14

Figure 2.3: Cartoon showing the effect of a passing gravitational wave on a Michel-

son interferometer. The wave is assumed to have the plus polarization and is

propagating perpendicular to the diagram. Figure courtesy [40].

2.1.1 Michelson Interferometers

The LIGO interferometers are, at the most basic level, Michelson interferometers,

which are a common optical configuration, designed to create an interference pat-

tern by splitting coherent light into two arms and reflecting them off a couple of

mirrors. A cartoon showing the effect of a passing gravitational wave on a Michel-

son is shown in Figure 2.3. The essential idea is to maintain an interferometer in

a “locked” position, with the difference in length of its arms fixed by measuring

it from the light bounced back from it and feeding that back to the mirrors. The

error signal that needs to be fed back would then be the gravitational wave signal,

since it measures the deviation from the resonant working point. An instrument

working on such a principle is known as a null instrument.

If the two arms are termed the x arm and the y arm, then the phase change

of the light due to round-trip travel in each arm is given by

φx =
2π

λ
2Lx (2.1)
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and

φy =
2π

λ
2Ly, (2.2)

where λ is the wavelength of the light and Lx and Ly are the arm lengths. At the

anti-symmetric (AS) of the interferometer (which is kept dark), the power of light

received is a function of the difference in arm lengths and is given by

PAS = P0 sin2(φx − φy) = P0 sin2

(

2π

λ
(2∆L)

)

, (2.3)

where PAS is the power seen at the AS port, P0 is the input laser power and

∆L = Lx−Ly. The incident gravitational wave strain can be related to the length

changes in the arm by

h =
∆L

L
. (2.4)

Thus the power seen at the AS port in terms of the gravitational wave strain is

PAS = P0 sin2

(

2πhL

λ

)

. (2.5)

Using typical numbers for the LIGO detectors like λ = 1064nm, L = 4000m and

h < 10−21 in equation 2.5 2πhL
λ ≈ 10−8. Thus the sin2

(

2πhL
λ

)

term in equation 2.5

can be written as
(

2πhL
λ

)2 ≈ 10−16. Thus the power change at the AS port due

to a GW is extremely small. It is not possible to distinguish the sign of h using

equation 2.5 and thus using the power as a readout scheme is not the optimal

technique.

2.1.2 Fabry-Perot Cavities

The frequency band that first generation detectors like LIGO could possibly detect

gravitational waves in was constrained by ground seismic noise. This meant that

the detectors would only be sensitive to frequencies greater than about 30 Hz.

Astrophysical sources were expected to have maximum frequencies in the range of a

few kHz. These frequency constraints set the optimal length of the interferometers

to a few hundred km or so. However building an interferometer that is a hundred
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km long is impractical and thus instead of having a simple Michelson configuration,

two more mirrors were added to each of the arms, which would form a Fabry-Perot

cavity with the inner mirrors. These cavities increase the light recycling time by a

factor of about 75, increasing the effective distance from 4 km to around 300 km

or so. This also increases the power recycling in the cavities. The gravitational

wave sensitivity is proportional to the phase change caused by the incoming GW

and the power recycling in the interferometer.

Another method of increasing the GW signal in the interferometer is to add a

power recycling mirror (PRM) before the beam splitter (BS), which would reflect

the light coming out of the interferometer back into it. The power recycling factor,

which is the number that the power gets multiplied by due to the addition of the

PRM depends sensitively on the optical losses in the as-built interferometer; it is

60 for H1, 45 for L1 and 70 for H2 [40]. Thus with the addition of the PRM and

the end test masses (ETMs), with an input power of 4.5 W for H1 and L1, the

power stored in the arm cavities is 20 kW and 15 kW respectively [40]. About 10

kW are stored in H2’s arm cavities with an input of about 2 W [40]. Thus the

initial LIGO interferometers are known as power-recycled Fabry-Perot Michelson

interferometers and their configurations are shown schematically in Figure 2.4.

The LIGO input optics add two pairs of RF sidebands to the laser before it is

input into the interferometer (see Section 2.2.1). The first pair of RF sidebands

have a phase modulation at 62.5 MHz and the second pair at 25 MHz [40]. The

LIGO interferometers are built with a Schnupp asymmetry, which makes the two

arm lengths unequal by precisely an integral multiple of the carrier light’s wave-

length. At the operating point, i.e. in the resonant lock mode, the carrier light

is resonant in the arm and recycling cavities and on a Michelson fringe. The RF

sidebands resonate differently. One pair of the RF sidebands is resonant in the

recylcing Michelson cavity, but not in the arm cavities. The other pair is not reso-

nant in the interferometer at all and is reflected back from the recycling mirror. In

this configuration, the RF phase modulation sidebands, which are reflected from

the cavity input mirror, serve as a local oscillator to mix with the carrier field. The
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Figure 2.4: Optical and sensing configuration of the LIGO 4 km interferometers.

The IO block includes laser frequency and amplitude stabilization, and electro-

optic phase modulators. The power recycling cavity is formed between the PRM

and the two ITMs, and contains the BS. The inset photo shows an input test mass

mirror in its pendulum suspension. The near face has a highly reflective coating

for the infrared laser light, but transmits visible light. Through it one can see

mirror actuators arranged in a square pattern near the mirror perimeter. Figure

and caption courtesy [40].
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GW signal can then be read out as a phase shift that the carrier light experiences

in reflection, which can be read out as the RF amplitude modulation. This RF

amplitude modulation is linear in amplitude for small deviations. For more details,

please see references [40, 41, 42].

2.2 LIGO subsystems

2.2.1 Pre-Stabilized Laser

The pre-stabilized laser (PSL) is the subsystem which contains the laser, the input

optics (IO), the input mode cleaner (MC) and the Faraday isolator (FI) as shown

in Figure 2.4. The laser used in initial LIGO was a diode pumped Nd:YAG laser

with a power output of around 10 W at a single frequency of 1064 nm [40]. The

IO block includes a couple of EOMs that are used to add in the RF sidebands

that are used for the Schnupp transmission locking and PDH reflection locking; a

reference cavity, which serves as part of a frequency stabilization servo (FSS); an

intensity stabilization servo (ISS); and a halfwave plate, which is used to adjust

the input power into the interferometer. The mode cleaner is used to optically

filter the spatial modes to pass only the spatial 00 mode, which resonates in the

arm cavities. It is also used to aid in stabilizing the laser frequency so that the

light will resonate in the long arms.

2.2.2 Suspension System

The suspension system (SUS) is the system that is responsible for supporting

and stabilizing the suspended optics of the interferometer. An example of this

can be seen in the inset of Figure 2.4. It shows an optic with 4 optical sensor

and electromagnetic actuators (OSEMs) on the face and one side OSEM. These

OSEMs act on little magnets that are glued on each optic. The OSEMs also sense

the position of the optic by using a shadow optical sensor. Thus it acts as a means

of measuring the position of each optic and also as a method of actuation.

The 5 OSEMs are divided in 4 different basis vectors (which are not inde-
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pendent) of pitch, yaw, position and side. The side OSEM is the only one that

actuates on and reads the side degree of freedom. The pitch motion is controlled

by using the top two OSEMs as one unit and the the bottom two as another unit,

but with the opposite sign. The position motion can be achieved by using both

the top and bottom units with the same sign. The yaw motion divides up the left

two and right two OSEMs into different but opposite units.

Under normal operating conditions, the shadow sensor readouts from the OS-

EMs are used to calculate the position, pitch, yaw and side parameters for each

optic and this is then fed back into the OSEM actuators with a simple low-pass fil-

ter to keep the optic steady from moving, near the suspension resonant frequencies

(around 1 Hz). The optics usually sway due to seismic or inherent interferometric

noise and they need to be kept near their working position at all times in order

to maintain lock. These servo loops accomplish this task under normal circum-

stances. Under certain conditions like earthquakes or the failure of the high-voltage

line that controls the OSEMs, the control loops can malfunction or go out of range.

The optic can then sway more than desired and in order to avoid this, watchdog

sensors are used to stop the control system from actuating the optics beyond a

certain point.

Most of the large optics are also equipped with an optical lever, which is a

laser that is bounced off their face and into a sensor. Changes in the angle of

incidence and reflection off the optic would have a linear effect on the position at

which the laser beam hits the sensor. This readout can also be fed back into the

suspension control system. The optical levers are much better than the OSEMs at

high frequency changes in the optic’s angles and also have a larger working range.

One of the most common chores that need to be done after an earthquake,

which trips some watchdogs and switches off the SUS damping systems, is to

reset the watchdog controls and get the optic back to a controlled state. This

usually involves a series of operations like checking if the optics are within nominal

parameters, if it is safe to switch on the watchdogs and if optical lever damping

is required. If optical lever damping is required, then its control loop needs to
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be switched on and then one needs to wait for the optic to return to within the

nominal working range of the OSEMs and then switch the OSEM loops on and

turn the optical lever loops off. All of these tasks are easily accomplished by a

cleverly written script, which mimics an operator’s action. After spending many

hours manually damping each of the 10 or so optics, I wrote a simple python script

which did the damping automatically. This script has now become a standard for

damping all the optics for both interferometers at the Hanford site.

2.2.3 Length Sensing and Control

The length sensing and control (LSC) system is responsible for maintaining the

interferometer in a resonant lock by changing the position degrees of freedom. It

uses as input, the in-phase (I) and quadrature-phase (Q) readouts taken at three

different points in the interferometers. These points are the AS port, the pick-off

(PO) after the PRM and the reflected beam (REF) as shown in Figure 2.4.

The LSC system controls four length degrees of freedom referred to as the

differential arm (DARM), Michelson (MICH), power recycling cavity (PRC) and

the common mode arm (CARM). The DARM ERR or the error signal in the

DARM loop is also the gravitational wave channel. The DARM signal is derived

from the AS port and this loop tries to minimize the carrier light coming out of the

AS port by keeping the differential motion of the arms to a minimum. The MICH

loop serves to keep the Michelson cavity constant, i.e. the distance between the

PRM and two input test masses (ITMs) constant. The MICH loop gets its readout

from the Q-phase of the PO photodiode. The PRC loop keeps the recycling cavity

resonant to the sidebands and the carrier by driving the PRM and it also gets

its readout from the PO photodiode, but it uses the I-phase. The CARM signal

is used to control the common-mode motion of the arms, i.e. the motion that is

correlated with each other, unlike DARM, which is anti-correlated. The CARM

loop signal is derived from the REF photodiodes and instead of feeding it to the

optics like the other three signals, it is fed to the voltage controlled oscillator

(VCO) of the laser, which controls the frequency of the laser. The CARM signal
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is fed back to the arms during lock acquisition, but is switched to the VCO during

the operation in observing mode.

2.2.4 Angular Sensing and Control

The angular sensing and control (ASC) system consists of a series of wavefront

sensors (WFSs) and quadrant photo diodes (QPDs), which keep the angular de-

grees of freedom of the interferometer constant. The two QPDs are at the two ends

of the interferometer after the ETMs and sense using the transmission light. The

WFS are located along with the major photodiodes in REF, PO and AS ports.

The angular sensing and control system is extremely important for high power

operation and has been improved in the recent enhanced LIGO upgrade.

2.2.5 Thermal Compensation System

The major LIGO optics have reflectivities in the range of 99.997%. The reflective

coating on their surface is specified to abosrb no more than about 1 ppm (parts per

million) of laser power, and the substrate is rated to absorb about 3–4 ppm. The

ETMs and ITMs were designed to absorb some of the kWs of power circulating in

the arm cavities and distort into the correct shape for optimal operation. However

after the first few runs, it was discovered that the mirrors were absorbing a lot

more heat than was expected.

The thermal compensation system (TCS) was installed to correct this problem.

It is designed to apply heating to the test masses by shining a CO2 laser operating

at 10.6 µm wavelength on to the inner faces of the ITMs of the interferometers.

This laser can be illuminated via two different masks, one with a central heating

pattern and another with an annulus pattern. The central heating pattern can

be used to rectify insufficient heating of the optic and the annulus pattern is used

to correct for excessive heating of the optic. A Bessel mask further downstream

from the masks clips the higher order maxima of the Airy diffraction pattern,

leaving only the central lobe of the Airy disk. The incident power is varied using

a polarizer. For more details please see [43, 44].
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2.3 Astrowatch

After the major science run S5, which started in November 2005 and ended in

October 2007 was followed by an upgrade of the two 4 km detectors H1 and L1

as shown in Figure 2.1. These upgrades were called the enhanced LIGO upgrade.

Enhanced LIGO includes an increase in laser power from a maximum of 10 W to

35 W and the implementation of a DC readout scheme. These upgrades took a

little more than a year of commissioning work and during that time, both H1 and

L1 were completely inoperative. It was decided to run H2, the 2 km interferometer

during this time as an Astrowatch instrument, which would try to collect as much

data as possible, so as to not miss any opportunistic events like galactic supernovae

or close GRBs or SGRs etc.

Due to an acute shortage of skilled manpower, most of which was being used

for the enchanced LIGO upgrade, the LSC decided to let graduate students oper-

ate and run H2 on a voluntary basis. I was one such volunteer along with Berit

Behnke (Albert Einstein Institute), Jericho Cain (Univ of Mississippi), Nicolas Fo-

topoulus (Univ of Wisconsin Milwaukee), Evan Goetz (Univ of Michigan), Shivaraj

Kandasamy (Univ of Minnesota), Satyaprakash Mohapatra (Univ of Amherst),

Adam Mullavey (Aust. Natl. Univ), Philip Roberts (Andrews Univ), Jacob Slut-

sky (Louisiana State Univ), Szymon Steplewski (Univ of Washington Pullman),

Matthew West (Syracuse Univ) and Junyi Zhang (Univ of Michigan).

Astrowatch was a best-effort operation and thus shifts were organized for af-

ter hours and on weekends to keep the interferometer running when there were

no people actively working on H1 commissioning. At first this meant that shifts

would run from 10 PM local time to about 6 AM. However it was observed later

on that the interferometer was very stable from around midnight or so and rarely

needed intervention from an operator. In addition, anthropogenic noise was re-

duced during the night hours and this meant that the interferometer could acquire

a resonant lock on its own most of the time. Thus due to a lack of manpower,

it was decided to change the shifts to 6 PM to 2 AM, so that all the available
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manpower would be used when the interferometer required the most intervention.

2.3.1 Astrowatch highlights

Data that has been certified to be science quality is referred to as “science mode”

data. An operator or an experienced astrowatcher is required to manually certify

data as science data. It requires a series of sanity checks on if there is any work

going on in the Large Vacuum Equipment Area (LVEA), which houses the inter-

ferometer, if the data servers are online, if there are no unknown injections taking

place, etc. After the data has been certified, it can be used by analysis groups

after calibration.

Since science mode requires a manual input, if the detector reached a stage

where the data that is being collected is as good as science data, but is not certified,

it is called “Up” time. Most of Up time is clustered around the nights and early

mornings, when no one is around. However some Up time occurs when the operator

on shift is unable to put the detector in science mode due to someone working the

LVEA or if there is some other maintenance going on. These Up times are often

salvageable and as good as science mode data. Working with Jacob Slutsky, we

certified some of the Up time as usable for an LSC search. For details, please see

Section 2.3.3.

Figure 2.5 shows a pie-chart of the various states of the interferometer during

Astrowatch. Besides Science and Up time, the other states are off, in which the

input optics were off and no coherent light was entering the interferometer; mode

cleaner locked, in which the input optics were on and locked optimally and common

mode, in which the interferometer is locked, but not at full power.

A figure of merit used to assess the quality of the data is the inspiral range,

which is defined as the distance at which a neutron star–neutron star inspiral whose

orientation has been averaged over all possible orientations, can been detected with

an SNR of 8. It hovers in the range of 14 Mpc for the two 4 km detectors and

about half that for H2. It is a good figure of merit because such an inspiral would

sample most of the sensitive LIGO frequency band and thus it is an average of
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States of H2 during Astrowatch

Figure 2.5: Pie chart of various states of H2 during astrowatch.

the entire noise curve. Figure 2.6 shows the inspiral range of H2 for both science

mode and Up mode data during Astrowatch.

2.3.2 Acoustic Tuning

H2 required maintenance from time to time during Astrowatch. This was divided

in various different tasks, which included things to check daily, scripts to run

once in a while etc. One of the tasks that I worked on with Robert Schofield of U

Oregon was to identify paths through which acoustic noise can enter the detector’s

GW readout. As shown in Figure 2.4, there are multiple photodiodes looking at

the AS port. There are four major AS photo diodes (ASPDs), which have a low

noise performance and are used when the detector is locked. They are called

ASPD1, ASPD2, ASPD3 and ASPD4. For acquiring lock, another photodiode

called ASPD5 is used, which does not operate as well as the other ASPDs, but has

a greater tolerance to large fluctuations of light, which are likely to happen during

lock acquisition.

Acoustic noise can manifest itself in the GW channel through any defects/deadspots

on any of the ASPDs. There are a series of mirrors and beam splitters that guide
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Figure 2.6: Inspiral range of H2 during Astrowatch.

the output of the AS port to each of the ASPDs. If the laser beam is incident

near a defect on an ASPD, it can raster across it through the shaking of the post

holding one of the steering mirrors or beam splitters. The post is likely to be

shaken by ambient acoustic noise, since the AS tables are in air. These tables are

shielded acoustically, but in spite of this, some noise manages to creep in once in

a while. Figure 2.7 shows a measurement done on the GW channel, while running

on all four ASPDs and then each one of them one by one.

A way to identify some of the sources of this noise is to run the detector on one

ASPD at a time, which uses multiple speakers to output a large amplitude comb,

25 Hz apart of acoustic signal in the AS port table room. This noise would show

up as a series of lines in the GW channel, if it is run using one ASPD at a time.

The beam that hits an ASPD is then adjusted to minimize the comb of lines in

the GW channel. Figures 2.9 and 2.8 show the results of the acoustic tuning.

2.3.3 SGR search data quality

During the course of Astrowatch between August 21 2008 and September 5 2008,

over a hundred SGR flares were observed. The SGR named SGR-0501+4516 was

located at 0.8±0.4 kpc from the Galactic center, was an order of magnitude closer
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Figure 2.7: Figure showing the GW channel DARM ERR, when running on all

four ASPDs and then each one of them one by one. ASPD3 is the only one to

show a peak around 275 Hz and thus some acoustic tuning is required.

Figure 2.8: The GW channel running on ASPD3 alone, before and after the acous-

tic tuning was performed.
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Figure 2.9: The GW channel running on all fours ASPDs, before and after the

acoustic tuning was performed on ASPD3.

than any SGR burst that had occured during LIGO’s previous observations [31].

Thus in spite of not possessing data from the 4 km interferometers, which are more

sensitive than H2 by a factor of 2 or so, a search for these SGR flares was feasible.

Such a search is underway right now and it is being led by Peter Kalmus of

Caltech. In collaboration with Jacob Slutsky, we made a first order data quality

cut on the Astrowatch data. One of the biggest priorities was analyzing the Up

times for any usable segments. We trawled through the Hanford e-logs and the

automated figures of merit and came up with first level cuts on the data, allowing

us to identify significant periods of Up time data that were usable for science

observations. For more details, please see [45].

After using the Up time segments that were deemed usable, the number of flares

that could be analyzed went up from the 37 that occurred during science time to

68. This sort of data quality work was unique to Astrowatch, since normally there

would not be any significant amount of Up time and its quality would not be under

debate.
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Chapter 3

Sources of continuous gravitational waves

3.1 Introduction

Neutron stars are remarkable objects which bring together all the four fundamental

forces of gravity, weak-force, strong-force and electromagnetism. They are also at

the heart of general relativity, as they strongly curve spacetime around them. Thus

they are unique laboratories of physics. Understanding them can give insight into

the confluence of a large portion of known physics, as well as charter the unknown.

When dealing with neutron stars, one has to deal with large magnetic fields, nuclear

densities (even supernuclear densities), relativistic velocities, extreme curvature of

spacetime and particle physics.

Neutron stars are believed to be born in some of the largest explosions since

the Big Bang, called supernovae, which occur when ultra massive stars undergo

collapse because thermal pressure from nuclear fusion in the stellar core can no

longer sustain the gravitational pull of the star on itself. These supernovae will

produce a rapidly changing non-axisymmetric mass quadrupole moment and thus

create gravitational waves. Neutron stars retain most of the angular momentum of

the collapsing star and are extremely compact. Two neutron stars rotating around

each other would slowly inspiral due to the emission of gravitational radiation,

which could be detectable in the final moments before and during the eventual

merger.
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Not only are neutron stars one of the most promising sources of gravitational

waves, but gravitational waves could be a significant probe into their nature. Grav-

itational waves can help constrain the equation of state (relation between pressure

and energy density) of a neutron star, and help us understand their composition

as well. This chapter summarizes some of the current knowledge on the emission

of gravitational radiation from neutron stars. It also describes important proper-

ties of pulsars, which are neutron stars that are observed to produce pulses in the

electromagnetic spectrum. This leads into the discussion of how searches for grav-

itational waves can be conducted in Chapter 4. The object described in Chapter

6 is a suspected neutron star.

3.2 Neutron Stars

A neutron star is a compact object of a radius around 10 km and a mass of about

1.4 solar mass. They are believed to be composed mostly of neutrons with central

densities ranging from 0.8 − 1.6 neutrons·fm−3, which is many times greater than

the nuclear density found in ordinary atomic matter (0.16 neutrons·fm−3). In ad-

dition to neutrons, the core of a neutron star also contains degenerate Fermi gases

of protons and electrons in beta equilibrium. The Fermi energies are sufficient to

likely also support more exotic particle matter, including particles like strangeness-

bearing baryons [46, 47], condensed mesons [49, 50] or deconfined quarks [51].

Fermions in such conditions of high density are expected to exhibit superfluidity

and superconductivity as well. Observationally, some neutron stars are known

to have very strong magnetic fields, which vary implicitly as a function of their

age and composition and can range from 108 Gauss (milli-second pulsars) to 1015

Gauss (young pulsars/magnetars).

Some neutron stars emit electromagnetic radiation along their magnetic axis

with an angular spread which ranges from a few degrees to as much as 30 degrees

[47]. If this beam of radiation sweeps by the Earth as it rotates, it appears to pulse

at the rotation frequency of the star and the object is known as a pulsar. Figure
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3.1 illustrates this lighthouse like effect. Pulsars are known to have very stable

rotation periods, although some of them are known to glitch, i.e., experience abrupt

changes in the frequency or time derivative of the frequency of the observed pulses.

The electromagnetic radiation frequency emitted (pulsed or otherwise) by some

pulsars spans an enormous range of frequencies from radio to X-rays. The first

pulsar was discovered by Hewish and Bell in 1967 with a period of 1.337 seconds

[52], now known as PSR 1919+21 (PSR stands for pulsating source of radio).

Several hundreds of pulsars have been discovered so far and almost all of them

lie within our galaxy, with a few discovered in the relatively nearby Magellanic

Clouds. Most of these pulsars were detected by radio observations from various

observatories around the planet. Some pulsars exist in binary systems with low

mass companions like white dwarf stars in the form of Low-mass X-ray binaries

(LMXBs). A double pulsar system is also known to exist (PSR J0737-3039A and

PSR J0737-3039B). Globular clusters are rich in old spun-up milli-second pulsars

(see next section).

Neutron stars are one of the most promising sources of gravitational waves.

There are several possible mechanisms for the emission of gravitational waves and

some of these are discussed in this chapter. This chapter will also give a brief

overview of pulsar detection, their properties and composition.

3.3 Pulsars

As mentioned above, pulsar is an observational term referring to the class of objects

that are observed by the detection of an electromagnetic pulse at periodic intervals

of great precision. Some of these pulsars have broadband emissions ranging from

radio to X-rays, but most of them are only seen in radio. The pulsations are

extremely stable and in some cases they are bound by the accuracy of terrestrial

clocks. An example of this is the precision to which the period of PSR 1937+21 is

known, 1.55780644887275±0.00000000000003 ms, as of 29 November 1982. That is

an accuracy of 1 part in 1014. Such precise timing coupled with their compactness,
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Figure 3.1: A cartoon of a pulsar. The lighthouse effect is shown. If the Earth

is within the light emission cone, which is around the magnetic field lines, the

neutron star will be seen as a pulsar. Figure courtesy [53].

gives us the opportunity to use these objects as tests of General Relativity.

There are some significant biases in the detection of pulsars. One of these is

the beaming nature of each pulsar. Pulsars often have their magnetic axis at an

angle to the rotation axis. The pulsar emits electromagnetic radiation in a tight

cone of about 10 degrees around the magnetic axis [47]. Thus each pulsar in effect

beams. If the Earth happens to fall within the path of this beam, the pulsar may

be detected. Pulsar emissions are usually too weak to be detected extragalactically.

Due to this effect, more pulsars are known close to us than far from us. Distance

to pulsars are determined by various techniques like parallax measurements in

the case of close pulsars, association with known supernova remnants, absorption

spectral features due to intervening, but known hydrogen clouds, etc. Taking

these biases into account, over 105 active pulsar-like objects are suspected to exist
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in our galaxy [55]. However, since active pulsars last only a few 10’s of millions of

years and not all neutron stars pulse, the number of neutron stars in the galaxy is

expected to be orders of magnitude larger [47].

The detection of pulsars usually involves taking a fast Fourier transform (FFT)

of radio observatory data. Any periodic signal that is sufficiently loud to rise above

the noise will be detected as a pulsar. However only a few pulsars are strong

enough to overcome the spread of their signal into various frequencies due to the

Doppler shift caused by the motion of the Earth. To detect such pulsars, one of the

techniques used is known as barycentric resampling. In this technique, a pulsar’s

location, frequency and other parameters are guessed and then a correction applied

to the data to remove the effects of the Doppler shift of the Earth’s motion. The

data is then processed through a FFT algorithm. If there is any periodicity in the

signal, it will show up in the FFT data, given that a sufficient amount of data

is used to ensure that the signal will rise above the noise. In the case of pulsar

detection, the signal is often strong enough to require only a few hours of data to

attain a sufficient signal to noise ratio (SNR). This is not the case in gravitational

wave signal data analysis, in which the signal is very weak and integration of days

to years of data is required. Other techniques used to detect pulsars are time

domain folding and heterodyning.

Figure 3.2 shows a scatter plot of known pulsars, plotted as a function of their

periods and the first derivative of the period. Three distinct classes of pulsars

can be seen. The first group with an average period of around 1 s and magnetic

fields (Bs) ranging from 1011 to 1013 Gauss are young pulsars which are no more

than a few million years old. The second group consists of pulsars which have

a large magnetic field of greater than 1014 Gauss. These pulsars are known as

Anomalous X-ray pulsars (AXPs) or Magnetars. The last set of pulsars are known

as milli-second pulsars (MSP), which have weaker fields in the range of 108 to

109 Gauss and periods of a few milli-seconds. MSPs are are believed to be old

“recycled” pulsars which have been spun up by accretion, thereby increasing their

spin angular momentum. They are believed to have had a companion star from
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Figure 3.2: A scatter plot of the periods and first period derivatives of pulsars

observed by various observatories (logarithmic scales on both axes). Magnetars,

typical young pulsars and milli-second pulsars are shown. Figure courtesy [109].

Lines of constant age and constant magnetic field are shown (see equations 3.7 and

3.16).

which they accreted matter coherently and were spun up. The impact of the matter

on to the star leads to a rise in temperature, from which X-rays are produced and

emitted. Sometimes the companions of these MSPs go supernova themselves and

are kicked out of orbit, leaving the MSP isolated. An isolated MSP can also occur

when the NS evaporates its companion, for example the Black Widow system [48].
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3.3.1 Pulsar emission and ages

Pulsars emit prodigious amounts of energy, most of which is drawn from their

rotational energy. The Crab pulsar, which resides in the Crab nebula is a relatively

young pulsar, which spins with a period of around 30 milli-seconds. It puts out

about 5×1038 ergs/s of power, in wideband electromagnetic emission [56]. However

the pulsar glow itself is a tiny fraction and most of the energy goes in lighting up

the nebula and accelerating particles away from the star in the form of a pulsar

wind. Since most of the energy output is powered by the rotational energy of the

pulsar, we can equate the loss in energy to an effective spindown of the pulsar as

−dE
dt

= − d

dt

(

1

2
IΩ2

)

= −IΩΩ̇ − 1

2
Ω2İ = Ė, (3.1)

where dE
dt is the power emitted, I is the moment of inertia of the pulsar and Ω is the

angular velocity. The moment of inertia of a pulsar does not change significantly

with time, since its mass and radius are roughly constant. Thus we can ignore the

İ term in equation 3.1 and we can relate the energy loss to the spindown as

I = − Ė

ΩΩ̇
(3.2)

in the convention in which the spindown Ω̇ is negative and Ė is positive. If we

assume that the energy loss is due to magnetic dipole emission [57], then the energy

output of such a dipole is given by

−dE
dt

=
2

3
R6B2Ω4 sin2 α (3.3)

where R is the radius of the pulsar, B the magnetic field at the surface, and α the

angle between the magnetic axis and the rotation axis. Equating equations 3.1

and 3.3, we get

B =

√

−3IΩ̇

2R6 sin2 αΩ3
. (3.4)
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This magnetic field is real, when Ω̇ is negative definite, which is the case if the

energy radiated is produced by the spindown of a pulsar. Astronomers are more

used to using the period P and Ṗ , which are related to the angular velocity Ω by

P =
2π

Ω
(3.5)

and

Ṗ = −2πΩ̇

Ω2
(3.6)

which turns equation 3.4 to

B =

√

3IP Ṗ

8π2R6 sin2 α
. (3.7)

For typical R’s of around 10 km, I of 1038 kg·m2 and periods corresponding to the

Crab nebula, B is in the range of 1012 Gauss and the rotational energy is about

1049 ergs. These numbers give an indication that pulsars are compact objects

with extremely large rotational energies and surface magnetic fields, which favors

the hypothesis that they are neutron stars, which are theorized to have similar

properties.

Another form of radiation that could carry away the rotational energy of a

pulsar is gravitational radiation, which is emitted when a non-axisymmetric mass

quadrupolar moment is generated by the pulsar. The loss of rotational energy

given by the emitted GW flux is

Lgrav =
1

5
〈...I µν

...
I

µν〉, (3.8)

where 〈〉 represents a time average and Iµν is the moment of inertia tensor. The

second time derivative of the moment of inertia tensor for a rotating neutron star
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as shown in Figure 3.3 is given by [64]

Ïµν =
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0 −16π2f2(Ixx − Iyy) cos(4πft) −32π2f2(Ixx − Iyy) sin(4πft) 0

0 −32π2f2(Ixx − Iyy) sin(4πft) 16π2f2(Ixx − Iyy) cos(4πft) 0

0 0 0 0

















.

(3.9)

Using equations 3.8 and 3.9, the GW flux can be written as

Lgrav =
dE

dt
=

32

5
Ω6I2

zz

(

Ixx − Iyy

Izz

)2

. (3.10)

The various mechanisms which can generate this kind of asymmetry are discussed

in the following sections.

If the observed spindown of a pulsar were purely due to magnetic dipole radi-

ation (Ω̇mag), then using equations 3.2 and 3.3 we find

Ω̇mag ∝ Ω3. (3.11)

And if the emission were purely due a gravitational quadrupole (Ω̇grav), then using

equations 3.2 and 3.10 we find

Ω̇grav ∝ Ω5. (3.12)

For multipole radiation in general, the spindown will follow a power law:

Ω̇ = −KΩn, (3.13)

where K contains geometric terms like the moment of inertia I and source terms

like the magnetic field (B) and the ellipticity. n is called the braking index of

the pulsar and n = 2l + 1, and l = 1 for a dipole and l = 2 for a quadrupole.

The braking index of a pulsar is indicative of its mechanism of energy loss. If the

pulsar were losing all of its energy due to magnetic dipolar radiation, the value of n

would be 3. The value of n would be 5 if the energy loss were due to gravitational
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Figure 3.3: An illustration of a rotating neutron star with a non-axisymmetric

bump on it, emitting gravitational waves. The neutron star is rotating around the

z axis and the observer is at an inclination angle ι off the z axis.

radiation. Differentiating both sides of equation 3.13, we get

Ω̈ = −KnΩn−1Ω̇. (3.14)

Multiplying both sides with Ω and using equation 3.13, we get

n =
ΩΩ̈

Ω̇2
. (3.15)

For some pulsars Ω̈ is known well enough to allow for a direct calculation of n.

For example, the Crab pulsar has n ≃ 2.5 and Vela pulsar (PSR J0835-4510)

has n ≃ 1.7. These are less than the 3 expected for magnetic dipole emission,
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suggesting that this may not be the only mechanism for emission. Indeed, both

pulsars are recent supernova remnants (SNRs) with strong winds powering the

observed nebula. Moreover, equation 3.13 assumes that the moment of inertia

I is constant. For İ to make a significant contribution, it needs to change on a

scale comparable to the spindown timescale: I
İ
≈ P

Ṗ
. This is only likely to happen

if the star is nearly at the breakup spin frequency (Kepler frequency), which is

only the case for a few MSPs. Pulsars have mostly been observed to have n ≤ 3.

For gravitational wave searches in which the frequency evolution of a suspected

neutron star is unknown, it is prudent to be conservative while setting up the

search parameter space and thus values of the braking index n ranging from 2 to

7 are used.

After shuffling terms and integrating both sides of equation 3.13, we get an

expression for the “spindown age” of the pulsar,

t =
1

(n− 1)K

(

1

Ωn−1
− 1

Ωn−1
0

)

. (3.16)

Here we have assumed that t = 0 at birth and Ω0 is the initial angular velocity.

Substituting K = − Ω̇
Ωn we get

t = − 1

n− 1

Ω

Ω̇

(

1 −
(

Ω

Ω0

)n−1
)

. (3.17)

After a long time, when Ω << Ω0, we can ignore the Ω
Ω0

term and a characteristic

age can be defined for a pulsar as

τc = − 1

n− 1

Ω

Ω̇
=

1

n− 1

P

Ṗ
. (3.18)

The characteristic age of a pulsar calculated in such a manner for the Crab pulsar

(1200 years) compares well with its historical age of about 1100 years. These

age estimates are useful for setting up parameter spaces for gravitational wave

searches, since the expected gravitational wave parameters (like spindown) are

usually a function of the expected age of the source.
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3.4 Composition of neutron stars

Conventional neutron stars are believed to contain a liquid nuclear-matter core,

enclosed in a thin solid crust. The study of the composition of neutron stars was

motivated by the glitchiness of pulsars. Many pulsars such as the Vela pulsar are

known to undergo a rapid change in frequency and frequency derivatives in a matter

of minutes [65]. Some theories suggest that these glitches are associated with

starquakes [66]. These starquakes could occur in the solid crust of a conventional

neutron star or in the solid interiors of more exotic compact stars like quark stars

or hybrid stars. Other theories involve some sort of superfluid vortex pinning that

slips through the crust on occasion.

A simple model of a neutron star is that of a static, spherically symmetric,

relativistic star. Solutions of Einstein’s equations under these conditions are called

the Oppenheimer-Volkoff (OV) equations. The only quantities that show up in

these equations are the mass (M), energy density (ρ) and pressure (p), all of which

are functions of the radial coordinate r. The relationship between the pressure

and energy density describes the state of the matter forming the fluid star. These

relationships are called the equations of state (EOS) and are written as either

p = p(ρ) or ρ = ρ(p). (3.19)

The total gravitational mass M (which includes the baryon mass and the gravita-

tional binding energy and all other forms of energy in it) is the first OV equation

as shown in [47]

M(r) = 4π

∫ r

0
ρ(r′)r′2dr′, (3.20)

where r is the radial coordinate. M(R) is the total gravitational mass of the star, if

R is the radius of the star, i.e. the point where the pressure p(R) vanishes. This is

because 0 pressure cannot support any matter against the attractive gravitational

force and thus R would be the effective radius of the star. The second equation
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relates the pressure to the radial coordinate r as shown in [47]

dp

dr
= − [p(r) + ρ(r)][M(r) + 4πr3p(r)]

r[r − 2M(r)]
. (3.21)

The OV equations are derived from Einstein’s equations applied to the interior

of a spherical, static and relativistic star. All of these equations are in units of

G = c = 1, where G is the gravitational constant and c is the speed of light.

The OV equations can be rewritten in a form, such that the relativistic correc-

tions are separated from the Newtonian solution

dM(r) = 4πr2ρ(r)dr (3.22)

and

4πr2dp(r) = −M(r)dM(r)

r2
×
(

1 +
p(r)

ρ(r)

)

×
(

1 +
4πr3p(r)

M(r)

)

×
(

1 − 2M(r)

r

)−1

.

(3.23)

Equation 3.23 can be interpreted as balancing the force acting on an infinitesimal

shell of matter due to the pressure and the gravitational attraction. The left-hand

side of equation 3.23 if the force acting outward on the shell due to the pressure.

The first term of the right-hand side is the Newtonian gravitational pull and the

other terms are the corrections due to general relativity. Solving equations 3.22

and 3.23 requires an equation of state. One can solve for quantities like the radius

of the star and the pressure and energy densities etc. by integrating both sides of

equations 3.22 and 3.23.

According to current models, a typical neutron star would consist of a thin

“atmosphere” and an “envelope” consisting of light elements such as Hydrogen or

Helium or Carbon, whose dynamic is fully controlled by the magnetic field. Below

the envelope lies a thin solid “crust” which is composed of ordinary atomic nuclei

crushed into a lattice with a sea of electrons. These atomic nuclei are most likely

Iron nuclei, since it is the most stable nucleus due to its high binding energy per

nucleon [69]. Going deeper into the star, free neutrons leak out of the nuclei and
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form a superfluid. This part is known as the core of the neutron star and the exact

properties (the EOS) of this superfluid is not known. Near the very center of the

star could lie a transition between the neutron superfluid and other more exotic

matter like strange quarks or pions and kaons in addition to neutrons (hybrid

stars) [47]. The neutron star structure is illustrated in figure 3.4 [70].

3.5 Mechanisms of Emission

Neutron stars can produce gravitational waves through several possible mecha-

nisms. A pair of neutron stars can inspiral into one another and produce an

inspiral-merger-ringdown signature, which would be detectable by LIGO for a few

minutes while the signal lies within its band. Neutron stars can also produce

bursts of gravitational radiation associated with the starquakes that are respon-

sible for their frequency glitches or through some unknown mechanism. However

the emission type that is of interest here is the continuous emission of gravitational

radiation by a non-zero mass quadrupolar moment, powered by its rotational en-

ergy. Some of the mechanisms of emission include non-zero ellipticity caused by

“mountains” on the pulsar surface (most of the quadrupole moment comes from

the corresponding depression of the surface), fluid modes like the r-modes and free

precession due to the mis-alignment of the moment of inertia and rotation axes.

Mass accretion from a companion star can drive any of the emission mechanisms

mentioned above.

3.5.1 Non-axisymmetric mass tensor

A promising mechanism for emission of continuous gravitational waves from a

neutron star is the existence of a non-axisymmetric distortion of its solid crust.

These non-axisymmetric distortions are akin to mountains on the Earth’s surface

and their effects can usually be represented by a single unitless number called the

ellipticity, defined as

ǫ =
Ixx − Iyy

Izz
(3.24)
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where Ixx, Iyy and Izz are the moments of inertia along the x, y and z axes re-

spectively as seen in Figure 3.3. They form the diagonal elements of the moment

of inertia tensor if the object is spinning along the z axis. This non-axisymmetric

ellipticity produces a non-zero mass quadrupole moment, which accelerates due

to the spin. This in turn produces gravitational radiation, with loss of rotational

energy given by the emitted GW flux:

Lgrav =
dE

dt
=

32

5
Ω6I2ǫ2 (3.25)

where, I is the moment of inertia along the spinning axis, i.e. I = Izz. The neutron

star emits gravitational radiation if the mountain produces a net mass quadrupolar

moment and this emission is at twice the rotation frequency of the neutron star.

The frequency is twice the rotation frequency because the ellipticity manifests

itself in such a way that the object looks symmetric under a 180 degree rotation.

The amplitude of the gravitational wave received by a detector is a function of the

inclination angle ι that the source makes with the detector.

The gravitational strain hµν emitted by such a distortion can be shown to be

[71]

hµν =
2

d
Ïµν , (3.26)

where d is the distance to the source. Using equations 3.9, 3.26 and 3.24, we get

hµν =
32π2f2ǫI

d
×

















0 0 0 0

0 − cos(4πft)(1 + cos2(ι)) −2 sin(4πft) cos(ι) 0

0 −2 sin(4πft) cos(ι) cos(4πft)(1 + cos2(ι)) 0

0 0 0 0

















.

(3.27)

The gravitational strain that would be received by a detector if the source were

optimally oriented and emitting at a frequency f, would be

h0 =
4π2G

c4
If2

d
ǫ. (3.28)
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Uncertainties in the moment of inertia I and the distance d lead to uncertainties

in h0 as large as factors of 2 or 3.

The maximum ellipticity that can be maintained on a neutron star is a function

of its composition. A completely liquid star would be unable to sustain any ǫ due

to elasticity, since its shear modulus would be 0. However even a completely liquid

neutron star could maintain an effective magnetic ellipticity when a neutron star

with a large toroidal magnetic field is distorted into a prolate shape [67]. This

form of magnetic ellipticity is discussed later in this section. A nice summary of

the possible values of ǫ that can be sustained by various compositions of neutron

stars is given in [77]. I summarize the results here.

The ellipticity ǫ can be defined in terms of the corresponding mass quadrupole

moment Q22 and the moment of inertia I as

ǫ =

√

8π

15

Q22

I
. (3.29)

As [77] notes, the moment of inertia of a neutron star was estimated by [68] as

I = 9.2 × 1037kg · m2

(

M

1.4M⊙

)(

R

10km

)2

×
(

1 + 0.7

(

M

1.4M⊙

)(

10km

R

))

,

(3.30)

which is accurate to a few percent for various equations of state. The maximum

quadrupole moment is also a function of the maximum breaking strain σmax of the

crust. For a conventional neutron star with a solid crust and a liquid interior it is

calculated by [77] as

Q22,max = 2.4 × 1031kg · m2
(σmax

10−2

)

(

R

10km

)6.26(1.4M⊙

M

)1.2

. (3.31)

The maximum ellipticity of a conventional neutron star with a solid crust and a

liquid interior can then be calculated using equations 3.29, 3.30 and 3.31, as shown
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in equation 4 of [77] to give

ǫmax = 3.4×10−7
(σmax

10−2

)

(

1.4M⊙

M

)2.2( R

10km

)4.26

×
(

1 + 0.7

(

M

1.4M⊙

)(

10km

R

))−1

.

(3.32)

The fiducial value of σmax = 10−2 is obtained from the maximum strains seen

in iron (or other terrestrial alloys). The other quantities in the equation are not

subject to much change and thus the maximum breaking strain that the material

can withstand determines the ellipticity that can be sustained. Thus for a neutron

star with conventionally expected solid iron crust, the maximum ǫ would be of the

order of 10−7. However recent results [73] show that the breaking strain for pure

single crystals to be as high as 0.1, which would push the maximum ǫ to 10−6.

Neutron stars containing a substantial component of strange quarks in the solid

state were first proposed in [78]. For these solid strange stars, the shear modulus

could be 3 orders of magnitude higher than that for a typical solid iron crust

neutron star with a liquid interior. This leads to a maximum ellipticity of the

order of 10−4.

At neutron star densities, pure neutron matter is not in its lowest energy state

and some protons and electrons are present such that the chemical potentials of

these particles are given by

µn = µp + µe. (3.33)

This is the equation for Beta-equilibrium, where µn, µp and µe are the chemical

potentials of neutrons, protons and electrons. In general charge-neutral matter

consists of a majority population of neutrons with a few protons and electrons

present in Beta-equilibrium. However this high neutron-to-proton ratio results in

a high isospin asymmetry. It is not energetically favorable to produce protons

because of the necessity to produce associated electrons. It is possible for these

stars to produce negative quark matter which can lead to the production of positive

baryonic matter, restoring some of the isospin asymmetry. This transition can

happen in phases and mixed phases and hybrid stars are also possible. References

[77] and [47] talk about how this phase transition can begin with the formation of
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droplets of quark matter, which eventually merge to form rods and then slabs and

then the reverse happens to baryonic matter which then becomes the minority.

Reference [46] gives an estimate of the shear modulus of one such hybrid star

consisting of a body centered cubic lattice of quark matter within a bulk of baryonic

matter as a function of the charge density, the diameter of the quark matter

droplets and the spacing between these droplets. The maximum ellipticity is then

computed in [77] to be of the order of 5 × 10−6.

As mentioned above, another mechanism for the production of an ellipticity,

which would emit gravitational waves is via a “frozen in” magnetic field. According

to [67], such magnetic distortions tend to dominate over the natural oblateness of

the neutron star of the magnetic field

Bt > 3.4 × 1012 Gauss ×
( νs

300Hz

)

, (3.34)

if νs is the frequency of rotation of the neutron star. Such a neutron star is unstable

with respect to the wobble angle between its angular momentum axis and the

magnetic axis. The wobble angle evolves on a dissipation timescale such that the

angular momentum axis and the magnetic axis are eventually orthogonal, making

it optimal for GW emission. Reference [67] discusses the possibilities of such a

mechanism taking effect for various types of neutron stars, like young neutron

stars, accreting neutron stars and milli-second pulsars. For milli-second pulsars

that are about 10 million years old, which is an optimistic estimate for Calvera

(see Chapter 6), [67] a maximum magnetic ellipticity ǫB of around 6.0 × 10−6 is

possible.

Thus the maximum ellipticities that can be sustained on neutron stars are

highly uncertain and can range from as high as 10−4 to as low as 10−7.

3.5.2 Non-axisymmetric oscillations

Non-axisymmetric oscillations of neutron stars are a promising source of gravita-

tional radiation. The gravitational radiation from these oscillations can be steady
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if there is some kind of dynamical or secular instability to stabilize the oscillation.

The scenarios in which such oscillations are most likely to occur are in the case of

recently formed neutron stars and accreting neutron stars. For a review of these

oscillations, please see [58].

While a rotating neutron star may possess a whole range of pulsation modes,

the ones that are of interest for GW emission include acoustic modes called f-modes

and coriolis restored modes called r-modes. These r-modes are of particular inter-

est, as they have been theorized to be long lasting and of high enough amplitude

to be detectable by LIGO [137].

r-modes belong to the family of modes driven to instability by the Chandrasekhar-

Friedman-Schutz (CFS) instabilities [59, 60], which are similar to the Kelvin-

Helmholtz(KH) instability. The KH instability is caused when a velocity shear

is present within a continuous fluid. An example is the giant eye of Jupiter and

some cloud formations on the Earth. Imagine a neutron star rotating at an an-

gular velocity of Ω. If in the frame of a fluid element rotating with the star (i.e.

in the co-rotating frame), an r-mode instability were moving at −Ω
3 , then to a

non-rotating frame of reference, it will be travelling at 2Ω
3 in the direction of the

rotating neutron star. The gravitational waves emitted by this star would then

carry away positive angular momentum and impart a negative angular momentum

back-reaction to the star. But this reverse momentum, when seen in the co-rotating

frame, helps the instability to grow. This sort of positive feedback continues till

viscosity takes over, under the most interesting circumstances, only indirectly via

nonlinear hydrodynamical mode coupling which may result in the generationa of

a stable amplitude of gravitational waves.

While the generation of GWs through an ellipticity mechanism as mentioned

in the section above is due to a mass quadrupole moment with l = m = 2, GWs

from r-modes are generated through a l = m = 2 current quadrupole [61]. This

affects the parameter estimation and the effectiveness of the detection statistics

used for conducting a search for r-mode emission. As shown in [62] the tradi-

tional data analysis approaches are effective for r-modes with relatively minute
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corrections needed. An r-mode is an Eulerian velocity perturbation and using the

approximations of Newtonian gravity and slow-rotation of the neutron star it can

be shown [62]

δvj = αΩR
( r

R

)l
Y B,l,l

j eiωt, (3.35)

where, r is the radial coordinate, R is the radius of the neutron star, Ω is the

angular velocity of the star, ω is the angular frequency of the GW and α is a di-

mensionless amplitude and is an equivalent to h0 for a traditional mass quadrupole

for r-modes. Y B,l,l
j is a magnetic-parity vector spherical harmonic, which are func-

tions of the scalar spherical harmonics Y l,m. α can be related to the intrinsic strain

amplitude h0 by [62]

h0 =

√

8π

5
d−1ω3αMR3J̃ , (3.36)

where d is the distance to the source, M is the mass of the neutron star and J̃

is a dimensionless functional of the neutron star equation of state. As is noted

in [62], the EOS-related uncertainties, which would determine the uncertainties in

equation 3.36 are dominated by uncertainties in M and R, which are usually in the

range of a factor of 2 − 3. The gravitational wave frequency is obtained in terms

of the angular frequency of the wave, which is related to the angular velocity of

the star as [62]

f =
ω

2π
(3.37)

and

ω = −(l + 2)(l − 1)

(l + 1)
Ω. (3.38)

For the l = 2 as mentioned above, ω = −4
3Ω for gravitational wave emission.

Searches done for GWs emitted by r-modes from known pulsars would have have

to search 4
3

rd
the observed electromagnetic frequency.

While it is believed that r-modes are most likely to play a role in young and

accreting neutron stars, there is at least one reference in the literature [63] which

mentions r-modes as a possible spindown mechanism for milli-second pulsars. Ref-

erence [63] shows low-amplitude r-modes along with the emission of thermal X-rays,



48

would allow for a spin down due to a combination of gravitational radiation and

standard magnetic torque. This result is of particular interest to the search done

for GWs from Calvera in Chapters 6 and 7.

3.5.3 Torque-free Precession

A simple mechanism of emission of gravitational radiation from a neutron star is

torque-free precession. If the principal moment of inertia axes were not aligned

with the angular momentum axes, then the neutron star would wobble like a top

and a GW back reaction would damp out these wobbles [64]. This GW emission

would occur at the rotation frequency. However, it would be much weaker than

the other forms of emission discussed in this chapter. As shown in [72], even for

optimistic values of parameters like the angle of wobble (between the principal axis

and the angular momentum axis) of 0.1 radians, for a neutron star at a distance

of 1 kpc and spinning at 500 Hz, the expected gravitational wave strain amplitude

would be of the order of 10−27.

While the calculations in [64] were done for a rigid body, this is not strictly

true for neutron stars, since they are theorized to have liquid interiors. A more

realistic calculation was done in [74], which also showed that this sort of emission

can be relatively long lived and last up to 105 years. However the amplitude is still

too small to be detectable by initial LIGO. Moreover this mechanism of emission

would be improbable for a MSP type neutron star, since any wobble would have

damped out a long time ago, given its age.

3.5.4 Accretion

Some pulsars are known to have companions from which they accrete matter.

These companions can range from supergiants, which overflow their so called Roche

lobe, to white dwarves. Accretion is the process via which old pulsars are “recy-

cled” and spun-up to become milli-second pulsars. Accretion leads to the formation

of an accretion disk around the neutron star, which emits X-rays.

In the context of GW generation, accretion is a natural way of generating
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and maintaining crustal deformations. Accretion is not an isotropic process and

there are many “hot spots” on the neutron star surface at which the accreted

material falls. These hot spots can lead to the formation of crustal asymmetries,

which would be damped by GW emission. This can lead to a situation in which the

accretion spin-up is balanced by the GW spin-down, which could be in equilibrium,

leading to a continuous GW signal. This was first suggested in [75]. Rapidly

accreting stars are of particular interest for this sort of emission mechanism, for

example ones in low-mass X-ray binaries. One of the most promising of such

sources of GW is Sco-X1, which as the brightest X-ray source in the sky (besides

the Sun) and according to [75], it could emit GWs that would be detectable with

a gravitational strain amplitude of about 10−26. A search for GWs from Sco-X1

using data from the second science run of LIGO can be found in reference [95].

According to [76], the magnetic field of a neutron star can help localize the

accreting matter to a small area of the surface. The magnetic field lines can be

compressed into a narrow belt at the magnetic equator, which then confines the

accreted material on to the poles of the neutron star. Since the magnetic axis is

not generally aligned to the angular momentum axis, this accumulation of material

takes place asymmetrically, thus creating a mass quadrupole and consequently

GWs are emitted. The dissipation of these mountains is slow because the matter

is highly conductive and thus it crosses the field lines slowly. This leads to a

scenario in which the pile up is matched by steady GW emission.

The next chapter is a discussion of LIGO searches for CWs from NSs emitted

via the mechanisms discussed in this chapter.
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Figure 3.4: The composition of neutron stars. A neutron star consists of an

atmosphere and an envelope of light elements. A core consisting of a neutron

superfluid forms the bulk of the neutron star. The inner core could consist of

exotic matter like strange quarks or pions and kaons in addition to neutrons (hybrid

stars). Figure courtesy Danny Page [70].
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Chapter 4

Finding weak quasi-periodic signals in noisy

broadband data

4.1 Introduction

Continuous GW emitted by neutron stars are expected to be exceedingly weak

relative to the noise spectral density(Sh) of ground based detectors like LIGO.

While it is possible to detect loud sources of GWs like neutron star - neutron star

inspiral-merger-ringdowns using a few seconds of data, one has to dig CW signals

out of the noise by integrating several days to years of data. An optimal method for

detecting signals buried deep within noise is matched filtering. Matched filtering

is also called coherent integration in the field of CW data analysis. For a search

done using the optimal matched filtering technique using an integration time of T ,

the signal scales as T and the noise scales as
√
T , and thus the sensitivity or SNR

of the search scales as
√
T .

However for matched filtering, one has to compare the data to an assumed form

of the signal, known as a template. The significance of each template must then

be calculated. For a small number of templates, when certain search parameters

are well constrained, a fully coherent integration is the preferred search method.

However, the number of templates for a search over unknown parameters can

increase dramatically. This increases the chances that a random fluctuation in the

noise will seem like a real signal and thus we have to raise the threshold of detection.
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This leads to a loss of sensitivity. Moreover these wide-parameter searches can

get computationally prohibitive and thus less efficient, but computationally more

feasible methods are more practical. These are known as semi-coherent methods,

whose sensitivity scales as 4
√
T . This chapter summarizes both the coherent and

semi-coherent methods and their applications.

4.2 Summary of searches for continuous gravitational

waves with LIGO data

4.2.1 Known pulsar searches

There are over 1500 known pulsars [109], among which an order of 200 have spin

frequencies above 25 Hz, which would be detectable by LIGO. And about half of

them are isolated (i.e., not part of a binary). From radio observations of these pul-

sars, their sky locations are known to within a few arc-seconds and their frequency

to within a few mHz. For these pulsars, it is possible to confine a GW search to

a few templates and in some cases to even a single template. This removes the

computational constraint and one is able to integrate all the available data using

a matched filtering algorithm and achieve the best possible sensitivity.

For sources for which the sky location and frequency information is accurate

enough to require only a single search template, the integration is done in the time

domain and the parameters of the source are calculated as probabilities within

a Bayesian framework. It is possible to even incorporate ephemeris data from

radio instruments to correct for frequency shifts due to pulsar glitches. These

corrections assume that the gravitational wave frequencies follow twice the radio

pulse frequency. Some of the searches done by the LIGO Scientific Collaboration

using the time domain technique are in [79], [80] and [81].

The Crab pulsar is a young pulsar (1000 years) with a rotation frequency of

around 30 Hz and a relatively large frequency spindown, making it one of the

most important potential sources of continuous gravitational waves. Searches for

GWs from the Crab pulsar were done in [80] and [81] using LIGO data. In [80],
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two different methods are used to search for the Crab pulsar. The first one uses

the time domain technique within a Bayesian framework as discussed above, for

a single template search. The second method uses a frequency domain “wide”

parameter search, allowing for a slight discrepancy between gravitational wave

signal frequency and twice the radio pulse frequency. This frequency domain search

is done within a frequentist framework. While these wide parameter searches only

encompass a small frequency band around twice the radio pulse frequency, the

number of searched templates get prohibitively large and thus are benefitted by

any speed-up of the frequency domain searches. Barycentric resampling helps

increase the computational efficiency, and thus for fixed computational resources,

the sensitivity of these kinds of searches. An ongoing effort in the LIGO scientific

collaboration is to conduct wide parameter searches on all the known isolated

pulsars including the ones in [81], as well as some other pulsars that could not be

searched for with a single template. This search would not have been possible to

conduct given limited computational resources, without the use of the resampling

algorithm.

4.2.2 All-sky searches

It is estimated that there are about 108 neutron stars in the galaxy [47]. A large

fraction of them are not observable as pulsars as they either do not emit electro-

magnetic radiation or their beams do not sweep across the Earth. These neutron

stars are very difficult to detect electromagnetically, but they could be detectable

in GWs, which are not strongly beamed. The difficulty in searching for sources

of this kind is the lack of any information about them, including their sky posi-

tion, frequency or frequency derivatives. For an observation over a time T, the

resolution in the sky position improves like T 2. Consequently, the number of sky

position templates needed to recover a signal with minimal (fixed) loss of SNR due

to mismatch between the signal and template parameters scales like T 2. The num-

ber of frequency templates scales as T and the first frequency derivative as T 2 and

so on. Thus even for a simple search involving just the first frequency derivative,
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the number of templates to search over scales as T 5. Since the sensitivity scales as
√
T , at best it scales with computational power required C as C

1
10 . Thus limited

computational power severely limits the sensitivity of these kinds of searches. A

discussion on the relationship between the search parameters, number of templates

and computational power required as a function of integration time can be found

in Chapters 6 and 7.

Given the prohibitive scaling of the number of templates required for a coherent

search, semi-coherent methods such as the PowerFlux method [82, 83], the Hough

transform [84] and StackSlide have been developed by the LSC for all-sky searches.

While these methods are less sensitive than the coherent methods, they are much

more efficient and for all-sky searches, give the best scientific result for a given

amount of computational time.

The optimal method [87] for all-sky CW searches is one that combines the sen-

sitivity of a coherent search with the efficiency of a semi-coherent step. It involves

splitting the time of integration into sub units which are coherently integrated and

then combined semi-coherently. The basic idea behind these kinds of searches is to

conduct a coherent wide parameter search over a smaller integration time, allow-

ing for a coarser parameter spacing and consequently requiring a smaller number

of templates. This is then followed by a semi-coherent combination of a series

of these coherent integrations. The thresholds are set low for the coherent step,

to allow a weak signal to rise above the noise, followed by a higher threshold for

the semi-coherent integration. Several schemes of implementing these kinds of hi-

erarchical methods have been studied in [85],[86] and [87]. Hierarchical methods

have been used in LSC analyses for all-sky CW sources, as described in [88, 89].

These searches were implemented on a public distributed computing project called

Einstein@Home [91], based on a distributed computing platform known as Berke-

ley Open Infrastructure for Network Computing (BOINC) [90]. BOINC has been

previously used on other projects like SETI@Home. Einstein@Home has attracted

more than 100,000 participants, delivering more than 80 Teraflops of computing

power.
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The sensitivity of hierarchical methods lies somewhere in between
√
T and 4

√
T .

The longer the coherent step, the more sensitive the search gets. The resampling

algorithm would make the coherent step significantly faster (by about a factor of 10,

see Chapter 5) and thus for given computational resources allow for an even larger

coherent step. This would increase the sensitivity of Einstein@Home searches for

the same amount of computational resources by almost 25%. Implementation of

the resampling algorithm in Einstein@Home is in progress.

4.2.3 Searches for suspected neutron stars

Some potential CW sources lie in between the known pulsars with well known pa-

rameters and the completely unknown neutron stars, whose locations and frequen-

cies are completely unknown. These sources include objects which are suspected

to be neutron stars, which could be pulsating at a rate, which could be detectable

by LIGO. Some examples include the central compact object CasA in a supernova

remnant in the constellation Cassiopeia, and Calvera, a compact X-ray source at

high galactic latitude, which is suspected of being a close and rapidly-spinning

neutron star, like a milli-second pulsar (see Chapter 6). For all these sources, their

sky locations are known to within a few arc seconds thus requiring only a single

sky location template for each object.

For each of these objects, the frequency and frequency derivatives are unknown.

A search for gravitational waves from these objects would have to encompass all

the frequencies and frequency derivatives, at which, given the source distance

and apparent age, the source could be detectable. For a given tolerance of the

maximum loss of SNR, the resolution required for the search would be determined

by the integration time of the search. A description of how the template space

was selected for the LSC’s CasA search can be found in [136]. See Chapter 6 for

details on how the parameter space was selected for the Calvera search.

The resampling algorithm is very efficient for these kinds of searches, since

it can resample the data for a single sky location, and then calculate multiple

frequency and frequency derivative templates very cheaply. The planned CasA
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search [136] has a coherent integration time of about 12 days. The search, which

is currently ongoing uses another method to calculate the so called F-statistic (see

Section 5.1). The resampling algorithm can be used to calculate the F-statistic

much more efficiently. The speed up factor is about a factor of 50. Since the

search involves frequency derivatives up to to the 2nd order, the maximum coherent

integration time possible scales as T 6. Thus for the same amount of computational

resources, a coherent integration time of about 23 days becomes possible. This is a

sensitivity increase of about 40% for the same amount of computational resources.

4.2.4 Binary systems

Neutrons stars in binary systems like LMXB systems and other accreting systems

(accreting X-ray pulsars) are another promising source of gravitational waves (see

Chapter 3). For these sources, the computational problem is even more acute

than for searches for isolated neutron stars. This is because there are additional

parameters that one has to search over. These include binary doppler parameters

like the orbital period of the neutron star around its companion, the semi-major

axis of this orbit, its orbital phase etc. These parameters are sometimes partly

determined by electromagnetic observations, but even in those cases, the resolu-

tion required to search over these additional parameters scales as a power law of

T . A few algorithms are being developed to do a short coherent integration and

then incoherently combine the frequencies over which the signal would have been

spread due to the Doppler effect of the binary system’s motion. These include the

TwoSpect method [92], Quadratic search [93] and the Sideband search [94].

One of the more promising candidates among the LMXBs is Sco X-1, which

is a neutron star orbiting a low-mass companion with a period of 18.9 hours.

While the sky location of Sco X-1 and its orbital period are well determined from

electromagnetic observations (X-ray mostly), the semi-major axis and orbital phase

have large uncertainties. The rotation frequency and any associated frequency

derivatives are also undetermined. A search for GWs from this system was done

using the third LIGO science run(S3) data [95]. A search for Sco X-1 is being
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developed which will use the Sideband search for known binary systems.

4.2.5 Searches directed at a region of the sky

Some regions of the sky are more likely to contain neutron stars than others. About

106 neutron stars are estimated to be present in the galactic center of the Milky

Way [96]. A large population of old milli-second neutron stars exist in globular

clusters like 47 Tuc [97]. Since most of the neutron stars are unknown, a wide

parameter search over a large frequency band, associated frequency derivatives

and multiple sky locations is needed. The number of sky locations required even

for a square-degree in the sky is prohibitive and thus targeting some of the most

compact globular clusters or the innermost core of the galactic center is a more

practical strategy. Efforts are ongoing in the LSC to study the feasibility of these

searches. They will ultimately use the barycentric resampling code described here

in conjunction with semi-coherent methods to accomplish these searches. The

barycentric resampling code will help increase the sensitivity of these searches by

increasing the maximum coherent integration time possible, given limited compu-

tational resources.

4.3 Coherent techniques

In this section, coherent techniques are described in moderate detail. A frequentist

statistic calculated using coherent integration, called the F-statistic is described

in Section 5.1.

If a gravitational wave incident on a detector has a strain amplitude of h(t) and

the intrinsic noise of the detector is n(t), then the data collected by the detector

x(t) would be

x(t) = n(t) + h(t;D,A) (4.1)

where D are collectively called the “Doppler” parameters and A collectively called

the “Amplitude” parameters. Splitting the parameters into D and A is convenient,

since D only affects the frequency-dependent search parameters like frequency, fre-
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quency derivatives, sky location, binary parameters etc., while A includes param-

eters that only affect the amplitude, like the inclination angle of the source, initial

phase, intrinsic amplitude etc.

A classical Wiener filter of matched-filtering theory [98] is defined as

(x||y) = 4R
(∫ ∞

0

x̃(f)ỹ∗(f)

Sn(f)
df

)

, (4.2)

where x̃(f) and ỹ∗(f) are the Fourier transform and complex conjugate of the

Fourier transform of x(t) and y(t) respectively. R(•) is the real part of •. The

factor of 4 is needed because the integratiion is done only for one of four quadrants.

Sn(f) is the single-sided power spectral density, which is the Fourier transform of

the auto-correlation function of the noise n(t), defined as

Sn(f) = 2

∫ ∞

−∞
E [n(0)n(t)] exp−i2πft dt, (4.3)

where E [•] is the expectation value of •. This expectation value is calculated by

average over multiple instantiations of random noise. The factor of 2 is needed

because the integration only involves the positive frequencies. In practice, such an

integration from −∞ to ∞ is not possible and a good approximation of Sn(f) is

given by

Sn(f) ≈ 2

Tspan
E [|ñ(f)|2], (4.4)

where Tspan is the time span of the analysis and ñ(f) is the Fourier transform of

the noise n(t), defined as

ñ(f) ≈
∫ Tspan

0
n(t)e2πiftdt (4.5)

Using the inner product defined in Equation 4.2, the probability P (x|A,D, Sn)

of measuring the strain x(t) in the presence of Gaussian noise n(t) (information of

which is encoded in Sn) and a signal h(t) as described in Equation 4.1 is given by

P (x|A,D, Sn) ∝ e−
1
2
(x−h||x−h). (4.6)
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The signal-to-noise ratio (SNR), ρ for CW searches as shown in [110, 99, 100],

is given by

ρ =
√

h||h ∝ h0√
Sn

√

TspanN , (4.7)

where N is the number of detectors that are equally sensitive. The compu-

tational cost scales approximately as N . Thus incorporating data from multiple

detectors is computationally the cheapest way of increasing SNR. The coherent

techniques can be split into two categories: one for multiple template searches,

the frequentist framework; and another for single template searches, the Bayesian

framework. The difference between these frameworks lies in the definition of prob-

ability. But in the presence of Gaussian noise and large number of data points,

they both give similar results.

4.3.1 Frequentist framework

The frequentist definition of probability involves the relative frequency of occur-

rence of an event in the limit of a large number of trials. If the number of trials is

nt and the number of times an event x occurs is nx, then the frequentist probability

is given by

P (x) ≈ nx

nt
. (4.8)

If the number of trials goes to ∞, then the probability converges to

P (x) = lim
nt→∞

nx

nt
. (4.9)

In the case of gravitational wave data analysis, we usually define a frequentist

statistic Ψ (x(t), h(t)), which is calculated for each form of the signal h(t;A,D).

The question that is of interest to us, is whether there is a non-zero h(t) present in

the signal x(t). This question can be answered by testing the hypothesis H0, that

there is no signal in the data, i.e. h=0; or H1, that there is a signal of strength

h(t) present in the data. A couple of quantities that are used to understand

the effectiveness of the statistic Ψ are the False Alarm probability (ξ) and the
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Efficiency (κ) (or its complimentary False Dismissal probability (̺)). κ and ξ are

set by the parameters and tolerances of a particular search. Given these set values

of κset and ξset, one can compute a threshold value Ψ∗, such that

ξ(Ψ∗) =

∫ ∞

Ψ∗

P (Ψ|H0)dΨ = ξset (4.10)

and

̺(Ψ∗) =

∫ Ψ∗

−∞
P (Ψ|H1)dΨ = 1 − κset (4.11)

because

κ = 1 − ̺, (4.12)

where P (Ψ|H0) and P (Ψ|H1) are the probability distributions of Ψ given the two

hypothesis H0 and H1 respectively. These probabilty distributions are normalized,

∫ ∞

−∞
P (Ψ)dΨ = 1. (4.13)

Equation 4.10 gives the probability that Ψ crosses Ψ∗ despite the absence of any

signal. Equation 4.11 gives the probability that Ψ does not cross Ψ∗ despite

the presence of a signal h(t) as hypothesized in H1. Equation 4.12 gives us the

probability of detecting a signal of signal strength h(t) as hypothesized in H1.

An optimal detection strategy is to select a statistic Ψ(x;h) such that the

efficiency κ is maximized, while minimizing the false alarm rate ξ. According to

the Neyman-Pearson lemma [101], this optimal statistic is given by

Ψ(x;h) =
P (x|h)
P (x|0) , (4.14)

which is called the likelihood ratio. In the case of Gaussian noise, using equation

4.6, the log-likelihood ratio is

ln Ψ(x;h) = (x||h) − 1

2
(h||h). (4.15)
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A search over multiple templates is done by calculating this Ψ(x;h) for each

template h(t). But as we saw in equation 4.1, each h(t) is a function of Doppler

parameters D and amplitude parameters A. Since the amplitude parameters A are

not known, one needs to choose a statistic for which the log-likelihood function is

analytically maximized over A. Such a statistic is known as the F-statistic, which

is described in [110] and summarized in Section 5.1. The resampling algorithm,

described in the next chapter is a computationally efficient technique of calculating

this F-statistic.

In the presence of a signal, when the template is chosen to perfectly match this

signal

E [2F ] = 4 + ρ2. (4.16)

Also shown in [110], when applied to Gaussian noise, 2F is a random variable,

which is drawn from a non-central χ2-distribution with 4 degrees of freedom and a

non-centrality parameter ρ2. For the noise-only case, the non-centrality parameter

reduces to 0 and probability distribution of 2F becomes

P (2F) =
1

2
Fe−F . (4.17)

Using equations 4.10, 4.11, 4.12 and 4.17, the false alarm probability and

efficiency can be calculated. In Chapter 6, I discuss how this is done for an actual

search.

4.3.2 Bayesian framework

The probability of two events A and B occurring is given by

P (A ∩B) = P (A) × P (B|A) = P (B) × P (A|B). (4.18)

Rearranging this, we get

P (A|B) =
P (A) × P (B|A)

P (B)
. (4.19)
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This is known as Bayes theorem. P (A|B) is known as the posterior probability,

P (A) is known as the prior probability, as it reflects our prior knowledge (or lack

thereof) of A. P (B|A) is known as the likelihood and P (B) is just a normalizing

factor. A better form of equation 4.19 in terms of a hypothesis H and data Data

is

p(H|Data) =
p(H) × p(Data|H)

Norm
. (4.20)

The question that we are interested in asking is: what is the probability that

our hypothesis (H) is correct given the data? H is usually a function of both

A and D. The term p(Data|H) is the probability distribution function (pdf) of

the data as observed, given the set of parameters in H. p(H) embodies the state

of the prior knowledge of the parameters. For some parameters p(H) is sharply

peaked, take for example, the sky location of a known pulsar. On the other hand

p(H) is uniform in certain parameters like the initial phase of the incoming wave

(Φ0), which reflects the complete lack of knowledge of such a parameter. Norm is

just a normalization constant and it includes the p(Data) which is just 1.

The posterior pdf, p(H|Data) contains all the information about the analysis,

but it is very difficult to interpret. It is often useful to reduce the dimensionality

of the posterior pdf by marginalizing (integrating) over less interesting (nuisance)

parameters. The marginal distribution, so derived is the weighted average of the

parameter of interest, given all possible combinations of all other parameters. If

one were only interested in the gravitational wave strain amplitude h0, then its

marginal pdf can be given by

p(h0|Data) ∝
∫ ∫ ∫

p(Data|A∗)p(A∗) dφ0 dψ d cos ι, (4.21)

where A∗ are all the amplitude parameters except h0, which are φ0, the initial

phase of the gravitational wave, ψ, the polarization angle and ι, the inclination

angle of the source. This marginalization is often computationally expensive and

it is not feasible to marginalize over a lot of the Doppler parameters in D. Thus,

this method is optimal for known D and unknown A. If there are uncertainties
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in some parameters of D, like the frequency derivatives of the source, this method

becomes very expensive.

For more details on Bayesian CW data analysis, please see [102]. In the LSC,

Bayesian statistics are used when the data is analyzed in the time domain and

frequentist statistics are used when the data is analyzed in the frequency domain.

This is mostly due to historical reasons and either of the two statistics can be used

for both analysis techniques.

4.3.3 Template bank scalings

As mentioned before, CW data analysis is a computationally intensive problem.

And this problem is exacerbated in the cases where none of the search parameters

are constrained. The number of templates required for a particular search is set

by a parameter called the mismatch parameter m. This mismatch paramter is the

relative loss in the detection statistic Ψ (or in particular F), incurred due to a

Doppler-offset dD = D−D0, where D0 is the set of correct Doppler parameters as

m(D0, dD) =
|E [F(D0)] − E [F(D)]|

E [F(D0)]
. (4.22)

This mismatch can be interpreted as a distance measure over a multi-dimensional

manifold of parameters. A corresponding local metric gij can then be introduced

on the parameter space [104, 105] as

m(D0, dD) = gij(D0)dDidDj + O(dD3), (4.23)

where E [F(D0)] is a local maximum of F if there is a signal at D0. This metric

is laid out in detail in [100]. The main parameters that one searches over in D,

are frequency f , frequency derivatives fk (where k represents the kth frequency

derivative and k > 0), sky positions (right ascension, α and declination, δ). These

parameters are often correlated, for example a shift in fk can also be seen as a little

shift in α and δ. The metric required for an all sky search can get very complicated

as seen in [100]. For targeted searches, the metric can be simplified, since α and
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δ are known. If the number of templates required are to be calculated for f and

fk, then the metric components gff , gffk , gfjfk are of interest. The resolution is

determined by the amount of shift in a parameter like spindown, that is required

to shift the signal by one frequency bin. For the kth derivative, the resolution

required scales as 1
T k+1 . A careful calculation of these metric components, like in

[100], gives

gff =
(πT )2

3
, (4.24)

gffk =
(2π)2T k+2f

k!(k + 2)(k + 3)
, (4.25)

and

gfjfk =
(2πf)2T j+k+2

j!k!(j + 2)(k + 2)(j + k + 3)
. (4.26)

Because of the fact that the resampling algorithm uses a fast Fourier transform

method to calculate the F-statistic for multiple frequency templates, the spacing

between frequency templates is fixed. Thus the cross diagonal terms (gffk) cannot

be used and the frequency parameter is projected out. In this projected metric,

the template spacings are given by

df = 2

√

m

gff
, (4.27)

dḟ = 2

√

m

γḟ ḟ

, (4.28)

df̈ = 2

√

m

γf̈ f̈

. (4.29)

Where,

γµν =

(

gµν − gfµgfν

gff

)

. (4.30)

This leads to

df =
2
√

3m

π

1

T
, (4.31)

dḟ =
12
√

5m

π

1

T 2
(4.32)
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and

df̈ =
20
√

7m

π

1

T 3
(4.33)

The template scalings for sky position parameters are explained in [100] in

detail. We define a unit vector ~n, which points to a source located at a right

ascension α and declination δ as

~n = (cos δ cosα, cos δ sinα, sin δ). (4.34)

As mentioned before, sky position parameters are correlated with spindown pa-

rameters. If one ignores the antenna-pattern functions and for obesevation times

much less than a year, the metric components scale as follows

gninj ≈
(

fv

c

)2

T 2eiej (4.35)

and

gfkni ≈ T k+1fTvei

c
(4.36)

where, v is the orbital velocity of the Earth and ei is the unit vector as defined in

equation 4.34. For longer integration times, the scaling with T gets even larger.

But the scaling is at least of order T 2. A simple targeted search involving just the

first two frequency derivatives, would have its template bank scale by a factor of

T 6. Multiply by the scalings for unknown sky locations for all-sky searches and

the computational task becomes quite daunting.

4.4 Semi-coherent techniques

As discussed in the section above, the number of templates required for a fully

coherent search grows very quickly with the integration time. For all-sky searches,

semi-coherent methods are better suited, which trade off the optimality of the

coherent searches for computational efficiency. These search methods do not keep

track of the phase information of the signal, instead they add up the power in the
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Figure 4.1: An illustration of the semi-coherent techniques. The signal is shown

in the shaded green boxes. If the Doppler parameters are matched for a given sky

location, excess power can be detected by sliding the appropriate frequency bins

and then stacking and adding them together. The method of adding is different

in each technique, but the essential idea remains the same.

appropriate frequency bins. There are three different semi-coherent methods that

are used by the LSC, which are the StackSlide method, the PowerFlux method

and the Hough transform. All of these methods are described in detail in [103].

In all these methods the obervation time Tobs is divided into N coherent ob-

servational periods called stacks, each of length Tcoh. A Fourier transform is then

done over these smaller stacks. The simplest of the three methods is the StackSlide

method, which averages normalized power from each of these stacks after adjust-

ing the frequency bins for the slowly-varying Doppler shift computed for each sky

location bin. The PowerFlux method is similar to the StackSlide method, but be-

fore averaging, the power is weighted by the noise floor and the detector’s antenna

pattern for each stack. The weighing function changes as a function of time, sky

location and other template parameters. The Hough transform sums a series of

binary numbers (zeros or ones) for each stack. A frequency bin in a given stack

contributes zero if it fails to cross a threshold set a priori and one if the threshold

is crossed. This method is robust to large fluctuations in the detector noise as a

function of time. A schematic of semi-coherent techniques can be seen in Figure

4.1.
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The sensitivity of semi-coherent techniques scales as

E [h0] ∝ N
1
4

√

Sn

Tcoh
(4.37)

where, h0 is the strain amplitude. Notice that if Tcoh = Tobs, then N = 1 and

thus this reduces to the scaling for a fully coherent search. While semi-coherent

searches take a hit in sensitivity, the computational benefits are significant. This

can be seen by looking at the scaling of the templates. The frequency templates

scale only with the coherent stack time Tcoh as

df ≈ 1

Tcoh
. (4.38)

As seen in equation 4.31, for coherent searches, df scales as the observation time,

which could be as long as years. The typical coherent stack time for semi-coherent

searches is of the order of 1800 seconds. Thus the number of frequency templates

for a year long search is about 17000 times less for a semi-coherent search. Similarly

the scaling for ḟ is

dḟ ≈ 1

TobsTcoh
, (4.39)

which, when compared to equation 4.32, give us another factor of 17000 for a year

long search. These are huge gains in computational efficiency, which make all-sky

searches more feasible if these techniques are used.

While all the methods described above take a fast Fourier transform of each

stack, it is also possible to use the F-statistic instead [106]. A modified version of

the StackSlide method, which sums the F-statistic calculated for each of the co-

herent stacks is shown to be an optimal method by [107]. For given computational

power, the larger the coherent stack time, the greater the sensitivity of the search.

The resampling algorithm speeds up the computation of the F-statistic for each

coherent stack, allowing for an increase in the coherent time for the same available

computational power. Thus the resampling algorithm will increase the efficiency

and sensitivity of semi-coherent searches in the future.



68

Chapter 5

Implementation of Barycentric Resampling

This chapter outlines the implementation of barycentric resampling. It follows

reference [110] to define the F-statistic and follows reference [108] in discussing

the implementation. The theory is introduced first, followed by a discussion of

the pre-processing required to deal with the non-stationarity of the detector and

computational constraints. The pre-processing is easier to understand in the time

domain and is thus explained that way first. However the actual implementation

is in the frequency domain and this is explained in the context of the time domain

implementation. The barycentering and antenna patterns follow next and the

discussion is completed with a discussion of the practical difficulties like gaps in

real data, discreteness of the data and interpolation losses.

5.1 Preliminaries

In this section we closely follow the method of Jaranowski, Krolak, and Schutz

[110] to provide the background on the signal and the detection statistic. Power-

recycled Fabri-Perot Michelson interferometers such as those used by the Laser

Interferometer Gravitational Wave Observatory (LIGO) are sensitive to the strain

caused by gravitational waves passing through it. The strain measured at a detec-

tor can be written as [110]

h(t) = F+(t)h+(t) + F×(t)h×(t), (5.1)
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where t is the time in the detector frame, and h+ and h× are the “plus” and

“cross” polarizations of gravitational wave. F+(t) and F×(t) are the beam-pattern

functions of the interferometer and are given by

F+(t) = sin ζ[a(t) cos 2ψ + b(t) sin 2ψ], (5.2)

and

F×(t) = sin ζ[b(t) cos 2ψ − a(t) sin 2ψ], (5.3)

where ψ is the polarization angle of the wave and ζ is the angle between detector

arms (which in the case of LIGO is 90◦). The functions a(t) and b(t) both depend

on time and location of source and detector, but are independent of the polarization

angle ψ.

In the detector frame the phase of a gravitational wave produced by an isolated

neutron star can be written as [110]

Ψ(t) = Φ0 + 2π

s
∑

k=0

f
(k)
0

tk+1

(k + 1)!
+

2π

c
n0 · rd(t)

s
∑

k=0

f
(k)
0

tk

k!
, (5.4)

where Φ0 is the phase at the start time of the observation, f
(k)
0 is the kth derivative

of the frequency, c is the speed of light, α and δ are the right ascension and

declination of the source, n0 = n0(α, δ) is the unit vector of the source in the Solar

System barycenter (SSB) reference frame, rd is the position vector of the detector

in the same frame, and s is the order of the expansion. Neglecting changes in the

proper motion of the star, the third term in Equation 5.4 is a correction to the

phase due to the detector motion relative to the neutron star.

We can define Φ(t) = Ψ(t) − Φ0(t), as well as defining

Φs(t) = 2π

s
∑

k=1

f
(k)
0

tk+1

(k + 1)!
+

2π

c
n0 · rd(t)

s
∑

k=1

f
(k)
0

tk

k!
(5.5)

and

tm =
n0 · rd(t)

c
. (5.6)
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Equations 5.5 and 5.6 let us write

Φ(t) = 2πf [t+ tm(t;α, δ)] + Φs(t; f
(k), α, δ), (5.7)

which has the modulation due to the detector’s motion around the SSB clearly

separated from the modulation due to the gravitational wave’s intrinsic frequency,

although not the derivatives of the frequency.

An almost optimal statistic for the detection of continuous gravitational wave

signals is called the F-statistic [110, 111]. It is the logarithm of the likelihood

function maximized over the extrinsic and unknown signal parameters. The F-

statistic is given by

F =
4

Sh(f)T0

B|Fa|2 +A|Fb|2 − 2CR(FaF
∗
b )

D
. (5.8)

where Sh(f) is the one-sided spectral density of the detector’s noise at frequency

f and T0 is the observation time. A, B, C, and D are given by

A = (a‖a);B = (b‖b);C = (a‖b);D = A ·B − C2 (5.9)

with

(p‖q) =
2

T0

∫
T0
2

−T0
2

p(t)q(t)dt. (5.10)

Fa and Fb are integrals defined as

Fa(f) =

∫
T0
2

−T0
2

a(t)x(t)e−iΦs(t)dt (5.11)

and

Fb(f) =

∫
T0
2

−T0
2

b(t)x(t)e−iΦs(t)dt, (5.12)

where x(t) is the time series data output by an interferometer. We define a new



71

time variable called tb as follows:

tb = t+ tm. (5.13)

Taking a derivative with respect to t on both sides of Equation 5.13, we get

dtb
dt

= 1 +
dtm
dt

(5.14)

From Equations 5.6 and 5.14, we get

dtm
dt

=
n0 · vd(t)

c
(5.15)

where vd(t) is the velocity of the detector in the SSB frame and thus n0·vd(t)
c is the

Doppler shift of the source with respect to the detector. For a detector located

on Earth, the maximum Doppler shift experienced is of the order of 10−4. Using

this fact and Equation 5.14 we get δtb ≈ δt. This is the key step in the resampling

procedure, which is shown schematically in Figure 5.1.

We can thus rewrite the Equations for Fa and Fb as

Fa(f) =

∫
T0
2

−T0
2

a(tb)x(tb)e
−2πiftbe−iΦs(tb)dtb, (5.16)

and

Fb(f) =

∫
T0
2

−T0
2

b(tb)x(tb)e
−2πiftbe−iΦs(tb)dtb (5.17)

which are just the Fourier transforms of the resampled data and the detector

response, multiplied by a phase e−iΦs(tb) [110]. Equations 5.16 and 5.17 can be

efficiently evaluated using FFTs. Details of the resampling procedure can be found

in Section 5.2.1.
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Figure 5.1: Cartoon showing the time differences used in resampling. S.S.B is the

solar system barycenter and it is outside the sun because of the mass and large

lever arm of Jupiter. The time elapsed on the detector is t and on the solar system

barycenter is tb.

5.2 Implementation of barycentric resampling

Gravitational wave detectors collect data at the rate of about 16-20 kHz for spans

of time on the order of a year. This means that typical searches for gravitational

waves will involve on the order of a terabyte (TB) of data. Computers currently

have memories of a few gigabytes (GB), making it necessary to break up the data

into pieces that can fit in the memory of a single computer. To analyze the full

data set hundreds to thousands of these computers can then be used together in

the form of a Beowulf cluster, or tens to hundreds of thousands with distributed

computing systems such as Einstein@Home [88].
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A flow-chart showing the resampling algorithm, as it is imlpemented here is

shown in Figure 5.2. This flow-chart is for the analysis as it is done in the frequency

domain. However conceptually the time domain analysis is easier to understand

and thus we present it first, followed by the equivalent, but more complicated

frequency domain analysis.

5.2.1 Time Domain Analysis

The F-statistic can be calculated from a time series directly by following the steps

outlined in Section 5.1. However, due to the large amounts of data involved, it is

impractical to do this for the entire data set. One way to address this problem

is to divide the data into band-limited time series, making it possible to analyze

one small sub-band at a time. Time series spanning different frequency bands are

then analyzed in parallel on a Beowulf cluster or a distributed computing system.

In this section we provide details on how this is accomplished in the time domain,

and address some of the difficulties that arise.

Heterodyning, low-pass filtering, and downsampling

Let the output of the instrument be the time series x(t), and its Fourier transform

be

x̃(f) =

∫ ∞

−∞
x(t)e−2πiftdt. (5.18)

If we consider the Fourier transform of the complex time series xh(t) = x(t)e−2πifht,

x̃h(f) =

∫ ∞

−∞
x(t)e−2πifhte−2πiftdt

=

∫ ∞

−∞
x(t) · e−2πi(f+fh)tdt

= x̃(f + fh), (5.19)

it is obvious that multiplying the time series x(t) by e−2πifht has shifted all the

frequencies in the time series x(t) by fh. This procedure is referred to as complex

heterodyning.
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Figure 5.2: A flow-chart showing the resampling algorithm. The green refers to

an operation done in the frequency domain and the orange refers to an operation

done in the time domain.
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If just a small frequency band B of data around fh is of interest, low-pass

filtering followed by downsampling can be used to reduce the bandwidth of the

data appropriately. Specifically, if we wish to downsample by a factor D, the new

Nyquist frequency of our time series will be given by

fNyq,new =
fNyq,old

D
=
B

2
. (5.20)

A simple but effective downsampling technique involves picking every Dth point

in the time series. To avoid aliasing effects however, prior to downsampling a low

pass filter must be applied to the data with a sharp fall-off around the new Nyquist

frequency. The heterodyned, band-limited, downsampled complex time series will

have a sampling time ∆t = 1/B. For example, suppose we are only interested

in analyzing data between 990 Hz and 1 kHz. By multiplying the data with the

phase factor e−2π(995)it, data at 995 Hz moves to 0 Hz (DC), 990 Hz moves to -5

Hz, and 1 kHz to +5 Hz (we have taken t to be measured in seconds). To avoid

aliasing problems when we downsample, we low-pass filter the data at 5Hz, the

new Nyquist frequency. We can then downsample by picking one point out of every

100. The resulting complex time series will be sampled at 10 Hz and contain all

the information in the original time series between 990 Hz and 1 kHz.

Barycentric resampling and heterodyne correction

In this section we explain how to use the low bandwidth heterodyned complex

time series to compute the F-statistic given by Eq. (5.8).

In the following we will work only with Fa. The procedure for Fb is completely

analogous. It is easiest to begin with the integral definition for Fa in Eq. (5.11)

with the phase explicitly written out, namely,

Fa(f) =

∫
T0
2

−T0
2

a(t)x(t)e−2πif(t+tm)e−iΦs(t)dt, (5.21)



76

and a similar expression holds for Fb. The heterodyned version of Fa is

Fa(f + fh) =

∫
T0
2

−T0
2

a(t)x(t)e−2πi(f+fh)(t+tm)e−iΦs(t)dt. (5.22)

If we already have a complex heterodyned time series xh(t) (heterodyned in the

detector frame), we can use it to absorb some (but not all) of the heterodyne

exponent in Eq. (5.22) as follows:

x(t)e−2πi(f+fh)(t+tm) = xh(t)e−2πifhtme−2πif(t+tm).

(5.23)

This means that rather than Eq. (5.22), we should evaluate

Fa(f + fh) =

∫
T0
2

−T0
2

a(t)z(t)e−2πif(t+tm)e−iΦs(t)dt, (5.24)

where

z(t) = xh(t)e−2πifhtm . (5.25)

At this point we have an expression which looks like Eqs. (5.11) and (5.12), and

we can write the integral over t instead as an integral over tb:

Fa(f + fh) =

∫
T0
2

−T0
2

a(tb)z(tb)e
−2πiftbe−iΦs(tb)dtb, (5.26)

with a similar expression for Fb.

The discrete version of Eq. (5.26) for a time series with N points reads

Fa(f + fh) =

N
∑

k=1

a(tkb )z(t
k
b )e

−2πiftk
b e−iΦs(tkb )dtb, (5.27)

and a similar expression holds for Fb:

Fb(f + fh) =

N
∑

k=1

b(tkb )z(t
k
b )e

−2πiftk
b e−iΦs(tkb )dtb, (5.28)
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where tkb is the kth datum in the time series as measured in the barycentric frame

and dtb = tk+1
b − tkb . The relationship between tb and t can be written as

tkb = tk + tm(tk;α, δ). (5.29)

This relationship between tk and tkb can be used to calculate z(tkb ) from the time

series z(tk). In practice, one starts out with z(tk), i.e. data sampled regularly

in the detector frame. Then we calculate T k(tkb ), which are detector times corre-

sponding to regularly spaced samples in the barycentric frame. These T k(tkb ) are

irregularly sampled in the detector frame, but since we have z(tk), we can cal-

culate z(T k(tkb )) by using interpolation. The interpolated time series z(T k(tkb )) is

the z(tkb ) of Eqs. (5.27) and (5.28). A similar procedure may be used to calculate

the a(tkb ) from a(tk), and the b(tkb ) from b(tk). The factor of eiΦs(tk
b
) in Equations

5.27 and 5.28 is calculated using Equation 5.5. In this case, instead of calculating

Φs(t
k), we calculate Φs(T

k(tkb )), which is equivalent to calculating Φs(t
k
b ). While

in theory one has to calculate the quantity n0 · rd(t) in Equation 5.5, in practice

this information is already encoded in T k(tkb ) as

n0 · rd(t) = tm · c = (tkb − T k(tkb )) · c . (5.30)

With all the parts of Equations 5.27 and 5.28 in hand, we can compute Fa(f + fh)

and Fb(f + fh).

In summary, as shown in Figure 5.3, the procedure is the following:

1. Start with a heterodyned, band-limited, downsampled xh(tk) with tk regu-

larly spaced in time, in the frame of reference of the detector.

2. Correct the xh(tk) for the heterodyning done in the detector frame by mul-

tiplying with e−2πifhtm to produce the z(tk).

3. The z(tk) correspond to data irregularly spaced in the barycentric frame.

Calculate T k(tkb ), which are times in the detector frame corresponding to

regularly sampled solar system barycenter times.
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Figure 5.3: Graphical description of the resampling procedure

4. Using interpolation, calculate z(T k(tkb )) from z(tk), which is the z(tkb ) used

in Eqs. (5.27) and (5.28).

5. Similarly, from a(tk) and b(tk) calculate a(tkb ) and b(tkb ) respectively.

6. Using FFTs, evaluate Eqs. (5.27) and (5.28) to calculate Fa(f + fh) and

Fb(f + fh).

7. Use Eq. (5.8) to calculate the F-statistic.

5.2.2 Frequency Domain Analysis

In the previous section we describe a practical way of calculating the F-statistic

from time series data. However, in practice the calculation is done in the frequency

domain for a couple of reasons. One is that much of the code written in the LIGO

Scientific Collaboration’s (LSC) Continuous Waves working group is tailored to

an analysis performed in the frequency domain and hence there exist many data
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processing and validation tools to process the data that are useful to this code.

Another reason is that gravitational wave detectors are subject to many sources

of noise, some of which change daily or even hourly, such as wind, microseism,

earthquakes, anthropogenic noise, etc. These change the noise floor of any analysis

as a function of time. Working in the frequency domain is a natural way to deal

with this problem.

We begin a frequency domain analysis by taking short time-baseline Fourier

transforms of the time domain data, called short Fourier transforms (SFTs). When

we calculate the F-statistic, we divide by the noise in the instrument at that fre-

quency, as shown in Eq. (5.8). However, Eq. (5.8) assumes the noise is stationary.

To account for the non-stationarity of the noise we need to weight by the noise over

time, which is done on a per SFT basis. This normalization process is described

in the next section.

The computational cost of estimating the noise per SFT scales with the number

of SFTs and thus for a fixed observation time scales inversely with the time-

baseline. A compromise is needed between the demands of computational time

and relative stationarity of the detector for a given time-baseline. In LIGO, SFTs

are usually 1800 seconds long, since the detector is reasonably stationary for that

time.

Dealing with non-stationary and colored data

To deal with non-stationarities, variations in the noise floor from SFT to SFT, and

colored data, we can normalize our SFT data to absorb the 1/Sh(f) term in the

definition of the F-statistic in Eq. (5.8). If Xα,k is the kth frequency bin of the αth

SFT, then we can redefine a normalized data point X̂α,k as

Xα,k −→ X̂α,k =
Xα,k
√

Sα,k

, (5.31)

where Sα,k is an estimate of the one-sided power spectral density for the kth fre-

quency bin of the αth SFT. Estimators used for this purpose should be robust in
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the presence of spectral features in the data, such as a running median.

Merging SFTs into long time-baseline Fourier transforms

There are many practical difficulties that arise when dealing with SFTs. Often

contiguous chunks of data have to be divided up into multiple SFTs and it is

necessary to coherently combine them into one long time-baseline SFT. This is

done using the Dirichlet kernel, which is the equivalent of a sinc interpolation

(ideal interpolation) done in the time domain. In order to keep the computational

cost down, the Dirichlet kernel is truncated at a finite number of points (usually

around 16). This introduces a slight interpolation error, which cannot be avoided

without sacrificing a large amount of computational power.

Suppose we divide the data x(t) of length T0 into M short chunks of length

TSFT each with N points, so that T0 = MTSFT. The discrete Fourier transform

(DFT) of the data is

Xb =

NM−1
∑

l=0

xle
−2πilb/NM , (5.32)

where xl = x(l∆t), ∆t is the sampling time, and b is a long time-baseline frequency

index. We can write the Fourier transform in terms of two sums:

Xb =
M−1
∑

α=0

N−1
∑

j=0

xα,je
−2πib(j+Nα)/NM , (5.33)

where xα,j = x((j +Nα)∆t). We can express the xα,j in terms of an inverse DFT

of a short chunk of data,

xα,j =
1

N

N−1
∑

k=0

Xα,k e
2πijk/N , (5.34)

where the Xα,k are the starting SFT data,

Xα,k =
N−1
∑

j=0

xα,j e
−2πijk/N . (5.35)
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Replacing xα,j with Eq. (5.34) in Eq. (5.33) gives

Xb =
M−1
∑

α=0

N−1
∑

j=0

(

1

N

N−1
∑

k=0

Xα,k e
2πijk/N

)

e−2πib(j+Nα)/NM

=
1

N

M−1
∑

α=0

e−2πibα/M
N−1
∑

k=0

Xα,k

N−1
∑

j=0

e−2πij(b/M−k)/N .

(5.36)

The last sum in this expression can be evaluated analytically. In particular,

N−1
∑

j=0

zcj =
1 − zNc

1 − zc
. (5.37)

We take z = e, c = −iy/N , with y = 2π(b/M − k), so that the sum is given by

N−1
∑

j=0

e−iyj/N =
1 − e−iy

1 − e−iy/N
. (5.38)

In the large N limit the exponent of the denominator will be small so that

1 − e−iy

1 − e−iy/N
≈ 1 − e−iy

1 − (1 − iy/N)
=
iN

y
(e−iy − 1)

= N(
sin y

y
− i

1 − cos y

y
). (5.39)

This means we can write Eq. (5.36) as

Xb =

M−1
∑

α=0

e−2πibα/M
N−1
∑

k=0

Xα,kPb,k, (5.40)

with the Dirichlet kernel

Pb,k =
sin y

y
− i

1 − cos y

y
, (5.41)

and y = 2π(b/M − k). The function Pb,k is very strongly peaked around y = 0,

which is near a value of the frequency index k∗ = floor(b/M). This means one
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only needs to evaluate the sum over k for a few terms ∆k around k∗. With this in

mind we write

Xb ≈
M−1
∑

α=0

e−2πibα/M
k∗+∆k
∑

k=k∗−∆k

Xα,kPα,k. (5.42)

To produce a heterodyned time series a sub-band of the Xb may be selected and

inverse Fourier transformed.

Normalized long time-baseline Fourier transforms

With the normalized SFT data X̂α,k from Eq. (5.31) we can construct a normalized

version of the long time-baseline Fourier transform

X̂b ≈
M−1
∑

α=0

e−2πibα/M
k∗+∆k
∑

k=k∗−∆k

X̂α,kPα,k, (5.43)

and take a sub-band of X̂b, inverse Fourier transform it, and produce the hetero-

dyned time series, and correct it to produce ẑ(tkb ). In terms of this time series, we

can write

F̂a(f + fh) =
N
∑

k=1

ẑ(tkb )a(t
k
b )e−2πiftk

b eiΦs(tkb ) (5.44)

and

F̂b(f + fh) =
N
∑

k=1

ẑ(tkb )b(t
k
b )e

−2πiftk
b eiΦs(tkb ) , (5.45)

and thus

F =
4

T0

B|F̂a|2 +A|F̂b|2 − 2Cℜ(F̂aF̂
∗
b )

D
. (5.46)

Heterodyning

As shown before in Eqs. (5.18) and (5.19), heterodyning is a procedure by which

the frequency of interest can be shifted arbitrarily. When one applies the kind of

correction in Eq. (5.18), we effectively move all the frequencies by a set amount.

By doing so, we convert the time series from a real time series to a complex time
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series, with the same amount of information content.

Heterodyning in the frequency domain can be done in two ways, one in which

the time series produced after inverse Fourier transforming is real and another in

which it is complex. A cosine transform used to heterodyne would produce a real

time series, but this method is not used in an implementation of the technique (see

Section 5.3). A complex heterodyned time series is produced by inverse Fourier

transforming a relabeled band of the frequencies. Since in Eq. (5.18), all frequencies

are shifted by a fixed amount, the equivalent procedure in the frequency domain is

just relabeling the heterodyne frequency fh as DC and subsequently all the other

frequencies relative to this new DC.

Taking the example from Section 5.2.1, we can just internally change the labels

of the 995 Hz frequency bin to DC and 1000 Hz to 5 Hz. Once this relabeling is

done, the original data will have all shifted by 995 Hz, with the 10 Hz from -5

Hz to +5 Hz containing all the relevant information. If one were using the whole

band without downsampling or filtering, then this relabeling would have to wrap

around the Nyquist frequency edge, but since the whole purpose of heterodyning

is to downsample, it is never necessary to do so.

Downsampling and low-pass filtering

Following the time domain algorithm, after heterodyning the data, it needs to be

downsampled and low-pass filtered. The downsampling and low-pass filtering is

achieved by simply throwing out the data that is not in the band of interest. The

heterodyning is done in such a way as to keep the center of the band of interest at

DC. A Tukey window applied to the band of interest, keeping a little bit of data

on both edges to facilitate the rise of the window from 0 to 1, is a good choice of

a low-pass filter. Once an inverse Fourier transform is performed on this smaller

subset in the frequency domain, it generates the same heterodyned, downsampled,

and low-pass filtered time series as the time domain algorithm.
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Gaps in the data

Data collected by an interferometer will have gaps due to periods of downtime.

These gaps need to be dealt with in a manner that preserves the phase coherence

of the segments around the gaps. The gaps increase the analysis time without

contributing any power to the F-statistic, and thus act like a zero padding.

The data is divided up into a series of contiguous chunks and gaps. For each

contiguous chunk, the SFTs in that chunk are normalized, patched up and then

a heterodyned, downsampled and low-pass-filtered time series is calculated from

it. Heterodyning done by relabeling is equivalent to multiplying with e−2πifh(t−tc),

where tc is the start time of the data chunk being heterodyned and fh is the hetero-

dyne frequency. If we have multiple chunks that are separately being heterodyned,

then tc is different for each chunk. In the time domain analysis, we assumed that

the heterodyne reference time is the same as the start time of the analysis. In

order to achieve the same kind of heterodyning, one needs to multiply each newly

created time series with a correcting phase factor, namely

e−2πifh(tc−ts), (5.47)

where ts is the start time of the overall analysis.

A Tukey window can then be applied to each of these time series to smoothly

bring the data to zero at the edges, which correspond to the gaps. The gaps are

then filled with zeros, as no data was collected during those times. This procedure

is repeated for all the gaps and contiguous chunks. At the end, a time series is

produced, which is contiguous and spans the time of the analysis. By ensuring

that the timestamps of the first datum of each contiguous chunk correspond with

the start time of that chunk, we ensure that the phase coherence is maintained

throughout.
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Figure 5.4: Pictorial description of data pre-processing

Summary

To summarize, as shown in Figure 5.4, a simple algorithm to produce a time series

equivalent to the one used for the time domain analysis is as follows:

1. Divide the data into time chunks and Fourier transform them to create SFTs.

2. Normalize these SFTs and assign them weights.

3. Identify contiguous sets of SFTs.

4. Combine each contiguous chunk of SFTs into one long time-baseline Fourier

transform (FT).

5. Create a downsampled, heterodyned, and low-pass-filtered time series by

inverse Fourier transforming the desired frequencies from the FT.

6. Stitch all these time domain chunks together, filling gaps with zeros.
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5.3 Results

5.3.1 Speed

The scheme previously used to compute the F-statistic, involved the use of the

Dirichlet kernel to combine a series of SFTs [115] [112], which were calculated

for 30 minutes of data taken at 16 kHz. The 30 minute window was set by

the maximum Doppler shift due to the motion of the Earth. A C code called

ComputeFStatistic v2 [113] was written in the LIGO Analysis Library (LAL) to

calculate the F-statistic using this algorithm. The code which implements our

method is also written in C and is called ComputeFStatistic resamp [114]. Hence-

forth we will refer to the previous implementation as the LAL implementation and

our implementation as Resampling.

The F-statistic is calculated for a series of templates looping over various pa-

rameters such as sky location, α and δ, spin-downs fk, and various frequencies f .

We can ignore the way the two implementations deal with loops over α, δ, and fk,

since they both loop over them in the same manner. The speed of computation for

a loop over frequencies f is worth comparing, however. Figure 5.5 gives a pictorial

description of the computational costs associated with both the implementations.

Assume that we have N data points (take for example 106 seconds of data

at 100 Hz, i.e. 108 data points). For a simple case, N is also the number of

frequency templates that need to be computed. In case of a specified mismatch

parameter, the number of frequency templates scale as N . For a given sky location

and spindown parameters, if the number of operations required for computation

in the previous implementation is NLAL ops (in Figure 5.5, it is the sum of the

operations required by the Dirichlet Kernel and Numerical operations), then the

computational cost for computing all the frequency templates is given by

NLAL
Tot = NLALops ·NSFTs ·N , (5.48)

whereNSFTs is the number of SFTs used in the analysis. NLAL ops is approximately

of the order of 30.



87

Figure 5.5: Pictorial representations of the computational costs associated with

the previous implementation of the F-statistic algorithm and the resampling algo-

rithm. Notice the reduction in the number of loops required by resampling.
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Compare this to the resampling method, which consists of 4 major steps:

1. Calculating tb(t), given a sky location and time.

2. Calculating the integrands of Fa and Fb.

3. Interpolating and calculating the beam patterns.

4. Taking the Fourier transform.

Each of these steps involves order 10 operations, but all of these steps are

sequential, therefore they only add, resulting in a total number of operations per

data point, NResamp ops, of approximately 30 operations. The last step is the

Fourier transform, which is of order N logN , therefore the total number of steps

is:

NResamp
Tot = (NResamp ops + logN) ·N . (5.49)

Therefore the ratio of operations between the two methods is

NLAL
Tot

NResamp
Tot

=
NLAL ops ·NSFTs

NResamp ops + logN
. (5.50)

To first order, we have
NLAL

Tot

NResamp
Tot

≈ NSFTs

logN
. (5.51)

Therefore for large observation times, this method of calculating the F-Statistic

is faster and, in the case of a targeted search, it allows for a large parameter space

in F (k)’s.

The speed-up in practice is reduced by a few practical issues as seen in sec-

tion 5.4. However, Resampling is still considerably more efficient than the LAL

implementation. For Einstein@Home, because of the relatively small coherent in-

tegration time, the speed-up is around 10. But for targeted searches that span

multiple months or years, the improvement can be as high as a factor of 2000.

Thus, while some targeted searches which integrate over a couple of years were

impossible to do previously, they are now possible.
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5.3.2 Validations

The probability density distribution of the F-statistic for Gaussian noise of zero

mean and unity standard deviation is a χ2 distribution with four degrees of free-

dom. In the presence of a signal, the distribution is a χ2 of four degrees of freedom

with a non-centrality parameter given by the F-statistic in the absence of noise

for the particular signal.

Resampling uses various approximate methods in the calculation of the F-

statistic, and this can lead to disagreements between the theoretical F-statistic

probability density function and the output of the code. These changes are of

the order of a few percent and are within acceptable limits. The validity of the

code can be tested by using a Monte Carlo simulation of about a million different

injections of the same signal in different instances of noise. The noise is generated

as a Gaussian noise of zero mean and unity standard deviation, and the signal is

added into this noise. For each individual injection the signal is chosen with a given

set of amplitude parameters and a fixed sky location and spindowns, and the search

is conducted over these exact chosen parameters in order to avoid any mismatches.

These Monte Carlos are then repeated with another set of parameters, which are

themselves chosen randomly. While it is not an exhaustive test, randomly chosen

parameters ensure that we are not biased in the validation test. The plot in Figure

5.6 is produced by performing one such Monte Carlo simulation. In this case, both

the LAL implementation and Resampling were run on the same set of data. The

F-statistic was picked out at the appropriate frequency and this was repeated

about a million times. A histogram of these F-statistic values was then plotted.

As one can see, there is very good agreement in between the expected distribution

of the F-statistic and the two implementations.
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Figure 5.6: Histogram of results of Monte Carlo simulation with signals injected

in different instances of noise.

5.4 Practical Considerations

5.4.1 Discreteness

In the implementation of the algorithm explained above, one major obstacle is

the fact that the data collected by any physical instrument is discrete and thus

must be handled appropriately. Take, for example, the heterodyne frequency used

in the calculation. This frequency cannot be chosen arbitrarily, as only certain

frequencies are sampled and thus there are only certain permitted choices.

Most major FFT computation algorithms output the frequency series in a spe-

cific format, which split the data into two parts. The first bin output by these

algorithms is the DC followed by the first positive frequency bin up to positive

Nyquist and then follows this up with the negative frequencies starting at the

negative Nyquist frequency. This order of placing frequency bins speeds up com-

putation and is necessary for the internal workings of these algorithms. Thus when

an inverse FFT is performed on the frequency domain data in the form of SFTs, a

simple reshuffling needs to be done. The frequency selected to be the first bin will

become the new DC and thus the data will have been heterodyned by that said

frequency. In order to ensure that the same frequency bin is chosen as DC, one
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needs an odd number of bins per SFT. If the number of bins are even, then upon

increasing the amount of data it can shift this number to an odd number as the

increase is always done by changing the number of SFTs. But if the number of bins

per SFT is odd, then it will remain odd for any number of SFTs. This ensures that

there is no mismatch in choosing the appropriate bin as the heterodyne frequency.

5.4.2 Interpolation Issue

The resampling algorithm is always used on discrete data in practice. In order to

calculate the resampled time series, as shown in the sections above, one needs to

interpolate. In theory, for a Nyquist limited time series, one can find the exact

value of the function at any time. But one needs to use a sinc interpolation

technique which would require a computation involving all the data points in the

time series. This is computationally very expensive and is impractical for GW

data analysis. Thus a computationally cheaper, but lossy interpolation technique

needs to be used.

The reason why interpolation leads to losses, can be seen in the extreme case of

a time series with a signal at Nyquist (a triangle wave), which is interpolated using

a linear interpolater to compute the points exactly in the middle of the currently

sampled points. This would lead to a complete loss of the signal. However this

is an extreme example of the lossy nature of interpolation and in most instances

interpolation is not quite that lossy. Figure 5.7 is the interpolation response of a

linear interpolater when calculated at different offsets.

The resampling algorithm does not use a constant offset, since the point to in-

terpolate depends on the relationship between the barycentric and detector times,

which are changing as a function of time, sky location and other parameters. This

means that the interpolation response is a convolution of all a set of constance offset

interpolation responses. The actual response is also a function of the interpolation

technique used.

In order to isolate the effects of interpolation, a toy-model of resampling was

constructed, which consisted of a reciever rotating around the Sun in a perfectly
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Figure 5.7: Linear interpolation response. The figure shows the loss of signal (y

axis) as a function of the frequency of the signal (x axis). The four curves are the

offset at which the interpolation is done. 0% refers to no interpolation and thus

a 100% response. 50% is the worst case and the 0% response at Nyquist is the

triangle wave case explained above.

circular orbit and a source that was optimally oriented and emitting a mono-

amplitude sinusoid. This helped remove the effects of sky location, antenna pat-

terns and spindowns from the computation. The signal was then generated at

many different frequencies ranging from near 0Hz to the Nyquist frequency. The

response was then normalized to what was expected. A similar analysis was done

by using noise, in which the comparison was done with the injected amplitude,

since the resampling procedure ideally, should not change the amplitude of the

noise. The results for a linear interpolater and a cubic spline interpolater are

shown in Figures 5.8 and 5.9.

Some amount of loss, while using interpolation is inevitable, since it is an

approximation of the exact solution. However, the amount of loss that can be
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Figure 5.8: Interpolation response to signal and noise using a cubic spline inter-

polater.

tolerated is an external parameter, which is set usually to about 5% by the LSC’s

CW group. A quick glance at the zoomed figures of 5.10 and 5.11 shows that in

order to maintain a maximum tolerance of 5%, only about 10% of the band can be

used with linear interpolation and about 60% can be used with cubic spline inter-

polation. Linear interpolation requires two computations for each interpolation,

while cubic spline requires three. Thus using cubic spline is much more economical,

since for about 1.5 times the computational cost, the band that is usable goes up

by a factor of 5. Cubic spline interpolation turns out to be the most economical

of all the interpolations that were tried, most of which are not mentioned here.
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Figure 5.9: Interpolation response to signal and noise using a linear interpolater.

5.5 Summary and conclusions

In this chapter, I describe an efficient implementation of the barycentric resampling

technique, which deals with the non-stationarity of the detector and calculates the

F-statistic. Although the calculation of the F-statistic has been targeted, this

technique can be used for many other kinds of searches. The major contribution

of this technique is to remove the Doppler shift of the Earth’s motion in a gravita-

tional wave signal. Thus, once this Doppler shift is removed, both frequentist and

Bayesian techniques can be applied to the data. In the process of implementing

this algorithm, a series of practical issues are dealt with, including constraints of

modern computer memory, discreteness of the data taken, losses due to interpola-

tion, and gaps in real data.

The computational savings due to this technique can be used in various ways.

One such use is to increase the coherent integration time for all-sky searches like

the Einstein@Home searches. Currently Einstein@Home [88] uses a 40 hour long
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Figure 5.10: Interpolation response to signal and noise using a cubic spline inter-

polater. Zoomed to show the random fluctuations in the response due to noise,

but a smooth response of the signal.

coherent integration time. The resampling code will be about 10 times faster for

such integration times, and for the same computational power and keeping the

same scaling for the search, we can coherently integrate 64 hours instead, which

corresponds to a sensitivity increase of about 25%.

The resampling technique is most effective for long integration times, which are

feasible for targeted searches like the search for gravitational waves from the Crab

pulsar [80]. The computational savings can be used to search over wider parameter

spaces like more spindown parameters or to search over binary systems.



96

Figure 5.11: Interpolation response to signal and noise using a linear interpolater.

Zoomed to show the random fluctuations in the response due to noise, but a smooth

response of the signal.
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Chapter 6

Introduction to Calvera

6.1 Overview

In this chapter, I introduce an object dubbed Calvera [116] as a promising potential

source of continuous gravitational waves. This source was found in the ROSAT All-

Sky Survey Bright Source Catalog. Follow up investigations with Swift, Gemini-

North and Chandra X-ray Observatory confirmed its compact object status and

gave some observational data to constrain its nature [116]. I review the the results

and the conclusions of these results as done in [116].

6.1.1 Observable properties and classification of neutron stars

The quantities that can be measured for an astronomical object are its sky location,

the frequency range of its emission spectrum and the incident flux as a function

of frequency. If one were to then suspect thermal emission from the object, then

the incident flux can be fit to a thermal spectrum and an effective temperature

(Teff) can be computed. This effective temperature can then be related to the

luminosity (L) and an effective black-body radius (Rbb) of the object. Assuming

that the object emitting the thermal black-body spectrum is at a temperature of

Teff and a sphere of radius Rbb, the luminosity is given by

L = 4πR2
bbσT

4
eff , (6.1)
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where, σT 4
eff comes from the Stefan-Boltzmann’s law and σ is the Stefan-Boltmann

constant. This can then be related to the incident flux F by

F =
L

4πd2
=
R2

bbσT
4
eff

d2
, (6.2)

where, d is the distance to the source.

The distance to some objects can be calculated using different methods like

parallax measurements, measurements of distances to associated nebulae etc. If

one has a distance measurement, then equation 6.2 can be used to calculate the

luminosity and subsequently the black-body radius. Figure 6.1 shows a plot of the

X-ray luminosity and black-body radii that were computed for different types of

neutron stars. Figure 6.2 shows the same objects in a plot of Rbb vs kTeff , where k

is the Boltzmann constant. These neutron stars can be divided into four different

categories from Figure 6.2. These four categories are

1. Isolated neutron stars (INSs) like the so called Magnificent Seven [121], which

are thought to be young and hot and expected to be thermally powered due

to core and crustal cooling.

2. Magnetars, which are neutron stars with very powerful magnetic fields. These

fields can sometimes be as high as 1014 Gauss. They are powered by a decay-

ing magnetic field. Thus their spectra is not thermal and they are expected

to be brighter in X-rays than thermally powered INSs.

3. Central Compact Objects (CCOs), which are X-ray sources in the centers

of supernova remnants (SNRs). These objects have smaller blackbody radii

(Rbb) than INSs and Magnetars. This is because a substantial fraction of

their radiant energy goes into powering the nebula, making them appear

dimmer than they would otherwise.

4. Milli-second Radio Pulsar (MSPs), which are old neutron stars that have

been spun up to their fast milli-second scale rotation periods. All the MSPs

plotted in Figure 6.1 are found in the globular cluster 47 Tuc.



99

Figure 6.1: Figure reproduced with permission from [116]. Plot of blackbody

radius Rbb and the X-Ray Luminosity LX . Best fits for Calvera lie on the black

line and the error bars are the dotted lines. All four possibilities are plotted on

the same plot, so comparisons can be made with Calvera.
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Figure 6.2: Figure reproduced with permission from [116]. Plot of effective tem-

perature kTeff vs blackbody radius Rbb. Best fits for Calvera lie in the hatched

region. All four possibilities are plotted on the same plot, so comparisons can be

made with Calvera.
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6.2 Calvera

6.2.1 Observations

Calvera was first identified by Rutledge et al. [116] as a bright X-ray source

from the ROSAT All-Sky Bright Source Catalog, as 1RXS J141256.0+792204.

It was suspected to have a very large X-ray to optical flux ratio, making it an

intriguing target for a follow up with other X-ray and optical instruments. Follow

up observations conducted by using the Swift satellite, Gemini-North and the

Chandra X-ray Observatory confirmed this suspicion. The X-ray flux in the 0.1−
2.4 keV band, FX(0.1− 2.4keV) was measured to be 2.5× 10−13 erg cm−2 s−1. No

corresponding optical flux was detected. This set a lower limit on the flux ratio

FX(0.1−2.4keV)
Foptical

> 8700, where Foptical is the optical flux. It was found at a right

ascension of 14h12m55s.885 and a declination of 79 ◦22′04′′.10 with an uncertainty

of 0.57′′. An important fact to note about Calvera is it high galactic declination. A

high delination is usually indicative of close proximity to Earth, since few distant

galactic objects are found at such declinations (i.e., out of the plane of the galaxy).

Rutledge et al. obtained about 1900 seconds of Swift data using both its X-

ray Telescope (XRT) [119] and the Ultraviolet/Optical Telescope (UVOT) [120]

simultaneously looking at Calvera. Using the data obtained from the XRT, they

fit the X-ray spectrum to a thermal blackbody model to an effective temperature

of kTeff = 215 ± 25eV, where k is the Boltzmann constant. The error bars are

using a 90% confidence interval. The corresponding UVOT observation did not

find an optical counterpart down to about 21 magnitudes. Observations done with

Chandra and Gemini-North strengthened this hypothesis.

With its high effective temperature of 2.5 million Kelvin, Calvera is about two

orders of magnitude hotter than the hottest uncollapsed stars (≈ 6 × 104 K). We

have no information of Calvera’s luminosity or its distance. If one were to assume

that it is close, which seems likely given its high galactic latitude, then upon using

equation 6.2, we find that its Rbb would be small (≈ 0.1 km) compared to a main

sequence star. This would make it a compact object like a neutron star.
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The X-ray to Optical flux ratios of most known X-ray source classes are much

smaller than that measured for Calvera. For instance stars typically have such

ratios ≤ 10−3, Active Galactic Nuclei have ratios ≈ 0.1 − 10, and white dwarfs

and X-ray binaries have ratios typically 10− 100. The measured ratio for Calvera

was ≥ 8700. This is consistent with its high effective temperature. All the objects

which possess a large X-ray to Optical flux ratio and for whom their distances

have been measured have blackbody radii smaller than about 10 km and thus

are compact objects. Examples include INSs like 1RXS J185635.1-375433 [117],

RXJ1605.3+3249 [118], etc. No counter-example exists of a non-compact object

that has a high effective temperature. Thus Rutledge et al. assume that Calvera

is a compact object and classify it among the various types of known compact

objects.

In Figure 6.1, given Calvera’s Teff and for various distances d, it lies along the

45 degree black line and the uncertainty in Teff shows up as the dotted lines. In

Figure 6.2, Calvera lies in the hashed region.

6.2.2 Classifying Calvera

Rutledge et al. use the X-ray luminosities (LX), the thermal blackbody radii (Rbb)

and the effective temperatures (kTeff ) to distinguish these various classes and to

classify Calvera. For the MSPs, CCOs and INSs, they use the thermal bolometric

luminosities. For magnetar luminosities, they use only the 2-10 keV band. This is

because magnetars are known to have a non-thermal spectrum and thus only the

band spanning the data is used to compare the two objects.

Isolated Neutron Star

The methodology used to mark Calvera as an interesting object has been previously

used to identify the so-called Magnificent Seven [121], a set of observationally

homogenous X-ray dim isolated neutron stars. The spectrum of these objects

is not very well understood, but they all display thermal spectra in the X-ray

band, i.e. their spectrum in the X-ray band can be fit well to the emission by an
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isotropically radiating thermal blackbody of a certain blackbody radius Rbb at an

effective temperature kTeff . The blackbody radius Rbb is given by

Rbb =
d

T 2
eff

√

(B.C)FX

σ
, (6.3)

where d is the distance to the source, B.C is the bolometric correction, FX is the X-

ray flux in the 0.1-2.4 keV band and σ is the Stefan-Boltzmann constant. Some of

the Magnificent Seven are close enough to Earth for a parallax measurement to be

possible, for example the distance of 1RXS J185535.1-375433 [122] was measured

to be 167+18
−12 pc.

If we interpret Calvera as an INS, extrapolating from the Magnificent Seven

and using Calvera’s effective temperature, then from Figure 6.1, it would lie at a

distance of 8.4 kpc from the Earth and have a z of 5.1 kpc from the midplane of

the galactic disk, with a Galactocentric distance of 14.0 kpc. This places it in the

Galactic halo. There are no known isolated neutron stars in the Galactic halo,

although there is the possibility that some radio pulsars populate the halo [123].

Due to the high kTeff(225± 25 eV ) of Calvera, under this interpretation its X-ray

luminosity LX would be 1.0×1034 erg s−1, which is an order of magnitude greater

than the next most luminous isolated neutron star.

Since in this interpretation, the source lies in the galactic halo, it is unlikely

to be powered by accretion from the interstellar medium, which is very sparse

in the halo. If it is powered by the remnant heat of a supernova, then one of the

following scenarios have to be true. If it was created in the Galactic plane (as seems

likely), then it would receive a kick during the supernova explosion and attain a

kick velocity whose z-component could be vz. Under this scenario, it would travel

a distance z = vzτ in the time τ from the galactic plane. If we assume standard

cooling curves [124], it would require a cooling time τc < 106 years. In order for

τ <= τc, the kick velocity vz > 5100 km s−1, which is an order of magnitude

greater than the average kick velocity (380 km s−1) observed [125]. On the other

hand, if we assume the average kick velocity for Calvera, then it would require
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13 million years to get to its calculated position in this interpretation, which is

disallowed by standard cooling curves.

Thus there is a conundrum here, which strongly disfavors this interpretation

for Calvera.

Magnetar

A magnetar is a neutron star with an extremely powerful magnetic field which

can range from 1012 to 1014 Gauss. Their electromagnetic emissions are usually

powered by the decay of this magnetic field. Work done recently has shown that

magnetar X-ray spectra can be described as a soft blackbody with a power law

dominating at higher energies. If one were to assume that these magnetars are

standard-candles (as is suspected in [126, 127]) and assume the corresponding

standard-candle luminosity as calculated in [127], it puts Calvera at a distance of

66 kpc from Earth and about 40 kpc above the Galactic disk. This is an even more

extreme scenario than the one for X-ray dim isolated neutron stars, making this

an even more unfavorable hypothesis.

On the other hand, if one were to ignore current evidence and assume that the

X-ray luminosity of magnetars were a free parameter, then we can place Calvera

within 0.1 kpc of the Galactic disk, since all known Magnetars are located within

0.1 kpc of the Galactic disk [127, 128]. This would place Calvera at a distance

of around 0.17 kpc from the Earth and its X-ray luminosity would then be LX <

8.7 × 1029 erg s−1, which would be about 105 times less than the standard candle

luminosity [127], or about 103 times less than the faintest known Magnetar [128].

This result also makes the hypothesis of Calvera being a Magnetar very unlikely.

Central Compact Object

A central compact object (CCO) is a point-like X-ray source associated with a

supernova remnant, which has similar spectral properties [129, 130]. This category

includes the strong X-ray source Cas A. Since the defining characteristic of this

category is the presence of a supernova remnant, Calvera is ruled out by the fact
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that there is no supernova remnant observed in the optical band within 2 degrees

of it. Rutledge et al. explore the possibility that it could be the first unhosted

CCO, which would have similar spectral properties to the known CCOs. Upon

analysis, it is found that if it were an average CCO, the luminosity of Calvera

would be 10 times lower than the faintest known CCO.

Millisecond Radio Pulsar

The final class of objects that Rutledge et al. compare Calvera to are millisec-

ond radio pulsars (MSPs). These are old spun-up neutron stars, which spin with

periods of a few milliseconds. These are usually found in globular clusters, like

47 Tuc [131]. Comparing Calvera to the homogenous survey of these MSPs in 47

Tuc [131], it is found that Calvera has a similar effective temperature (Teff) and

for distances ranging from 80 pc to 260 pc, it has a similar thermal bolometric

luminosity and blackbody radius (Rbb). This makes MSPs a favored hypothesis.

If it were a MSP, it would not be the first to have been discovered from an X-ray

sample. The first and only other object discovered in such a manner can be found

in [132].

6.2.3 Properties of Calvera

As discussed above, Calvera is most likely to be a millisecond radio pulsar type

object. It is suspected to be at a distance of 80-260 Pc. This would make it one

of the closest MSP like objects to us. It is also expected to be old, since most

millisecond pulsars are older than a few million years [109]. However given its

alleged proximity to us, Calvera is a very promising source of continuous gravita-

tional waves. It is also likely to be spinning fast, since MSPs typically have spin

frequencies in the range of 50-700 Hz, which places it in the LIGO band. The sky

location of Calvera is known to sub arcsecond precision, which is sufficient resolu-

tion for a targeted search to require only one sky location template. Thus Calvera

is a good candidate for a broadband CW search and its properties make such a

search possible. A search done for GWs from Calvera is described in chapter 7.
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Chapter 7

Search for GWs from Calvera

7.1 Introduction

This chapter documents a search done using the resampling algorithm for a sus-

pected milli-second pulsar type object. This object dubbed Calvera [116] is sus-

pected to be as close as 80 − 260 parsecs from Earth. I present the selection of

the parameter space of the search. A description of the search pipeline is then

followed by the interpretation of the results. An overview of a followup scheme is

mentioned last.

7.1.1 Possibility of a search

As discussed in the previous chapter, there is a good chance that Calvera is a

millisecond radio pulsar that is very close to Earth (80-260 pc), possibly with a

spin period of a few milliseconds (which has not been observed as such, presumably

because its radio beam does not sweep past the Earth). MSPs have typical spin

frequencies ranging from 10 Hz to a few 100 Hz, putting it right in the LIGO band,

which spans from 40 Hz to about 2000 Hz.

The gravitational wave luminosity is bounded by the time derivative of the

total rotational kinetic energy

(

dE

dt

)

gw

=
32G

5c5
I2
zzǫ

2 (πf)6 ≤ −
(

dE

dt

)

rot

= − d

dt

(

π2Izzf
2

2

)

, (7.1)
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where ǫ is the equatorial ellipticity of the star, Izz is the principle moment of

inertia of the star and f is the gravitational wave frequency, G is the gravitational

constant and c, the speed of light. Solving Equation 7.1 for the ellipticity gives us

ǫ ≤
√

5c5

32π4GIzz

−ḟ
f5

. (7.2)

The spinning down star can be modelled with a frequency derivative, which is

dependent on a power law of the frequency of rotation. i.e. ḟ ∝ fn, where n is

called the braking index of the star [133, 135] (see Section 3.3.1). A characteristic

age τc can also be defined by using only the frequency, frequency derivatives and

a braking index as follows

τc =
1

n− 1

(

f

−ḟ

)

. (7.3)

This characteristic age τc is a very good approximation for the actual age of the

pulsar.

Using equation 7.3 in 7.2, we get an ellipticity independent of ḟ and as a

function of the age τ ,

ǫage ≤
√

5c5

32π4GIzz (n− 1) τcf4
. (7.4)

In order to convert these ellipticities to measurable gravitational wave strain

amplitude h0, we use the following equation,

h0 =
4π2G

c4
Izzǫf

2

D
, (7.5)

where D is the distance to the source [110]. Equations 7.5 and 7.4 give us an age

based GW strain amplitude,

hage ≤
1

D

√

5GIzz
2c3τc (n− 1)

, (7.6)

Notice that the age based strain amplitude hage is independent of the frequency
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of the gravitational wave and inversely proportional to the distance of the source.

It is also inversely proportional to
√
τc, the age of the source.

Using S5 data with the two 4 km detectors H1 and L1, the minimum gravita-

tional wave strain that can be detected at the frequency of 150 Hz or so, where

the detectors are most sensitive is around 10−25. So a source that is 1000 years old

and at a distance of 1 kpc would be detectable. So would a source at 100 pc even

if it were 105 years old. Millisecond pulsars are usually quite old (10 million years

or so) [109] and thus usually undetectable to LIGO. But Calvera is suspected to

be anamoulously close to us (80-260 pc). Thus it would be detectable if it were

around 107 years old. This is a decent assumption for the age of a typical MSP

[109].

Plugging in the numbers for Calvera into equation 7.6, including the most

optimistic distance of 80 pc; age of 107 years; braking index n of 7 and the moment

of intertia of a typical neutron star, with a radius of 10 km and a mass of 1.4M⊙,

1038 kg m2; the age based spindown limit hage comes out to about 2.83 × 10−25.

This is a limit that can be beaten for a band of about 300 Hz centered around

200 Hz by using all of LIGO’s S5 data and integrating coherently over 2 years of

calendar time (1 year of live time) with data from 2 detectors. Thus a search,

while not being exhaustive, is possible.

7.1.2 Parameter Selection

The number of templates in a coherent search can increase prohibitively with the

integration time. For a search which has a single sky location, multiple frequencies,

the first two frequency derivatives and spanning a time T , the number of templates

scales as T 3. Since for a coherent search, the sensitivity of a search scales as
√
T ,

the sensitivity of the search scales as C
1
6 for given computational power C. Thus

it is sensible to cap the number of templates searched, such that the search can be

completed in a given time frame.

For the Calvera search, the available computational power was set to 1 week of

operation on 300 Intel Core2 Duo processors. The parameters of the search were set
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using an iterative algorithm, in which an integration time and an age τ is set and

then the computational cost is calculated. If it is above the allocated computational

cost, then the age is lowered and the computational cost recalculated. If changing

the age is not good enough or crosses certain bounds, then the integration time is

lowered.

Frequency and spindown templates

The frequency and spindown parameters are calculated using a procedure very

similar to the one used in [136]. Frequency derivative ranges are calculated based

on braking indices ranging from 2 to 7. This range covers all known pulsars,

except for the Vela pulsar, which is too young (Calvera is assumed to be much

older) and interacts with its wind nebula (not observed for Calvera), including

the static dipole (n=3), quadrupole (n=5) and the saturated r -mode (n=7) [137].

The spindown upper limit (hage) is calculated using a braking index of 5, which

is the braking index if the emission from the star is dominated by gravitational

waves from a constant mass quadrupole. This is the upper limit we use to set the

parameters of the search, as it is the absolute maximum of emission of gravitational

waves. It is pointless to search in regions of the parameter space where the noise

strength is above this GW spindown upper limit.

The search parameter space must still search over the whole range of braking

indices and this is reflected in the choice of frequency derivatives. The frequency

range can be chosen from Figure 7.1 to be from 80 Hz to 360 Hz. The spindown

parameters derived from equation 7.3 and for braking indices ranging from 2 to 7

are as follows [136]
f

6τc
≤ −ḟ ≤ f

τc
, (7.7)

where, we take τc = 1 × 107 years and

2ḟ2

f
≤ f̈ ≤ 7ḟ2

f
. (7.8)

In practice, the frequency parameter space is divided up in to small chunks of
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Figure 7.1: Choice of Parameter space, comparing the spin down upper limit from

a star which is at 80 pc and 10 million years old with the LIGO science curve,

integrated with 1.4 years of H1 data and 1.1 years of L1 data.

about 0.025 Hz and the upper and lower bounds of the frequency derivatives are

calculated for each band using equations 7.7 and 7.8. This sort of partitioning is

done to make the distribution of the computational processes among the various

nodes easier. The number of templates required with a mismatch parameter of

0.15 as a function of frequency band can be seen in Figure 7.2. The choice of the

value of the mismatch parameter is in accordance with previous LIGO searches.

Sky position templates

Given the computational limitations on the search for Calvera, it is best if only

one sky position template be required to span the parameter space. This turns

out to be the case and the reasoning is explained below.

The uncertainty radius in the position of Calvera is 0.57′′ [116]. Other results

like reference [134] reduce this uncertainty radius down to about 0.33′′. The metric

for sky position was shown in Chapter 4. If θ is the angle between the Earth’s ve-

locity vector and the vector point from the Earth to the source, then the frequency



111

50 100 150 200 250 300 350
2

4

6

8

10

12

14

16
x 10

8 Number of templates as a function of central frequency

Central frequency in Hz

N
um

be
r 

of
 te

m
pl

at
es

 in
 a

 b
an

d 
of

 0
.0

25
 H

z

Figure 7.2: Number of templates (distinct values of f, ḟ , f̈ and one sky pixel in

right ascension and declination) required as a function of frequency band (0.025

Hz) to span the parameter space.

difference caused by a deviation from this perfect angle is given by

∆f =
|v| sin(θ)∆θ

c

(

f0 + ḟTobs + ...
)

, (7.9)

where |v| is the magnitude of the velocity of the Earth and f0 and ḟ are the fre-

quency and spindowns respectively. Tobs is the observation time and the coherent

integration time, since the search for Calvera is a fully coherent search. We can

safely ignore the ḟTobs term, as f0 >> ḟTobs. If we then approximate ∆f to about

1
Tobs

and take a time average of the velocity of the Earth over the span of the

search, then the minimum spacing required in the angle θ is

∆θmin =
2c

vmax

1

fmaxTobs
. (7.10)

Using the numbers for the Calvera search, fmax is 360 Hz; Tobs is about 6.0 ×
107 seconds and given its high declination, the vmax is 3.5 × 10−5c and thus the

minimum angular resolution required is about 0.54′′. This does not cover the
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complete uncertainty radius (however it does cover [134]). It is helpful to notice

that equation 7.10 is an approximation of the actual angular resolution required.

Given that the search is already pushing the computational power available to its

limits, a slight compromise in angular resolution is acceptable (loss of SNR is less

than 5%) and only one sky location is sufficient. Moreover this is only the case for

the higher frequencies.

7.1.3 Search pipeline

The search for Calvera was done on a computing cluster known as ATLAS at the

Albert Einstein Institute (AEI), in Hannover, Germany. It is a beowulf cluster (a

loosely networked cluster of many inexpensive linux processors), consisting of 7000

processors, split into quad-core machines, with each machine possessing a total of

8 GB of memory. This meant that each processor could use up a maximum of 2

GB of memory. Bands larger than about 0.025 Hz cannot be processed without

running into this memory constraint.

The search was thus split into 11200 jobs spanning the frequency parameter

space of 280 Hz from 80 Hz to 360 Hz in equal bands of 0.025 Hz. In each

job approximately 6 × 107 seconds of data from H1 and L1 was filtered through

approximately 1× 109 templates as shown in Figure 7.2, producing about 1× 109

values of 2F for that frequency band. These 11200 jobs were submitted as parallel

jobs by using the batch queueing system called Condor [138]. Each job is given

separate command line arguments, which tell the job where it can find the SFTs

it needs to load, the output directory, the parameters that it needs to search over,

etc. These arguments are specified in a condor dag (“directed acyclic graph” job

dependency) file, which is then submitted to the cluster. The total computing

time required for completing all the jobs was about 6 cpu-years. Since on average,

about a 1000 machines were used, about 2 days were sufficient to complete the

search.

The search pipeline consists of the following scripts and files -

1. Search configuration file - A python file, consisting of the search param-
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eters for the entire search. It includes items like the right ascension and

declination of the source, the frequencies to search over, the braking indices

to search over, the location of input SFTs, the output location, condor pa-

rameters and all the other parameters of the search that are not specific to

any given job.

2. DAG generation file - A python script, that generates a condor dag file

with the input of the configuration file. This script also generates a condor

submit file, which specifies the output parameters and other internal condor

parameters. This script splits the jobs into frequency bands and specifies the

spindowns and input SFT locations specific to each job.

3. Resampling F-statistic code [114] - Code written in C. This is the pro-

gram that calculates the F-statistic using the resampling algorithm. For

more details, see Chapter 5.

4. FStat Output - The output of the resampling code. This contains usually

the top 100 (or whatever number is specified) candidates with the highest F-

statistic value. For each candidate, its frequency, sky location and spindowns

are specified. An Fstat Output file is produced by each job.

5. Histogram Output - Another output of the resampling code. This contains

the histogram of the F-statistic output for each job.

6. Kolmogorov-Smirnov test statistic calculator - A python script which

takes in the histogram output files as input and generates a Kolmogorov-

Smirnov(KS) test statistic for each band. This is then used as a veto against

wandering lines. It is explained in detail in the vetoes section.

7. Upper Limit calculation script - A matlab script that takes in the FStat

Output file and uses the loudest F-statistic value and the noise of the detector

to calculate an upper limit.

The search pipeline consists of the use of all these scripts in the order that
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they have been presented. The scripts are located on the ATLAS cluster in the

/home/ppatel/CalveraSearch/Scripts directory.

An overview of all the important search parameters can be found in Table 7.1.

Detectors H1 & L1 (Coherently combined)

Science Run S5

Start Date Nov 7th 2005

End Date Oct 01 2007

Total Observation Time 6.0 × 107 seconds

H1 SFTs 23787

L1 SFTs 19197

H1 Live Time 4.28 × 107 seconds

L1 Live Time 3.46 × 107 seconds

Minimum Frequency (f) 80.0 Hz

Maximum Frequency (f) 360.0 Hz

Minimum First Spindown (ḟ) −1.1 × 10−12 Hz s−1

Maximum First Spindown (ḟ) −4.3 × 10−14 Hz s−1

Minimum Second Spindown (f̈) 9.9 × 10−30 Hz s−2

Maximum Second Spindown (f̈) 1.1 × 10−25 Hz s−2

Search Frequency Band Size 1
40 Hz

Mismatch Parameter 15%

Total Frequency Bands 11200

Total Sky Position Templates 1

Total Templates 1 × 1013

Table 7.1: Calvera Search Parameters.
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7.2 Probabilities and False Alarm Rates

While the Calvera search uses the F-statistic, it is more convenient to use 2F ,

since it has a distribution function that is well known and easy to manipulate

and compute. For Gaussian noise of µ = 0 and a σ = 1, 2F is distributed as a

χ2 distribution of 4 degrees of freedom [110]. If we refer to 2F as x from now

onwards, the probability distribution function in the absence of signal is

p(x) =
x

4
e−x/2. (7.11)

In the absence of signal, the expectation value of x would be 4. In the presence of

signal, this expectation value becomes 4+ρ2, where ρ is the optimal signal to noise

ratio for that given signal strength [110]. It can be shown that in the presence of

signal, x becomes a χ2 distribution with a non-centrality parameter ρ2 [110] -

p(x) =
1

2
e−(x+ρ2)/2

√

x

ρ2
I1

(

√

ρ2x
)

, (7.12)

where I1 are the modified Bessel functions of the first kind of order 1.

The Calvera search consists of over 1013 computations of the F-statistic for

different templates. The result of each such computation is drawn from equation

7.11 under the assumption that no signal is present. Since there are so many

instances of the F-statistic calculation, there is a possibility of noise rising to a

level loud enough to be confused with signal. We can calculate such a threshold at

which the probability of such an occurrence is lower than the desired false alarm

probability. The probability that a single calculation will be lower than a certain

threshold xt is given by

P (x <= xt) =

∫ xt

0

x

4
e−x/2 = 1 − e−xt/2

(xt

2
+ 1
)

. (7.13)

For N independent templates, the probability that the loudest F-statistic value
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will be lower than the threshold of xt would be given by

PN (x <= xt) =
(

1 − e−xt/2
(xt

2
+ 1
))N

(7.14)

For a false alarm rate of 1%, i.e., PN = 1 − 0.01 = 0.99 and a single template

search, the threshold xt would be 13.3. For the Calvera search with N = 1013, the

threshold is about 76.5. This means that if any template in the whole search has

a value of 2F larger than 76.5, the probability of that being due to the noise is

less than 1%.

Another important statistic is the expected loudest event for a multi-template

search. This can be computed by calculating the probability that x is exactly equal

to some maximum xm. It is given by picking one template to be exactly xm and

impose that all other templates have x < xm. Such an arrangement can happen

in N ways if there are N templates in total. Therefore the probability density

function is

p(x = xm) = N
xm

4
e−xm/2

[

1 − e−xm/2
(xm

2
+ 1
)]N−1

. (7.15)

For a given N , the expectation value of the loudest event would be given by a

simple integration of the probability density function as

E[xm] =

∫ ∞

0
p(x = xm)xmdxm. (7.16)

An estimate of the error in this expectation value can be computed from the second

moment as follows

σxm =
√

E[x2
m] − (E[xm])2, (7.17)

where,

E[x2
m] =

∫ ∞

0
p(x = xm)x2

mdxm. (7.18)

As expected, the expectation value for a single template search would be 4 and

for the Calvera search, it would be 67.1 ± 2.1. This serves as a sanity check for
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the search. All of these values were calculated before doing the actual search or

looking at the results. Only templates whose 2F values were above the nominal

threshold of 76.5 with a false alarm rate less than 1% would be followed up.

7.3 Vetoes

One of the major sources of noise for CW searches are spectral lines. Some of these

lines which are sometimes orders of magnitude larger than the noise floor can also

wander, i.e. they change their frequency as a function of time. These spectral

features, also known as lines in the data can give anamoulously large F-statistic

values, which can possibly be confused for a signal.

The resampling algorithm uses a spectral running median estimator [139] to

suppress sharp spectral features. This running median estimator is an effective

way of cutting out line features that are extremely narrow. In the resampling

code, we run the running median estimator on 50 bins of 1800s long SFTs, which

corresponds to a bandwidth of 27.8mHz. Any lines that are wider than 27.8mHz

would not be vetoed by this method, since they would appear as an elevation in

noise rather than as a spectral feature.

7.3.1 Known Lines

There are many spectral lines in LIGO data that are known to be caused by

certain known physical phenomenon. Examples of this include the 60Hz line and

its harmonics at 120Hz,180Hz and so on, the violin modes of the suspension upon

which the mirrors hang etc. These lines are “known” because they have been

studied for a long time now and causal connections between them have been found

or at the very least, an extremely strong correlation has been noted.

One method for finding these lines has been to look for correlations between

the gravitational wave channel of the detector and other auxiliary channels, like

for example, the input power or magnetometers channels for the 60Hz harmonics.

A list of such lines has been compiled by the LSC CW group with the help of
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Robert Schofield, Nelson Christensen and Keith Thorne. Table 7.2 notes all the

lines that are within the band of interest for the Calvera search (80−360 Hz). The

table contains the central frequency of the line, along with the lower and upper

frequencies that are affected by it, the reason for identifying them as lines and the

detector from which the data was taken. Among the physical causes that caused

these persistant lines, besides the ones that were mentioned before, include voltage

supplies and optical levers.

Any anomalously large F-statistic value in the presence of these lines can be

safely vetoed as an instrumental artifact. Marginal cases can exist, where a large

F-statistic value is seen near a very weak line, which could warrant further in-

vestigation. A more quantitative veto for these artifacts is presented in the next

section.

7.3.2 Kolmogorov-Smirnov Test Statistic

As mentioned previously, in the presence of normalized Gaussian noise, 2F is

distributed as a χ2 variable with 4 degrees of freedom. For the Calvera search,

the band size of 0.025Hz is small enough to ensure that in the absences of any

instrumental artifacts, the noise spectrum would look flat, while restricting the

search to that particular band. This data is then normalized as shown in Chapter

5. Thus one would expect that in the absence of any lines, the histogram of the

F-statistic values would follow a χ2 distribution on band by band basis.

In the presence of a large instrumental line, like a 60Hz harmonic, the input

spectrum would no longer look flat and would possibly have a shoulder. This

would distort the output of the resampling code and alter the distribution from the

expected χ2 of 4 degrees of freedom. Thus deviation from the expected distribution

can be used as a veto for instrumental lines. Wandering lines would also distort

the distribution and can be vetoed relatively easily. Figures 7.4 and 7.3 show the

differences between the distributions of two bands, one with a known line present
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Frequency(Hz) Lower Upper Cause Detector

85.80 85.79 85.81 LVEA Rack Magnetometer H1

89.90 89.84 89.96 Auxilliary Power Supply H1

93.05 93.04 98.06 Beam Splitter Mic and Magnetometer H1

119.99 119.74 120.24 60Hz harmonic H1

139.95 139.94 139.96 +15V Supply Ripple H1

180.0 179.95 180.05 60Hz harmonic H1

329.59 329.50 329.87 Beam Splitter Violin Modes H1

343-344 343.27 344.8 Test Mass Violin Modes H1

347.5 347.1 347.7 Test Mass Violin Modes H1

93.29 93.27 93.3 Optical Lever A L1

96.70 96.696 96.72 Optical Lever B L1

119.97 119.73 120.01 60Hz harmonic L1

139.938 139.92 139.958 Optical Lever A L1

145.062 145.047 145.078 Optical Lever B L1

180.05 179.97 180.08 60Hz harmonic L1

186.587 186.565 186.61 Optical Lever A L1

193.416 193.395 193.437 Optical Lever B L1

233.231 233.185 233.277 Optical Lever A L1

241.777 241.713 241.842 Optical Lever B L1

343-344 342.94 344.4 Test Mass Violin Modes L1

346-347 346.6 347.02 Test Mass Violin Modes L1

Table 7.2: Known spectral lines that were persistent throughout S5.
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Figure 7.3: The probability distribution functions of two bands, one containing a

known line and another with no known lines in it. The theoretical curve is the χ2

probability distribution function with 4 degrees of freedom. The clean frequency

band is from 93.0-93.025 Hz and the frequency band with a line is from 119.975-

120.0 Hz. About 109 templates were used to calculate the histograms.

and another without any known lines. The data in both figures is from real data

(both H1 and L1 detectors).

An obvious question about this approach is the danger that we might veto a

real signal with this procedure. A real signal coming from the right sky location

and with spindowns matching will only affect a few templates around the “right” or

closest template. In the presence of a spurious signal, say at the wrong sky location,

one would expect that more templates are rung up. However these spurious signals

are noise themselves, since we are only interested in looking for signals coming

from a single sky location in this search. Thus vetoing other signals like hardware

injections at the wrong sky location is a positive feature of this method. Monte

Carlo simulations were conducted to see if a real signal is vetoed by this method

or not and signal ranging from SNRs of 1 to 100 were used. None of these signals

were vetoed. A comparison between the effect of a signal on the distribution of
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Figure 7.4: The cumulative distribution functions of two bands, one containing a

known line and another with no known lines in it. The theoretical curve is the

cumulative distribution function of a χ2 probability distribution function with 4

degrees of freedom. The clean frequency band is from 93.0-93.025 Hz and the

frequency band with a line is from 119.975-120.0 Hz. About 109 templates were

used to calculate the histograms.
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Figure 7.5: A comparison between the effects of an injected signal in a band of

real data with no known instrumental artifacts (93.0-93.025 Hz) and a band with

a line on the distribution of 2F . The y axis is plotted on a log scale and the signal

amplitude was chosen to be louder than the loudest event due to the presence of

the line.

2F and the effect of a line, can be seen in Figures 7.5 and 7.6.

A convenient method of distinguishing between two distributions is the Kolmogorov-

Smirnov (KS) test statistic. This statistic is the maximum vertical distance be-

tween two cumulative distribution functions. One can calculate the probability

that two distributions are different if the total number of samples and the statistic

itself is taken into account. However for the purposes of vetoing, such a probability

calculation is unnecessary and just the KS statistic is enough. Monte-Carlo simu-

lations with Gaussian noise with no line present have shown that the KS statistic

is less than about 7 × 10−3. This can be used as a veto threshold for the search.

This is also confirmed by Figure 7.7, which is a plot of the histogram of all the KS

statistic outputs from each frequency band and a best fit.
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Figure 7.6: A zoom of Figure 7.5.
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Figure 7.7: A histogram of the KS test stastitic. A best fit to a Gaussian is also

shown in red. The mean of the best fit is at 5.7×10−3 and the sigma is 2.5×10−4.

Thus the veto threshold of 7 × 10−3 is much greater than 3σ.
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Figure 7.8: The raw results of the search. The maximum 2F is shown for each

frequency band. The black line is the expected loudest 2F for the whole search.

The green line is the 1% false alarm rate threshold. The cyan line is the expected

loudest 2F for each band.

7.4 Search Results

The raw search results are shown in Figure 7.8, which shows the maximum value

of 2F over all of the 109 or so templates in each frequency band. Also shown in the

Figure are the expected loudest 2F for each frequency band and also the loudest

2F expected for the entire search (assuming only Gaussian noise). The 1% false

alarm rate threshold is also shown.

The KS test statistic, which is calculated for each band from its histogram

output, is shown in Figure 7.9. A couple of zoomed in plots show how the KS test

statistic picks out the well known lines like the 60Hz harmonics (Figure 7.10) and

the violin modes (Figure 7.11).

As discussed in the previous section, the KS test statistic can be used as a veto

and simulations have shown that a threshold of approximately 7×10−3is sufficient
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Figure 7.9: The KS test statistic for each frequency band.
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Figure 7.10: A zoom of Figure 7.9.
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Figure 7.11: A zoom of Figure 7.9 in the vicinity of the suspension violin modes.

to veto most lines. The vetoed frequency bands are shown in Figure 7.12. These

bands were investigated further. Most of the frequency bands vetoed belong to

the known lines shown in table 7.2. Some of the frequency bands belong to non-

persistent lines, which are not shown in table 7.2. All the 2F values that are above

the 1% false alarm rate are due to either the 60Hz harmonics or the violin modes

of the detector and are vetoed by the KS statistic.

After the 2F values of the vetoed frequency bands are removed, the relevant

results are shown in Figure 7.13. None of the templates have crossed the 1%

false alarm rate threshold, thus, without any further investigation, this can be

considered a null result. However a follow up scheme in the event of a potential

signal is discussed in the section below. The loudest event has a 2F of 67.47,

while the expected loudest event was 67.1±2.1. The data also follows the expected

loudest events on a per band basis, which is frequency dependent because of the

difference in the number of templates. All of this suggests that the results of the

search are consistent with the absence of signal in Gaussian noise. The noise is

very close to being Gaussian, after the removal of the bands which have KS test

statistic above the veto threshold.
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Figure 7.12: Frequency bands vetoed using the KS test statistic
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Figure 7.13: 2F for frequency bands not vetoed by the KS test statistic. The black

line is the expected loudest 2F for the whole search. The green line is the 1% false

alarm rate threshold. The cyan line is the expected loudest 2F for each band.
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7.5 Follow up

While the search yielded no results worth following up, set by the pre-determined

criteria that only events crossing the 1% false alarm rate threshold would be fol-

lowed up, a set of follow up rules were laid down in case of such an eventuality.

This section details some of these rules and also talks about following up triggers

from other CW searches.

7.5.1 Criteria for Follow up

The first step in determining a follow up strategy is to set thresholds and other

parameters which determine the “interest” in the output from a given template (

i.e., the value of 2F obtained from filtering the data through a given template)

before looking at the results of the search. This is crucial, since we do not want to

be biased by the results themselves. A good criterion for determining if a template

needs to be followed up or not, is the probability of a noise fluctuation being equal

to or greater than the output of the template (the false alarm rate). For CW

searches like the Calvera search, it is relatively straightforward, since the noise is

very close to Gaussian and thus the false alarm rates can be estimated to relatively

great accuracy using theoretical predictions.

In the case of the Calvera search, the pre-determined threshold was set at a

2F of 76.5, which corresponded to a false alarm rate of 1%. All the events that

crossed this threshold were investigated. Since after vetoing known lines and bands

failing the KS test, none of the templates crossed this threshold, there was no need

to follow any of these events up. Some erroneous SFTs were included in the search

to begin with and this was detected with the help of the follow up procedure. This

is discussed at the end of this section.

A follow up scheme for CW searches would include the following steps -

1. Increasing the sensitivity of the search - A real signal’s significance

would increase with the increase in sensitivity of the search, while a noise

fluctuation would be unaffected by such an increase in sensitivity. This
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can be done by increasing the integration time or by incorporating a more

sensitive technique. One such follow up scheme is under development at

Caltech [140], which would use triggers from a semi-coherent search like the

Powerflux method [82, 83] and use the resampling algorithm to coherently

integrate the same data used in the semi-coherent technique. This technique

cannot be used for the Calvera search, since the Calvera search already uses

the most efficient technique and all of the collected data.

2. Adding an extra detector - One of the most computationally cost effective

ways of improving the sensitivity of a search is to include another detector

in the search. When one is pushing the limit on the available computational

power, it is sometimes necessary to leave out a less sensitive detector out of

the search, for example, in the case of the Calvera search, H2 was left out.

However, while following up triggers, the parameter space to search over is

in a narrow range around the suspected trigger and thus it becomes easier to

include another detector into the analysis. If the sensitivity of the search does

not increase in relation to the appropriate addition of a new interferometer,

then it casts doubts about the validity of the trigger as a signal. On the

other hand, an increase in the search statistic by an appropriate amount

would lead to an increased confidence in the assumption that the trigger is

a real signal.

3. Splitting the data in time - For a search like Calvera, in which all the

available data has been used, it is sometimes useful to split the data into

multiple parts and to conduct a narrow search around the trigger of interest.

While the signal strength is reduced by decreasing the integration time, it is

also offset by the reduced parameter space that needs to be searched over.

The reduced parameter space decreases the chances of a statistical noise

fluctuation looking like a signal. If one were to split the total integrated data

into two parts, assuming that the signal was on continuously and that the

sensitivity of the detectors was the same for both parts, the power ought to
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reduce by a factor of about 1.4. If the power were however only concentrated

for a short period of time, this reduces the confidence of it being a continuous

wave source. Further splitting of the data should also follow this pattern of

having the signal strength distributed evenly throughout the data.

4. Splitting the data by detector - This is very similar to the splitting the

data in time. Here again we reduce the parameter space around the trigger

of interest and split the data by detectors. If there are two detectors like

in the Calvera search, which have similar sensitivities, then the power ought

to reduce by a factor of 1.4. If however this does not happen and all the

power is seen only in one detector, then the trigger is most likely due to an

instrument artifact.

A Follow Up Example

The first time the Calvera search was conducted, all the SFTs present on the

ATLAS cluster were used for the analysis. It was erroneously assumed that only

science mode data from S5 was used to generate the SFTs. Unfortunately some of

the SFTs after the official end of S5 on Oct 1st 2007 00:00 Universal Time, were

included along with all the S5 SFTs. Thus the search was run with 9 SFTs that

were not officially science mode and should not have been included in the search

to begin with.

I was however unaware of this and it only showed up because the results of the

first search showed two loud events at 91 Hz and 91.1 Hz. The 2F at 91 Hz was

about 210 and at 91.1 Hz it was 355. These were well above the 1% false alarm

rate cutoff and thus warranted further investigation. The bands containing both

these frequencies failed the KS test. This suggested that a line might be present

around those frequency bands. However there were no known persistant or non-

persistant lines around the band of interest. Thus these two bands warranted

further investigation. I will only discuss the follow up of the 91.1 Hz event. The

91 Hz event was followed up in a very similar fashion.

The first step in the follow up was to divide the data by detector. A search
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run on all the data, but by using only H1 around the 91.1 Hz frequency band gave

a maximum 2F of 37, which was consistent with noise. The same search done

with the L1 detector gave a maximum 2F of 858 or so. This 2F was higher than

the 2F found using both the detectors because the template space used was more

dense and the noise of H1 was not added in. This meant L1 was the only detector

responsible for the event.

The second step was to discover the physical cause of the L1 instrumental

artifact. In order to isolate the time of the instrumental artifact, all of S5 was

divided into 10 parts of equal length and the search was conducted on each of

these parts seperately. The only time span at which the 2F exceeded what was

expected from noise was for the last part. Upon further investigation, it was

narrowd down to 9 SFTs after the end of the S5 run on Oct 1st 2007.

During the first week of October, a graduate student was conducting exper-

iments with the photon calibrator at the L1 detector. The photon calibrator

consisted of two separate injections at 91 and 91.1 Hz and during the time that

the photon calibrator was operational, these lines were active. During this time,

some of the data was accidently marked as science mode data and this was then

converted to SFTs, which were then stored along with the rest of the S5 SFTs on

the ATLAS cluster.

This example shows how a follow up would have proceeded in the event of

the suspicion of a real signal. If all of these tests were passed, then further data

or astrophysical observation could have been used to increase our confidence of

detection.

7.6 Upper Limit Calculation

The search for GWs from Calvera was a discovery search and thus the parameter

space was set to maximize the detection potential. However there was no detection

and thus upper limits were set for the gravitational strain expected from an object

like Calvera if it were to meet the optimistic assumptions of its position, age and
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nature.

7.6.1 Theoretical Predictions

The F-statistic is by design maximized over nuisance variables like the inclination

angle, polarization angle and initial phase of the GWs. However these variables

change the amplitude of the signal and thus the probability that it would rise

above the noise and be detected. In order to compute an analytical upper limit,

we need to compute the optimal signal to noise ratio and then use equation 7.12 to

compute the probability that the F-statistic value will be lower than the maximum

F-statistic found in the search. An upper limit would be set for each frequency

band separately.

The optimal SNR ρ2 can be computed through the following equation [110]

ρ2(f) ≈ A2(δ, ψ, ι)T0 sin2 χ
h2

0

Sh(f)
, (7.19)

where T0 is the integration time, f is the frequency of the frequency band, δ is the

declination of the source, ψ is the polarization angle and ι is the inclination angle

of the source. Sh is the power spectral density and h0 is the gravitational strain.

χ is the angle between the arms of the interferometer. A2 can be calculated by

[110]

A2(δ, ψ, ι) = F2(ι)e1(δ) cos 4ψ +G2(ι)e2(δ), (7.20)

where,

F2(ι) =
sin4 ι

4
(7.21)

and

G2(ι) =
1

4
(1 + 6 cos2 ι+ cos4 ι). (7.22)

e1 and e2 are different for each interferometer and depend on the latitude and

longitude of its location -

e1(δ) = 4j1 cos4 δ (7.23)
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and

e2(δ) = 4j2 − j3 cos 2δ + j1 cos2 2δ. (7.24)

j1, j2 and j3 are functions of λ (latitude) and γ (longitude) -

j1(λ, γ) =
1

256
(4 − 20 cos2 λ+ 35 sin2 2γ cos4 λ), (7.25)

j2(λ, γ) =
1

1024
(68 − 20 cos2 λ− 13 sin2 2γ cos4 λ), (7.26)

and

j3(λ, γ) =
1

128
(28 − 44 cos2 λ+ 5 sin2 2γ cos4 λ). (7.27)

The upper limit for each frequency band is calculated as follows -

1. Loop over all frequency band.

2. Calculate Sh(f).

3. Compute the loudest 2F value. This value comes from the result of the

search.

4. Make a matrix of ψ and cos ι values.

5. Pick a h0 and compute ρ2 using equation 7.19 for each ψ and cos ι.

6. Using the loudest 2F value as threshold, integrate equation 7.12 with a

noncentral parameter of ρ2 to get a probability that 2F would be greater

than the loudest value.

7. Adjust h0 according to probability output and probability desired. A simple

bisection method works just fine to hone in the h0 required for the desired

probability. For the Calvera search, probability required was 95%.

This procedure works well when the noise is assumed to be Gaussian. For the

Calvera search, the noise is very close to Gaussian for the non-vetoed bands. The

upper limits on h0 calculated analytically as described above can be seen in Figure

7.14, along with the injections which were done to verify them.The injections are
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consistently about 10% higher than the analytic upper limits. This 10% is due to

the inherent lossiness of the resampling technique and due to the fact that exactly

matched templates were not used to span the paramter space of the search. A

15% mismatch tolerance was used instead. Thus the upper limits quoted for the

search are 10% greater than the analytic upperlimits and can be seen in Figure

7.15. The age-based limit expected for Calvera, if it were 1× 107 years old and at

80 pc from Earth, would be 2.83 × 10−25 and the lowest upper limit is at 152 Hz

is 1.14 × 10−25.

7.6.2 Injections

The upper limits shown in Figure 7.14 are analytical upper limits and do not take

into account some of the approximations that went into the calculation of the F-

statistic, like the inherent losses due to interpolation, the use of a limited number

of templates with a specific mismatch parameter. These approximations can be

of the order of a few percent and its very difficult to predict the exact number.

These systematic errors are discussed in Sec 7.6.3

In previous searches like the Crab search [80], upper limits were set by using

large scale Monte Carlo simulations. These Monte Carlo simulations involved

picking a h0 and then injecting signals with different polarizations and inclination

angles into the data. The search was then run on a restricted parameter space

and the number of times the loudest 2F value crosses the loudest 2F value that

was recorded during the search is tallied. This is then converted to a percentage

calculation and the h0 for which the probability crossed 95% is set as the upper

limit.

Comprehensive Monte Carlo simulations were not possible for the Calvera

search due to the prohibitive computational cost. However Monte Carlo simu-

lations were done at 5 Hz intervals for the entire band with about 10000 injections

each. The results gave upper limits that were about 10% greater than the ones

calculated analytically. This is consistent with the 2% expected losses due to

interpolation and about 8% expected losses due to the mismatch parameter of
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Figure 7.14: Analytically computed upper limits for the Calvera search. The upper

limits computed through injections, carried out to verify certain bands are shown

in black.

15%. Thus all the upper limits in 7.15 and 7.16 are quoted 10% higher than the

analytically computed upper limits.

Using equation 7.5, the upper limits in Figure 7.15 can be converted to ellip-

ticities. The upper limits in the ellipticities are shown in Figure 7.16.

7.6.3 Systematic Errors

The upper limits presented above for this search are subject to several sources of

systematic errors. Most of these systematics are very small, do not change the

results significantly and are unavoidable. These kinds of errors include errors in

the ephemeris data that is used to calculate the difference in photon arrival times

from a given source between the detector and the solar system barycenter, timing

errors that exist in the data recording computers, errors due to the inaccurate

calibration of the detector. I discuss some of these systematics in this section.
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Figure 7.15: Upper limits on GW strain for the Calvera search, including the 10%

correction described in Section 7.6.3.
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Figure 7.16: Upper limits on ellipticity of Calvera.
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Timing Errors

The timing errors in the ephemeris data that is used to calculate the difference

in photon arrival times from a source at a given sky location at the solar system

barycenter and the detector, result in a systematic loss of SNR. These sorts of

errors are a reflection of the uncertainties in the location of solar system bodies

and their motions. In this thesis the ephemeris data used is accurate to within

0.01% [91]. There are also timing errors that are accumulated in the data collection

system. These include computing latencies, finite speed of data transfer between

various control computers and inherent inaccuracies of the atomic clocks used to

record the data. These errors are known to be within about 10 µs over a year [40].

The effect of timing errors on the SNR of the signal can be estimated by using

the simple matched filtering equation. Assume a simple sinusoidal signal at a

frequency of ω and a constant but unknown time offset of δt. Integrating over

time t for a span of T gives a fractional loss of SNR of

2

T

∫ T

0
sin(ωt) sin(ω(t+ δt))dt = cos(ωδt) ≈ 1 − 1

2
(ωδt)2. (7.28)

For the Calvera search, ωmax = 2π · 360 and a maximum δt of about 10 µs over a

year gives us a fractional loss of SNR of less that 0.03%. Timing errors are not a

concern for the Calvera search because of the relatively small frequencies involved.

While the argument above was made for a constant time offset, it works just

as well for a time varying offset, where the SNR loss can be estimated by using

the mean of the absolute δt seen. Previous long integration time analysis like the

analysis for GWs from the Crab pulsar [80] also use similar estimates and conclude

that the effects of timing errors on the SNR are negligible.

Calibration

The calibration error uncertainties arise from the limited ability to accurately

measure the absolute calibration of the detector response to differential strain

caused by GWs on the LIGO detectors. The methods used to compute these
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uncertainties are discussed in [141]. In [141], the calibration errors of H1 were

estimated to be around 10.1% and for L1 to be about 14.1%. These estimates

were used to adjust the analytically calculated upper limits presented in Sec 7.6.1.

The adjustment is done by multiplying the Sh(f) by a factor of 1.101 for H1 and

1.141 for L1 in Equation 7.19.

Losses in the resampling code

The code that is used to compute the F-statistic using the barycentric resampling

technique (see Chapter 5) makes some assumptions that can lead to a slight loss in

SNR from the optimal that can be estimated theoretically. These approximations

include assumptions that the antenna patterns of the detector do not change over

the course of about half an hour. These assumptions reduce the computational

cost significantly without affecting the SNR very much at all. Other losses include

interpolation losses that were discussed in Chapter 5.

The interpolation error is impossible to predict exactly since the interpolation

pattern changes with sky position. Thus it is hard to precisely correct for inter-

polation losses. The solution is to compute the F-statistic for a larger frequency

band than desired and then to only use the innermost frequency bins. Innermost

frequency bins are the frequencies which are closer to DC (both positive and neg-

ative), since the effects of interpolation increase as the frequency gets closer to

the Nyquist frequency. As mentioned in Chapter 5, cubic spline interpolation is

used in the resampling code and a frequency band that is approximately twice

the desired frequency band is used. In spite of using only the middle half of the

computed frequency band, losses of SNR or a few percent can be expected. On

average we can expect about 2% loss in SNR. The effect of this loss and the loss

associated with metric mismatch discussed below, is estimated and included in the

quoted upper limits using the procedure described in Sec 7.6.1 above.
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Metric mismatch

As discussed in Chapter 4, a metric mismatch parameter is used to define the grid

spacing in search parameter spaces. The mismatch is the maximum SNR loss that

can be tolerated and thus templates are placed overlapping in such a manner that

the maximum loss is as specified by the mismatch. For exact equations please see

Chapter 4.

A 15% mismatch was used to lay down the Calvera search parameter space.

While allowing for the second frequency derivative, only single templates were

needed to cover the second frequency derivative parameter space. Since only one

template was used to cover the sky position parameter space as well, all the tem-

plates were divided into the nearly orthogonal frequency and frequency derivative

space.

Monte Carlo simulations done on these kinds of parameter spaces such as in [80,

136] show that on average a randomly chosen template lying within the parameter

space covered manifests itself as an SNR loss of the total mismatch divided by

the number of orthogonal parameters that are being covered. Similar Monte Carlo

simulations performed by the author (not as extensive as in [80, 136]), show this to

be the case for the Calvera search and an SNR loss of about 8% is seen. estimated.

The effect of this loss and the loss associated with interpolation in the resampling

code, is estimated and included in the quoted upper limits using the procedure

described in Sec 7.6.1 above.
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Chapter 8

Conclusions

This thesis presents the results of a search for continuous, quasi-periodic gravita-

tional waves from Calvera, an X-ray source that is suspected of being a neutron

star as close as 80 pc from the Earth and may be rapidly spinning. This kind of

deep and wide-parameter search is made possible because of the development of

barycentric resampling to greatly speed up the computation of the optimal detec-

tion statistic (the F-statistic). No evidence for GWs was found. Upper limits on

the gravitational strain that could have been detected from the search were set in

a band from 80-360 Hz. Upper limits were also set on the ellipticity of Calvera.

This thesis summarized the work I did in the LSC CW group. In Chapter 2

we briefly reviewed how the initial LIGO interferometers worked. We summarized

how continuous GWs are emitted from neutron stars and how the GWs can help

us understand the underlying physics of these extreme objects. The resampling

algorithm and its implementation was introduced. The resampling algorithm fits

into various analysis techniques used by the CW group and will help improve

them in the near future. An object dubbed Calvera was then introduced and its

potential as a GW source was discussed. A search was then conducted to look

for a gravitational signal from Calvera. No significant results were found and the

data was shown to be remarkably consistent with Gaussian noise. Thus upper

limits were set on the gravitational wave strain and the ellipticities expected from

Calvera if certain optimistic assumptions were met.
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The upper limits on the Calvera search are the most sensitive broadband GW

searches done using LIGO data. The lowest h0 was in the range of 1 × 10−25 and

at the highest frequencies examined in this search, the ellipticity of the neutron

star was constrained to be less than 2 × 10−7. Without the technical innovations

described in this thesis, with the same amount of computational power, the upper

limit on h0 would have been 5 times higher. This would place the upper limits

above the age based upper limit of GW signal expected from Calvera, making the

search uninteresting.

The ellipticity upper limits lie within a realistic range of possible ellipticities as

seen in Chapter 3. However this does not constrain any of the theoretical neutron

star models, since it is possible that the ellipticities were simply much lower than

the maximum sustainable. Or the neutron star may not be spinning at a frequency

accessible in this search. Moreover, some or all of the optimistic assumptions about

Calvera could be false. The Calvera search was meant to be a discovery search

and upper limits were only calculated because no events were found.

With advanced LIGO commissioning taking place from now till about 2014, the

detector sensitivity will go up by about an order of magnitude. Advanced LIGO

will also push the lowest searchable frequency down to about 10 Hz, bringing many

pulsars in the LIGO band. The searches for continuous GWs will remain compu-

tationally bound. The implementation of the resampling algorithm as discussed

in this thesis will go a long way in improving searches in the future.
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Appendix A

Postscript - Detection of pulsations from

Calvera

A.1 Astrophysical Observations

On September 1, 2010, an article was published on the arXiv [142], which reported

on the detection of pulsations from Calvera. The authors of [142] observed Calvera

using the XMM-Newton/EPIC observatory twice with a total exposure of about 50

ks and followed this up with a search through archived Fermi Large Area Telescope

(LAT) data and found a significant pulsed signal (≈ 5σ) at a period coincident

with the previous observation. The source spectrum of Calvera is well reproduced

by a two component model consisting of two blackbodies with temperature of 96

keV and 250 keV (see Figure A.1).

The X-ray emission was seen at a period of 59.2 ms (≈ 16.9 Hz). According to

[142], the detection is highly significant (> 11σ) and unambiguously confirms the

neutron star nature of Calvera (see Figures A.2 and A.3). Tight upper limits were

set on the period derivative, Ṗ < 5× 10−18 (see Figure A.4), the rotational energy

derivative, Ėrot < 1033erg s−1 and the magnetic field B < 5× 1010 G. When these

numbers are plugged into Equation 3.18 of Chapter 3 and using a braking index

of 3 (typical value), the characteristic age of Calvera turns out to be > 1.8 × 108

years.
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Figure A.1: EPIC pn spectra from two different pulse phase intervals covering

pulse maximum and minimum from the two XMMNewton observations. Figure

taken from [142].

A.2 Impact on GW observations

The search performed in Chapter 7, looking for GWs from Calvera was completed

months before [142] was made public. Before the publication of [142], Calvera

was an intriguing target for GW observations. It was suspected to be a nearby

milli-second pulsar type object, but with unknown spin, which was most likely to

be old and thus would require fewer spindown templates than young objects. All

these alleged properties made it an ideal target for a deep GW search using the

resampling algorithm (see Chapter 5). However, as shown in Chapter 7, given the

set of assumptions about Calvera like its distance, age (10 million years) etc., it

was only likely to be seen in the frequency band ranging from about 80 Hz to 360

Hz. On either side of this frequency band, the noise floor of the LIGO detectors

would make it physically impossible for an object older than 10 million years to

emit GWs that would rise above the noise.

Given the observations in [142], the frequency of GW emissions would be at



144

Figure A.2: The power spectrum of time variation in EPIC and XMM data along

with the 4σ detection threshold. The 59 ms signal is quite evident and it corre-

sponds to an 11σ detection. Figure taken from [142].

≈ 34 Hz for quadrupolar emission. This frequency lies well into the seismic wall of

the LIGO noise curve. The noise floor at this frequency is more than an order of

magnitude greater than that at 80 Hz. Thus it is impossible to detect quadrupolar

GW emission from Calvera using LIGO data. Higher order emission modes would

be even weaker. Even if the pulsations were at a frequency lying in the search

frequency band of 80 Hz to 360 Hz, the characteristic age of Calvera is too old for

any feasibility of detection.

The search for GWs from Calvera using LIGO data is now pointless. However,

the methods used in Chapter 7 are sound and can be used to search for GWs from

a similar class of potential sources. The techniques developed in Chapter 7 like

the KS test and the software injection techniques are useful in all types of directed

searches for GWs, especially those with characteristics similar to those of Calvera

prior to the results from [142]: sources that are well localized in space but with

unknown frequency and spindown. Promising examples include globular clusters,
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Figure A.3: EPIC pn and MOS2 (M2) background-subtracted light curves of PSR

B1509-58 folded at the best inferred period of ≈ 150ms. The solid lines represents

the best fit obtained by adopting a model with a sinusoidal plus four harmonics.

Figure taken from [142].
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Figure A.4: The ν − ν̇ contour plot for the gamma-ray timing solutions with the

4σ thresholds marked. The most significant detection is ν0 = 16.892401975(2) Hz,

ν̇0 = −1.2(7)× 10−16 Hz2. The horizontal dashed line corresponds to ν̇0 = 0. This

figure places a strong upper limit on the ν̇ and consequently Ṗ . Figure taken from

[142].
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the Galactic center, and poorly-understood Galactic x-ray sources. As discussed in

Chapter 5, the resampling algorithm improves all kinds of CW searches and plans

are already in place to use it to search for GWs from a broad class of potential

GW sources.
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