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Summary of thesis

The focus of this work is the attempt to detect gravitational waves emitted by
compact binary coalescences (CBCs) using gravitational wave interferometers. We
begin by reviewing the basic theory of gravitational waves and the methods for
their detection, focusing on CBCs. We also briefly describe the laser interferome-
ters that are being used to attempt to detect gravitational radiation.

We describe in detail the search pipeline that has been used to search for gravi-
tational waves emitted from CBCs in data taken by the LIGO and Virgo detectors.
We present the latest results of the all-sky, all-time search and electromagnetically
triggered searches. We introduce a fully coherent, multi-detector analysis that can
be used to search for CBC signals in coincidence with electromagnetically observed
events. Using a number of signal consistency tests, including a coherent exten-
sion of the often used χ2 test, we demonstrate that the coherent search offers an
improvement in sensitivity when compared to the previous search method. Addi-
tionally we describe an extension of the coherent search that can be used to search
for CBC signals where one of the components has spin. This method is well suited
to searches for neutron star, black hole binaries.

We introduce a “stochastic” algorithm that can be used to create template
banks in arbitrary parameter spaces of arbitrary dimension. We demonstrate this
method in a search for super-massive CBCs in the mock LISA data challenge.
Finally, we present the black hole hunter game, which has been widely used in
outreach projects.
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∂

∂xµ
(2)

The Cristoffel symbol is given by:

Γρµν =
1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) (3)

The Riemann tensor is defined as:

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµαρΓ

α
νσ − ΓµασΓανρ (4)

The Ricci tensor is:
Rµν = Rα

µαν (5)

and the Ricci scalar is:
R = gµνRµν , (6)

where gµν denotes the metric tensor of 4 dimensional spacetime.
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Chapter 1

Introduction

At the beginning of the 20th century Albert Einstein published a series of papers,

formulating his general theory of relativity, which revolutionized humanity’s un-

derstanding of gravity. [10, 11, 12]. This theory suggests that gravity should not

be considered a force, as in classical mechanics, but instead as an effect of the ge-

ometry of 4-dimensional space-time. It might appear that bodies are accelerated

by a gravitational force but instead Einstein’s theory suggests such bodies are

travelling along straight line paths, geodesics, in space-time. In most situations,

general relativistic gravity behaves identically to Newtonian gravity. However,

some predictions of general relativity differ significantly.

One of the predictions of general relativity that differed from classical mechan-

ics was that photons interact with gravity. This was also the first new prediction to

be experimentally verified. Photons passing through a strong gravitational field

might be deflected noticeably. This prediction was verified by Arthur Stanley

Eddington in 1919 [13]. He observed the positions of stars in the Hyades cluster

during a solar eclipse. These stars, which appeared very near to the Sun’s position

in the sky at the time of the eclipse, were observed to be shifted slightly from their

normally observed positions. This shift was in agreement with the predictions of

general relativity. General relativity has since passed every experimental test to

which it has been subjected.

Another prediction of Einstein’s theory is the existence of gravitational waves.

This gravitational radiation is emitted by accelerating masses, in a similar manner

to how accelerated charged particles emit electromagnetic waves. There is strong

observational evidence of the emission of this gravitational radiation in binary sys-

tems that are losing energy, almost certainly through gravitational wave emission,

as we describe in section 2.3.

Scientists have been trying to directly observe gravitational radiation for the
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last 50 years. However, even the strongest sources of gravitational radiation would

produce waves that, by the time they reach Earth, would induce strains1 no bigger

than 10−22. Thus, it is not surprising that a direct observation of a gravitational

wave has yet to be made. Nevertheless, there has been excellent progress towards

gravitational wave astronomy over recent years. The first generation of large scale

gravitational wave interferometers reached unprecedented sensitivities and have

undertaken extended science runs. The U.S. Laser Interferometer Gravitational-

wave Observatory (LIGO) [14], the French–Italian Virgo [15] and the German–

British GEO600 [16] detectors now form a collaborative network of interferometers.

The data from LIGO’s fifth science run (S5) and Virgo’s first science run

(VSR1) has been analyzed for gravitational waves from compact binary coa-

lescence [3], stochastic background [17], unmodelled burst [18] and pulsar [19]

sources. LIGO’s sixth science run (S6) and Virgo’s second and third science

runs (VSR2 and VSR3) ended in October 2010 and yielded the most sensitive

data yet taken; the analysis of this data is ongoing. In the meantime, the de-

tectors are being upgraded to their advanced configurations [20, 21, 22], with the

expectation of a ten-fold improvement in sensitivity. With these sensitivities, it

is expected that gravitational waves will be observed regularly [23]. Furthermore,

with a proposed advanced detector in Japan [24], a possible detector in Australia

[25], and 3rd generation detectors on the horizon [26], the future of gravitational

wave astronomy is promising. There is even an ambitious plan to launch an in-

terferometer into space, called the Laser Interferometer Space Antenna (LISA)

[27].

As the gravitational wave community matures it is essential that a relationship

is built between gravitational wave (GW) and electromagnetic (EM) astronomers.

The GW emission from a source is likely to provide complementary information

to emission in various EM bands, and a joint observation is significantly more

likely to answer outstanding astrophysical questions. Already this relationship is

beginning to mature. A number of EM transients have already been followed up

in GW data [5, 4, 28]. Additionally, infrastructure is also being put in place to

allow for EM follow-up of GW observations [29].

One of the most promising sources of gravitational waves are compact binary

coalescences (CBCs). As two compact objects orbit each other they will lose

energy due to gravitational radiation. This loss in energy will cause the orbit to

decay and the objects will eventually merge. As the objects near merger the energy

1Strain is defined as a fractional change in length. For a gravitational wave detector with
4km arms, a strain of 10−22 would translate to an variation in length of 10−17m.
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release and thus rate of decay of the orbit also increases. The gravitational wave

signal emitted by such a merger is often described as a “chirp”; the amplitude

and frequency of the signal increases rapidly before the component bodies merge.

Searches for CBC signals originating at any time, from any direction and with any

orientation have been carried out in data from S5 and VSR1 [1, 2, 3].

CBCs are also an ideal candidate for joint GW-EM astronomy. CBCs contain-

ing at least one neutron star (NS) are expected to emit electromagnetically. Specif-

ically, binary neutron stars (BNS) and neutron star–black hole binary (NSBH)

mergers are the preferred progenitor model for the short gamma-ray burst (GRB)

[30, 31]. It is also possible that these mergers will be observable electromagneti-

cally as orphan afterglows [30], optical [32] or radio transients [33]. Since GRBs

are well localized both in time and on the sky by EM observations, the corre-

sponding GW search can be simplified by reducing the search volume relative to

an all-sky, all-time search. Targeted searches for CBC waveforms associated to

short GRBs were performed using data from S5 and VSR1 [5, 4].

The focus of this thesis is the analysis of data taken from gravitational wave

interferometers to try to detect CBCs. We discuss a number of aspects of this

effort in the various chapters. After giving some necessary background theory we

describe the existing all-sky search and targeted search in detail. These searches

use a “coincidence” technique in which data from each of the detectors is analysed

separately before searching for any potential signal that is seen in coincidence

between the detectors. We then describe an alternative technique, the coherent

search method. We demonstrate that this method offers an improvement in sen-

sitivity over coincidence and apply the technique to the targeted search.

Current search methods only utilize template waveforms that do not include

spin effects. This can mean that such searches are not sensitive to certain systems

where spin has a major effect on the dynamics. We describe how a search can

be performed using template waveforms that include spin, but no precessional

effects. We also discuss how to perform a search using single spin templates with

precession and extend this search to use the coherence technique.

The current searches use a geometrical algorithm to create template banks

to cover the desired range of masses. However, it is not clear how to create a

template bank in higher dimensional parameter spaces, such as for the case of

spinning searches where templates must cover the additional spin parameters as

well as the masses. We present a “stochastic” template placement algorithm, which

can be used to create template banks in arbitrary parameter spaces of arbitrary

dimension. We apply this method to the case of searches for super massive black
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hole binaries with LISA, which requires a 5 dimensional template placement.

The layout of this thesis is as follows. In chapter 2 we give a very brief intro-

duction to gravitational wave theory and gravitational wave interferometers. In

chapter 3 we discuss the nature of gravitational wave emission from CBCs and in

chapter 4 we discuss the current, coincidence, searches for CBC signals. In chap-

ter 5 we discuss a “coherent” search method, which could be used to search for

CBC signals associated with GRBs. In chapter 6 we discuss methods for detecting

CBC signals incorporating spin. In chapter 7 we discuss a “stochastic” template

placement algorithm, applicable to any parameter space. This method is applied

to searches for super-massive CBC signals in chapter 8. Finally, in section 9 we

discuss the “black hole hunter” game and how it has been used in outreach projects

around the world.
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Chapter 2

Gravitational waves and

interferometers – the basics

The main focus of this thesis is the effort to detect compact binary coalescences

(CBCs) through gravitational wave observations. Before exploring this topic, it

is useful to briefly discuss gravitational waves, their emission mechanism and the

large interferometric detectors that are being used to attempt to detect them. In

this chapter we give a broad overview of these subjects, but it is not intended to

be a detailed description of the concepts discussed herein. If the reader wishes a

comprehensive introduction to gravitational wave theory we would refer them to

[34, 35, 36]. For a detailed description of how modern interferometric gravitational

wave detectors operate we refer the reader to [37].

In this chapter we begin by introducing the basic concepts of gravitational

radiation in section 2.1. In section 2.2 we briefly discuss astrophysical phenomena

that may emit gravitational waves that are powerful enough to detect on the

Earth. In section 2.3 we discuss the observational evidence for gravitational wave

emission from binary systems. Finally, in section 2.4 we discuss gravitational wave

interferometric detectors.

2.1 Gravitational radiation

In this section we will give a brief introduction to gravitational radiation. We will

begin with Einstein’s equations and describe how the existence of gravitational

waves can be inferred. We will discuss how gravitational waves interact with

matter and describe the mechanism by which gravitational waves are generated.

This overview of gravitational radiation is included to provide a foundation

to many of the later chapters, but is far from a comprehensive description of the
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subject. For readers seeking more information, we refer them to [34, 35, 36], from

which we drew heavily when writing this chapter.

2.1.1 Einstein’s equations

Einstein’s equations are a set of 10 equations that underpin Einstein’s theory of

general relativity. They describe gravity in terms of the curvature of spacetime

due to matter and energy. In the standard tensor notation they are given as

Rµν −
1

2
gµνR = 8πTµν (2.1)

where Rµν is the Ricci tensor, R the Ricci scalar and gµν the metric tensor of 4

dimensional spacetime as defined in the opening conventions. Tµν is the stress

energy tensor, which describes the density and flux of matter (or energy) and

momentum. The components of this tensor can be understood in the following

way [35]:

• T00 is the energy (or relativistic mass) density.

• T0i = Ti0 is the energy flux in the ith direction, or the density of i-momentum.

• Tij is flux of i momentum in the j direction.

We note that Einstein’s equations describe 10 equalities, rather than the 16 ap-

parent. This is because Rµν , gµν and Tµν are all symmetric.

2.1.2 Linearized gravity

To simplify Einstein’s equations we can consider the case where there is only a

weak gravitational field. The space time metric gµν can then be written as the sum

of the Minkowski tensor ηµν and some small perturbation due to the gravitational

field, hµν

gµν = ηµν + hµν . (2.2)

To describe the gravitational field as weak we demand that the magnitude of all

components of the perturbation are much less than unity

|hµν | � 1. (2.3)

Einstein’s equations can then be linearized by discarding all terms that are second

order or higher in hµν . It is straightforward to show that the left side of Einstein’s
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equations are simplified in the weak field limit according to

Rµν −
1

2
gµνR =

1

2

(
∂σ∂µh̄σν − ∂σ∂σh̄µν + ∂ν∂

αh̄µα − ηµν∂α∂βh̄αβ
)

(2.4)

where h̄µν is defined as the “trace reverse” of hµν

h̄µν = hµν −
1

2
ηµνh

α
α. (2.5)

We note that the indices of hµν can be raised or lowered by a multiplication

with ηµν

hαβ = ηαµηβνhµν , (2.6)

this will be used in many of the derviations that follow.

2.1.3 Gauge transformations

At this point it is useful to consider the gauge freedoms present in the weak field

Einstein’s equations. We can apply small coordinate translations to the perturbed

spacetime while still keeping the metric perturbations small. Consider for example

the coordinate transformation

x′µ = xµ + ξµ(x). (2.7)

The metric in the new coordinate system will transform according to

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) = ηµν + h′µν . (2.8)

Any coordinate transformation of this form is valid as long as the weak field theory

still holds in the new coordinates

|h′µν | � 1. (2.9)

In addition to small coordinate translations, Lorentz rotations of the coordinate

system are also permitted

x′µ = Λµ
νx

ν . (2.10)

Where Λµ
ν must satisfy

Λµ
ρΛν

σηρσ = ηµν (2.11)
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and is independent of x. Under this transformation the metric becomes

g′µν(x) = ηµν + Λµ
ρΛν

σhρσ(x). (2.12)

These gauge freedoms can be utilized to choose a coordinate system that will

help to express the weak field equations in a simplified form. By examining equa-

tion (2.4) one can see that it would be simplified if we were to transform to a set

of coordinates in which

∂ν h̄µν = 0. (2.13)

It can be shown [36] that one can always perform a coordinate transformation

of the kind described in equation (2.7) to acheive this condition. In this Lorentz

gauge Einstein’s equations are simplified to

�h̄µν = −16πT µν . (2.14)

2.1.4 Gravitational waves in vacuum

Let us now consider the weak-field equation far from any source of mass or energy,

such that Tµν = 0. This simplifies equation (2.14) to

�h̄µν = 0, (2.15)

which is the well known wave equation. This is solved by the plane wave equation

h̄µν = Aµνeikαx
α

, (2.16)

where Aµν is a matrix with constant components and kα is the wave vector kα =

(ω, ki), satisfying

kαkα = 0. (2.17)

Thus, the propagation of gravitational radiation as plane waves is permissible in

Einstein’s general relativity.

From equation (2.17), it can be seen that ω2 = |ki|2. As we have generically

|ki| = ω/v we can see that gravitational radiation must propagate at a speed

v = 1. Therefore, this implies that gravitational waves will travel at the speed of

light. Additionally, applying the Lorentz gauge condition given in equation (2.13)

to the wave equation gives kµA
µν = 0. This implies that gravitational waves are

transverse.
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2.1.5 The transverse traceless gauge

We have made use of the Lorentz gauge to demonstrate that gravitational radiation

will propagate in a vacuum as transverse plane waves at the speed of light. There

are however, further gauge freedoms that can be used to further simplify the form

of hµν . These gauge freedoms can always be used to choose a coordinate system

[36, 35] in which

h̄0i = 0 (2.18a)

h̄µµ = 0. (2.18b)

The first of these conditions, combined with the Lorentz gauge, will also imply

that h̄00 will have no time or spacial dependance. While equation 2.15 does allow

there to be constant terms in h̄µν , for the case of gravitational waves these can be

ignored and we can treat h̄00 = 0. The second condition serves to set the trace of

h̄µν to 0. In this case h̄µν = hµν . This is commonly referred to as the “transverse

traceless” (TT) gauge.

Finally, consider a gravitational wave propogating in the z direction, hµν can

be written in the TT gauge as

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (2.19)

Where we have defined

h+ = A+ cos (ωt− ωz + φ0) (2.20)

h× = A× cos (ωt− ωz + φ0) . (2.21)

It can be seen that the metric perturbation hµν is now expressed in terms of only

two independent components. A+ and A× are the complex amplitudes of the two

components. φ0 is some constant phase offset. Note that here we consider only

a monochromatic gravitational wave; however a gravitational wave with a time

dependant frequency, or a number of coincident gravitational waves are also a

solution.

Thus, despite the fact that Einstein’s equations consist of 10 equalities, we

have demonstrated that gravitational radiation can be expressed in terms of only
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two independent components. These components are referred to as the + (plus)

and × (cross) components of gravitational radiation.

2.1.6 Gravitational wave interactions

In equation (2.19) we demonstrated that, by fully utilizing the available gauge free-

dom to set the coordinate system, a gravitational wave can be expressed in terms

of two independent components. Here we examine how a passing gravitational

wave will distort spacetime.

We begin by considering the effect of a gravitational wave passage on a particle

as observed in the transverse traceless coordinate system. It can be shown [36]

that in the TT coordinate system a particle initially at rest will remain at rest

during the passage of a gravitational wave. However, this is simply an effect of the

TT gauge; we have chosen a coordinate system such that this will be the case. It

would be more physically meaningful to calculate a coordinate invariant quantity

such as how the proper distance changes during the passage of a gravitational

wave. To do this let us first write down the equation defining the interval ds2 in

the TT gauge (with the direction of propagation of the wave the z direction).

ds2 =− dt2 + dz2 + (1 + A+ cos (ωt− ωz + φ0)) dx2 (2.22)

+ (1− A+ cos (ωt− ωz + φ0)) dy2 + 2A× cos (ωt− ωz + φ0) dxdy.

If we then consider two particles at positions (x1, y1, 0) and (x2, y2, 0) the proper

distance between them at some arbitrary time t would be given by

ds2 = (1 + A+ cos (ωt− ωz)) (x1 − x2)2 + (1− A+ cos (ωt− ωz)) (y1 − y2)2

+ 2A× cos (ωt− ωz) (x1 − x2) (y1 − y2) . (2.23)

It is clear to see that this quantity is time dependent. Take for example the

simplification that y2 − y1 = 0 this equation would become

ds2 = (1 + A+ cos (ωt− ωz)) (x1 − x2)2 , (2.24)

and the proper distance is

ds ≈
(

1 +
1

2
A+ cos (ωt− ωz)

)
(x1 − x2) , (2.25)

where we have used the fact that in the weak field limit A+ � 1. To visualize
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this, we demonstrate in Figure 2.1 how the proper distances between a ring of

particles would deform in the presence of a gravitational wave containing only the

+ and × components respectively. We can see that the + and × components are

interchangeable under a 45◦ rotation.

Figure 2.1: The deformation of a ring of particles due to the passage of a +
polarized gravitational wave (top) and a × polarized wave (bottom), propagating
in the z direction. From left to right we show the 0, π

2
, π and 3π

2
phases. The

unfilled circles denote the positions of the particles at the 0 phase. This Figure
was originally published in [38].

2.1.7 Gravitational wave emission in linearized gravity

In this section we investigate how gravitational waves would be emitted. We show

that, to leading order, gravitational waves are a form of quadrapole radiation. Fi-

nally, we give the form of h+ and h×, to dominant order, for a generic gravitational

wave source. In this section we follow very closely the approach taken in [36], we

refer the reader to this text for more detail, including a more detailed study of the
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higher order terms.

We again begin with Einstein’s equations in the weak-field limit,

�h̄µν = −16πTµν . (2.26)

Consider a source at the origin of the coordinates and a distant observer displaced

by n from the origin. The distance to the observer D is given by D = |n|. It

is shown in [36] that we can find a solution to Einstein’s equations by using the

Green’s function for the wave equation, this will give us

h̄µν(t,n) = 4

∫
d3x

1

|n− x|Tµν (t− |n− x|,x) . (2.27)

Where x describes the spatial coordinates of the mass elements generating the

gravitational radiation.

We wish to simplify equation (2.27) to understand under what conditions grav-

itational waves would be emitted. As long as an observer is distant from the source

such that |n| � |x|, we can expand the quantity |n− x| as

|n− x| = D − x · n̂ +O

(
r2

D

)
. (2.28)

Where r is the typical size of the source. Thus we rewrite equation (2.27) as

h̄µν(t,n) =
4

D

∫
d3xTµν (t−D,x) . (2.29)

Here we have kept only dominant order terms in |n − x|. This can be simplified

further by using the TT gauge. In this gauge h0µ = 0 and h00 is constant. We can

therefore drop the timelike components and restrict ourselves to

hTTij (t,n) =
4

D
Sij(t−D). (2.30)

Where the first moment of the stress tensor T ij, is defined as

Sij(t) =

∫
d3xT ij (t,x) . (2.31)

To gain insight into the physical meaning of Sij it is useful to re-express it in terms

of T 00 (the energy density) and T 0i (the momentum density) instead of T ij. We
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therefore define

M(t) =

∫
d3xT 00 (t,x) , (2.32a)

M i(t) =

∫
d3xT 00 (t,x)xi, (2.32b)

M ij(t) =

∫
d3xT 00 (t,x)xixj, (2.32c)

where these three quantities are respectively, the mass monopole, mass dipole,

and mass quadropole moments. There are of course higher order terms but we

don’t consider them here. We note that in linearized gravity the mass monopole

is interpreted as the total mass of the source. We can also write the momentum

monopole and dipole as

P i =

∫
d3xT 0i (t,x) , (2.33a)

P ij =

∫
d3xT 0i (t,x)xj. (2.33b)

Again we note here that in linearized gravity P i is interpreted as the total mo-

mentum of the system. To express Sij in terms of the mass multipole moments

we make use of a consequence of the Lorentz gauge condition, ∂µT
µν = 0, and the

divergence theorem to obtain the following identities [36]

Ṁ = 0, (2.34a)

Ṁ i = P i, (2.34b)

Ṁ ij = P i,j + P j,i, (2.34c)

Ṗ i = 0, (2.34d)

Ṗ i,j = Sij, (2.34e)

(2.34f)

From these equations, as well as the fact that Sij = Sji we obtain the identity

M̈ ij = 2Sij. (2.35)

This shows that, as Sij is the leading term in the expansion of hij, gravitational

wave radiation has no monopole or dipole component and the leading order term

is the quadropole moment.

If we were to evaluate hij to higher order in |n − x| we would discover that
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gravitational waves have higher order components coming from the mass octopole

and higher order moments. We refer the reader to [35, 36] for a discussion of these

higher order terms. We will, in this work, restrict ourselves to considering only

the dominant quadropole term. The equation for hij is then written as

hTTij (t) =
2

D
M̈ij (t−D) . (2.36)

Thus, the h+ and h× components are given by

h+ =
1

D

(
M̈11 − M̈22

)
(2.37)

h× =
2

D
M̈12. (2.38)

To obtain these equations we have assumed that M̈ij is evaluated in the transverse-

traceless frame, with the gravitational radiation propagating along the z direction.

This is commonly called the “radiation frame” whose basis vectors we denote as

x̂i. However, it is often easier to evaluate M̈ij in a different frame, for example

when considering a binary system it is useful to define a “source frame” in which

the binaries orbit in the x′-y′ plane. We denote the basis vectors in the source

frame as x̂′i.

To understand the relationship between the source and radiation frames let us

consider this geometrically. Two angles are needed to rotate the source frame into

a frame in which the radiation is travelling in the z direction. This is illustrated in

Figure 2.2. We note that normally there would be three rotation angles involved in

such a transformation. Here the third rotation would correspond to the freedom to

rotate the x-y plane of the radiation frame. For now, we arbitrarily set this angle

to 0 for simplicity. This condition ensures that the x direction in the radiation

frame points in the plane defined by the x′ and y′ directions in the source frame.

Explicitly, the radiation frame is related to the source frame as x′

y′

z′

 =

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 1 0 0

0 cos ι − sin ι

0 sin ι cos ι


 x

y

z

 (2.39)

 x′

y′

z′

 = R

 x

y

z

 (2.40)
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Figure 2.2: An illustration of the angles that describe the relationship between
the source and radiation frames. Figure originally published in [38].

where the angles, (ι, ϕ) are defined in Figure 2.2. M ′
ij is then related to Mij by

M ′
ij = RkiMklRlj. (2.41)

Thus, in the radiation frame we can write the h+ and h× components of the

gravitational radiation as

h+ =
1

D

[
M̈ ′

11

(
cos2 ϕ− sin2 ϕ cos2 ι

)
+ M̈ ′

22

(
sin2 ϕ− cos2 ϕ cos2 ι

)
− M̈ ′

33 sin2 ι− M̈ ′
12 sin 2ϕ

(
1 + cos2 θ

)
+ M̈ ′

13 sinϕ sin 2ι+ M̈ ′
23 cosϕ sin 2ι

]
(2.42a)

h× =
1

D

[(
M̈ ′

11 − M̈ ′
22

)
sin 2ϕ cos ι+ 2M̈ ′

12 cos 2ϕ cos ι

− 2M̈ ′
13 cosϕ sin ι+ 2M̈ ′

23 sinϕ sin ι

]
. (2.42b)

2.1.8 Power radiated as gravitational waves

Finally, we wish to examine the total power that would be radiated by a source

emitting gravitational waves. This can be calculated by determining an effective

stress energy tensor due to the gravitational radiation itself. The energy flux in a

given direction can then be determined. This flux can be integrated over all sky

angles to give the total energy radiated. The power radiated by a gravitational
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wave is then given as [36]

dE

dt
=

1

16π

∫
dΩ〈ḣ2

+ + ḣ2
×〉. (2.43)

The angle brackets represent that this quantity is averaged over time. In [36] it

is demonstrated that this integral can be evaluated to give the following equation

for the emitted gravitational wave power

dE

dt
=

1

5
〈 ...M ′

ij

...
M
′ij − 1

3
(δkl

...
M
′
kl)

2〉. (2.44)

2.2 Gravitational wave sources

In this section we briefly discuss the different classes of physical sources that are

likely to generate gravitational waves of sufficient amplitude to be detectable by

current or theorized gravitational wave detectors. As this work focuses on grav-

itational wave data analysis from compact binary objects we discuss this source

more comprehensively in chapter 3.

2.2.1 Transient sources

A transient or burst source is the name given to an event that releases a large

amount of gravitational energy over a very short period of time, typically less

than a few seconds. Astrophysical events that are believed to result in a burst of

gravitational waves include gamma ray bursts and supernovae explosion as well

as the final stages of a coalescing binary [39, 40, 41, 42].

When performing a search for burst sources nothing is assumed about the form

the gravitational radiation will take, only that the gravitational signal will be of

short duration. Therefore, transient gravitational wave sources could be detectable

even if the source is an object we haven’t discovered or predicted as of yet.

For details of recent searches for burst sources see [28, 43, 44, 45].

2.2.2 Compact binary objects

We will demonstrate in chapter 3 that two compact binary objects orbiting around

each other will emit energy in gravitational waves. This emission of energy will

cause the orbital radius of the system to decay until the two objects eventually

coalesce. When the system nears coalescence the power and frequency of the

emitted gravitational energy will increase, producing a distinctive chirp-like signal.
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A binary neutron star system at a distance of 10Mpc would produce an observed

gravitational wave amplitude, near merger, of order 10−21, as we derive in section

3.2.6.

Searches for compact binary coalescences are similar to unmodelled burst

searches. However, the fact that the form of the gravitational radiation can be

predicted allows a more sensitive search to be performed. As we will explore in

later chapters, knowing the form of the signal that is being searched for allows

powerful matched filtering techniques and signal consistency tests to be used in

the attempt to detect such signals.

The majority of this thesis is devoted to the quest to detect compact binary

coalescence (CBC) signals.

2.2.3 Periodic sources

A periodic source is a source that emits a continuous, almost monochromatic

gravitational wave. These sources should be present throughout the operational

lifetime of a detector, so the greater the observation time, the better the sensitivity

to periodic sources becomes. The periodic source of most interest to gravitational

wave astronomers is that of a rapidly spinning, slightly spherically asymmetric

neutron star

Such spinning neutron stars will lose energy and spin down over time [46].

This energy loss is due to a number of different mechanisms, including emission of

gravitational radiation [47], though the fraction of energy emitted as gravitational

waves is unclear. To motivate gravitational wave searches for spinning down pul-

sars we can consider the Crab pulsar. This pulsar provides the best opportunity

to detect continuous gravitational waves with current gravitational wave interfer-

ometers [47]. In the extremal case where all the spin down energy is radiated as

gravitational radiation the Crab pulsar would produce a gravitational strain am-

plitude of of 1.4× 10−24 [47]. Although this is below the detector noise floor, the

source can be observed over a timescale of months or years, therefore it is within

the observational limits of the detectors.

Indeed, in [47] an extended period of observation with the LIGO detector

placed upper limits on gravitational radiation from the Crab pulsar, which imply

that less than 6% of the spin down energy of the Crab is emitted as gravitational

waves. For more details on periodic gravitational wave sources, and the current

results of gravitational wave searches for these sources we refer the reader to

[46, 19, 48, 49] and references therein.
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2.2.4 Stochastic background

As the universe has background electromagnetic radiation, the cosmic microwave

background, so it is believed that at the very earliest moments of the universe a

stochastic background of gravitational waves was generated [50]. As well as the

cosmological gravitational wave background, there is expected to be stochastic

radiation emitted from indistinguishable gravitational wave sources, such as the

large number of white dwarf binaries in our galaxy. It is difficult however to

estimate how strong this stochastic radiation is likely to be and whether or not it

will be observable. Nevertheless, gravitational wave astronomers perform searches

in their data for stochastic gravitational wave radiation.

For more details on stochastic gravitational wave sources and searches we refer

the reader to [50, 17, 51, 52] and references therein.

2.3 Gravitational waves, the observational evi-

dence

Although it was mentioned in the opening paragraphs that we have not yet directly

observed a gravitational wave, we do have strong observational evidence for their

existence. In this section we will briefly examine this evidence.

2.3.1 The Hulse Taylor binary (PSR B1913+16)

The Hulse Taylor binary or PSR B1913+16 is a binary neutron star system, which

is named after it’s discoverers Joseph Taylor and Russell Hulse. It is the most

famous observational evidence for the existence of gravitational waves and won

Hulse and Taylor the 1993 Nobel prize for physics. One of the objects is directly

observed as a pulsar, with pulse period of 59ms and, from measurements of the

variation of the arrival time of the pulses, it is inferred that the other object must

also be a neutron star [53].

From conservation of energy, it follows that if a system is emitting energy in

the form of gravitational waves, then the system must be losing energy itself. In

the case of a binary system we would expect the system to slowly lose rotational

energy as it emits gravitational waves. This loss of energy can be observed by

measuring the time of periastron of the system over a long period of time. If

the system is losing energy, the orbital radius is expected to decrease and thus

the orbital period will also decrease in agreement with Kepler’s third law. Such
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Figure 2.3: The cumulative shift of periastron time of the Hulse-Taylor binary
as a function of time. As can be seen the observations fit exactly the predictions
made by general relativity. The horizontal bar at y = 0 shows the prediction from
Newtonian gravity. This Figure is taken from [54].

observations of this system have been taken between 1975 and the present, the

results of which, shown in figure 2.3, clearly show agreement with the predictions

of general relativity and the emission of gravitational waves [54]. The difference

between the predicted and observed energy loss is quoted as (0.13±0.21)% in [54].

2.3.2 PSR J0737-3039

The observational evidence from the Hulse-Taylor binary strongly indicates that

this system is emitting gravitational waves. Since then a handful of other similar

systems have also been observed to show the same behaviour, all agreeing with

Einstein’s theory of general relativity [55, 56]. The best evidence we have to date

comes from a system called PSR J0737-3039 [56].

PSR J0737-3039 is a system consisting of two neutron stars, but here, uniquely,

both objects are observed directly as pulsars and their orbit is oriented almost face

on. This allows the dynamics of this system to be observed to a greater degree of

accuracy than is possible with other binary systems and general relativity to be

tested in a number of ways. Measurements of this system have allowed astronomers

19



to accurately determine the gravitational redshift, time dilation parameters and

Shapiro-time delay parameters as well as the rate of change of periastron. All

observations have been fully consistent with the predictions of general relativity

[56]. In [56] it is quoted that observations of this system agree with general

relativity with a error of only 0.05%.

2.4 Gravitational wave detection with laser in-

terferometers

The history of gravitational wave detectors stretches back almost 50 years to the

1960’s. The first gravitational wave detector was a resonant bar detector built

by Joseph Weber. In the following years the sensitivity of these bar detectors has

increased, but still has not reached a level where they will be able to detect a source

outside of the galaxy and its nearby surroundings. For a detailed explanation of

resonant bar detectors we refer the reader to [36].

The last ten to fifteen years have seen the development and operation of a

different kind of gravitational wave detector, the large scale laser interferometer.

These massive instruments, requiring large collaborations of people to operate,

are beginning to reach sensitivity levels in which detection of gravitational waves

becomes possible.

In section 2.4.1 we begin by discussing the basic operation of a laser inter-

ferometer, in sections 2.4.2 and 2.4.3 we describe how an interferometer would

react to the passage of a gravitational wave. In section 2.4.4 we discuss current

interferometers and in sections 2.4.5 and 2.4.6 the noise sources that limit their

sensitivities. Finally, we discuss next generation interferometers in section 2.4.7

and a proposed space-based detector in section 2.4.8.

2.4.1 A simple description of laser interferometers

The Michelson interferometer dates back to 1887, when it was famously used to

show the non-existence of the aether. A Michelson laser interferometer consists of

two equal length arms (ideally) oriented at a 90° angle with lasers running along

the length of the arms. The principle of the detector is as follows.

• Laser light is emitted at the centre of the “L” shape and split using a beam

splitter.
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• The light then travels along each of the arms and is reflected by mirrors at

the end of each arm.

• The light passes back down the arms and recombines at the beam splitter.

• Some of this recombined light will then be directed toward a photodiode

(while the rest will travel back toward the laser).

The idea is that if gravitational radiation causes the relative light travel time

up and down the arms to vary, the laser light being recombined will have a time

varying phase offset. Thus by observing this phase offset the change in path length

between the two arms can be measured. This is illustrated in figure 2.4.

Figure 2.4: An illustration showing the principle components of a gravitational
wave interferometer.

To try to demonstrate how this might work in practice let us consider a simple

example given in [37]. We begin by considering the electric field of the input laser

light as

Einput = E0e
iωt−ik·x, (2.45)

where ω is the angular frequency of the light and k is the wave vector. E0 denotes

the amplitude of the laser light. Consider the beam splitter to be at x = 0. As

the beam splitter will send equal power up each arm, we can denote the light,

transmitted by the beam splitter and travelling down the x arm as having an

electric field given by

Ex =
E0√

2
eiωt−i|k|x. (2.46)
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The electric field reflected by the beam splitter and travelling down the y arm will

have an electric field given by

Ey = i
E0√

2
eiωt−i|k|y, (2.47)

where 1/
√

2 is the trasmission coefficient and i/
√

2 the reflection coeffiecient.

At the end of each arm the light is reflected. Thus the x and y light returning

to the beam splitter is given by

Ex =
E0√

2
eiωLt−i2kLx (2.48)

Ey = i
E0√

2
eiωLt−i2kLy , (2.49)

where Lx and Ly denote the path length along the x and y arms respectively. The

light combining at the beam splitter will again be reflected or transmitted. Thus,

the light exiting the beam splitter toward the photodetector is given by

Eout = i
E0

2

(
eiωLt−2kLx + eiωLt−2ikLy

)
. (2.50)

With some manipulation this can be written as

Eout = iE0e
iωLt−k(Lx+Ly) cos (k(Lx − Ly)) . (2.51)

Since the power of a beam of light is proportional to E2 we can see that

Pout ∝ 1 + cos (2k(Lx − Ly)) . (2.52)

Thus any variation of the relative path length of the arms would cause a variation

in the power incident on the photodiode. Or, if the power incident on the photo-

diode varies with time, it implies that the relative path length of the two arms is

varying.

In this section we have only given a very simplistic description of how an

interferometer works. For a more comprehensive description of the operation of

modern interferometers and the methods used to increase sensitivity see [37, 36].

2.4.2 Response of an interferometer to a gravitational wave

In this subsection we will consider how an interferometer reacts to the passage of a

gravitational wave. Consider a gravitational wave detector with two equal length
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arms pointing along the x and y directions interacting with a gravitational wave

propagating in the z direction. We can calculate the light travel time up each of

the arms by using the fact that for light ds2 = 0. Thus for the x axis

0 = −dt2 + (1 + h+)dx2 (2.53)

From integration, the light travel time up the arm is given by,

tx = L0 +

∫ L0

0

h+dx
2, (2.54)

where L0 is the length of the arm when no gravitational wave is incident on the

detector and we have ignored terms that are second order in h+. The integral on

the right of this equation is easily evaluated if we assume that h+ does not vary

significantly during travel up and down the arm. This is a fair assumption for the

realistic case of an interferometer with 4km arms and a gravitational wave with

100Hz frequency. The light travel time to travel up the x arm is then given by

tx = L0(1 + h+). (2.55)

Similarly the light travel time down the arm is evaluted in the same way and has

the same value. However, the light travel time up the y arm is given by

ty = L0(1− h+). (2.56)

The difference in the light travel time to go up each arm and back to the beam

splitter is then given by

∆t = 4L0h+. (2.57)

Therefore as h+ varies, the relative light travel time up the two arms will also

vary. This will then cause variations in the power observed at the photodetector,

allowing us to directly observe the variation in the gravitational field. We note

that in the case described, the change in light travel time has no dependance on

h×. Thus, a single gravitational wave detector is only sensitive to one polarization

of gravitational waves.

There is, however, a large gap between this simple explanation and a gravita-

tional wave interferometer capable of detecting gravitational radiation with am-

plitude |h| ∼ 10−22. For example consider a gravitational wave detector with 4km

arms and a 500nm laser. To be able to acheive sensitivities to |h| = 10−22 the

detector would need to be sensitive to phase changes of order 10−12.

23



Figure 2.5: An illustration of the angles that describe the relationship between
the detector and radiation frames. Figure originally published in [38].

To acheive this level of sensitivity the operation of gravitational wave inter-

ferometers is much more complex than the description here. For example, Fabry-

Perot cavities are used to increase the effective path length of the laser light.

Power recycling techniques and high powered lasers are used to maximize the

power coming out of the beam splitter. A much more comprehensive description

of the operation of gravitational wave interferometers and the difficulties they have

to overcome can be found in [37, 36].

2.4.3 Sensitivity to different sky positions

Let us now consider a more generic case, where the detector is not aligned with

the radiation frame. To deal with this we simply perform a series of rotations on

the radiation frame to transform it into a frame where the x and y directions point

along the arms of the detector. We will refer to this frame as the detector frame.

The angles relating the detector frame to the radiation frame are shown in Figure

2.5. In words, the angles (θ, φ) give the sky location of the source relative to the

detector frame. These two angle translate us to a frame in which z points from

the source to the detector. A further angle, the polarization phase, ψ, is needed to

rotate the x and y axes of this frame into the radiation frame described in section

2.1.71. Equation (2.57) then becomes

∆t = 4L0h(t). (2.58)

1We note that an alternative definition of the radiation frame uses the polarization phase in
the translation between source and radiation frames instead of between detector and radiation
frames.
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where

h(t) = F+h+ + F×h×. (2.59)

In this formulation F+ and F× give the detector response to the h+ and h× com-

ponents respectively of the gravitational wave in the radiation frame. Explicitly

these are given by [57]

F+(θ, φ, ψ) = −1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (2.60a)

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ (2.60b)

2.4.4 Ground based interferometers

The last decade has seen the emergence of gravitational wave astronomy. The

Laser Interferometer Gravitational-wave Observatory (LIGO) scientific collabora-

tion has conducted two extended science runs, S5 and S6, taking gravitational

wave data at their design sensitivities. The LIGO detectors are situated in the

United States. One of these in Livingston, LA with a 4km armlength. The other

two detectors are housed in the same beam tubes in Hanford, WA; one with a

4km armlength and one with a 2km armlength. The 2km detector was not ac-

tive during S6. These “initial LIGO” detectors are now being decommisioned in

preparation for the “advanced” detectors as discussed in subsequent sections.

The Virgo scientific collaboration has conducted three science runs in coinci-

dence with the LIGO detectors using a 3km detector near Pisa in Italy. Virgo’s

first science run (VSR1) overlapped the end of LIGO’s S5 while Virgo’s second

and third science runs (VSR2 and VSR3) were conducted during S6. The Virgo

collaboration is currently planning a 4th science run before beginning construc-

tion of their “advanced Virgo” detector. The LIGO and Virgo collaborations have

been working together to jointly analyse their data since Virgo began VSR1.

In addition to LIGO and Virgo there is a 600m detector near Hannover in

Germany called GEO600, the operation and data analysis from this detector is

carried out in consortium with the LIGO detectors by the LIGO Scientific Collab-

oration (LSC). This detector, while not as sensitive as the others, is often used as

a prototype for new interferometer technology.

2.4.5 Interferometer sensitivities and noise sources

To be able to compare the sensitivities between these detectors and determine

what sources these detectors would be able to detect we have to consider sources of
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noise. There are many sources of noise which effect a gravitational wave detector,

but the ones that, in principle, dominate the limits of our sensitivity are

• Thermal noise: The various components of the interferometer, including the

mirrors will vibrate due to their thermal energy. This noise can be reduced

by employing mirrors which do not have resonance frequencies in the most

sensitive region. Alternatively the detector could be cryogenically cooled as

proposed in the LCGT project [24].

• Seismic noise: Vibrations of the ground will cause vibrations in the mirrors

of the interferometer, which will cause changes in the light travel time up

the arms. These vibrations can be caused by many things, including earth-

quakes, human activity and ocean waves. This noise can be limited by trying

to isolate the mirrors from the ground as much as possible using advanced

suspension systems.

• Shot noise: The number of photons seen at the photodetector in any interval

of time will be poisson distributed. This error in the photon count at any

time places a limit on the sensitivity. This noise source can be reduced

simply by increasing the power of the laser.

• Radiation pressure: Photons hitting the end mirrors exerts a pressure on

the mirrors. This noise source can be reduced by decreasing the power of

the laser, thus reducing the pressure. However, this will increase the shot

noise. A balance must therefore be reached between the radiation pressure

and the shot noise.

An illustration of how the different noise sources contribute to the sensitivity

of the detectors can be seen in Figure 2.6. Here the y axis shows the predicted

contribution of the various noise sources to the overall noise power spectral density

(PSD).

For real detectors the noise PSD is somewhat more complicated than the the-

oretical case described above. Many more noise sources will determine the PSD.

For a more detailed discussion of such noise sources we refer the reader to [37, 36].

Figure 2.7 compares the actual sensitivity of the LIGO,Virgo and GEO detectors

in 2006-2007.

We also refer the reader to the “Space Time Quest” game, which illustrates

how these different sources of noise will contribute to a detector’s sensitivity and

how they can be balanced, within a set budget [60]!
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Figure 2.6: An illustration of the sensitivity of current gravitational wave in-
terferometers, highlighting how different noise sources will determine the strain
sensitivity of the instrument. Figure originally published in [58].
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Figure 2.7: The various sensitivities of ground based detectors. The design
sensitivities for the LIGO and Virgo instruments are also shown. Figure originally
published in [59].
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2.4.6 Non-stationary transient noise sources

In the section above we described the stationary noise sources that describe the

sensitivity curve of gravitational wave detectors. However, the ability to detect

gravitational waves is often dominated by non-stationary transient noise sources.

Such transient noise sources can occur for a variety of reasons. Some of these are

well understood, for example it is known that a truck driving near the instrument

will generate ground motion, which couples to mirror motion. However, the reason

for a lot of non-stationary noise in gravitational wave interferometers is not well

understood. A large number of auxiliary monitors, such as seismometers, operate

around the detectors to attempt to determine the origins of such noise transients

and mitigate their effects.

Non-stationary transients or “glitches” are often mistakenly picked up by the

data analysis software as interesting events. We will spend a lot of time in the

subsequent chapters discussing methods for separating these glitches from gravi-

tational wave signals in the context of searches for CBC signals.

2.4.7 Next generation ground based interferometers

The LIGO detectors are currently being rebuilt to become the “advanced LIGO”

detectors [21]. This upgrade, which aims to reduce the effect of all sources of noise

and increase sensitivity by a factor of 10 over existing instruments, is planned to

be complete around 2014. Virgo will also soon be rebuilt and reconstructed as

Advanced Virgo with a similar increase in sensitivity [22]. In addition to this the

GEO detector is planned to be rebuilt as a detector with high sensitivity in the

kHz range [61].

As well as the planned upgrades to the LSC-Virgo detectors the Japanese

plan to build a cryogenically cooled detector LCGT in Japan [24]. An Australian

collaboration ACIGA has plans to build a large scale interferometer [25]. Finally,

a third generation of detectors designed to replace Advanced LIGO and Advanced

Virgo are already being considered, such as the Einstein Telescope (ET) [62].

2.4.8 Space based interferometers

The most ambitious gravitational wave detector currently under serious develop-

ment is a space based detector called Laser Interferometer Space Antenna (LISA).

LISA is planned to consist of three seperate spacecraft orbiting the Sun in such

a way that the three spacecraft will always form an equilateral triangle. This de-

tector would have an armlength of 5 million kilometers. The LISA constellation
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is planned to orbit the Sun at a distance of 1AU following the Earth’s orbit, trail-

ing it by 20°. Because of the lack of seismic noise and the greatly increased path

length of the lasers LISA will be able to achieve a sensitivity to gravitational waves

of a much lower frequency than those that ground based detectors could observe.

LISA’s sensitivity range would span from 100µHz to 100mHz (see figure 2.8). This

would allow this instrument to detect a different range of sources to those that

ground based detectors would observe. We discuss in more detail searching for

super massive black hole systems with LISA in chapter 8.

Figure 2.8: A diagram showing the predicted sensitivity curve of the proposed
space-based LISA detector. Figure originally published in [63].
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Chapter 3

Gravitational radiation emitted

by a compact binary coalescence

In this thesis we describe a variety of data analysis techniques that have been used

or can be used to search for compact binary coalescences (CBCs) using gravita-

tional wave interferometers. All of these techniques utilise matched filtering, which

we will describe in section 4.1.1. To acheive optimum sensitivity to CBC signals

when using matched filtering, the form of the signal, as seen by the gravitational

wave detectors, must be predicted as accurately as possible.

In this chapter we will derive the form of gravitational radiation emitted from

two inspiralling compact objects, to leading order in sections 3.2.1 to 3.2.4. We

will also derive the response of a gravitational interferometer to this radiation in

section 3.2.5. We discuss the Post-Newtonian (PN) approximation, which is used

to predict the phase evolution of inspiral systems beyond the dominant term in

section 3.3. We also discuss the effect of higher order amplitude terms in section

3.4. We will then mention the efforts in the numerical relativity community to

predict the gravitational radiation emitted during the merger and ringdown phases

of a CBC in section 3.5. Finally, we discuss waveform families that are used in

the analyses described in later chapters in section 3.6.

3.1 Common definitions

It will be useful to begin by describing the various quantities that are used in

defining a CBC system. These definitions will be used heavily in this and all the

following chapters. A CBC can be completely described by 17 physical parameters,

these are
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• The two masses, (m1,m2)

• The coalescence time of the signal at the detector, tc

• The sky location of the source, (θ,φ)

• The distance to the source, D

• The inclination angle, ι

• The coalescence phase, Ψc

• The polarization phase, ψ

• The spin of the two components, (S1,S2)

• The ellipticity of the system and the orbital phase of periastron at tc.

The masses of the system are often combined in a number of different ways, these

are given by

• The total mass, M = m1 + m2

• The chirp mass, M = (m1m2)3/5

(m1+m2)1/5

• The symmetric mass ratio, η = m1m2

(m1+m2)2

• The reduced mass, µ = m1m2

m1+m2
.

We also use the following definitions

• The orbital phase of the system, Ψ

• The phase of the dominant mode of the emitted signal, Φ = 2Ψ

• The orbital angular frequency, ω

• The frequency of the emitted signal, f

• The orbital radius of the system, r

• The vector describing the orbital angular momentum, LN .

Note that the frequency of the dominant component of the emitted signal will be

twice the orbital frequency, as we will show in section 3.2, thus ω = πf .
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3.2 Quadropole radiation, to dominant order, from

an inspiral

In section 2.1.7 we discussed the nature of gravitational wave emission in a generic

context. In section 2.4.2 we discussed how this generic gravitational radiation

would be observed in a interferometric gravitational wave detector on the Earth.

In this section we will apply these generic equations to the case of gravitational

wave emission from a compact binary inspiral.

3.2.1 Time domain waveforms in the radiation frame

We begin by modelling the compact binary inspiral, assuming that there is no

eccentricity and that the component bodies have no spin. Apart from CBCs

with extreme mass ratios, it is believed that as the system nears merger any

ellipticity that would have any effect on the system would have been radiated away

[64, 65, 66]. We will explore how the presence of spin will effect the dynamics of a

CBC in chapter 6. We also ignore the effects of, for example tidal effects in BNS

systems, by modelling the objects as two point masses.

Therefore we model the inspiral as two point masses orbiting in circular orbits

with no change in the direction of orbital angular momentum over time. We set

our coordinates such that there is no motion in the z direction and the x direction

is aligned with the orbital phase at t = 0

x(t) = r(t) cos

(∫ t

0

ω(t′)dt′
)

(3.1a)

y(t) = r(t) sin

(∫ t

0

ω(t′)dt′
)

(3.1b)

z(t) = 0. (3.1c)

The radius and frequency are time dependent due to energy loss to gravitational

waves in the system. To fit this into the generic form given in equation (2.42) we

need to calculate the second differentials of the second mass moment. The second

mass moment for two objects in orbit is given by [36]

M ij = µxi(t)xj(t). (3.2)
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If we differentiate this with respect to time twice we obtain

M̈11 = −M̈22 = 2µr2ω2 cos

(
2

∫ t

0

ω(t′)dt′
)

(3.3a)

M̈12 = −2µr2ω2 sin

(
2

∫ t

0

ω(t′)dt′
)

(3.3b)

M̈13 = M̈23 = M̈33 = 0, (3.3c)

where we assume that rω � ṙ. When this is not true the system is not really in

circular motion. Thus, by combining these expressions with equations (2.42a) and

(2.42b) we obtain the following expressions for h+ and h×

h+ =
2µω2r2

D

(
1 + cos2 ι

)
cos (Φ(t) + 2ϕ) (3.4a)

h× = −2µω2r2

D
2 cos ι sin (Φ(t) + 2ϕ) , (3.4b)

where the gravitational wave phase is defined as

Φ(t) = 2

∫ t

0

ω(t′)dt′. (3.5)

We now wish to simplify the equation by expressing r in terms of ω. To dominant

order, this is given by Kepler’s law

ω2 =
m1 +m2

r3
. (3.6)

We can then write h+ and h× as

h+(t) =
2

D
M5/3ω(t)2/3

(
1 + cos2 ι

)
cos (Φ(t) + 2ϕ) (3.7a)

h×(t) = − 2

D
M5/3ω(t)2/3(2 cos ι) sin (Φ(t) + 2ϕ) . (3.7b)

3.2.2 Energy loss in the system

Now we wish to investigate how ω varies with time, due to emission of gravitational

radiation causing energy loss in the system. Firstly, we must quantify how much

energy is being lost to gravitational waves. Equation (2.44) gives us a general

formula for the energy loss, to dominant order

dE

dt
=

1

5
〈 ...M ′

ij

...
M
′ij − 1

3
(δkl

...
M
′
kl)

2〉. (3.8)
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We then perform a further differentiation on equation (3.3) to obtain the third

differentials of the second mass moment

...
M11 = −M̈22 = −4µr2ω3 sin

(
2

∫ t

0

ω(t′)dt′
)

(3.9a)

...
M12 = −4µr2ω3 cos

(
2

∫ t

0

ω(t′)dt′
)

(3.9b)

...
M13 = M̈23 = M̈33 = 0. (3.9c)

The power radiated by the system is then calculated by inserting equation (3.9)

into (2.44). Using the assumption that for circular orbits 〈sin2 Φ(t)〉 = 〈cos2 Φ(t)〉 =
1
2

we get

P = −dEorbit
dt

=
32

5
(Mω)10/3 , (3.10)

which is the total radiated power of the system, to dominant order.

3.2.3 Phase evolution of the system

Now we have an expression for the radiated energy we can calculate how the

frequency will vary with time. Consider the total energy of the system

Eorbit = −m1m2

r
+
m1m2

2r
= −m1m2

2r

= −
(
M5ω2/8

)1/3
, (3.11)

differentiate this with respect to time and insert it into equation (3.10) to get

32

5
(Mω)10/3 =M5/3 1

3
ω−1/3ω̇. (3.12)

This formula can be rearranged to give the change in orbital frequency with respect

to time, ω̇, as

ω̇ =
96

5
M5/3ω11/3. (3.13)

The orbital angular frequency can then be expressed as a function of time, by

integrating this equation from a fiducial time t0 with fiducial frequency ω0

ω(t) =

(
−256

5
M5/3 (t− t0) + ω

−8/3
0

)−3/8

. (3.14)

From examination we can see that there will always be a time t when ω will

become infinite. For simplification let us take this as our fiducial time, which we
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will call tc, this can be thought of as the time of coalescence. This choice serves

to set ω
−8/3
0 to zero. If we then define

τ = tc − t. (3.15)

ω can be re-expressed in terms of τ as

ω(τ) =
1

8

(τ
5

)−3/8

M−5/8, (3.16)

Now Φ(t) can be evaluated by combining equations (3.5) and (3.16)

Φ(τ) = 2

∫ τ

tc

1

8

(
τ ′

5

)−3/8

M−5/8dτ ′ (3.17a)

Φ(τ) = 2
( τ

5M
)5/8

− 2

(
tc

5M

)5/8

. (3.17b)

Finally, this allows h+ and h× to be evaluated in the time domain by combining

equations (3.7),(3.16) and (3.17b).

3.2.4 Frequency domain waveforms

It is often useful in gravitational wave searches to express h+ and h× in the fre-

quency domain. This can be done by performing a Fourier transform on h+ and

h×.

Firstly, to express τ as a function of frequency, equation (3.16) is rearranged,

remembering that ω = πf , to get

τ(f) =
5

256
(πf)−8/3M−5/3. (3.18)

Inserting this into equation (3.17b) gives

Φ(f) =
1

16
f−5/3M−5/3 − 2

(
tc

5M

)5/8

(3.19)

and the time domain waveforms can be written in terms of the frequency

h+(τ) =
2

D
M5/3 (πf(τ))2/3 (1 + cos2 ι

)
cos (Φ(f(τ)) + 2ϕ) (3.20a)

h×(τ) = − 2

D
M5/3 (πf(τ))2/3 (2 cos ι) sin (Φ(f(τ)) + 2ϕ) . (3.20b)

To convert this into the Fourier domain, h̃+ and h̃×, waveforms a Fourier transform
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could simply be performed on the time domain waveforms. However, performing

a Fourier transform numerically can often be computationally expensive and it is

therefore useful to have an analytical formula for the frequency domain waveforms.

This can be obtained by using the stationary phase approximation. The sta-

tionary phase approximation is defined in the following manner [67]. Given some

function

h(t) = A(t) cos(φ(t)), (3.21)

where
1

A

dA

dt
� dφ

dt
(3.22)

at all t, The Fourier transform of h(t) can be approximated as

h̃(f) ≈ 1

2
A(f)

(
df

dt

)1/2

exp
[
−i
(

2πft′ − φ(f)− π

4

)]
, (3.23)

where t′ is defined as the time at which

dφ(t)

dt
= πf. (3.24)

The stationary phase approximation can be applied to h+ and h× to give analytical

formulae for the frequency domain waveforms. To evaluate these frequency domain

waveforms we first need to evaluate df
dt

. Using equation (3.16) and ω = πf we get

df

dt
= − df

dτ
=

3

320π

(τ
5

)−11/8

M−5/8, (3.25)

this can be expressed in terms of frequency by substituting equation (3.18)

df

dt
=

96

5
π8/3f 11/3M5/3. (3.26)

The stationary phase frequency domain waveforms can then be written, to domi-

nant order, as

h̃+(f) =
1

D

(
5

96

)1/2

M5/6π−2/3f−7/6
(
1 + cos2 ι

)
exp

[
i
(

2πft′ − Φ(f)− π

4
− 2ϕ

)]
(3.27a)

h̃×(f) = − 1

D

(
5

96

)1/2

M5/6π−2/3f−7/6(2 cos ι) exp
[
i
(

2πft′ − Φ(f) +
π

4
− 2ϕ

)]
.

(3.27b)
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We have now expressed the h+ and h× components of the gravitational wave

produced by a compact inspiral system in both the time and the frequency domain,

to first order.

3.2.5 Detector response to a compact binary inspiral

Now we wish to calculate the strain that would be observed at a gravitational

wave detector due to the passage of a gravitational wave emitted by a CBC. To

do this the expressions for h+ and h× can be combined with equations (2.59) and

(2.60)

h(τ) =F+h+(τ) + F×h×(τ) (3.28a)

=

(
−1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

)
(

2

D
M5/3 (πf(τ))2/3 (1 + cos2 ι

)
cos (Φ(τ) + 2ϕ)

)
+

(
1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ

)
(
− 2

D
M5/3 (πf(τ))2/3 (2 cos ι) sin (Φ(τ) + 2ϕ)

)
.

With some manipulation it is possible to write this as

h(τ) = A(D, ι, θ, ψ, φ)M5/3 (f(τ))2/3 cos (Φ(M, τ) + Φ0(ι, ϕ, θ, ψ, φ)) , (3.29)

where A is a constant amplitude term and Φ0 a constant phase offset. Or equiva-

lently in the frequency domain as

h̃(f) = Ã(D, ι, θ, ψ, φ)M5/6f−7/6 exp
[
i
(

Φ(M, f) + Φ̃0(ι, ϕ, θ, ψ, φ, tc)
)]
,

(3.30)

This implies that a single gravitational wave detector could not disentangle the

various orientation angles and distance. With a single detector one could only

recover an amplitude term and a phase offset. Nevertheless, being able to write

h(t) in this form does make the task of data analysis easier, as we will explore in

the next chapter. We note that if the phase evolution is evaluated to higher order

it will depend on η as well as M and time/frequency.
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Figure 3.1: The gravitational waveform produced by the system described in
section 3.2.6 plotted in the time domain.

3.2.6 Gravitational radiation from a binary neutron star

merger

In this section we have derived, to dominant order, the form of the gravitational

radiation emitted by a compact binary coalescence. To try to put this into per-

spective and understand what such a waveform would look like, let us consider an

example system.

Consider a compact binary neutron star inspiral, with both components having

masses 1.4M�. Let this system be located at a distance of 10Mpc and directly over

a detector θ = φ = 0. Additionally, let it be oriented such that ι = ϕ = ψ = 0.

The gravitational waveform that this system would produce in the detector is

shown, in the time domain, in Figure 3.1.

One must remember that this waveform has only been generated to dominant

order. For a real signal, higher order terms will be important close to merger, as

we will describe in the next sections. Additionally, the assumption of point masses

will break down at merger, as effects due to the size of the objects, such as the

tidal interaction between 2 neutron stars, can become noticeable.
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3.3 Higher order phase terms

The gravitational waveform derived in equation (3.20) is only accurate to the

dominant term both in amplitude and frequency because of various assumptions

we made when deriving it. With ground based interferometers it is hoped that

gravitational wave emission from CBC systems will be detected up to and including

the merger. It is therefore vital that the phase evolution of the system is modelled

as accurately as possible.

The Post-Newtonian (PN) formalism allows the phase evolution of the system

to be predicted with much higher accuracy than the derivation given in the pre-

vious section [68, 69]. The PN expansion uses perturbative techniques to expand

the phase of the system to higher order. Generally the expansion is performed

around (πMf)1/3.

As we have demonstrated, the dominant term in the time domain phase evo-

lution is a multiple of f−5/3. The next term, the “1 PN” term enters at f−3/3, the

“1.5 PN” term enters at f−2/3 and so on (there is no 0.5 PN term proportional to

f−4/3). Current non-spinning PN expansions generally include all terms up to 3.5

PN order [68].

There are a number of different methods of constructing the PN expansion and

these produce waveforms which are not identical when expressed to the same PN

order. A detailed explanation and comparison of the various PN approximants

can be found in [68].

3.4 Higher order amplitude terms

As well as higher order terms in the phase evolution there are also higher order

amplitude terms. These higher order amplitude terms arise from the octopole

(and higher) moments and therefore the phase of these terms is not necessarily

twice the orbital phase. A study of these higher order amplitude terms and how

they might affect our ability to detect CBC systems can be found in [38], but the

importance of these higher order amplitude terms is much less than the higher

order frequency terms.

For the current generation of gravitational wave detectors it is not vital to have

waveforms including higher order amplitude terms for detection of CBC systems

[38]. However, when the next generation of gravitational wave detectors comes

online, it will be increasingly important for the signal models to be as accurate as

possible, this will involve including higher order amplitude terms. In this thesis
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we will only consider the dominant amplitude term.

3.5 Numerical relativity

The PN theory has allowed us to model the phase evolution of the inspiral part

of the signal accurately. Perturbation theory also offers us a way to model the

ringdown part of the signal. However, there is no theoretical model for the merger

component of a CBC. Here we must rely on numerical modelling to provide us

with waveforms that contain a merger component.

Recent advances in numerical relativity have allowed for the production of

many waveforms containing the very late inspiral, merger and ringdown phases.

These waveforms can be combined with inspiral waveforms generated using the

Post-Newtonian approximation to produce “complete” inspiral, merger and ring-

down (IMR) waveforms.

A recent review of numerical relativity and a list of waveforms that are cur-

rently available can be found in [70, 71].

3.6 Waveform models for analyses

There are a number of options for waveform models that can be used in data

analysis. In [68] it is demonstrated that PN waveform models containing only

the inspiral are sufficient for searching for CBC systems with a total mass below

12M�, with current detectors. The authors of [68] recommend using the “Taylor

F2” frequency domain waveform family in such cases because it is the fastest

waveform to compute. Taylor F2 waveforms are computed from a PN expansion of

the stationary phase waveforms. This is in contrast to the Taylor T1-4 waveforms,

which perform various PN expansions on the time domain waveform [68].

Above a total mass of about 12M�, the merger and ringdown components of

the signal become important, inspiral only waveforms would be expected to pick

up noticeably less signal-to-noise ratio (SNR) than complete IMR waveforms. Here

the “EOBNR” waveform model, which attaches a numerically produced merger

and ringdown to the inspiral signal produced by the effective one-body (EOB)

model, is generally used [72].

In chapter 6 we describe the physical template family, used to model single

spin systems. This is an extension of the Taylor T4 model [68]. The coherent

search described in chapter 5 uses the same architecture as the single spin search
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discussed in chapter 6, it therefore uses the Taylor T4 model to produce inspiral

waveforms.
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Chapter 4

The coincidence search for

compact binary coalescences in

LIGO and Virgo data

The LIGO and Virgo collaborations have performed many “all-sky” searches for

compact binary coalescence (CBC) systems in the data taken by their interferom-

eters [73, 74, 75, 76, 77, 1, 2, 3]. These all-sky searches attempt to detect CBC

systems that have originated from any sky location, with any orientation and at

any time when data is taken. While these all-sky searches have not yet made a

direct detection of gravitational waves, they have allowed for upper limits to be

placed on the merger rates of compact objects [3].

Input from electromagnetic (EM) observations has also allowed “triggered”

searches for CBC signals to be performed [5, 4]. This is where an EM observation

is made of some event whose progenitor might have been a CBC. The time and sky

location of the event is sent to gravitational wave astronomers who then search

their data for any coincident signal. Short GRBs are especially interesting for

CBC triggered searches because the favoured progenitor model for a short GRB

is a BNS or NSBH merger [30, 31]. Triggered searches have not yet made a direct

detection, but are able to place lower distance limits on the progenitor of these

events, assuming that it was a CBC.

The layout of this chapter is as follows. We will begin by discussing the

matched-filtering techniques that make these searches possible in section 4.1. We

then, in section 4.2, discuss in detail the all-sky search that has been used to

produce the most recent results [1, 2, 4]. Finally, in section 4.3 we discuss the

triggered search used to search for CBCs in coincidence with EM observations.

It is worth noting at this point that current searches use the “coincidence”
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method where data from each of the detectors are analysed separately before

searching for coincident events between them. In chapter 5 we will discuss an al-

ternative coherent method, which simultaneously analyses data from all detectors;

we then apply this to the triggered search.

Additionally, these searches use template waveforms that do not incorporate

spin effects. While it is expected that there will be good sensitivity to most

spinning systems, an improvement in sensitivity can be gained, in certain regions

of parameter space, by using templates that include spin effects. We explore this

in detail in chapter 6.

4.1 Gravitational wave data analysis

Gravitational wave signals in the data taken by intereferometric detectors are not

likely to be easily distinguishable from the noise. Therefore, a lot of the work

currently being carried out by gravitational wave astronomers is aimed at being

able to detect a weak signal buried in the noise produced from the detectors.

The problem of extracting signals from a noisy data stream is one that has

been faced in other contexts for a long time [78]. For example, radio signals are

often distorted by background noise and recovering the original signal can be dif-

ficult. The matched-filtering techniques discussed in this chapter were developed

in the context of radio signal extraction and have been adapted to the detection

of gravitational wave signals [78].

4.1.1 The matched-filter

The purpose of matched-filtering is to determine whether a known signal is present

in a noisy data stream. We remind the reader that the form of a CBC signal in a

gravitational wave detector is known, as we discussed in chapter 3. In this section

our derivation follows closely those given in [78, 36].

Let us begin by considering the data output by a gravitational detector s(t).

This data is given by

s(t) = h(t) + n(t), (4.1)

where n(t) is the detector noise, which we will assume to be Gaussian with zero

mean and stationary. h(t) is a gravitational wave signal that we wish to extract

from the noise. We wish to determine how likely it is that h(t) is present in the

data.

Before we describe the optimal matched-filter let us consider a naive approach.
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One might assume that if we wanted to determine if h(t) is present, we could

simply multiply s(t) by h(t) and integrate over all time. If no signal is present,

the expected value of this is zero, with some error. If, however, there is a signal

present the expected value would be the integral of h2(t) over all time. If a value

is obtained that is substantially larger than the expected deviation due to noise

alone, then it could be inferred that the signal h(t) is likely to be present in the

data.

It is not clear, however, that the process of multiplying by h(t) is the “optimal”

method of extracting the signal from the data. Let us now consider a more general

filter. Let us impose some linear filter K(t) on s(t). We want to determine the

filter K(t) such that the SNR is maximized for the signal h(t). We can write this

filter as

m =

∫ ∞
−∞

K(t)s(t)dt =

∫ ∞
−∞

K(t)h(t)dt+

∫ ∞
−∞

K(t)n(t)dt. (4.2)

We note that this is equivalent to the frequency domain representation∫ ∞
−∞

K(t)s(t)dt =

∫ ∞
−∞

K̃∗(f)s̃(f)df, (4.3)

where the tilde represents that the quantity has been Fourier transformed. We

note that for real data one would have a finite length of data with a finite sample

rate, so the integral would become a summation over all discrete time points, or

discrete frequency points. For this derivation however we will assume that the

data is continuous.

To evaluate the optimal form of K(t) we want to find the filter that would

maximize the signal-to-noise ratio (SNR). This optimal SNR is defined as ρopt =

S/N , where S is the expected value of m when the signal h(t) is present and N is

the rms value of m when no signal is present [78, 36].

Let us first consider N . Recalling that we imposed the condition that the noise

is Gaussian and stationary we can write

〈ñ(f)ñ(f ′)〉 = δ(f − f ′)Sd
n(f), (4.4)

where we have defined Sd
n as the two-sided noise power spectral density (PSD).
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Therefore we can express N as

N2 =
〈
m2
〉
|h=0

=

∫ ∞
−∞

∫ ∞
−∞

K̃∗(f)K̃(f ′) 〈ñ∗(f)ñ(f ′)〉 df df ′

=

∫ ∞
−∞
|K̃(f)|2Sd

n(f)df. (4.5)

To evaluate S, the expected value of m with a signal present, we use the fact that

the average value of the noise, at a given frequency is zero, 〈ñ(f)〉 = 0 to obtain

S =

∫ ∞
−∞

K(t)h(t)dt =

∫ ∞
−∞

K̃∗(f)h̃(f)df. (4.6)

Thus, we can express the SNR as

ρopt =

∫∞
−∞ df h̃(f)K̃(f)(∫∞

−∞ df
′ Sd

n(f ′)|K̃(f ′)|2
)1/2

. (4.7)

This equation can be simplified if we define the inner product between two real

time series a(t) and b(t) to be

(a|b) =

∫ ∞
−∞

ã∗(f)b̃(f)

Sd
n(f)

df

= 4 Re

∫ ∞
0

ã∗(f)b̃(f)

Sn(f)
df, (4.8)

where the second line of this equation comes about because Sd
n(f) = Sd

n(−f) and

we demand that a(t) and b(t) are real functions, such that ã(f) = ã∗(−f). Sn(f)

denotes the one-sided noise PSD, which will be used in the rest of this work, it

is related to the two-sided noise PSD by Sn(f) = 2Sd
n(f) for positive f . We can

then re-express the SNR as

ρopt =
(u|h)

(u|u)1/2
, (4.9)

where ũ is given as

ũ(f) =
1

2
K̃(f)Sn(f). (4.10)

It is then clear that ρ will be maximized when u is proportional to h. Thus the
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maximum value of the optimal filter K̃(f) is given by

K̃(f) = A
h̃(f)

Sn(f)
, (4.11)

where A is an arbitrary constant. We have now calculated the optimal filter for

a given signal in Gaussian, stationary noise. The optimal SNR for a signal h is

given by

ρopt = (h|h)1/2 . (4.12)

To filter the data to determine if the given signal is present one would calculate

the matched-filter SNR as

ρmf =
(s|h)

(h|h)1/2
. (4.13)

Note that the constant A will cancel between numerator and denominator. If a

signal is present we would expect ρ2
mf to follow a non-central χ2 distribution with

1 degree of freedom and non-centrality parameter ρ2
opt. If no signal is present the

distribution of ρ2
mf simply becomes a χ2 distribution with 1 degree of freedom. We

are keen to emphasize that the matched-filter SNR, ρmf and the optimal SNR,

ρopt are not equivalent. There can be confusion between these two quantities as

both are commonly referred to as simply SNR. In this work we will clearly state

which of the quantities we are referring to when we introduce a SNR.

At the end of this derivation it is worth reminding the reader that we have

assumed that we know the exact form of the signal, up to an overall amplitude

factor. However, a CBC signal is characterised by a large number of physical

parameters. It is thus necessary to filter the data against a set of templates,

called a template bank [79]. If one were to naively create this template bank

to cover all the physical parameters, the size of the bank would be far too large

to filter with the current computing infrastructure. However, it is possible to

analytically maximize over a number of the parameters and greatly reduce the

size of the template bank.

For the non-spinning coincidence search, we will discuss template bank place-

ment and the maximization technique in sections 4.2.3 and 4.2.4. We also describe

matched-filtering techniques in the context of a coherent search in chapter 5 and

spinning searches in chapter 6
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4.1.2 The likelihood

Alternatively, this can be considered from a Bayesian perspective and the like-

lihood ratio can be calculated. This is the ratio of the likelihood of obtaining

the given data assuming a signal h is present in the data and the likelihood of

obtaining the given data assuming no signal is present.

As before we assume that the noise is Gaussian and stationary. The probability

of a given noise realization n0 occuring is given by [36]

p(n0) = N exp {− (n0|n0) /2} , (4.14)

where N is a normalization constant.

We can then estimate the probability of a given realisation of data if we make

the hypothesis that a signal is present with parameters given by ξi by taking

n0 = s− h (ξi) and inserting this in the above equation to give us the conditional

probability

p (s|h(ξi)) = N exp {− (s− h (ξi) |s− h (ξi)) /2} (4.15)

= N exp

{
(h|s)− 1

2
(h|h)− 1

2
(s|s)

}
. (4.16)

Similarly the probability of obtaining the given realization of data if no signal is

present is obtained by setting n0 = s to give

p (s|0) = N exp {− (s|s) /2} . (4.17)

We then define the likelihood ratio

Λ(h(ξi)) =
p (s|h(ξi))

p (s|0)
= exp

(
(h|s)− 1

2
(h|h)

)
. (4.18)

As we will see later on, this is often used as the log likelihood ratio

λ := log Λ = (h|s)− 1

2
(h|h) . (4.19)

It would now be useful to try to relate this back to the matched-filter SNR. To

do this we remember that the matched-filter SNR was maximized over an overall

amplitude, whereas the likelihood formula is not. If we were to write h = Ah0 and
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Science run Start time End time

LIGO – S5 4 November 2005 30 September 2007
Virgo – VSR1 18 May 2007 30 September 2007

LIGO – S6 July 7 2009 October 20 2010
Virgo – VSR2 July 7 2009 January 11 2010
Virgo – VSR3 August 11 2010 October 20 2010

Table 4.1: The duration of LIGO and Virgo science times.

extract A from the log likelihood we obtain

log Λ = A (h|s)− A2

2
(h|h) . (4.20)

This can then be maximized over A to get

λ|Max,A =
1

2

(s|h0)2

(h0|h0)
= ρ2/2. (4.21)

Thus the log likelihood, maximized over amplitude, is easily related to the matched-

filter SNR.

4.2 An all-sky, all-time search for compact bi-

nary coalescences

The LIGO and Virgo detectors have recently completed two joint science runs.

The durations of these science runs are given in Table 4.1 and the sensitivities of

the detectors to BNS inspirals during these science runs can be seen in Figure 4.1.

With science runs spanning many years and the ability to detect BNS systems

up to 40Mpc and NSBH and binary black holes (BBH) systems up to greater

distances, the challenge is now to detect CBC signals buried in the detector noise.

The “ihope” search pipeline has been used to search for CBC signals originating

at any time, from any direction and with any orientation in the data taken in

LIGO’s fifth science run (S5) and Virgo’s first science run (VSR1) [1, 2, 3]. This

technique is also being used to perform the same search on data from LIGO’s sixth

science run (S6) and Virgo’s second and third science runs (VSR2 and VSR3). The

search utilizes the “coincidence” technique in which data from all of the detectors

is analysed separately, before looking for events which are coincident between

detectors.
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Figure 4.1: The inspiral horizon distance plotted against time for S5 and VSR1
(top) and for S6, VSR2 and VSR3 (bottom). The inspiral horizon distance is
defined as the distance at which an optimally positioned, optimally oriented BNS
merger would obtain an SNR of 8 in the respective detectors.
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The ihope implementation described here is used to search for CBC systems

whose total masses lie between 2 and 35 M� with a minimum component mass of

1 M�. This “low mass” search is very similar to the “high mass” search described

in [72]. The reason for the split is that the “high mass” search is used to search for

CBC systems that merge within the sensitivity band of the instrument, therefore

template waveforms incorporating the merger and ringdown must be used.

In this section we begin by giving an overview of the ihope pipeline in section

4.2.1. We will then describe the stages of the pipeline in detail in sections 4.2.2

to 4.2.12. Finally we will present the latest results of the search in section 4.2.13.

In Figure 4.1 and in subsequent text, we will refer to the various detectors

using the following acronyms

• H1: The 4km LIGO instrument at Hanford. Operational in all LIGO science

runs.

• H2: The 2km LIGO instrument at Hanford. Operational in LIGO’s S1 - S5.

• L1: The 4km LIGO instrument at Livingston. Operational in all LIGO

science runs.

• V1: The 3km Virgo instrument at Cascina. Operational in all Virgo science

runs.

4.2.1 Pipeline overview

The steps of the pipeline are described in detail in the following sections. What

follows is a brief overview of these steps. An illustration of the various steps in

the pipeline is given in Figure 4.2.

As this is a coincidence search, the first stage of the pipeline is to determine if

there is any loud SNR event in any of the detectors. For each detector the process

is to

• Create a template bank to cover the full range of masses.

• Filter the data against every template in the bank for each detector.

• Retain a “trigger” whenever a loud SNR is observed.

This results in a list of single detector triggers for each detector. The lists are

then examined for any triggers that are coincident between detectors. A trigger

is discarded if it is not seen in more than one detector. Coincidence is determined

using the masses of the templates as well as the observed time.
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Figure 4.2: A flowchart illustrating the various steps in the ihope pipeline for the
case of a search of H1, H2 and L1 data.
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If the data taken by gravitational wave interferometers was Gaussian and sta-

tionary then the task of data analysis would stop here. A significance would be

attached to all of the triggers and the likelihood of a CBC signal being present

would be determined. However, the data taken is neither Gaussian nor stationary.

Non-Gaussian transients or “glitches” often match well with the templates and are

seen with a high SNR. It is vital to be able to distinguish such noise transients

from real CBC signals and discard or downweight triggers that are due to noise

transients.

A two-stage pipeline is therefore utilized. A second matched-filter is performed

on any trigger that is seen in coincidence. However, during the second matched-

filter a number of signal consistency tests are calculated, such as the powerful,

but computationally expensive χ2 test [80]. These tests are then used to separate

glitches from gravitational wave signals. In addition to these signal consistency

tests, triggers are also discarded that come from times when the detectors are

known to be likely to produce glitches.

To determine if a signal is present in the data, the background rates of different

types of triggers are estimated. These are used to associate a false alarm rate

(FAR) to any trigger that survives the signal consistency tests. If no significant

triggers are observed then upper limits on merger rates can be computed.

The figures that are shown in this section, unless indicated otherwise, were

generated using results from this pipeline run on one month of data in S5. During

this month all three LIGO detectors were operational. Virgo was not operating

at this time. This month was the third month analysed in the search reported

in [2]. In a number of the plots we have made use of simulated signals in the

data to demonstrate the tuning of the pipeline. The mechanism by which such

simulated signals are made into the data is described in section 4.2.10. For these

plots the simulated signals were taken to be a set of BNS inspiral signals, uniformly

distributed in distance, coalescence time, sky position and orientation angles.

4.2.2 Search initialization

The analysis pipeline begins with the calibrated h(t) strain data taken from each

of the instruments. Obtaining this calibrated data from the detector is not a

trivial task, but we will not discuss these issues in this work. For details on the

calibration of the detectors we refer the reader to [81, 82].

Given the calibrated data the coincidence analysis can be initialized. The first

53



step is to determine the available “science” data for each instrument1. The data

is then split up into blocks of 2048s duration, which are analysed separately. This

value is chosen because of memory limitations and to ensure that as many CPU

cores as possible are utilized. One noise PSD is calculated for each block and is

used to analyse all the data in that block. The calculation of this noise PSD is

described in [67].

These blocks of data are then further separated into 16 overlapping 256s seg-

ments. The first segment begins at the start of the block, the next 128s later and

so on. Each of these segments is matched-filtered separately. The reason for over-

lapping the segments is that the finite length of filters means that the process of

Fourier transforming the data will corrupt times at the beginning and end of each

segment [67], which cannot be analysed. Additionally, the length of a template

should not exceed the length of available data preceeding the point being analysed.

As an example, consider a matched-filter that is performed with a template of 10s

duration; one could not search for a signal that coalesced 5s from the start of a

segment. To be conservative and ensure that these boundary issues are avoided,

64s on either side of each segment is discarded. Thus, only the middle 128s of any

segment is analysed. This does mean that the first and last 64s of any block is not

analysed and therefore the blocks must overlap to ensure that all available data

is analysed. However, the first and last 64s of any stretch of continuous science

data is never analysed. Additionally, a stretch of data that is shorter than 2048s

in length is not analysed by the pipeline as there is not sufficient data to reliably

calculate a PSD.

As a final note, because the different detectors will not be taking data at the

same times it is not required that the times of the blocks are the same in all

detectors.

4.2.3 Generating a template bank

To perform a matched-filtered search that would recover any CBC system with

minimal loss in SNR over a given range of parameters one must filter the data

against a set of waveforms or “template bank”. The computational cost of any

gravitational wave search is directly proportional to the number of templates used.

It is therefore vital to have a method that enables one to place a template bank

using as few templates as possible.

For the case of matched-filter searches for non-spinning CBC signals this prob-

1 We note that “category 1” data is not included as we will explain in section 4.2.7
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lem is well explored [83, 84, 85, 86, 87, 88, 79]. Here, it is only necessary to place

templates to cover the two dimensional parameter space of the masses. Other

parameters enter only as amplitude or phase corrections, which are maximized

over analytically when matched-filtering, as we show in section 4.2.4.

The basic idea of current template placement algorithms is to place a grid of

templates using a hexagonal geometrical placement algorithm [83]. The spacing

between the templates is determined from calculating the mismatch between tem-

plates, where the mismatch MM between two templates described by parameters

ξ1, ξ2 is given by [84]

MM = 1−
(
h(ξ1)|h(ξ2)

)
, (4.22)

where the templates are normalized such that for any set of parameters (h(ξn)|h(ξn)) =

1. This mismatch can be interpreted as the loss in optimal SNR that would be

incurred by searching for h(ξ1) with h(ξ2). The template banks are created such

that no point in the parameter space would have a mismatch of larger than 0.03

with the closest template in the bank. This value is chosen such that signals in the

data will be recovered with close to the optimal SNR and the number of templates

will not become excessive.

Explicitly calculating the mismatch between various points in parameter space

can be computationally expensive. Therefore, the parameter space metric is nor-

mally used to approximate this. This metric is given by [84]

gij(ξ) = −1

2

∂2 (h(ξ)|h(ξ))

∂ξi∂ξj
, (4.23)

which describes the distance between two templates infinitesemally separated in

parameter space

1− (h(ξ)|h(ξ − δξ)) =
∑
ij

gij(ξ) δξi δξj. (4.24)

This can be used as an approximation of the mismatch between two templates

with non-infinitesimal separation. The approximation holds as long as the metric

is roughly constant in the parameter space between the templates. For mismatches

of 0.03 the metric is a good approximation [84] and is used when placing the

template banks.

While the problem of placing templates for a non-spinning CBC search is solved

by the hexagonal lattice method, it is not yet clear how to place template banks

in higher dimensional parameter spaces, such as might be needed for searches for

CBC signals including spin. We will discuss the difficulties of placing template in
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higher dimension arbitrary parameter spaces in chapter 7, where we discuss the

possibility of using a stochastic placement algorithm to place template banks in

generic parameter spaces.

4.2.4 The matched-filter

The next stage in the pipeline is to matched-filter every template in the template

bank against all the data that has been taken by the detectors. We begin by de-

riving the maximized matched-filter statistic that is used in coincidence modelled

searches for CBC systems.

We demonstrated in equation (3.29) that a CBC waveform observed by a grav-

itational wave detector can be expressed as

h(τ) = A(D, ι, θ, ψ, φ)M5/3 (f(τ))2/3 cos (Φ(M, η, τ) + Φ0(ι, ϕ, θ, ψ, φ)) , (4.25)

where τ is defined as the time until the binary system will merge, the other

parameters are defined as in section 3.1. We remind the reader that the frequency

evolution will depend only on the masses and coalescence time of the system. All

other parameters enter the waveform as an amplitude or phase offset.

In equation (4.21), we showed that the log likelihood ratio maximized over

amplitude can be written as

λ|Max,A =
1

2

(s|h)2

(h|h)
. (4.26)

Further to this we wish to maximize over the phase offset. To do this we rewrite

h in terms of two components

h(τ) = h0(τ) cos Φ0 + hπ/2(τ) sin Φ0, (4.27)

where h0(τ) and hπ/2(τ) are given explicitly by

h0(τ) = A(M, D, ι, ϕ, θ, ψ, φ) (f(τ))2/3 cos (Φ(τ))

−hπ/2(τ) = A(M, D, ι, ϕ, θ, ψ, φ) (f(τ))2/3 sin (Φ(τ)) . (4.28)

The log likelihood can then be written in terms of h0(t) and hπ/2(t) as

λ|Max,A =
1

2

[
(s|h0) cos Φ0 + (s|hπ/2) sin Φ0

]2
(h0|h0)

, (4.29)
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where we have made use of h̃0 = ih̃π/2. This is identically true when using wave-

forms generated in the frequency domain using the stationary phase approxima-

tion. In this form it is possible to maximize the log likelihood over the phase

offset, Φ0. Thus, we obtain the final maximized form of the log likelihood ratio

for a single detector matched-filter CBC search

λ|Max(A,Φ0) =
ρ2

2
=

[
(s|h0)2 + (s|hπ/2)2

]
2 (h0|h0)

, (4.30)

where we have defined ρ to be the maximized, matched-filter, single detector

SNR. We note that as A and Φ0 have been maximized over, the statistic will only

depend on the masses and coalescence time. It will have no dependence on the

other “extrinsic” parameters.

To calculate ρ at all times an inverse fourier transform on the matched-filter

is utilized [78]

(s|h)(tc) =

∫ ∞
−∞

s̃(f)[h̃0(f)]∗

Sh(f)
e−2πiftcdf, (4.31)

where tc is the coalescence time of the signal. This quantity will be complex; if h0

is used as the template waveform then the real component will give (s|h0)(tc), the

imaginary component will give (s|hπ/2)(tc). Fourier transforms can be computed

efficienctly using the FFTW algorithm [89]. For the low mass ihope searches h̃0 is

calculated directly in the frequency domain using the “Taylor F2” waveforms as

described in section 3.6.

Equation (4.30) gives the maximized SNR that can be calculated at all times

in the segment being analysed using equation (4.31). It is easy to show that the

expected distribution of ρ2 in Gaussian noise will follow a χ2 distribution with two

degrees of freedom. Triggers are retained only where the SNR at that point in time

is larger than 5.5 and is the largest SNR within a small time interval. This value is

chosen empirically such that the number of triggers in the pipeline is limited to a

manageable level. The value of 5.5 may initially seem rather large; the probability

for a χ2 distributed statistic with 2 degrees of freedom to give a value larger than

(5.5)2 is 2.7 × 10−7. However, consider that there may be approximately 1000

independent trials at any point in time due to the range of masses being covered

and an independent trial at least every 0.1 seconds in time. We would therefore

expect to see such events in even a few hundred seconds of data. It is not at all

surprising to see a large number of ρ > 5.5 events in a year of observing time in

Gaussian noise.

The distribution of triggers obtained by filtering 1 month of S5 data in the H1,
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H2 and L1 detectors is shown in Figure 4.3. As can be seen on the figure there

are a huge number of triggers, including a large number which have been found

with an SNR of at least 100. Clearly this is not the distribution of triggers that

would be expected from Gaussian noise. This illustrates that a single detector

search, using only SNR to rank triggers, would have no realistic hope of detecting

a gravitational wave. Much of what follows is focused on separating these noise

transient triggers from gravitational wave signals.

4.2.5 Determining Coincidence

The next stage of the pipeline is to perform coincidence tests between the triggers

that are produced for each of the detectors. Any trigger is discarded that is not

seen in “coincidence” in at least two detectors. To be coincident, triggers must

have occured at the same time and with similar masses.

The exact definition of coincidence, which is used in the most recent CBC

searches in LIGO and Virgo data, is given in [90]. This uses a similar approach

to that of template placement to define a “distance” between two triggers in two

different detectors. This distance, calculated using the parameter space metric

given in equation (4.23) is known as the “ethinca distance”. Triggers are only

considered to be coincident if their ethinca distance is less than a preset threshold.

The threshold is empirically set at 0.5 by investigating the distribution of the

ethinca distance that simulated signals are recovered with; as we demonstrate in

Figure 4.4.

In Figure 4.3 we show the distribution of single detector events after this co-

incidence cut is applied. We can see from comparing the first two rows of Figure

4.3 that the coincidence cut has reduced the number of triggers, but that some of

the loudest triggers are still present after the coincidence test has been applied.

It is clear that a large number of noise triggers pass the coincidence test.

4.2.6 Second stage matched-filter

The “standard” χ2 test (often just χ2 test) [80], which we describe in detail in

section 5.3, tests whether a potential trigger has the expected power in a number

of different frequency bins. It is one of the most effective methods for separating

non-Gaussian noise transients from gravitational wave signals. Unfortunately it

is also very expensive to calculate; a matched-filter must be calculated for every

frequency bin used in the χ2 test. In the low mass search this is 16 frequency bins.

Thus, it is desirable to only calculate the χ2 test when necessary. A two stage

58



Figure 4.3: The number of triggers vs SNR for triggers obtained in the H1
(left)and L1 (right) detectors at a variety of stages in the pipeline. The first row
shows triggers before coincidence is applied. The second row shows triggers after
coincidence is applied. The third row shows triggers after coincidence and after
signal based vetoes have been applied and after triggers from times marked as
category 2 or category 3 have been omitted. This data is taken from the third
month of the analysis described in [2].
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Figure 4.4: A histogram of the ethinca distance between triggers associated with
simulated signals. Shown for triggers between H1 and H2 (top left), H1 and L1
(top right) and H2 and L1 (bottom). The ethinca cut was set to a value of 0.5.
The distribution of background triggers is uniform in the ethinca distance.
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pipeline is therefore utilized. In the first stage, matched-filtering is performed

and coincidences determined without calculating the χ2 test. A reduced template

bank or “triggered bank” is then created for each block of data, containing only the

templates that formed a coincidence within that block. The matched-filtering and

coincidence is then performed a second time using the triggered bank. However

this time the χ2 test is calculated for every trigger at this second stage. We discuss

how the χ2 test is used to separate noise events from real signals in section 4.2.8.

4.2.7 Detector characterization

To reduce the number of triggers due to non-Gaussian noise in the analyses, it is

useful to try to identify times during which noise transients are likely to occur.

These glitches are normally caused by one of two reasons. Firstly there might

be a problem with the operation of the detector that produces noise transients.

For example the H1 and H2 detectors share the same beam tube. If one of these

detectors is “down” and not taking science data the process of returning it to

taking science data can affect the operation of the second detector. The second

reason is that there might be some environmental feature that produces glitches in

the detector data. For example seismic activity is known to couple to transverse

motion in the mirrors and can produce transient noise events.

For these reasons the detectors are continually monitored by a host of sensors,

which monitor the internal and external conditions. A lot of effort within the

LIGO and Virgo collaborations is spent in trying to identify data that is likely to

contain glitches and identifying, and if possible removing, the internal or external

cause. For more details of these activities see [91, 92, 93, 94, 95, 96].

To consider this from the point of view of the data analyst it is sufficient to

know whether the data should be analysed or not. The end product of the detector

characterisation process is to assign all data a data quality category. Analyses for

CBC signals treat these data quality categories in the following way2

• Category 1: Data marked as category 1 indicates that the detector is not

operating correctly. This data are not used for any part of the analysis.

The analysis blocks discussed earlier contain no category 1 data as it would

corrupt any estimate of the noise PSD. An example of a category 1 flag

might be if the data is unable to be calibrated and h(t) is not available.

2 Note that there is also a category 4, but for CBC searches this category is only used when
following up interesting triggers. In the ihope pipeline category 4 data is treated equally to data
with no category.
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• Category 2: Data marked as category 2 indicates that some mechanism

known to have a strong correlation with glitches was active at the time this

data was taken. The analysis blocks can contain data marked as category 2,

as it can be used to estimate a PSD. However, any trigger occuring during

time marked as category 2 is discarded. This is referred to as “vetoing” a

trigger3. An example of a category 2 flag is when a hardware injection is

being made into the data.

• Category 3: Data marked as category 3 indicates that some mechanism

known to have some correlation with noise transients was active at the time

this data was taken. Category 3 data is analysed and false alarm rates are

calculated for coincident triggers occuring during category 3 data. Category

3 data is, however, discarded when calculating upper limits. An example of

a category 3 flag might be that there is elevated seismic noise at the time

the data is taken..

• No category: Data that does not have a category assigned to it indicates that

there is no understood environmental or internal cause of noise transients

active at that time. This data is analysed normally.

Results obtained from category 3 data and “good” data are treated separately.

We will discuss how these separate results are dealt with in 4.2.9.

To ensure that the detector characterization efforts would not lead to gravita-

tional wave signals being vetoed more than would be expected by random chance

we use hardware injections (see section 4.2.10 for details). These hardware in-

jections simulate the response of the detector to a gravitational wave signal. The

“safety” of detector characterization is assessed by ensuring that the percentage of

these hardware injections vetoed by data quality is consistent with the percentage

of the total data vetoed.

As an example of the amount of analysis time that is lost to data quality

vetoes, we can consider the case of the third month in the analysis in [2]. For this

month, there is approximately 1.2 million seconds of data that is coincident in

at least two detectors after category 1 times have been removed. After category

2 and category 3 times are removed the figure is reduced to approximately 1

million seconds, though the majority of the lost time is category 3 time and is still

analysed.

3Triggers can also be vetoed by signal consistency tests as we explore in section 4.2.8.
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4.2.8 Effective SNR and signal-based vetoes

The next stage in the pipeline is to apply signal consistency tests. Any trigger that

does not have the expected characteristics of a CBC signal should be discarded.

Currently the most powerful test for doing this is the χ2 test, which we derive and

explore in section 5.3. An SNR consistency test can also be utilized if a signal is

seen in coincidence between the H1 and H2 detectors.

In this subsection we begin by describing how the χ2 and SNR consistency

tests are used to discard triggers that do not have the characteristics of a CBC

signal. We then describe how triggers are ranked using a combination of SNR and

the χ2 and explain how this “effective SNR” is defined.

Vetoing triggers with χ2

The value of the χ2 combined with the SNR is used to rank triggers, thus down-

weighting high SNR triggers with poor χ2, as we will describe. Additionally,

triggers are vetoed based on the χ2 values around the time of the trigger. The “r2

veto duration” is the duration in which the χ2 is above 15 per degree of freedom

within 6s of the trigger. The value of 6s for the time window of has been chosen

empirically [97].

The cut on this is illustrated in Figure 4.5. Below an SNR of 12, triggers are

discarded if they have a r2 veto duration longer than 0.002s; above this the cut is

dependent on SNR as demonstrated in the figure. There is a big discontinuity in

this cut at SNR 12, but no triggers that are vetoed would be potential detection

candidates. This values are also chosen empirically, as described in [97].

The H1, H2 SNR consistency cut

For events seen in coincidence between the H1 and H2 detectors a SNR consistency

test is applied. These two detectors have aligned arms, as they share the same

vacuum tubes, therefore the ratio of SNRs seen in H1 and H2 should be equal

to the relative sensitivity of the detectors. As can be seen in Figure 4.1, the H1

detector is normally twice as sensitive as H2 so one would normally expect a signal

to be observed in H1 with twice the SNR as the same signal seen in H2.

Formally the SNR consistency cut can be expressed in terms of “effective dis-

tance”. For a single detector trigger the amplitude and phase are maximized over.

The orientation angles, source sky location and the distance which form the am-

plitude parameter cannot be separated. Instead an “effective distance” can be

determined, this is defined as the distance at which an optimally oriented and lo-
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Figure 4.5: The r2 veto duration plotted against SNR for all second stage triggers
seen in the H1 detector. The solid mass of blue is comprised of blue crosses marking
the position of triggers failing the r2 cut, blue circles indicate triggers which do
not fail the r2 cut. The red circles are triggers produced by simulated signals, we
note that none of these are vetoed by the r2 cut. Triggers that are vetoed below
an SNR of 12 are not shown in this figure.

cated source would give the observed SNR. For H1 and H2 the recovered effective

distances for a CBC signal should be equal. In contrast, a glitch might occur in

only one of the detectors, thus producing triggers with different effective distances.

Triggers that have a fractional difference in effective distance greater than 0.6 are

discarded; this allows for some spread due to measurement uncertainties. This cut

is illustrated in Figure 4.6.

The effective distance cut was not used between other pairs of detectors because

in principle any ratio of effective distance is possible for a real signal seen in two

unaligned detectors. However, it is rather unlikely that, for a given system, the

fractional difference in effective distances in two detectors will be large. Therefore,

it should be possible to use amplitude consistency information to separate glitches

from CBC signals in any detector combination. We investigate the possibility

of using an effective amplitude cut between any two detectors when discussing

coherent search methods in chapter 5.

Effective SNR and New SNR

We have now described the various instrumental and signal based vetoes that are

applied to triggers passing through the pipeline. Unfortunately, as can be seen in

Figure 4.3 while the majority of triggers have not passed the various checks, there
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Figure 4.6: A histogram of the fractional difference in effective distance. The dis-
tributions for simulated signals (red) and background triggers (black) are shown.
Here triggers with a fractional difference bigger than 0.6 have been removed.

are still many loud events surviving after the data quality and signal based vetoes

have been applied. Figure 4.7 shows the distribution of the χ2 statistic plotted

against SNR for triggers that have survived all vetoes. A clear separation between

noise background (see section 4.2.9) and simulated signals (see section 4.2.10) can

easily be observed.

Triggers are therefore ranked using a combination of SNR and χ2. In S5 and

VSR1 a combination called “effective SNR” was used, this is defined as

ρ2
eff =

ρ2√(
χ2

ndof

)(
1 + ρ2

250

) , (4.32)

where ndof is used to denote the number of degrees of freedom in the χ2 test (see

section 5.3). The factor of 250 in the denominator was chosen to provide a suitable

separation between background triggers and simulated signals. We demonstrate

contours of effective SNR in Figure 4.7. It can be seen that these contours provide

a much better separation between simulated signals and noise background triggers

than SNR.

In S6 and VSR2 and VSR3 a different statistic is being used called new SNR

[98]. This new SNR is designed to improve the contours to allow for better sep-

aration between the background and real events. The definition of new SNR is
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Figure 4.7: The χ2 test plotted against SNR for triggers after all cuts have been
applied and category 2 and 3 data removed. This is shown for triggers in the H1
detector (top left), the H2 detector (top right) and the L1 detector (bottom). The
solid, coloured lines on the plots indicate lines of constant effective SNR, larger
values of effective SNR are at the bottom and right end of the plots. The clearly
visible notch in the H1 and L1 plots is caused by the discontinuity in the r2 cut at
an SNR of 12 (section 4.2.8). Here background triggers are represented by black
crosses and injections by red plusses.
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explained and given in [98] as

ρnew =


ρ, χ2 ≤ ndof

ρ[(
1 +

(
χ2

ndof

)4/3
)
/2

]1/4
, χ2 > ndof (4.33)

and has been found to provide a better separation, especially for low mass non

spinning signals and templates [98]. As well as a different form of the contours, it

does not allow the significance of a trigger to be increased if the χ2 value is less

than 1 per degree of freedom.

The effective SNR (or new SNR) for triggers in coincidence are added together

in quadrature to give a “combined effective SNR”. This is then used to rank

triggers, as we describe in the next subsection.

4.2.9 False alarm rates

The signal consistency tests, data quality conditions and ranking statistic serve to

remove or downweight loud non-Gaussian transient events that occur in the data.

The next step is to calculate the significance of surviving triggers. To do this the

rate at which different types of triggers appear due to the noise background must

be calculated. This is then used to calculate a false alarm rate (FAR) for every

trigger surviving the various vetoes. False alarm rates for data marked as category

3 are calculated separately from data that has no data quality flag. Both are used

to search for detection candidates. To be a detection candidate a trigger must

have a FAR that is significantly smaller than 1 per analysis time.

In this subsection we begin by describing how the background rate of triggers

can be evaluated through a process of time shifting the data. We then discuss how

triggers are separated into different categories, how FARs are calculated for each

of these categories and how the values are combined to produce a final combined

FAR.

Time shifted background

The background rate of triggers can be calculated by repeating the analysis with

the triggers from different detectors shifted in time relative to each other. Time

shifts are done in multiples of 5s, which ensures that the shifts are significantly

larger than the light travel time between the detectors and the autocorrelation of

the templates. Therefore, any coincidences seen in the time shifts must be due to
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noise background events and not gravitational wave signals.

The normal practice is to perform 100 time shifts to provide a good estimate

of the background. If any triggers are found in the non time shifted data that

are louder than all the triggers in the background, additional time shifts can be

performed to provide a better estimate of the background rates. To distinguish

from the time slide analysis the non-time slide analysis is often referred to as the

“zero lag” analysis.

This time shifting technique does not require a great deal of extra computa-

tional time. The single detector triggers already exist so no additional matched-

filtering needs to be performed, only the coincidence stage must be recalculated for

each time shift. We should note however, that in the two stage pipeline, the trig-

gered bank (section 4.2.6) contains all templates that produced coincident triggers

in the first stage both in the zero lag and in the time slides. Therefore additional

matched-filtering is often necessary at the second stage.

The H1 and H2 detectors share the same beam tube and therefore background

noise triggers in the two detectors have been observed to be correlated. Therefore,

the time sliding technique does not work for estimating the background level of

triggers detected by only these two detectors. While the loudest triggers seen in

only H1 and H2 are briefly examined, no FARs are calculated. Because of this

inability to calculate a false alarm rate, times when only H1 and H2 are operating

are not used in the calculation of upper limits [1].

Trigger categories

The background rate of triggers is not uniform over the parameter space and

different detectors can exhibit different levels of “glitchiness”. It is known, for

example, that the background rate of triggers is dependent on the masses of the

templates being filtered. In general, glitches match better to the shorter, higher

mass templates than to the low mass ones and the signal consistency tests are

less effective for such templates [1]. It is also known that triple (or quadruple)

coincident triggers are considerably less likely to occur in background than double

coincident triggers.

It is therefore necessary to split up the triggers into different categories and cal-

culate FAR measurements relative to background in that category. The separation

of triggers occurs as follows

• Triggers are separated according to the chirp mass of the trigger, there are

three mass bins
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– M < 3.48M�

– 3.48M� <M < 7.4M�

– 7.4M� <M.

• Triggers are separated according to the detectors that observed the trigger.

• Triggers are separated according to the detectors that were active when the

trigger was observed.

With H1 - H2 coincident triggers removed, there are 15 different categories before

Virgo began VSR1 and 87 different categories after. A FAR can be calculated

for a trigger in any of these categories by dividing the number of events, in the

background, in the same category as the candidate trigger that are more or equally

significant than the trigger, by the total analysed background time.

Combined false alarm rates

For triggers that occur when a given set of detectors were operating, a “combined

FAR” can be calculated by simply dividing the uncombined FAR by the number

of categories. The joint LIGO and Virgo search described in [3] took this further

and developed a likelihood based method to combine the various categories based

on how likely a real signal was to have been found in that category. A combined

FAR was then calculated from this likelihood ranking.

The inverse of the combined FAR is often quoted as the ranking statistic.

This is so that larger values of “IFAR” indicate that the event is more significant.

Some examples of inverse FAR result plots are shown in Figure 4.8. There are no

detection candidates in these plots. A potential detection candidate would appear

as a blue triangle in the bottom right corner of these plots, with a very large IFAR.

4.2.10 Simulated signals

It is useful to test the sensitivity of the pipeline and demonstrate that is is capable

of detecting CBC signals. To do this, simulated signals can be added to the data

before filtering. The pipeline analyses these signals as it would any other stretch

of data and the FAR of any trigger associated with these simulations can be

determined.

These simulations can be performed in two ways. Software injections are per-

formed by adding a simulated waveform to the data after it has been read into the
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Figure 4.8: Cumulative histograms of triggers vs inverse false alarm rate. This
is shown for triggers when H1, H2 and L1 were operating (top left),when H1 and
L1 were operating (top right) and when H2 and L1 were operating (bottom). The
black dashed line indicates the expected trigger level from the background, the
shaded regions indicate one and two σ error regions. The thin grey lines give the
cumulative number of triggers for each of the time slides (100 in total), these can
give an additional indication of the expected deviation from the mean. In these
plots the triggers are consistent with the background and there are no detection
candidates.
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Figure 4.9: Efficiency of software injection recovery plotted against H1 effective
distance for BNS injections. The left figure shows results using non-spinning
injections, the right figure shows results using injections where spin is present and
uniformly distributed. Injections are “found” if they are recovered with a value of
effective SNR that is larger than the loudest event in the zero lag.

pipeline’s analysis codes. In contrast hardware injections are performed by actu-

ating the mirrors at the end of the interferometers’ arms to simulate the response

of a gravitational wave passage.

Hardware injections offer the better test of the sensitivity of gravitational wave

instruments to CBC systems. A hardware injection allows for the whole process

of gravitational wave astronomy to be tested, from the gravitational wave being

incident on the detector through to making a detection. However, as hardware

injections cannot be removed from the data, times when hardware injections are

made cannot be analysed for any other signals that might be in the data. Such

times are marked as category 2. Therefore, only a limited number of hardware

injections can be made in a given stretch of data.

Software injections do not offer as comprehensive a test of the infrastructure

as hardware injections. However, there is no limit to the number of software

injections that can be performed. The analysis of the same data can simply be

repeated with different software injections present as often as is desired.

For the CBC low mass analysis, the process is to use software injections to

tune the pipeline, as we have shown in a number of plots already in this section.

They are also used when calculating upper limits, as we will describe in section

4.2.11. Hardware injections are used to verify the results obtained from software

injections. In Figure 4.9 we demonstrate the ability to recover BNS software

injections with and without spin.
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4.2.11 Upper limits

The final stage of the pipeline is to determine rate limits on the mergers of various

compact objects based on the sensitivity of the pipeline. In the current era, where

no CBC signals have yet been detected, this is limited to placing upper limits on

merger rates. The upper limit quoted for the ihope pipeline is calculated based

only on the loudest event. From the observation that no event was observed in

the data louder than the loudest event, and given the sensitivity of the detectors,

a 90% confidence upper limit can be placed on the rate of mergers. This can be

calculated for BNS, NSBH and BBH signals. In this subsection we will present

the method used to calculate the upper limits quoted in [1, 2, 4]. We note that

category 1, 2 and 3 data are excluded when calculating upper limits. The upper

limit calculation for CBCs was derived previously in [99, 100, 101]. We try to

follow the notation of these earlier works as much as possible.

Derivation of rate upper limit

Here we will derive the rate upper limit calculation used in CBC searches. We

begin by evaluating the probability that no gravitational wave signal will be re-

covered with an IFAR equal to or greater than α during the search

P (α) = e−µ(α)T . (4.34)

Where T is the duration of the search and µ is the rate of signals which would be

recovered louder than α. It is believed that the rate of these mergers is proportional

to the rate of star formation, which is itself proportional to blue light luminosity

[102]. Therefore, this can be written as

µ = CL(α)R, (4.35)

where R is the rate of mergers per unit luminosity per year and CL is the blue light

luminosity in which the search would expect to recover a signal louder than α. We

will discuss the derivation of CL later, for now we assume it is known. These

quantities normally use L10 as the unit of luminosity, L10 is defined as 1010 of the

blue light luminosity of the sun. To put this in context, the Milky Way galaxy

contains 1.7L10. Over a large enough volume, where the distribution of galaxies

can be considered isotropic, it is sufficient to use volume instead of luminosity in

this calculation.

We also wish to calculate the probability that no noise signal will be recovered
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with an IFAR greater than or equal to α, PB(α). This is simply given as

PB(α) = e−1/α. (4.36)

We can then calculate the probability that the zero lag search will produce no

triggers with IFAR greater than or equal to α, either from noise or CBC signals,

as

P (α|R, T ) = PB(α)P (α) = PB(α)e−RCL(α)T . (4.37)

This is then differentiated with respect to α to obtain the probability per unit

FAR interval

p(α|R, T ) =
d

dα

(
PB(α)e−RCL(α)T

)
(4.38a)

= P ′B(α)e−RCL(α)T

(
1 +

PB(α)

P ′B(α)
(−RT )C ′L(α)

)
, (4.38b)

where a dash indicates that this is the derivative of the quantity with respect to

IFAR.

P ′B(α) =
∂PB
∂α

C ′L(α) =
∂CL
∂α

(4.39)

Using Bayes Theorem this can be re-expressed as the probability density function

(pdf) of the rate of mergers given that no event was seen louder than the loudest

event, αm,

p(R|αm, T ) ∝ p(R)e−RCL(αm)T (1 + Λ(αm)RTCL(αm)) , (4.40)

where we have defined p(R) as the prior distribution of R; usually taken as the

result of the previous search. If there was no previous search a uniform prior is

used. Λ is defined as

Λ =
|C ′L(αm)|
CL(αm)

PB(αm)

P ′B(αm)
(4.41)

and we can interpret Λ as the relative probability that the loudest event was due

to a gravitational wave against it being due to background. If there is no chance

it was a gravitational wave Λ will tend to zero. Whereas if it was definitely a

gravitational wave Λ will tend to negative infinity.

If we were to normalize p we can then obtain an upper limit of the rate (R∗)

for a given confidence level (γ) by evaluating

γ =

∫ R∗

0

p(R|αm, T )dR. (4.42)
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The upper limits calculated for CBC searches are calculated at 90% confidence.

Calculating the total luminosity sensitivity of a search

To calculate the upper limits described above one must determine the total lumi-

nosity a search is sensitive to, CL, and the derivative of that with respect to IFAR.

To calculate this one needs to evaluate, as a function of distance and mass,

• LB, the total luminosity. This is evaluated using a galaxy catalogue, com-

pleted with an isotropic distribution of galaxies where the catalogue is in-

complete [103].

• ε, the probability of being able to detect a system with a IFAR louder than

or equal to the loudest event. This is evaluated by adding a large number

of software injections into the data and seeing whether or not the pipeline

detects them (and with what IFAR). The derivative of the efficiency with

respect to IFAR can also be calculated numerically.

The total sensitive blue light luminosity is then given by multiplying these quan-

tities and integrating over all distances and masses

CL(αm) =

∫
ε(αm, D,M)LB (D,M) dD dM. (4.43)

As only the efficiency depends on FAR the derivative of CL with respect to FAR

can be given as

C ′L(αm) =

∫
ε′(αm, D,M)LB (D,M) dD dM. (4.44)

To evaluate the integrals numerically the efficiency and total luminosity must be

evaluated in a number of distance and mass bins. For simplicity the mass is binned

only in the chirp mass as it is assumed that the efficiency has little dependance

on the mass ratio. The distance is binned in terms of effective distance, weighted

by the chirp mass. This is to try to ensure that the efficiency can be reliably

calculated in every bin, while limiting as much as possible the number of software

injections that need to be performed.

Marginalizing over errors

In the calculation above we have described how upper limits are calculated for the

CBC searches ignoring any errors in the calculation. However, there are various
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errors that appear in this calculation and they must be considered when quoting

upper limits. These errors include

• Imprecise knowledge of the astrophysical distributions of the mass and dis-

tance of binaries.

• Differences between the physical signal and the non-spinning, restricted post-

Newtonian waveforms.

• Statistical fluctuations in the measured efficiency.

• Uncertainties in instrumental calibration.

• Errors in the calculated value of Λ, arising from the above uncertainties and

errors in the background estimation.

The effect of these errors are incorporated by marginalizing the rate upper limit

over them. The method of this marginalization is given explicitly in [101].

4.2.12 Output pages

When the analysis is completed and the results are ready to be examined, it

is useful to have a tool that makes it easy to quickly examine the results and

determine whether or not a statistically significant gravitational wave signal is

present in this signal.

To do this a tool has been developed that parses the output created by the

pipeline and creates a html page with all the relevant information easily accessible.

An example of such an output page can be seen in Figure 4.10. This is now a

standard tool and has greatly sped up the analysis of the output of the ihope

pipeline.

4.2.13 Results

The search described above has been run to search for low mass CBCs in data

from S5 and VSR1. The search was published in three parts, the first year of

S5 data [1], the second year of S5 data up until Virgo became operational [2] and

then a final results paper containing the joint S5-VSR1 analysis [3]. Unfortunately

none of these searches found any gravitational wave event.

Upper limits on the merger rates for BBH, BNS and NSBH objects were pro-

duced by these searches, where the black hole mass is defined to be distributed as

(5± 1)M� and the neutron star mass to be distributed as (1.35± 0.04)M�. The
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Figure 4.10: An example of the output html pages that are used to easily view
ihope results.

BNS BHNS BBH
Component Masses (M�) 1.35/1.35 5.0/1.35 5.0/5.0
Non-spinning Upper Limit

(
yr−1L−1

10

)
8.7× 10−3 2.2× 10−3 4.4× 10−4

Spinning Upper Limit
(
yr−1L−1

10

)
... 2.7× 10−3 5.3× 10−4

Predicted “optimistic” rates 6× 10−4 4.7× 10−5 1.1× 10−5

Predicted “realistc” rates 6× 10−5 1.6× 10−6 1.1× 10−7

Predicted “pessimistic” rates 6× 10−7 2.3× 10−8 3.4× 10−9

Table 4.2: Marginalized upper limits for various CBC systems. The effects of
spin on BNS systems are negligible and not reported here. Also shown is the
“predicted”,“realistic” and “pessimistic” rate predictions as quoted in [23]. Note
that as [23] gives results where the black hole has a mass of 10M�, these numbers
have been rescaled to correspond to a black hole mass of 5M�.
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values for these upper limits are shown in Table 4.2. Upper limits were also calcu-

lated as a function of total mass and as a function of the black hole mass for NSBH

systems, these upper limits are shown in Figure 4.11. The quoted upper limits are

considerably larger than the rate predictions in [23], so it is not surprising that a

signal was not seen in these searches.
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Figure 4.11: The 90% rate upper limits as a function of mass. The left figure
gives the upper limit on the rate of coalescence from BBH system as a function
of the total mass of the system. The right figure gives the BHNS upper limit as a
function of black hole mass, assuming a fixed neutron star mass of 1.35 M�.

The analysis of S6 and VSR2 and VSR3 data is progressing, but as sensitivity

has not significantly improved, the probability of making a detection is not sig-

nificantly increased. However, the detectors are now undergoing upgrades for the

advanced era. If these advanced detectors provide a 10-fold sensitivity increase as

predicted [21, 22], which would increase the sensitivity in volume by a factor of

1000, then gravitational wave astronomers in the next decade should be regularly

making detections!

4.3 The triggered search

In this section we discuss the coincidence “triggered” search for CBCs. These

searches are so named because they are triggered by an electromagnetic (EM)

observation. If an EM telescope has observed a source, which might have also

produced gravitational waves, the information is sent to gravitational wave as-

tronomers. A targeted search is then carried out for a gravitational wave signal

coincident with the time and sky location of the electromagnetic observation.

Such triggered searches offer an improvement in sensitivity over all-sky, all-

time searches because the time over which a search is performed is greatly reduced.

Additionally, knowing the sky location gives the delay in time of arrival between

detectors. Both of these things serve to reduce the number of background noise
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triggers and thus reduce the SNR a trigger needs to be a detection candidate.

Additionally, if an event is simultaneously observed with both electromagnetic

and gravitational wave telescopes the science gain can be significantly greater

than an observation with only one of these. For example, with joint observations,

both the redshift and luminosity distance of a source can be observed, thus offering

precision measurements of Hubble’s constant [104].

For the case of CBC searches the most interesting electromagnetically ob-

servable source is a gamma-ray burst (GRB). GRBs emit short duration, but

extremely high energy gamma rays [105]. There are two types of GRB, believed

to be due to different progenitors [106]. The “long GRB” has a longer duration of

emission but emits lower energy photons compared to the “short GRB”. For CBC

sources short GRBs are especially interesting as the favoured progenitor model is

a compact binary coalescence [30, 31].

Unfortunately, the majority of short GRBs with measured distances are be-

lieved to originate at distances that are far too large for current gravitational wave

detectors to be able to observe [105]. Triggered searches are, however, performed

at the time of all short GRBs in case these distance estimates are wrong and to

be able to set lower limits on the distance at which they originated. Nevertheless

a number of short GRBs do not have measured distances and there is also the

occasional short GRB that may have originated within range of our detectors,

such as GRB 070201 as we describe in section 4.3.2.

During S5 and VSR1, searches were carried out for CBC signals in coincidence

with observed GRBs using a coincidence method very similar to the all sky search

[4, 5]. We introduce the coincidence triggered search in this section to put into

context the coherent triggered search that we will describe in the next chapter. It

is our hope that the coherent search, which we will demonstrate is more sensitive

than the coincidence search, will be used to search for CBC signals in coincidence

with short GRBs during S6 and VSR2 and VSR3.

In this section we begin, in section 4.3.1, by describing how the triggered

coincidence search differs from the all sky search described in section 4.2. We

then discuss the results of this search in section 4.3.2 focusing on the special case

of GRB 070201.

4.3.1 The coincident triggered search pipeline

To search for gravitational waves in coincidence with a short GRB observation we

use a very similar procedure to that described in section 4.2. The same vetoes

and cuts are applied and triggers are still ranked by effective SNR (for runs in S5
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and VSR1 data). The differences between the two searches are as follows

• The SNR thresholds in each detector are lowered from 5.5 to 4.

• In accordance with astrophysical predictions, we only analyse [−5,+1) sec-

onds around the peak emission time of the short GRB [30, 31, 4].

• Coincidence windows are tightened to account for the sky location, and thus

difference in arrival times, being known.

• The efficiency of the search and its tuning is carried out using software

injections placed at the same sky location as the GRB.

• The background rates are estimated differently (as described below).

To be able to estimate background rates for any triggers occuring within this 6s

“onsource” time triggers in nearby coincident times are used. One block (2048s)

of data is analysed around the GRB. The background is then estimated from the

304 available six second long, non-overlapping “offsource” trials within this block,

each of which should be separated from the onsource by at least 48s to avoid

contamination. This means that a FAR can be calculated without having to time

slide the data (though time sliding could be performed on the offsource if a better

background estimate was required).

4.3.2 Results

GRB 070201 was a short GRB observed by 4 satellites on the 2nd February, 2007.

The sky location error box for this GRB was found to overlap the Andromeda

galaxy, see Figure 4.12, taken from [107]. At 770kpc, the Andromeda galaxy was

well within the range of detection for the H1 and L1 detectors, which were both

taking good quality science data at the time.

A search for any CBC or unmodelled gravitational wave signal at the time and

sky location of this GRB was carried out [5], but no gravitational wave signal was

observed. Thus, either this GRB was caused by a CBC at a considerably greater

distance than the Andromeda galaxy, or this GRB’s progenitor was something

else. The favoured theory is that this was a soft gamma-ray repeater originating

in the Andromeda galaxy [108, 107].

Apart from GRB 070201, searches have been carried out for CBC gravitational

wave signals in coincidence with 21 GRBs in S5 and VSR1 [4]. Again, no gravita-

tional wave signal was detected. Exclusion distances were set for BNS and NSBH

progenitor models for each of these GRBs and these can be seen in [4].
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Figure 4.12: The sky location error region of GRB 070201 [107].
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Chapter 5

A targeted coherent search for

gravitational waves from compact

binary coalescences

In this chapter, we introduce a targeted coherent analysis for CBC signals, appro-

priate for searching for GWs from EM transients such as GRBs. Coherent search

methods have been introduced by numerous authors [109, 110, 111]. In coherent

searches, data from all operational detectors are combined in a coherent manner

before searching for a signal. Additionally, coherent analyses naturally impose

the restriction that gravitational waves have only two independent polarizations.

However, primarily for computational reasons, many searches have instead made

use of a coincidence requirement — namely that a signal with consistent param-

eters is observed in two or more detectors in the network. Indeed, all previous

LIGO and Virgo CBC search result papers have used a coincidence search [5, 4].

Coincidence searches can approach the sensitivity of a fully coherent analysis, but

will generally not achieve the same sensitivity.

We begin by deriving the coherent analysis for a templated CBC search. This

has been presented in the literature previously [109]. We present an alternative

derivation based on the F -statistic formalism [46] introduced for continuous wave

analyses and now widely used. This allows for a more straightforward derivation

of the coherent detection statistic. It also allows for a simple comparison to the

coincident search and a straightforward derivation of the null stream [112], which

by definition contains no gravitational wave signal.

The data output by gravitational wave interferometers are neither stationary

nor Gaussian, but are contaminated by noise transients of instrumental and en-

vironmental origin. This makes the task of analyzing the data a complex one,
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and matched filtering alone is not sufficient to distinguish signal from noise — the

most significant events by SNR would typically be due to non-Gaussian transients,

or “glitches”, in the data. A significant effort goes into understanding the cause

of these glitches [93] and removing times of poor data quality from the analysis.

While these efforts greatly reduce the number of glitches, they cannot remove them

entirely. Therefore the analysis must also employ methods to distinguish signal

from noise transients. In previous CBC searches, signal consistency tests [80, 113]

have proved very effective at removing the non-Gaussian background. We provide

an overview of the formalism for these χ2 consistency tests, and then extend these

tests to the coherent analysis. We demonstrate that these tests continue to be

effective in separating signal from non-stationary noise in the coherent analysis.

In addition, coherent analyses naturally lend themselves to multi-detector consis-

tency tests, such as the null stream. We describe a number of consistency tests

for the coherent CBC search and again demonstrate their efficacy.

This chapter presents the first implementation of a modelled coherent detection

search for CBC signals, which has been run on real LIGO data. We present results

from running this analysis on both simulated Gaussian data and real detector data

taken from LIGO’s fourth science run (S4). We are able to show that the signal

consistency tests we have implemented are sufficient to remove the majority of

non-Gaussian transients and render the search almost as sensitive as if the data

were Gaussian and stationary. This search is available to be used to search for

CBCs associated with GRBs in S6 and VSR2 and VSR3.

The layout of this chapter is as follows. In section 5.1, we describe the formu-

lation of a targeted coherent search for CBC signals. In section 5.2 we discuss an

implementation of the null stream formalism and other multi-detector consistency

tests. In section 5.3 we describe a number of χ2 tests that can be applied in a

coherent search to try to separate and veto glitches. Finally, in 5.4 we outline an

implementation of a targeted, coherent search for CBCs and present results on

both simulated and real data.

5.1 Coherent matched filtering

In this section, we describe the coherent matched-filtering search for a gravitational

wave signal from a coalescing binary in data from a network of detectors. We

restrict attention to binaries where the component spins can be neglected. The

description is primarily tailored towards searches where the sky location of the

gravitational wave event is known a priori, as is appropriate when performing a
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followup of an EM transient such as a GRB [30, 4]. Finally, since all previously

published CBC search results [3, 2, 1] have used a coincidence search between

detectors, we compare the coherent analysis with the multi-detector coincident

analysis.

The coherent analysis for coalescing binary systems has been derived previously

using a similar method in [109, 114, 115, 116]. Our presentation makes use of the

F -statistic formalism, introduced in [46]. This was originally defined as a method

for performing searches for continuous wave searches and has been regularly used

for this task (see for example [48]). It was noted in [117] that the F -statistic

and the multiple detector inspiral statistic derived in [114] are similar and the

F -statistic was adapted to searches for CBC signals in [118].

5.1.1 The binary coalescence waveform

The generic binary coalescence waveform depends upon as many as seventeen

parameters. However, we restrict attention to binaries on circular orbits with

non-spinning components. This reduces the parameter space to nine dimensions:

the two component masses M1 and M2; the sky location of the signal (θ, φ); the

distance, D, to the signal; the coalescence time of the signal, to; the orientation of

the binary, given by the inclination ι, the polarization angle ψ and the coalescence

phase φo. We also assume that the sky location (θ, φ) of the signal is known,

thereby reducing the number of unkown parameters to seven.

In the radiation frame, where the gravitational wave propagates in the eRz -

direction, the gravitational waveform is given by

h = h+e+ + h×e× (5.1)

where

e+ = eRx ⊗ eRx − eRy ⊗ eRy ,

e× = eRx ⊗ eRy + eRy ⊗ eRx , (5.2)

and the waveforms h+,× depend upon seven parameters (M1,M2, to, D, ι, ψ, φo).

The three angles (ι, ψ, φo) give the relationship between the radiation frame and

the source frame (in which eSz lies in the direction of the binary’s angular momen-

tum and eSx along the separation between the binary components at to). Even

for a known sky location, it is necessary to search a seven dimensional parameter

space of signals. Naively covering this space with a grid of templates would be pro-
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hibitively costly [85]. However, the analysis is greatly simplified by the observation

that the last four parameters enter only as amplitude parameters which can be

analytically maximized over at minimal cost.1 Specifically, the two polarizations

of the waveform can be expressed as

h+(t) = A1h0(t) +A3hπ
2
(t)

h×(t) = A2h0(t) +A4hπ
2
(t) . (5.3)

The two phases of the waveform are written as h0 and hπ
2
. These depend upon

the physical parameters of the system (in this case just the masses) as well as the

coalescence time to.
2 Aµ are constant amplitude terms and are given explicitly as

[118, 116]

A1 = A+ cos 2φo cos 2ψ − A× sin 2φo sin 2ψ (5.4)

A2 = A+ cos 2φo sin 2ψ + A× sin 2φo cos 2ψ

A3 = −A+ sin 2φo cos 2ψ − A× cos 2φo sin 2ψ

A4 = −A+ sin 2φo sin 2ψ + A× cos 2φo cos 2ψ ,

where

A+ =
Do

D

(1 + cos2 ι)

2

A× =
Do

D
cos ι , (5.5)

and Do is a fiducial distance which is used to scale the amplitudes Aµ and wave-

forms h0,π
2
. Thus, the amplitudes Aµ depend upon the distance to the source and

the binary orientation as encoded in the three angles (ι, ψ, φ0). For any set of

values Aµ, the expressions (5.4) can be inverted to obtain the physical parameters,

unique up to reflection symmetry of the system [118].

The gravitational waveform observed in a detector X is

hX = hijDX
ij (5.6)

where DX
ij denotes the detector response tensor. For an interferometric detector,

1This was observed for the inspiral signal in [114] and independently for continuous wave
signals in [46].

2This decomposition is actually valid for all binaries in which the plane of the orbit does
not precess. Thus, binary coalescence waveforms in which the spins are aligned with the orbital
angular momentum can also be expressed in this form. However, for generic spin configurations,
the orbit will precess and this simple decomposition is no longer applicable.
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in the long wavelength limit, the response tensor is given by

DX = (eXx ⊗ eXx − eXy ⊗ eXy ) (5.7)

where the basis vectors eXx and eXy point in the directions of the arms of the

detector. It is often convenient to re-express the gravitational wave signal observed

in a given detector as

hX(t) = F+(θX , φX , χX)h+(t) + F×(θX , φX , χX)h×(t) , (5.8)

where the detector response to the two polarizations of the gravitational wave is

encoded in the functions

F+(θ, φ, χ) = − 1

2
(1 + cos2 θ) cos 2φ cos 2χ

− cos θ sin 2φ sin 2χ , (5.9)

F×(θ, φ, χ) =
1

2
(1 + cos2 θ) cos 2φ sin 2χ

− cos θ sin 2φ cos 2χ. (5.10)

These response functions depend upon the three angles (θX , φX , χX) which relate

the detector frame to the radiation frame: θX and φX give the sky location rela-

tive to the detector, while χX is the polarization angle between the detector and

the radiation frames. We have, somewhat unconventionally, allowed for a polar-

ization angle in transforming from source to radiation and radiation to detector

coordinates. In what follows, we will often find it convenient to fix the angle χX

by explicitly tying it to the detector (or equatorial) frame; for example, by max-

imizing the detector (or network) sensitivity to the + polarization. The angle ψ

then describes the orientation of the source with respect to this preferred radiation

frame.

Since we are considering CBC observed in ground-based detectors, the time

that a potential signal would spend in the sensitivity band of any detector will be

short (less than 60s for the initial detectors). Thus the change in the source’s sky

location over the observation time may be neglected, and the angles (θX , φX , χX)

can be treated as constants. When working with a network of detectors, it is

often useful to work in the equatorial frame. The location of the source (θ, φ, χ) is

measured relative to this frame, and coalescence time is measured at the Earth’s

centre. In this case, the location and orientation of the detector X are specified

by three angles, which we denote ~αX , and the detector response will depend upon
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six angles (~αX , θ, φ, χ). Then, the observed signal in a given detector is3

hX(t) = F+(~αX , θ, φ, χ)h+(tX) + F×(~αX , θ, φ, χ)h×(tX) , (5.11)

where tX is the time of arrival of the signal at detector X,

tX = t− dt(~αX , θ, φ, χ) (5.12)

and dt gives the difference in arrival time of the signal between the geocenter and

detector, for the given sky position.

Combining the final expressions for the binary coalescence waveform (5.3) and

the detector response (5.11), we can express the gravitational waveform observed

in a given detector as

hX(t) = Aµ(D,ψ, φo, ι)h
X
µ (t) (5.13)

where the Aµ are defined in (5.4), hXµ are given by

hX1 (t) = FX
+ h0(tX)

hX2 (t) = FX
× h0(tX)

hX3 (t) = FX
+ hπ2 (tX)

hX4 (t) = FX
× hπ2 (tX) , (5.14)

and we use the standard summation convention over the repeated index µ.

5.1.2 Multi detector binary coalescence search

Matched filtering theory [78] provides a method for determining whether the signal

h(t, ξ), parametrized by the time and other parameters ξ, is present in a noisy data

stream. The data output by a detector is

sX(t) = nX(t) + hX(t, ξ) (5.15)

where nX(t) is the noise, taken to be Gaussian and stationary. The noise nX(t) of

the detectors is characterized by the noise PSD SXh (f) as

〈ñX(f)[ñX(f ′)]?〉 = δ(f − f ′)SXh (f) . (5.16)

3We do not give the explicit formula for the response function dependent on the six angles
(~αX , θ, φ, χ), as the expression is somewhat lengthy. It can be obtained by performing six
successive rotations to the detector response tensor to transform from the detector frame, via
the equatorial frame, to the radiation frame. The calculation is detailed in [119].
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With this, we define the single detector inner product between two time series a(t)

and b(t) as

(aX |bX) = 4 Re

∫ ∞
0

ãX(f)[b̃X(f)]?

SXh (f)
. (5.17)

Then, the likelihood ratio of there being a signal h present in the data is given by:

Λ(h) =
P (s|h)

P (s|0)
=
e−(sX−hX |sX−hX)/2

e−(sX |sX)/2
. (5.18)

For a known signal h, with no unknown parameters, in Gaussian noise, the likeli-

hood ratio is optimal in the Neyman-Pearson sense. However, this statistic is not

optimal in the presence of non-Gaussian noise, as is discussed in greater detail in

sections 5.2 and 5.3. It is often more convenient to work with the log-likelihood,

log Λ = (s|h)− 1

2
(h|h) , (5.19)

and we will do so.

The likelihood ratio for multiple detectors is a straightforward generalization

of the single detector expression (5.18). Assuming that the noise in different

detectors are independent, in the sense that

〈ñX(f)[ñY (f ′)∗]〉 = δXY δ(f − f ′)SXh (f) , (5.20)

the multi-detector inner product is simply given by the sum of the single detector

contributions4

(a|b) :=
∑
X

(aX |bX) . (5.21)

The multi-detector log-likelihood is given by

ln Λ = (s|h)− 1

2
(h|h) . (5.22)

Specializing to the case of binary coalescence, we can substitute the known

waveform parametrization (5.13) into the general matched filter likelihood ratio

(5.22). The multi-detector likelihood ratio becomes

ln Λ =

[
Aµ(s|hµ)− 1

2
AµMµνAν

]
(5.23)

4Note that we will explicitly write out the summation over detectors X, and do not use
implicit summation over these indices.
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where the matrix Mµν is defined as

Mµν := (hµ|hν) . (5.24)

The derivative of (5.23) with respect to Aµ provides the values of Aµ which max-

imize the likelihood ratio as

Âµ =
[
Mµν(s|hν)

]
, (5.25)

where, following [120], we takeMµν to be the inverse ofMµν . We then define the

maximized “coherent SNR” via the maximum likelihood ratio as

ρ2
coh := 2 ln Λ|max =

[
(s|hµ)Mµν(s|hν)

]
. (5.26)

An identical maximization is performed in the derivation of the F -statistic,

used in searches for gravitational waves from asymmetric neutron stars [46]. In

that context, the quantity obtained in (5.26) is typically denoted 2F . However,

to make a closer connection to previous CBC search methods, we denote this

quantity ρ2
coh.

It is not difficult to show that ρ2
coh follows a χ2 distribution with four degrees of

freedom in the absence of a signal, and a non-central χ2 distribution (again with

4 degrees of freedom) when a signal is present. See, for example, [120] for more

details. Furthermore, ρ2
coh is now a function of only the waveform components

hµ and no longer the Aµ parameters. Thus four of the original seven waveform

parameters have been analytically maximized, leaving three to be searched over.

Calculating the maximized likelihood ratio, as well as estimating the parame-

ters Âµ requires an inversion of the matrix Mµν . CBC signals will spend a large

number of cycles in the sensitive band of the detector and consequently the 0 and
π
2

phases will be (close to) orthogonal. Since the frequency evolves slowly, the

amplitudes of the two phases will be close to equal,5 i.e.

(hX0 |hXπ
2
) ≈ 0

(hXπ
2
|hXπ

2
) ≈ (hX0 |hX0 ) =: (σX)2 . (5.27)

5Indeed, several CBC waveforms are generated directly in the frequency domain [121], making
these equalities exact.
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Therefore, the matrix M simplifies to

Mµν =


A C 0 0

C B 0 0

0 0 A C

0 0 C B

 (5.28)

where
A =

∑
X(σXFX

+ )2

B =
∑

X(σXFX
× )2

C =
∑

X(σXFX
+ )(σXFX

× ) .

(5.29)

Dominant polarization

Since we have included a polarization angle in both the transformation between

equatorial and radiation frame (χ) and between radiation and source frame (ψ), we

have the freedom to specify one of these without placing any physical restriction

on the signal. The coherent SNR is further simplified by introducing a dominant

polarization frame which renders Mµν diagonal.

Under a rotation of the radiation frame by an angle χDP, the detector response

functions transform as

FX
+ → FDP,X

+ = FX
+ cos 2χDP + FX

× sin 2χDP (5.30)

FX
× → FDP,X

× = −FX
+ sin 2χDP + FX

× cos 2χDP.

The rotation through χDP will have an identical effect on all detectors. Thus,

there exists a polarization angle χDP which satisfies

CDP =
∑
X

(σXFDP,X
+ )(σXFDP,X

× ) = 0 . (5.31)

This can be solved to give χDP as

tan 4χDP =
2
∑

X(σXFX
+ )(σXFX

× )∑
X [(σXFX

+ )2 − (σXFX
× )2]

. (5.32)

This choice serves to diagonalize the matrix M. To uniquely determine χDP,

we impose an additional requirement that the network be more sensitive to the

+ polarization than to the × polarization. The value of χDP is a function of

the detector network, the source location and waveform; in particular it depends

upon FX
+,× and σX . From now on, we assume that we are working in the dominant
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polarization frame and drop the DP superscript from our expressions.

The concept of the dominant polarization frame has been introduced previously

in un-modelled burst searches [122, 123, 111]. While the idea is very similar, the

actual implementation is somewhat different.

In the case that both A and B are non-zero, i.e. that the detector has some

sensitivity to both polarizations, the coherent SNR can be written, in the dominant

polarization, as

ρ2
coh =

(s|F+h0)2 + (s|F+hπ
2
)2

(F+h0|F+h0)
+ (5.33)

(s|F×h0)2 + (s|F×hπ
2
)2

(F×h0|F×h0)
.

The coherent SNR can then be seen to arise as the quadrature sum of the power

in the two phases of the waveform (0 and π
2
) in the two gravitational wave polar-

izations (+ and ×).

Synthetic + and × detectors

In the dominant polarization the coherent SNR is comprised of separate + and

× components, with no cross terms. We can go one step further and interpret

the coherent SNR as arising from two synthetic detectors, one sensitive to only

the + polarization and one sensitive to only the × polarization. These synthetic

detectors are most easily formed by combining the “over-whitened” data streams

oX from the various detectors, where

oX(f) =
sX(f)

SXh (f)
. (5.34)

The over-whitened synthetic data streams are simply

o+,×(f) =
∑
X

FX
+,×o

X(f) ; (5.35)

and the power spectra for these over-whitened data streams are

S+,× =

(∑
X

(FX
+,×)2

SXh (f)

)−1

. (5.36)
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Using this, the un-whitened synthetic data streams are given as6

s+,×(f) =
∑
X

FX
+,×s

X(f)

SXh (f)

(∑
Y

(F Y
+,×)2

SYh (f)

)−1

. (5.37)

In terms of these synthetic detectors the detection statistic becomes

ρ2
coh =

(s+|h0)2
+ + (s+|hπ

2
)2
+

(h0|h0)+

+
(s×|h0)2

× + (s×|hπ
2
)2
×

(h0|h0)×
, (5.38)

where the subscripts +,× on the inner products denote the fact that the power

spectrum of the synthetic detectors is used in their evaluation.

Network degeneracy

In many cases, a detector network is much more sensitive to one gravitational wave

polarization than the other. In the extreme limit (e.g. co-located and co-aligned

detectors such as those at the Hanford site) the network is entirely insensitive to

the second polarization. In the dominant polarization frame, the network becomes

degenerate as B → 0 or equivalently∑
X

(σXFX
× )2 → 0 . (5.39)

Thus the network will only be degenerate if FX
× = 0 for all detectors X. If the

network is degenerate then it is easy to see that the detection statistic will be

degenerate as well. In this case it is logical to remove the × terms from the

detection statistic reducing it to

ρ2
coh =

(s|F+h0)2 + (s|F+hπ
2
)2

(F+h0|F+h0)
, (5.40)

which is χ2 distributed with two degrees of freedom.

In this formalism the coherent SNR changes abruptly from (5.40) to (5.33). If

there is any sensitivity, no matter how small, to the × polarization, there is an

entirely different detection statistic. This arises due to maximization over the Aµ
parameters, allowing them to take any value. Thus, even though a network may

have very little sensitivity to the × polarization, and consequently there will be

6There is some ambiguity in fixing the overall normalization of the synthetic detectors. We
require that our synthetic detectors have the same sensitivity to the two polarizations as the
original network did by requiring (h+,×

0 |h+,×
0 )+,× =

∑
X(FX

+,×σ
X)2.
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little chance of observing the waveform in the × polarization, this is not taken

into account in the derivation. A possible modification is to place an astrophysical

prior on the parameters (D, ι, ψ, φ0) and propagate this to the distribution of the

Aµ [124]. This would provide a smooth transition from the degenerate to non-

degenerate search.

5.1.3 Comparison with coincident search

The single detector search is a special case of the degenerate network (5.40) and

can be written as

ρ2
X =

(sX |h0)2 + (sX |hπ
2
)2

(σX)2
. (5.41)

A coincidence search requires a signal to be observed in two or more detectors,

without requiring consistency of the measured waveform amplitudes in the dif-

ferent detectors. In many cases, coincidence searches have made use of different

template banks in the different detectors [4, 3, 2] and required coincidence between

the recovered mass parameters [90]. A comparison with the coherent analysis dis-

cussed above is facilitated if we consider a coincident search where an identical

template is used in all detectors, as was done in an analysis of early LIGO data

[74]. In this case, the multi-detector coincident SNR is given by

ρ2
coinc =

∑
X

ρ2
X =

∑
X

(sX |h0)2 + (sX |hπ
2
)2

(σX)2
. (5.42)

This is not immediately comparable to the coherent SNR given in (5.33). However,

both can be re-cast into similar forms by writing the coincident SNR as

ρ2
coinc =

∑
X,Y

∑
i=0,π

2

(
sX
∣∣∣ hi
σX

) [
δXY

] (
sY
∣∣∣ hi
σY

)
, (5.43)

and the coherent SNR can be written as

ρ2
coh =

∑
X,Y

∑
i=0,π

2

(
sX
∣∣∣ hi
σX

) [
fX+ f

Y
+ + fX× f

Y
×
] (
sY
∣∣∣ hi
σY

)
, (5.44)

where we have defined the orthogonal unit vectors (in detector space) fX+ , f
X
× as

fX+,× =
σXFX

+,×√∑
Y (σY F Y

+,×)2
. (5.45)
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The SNR of the coincident search (5.43) is simply the sum of all power con-

sistent with the template waveform in each detector. The coherent SNR (5.44)

makes use of the fact that gravitational waves have only two polarizations to re-

strict the accumulated SNR to the physical subspace spanned by f+ and f×. For a

signal, the power will lie entirely in this subspace, while noise in the detectors will

contribute to all components of the coincident SNR. Thus, the coherent analysis

obtains precisely the same signal SNR but reduces the noise background. Specifi-

cally, the coherent SNR acquires contributions from four noise degrees of freedom,

while the coincident SNR has 2N noise degrees of freedom, where N indicates

the number of active detectors. For a non-degenerate two detector network, the

coincident and coherent SNRs are equal as in this case fX+ f
Y
+ + fX× f

Y
× = δXY .

In the case where a network is sensitive to only one polarization, the coherent

SNR is constructed solely from the fX+ direction and coherent SNR is χ2 distributed

with 2 degrees of freedom.

Finally, we note that restricting to the coherent SNR can help to separate tran-

sients from gravitational wave signals as those transients which do not contribute

power to the signal space will be ignored. However, many noise transients will

contribute to the coherent SNR and more active methods of removing them are

required. These methods are the focus of sections 5.2 and 5.3.

5.2 Signal consistency between detectors

As discussed in the introduction, due to the presence of non-Gaussian noise tran-

sients, it is essential to make use of signal consistency requirements within search

algorithms to distinguish glitches from gravitational wave signals.

Multi-detector analyses have made good use of signal consistency between de-

tectors (see e.g. [111]). A particularly powerful test is the use of a “null stream”

[112] which, by construction, contains no gravitational wave signal. Many noise

transients will contribute power to the null stream and can therefore be eliminated

as candidate events. In addition, requiring that the gravitational wave signal is

recovered consistently between detectors can eliminate other noise transients, in

our case this is equivalent to imposing restrictions on the recovered values of the

parameters, Âµ. These two methods will be considered in turn. For matched

filtering searches, requiring consistency between the observed signal and template

waveform has also proven very powerful [80]. A full description of waveform con-

sistency tests is presented in the next section.
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5.2.1 Null stream consistency

The gravitational waveform consists of two polarizations. Thus for networks com-

prising three or more detectors it is possible to construct one or more null data

streams which contain no gravitational wave signal [112]. In the context of a co-

herent search for CBC signals, the null consistency tests arise quite naturally. In

section 5.1.3, we noted that the coherent SNR can be thought of as a projection of

the coincident multi-detector SNR onto a four dimensional signal subspace. The

remaining dimensions in the coincident search do not contain any gravitational

wave signal, but will be subject to both Gaussian and non-Gaussian noise. Thus,

we can define the null SNR as

ρ2
N = ρ2

coinc − ρ2
coh (5.46)

=
∑
X,Y

∑
i=0,π

2

(
sX
∣∣∣ hi
σX

) [
NXY

] (
sY
∣∣∣ hi
σY

)
,

where

NXY = δXY − fX+ fY+ − fX× fY× . (5.47)

A gravitational wave signal matching the template h will provide no contri-

bution to the null SNR, so we expect that, for signals, this statistic will be χ2

distributed with (2N − 4) degrees of freedom. A noise transient that is incoher-

ent across the data streams, may give a large coherent SNR, but it is likely to

also give a large null SNR. Thus requiring a small null SNR will prove effective

at distinguishing incoherent noise transients from real gravitational wave signals.

Since the definition of the null SNR (5.46) makes use of the template waveform,

gravitational waveforms which do not match the template h can contribute to the

null SNR.

We can go one step further and introduce synthetic null detectors in analogy

with the synthetic + and × detectors. For concreteness, we describe the three

detector case, but this can be extended in a straightforward manner to larger

networks. When working with a three detector network, there is a single null

direction,

nX =
∑
Y,Z

εXY Zf
Y
+ f

Z
× , (5.48)

where εXY Z denotes the Levi-Cevita symbol, and the projection onto the null

space is given by NXY = nXnY . Then, the over-whitened synthetic null detector
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is

oN(f) =
∑
X

nX

σX
oX(f) . (5.49)

The power spectrum of the null stream is7

SN(f) =

(∑
X

(nX)2

(σX)2SXh (f)

)−1

(5.50)

and the un-whitened null stream is

sN(f) =

(∑
X

nXsX(f)

σXSXh (f)

)
· SN(f) . (5.51)

Finally, the null SNR can be written as

ρ2
N =

(sN |h0)2
N +

(
sN |hπ

2

)2

N

(h0|h0)N
. (5.52)

The null SNR described above differs from the multi-detector null stream for-

malism introduced in [112] and used by several other authors. A null stream is

constructed to be a data stream which contains no contribution from the h+ and

h× gravitational waveforms, regardless of the details of the waveform. To provide

a concrete comparison between the null stream and null SNR, we again restrict

attention to a three detector network. The null stream is explicitly constructed as

sNull(f) =
∑
X,Y,Z

εXY ZF
X
+ F

Y
× s

Z(f) . (5.53)

By comparing the null stream in (5.53) with the synthetic null detector (5.51),

it is clear that these will generically differ. To get an insight into the differences,

consider a network with two co-located detectors A and B, with power spectra

SAh (f) and SBh (f) respectively, and a third detector C which is sensitive to the

other polarization of gravitational waves. For this network, the null stream will

be a combination of only the A and B detector data. The power spectrum of the

null stream is

SNull(f) = SA(f) + SB(f). (5.54)

7In this case, there is a normalization ambiguity. For the synthetic plus and cross streams,
it was natural to require that the synthetic detectors have the same sensitivities as the original
network. For the null stream this is not feasible as the network has zero sensitivity to a signal
in the null stream, so we normalize such that (h0|h0)N = 1.
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while for the synthetic null detector, it is

1

SN(f)
=

1

(σA)2SA(f)
+

1

(σB)2SB(f)
. (5.55)

Thus, if the power spectra of detectors A and B are identical, then the two

null streams are also identical. In the extreme case that the sensitivity bands of

the two detectors do not overlap at all, then there is no null stream (SNull →∞).

However, the null SNR need not vanish and is similar to a two bin version of the

χ2 test described in section 5.3.4. Thus, it is possible to construct scenarios in

which these two null stream formulations differ significantly.

For the most part, the power spectra of the ground based detectors are rather

comparable. So, in general there will not be a significant difference between these

two forms. There are advantages to both methods. The null stream is designed

to cancel all gravitational wave signals from the data, thus making it more robust

when the signal is not well known. However, by making use of the template signal,

there are instances in which the null SNR provides a more powerful consistency

test. Furthermore, it has a computational benefit in that it does not require

the production of a null stream — all manipulations are performed on the single

detector SNR data streams which are subsequently separated into coherent and

null componenets. In practice we have found very little difference in performance,

and choose to compute the null SNR (5.46) for computational simplicity.

Finally, we note that both null stream formalisms will perform optimally only

if the three detectors have similar sensitivities. In the case where one detector

is significantly less sensitive than the others, the null stream will generally tend

to the data of that least sensitive detector. Also, the null formalisms described

here will only completely cancel a gravitational wave signal provided that the

calibration of the data streams is accurate, any error in calibration will lead to a

signal surviving in the null stream.

5.2.2 Amplitude consistency

The four amplitude parametersAµ, encoding the distance to and orientation of the

binary system, can take any values. Indeed, any set of Aµ corresponds to unique

values of the distance, inclination angle, coalescence phase and polarization angle,

up to symmetries of the system. However, some of these values will be significantly

more likely to occur astrophysically than others. For example, the number of

binary coalescence events is expected to be approximately proportional to star

formation rate [23] and consequently should be roughly uniform in volume. Thus,
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events are more likely to occur at a greater distance. Similarly, the gravitational

wave amplitude, at a fixed distance, is greater for face on signals than edge on

ones, as is clear from (5.5). Therefore, we are more likely to detect face on signals

at a large distance than nearby, edge on ones. Consequently, certain values of Aµ
are astrophysically more likely than others. This can be taken into account in

a Bayesian manner by marginalizing over an appropriate distribution for the Aµ
rather than performing a maximization [124].

The distribution of noise events will follow its own characteristic distribution.

For Gaussian noise, the expected distributions of the Aµ can be explicitly calcu-

lated. Non-stationarities in the data will again produce a different distribution of

amplitudes which cannot be analytically modelled in a straightforward manner.

Specifically, the majority of transients are caused by a disturbance or glitch in a

single detector with little or no signal in the other detectors. For networks with

three or more detectors, this will typically be inconsistent with a coherent signal

across the network, leading to a large value of the null SNR. In certain scenarios,

most notably for two detector networks, there will be a consistent set of values

for the Aµ. However, these values carry the characteristic signature of a glitch.

Specifically, the SNR contributions will typically be consistent with a nearby, close

to edge on system (A× ≈ 0), with a very specific orientation to provide essentially

no response in all but one detector. Thus, the glitch distribution of the Aµ param-

eters, will be significantly different from the distribution expected for gravitational

wave signals. In the remainder of this section, we explore the possibility of making

use of the extracted Aµ parameters to distinguish between glitches and signals.

Unlike the null stream, amplitude consistency tests are available for two detector

networks. They should be especially useful in the case of the two 4km LIGO

instruments, which have similar sensitivities to the majority of points on the sky.

We have argued that the majority of gravitational wave signals will originate

from (close to) face on binaries while the majority of noise transients will mimic

(close to) edge on binaries. The recovered value of the inclination angle ι should

then serve to separate signals from noise. To investigate this, we simulated a large

number of CBC signals and a large number of noise glitches; added Gaussian

noise and plotted the recovered inclination angle in Figure 5.1. The glitches were

generated as events with a large SNR in one detector coincident with Gaussian

noise in a second detector. The signals were separated into two groups: the first

with only face on binaries (| cos ι| = 1) and the second a uniform distribution over

the two sphere (uniform in cos ι and ψ) of the binary orientation. In both cases,

they were distributed uniformly in volume and orbital phase. We also consider two
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Figure 5.1: The distribution of the recovered inclination angle plotted against
coherent SNR for optimally oriented signals (unfilled circles), uniformly distributed
orientations (blue crosses) and simulated glitches (red circles). The left figure
shows a network configuration where we are equally sensitive to both gravitational
wave polarizations. The right figure shows a configuration where we are 5 times
more sensitive to the + polarization than to the ×.

different network configurations, both containing two equally sensitive detectors.

In the first case one detector is sensitive to + and the other to × polarization

; in the second case both detectors have strong and equal sensitivity to the +

polarization and weak but opposite sensitivity to the × polarization — rather

typical for the Hanford, Livingston network. For both sets of signals and choices

of network, there is a clear distinction between signal and glitch distribution.

However, there is a clear downwards bias on the recovered values of ι. This can

be understood by looking at the expressions for A+ and A×. For face on binaries,

these will be equal but, in the presence of noise, A× will be reconstructed to be

somewhat smaller than A+. A relative difference of only 5% leads to a recovered

inclination of 45◦, so even for loud signals there can be large discrepancy between

the actual and recovered inclination angle.

Despite the difference in distribution between signal and noise, there is also a

significant overlap of the populations at low SNRs. Consequently, any threshold

imposed on the recovered inclination angle is liable to either reject a fraction of

signals or pass a fraction of glitches. It is, however, quite possible that knowledge

of these expected distributions could be folded into the detection statistic in a

Bayesian manner.

We have found that using the observed SNR in the individual instruments to

be a more effective discriminator of signal and noise. To demonstrate the efficacy

of such an approach, in Figure 5.2 we plot the single detector SNR as a function of

the coherent SNR for the same population of glitches and the two classes of signals
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Figure 5.2: The distribution of single detector SNR plotted against coherent SNR
for optimally oriented signals (unfilled circles), uniformly oriented signals (blue
crosses) and glitches (red circles). The left figure shows a network of two equally
sensitive detectors, where one detector sees only the + polarization and the second
detector sees only the × polarization. The right figure shows a similar network
where both detectors have strong and equal sensitivity to the + polarization and
weak but opposite sensitivity to the× polarization. This is typical for the Hanford,
Livingston network. The diagonal solid black line shows the expected SNR for the
optimally oriented signals. The horizontal dashed black line indicates an SNR of
4.

(face on and uniformly distributed orientation) described above. The glitches fall

into two groups depending upon which detector suffered the glitch. Since our

model detectors are equally sensitive, then on average one expects each detector

to accrue 1/
√

2 of the coherent SNR. Even allowing for non-optimally oriented

signals and the addition of Gaussian noise, the signals follow this expectation.

Only a small number of signals are found with SNRs inconsistent with the expected

values, these are ones that have very specific orientations. Overall, the signal and

glitch populations are very well separated, at least until the coherent SNR becomes

rather small.

The most effective strategy we have found is to require that all events have

an SNR above 4 in the two most sensitive detectors in the network. The cut

is illustrated in Figure 5.2. This strategy removes the majority of glitch signals

while having a negligible effect on the signal population at large SNR. For lower

SNR the signals which are lost due to this cut would be unlikely to be detection

candidates as Gaussian noise alone produces similar events.
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5.3 Coherent χ2 tests

Data from gravitational wave detectors contain numerous non-stationarities due to

both instrumental and environmental causes. These non-stationarities, or glitches,

typically do not match well with the CBC waveform. However, they often contain

enough power that, even though the match with the template is poor, a large SNR

is observed. In the previous section, we have seen how the use of various coherent

consistency tests can mitigate this problem. Additionally, a number of other signal

consistency tests have been implemented [80, 113] and used in searches for CBC

signals [3, 2, 1]. These tests are all designed to eliminate glitches which have a

different signal morphology than the template waveform. This is essentially done

by testing whether the detector data orthogonal to the signal is well described as

Gaussian and stationary — for a glitch, there will be residual power which does not

match the template waveform. These tests are commonly known as “χ2 tests” as

they construct a statistic which is χ2 distributed in the presence of Gaussian noise

plus a signal matching the template waveform. If the data contains a glitch, the

χ2 statistic will generally have a large value, thereby allowing for differentiation

of signal from non-stationary noise. In this section, we briefly review the general

formulation of χ2 tests before presenting a detailed description of three such tests

which have been implemented for the coherent search described in section 5.1.

5.3.1 A general framework for χ2 tests

Consider the data from a gravitational wave detector at a time t which has pro-

duced a large SNR when filtered against a template h(t). Generically, the data

s(t) can be decomposed as

s(t) = n(t) + Ah(t) +Bg(t) (5.56)

where n(t) represents a Gaussian noise component, h(t) is the template waveform,

g(t) is an additional non-Gaussian noise contribution to the data stream and A

and B are amplitude factors. The glitch contribution g(t) is taken to be the power

orthogonal to h(t) and both g(t) and h(t) are normalized, so that

(g|g) = 1 , (h|h) = 1 , (g|h) = 0 . (5.57)

In order to construct a χ2 test, we must introduce an additional set of wave-

forms T i. These waveforms are required to be orthonormal and orthogonal to
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h,

(h|T i) = 0 , (T i|T j) = δij . (5.58)

Furthermore, for the χ2 test to be effective, the T i must have a good overlap with

the glitch waveform g(t).

The χ2 discriminator is constructed as

χ2 =
N∑
i=1

(T i|s)2 . (5.59)

When the data comprises only signal plus Gaussian noise, i.e. B = 0 in equation

(5.56),

χ2 =
N∑
i=1

(T i|n)2 (5.60)

and the statistic is the sum of squares of independent Gaussian variables with

zero mean and unit variance. Thus the test is χ2 distributed with N degrees of

freedom, with a mean and variance of

〈χ2〉 = N , Var(χ2) = 2N . (5.61)

This is true for any set of waveforms T i given the above assumptions.

In the case where the data are not an exact match to the signal, we take

both A and B non-zero, i.e. any signal or glitch can be decomposed into a part

Ah(t) proportional to the template under consideration plus a second orthogonal

contribution Bg(t). Clearly, for different glitches, the waveform g(t) as well as the

amplitude factor B will be different. In this case the χ2 test takes the form

χ2 =
N∑
i=1

[
(T i|n)2 + 2B(T i|n)(T i|g) +B2(T i|g)2

]
. (5.62)

This has a mean

〈χ2〉 = N +B2

N∑
i

(T i|g)2 (5.63)

and a variance

Var(χ2) = 2N + 4B2
∑
i

(T i|g)2 . (5.64)

The χ2 test is distributed as a non-central χ2 distribution with N degrees of
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freedom and a non-centrality parameter [80]

λ = B2

N∑
i=1

(T i|g)2 . (5.65)

The challenge in constructing a χ2 test is to select the basis waveforms T i such

they have large overlaps with the observed glitches in the data. If this is done

successfully, then any glitch producing a large SNR will also give a large value of

χ2, inconsistent with a signal in Gaussian noise.

In many cases, there is some uncertainty in the template waveform. For ex-

ample, the post-Newtonian (PN) expansion used in generating CBC waveforms is

truncated at a finite (typically 3 or 3.5 PN [69]) order and there will be differences

between this analytically calculated waveform and the one provided by nature.

There are similar uncertainties in waveforms obtained from numerical relativity

simulations [125]. Additionally, to search the full parameter space of coalescing

binaries, a discrete template bank is used which allows for some mismatch between

the templates and any potential signal within the parameter space [85]. Normally

the template bank is created so that the mismatch is no larger than 3% at any

point in the parameter space. Finally, there are uncertainties in instrumental

calibration [81] which will affect the match between signal and template.

We model these effects by parametrizing the signal as

H(t) = A(
√

1− ε2 h(t) + εm(t)) , (5.66)

where m(t) is the component of H that is orthogonal to h [(m|h) = 0] and ε

encodes the mismatch between signal and template in the sense that

1− (H|h)√
(H|H)(h|h)

= 1−
√

1− ε2 ≈ ε . (5.67)

In most cases, it is reasonable to assume a mismatch of less than 5%. The obvious

counter-example is when searching for highly spinning systems using non-spinning

waveforms, see e.g. [126, 127].

Since (5.66) is a special case of (5.56) it follows directly that the mean and
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variance of the χ2 test in the presence of a mis-matched signal are

〈χ2〉 = N + A2ε2
N∑
i=1

(T i|m)2

Var(χ2) = 2N + 4A2ε2
N∑
i=1

(T i|m)2. (5.68)

As the SNR of the signal is proportional to A, the expected χ2 value for a mis-

matched signal increases with the strength of the signal. However, for mismatched

signals χ2 ∝ ε2A2 while for glitches χ2 ∝ B2 and provided εA � B the two can

be separated. See [80] for a more detailed discussion.

When introducing the χ2 test, we assumed that the T i were orthonormal and

orthogonal to the template waveform h. In practice, this can be difficult to guar-

antee. The signal consistency tests discussed in the remainder of this section

are constructed from gravitational waveforms. If one picks a set of gravitational

waveforms, ti, there is no guarantee that they will be either orthonormal or or-

thogonal to h. We can, at least, construct waveforms which are orthogonal to h

by introducing

T i =
ti − (ti|h)h√

1− (ti|h)2
. (5.69)

While this ensures (h|T i) = 0 it does not guarantee orthonormality of the T i,

(T i|T j) = δij. Thus this method will not produce a χ2 distribution, and will

instead form a generalized χ2 distribution. The mean of the distribution remains

N but the variance is increased,

Var(χ2) = 2N + 2
∑
i 6=j

(T i|T j)2. (5.70)

It has been found, however, that this does not present a significant obstacle to

using these tests, especially as the thresholds are tuned empirically [128].

Multi-detector χ2 tests

In section 5.1, we derived a coherent multi-detector search for coalescing binaries.

The search involves filtering four waveform components hµ against the multi-

detector data stream. Our initial discussion of χ2 tests was limited to the descrip-

tion of a single phase template waveform h and test waveforms T i. The extension

to a two phase waveform has been described previously [80] and here we extend

that to a four component waveform across multiple detectors, as is appropriate
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for this search. We begin by noting that the four waveform components hµ are

orthogonal in the dominant polarization basis. They are, however, not generally

normalized, as

(hµ|hν) =Mµν = diag(A,B,A,B) , (5.71)

where A and B are defined in (5.29). Thus, we first normalize so that

(ĥµ|ĥν) = δµν . (5.72)

To construct a network χ2 test, we require a set of (4-component) normalized,

test waveforms t̂iµ. The components

T iµ =
t̂iµ −

∑
ν(t̂

i
µ|ĥν)ĥν√

1−∑σ(t̂iσ|ĥσ)2

, (5.73)

constructed to be orthogonal to hµ, are used in the χ2 test. Thus, the coherent,

multi-detector χ2 test is

χ2 =
4∑

µ=1

N∑
i=1

(Ti
µ|s)2 . (5.74)

Provided the test waveforms are orthonormal, in the sense that

(Ti
µ|Tj

ν) = δijδµν , (5.75)

the distribution for a signal matching hµ plus Gaussian noise will be χ2 distributed

with 4N degrees of freedom. As for the single phase filter, we cannot always

guarantee (5.75) is satisfied, although it is relatively simple to ensure the four

components of a given template are orthogonal. This means that the statistic

will not, in general, be χ2 distributed: The mean remains 4N but the variance

increases to

Var(χ2) = 8N + 2
N∑

i,j=1

4∑
µ,ν=1

[
(T iµ|T jν )2 − δijδµν

]
. (5.76)

5.3.2 The coherent bank χ2 test

The bank χ2 test was designed to test the consistency of the observed SNR across

different templates in the bank at the time of a candidate signal. It was first

described in [113] for the case of a single detector. A glitch will typically cause a

high SNR in many templates across the bank, while a real signal will give a well

prescribed distribution of SNR across the template bank.
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Figure 5.3: The distribution of the bank χ2 test for a single template h, with a
bank of size 10. The plot shows the distribution of the bank veto calculated for
every time sample in 128s of simulated Gaussian data (with no signal present).
In the case that the ten bank templates are orthogonal, the expected distribution
is χ2 with 40 degrees of freedom (shown as the solid black line). As can be seen,
the actual distribution follows the expected one closely.

The bank χ2 makes use of other CBC templates as the waveforms ti to construct

the χ2 test. These N templates are taken from different points across the mass

space. In implementing the bank χ2, we choose a fixed set of template waveforms

ti which remain the same for every template h in the search template bank. The

bank χ2 statistic is then constructed following (5.73) and (5.74). The test is most

effective when the set of T iµ is close to orthogonal [113] so we select templates which

are well distributed across the mass space, ensuring the overlaps (T iµ|T jν ) are small

for i 6= j. Figure 5.3 shows the distribution of the bank χ2 for a single template

filtered against Gaussian noise. The set of fixed bank waveforms consisted of ten

waveforms distributed over the full mass parameter space. Using these waveforms,

the deviation from a χ2 distribution is negligible.

For the bank χ2 to be effective, glitches in the data must have a good overlap

with a reasonable fraction of the templates ti. While, in general, it is difficult

to predict the composition of glitches in the data, it seems reasonable to assume

that glitches which produce a large SNR for the template h will also have a good

overlap with other waveforms in the template space. Thus, the set of templates

which is spread across the parameter space is suitable.

5.3.3 The coherent autocorrelation χ2 test

Filtering a gravitational wave template against data containing a matching signal

produces a peak in the SNR at the time of the signal. Furthermore, there is a
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Figure 5.4: The single detector auto-correlation of a gravitational wave inspiral
signal from a 1.4,1.4 solar mass binary neutron star. Both phases of the waveform
are shown.

characteristic shape of this peak which depends upon the template waveform and

also the noise power spectrum of the data. An example of this “autocorrelation”

for a BNS template is shown in Figure 5.4. A noise transient in the data will

produce a peak in the SNR but it will typically lack the characteristic shape

produced by a genuine CBC signal.

The “auto” χ2 test was designed to test the consistency of the SNR peak [113].

It is a similar test to the bank χ2, but where the bank χ2 investigates consistency

in SNR across the mass space, the auto χ2 tests for consistency of the SNR time

series. The set of templates ti are chosen to be the original template h with time

shifts δti applied. The values of δti are all unique and chosen to be of the same

time-scale as the auto-correlation of the template waveform (typically 0.1s or less)

and the duration of non-stationarities in the data, which is similar.

In Figure 5.5, we show the distribution of the auto χ2 for a single template

waveform filtered in Gaussian data. For this result, forty waveforms ti were used,

equally spaced with a 1 ms spacing, and all with coalescence times prior to that

of h. Thus, the auto χ2 is testing the consistency of the SNR time series for

0.04 seconds prior to the SNR peak. The overlap (ti|tj) depends only upon the

difference δti − δtj and Figure 5.4 shows clearly that a significant fraction of the

overlaps are far from zero. Consequently, the auto χ2 test has a distribution with

a large deviation from a χ2 distribution with 4N degrees of freedom.

5.3.4 The coherent χ2 test

The “standard” χ2 test originally proposed in [80] has been used as a discriminator

in many gravitational wave searches for CBCs. Given the template waveforms
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Figure 5.5: The distribution of the auto χ2 test for a single template h, generated
with 40 time shifted templates, with shifts between 0.001 and 0.04 seconds. The
plot shows the distribution of the auto veto calculated for every time sample in
128s of simulated Gaussian data (with no signal present). In the case that the
forty time shifted templates are orthogonal, the expected distribution is χ2 with
160 degrees of freedom (shown in black). As can be seen, the actual distribution
differs significantly from this due to the non-orthogonality of the ti waveforms.

and the detector sensitivity, it is possible to predict the accumulation of SNR

as a function of frequency. By calculating the observed SNR contribution from a

number of frequency bins, and comparing to the predicted value, one can construct

a χ2 consistency test.

Formally, given a template h which produced a candidate signal with an SNR

of ρ, calculate N non-overlapping frequency windows such that the expected SNR

is ρ/N in each. Then, calculate the actual SNR ρi in each of these frequency bins

and compare with the expected value by calculating

χ2 = N

N∑
i

(ρi − ρ/N)2 . (5.77)

For a gravitational wave signal matching the template h plus Gaussian noise, this

statistic will be χ2 distributed with N−1 degrees of freedom. Written in the form

(5.77) it appears different from the general case we discussed earlier. In [80] it was

shown that it can be re-expressed in the form (5.59).

This χ2 test can be extended to coherent, multi-detector searches. Indeed, in

[129], the construction was applied to a coherent search for continuous gravita-

tional waves. Here, we present the extension to a coherent CBC search. First,

define

ρiµ =
(s|hi

µ)√
(hµ|hµ)

(5.78)
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Figure 5.6: The distribution of the standard χ2 test for a single template h, split
into 16 non-overlapping frequency bins. The plot shows the distribution of the χ2

test calculated for every time sample in 128s of simulated Gaussian data (with no
signal present). The observed distribution of values (shown in grey) is an excellent
match with the expected χ2 distribution with sixty degrees of freedom (shown in
black).

to be the SNR contribution in the ith frequency bin to the SNR.8 The coherent

χ2 statistic is then constructed as

χ2 = N
N∑
i=1

4∑
µ=1

(ρiµ − ρµ/N)2. (5.79)

As all the components are orthogonal it is easy to see that this statistic will be

exactly χ2 distributed with 4(N − 1) degrees of freedom. One can interpret this

as the sum of the single detector χ2 values for the h0 and hπ
2

waveforms in the

synthetic + and × detectors. Figure 5.6 shows the distribution of the “standard”

χ2, using 16 frequency bins. The distribution matches the expected χ2 with 60

degrees of freedom.

An alternative approach to applying the χ2 test to a coherent search was

proposed in [109]. This approach involves calculating the χ2 values for each of the

active detectors and using these values to veto glitches.

8Strictly speaking the frequency bins for the F+ and F× components will be different because,
as we have noted in equation (5.36), the PSDs for the synthetic + and × detectors are not equal.
One can avoid this problem by using separate frequency bins for the + and × detectors, however
this doubles the number of filters. Alternatively, in [80] a method was presented for calculating
the standard χ2 test using unequal frequency bins, that method could easily be incorporated
into a coherent search.
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5.4 Implementation and performance of a coher-

ent search

In this section, we describe an implementation of the targeted, coherent search for

gravitational waves from CBCs. The search calculates the coherent SNR described

in 5.1 and the various strategies for discriminating between signal and noise in non-

Gaussian, non-stationary data introduced in sections 5.2 and 5.3. We demonstrate

the efficacy of the search by performing test analyses of simulated data and data

from LIGO’s S4 run.

5.4.1 Implementation of a coherent triggered search for

compact binary coalescences

Here, we describe the main steps by which the algorithms described in sections

5.1, 5.2 and 5.3 have been implemented. The analysis is available in the LIGO

Scientific Collaboration Applications Library (LAL) suite [130], and makes use of

a large number of tools and methods previously implemented in that library.

Analysis setup

A targeted, coincident search for gravitational waves from CBCs associated to

GRBs has been implemented, and used in a search of S5 and VSR1 data [4]. The

coherent search pipeline uses many of the same definitions, and much of the same

architecture as the coincidence search pipeline to determine the analysis details.

Specifically, “on-source” time is [-5,+1) seconds around the reported time of the

GRB; this is when a gravitational wave signal would be expected [31, 131] and is

the time over which we perform our search. The noise background is estimated

using 1,944 seconds of “off-source” data split into 324 trials of 6 second length

each. These are used to calculated the significance of any event occuring in the

on-source. As in Ref. [4] we impose a 48s “buffer zone” between the on-source

and off-source regions, which is not used in the analysis. To obtain an accurate

estimate of the detectors’ power spectra, we only analyse data from a detector if it

has taken at least 2190s of continuous data around the time of the GRB. Modulo

this restriction, the coherent analysis is designed to make use of data from all

detectors that were operating at the time of the GRB.
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Template bank generation

The problem of placing a non-spinning template bank in (m1,m2) space for a single

detector has been extensively studied [86, 85, 84, 83]. However, less thought has

been given to the problem of placing an appropriate bank for a coherent analysis,

targeted or otherwise. For the targeted, coherent SNR statistic, described in

section 5.1, the maximization procedure ensures that we need only place templates

in (m1,m2) space. In the single detector search, the parameter space metric is

independent of the amplitude and phase parameters that are maximized over.

However, for the coherent analysis, this is generically not the case, and the metric

depends upon the Aµ parameters [120].

At present, we have not implemented an optimal template bank for a coherent

analysis. Instead, we simply make use of an over-dense template bank generated

for one of the detectors in the network. In the results presented later, we have

used a bank generated with the initial LIGO design spectrum, with a maximum

total mass of 40M� and a minimum component mass of 1M�, which are the same

values as used in previous searches for GRBs [4]. While this method of template

placement enables us to demonstrate the efficiency of the coherent search, it is

clearly not the optimal solution. A simple improvement would involve placing

a template bank appropriate for the (maximally sensitive) synthetic + detector

defined in equation (5.36). For the relatively common situation where the network

is significantly more sensitive to the + polarization than the ×, this will be close

to the optimal solution. However, for network and source configurations which

provide good sensitivity to both polarizations, a more detailed investigation along

the lines of [120] is warranted.

Coherent SNR and null streams

The data are read in and conditioned using the methods and algorithms developed

for the S4 search for post-merger ringdowns from CBCs [132, 133]. The data are

then downsampled to a frequency of 4096 Hz and split into overlapping 256 second

segments for analysis. The noise PSDs are calculated using the same method as

in [132].

Each template in the bank is filtered against the data from each detector to

generate the single detector filters (sX |hX0,π
2
) and sensitivities, σX (defined in equa-

tion (5.27)). The algorithms used are taken from the LAL FindChirp library [57],

specifically those written to perform a search for spinning waveforms [127] using
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the physical template family (PTF) waveforms [134].9 The waveform templates

are generated using the TaylorT4 post–Newtonian approximant [121]. The single

detector filter outputs are shifted in time to account for the relative delays from

the given GRB sky location. They are then combined to form the coherent and

the null SNRs as described by (5.44) and (5.46). A “trigger” is recorded at any

time the coherent SNR is greater than 6, and no louder event occurred in any

template in the bank within 0.1 seconds.

Calculating the χ2 tests

The analysis calculates signal based vetoes in the same manner that it does the

coherent SNR: The necessary single detector filters are constructed and then these

are combined together to create the χ2 tests as described in section 5.3.

Calculating the “standard” χ2 test is computationally expensive. Therefore

this veto is only calculated for a segment if there is at least one event with SNR

above threshold and values of bank χ2, auto χ2 and null SNR that do not imme-

diately lead to it being dismissed as a glitch.

Event significance

After the analysis, we have a set of triggers with associated masses and coalescence

times. Each trigger is characterized by the coherent SNR as well as a number of

other quantities: the null SNR, single detector SNRs and values of the χ2 tests. In

order to identify candidate gravitational wave events, these triggers are compared

to those obtained from an identical analysis performed over the off-source times,

and over the off-source data with simulated gravitational wave signals added. A

simulation is deemed to have been recovered by the analysis is there is any trigger

within 0.1 seconds of the signal time; no attempt is made to guarantee a good

match between simulated and recovered parameters. Although this means that

signals may be found due to a nearby glitch, in practice we find that the effect

is minimal, particularly when considering detection candidates, which are louder

than all background.

By comparing the observed triggers from the off-source and simulations, we

construct a detection statistic designed to best separate signal from noise. At

present, this is done by performing a number of simple cuts in various parameters,

as described in detail in the remainder of the section. In the future, we plan

to investigate the use of multi-dimensional classifiers to improve the efficacy of

9This choice stems from the desire to extend this search to incorporate a single spin. This is
particularly appropriate for NSBH binaries where the spin of the NS can be safely neglected.
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Figure 5.7: The SNR of triggers in the off-source region plotted against time for
an analysis of simulated Gaussian noise in the initial LIGO (H1, H2, L1) network.
The gap in the middle of the plot contains the on-source region and the buffer,
this is not used in estimating noise background rates. The loudest trigger occurs
with an SNR of 7.24.

the analysis. The detection statistic is used to calculate a false alarm probability

for a given on-source observation, by comparing with the off-source results. We

use three hundred background trials, allowing for a false alarm probability as

low as 3 × 10−3 to be assigned to an event. This suffices to identify GRBs for

which an interesting gravitational wave trigger has been observed. Realistically a

false alarm probability closer to 10−4 or 10−5 would be required for a detection

candidate. This could be achieved by performing additional background trials on

time-shifted data from the detectors. This has not yet been implemented.

5.4.2 Analysis of simulated data

The analysis was first run on simulated data for the initial LIGO network, com-

prising a 4km detector at the Livingston site (L1) and 4km and 2km detectors at

the Hanford site (H1 and H2 respectively). The coherent analysis pipeline ana-

lyzed a 2048 second stretch of stationary, Gaussian data as if a GRB had occurred

in the middle of the data stretch.

Figure 5.7 shows the triggers produced by the pipeline in the off-source time.

The loudest event in the approximately 2000 seconds of off-source data has an

SNR of 7.24. In Gaussian noise, the signal consistency tests have no power as

they are designed specifically to reduce the effect of non-Guassian transients in

the data.
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Figure 5.8: The SNR of triggers in the off-source region plotted against time for
an analysis of a mock S4 GRB. The axes on the plot are chosen to be identical
to those for Figure 5.7 to make the plots easier to compare. The S4 data has a
large number of non-Gaussian features. The largest of these peaks extends to a
coherent SNR of 40, although non-Gaussian structure is visible at SNRs as low as
7.

5.4.3 Analysis of real data

A test analysis was also performed on real data taken from S4. We analyzed an

arbitrary stretch of 2048 seconds of data for which all three of the LIGO detectors

were operating and ran the analysis as if a GRB had occurred during this time.

The simulated sky location of the GRB was (184.6°, 42.34°) in right ascension

and declination respectively. For this chosen time and sky location the sensitivity

of the H1 and L1 detectors were roughly equal and the H2 detector was half as

sensitive as the other two.

The data from the detectors is neither Gaussian nor stationary. Thus, the

goal of the analysis is to reduce the background from non-stationary data using

the signal consistency tests described in sections 5.2 and 5.3. We proceed by

investigating the various signal consistency tests one by one before combining

these cuts into a detection statistic.

The final goal is to obtain a search sensitivity as close as possible to that

obtained in Gaussian data. The sensitivity is assessed by evaluating the efficiency

of observing simulated signals in the data. We make use of a set of simulated

BNS signals (component masses limited to be between 1 and 3M�) all oriented

face on to the detectors. We evaluate the efficiency of the search as the fraction

of simulated signals observed with a detection statistic greater than any event in

the off-source data.
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Figure 5.9: The distribution of the null SNR plotted against coherent SNR. The
solid line at null SNR of 5.25 is the line above which triggers are vetoed. The
dashed line at 3.5 is the line above which triggers are downweighted (see section
5.4.3).

Coherent SNR

Figure 5.8 shows the coherent SNR of triggers produced during the analysis of

the S4 data. It clearly demonstrates that the data are not well characterized by

Gaussian noise alone. A number of loud transients are present in the data and

show up as short duration peaks of large SNR. The largest of these has an SNR

of almost 40. If events were ranked by coherent SNR, a signal would have to be

very loud to stand out above this non-Gaussian background. In addition to the

loud peaks there are also a large number of smaller non-Gaussian peaks that occur

rather frequently in the data. All of these affect the sensitivity of the search.

Null SNR

Figure 5.9 shows the performance of the null stream for both simulated signals

and background noise. The ability of the null SNR to distinguish signal from noise

is relatively poor in this example. The mock GRB analysis uses data from the two

Hanford detectors and the detector at Livingston. As the two Hanford detectors

are aligned, the null stream is derived from a combination of these detectors; the

Livingston detector does not contribute. The loudest glitches during the time of

this analysis originated in L1, and therefore do not contribute to the null SNR.

However, quieter glitches in the Hanford detectors at an SNR around 10 do produce

a large null SNR. Any trigger with a null SNR greater than 5.25 is eliminated

from the analysis. In this example analysis, this removes a small fraction of the

background and none of the simulated signals.
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Figure 5.10: The distribution of single detector SNR for the more sensitive H1
and L1 detectors, plotted against coherent SNR. The left figure shows the H1
SNR, the right figure shows the L1 SNR. The horizontal line indicates SNR=4.
Below this line triggers will be vetoed. The inclined dark gray line indicates the
expected SNR of these face on simulated signals.

Single detector SNR

The most straightforward, and most effective, amplitude consistency test we have

found is the requirement of an SNR greater than 4 in the two most sensitive

detectors; in this analysis, the L1 and H1 detectors. Figure 5.10 demonstrates

that this is a particularly effective strategy for removing noise glitches. Triggers

arising due to glitches in the L1 detector have large coherent SNR but a negligible

contribution from H1 and are consequently discarded. The single detector SNR

threshold is very effective at removing background triggers — particularly those

associated to glitches in L1. There is some loss of simulated signals, but these

generally have a small enough SNR as to be indistinguishable from the background,

even in Gaussian noise.

χ2 tests

In section 5.3 we introduced three χ2 tests designed to separate signals from noise

glitches in the data. Figure 5.11 shows the distribution of the bank χ2 for every

time sample for a single template. This is directly comparable to Figure 5.3

which shows the same for Gaussian data. The deviation from the predicted χ2

distribution is due to the non-Gaussianity of the data.

The distribution of bank and auto χ2 for both simulated signals and noise

triggers is shown in Figure 5.12. Both of these tests are effective at separating the

simulated signals from noise transients. In order to quantify this, we make use of

the newSNR formalism that was developed for the latest coincident searches for
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Figure 5.11: The distribution of the bank χ2 test for a single template h, with a
bank of size 10. The plot shows the distribution of the bank veto calculated for
every time sample in 128s of data. The observed distribution is inconsistent with
the expected result in Gaussian noise (the black curve).

Figure 5.12: The distribution of bank and auto χ2 test plotted against SNR.
There is a clear separation between simulated signal and background at coherent
SNRs above 10. The solid line shows the line of newSNR = 6. Triggers with
newSNR < 6 (above and to the left of the line) are discarded.
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Figure 5.13: The distribution of the standard χ2 test plotted against SNR. The
majority of the background has already been removed by utilizing other signal
consistency tests. The dashed lines show contours of newSNR, with the value of
newSNR increasing towards the bottom right of the plot. The solid line shows the
line of newSNR = 6; triggers above this line are discarded.

CBCs [98, 135]. For a signal matching the template waveform, the expected value

of χ2 is one per degree of freedom, while for noise transients this will be larger.

The idea is to down-weight the significance of noise triggers with large χ2 values

relative to signals. This is achieved by introducing the “newSNR”:

ρnew =


ρ, χ2 ≤ ndof

ρ[(
1 +

(
χ2

ndof

)4/3
)
/2

]1/4
, χ2 > ndof (5.80)

where ndof is the number of degrees of freedom of the χ2 test. For signals, newSNR

will be similar to the SNR, while noise transients with a large χ2 value are signif-

icantly down-weighted.

The newSNR can be calculated with all of the χ2 tests introduced in section

5.3. Any trigger with either an auto or bank newSNR less than 6 is discarded. The

curves on Figure 5.12 show this newSNR threshold for the two χ2 tests. Finally, we

turn to the standard χ2 test. As this is rather costly to compute, we only do so for

triggers which have passed all of the previously described thresholds (on coherent,

null and single detector SNR, bank and auto newSNR). Figure 5.13 shows the

distribution of the standard χ2 test for simulated signals and noise. The preceding

tests have succeeded in removing the vast majority of non-Gaussian triggers from

the data. A threshold of 6 on newSNR serves to eliminate a few more.

We have found that the standard χ2 is the most effective of our χ2 tests at

117



separating signal from background, so we also make use of it in the final ranking

of events. Figure 5.13, shows contours of constant newSNR which will be used in

the final ranking.

Detection statistic

In the preceding discussion, we have imposed a number of cuts on the initial

candidate events produced by the analysis pipeline. Let us briefly recap those

cuts:

1. Coherent SNR: Generate a trigger at any time for which ρ > 6. Only keep

the loudest trigger in each 0.1 seconds.

2. Null SNR: Discard any triggers with ρN > 5.25.

3. Single detector SNR: Discard any triggers for which ρH1 < 4 or ρL1 < 4.

4. χ2 tests: Discard any triggers for which ρnew < 6 for the bank or auto χ2.

Finally, we rank the remaining triggers based upon the newSNR calculated

using the standard χ2 and the null SNR:

5. Detection statistic: Rank remaining triggers using a detection statistic ρdet

given by

ρdet =


ρnew, ρN ≤ 3.5

ρnew

ρN − 2.5
, 3.5 < ρN < 5.25 .

(5.81)

The length of time a CBC spends in the sensitive band of the detector varies

greatly with the mass, and it has been found that the shorter, high mass templates

are more susceptible to occuring with large SNR at the time of glitches [1]. Also,

the various signal consistency tests are less effective for these short templates.

Therefore, we follow Ref. [1] and split the template bank into three regions based

on the chirp mass of the template, and calculate the false alarm probability for

each mass bin separately:

6. False alarm probability: For each trigger, calculate the false alarm probabil-

ity by counting the fraction of off-source trials with a louder trigger in the

same mass bin.

It is this false alarm probability which allows us to assess the significance of

any events in the on-source data.
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Figure 5.14: Efficiency of injection recovery is shown against distance at a false
alarm probability of less than one in 324. This is calculated from a set of simulated
signals in real data. The efficiency is shown for four different cases: i) signals found
above an SNR of 7.24, the loudest background trigger in Gaussian noise (black
solid line); ii) signals found above an SNR of 12.88, the loudest background trigger
in real noise (red dashed line); iii) signals found with a value of the detection
statistic (given by equation 5.81) above 7.41, the loudest background event (blue
dot-dashed line); iv) signals found louder than all background in an H1-L1 search
(green dotted line).

Performance of search

To quantitatively assess the sensitivity of the analysis we evaluate the efficiency

of recovering simulated signals at a fixed false alarm probability. Any simulated

signal which is found louder than the loudest off-source event is considered as

found by the analysis — this ensures that the false alarm probability is less than

one in 324 (the number of off-source trials). We use a population of optimally

oriented BNS signals from the location of the fake GRB. Since all BNS injections

are recovered with triggers in the low mass bin (with chirp mass less than 3.5M�),

we compare to off-source triggers in that bin.

Figure 5.14 shows the efficiency with which simulated signals are recovered as

a function of distance for a variety of search methods. We begin by considering the

sensitivity of a search in Gaussian noise; this will provide a benchmark against

which to compare the searches in real data. The largest SNR recorded in the

analysis of simulated, Gaussian data was 7.24 (see Figure 5.7). Thus, the efficiency

of a search in Gaussian data is given by the fraction of simulations found with an

SNR greater than this. We have seen that the real detector data is not Gaussian,

so only if the signal consistency tests are perfectly able to separate signals from

noise transients can we hope to achieve a similar sensitivity in real data.

If we were to use only coherent SNR to rank events, and ignore all signal

119



consistency tests, the sensitivity of the search is about a factor of two worse than

in Gaussian data. This is expected as the loudest low mass trigger had a coherent

SNR of 12.88, almost double the value observed in Gaussian noise. Once all of

the signal consistency tests are taken into account, the loudest off-source event

has a detection statistic of 7.41. Any simulated signal which produces a trigger

which passes all signal consistency cuts and has ρdet > 7.41 is considered found.

The use of signal consistency tests and a new detection statistic greatly improves

the sensitivity of the search. The distance at which 50% efficiency is achieved is

only about 10% less than in Gaussian noise. The 10% loss in sensitivity can be

attributed to a slightly louder off-source event (7.41 rather than 7.24) and a small

number of the simulated signals being vetoed by the signal consistency cuts.

Finally, we would like to illustrate the benefits of a coherent search over a

coincidence search. A coincidence search filters each detector independently and

records single detector triggers before searching for coincidence between the trig-

gers in different detectors. For the initial LIGO network, signals close to detection

threshold would be unlikely to been seen in the less sensitive H2 detector. Specif-

ically, for a signal with a coherent SNR of 7.5, the expected SNR in H2 would be

around 2.5 which would be insufficient to generate a trigger. Therefore the sen-

sitivity of a coincidence search would be limited by events observable in the two

detector H1-L1 network. For a two detector search, the coherent and coincident

SNRs are equal, and the null stream test is not available. Consequently, the per-

formance of two detector coherent and coincident searches should be comparable.

The efficiency of this two detector search is also shown in Figure 5.14; it is about

10% less sensitive than the three detector coherent search. This demonstrates that

the coherent analysis, which incorporates the H2 data, can increase the distance

reach of the search by 10%. For a network of three approximately equally sen-

sitive detectors, we would expect an even greater sensitivity improvement from

employing coherent techniques.

5.5 Discussion

We have presented a formulation of a targeted coherent search for compact binary

coalescences. For Gaussian noise, the coherent SNR would be ideal for separating

signals from the noise background. However, since data from gravitational wave

interferometers is neither Gaussian nor stationary, we have also discussed a num-

ber of methods of separating the non-stationary noise background from the signal

population. These tests include various χ2 tests, which were originally designed
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for use in single detectors. We have extended them to the network analysis and

demonstrated their continued efficacy. Additionally, the coherent analysis natu-

rally allows for tests which are not readily available in the coincidence case. The

most significant of these is the null SNR which can be used to reject events which

are not consistent with two gravitational wave polarizations. We also explored

consistency tests between the recovered amplitudes of the gravitational wave and

found that a simple SNR threshold on the two most sensitive detectors gave excel-

lent results. There are various other glitch rejection techniques, which have been

recently discussed in the literature [136, 137, 138], it might be possible to utilize

such methods to improve the coherent search described here.

The analysis described in this chapter has been implemented and in the final

section we showed results of a test run. This made use of the S4 data from the

LIGO detectors. Although the data was far from Gaussian, after the application

of all of the signal consistency tests, the results were remarkably close to what

would be expected in Gaussian noise. This analysis is available to be used in

searches for GW inspiral signals associated with GRBs in more recent LIGO and

Virgo data, such as S6 and VSR2 and VSR3.

There are a number of ways in which this analysis could be enhanced to broaden

its use and increase its sensitivity. First, a number of GRBs, particularly those

observed by Fermi [139] and IPN [140] are not localized sufficiently accurately

that the error box can be treated as a point on the sky. Thus, it would be nice

to extend this analysis to cover a region of the sky. This would require looping

over the relevant sky points; incorporating the correct detector sensitivities F+,×

and time delays. In principle, this would not greatly slow down the analysis as

the majority of time is taken in performing the single detector filters and these

would not need to be re-calculated. As well as looking at a patch on the sky,

the analysis could be extended to cover the whole sky, as appropriate for an un-

triggered search. This brings in a host of new complications which have been met

and dealt with by other coherent search methods [111, 110]. In order to obtain a

good estimate of the background for an all sky, un-triggered search we would need

to implement background estimation and time shifting the data would likely be

the best way to do this.

The F -statistic technique described in section 5.1.2 is formulated by maximiz-

ing over the extrinsic parameters of the system. From a Bayesian perspective this

would imply that we have placed a uniform prior on the distributions of the Aµ. If

instead we were to place an astrophysical prior on these amplitudes based on the

expected distributions of (D, ι, ψ, φ0) we would expect to increase the efficiency
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of the search [124]. Alternatively, since GRBs are thought to be rather tightly

beamed, it is reasonable to take them as being face on, or close to. In this case,

the gravitational waves are circularly polarized and there is, in effect, only a single

polarization. This opens the possibility of limiting the signal space to just this

one polarization and adding an extra “null” test.

The progenitors of short GRBs are thought to be BNS or NSBH. The search

we have described is ideal for the BNS case as the spins of the neutron stars are

unlikely to have a significant effect on the waveform. However, when one of the

components of the binary is a black hole, the spin could be large. Furthermore,

the mass ratio is likely to be relatively large. In this case, the spin of the black

hole can have a significant effect on the observed waveform [134]. Consequently,

we would like to extend this search to incorporate spin effects. We discuss this

implementation in the next chapter.
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Chapter 6

Searching for spinning compact

binary coalescences

In chapters 4 and 5 we have described coincidence and coherent methods for de-

tecting CBC signals in data taken by gravitational wave interferometers. These

searches have utilized template waveforms where the spins of the individual com-

ponents are neglected. In some areas of the parameter space, spin can have a

significant effect on the evolution of the system, and consequently the emitted

gravitational waveform [141, 142], leading to a poor match with the non-spinning

templates. In these regions of parameter space the use of templates incorporating

spin will provide an increase in search sensitivity.

Incorporating spin into template waveforms in a gravitational wave search is a

complex problem. In a search for CBCs with non spinning components in circular

orbits, a source is described by nine physical parameters [143]. The majority of

these do not affect the signal morphology, but serve to change the overall ampli-

tude, phase or coalescence time of the signal and are easily maximized over, as

we demonstrated in chapter 4. Therefore, template placement can be restricted

to the two dimensional space of component masses [84]. A CBC with spinning

components in a circular orbit, however, is described by 15 physical parameters

[143]. The challenge is to formulate a method to detect any manner of spinning

system while limiting the number of templates, such that an analysis can be run

in a reasonable amount of time.

The problem is simplified if the spins are aligned with the orbital angular

momentum. In this case the system will have no precession and is described by

just two extra parameters — the spins of both bodies in the direction of the

angular momentum. Furthermore, the dominant spin term in the PN expansion

is well described by a single spin parameter [144], and it is therefore feasible to
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search for non-precessing waveforms using a three dimensional template bank.

At the time of writing only one detection search for CBCs using spinning tem-

plates with precession in LIGO/Virgo data has been published [145]. This search

utilized a phenomenological waveform family designed to capture precessional ef-

fects [146]. It was, however, later abandoned because it was not found to increase

efficiency relative to the non-spinning search [1, 126]. This was due to the ability

of the phenomenological templates to match non-stationarities in the data and the

lack of an effective signal consistency test to veto them such as the χ2 test used

in the non spinning search [80].

The PTF waveforms proposed in [146] and further explored in [134, 147, 127]

give a different method for searching for spinning binaries with precession. This

method uses single-spin precessing waveforms as templates. Making clever use of

maximization, it was shown [134] that a PTF search could be performed with a

four dimensional template bank: the two masses, the magnitude of the spin and

the angle between the spin and the orbital plane. This method is especially useful

for detecting neutron star–black hole binary (NSBH) systems, where the spin of

the neutron star would have a negligible effect on the dynamics of the system

[134]. A coincidence search utilizing the PTF waveforms has been developed

[127]. However, while coincidence for non-spinning searches is well defined as we

discussed in section 4.2, it is less clear how to define coincidence when additional

spin parameters are present.

Alternatively the PTF search could be conducted using the coherent technique,

as described in chapter 5. This would remove the need to define coincidence. The

coherent technique is especially useful when the sky position is known, such as

when searching for gravitational waves in coincidence with an electromagnetic

transient, such as a GRB [28]. Since NSBH and BNS mergers are the preferred

progenitor model [30] for short GRB, a coherent single-spin search is ideally suited

to this source.

In this chapter we describe the implementation of a coherent search for sin-

gle spin binaries with known sky location, using the PTF waveforms. We briefly

review the PTF formalism before deriving the coherent PTF SNR. Due to the

increased complexity of the spinning waveforms, the coherent SNR has a different

distribution than its non-spinning counterpart. In particular, there is a greater

chance of obtaining a large value of the spinning SNR, even in Gaussian noise.

Thus there is a trade-off between the improved spinning signal model and the

increased false alarm rate at a fixed SNR. We explore the single-spin CBC param-

eter space to identify regions where spin (and precession) effects are significant
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enough to make the spinning search worthwhile. We will also briefly discuss some

possibilities for vetoing background non-Gaussian transients in the data when us-

ing the PTF search and present results of this search run on a short stretch of S4

data.

The layout of this chapter is as follows: In section 6.1 we explore how the

evolution of a CBC is effected by the presence of spin and how this will change the

gravitational wave signal that we hope to detect. In section 6.2 we discuss how non-

precessing templates could be used in a gravitational wave search. In section 6.3

we formulate the PTF waveform before describing the single detector PTF search

in section 6.4 and investigating the distribution of the spinning SNR in Gaussian

noise. In section 6.5 we introduce the coherent PTF search and investigate the

distribution of the coherent spinning SNR. In section 6.6 we identify regions of

the parameter space where the PTF search offers increased sensitivity over the

non-precessing search. Section 6.7 briefly describes our search pipeline and the

results of these methods applied to a stretch of data from S4. Finally, in section

6.8 we briefly discuss how these techniques could be used to detect generic spin

systems.

6.1 Spinning compact binary coalescence gravi-

tational waveforms

To be able to discuss different strategies for searching for CBC systems incorpo-

rating spin, we must first understand how spinning CBC waveforms will differ

from the non-spinning ones. We will begin by discussing how the inspiral part

of the waveform is effected by spin, something that is well explored in the litera-

ture [141, 148, 149, 146]. Then we will describe how recent advances in numerical

relativity have enabled the production of spinning signals incorporating inspiral,

merger and ringdown components.

The presence of spin in a compact binary inspiral effects the evolution of the

inspiral in two different ways. Firstly, spin will modify the frequency evolution of

the inspiralling system. Secondly, if the spins of the components are not (anti-)

aligned with the orbital angular momentum then the system will precess. This

precession will further complicate the frequency evolution of the system and will

cause the orientation of the system to be time dependent.

The frequency evolution of an inspiral up to 3.5PN order with spin effects up
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to 2PN order is given in Eq (1) of [146] as
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where γE is Euler’s constant. The presence of spin causes an additional term to

be present at 1.5PN and another at 2PN order. The 1.5PN term is the dominant

spin-orbit coupling term and is given by [146]

1

12

∑
i=1,2

[
χi

(
L̂N · Ŝi

)(
113

m2
i

M2
+ 75η

)]
. (6.2)

We remind the reader that we are still using the definitions given in section 3.1

to describe a CBC system. Specifically Ŝi gives the spin unit vector for both

components, χi is the magnitude of that spin (0 ≤ χ ≤ 1). L̂N gives the unit

vector describing direction of the orbital angular momentum. The 2PN term is

the dominant spin-spin coupling term and is given by

1

48
ηχ1χ2

[
247

(
Ŝ1 · Ŝ2

)
− 721

(
L̂N · Ŝ1

)(
L̂N · Ŝ2

)]
. (6.3)

There are additional, higher order spin-related corrections to the frequency evolu-

tion equation [150, 151] these higher order terms should also be used when creating

waveforms incoporating spin for gravitational wave data analysis.
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The evolution of the spin directions due to precession is given in [141, 149, 146]

to dominant order as

Ṡ1,2 =
(Mω)2

2M

{
η(Mω)−1/3

(
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m2

m1

)
L̂N +

1

M2

[
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(
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)
L̂N

]}
×S1,2 .

(6.4)

The evolution of the orbital angular momentum is given as [146]

˙̂
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)
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(
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where

Seff ≡
(

1 +
3m2

4m1

)
S1 +

(
1 +

3m1

4m2

)
S2. (6.6)

Seff can be thought of as the effective spin of the system. These equations can

then be used to carry out a time-evolution to model the dynamics of the inspiral.

These can be converted into the h(t) response at a gravitational wave detector

in the same manner as described in chapter 3 but one must remember that the

orientation of the system will be time dependent due to precession of the orbital

angular momentum.

It is worth noting at this point that a special case exists when S1, S2 and

LN are all aligned or anti-aligned. In this case these vectors will be constant

and the system will experience no precession, though the phase evolution is still

effected by the presence of spin. We call this special case the “aligned spin” case

or non-precessing case.

The Post-Newtonian expansion can only model the inspiral part of a spinning

waveform. Numerical relativity must be used to produce waveforms that con-

tain the merger phase and to connect the inspiral, merger and ringdown phases

together. The presence of spin and precession presents additional complications

to modelling such systems numerically. However, a lot of work in the numerical

relativity community has been focused on generating spinning waveforms and a

number of numerical relativity waveforms incorporating spin have been produced.

A review of numerical relativity results and a table of currently available wave-

forms is given in [70, 71].

6.2 Non precessing systems

The task of performing gravitational wave data analysis using generic spinning

waveforms as templates is a complicated one. It is therefore useful to consider
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simplified cases first. In this section we will describe how gravitational wave

searches can be performed using waveforms that have spin, but no precessional

effects.

In equation (6.5) we demonstrated how the orbital angular momentum will

precess in the presence of spin. In the case that both spins are (anti-)aligned with

the orbital angular momentum, there will be no precession. With no precessional

effects, modelling the waveform is easier than the generic case, as the spin terms are

non-variant. One simply has to add the constant spin terms to the PN expansion.

Waveform families also exist to produce such aligned-spin systems with a merger

and ringdown component, both for the phenomenological and effective one body

models [144, 152].

From the perspective of data analysis, performing a search with non-precessing

template waveforms is easier than with generic spin templates because h(t) can

still be expressed in the form derived for non-spinning templates in equation (3.29)

h(τ) = A(M, D, ι, θ, ψ, φ) (f(M, η, χ1, χ2, τ))2/3 cos (Φ(M, η, χ1, χ2, τ) + Φ0(ι, ϕ, θ, ψ, φ)) .

(6.7)

This is not true of a generic signal incorporating spin effects where A is time

dependent. The only difference between here and the non-spinning case is that the

frequency evolution now depends on two additional parameters, the magnitudes

of both spins.

The data analysis strategies that we described in chapters 4 and 5 to search

for CBCs using non-spinning templates can therefore be applied directly. Thus,

the non-spinning search method could accurately be described as a non-precessing

search method. The only complications that will arise from this are that the tem-

plate bank must be placed to cover the two additional spin parameters and, if a

coincidence search is used, the definition of coincidence must also be extended for

these extra parameters. In [144] the authors show that these two spin parame-

ters can be described by only one “effective spin” parameter, simplifying both of

these problems. Thus, the precessing search is just the non-spinning search with

templates covering the two masses and the effective spin.

The problem of template bank placement in 3 dimensions could be solved by

using the stochastic placement algorithm, which is presented in chapter 7. This

method would, however, require a parameter space metric to be calculated on the

non-precessing parameter space. To define coincidence, it would be possible in

theory to extend the definition of coincidence ellipsoids in [90] to 4 dimensions.

Remember that time is also used in defining coincidence. Again, however, the
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parameter space metric is required to do this. Alternatively the problem of coinci-

dence could be avoided by using the coherent search method described in chapter

5.

At the time of writing this thesis, no gravitational wave search using non-

precessing templates has been run on data from LIGO and Virgo. I hope to

conduct such a search in the near future. A search using non-precessing templates

would not only be useful in detecting spin-aligned systems it could be useful in

detecting precessing systems as well. We showed in section 4.2.10 that the non-

spinning search was capable of detecting spinning systems in large portions of

the full spinning parameter space. The non-precessing search would only extend

our detection reach in this parameter space. It would be informative to carry

out a study to determine how the non-precessing search could improve detection

efficiency as a function of the spin and mass of the system.

6.3 The single spin PTF waveform

To be able to detect CBC systems that have a significant amount of precession, it

is useful to search with templates that incorporate precessional affects. A spinning

system is described by 15 physical parameters. An efficient detection search over

this whole parameter space has not yet been devised. However, one can consider

systems where only one of the bodies has spin. This reduces our problem to a 12

dimensional parameter space, which, as we will show in the rest of this section, can

be solved. Searching with single spin templates can be physically motivated. The

effect of the spin of the neutron star in neutron star–black hole binary (NSBH)

systems will be considerably less than the effect of the spin of the black hole. This

can be seen from the equations in section 6.1. Therefore single spin templates

should be able to detect any manner of physical NSBH coalescence.

The physical template family (PTF) waveforms proposed in [146] and further

explored in [134, 147, 127] give a method for searching for spinning binaries with

precession using single-spin precessing waveforms as templates. Through a max-

imization technique, which we will explore fully in section 6.4.1, we can conduct

a search, using the PTF waveforms as templates, where we only need to place

templates to cover 4 of the parameters. Those parameters are

• The two masses, (M1,M2),

• The magnitude of the spin, χ,
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• The cosine of the angle between the spin direction and the initial orbital

angular momentum, κ.

The PTF waveforms are constructed by demanding that S2 = 0.

We will begin by describing the form of the PTF waveforms. In the non-

spinning search we always defined the source frame such that the z direction is

aligned with the orbital angular momentum. For precessing systems the orbital

angular momentum is time dependant. Therefore we can either use a source frame

that is time dependant where the z direction tracks the orbital angular momentum.

Alternatively we could define a stationary source frame that does not generically

have the z direction aligned with the orbital angular momentum.

To define the PTF waveform we will make use of both time dependant and

stationary source frames to express the waveform in the stationary frame. We

follow the work of [134] to define the coordinate system and calculate the form of

the signal.

Let us begin by giving the definition of the stationary source frame. This

coordinate system is set using the following conditions:

• The z axis is chosen such that it lies in the direction of the orbital angular

momentum at some initial time L̂N(0).

• The x axis is chosen such that the initial direction of spin S1(0) will lie in

the x, z plane.

where the initial time corresponds to the start of the template waveform.

To calculate the gravitational waveform we need to understand how this frame

is related to the precessing source frame. To do this we need to be careful to distin-

guish between the basis vectors in both frames. We use the following convention1

ePx,y,z = Basis vectors of precessing source frame (6.8a)

eSx,y,z = Basis vectors of stationary source frame (6.8b)

eRx,y,z = Basis vectors of radiation frame. (6.8c)

At the initial time, the coordinates of both source frames will be identical. From

this time the precessing source frame evolves in the stationary frame according to

[134] (
ėPx,y,z

)S
(t) = Ωe(t)×

(
ePx,y,z

)S
(t), (6.9)

1 The stationary radiation frame, which we will use later, is defined in the same way as in
chapter 4 for the non spinning search. eRz always points toward the Earth.
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Ωe(t) =
ω2

2M

(
4 + 3

m2

m1

)
S1 −

(
ω2

2M

(
4 + 3

m2

m1

)
S1 · L̂N

)
L̂N . (6.10)

The radiation frame is then defined from the stationary source frame in the same

manner as for the non-spinning search using the rotation angles (ι, ϕ), see section

2.1.7. The initial phase of the system, Φ0 is not used when defining the source

coordinate system, so needs to be included in the phase evolution of the system.

Now we can construct how a ground-based gravitational wave interferometer

would respond to a single spin gravitational waveform. Explicitly the response is

given by [134]

h(t) =− 2

D
M5/3ω2/3

(
[e+]ij cos 2(Φ + Φ0) + [e×]ij sin 2(Φ + Φ0)

)
([T+]ijF+ + [T×]ijF×) , (6.11)

where T+,× is the detector polarization tensor and e+,× is the gravitational wave

polarization tensor

T+ ≡ eRx ⊗ eRx − eRy ⊗ eRy T× ≡ eRx ⊗ eRy + eRy ⊗ eRx (6.12a)

e+ ≡ ePx ⊗ ePx − ePy ⊗ ePy e× ≡ ePx ⊗ ePy + ePy ⊗ ePx . (6.12b)

Clearly [e+,×]ij is most easily expressed in the precessing source frame and [T+,×]ij
in the radiation frame. However, it is convenient to evaluate [e+,×]ij [T+,×]ij in
the stationary source frame

[
TS

+

]
ij

=

 sin2 ϕ− cos2 Θ cos2 ϕ −(cos2 Θ + 1) sinϕ cosϕ cos Θ sin Θ cosϕ

−(cos2 Θ + 1) sinϕ cosϕ cos2 ϕ− cos2 Θ sin2 ϕ cos Θ sin Θ sinϕ

cos Θ sin Θ cosϕ cos Θ sin Θ sinϕ − sin2 Θ

 (6.13a)

[
TS

×
]
ij

=

 2 cos Θ sinϕ cosϕ cos Θ
(
sin2 ϕ− cos2 ϕ

)
− sin Θ sinϕ

cos Θ
(
sin2 ϕ− cos2 ϕ

)
−2 cos Θ sinϕ cosϕ sin Θ cosϕ

− sin Θ sinϕ sin Θ cosϕ 0

 (6.13b)

[
eS+
]
ij

=


(
(ePx )Sx

)2 − ((ePy )Sx
)2

(ePx )Sx (ePx )Sy − (ePy )Sx (ePy )Sy (ePx )Sx (ePx )Sz − (ePy )Sx (ePy )Sz

(ePx )Sx (ePx )Sy − (ePy )Sx (ePy )Sy
(
(ePx )Sy

)2 − ((ePy )Sy
)2

(ePx )Sy (ePx )Sz − (ePy )Sy (ePy )Sz

(ePx )Sx (ePx )Sz − (ePy )Sx (ePy )Sz (ePx )Sy (ePx )Sz − (ePy )Sy (ePy )Sz
(
(ePx )Sz

)2 − (ePy )Sz
)2


(6.13c)

[
eS×
]
ij

=

 2(ePx )Sx (ePy )Sx (ePx )Sx (ePy )Sy + (ePx )Sy (ePy )Sx (ePx )Sx (ePy )Sz + (ePx )Sz (ePy )Sx
(ePx )Sy (ePy )Sx + (ePx )Sx (ePy )Sy 2(ePx )Sy (ePy )Sy (ePx )Sy (ePy )Sz + (ePx )Sz (ePy )Sy
(ePx )Sz (ePy )Sx + (ePx )Sx (ePy )Sz (ePx )Sz (ePy )Sy + (ePx )Sy (ePy )Sz 2(ePx )Sz (ePy )Sz

 .

(6.13d)

This is similar to the definition of h(t) for the non-spinning waveforms, however
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here e+ and e× will be time dependent with no components that are explicitly

0. Therefore the equation cannot be simplified as it was for the non-spinning

case. However we note that both e+,× and T+,× are transverse and traceless. Any

transverse, traceless (TT) 3x3 matrix can be expressed in terms of 5 base matrices

defined from the 2m spin-weighted spherical harmonics

Aij = AI
(
M I
)
ij

(6.14)

where the M I satisfy (
M I
)
ij

(
MJ
)ij

= δIJ . (6.15)

For the PTF definition, the authors of [134] found it convenient to define M I as

a combination of the spin weighted spherical harmonics given by

(
M1
)
ij

=

(
4π

15

)1/2 (
Y22
ij + Y2−2

ij

)
=


(
2−1/2

)
0 0

0 −
(
2−1/2

)
0

0 0 0

 (6.16)

(
M2
)
ij

= −i
(

4π

15

)1/2 (
Y22
ij − Y2−2

ij

)
=

 0
(
2−1/2

)
0(

2−1/2
)

0 0

0 0 0

 (6.17)

(
M3
)
ij

= −
(

4π

15

)1/2 (
Y21
ij − Y2−1

ij

)
=

 0 0
(
2−1/2

)
0 0 0(

2−1/2
)

0 0

 (6.18)

(
M4
)
ij

= i

(
4π

15

)1/2 (
Y21
ij + Y2−1

ij

)
=

 0 0 0

0 0
(
2−1/2

)
0
(
2−1/2

)
0

 (6.19)

(
M5
)
ij

= −
(

8π

15

)1/2

Y20
ij =

 6−1/2 0 0

0 6−1/2 0

0 0 −2
(
6−1/2

)
 (6.20)

where Y lmij give the spin-weighted spherical harmonics according to

Y22
ij =

1

4

(
15

2π

)1/2

 1 i 0

i −1 0

0 0 0

 (6.21)
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Y2−2
ij =

1

4

(
15

2π

)1/2

 1 −i 0

−i −1 0

0 0 0

 (6.22)

Y21
ij =

1

4

(
15

2π

)1/2

 0 0 −1

0 0 −i
−1 −i 0

 (6.23)

Y2−1
ij =

1

4

(
15

2π

)1/2

 0 0 1

0 0 −i
1 −i 0

 (6.24)

Y20
ij =

1

4

(
5

4π

)1/2

 −1 0 0

0 −1 0

0 0 2

 . (6.25)

Therefore, it is possible to rewrite h(t) as

h(t) =
5∑
I=1

PI(D, θ, φ, ψ, ι, ϕ)QI(M1,M2, χ, κ,Φ0, tc), (6.26)

where

QI =M5/3ω2/3
√

2
(
[e+]ij cos 2(Φ + Φ0) + [e×]ij sin 2(Φ + Φ0)

)
(M I)ij (6.27a)

PI = −
√

2

D
([T+]ijF+ + [T×]ijF×) (MI)

ij. (6.27b)

In this form h(t) is written as the sum of 5 components. Each component consists

of an amplitude term, PI , and a time dependent waveform, QI . As we will demon-

strate in the next section it will be possible to maximize over the PI components

when performing the matched-filter, thus reducing the number of parameters that
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must be templated over. The PI amplitude terms are given explicitly by

P1 = − 1

D

(
[T+]11 F+ − [T+]22 F+ + [T×]11 F× − [T×]22 F×

)
= − 2

D

[−1

4
(3 + cos(2Θ)) cos(2ϕ)

]
F+ +− 2

D

[
cos Θ sin(2ϕ)

]
F× (6.28a)

P2 = − 2

D

(
[T+]12 F+ + [T×]12 F×

)
= − 2

D

[−1

4
(3 + cos(2Θ)) sin(2ϕ)

]
F+ −

2

D

[
cos Θ cos(2ϕ)

]
F× (6.28b)

P3 = − 2

D

(
[T+]13 F+ + [T×]13 F×

)
= − 2

D

[
1

2
sin(2Θ) cos(ϕ)

]
F+ −

2

D

[
− sin(Θ) sin(ϕ)

]
F× (6.28c)

P4 = − 2

D

(
[T+]23 F+ + [T×]23 F×

)
= − 2

D

[
1

2
sin(2Θ) sin(ϕ)

]
F+ −

2

D

[
sin(Θ) cos(ϕ)

]
F× (6.28d)

P5 = − 2√
12D

((
[T+]11 + [T+]22 − 2 [T+]33

)
F+ +

(
[T+]11 + [T+]22 − 2 [T+]33

)
F×

)
=
−
√

3

D

(
[T+]33 F+ + [T×]33 F×

)
= − 2

D

[√
3

4
(1− cos(2Θ))

]
F+. (6.28e)

Note that the trace free condition is used in the formulation of P5. The QI terms
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describe the time dependent waveforms and are given by

Q1 =M5/3ω2/3
(

cos 2 (Φ + Φ0)
(

[e+]11 − [e+]22
)

+ sin 2 (Φ + Φ0)
(

[e×]11 − [e×]22
))

=M5/3ω2/3
[
cos(2Φ0)

(
[e+]11 − [e+]22

)
+ sin(2Φ0)

(
[e×]11 − [e×]22

)]
cos(2Φ)

+M5/3ω2/3
[
− sin(2Φ0)

(
[e+]11 − [e+]22

)
+ cos(2Φ0)

(
[e×]11 − [e×]22

)]
sin(2Φ)

(6.29a)

Q2 =2M5/3ω2/3
(

cos 2 (Φ + Φ0) [e+]12 + sin 2 (Φ + Φ0) [e×]12
)

=2M5/3ω2/3
[
cos(2Φ0) [e+]12 + sin(2Φ0) [e×]12

]
cos(2Φ)

+ 2M5/3ω2/3
[
− sin(2Φ0) [e+]12 + cos(2Φ0) [e×]12

]
sin(2Φ) (6.29b)

Q3 =2M5/3ω2/3
(

cos 2 (Φ + Φ0) [e+]13 + sin 2 (Φ + Φ0) [e×]13
)

=2M5/3ω2/3
[
cos(2Φ0) [e+]13 + sin(2Φ0) [e×]13

]
cos(2Φ)

+ 2M5/3ω2/3
[
− sin(2Φ0) [e+]13 + cos(2Φ0) [e×]13

]
sin(2Φ) (6.29c)

Q4 =2M5/3ω2/3
(

cos 2 (Φ + Φ0) [e+]23 + sin 2 (Φ + Φ0) [e×]23
)

=2M5/3ω2/3
[
cos(2Φ0) [e+]23 + sin(2Φ0) [e×]23

]
cos(2Φ)

+ 2M5/3ω2/3
[
− sin(2Φ0) [e+]23 + cos(2Φ0) [e×]23

]
sin(2Φ) (6.29d)

Q5 =−
√

3M5/3ω2/3
(

cos 2 (Φ + Φ0) [e+]33 + sin 2 (Φ + Φ0) [e×]33
)

=−
√

3M5/3ω2/3
[
cos(2Φ0) [e+]33 + sin(2Φ0) [e×]33

]
cos(2Φ)

−
√

3M5/3ω2/3
[
− sin(2Φ0) [e+]33 + cos(2Φ0) [e×]33

]
sin(2Φ). (6.29e)

Note that we have written these QI in terms of cos(2Φ0) and sin(2Φ0). This will

be necessary when performing a maximization over Φ0 in the next section.

6.4 Spinning search using PTF waveforms

In this section we describe the single detector PTF search and its implementation,

which was first derived in [134, 127]. We will follow the conventions of these earlier

publications as much as possible.

6.4.1 Formulating the PTF detection statistic

Here we will derive the PTF detection statistic. We note again that this derivation

has been done previously in [134, 127]. For completeness of this chapter we will

describe this derivation in detail here.
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As we derived in section 4.1.2 the likelihood ratio of there being a signal h

present in the data s for a single detector is given by

Λ(h) =
P (s|h)

P (s|0)
. (6.30)

Assuming the noise is Gaussian, the log likelihood can be written as

log Λ = (s|h)− 1

2
(h|h). (6.31)

Where again we are using the single detector inner product

(a|b) = 4 Re

∫ ∞
0

ã(f)[b̃(f)]?

Sh(f)
. (6.32)

Sh(f) is the PSD of the detector, as described in section 4.1.1. From this starting

point, h must be re-expressed in such a way that it is possible to maximize over

the majority of the parameters, leaving us with only a small number of dimensions

over which to carry out a templated search.

In the previous section we demonstrated that the gravitational waveform for a

single spin binary can be expressed as

h(t) =
5∑
I=1

PI(D, θ, φ, ψ, ι, ϕ)QI(M1,M2, χ, κ,Φ0, tc). (6.33)

where PI are five amplitudes and QI describe five waveform components. If we

insert this into the log likelihood we obtain

ln Λ = (PIQ
I , s)− 1

2
(PIQ

I , PJQ
J) . (6.34)

We now wish to maximize over as many parameters in this PTF waveform model as

possible, to reduce the number of dimensions that we need to perform a templated

search over. We can initially carry out a maximization over phase and overall

amplitude using a similar method as in the non-spinning search. Firstly we express

the QI components in terms of its 0 and π
2

phases, as is illustrated in equation

(6.29),

QI = QI
0 cos 2Φ0 +QI

π
2

sin 2Φ0. (6.35)

If we then make the standard assumption that QI
0 = iQI

π
2

we can express the log
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likelihood equation as

ln Λ = PI(A
I cos 2Φ0 +BI sin 2Φ0)− 1

2
PIPJM

IJ . (6.36)

Where we have defined

AI = (s,QI
0) BI = (s,QI

π/2) (6.37)

as the inner products of the 0 and π
2

components of the waveforms with the data.

M IJ = (QI
0, Q

J
0 ) = (QI

π/2, Q
J
π/2) (6.38)

is the inner product of the waveform components with themselves. We can then

pull out an overall common amplitude A from the PI terms and reexpress the log

likelihood as

ln Λ = AP̂I(A
I cos 2Φ0 +BI sin 2Φ0)− A2

2
P̂IP̂JM

IJ . (6.39)

Now, we can maximize over the phase and the distance by defining

γ = A cos 2Φ0 (6.40)

β = A sin 2Φ0. (6.41)

The log likelihood expressed in terms of γ and β is

ln Λ = P̂I(A
Iγ +BIβ)− 1

2

(
γ2 + β2

)
P̂IP̂JM

IJ . (6.42)

We then maximize ln Λ over γ and β. This will give us

γmax =
P̂IA

I

P̂J P̂KMJK
(6.43)

βmax =
P̂IB

I

P̂J P̂KMJK
. (6.44)

Thus us our detection statistic maximized over distance and phase is given by

ln Λ|max(D,Φ0) =
1

2

P̂IP̂J(AIAJ +BIBJ)

P̂IP̂JM IJ
. (6.45)

We now wish to maximize over the PI amplitude terms, before we do this we can
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simplify the form of the log likelihood. We can perform a transformation such that

both QI
0 and QI

π
2

are orthonormal. First, perform a rotation on the QI
0 to make

M IJ diagonal, then normalize the basis vectors. We denote the orthonormal basis

Q̃I
0. This transformation will also orthonormalize Q̃I

π
2

and render M̃ IJ the identity

matrix. We note that this orthonormalization is not carried out in [134, 127] but

will simplify the final form of the PTF SNR.

Furthermore, we are free to rescale the PI terms in both the numerator and

denominator without changing the log likelihood. Therefore, we are free to scale

the PI terms such that P̃IP̃Jδ
IJ = 1. The log likelihood is then simplified to

ln Λ|max(D,Φ0) =
1

2
P̃IP̃J(ÃIÃJ + B̃IB̃J). (6.46)

We can then maximize this with the constraint that P̃IP̃Jδ
IJ = 1 using the method

of Lagrangian multipliers as described in [134, 127]

ln Λ =
1

2
P̃IP̃J(ÃIÃJ + B̃IB̃J)− λ(P̃IP̃Jδ

IJ − 1) . (6.47)

Differentiating this with respect to P̃I and setting to 0 gives

1

2
(ÃIÃJ + B̃IB̃J)P̃J = λδIJ P̃J . (6.48)

This equation is only solved when λ is an eigenvalue of 1
2
(ÃIÃJ + B̃IB̃J) and P̃I is

the corresponding eigenvector. Further, if we multiply (6.48) by P̃J we can show

that

λ =
1

2
P̃IP̃J(ÃIÃJ + B̃IB̃J). (6.49)

Thus, the maximum log likelihood is given by the maximum eigenvalue of 1
2
(ÃIÃJ+

B̃IB̃J). To calculate the value of this maximum eigenvalue it is useful to study

the form of (ÃIÃJ + B̃IB̃J). Firstly we note that any vector that is orthogonal

to both AI and BI , will also be orthogonal to (ÃIÃJ + B̃IB̃J). Therefore there

is a 3-dimensional sub-space of vectors that is orthogonal to this matrix. Equiv-

alently, this matrix has a three dimensional kernel and thus can only have 2 non

zero eigenvalues. These eigenvalues must lie in the plane described by ÃI and B̃I

We can therefore write the eigenvectors corresponding to the non-zero eigenvalues

as

P̃ I = αÃI + βB̃I . (6.50)

If we then insert equation (6.50) into (6.48) we can form two simultaneous equa-
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tions

αλ =
α

2
ÃIÃI +

β

2
ÃIB̃I (6.51a)

βλ =
α

2
ÃIB̃I +

β

2
B̃IB̃I , (6.51b)

which can be solved to find the values of λ. Doing this gives

λ =
1

2

[
Ã · Ã+ B̃ · B̃ ±

√(
Ã · Ã− B̃ · B̃

)2

+ 4
(
Ã · B̃

)2
]
. (6.52)

The maximum eigenvalue is obtained by taking the positive form of the square

root. Thus, the maximized PTF detection statistic is given by

ρ2

2
= log Λ|max(D,Φ0,PI) =

1

2

(
Ã · Ã+ B̃ · B̃

)
+

1

2

√(
Ã · Ã− B̃ · B̃

)2

+
(

2Ã · B̃
)2

.

(6.53)

6.4.2 Physical freedom in the PTF SNR

We have performed a free maximization over the five PI amplitudes. In principle,

these depend upon six physical parameters. However, these parameters only enter

in four different combinations as

• an amplitude parameter, dependent on (D, θ, ψ, φ)

• the relative sensitivity of the instrument to the + and × polarizations, de-

pendent on (θ, ψ, φ)

• the inclination angle, ι

• the spin orientation, ϕ.

Therefore performing a free maximization over the five PI components means that

the maximized PI values may not correspond to a physical set of parameters. This

is discussed in [134] and various methods for projecting onto the physical sub-space

have been proposed. For the case of an externally triggered search, as we describe

in section 4.3, where the sky location is known, the situation is unchanged as the

PI are still described by the same four unknown parameters.

Additionally, in the case of a coincidence search, these parameters are freely

maximized over for each detector. This can mean that, even if the values are pro-

jected onto the physical sub-space it is possible to have rather different maximized

values of the parameters across the different detectors.
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6.4.3 PTF with no precession

When the orbital plane of the system does not precess, there is gravitational wave

emission in only two of the harmonics, Q1 and Q2. The other components vanish

identically. Furthermore, these two harmonics are related by a phase shift: Q1 =

iQ2. Thus, the matrix M is degenerate and the PTF maximization breaks down.

It is, however, straightforward to maximize over the two remaining amplitudes,

and obtain the SNR as

ρ2 =
(s|Q1

0)2 + (s|Q1
π
2
)2

(Q1
0|Q1

0)
. (6.54)

This is identical to the well known SNR for the non-spinning search [57], and

the two phases of Q1 correspond to the 0 and π/2 phases of the non-precessing

template.

6.4.4 SNR distribution in Gaussian noise

The PTF template waveform will provide a better match than a non-spinning

template to a gravitational wave signal from a spinning binary. However, we pay

a price since we must filter the data against more waveform components, QI ,

thereby increasing the chance of a spurious match with the noise. Additionally,

the spinning SNR takes a more complex form (6.53) than the simple quadratic

expression (6.54) when there is no precession. Here, we will investigate the SNR

distributions in Gaussian noise for these two cases. In section 6.6 we use this to

identify regions of parameter space with sufficient spin effects to warrant the use

of the PTF search.

Ten filters are used in the calculation of the PTF detection statistic: (Q̃I
0, s)

and (Q̃I
π
2
, s). As both Q̃I

0 and Q̃I
π
2

are orthonormal, the only remaining freedom is

the relation between the Q̃I
0 and Q̃I

π
2

terms,

Ñ IJ = (Q̃I
0, Q̃

J
π
2
). (6.55)

This Ñ IJ is a 5 × 5 antisymmetric matrix which can therefore have 4 non-zero

eigenvalues: ±λ1,±λ2. The values of these eigenvalues determine the distribution

of the PTF detection statistic and these values will differ for each template.

For every NSBH waveform we have tested using the initial LIGO sensitivity

curve, the magnitudes of λ1 and λ2 have been very close to 1. Thus, although

there are ten different waveform components, we find that, in effect, only six of

these are independent — the others are linear combinations of these six. There
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Figure 6.1: The “best” and “worst” possible distributions of the single detector
PTF SNR squared, this is compared with the non precessing SNR squared.

are then only six independent filters. In this case it is not difficult to show that

the spinning SNR (6.53) collapses to a quadratic form which is χ2 distributed with

six degrees of freedom in Gaussian noise. This is the “best” case for the detection

statistic. The “worst” case occurs when both λ1 and λ2 are zero and all ten of

the filters are independent. In this case, the SNR expression cannot be simplified

and its distribution does not correspond to a χ2 distribution with 10 degrees of

freedom as might be expected; the real distribution is somewhat more complex.

Both best and worst cases are illustrated in Figure 6.1.

The SNR (6.54) for a non-precessing template follows a χ2 distribution with

two degrees of freedom in Gaussian noise. This is also plotted on Figure 6.1. By

comparing the distributions of the PTF and non-precessing SNRs, it is clear that

the background triggers produced by the PTF search will have, on the average,

considerably larger SNR than those produced by the non-precessing search. We

explore the effect that this has on a search further in section 6.6.

6.4.5 Remaining challenges for the coincidence PTF search

The PTF search allows one to perform a coincidence search using single spin

waveforms in a reasonable amount of time [127]. However, it remains a challenge

to derive a metric on the four dimensional mass and spin space that could be

used in generating a template bank and in defining coincidence requirements.

Furthermore, a strategy for vetoing non-transient glitches, such as we described

for the non-spinning search in chapter 4, would be required for running this search.

Such a strategy has been suggested in [127], but more investigation is needed to

show how this would increase detection confidence over a non-spinning search.
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6.5 Triggered coherent PTF spinning search

In this section, we introduce a multi-detector, coherent formulation of the PTF

search. As in chapter 5, this is applied in terms of a triggered search where we

will restrict attention to the case where the sky location is known. This simplifies

a coherent search as the sensitivity of the detectors to the two GW polarizations

and the relative time delays between detectors are known. Astrophysically, this

is of interest when searching for gravitational waves associated to electromagnetic

transients such as GRBs [30, 31].

The data from various detectors are combined together coherently to form

two coherent data streams, with one stream containing the + polarization of any

gravitational wave signal present in the network and the second containing the ×
polarization. The coherent method will offer an improvement in sensitivity over

the coincidence method when more than two detectors are used, as only two data

streams are searched. For networks with greater than two detectors, it is also

possible to construct null streams which will contain no gravitational wave signal,

and can be used as a consistency test as decribed in [112] and chapter 5.

We begin by formulating the coherent SNR for the spinning PTF search and

go on to explore how this will be distributed in Gaussian noise. To formulate

a coherent detection statistic for the PTF templates we draw on many of the

methods and techniques that were used in deriving the single detector statistic

described in section 6.4 and in [134, 127]. We follow the conventions of chapter 5

in extending this to a coherent, multi-detector search. As in chapter 5, assuming

that the noise in different detectors is independent, the multi-detector likelihood

is given by

ln Λ = (h|s)− 1

2
(h|h). (6.56)

We again use a multiple detector matched filter

(a|b) =
∑
X

(aX |bX) (6.57)

where the index X runs over the detectors in the network.

As before, we want to maximize over as many of the parameters as possible to

minimize the dimension of the required template bank. We start by maximizing
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this over the distance, D, and initial orbital phase, Φ0, to obtain2

ln Λ|max(D,Φ0) =
1

2

[∑
X,I

(
PX
I A

X
I

)]2

+
[∑

X,I

(
PX
I B

X
I

)]2

∑
Y,J,K [P Y

J P
Y
K (QJ

0 |QK
0 )Y ]

, (6.58)

where PI are the amplitudes of the various waveform components QI , and AIX , BI
X

are the matched-filters of the Q components with the data as defined in (6.37).

Although the PI depend upon an overall amplitude the maximized likelihood is

independent of it as scaling the amplitude has an identical effect on both the

numerator and denominator of eq. (6.58).

As in the single detector case, we would like to maximize over the PI to elim-

inate them. However, these are detector dependent since the sensitivity of the

detectors to the + and × gravitational wave polarizations will differ. These sensi-

tivities are encoded in the detector response functions, F+ and F×, which depend

on the sky location of the source in the detector frame. As we are focusing on an

externally triggered search, where the sky location is known, these values will be

known for each detector. We can then factor the detector dependent terms out of

the PX
I if we remember that

F+ = −a(θ, φ) cos(2ψ)− b(θ, φ) sin(2ψ) (6.59a)

F× = a(θ, φ) sin(2ψ)− b(θ, φ) cos(2ψ), (6.59b)

where a and b are given by

a(θ, φ) = 0.5
(
1 + cos2 θ

)
cos(2φ) (6.60a)

b(θ, φ) = cos θ sin(2φ). (6.60b)

These expressions were derived in section 2.4.2. We can then express the PI terms

as

PX
I = aX(θ, φ)SI(D, ι, ψ, ϕ0) + bX(θ, φ)TI(D, ι, ψ, ϕ0) (6.61)

where SI and TI can be thought of as the amplitude of the + and × components

2The Y subscript in the inner product in the denominator denotes the fact that the PSD of
detector Y is used in evaluating the inner product. We do not require the noise PSDs of the
different detectors to be the same.
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respectively of the 5 QI . SI and TI are given as

SI = −RI1 cos(2ψ) +RI2 sin(2ψ) (6.62a)

TI = −RI2 cos(2ψ)−RI1 sin(2ψ) (6.62b)

where we have defined

R11 = −0.25(3 + cos(2ι)) cos(2ϕ) R12 = cos(ι) sin(2ϕ)

R21 = −0.25(3 + cos(2ι)) sin(2ϕ) R22 = − cos(ι) cos(2ϕ)

R31 = 0.5 sin(2ι) cos(ϕ) R32 = − sin(ι) sin(ϕ)

R41 = 0.5 sin(2ι) sin(ϕ) R42 = sin(ι) cos(ϕ)

R51 =

√
3

4
(1− cos(2Θ)) R52 = 0. (6.63)

We can re-cast the log-likelihood into a form which more closely resembles the

single detector case by introducing ten-dimensional analogues of the PI and QI

by defining

Pα := [S1, S2, S3, S4, S5, T1, T2, T3, T4, T5]

Qα0,π
2

:=
[
F+Q

1
0,π

2
; ...;F+Q

5
0,π

2
;F×Q

1
0,π

2
; ...;F×Q

5
0,π

2

]
. (6.64)

The change to ten dimensions naturally arises because a multiple detector coherent

network is sensitive to both the + and × components, whereas a single detector

network is only sensitive to one polarization. We also define the multi-detector

inner products between signal and waveform components

Aα = (s|Qα
0 ) and Bα = (s|Qα

π
2
) (6.65a)

Mαβ = (Qα
0 |Qβ

0 ) = (Qα
π
2
|Qβ

π
2
). (6.65b)

The log likelihood equation can then be written as

ln Λ|max(D,Φ0) =
1

2

PαPβ
(
AαAβ + BαBβ

)
PαPβMαβ

. (6.66)

We proceed, as before, by transforming to an orthonormal basis Q̃α0 , Q̃απ
2

for the

waveform components. Then, we can proceed in an identical manner as section
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6.4.1 to maximize freely over Pα, thus yielding the coherent PTF SNR

ρ2
coh =

[
Ã · Ã+ B̃ · B̃

]
+

√(
Ã · Ã − B̃ · B̃

)2

+
(

2Ã · B̃
)2

, (6.67)

where, as before, the tilde denotes that we are in the orthonormal basis.

When the network is only sensitive to one polarization, the matrix Mαβ be-

comes degenerate and the maximization procedure must be re-visited. Here it is

natural to remove all terms corresponding to the second polarization and reduce

to 5 dimensions, as in the single detection search. Additionally, in section 6.4 we

noted that when the template has no precession the single detection PTF SNR col-

lapses to the familiar SNR formalism used in the non-spinning search. Similarly,

in the coherent PTF search, when the template has no precession, the coherent

SNR will collapse to the non-spinning coherent SNR given in equation (5.33).

The coherent SNR of equation (6.67) can be used as a detection statistic in

performing a coherent search using PTF templates, as we explore in section 6.7. In

the single detector search, we maximized freely over five PI which were dependent

upon four physical parameters. Here, the Pα still depend on only 4 parameters

but we are now maximizing over ten amplitudes. This clearly introduces a lot of

unnecessary freedom. However, we should note that the coincidence search allows

for a similar freedom as the PI are maximized independently for each detector.

Consequently, for a network with three or more detectors, the coherent search

provides a sensitivity improvement.

For either search it would be useful to restrict the statistic such that the max-

imized values take physical values. We are investigating methods of doing this.

Additionally, it would be useful to use marginalization techniques to downweight

physical values that are “unlikely”, such as very small distances with poor orien-

tation. Such techniques would serve to increase the overall efficiency of a PTF

search.

6.5.1 SNR distribution in Gaussian noise

In section 6.4.4 we explored how the single detector PTF statistic is distributed

in Gaussian noise. For the coherent PTF search we can use a similar strategy

to investigate the distribution of the coherent SNR. In the coherent case there

are twenty filters Ãα and B̃α and we have constructed the detection statistic such

that Q̃α0 and Q̃απ
2

are orthonormal. As before, the only freedom is the relationship
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Figure 6.2: The “best” and “worst” possible distributions of the coherent PTF
SNR squared as well as the distribution of the non spinning SNR squared.

between the 0 and π
2

terms encoded in

Ñ αβ = (Q̃
α

0 , Q̃
β
π
2
). (6.68)

This is a 10x10 antisymmetric matrix comprised of four 5x5 blocks, each of which

is antisymmetric. Therefore this matrix can have 8 non-zero eigenvalues: ±λ1,2,3,4.

These eigenvalues determine the distribution of coherent SNR in Gaussian noise —

for smaller eigenvalues, the large SNR tail of the distribution becomes more signif-

icant. In the tests that we have performed using the initial LIGO sensitivity curve

and NSBH precessing templates, all four eigenvalues give values close to unity, the

“best” case in which there are 12 independent waveform components. However,

in this case it it not possible to separate these 12 components in the detection

statistic and the distribution does not collapse to a χ2 distribution. In Figure 6.2,

we demonstrate that this gives a distribution similar to a χ2 distribution with 12

degrees of freedom. In the “worst” case, where all of the eigenvalues are equal

to 0, there are 20 independent waveform components and this distribution is also

shown in Figure 6.2.

6.6 Identifying where the PTF search is most

beneficial

In sections 6.4 and 6.5 we have derived the spinning SNR that can be used to

perform a gravitational wave search using single spin inspiral waveforms as tem-

plates. We have demonstrated that, on the average, background triggers will have

larger values of SNR in the PTF search than in the non-precessing search. At
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Non Precessing PTF
Single detector 6.79 7.63

Coherent 7.26 8.53

Table 6.1: The SNR corresponding to a FAP of 10−10 for the non precessing and
the PTF search, for both coherent and single detector cases. Here, for the PTF
case the single detector and coherent detection statistics are assumed to be χ2

distributions with 6 and 12 degrees of freedom respectively.

the same time, precessing PTF waveforms will be a better match to any spinning,

precessing signals in the data. This begs the question as to whether it is preferable

to use a search with non-precessing waveforms or single spin PTF waveforms to

detect precessing systems. The PTF triggers will match the waveform better but

this comes at the cost of searching a larger parameter space.

To quantify this, in Table 6.1 we give the SNR that corresponds to a false

alarm probability (FAP) of 10−10 in Gaussian noise for the various searches. We

chose this value because it roughly corresponds to the loudest background events

we observe when running the search on 2000 seconds of Gaussian noise, as is

appropriate for a GRB search. The figures in the table show that the PTF search

must obtain 26% more signal power (SNR squared) to be more efficient in the

single detector case at this FAP and 38% more signal power for the coherent case.

There are large areas of the parameter space where precession will not sig-

nificantly effect the evolution of the binary and thus a non-precessing template

will pick up the majority of the power in a precessing signal. In these areas it

would be better to search for the spinning signal with a non-precessing template,

achieving a lower FAP than for the PTF search using an exactly matching tem-

plate. Equivalently, when a system has little precession, the majority of power

is contained in the Q1 and Q2 components of the PTF waveform and these two

components are very similar, up to an overall phase shift. We can then consider

performing a “restricted PTF” search, where we filter only these two components

of the waveform against the data. This serves to reduce the FAP at a fixed SNR

while losing only a small amount of the power in the signal.

To do this, we test every template waveform, before filtering, to determine

whether the template would be more likely to detect a matching signal below a

false alarm probability of 10−10 using the restricted or full PTF search. This can be

calculated by simulating a large number of gravitational wave signals, with masses

and spin matching those of the template, but uniformly distributed in volume and

orientation. Then, simply count the number of simulated signals expected to give
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Figure 6.3: The fraction of templates analysed by the full PTF statistic as a
function of the masses in the NSBH region of the parameter space.

an SNR greater than the value corresponding to a FAP of 10−10 (given in Table

6.1) for both methods. Whichever of the PTF or restricted methods is expected to

perform better is then used when filtering the data with that template. Using this

method, we are able search the full parameter space of NSBH binaries in a single

search, including non-spinning, non-precessing, marginally precessing and fully

precessing configurations. This method works equally well for the single detector

or the coherent search.

In Figure 6.3 we illustrate the fraction of templates analysed by the full PTF

statistic, as a function of the masses, for the coherent search. The splitting of the

templates into full and restricted does not require filtering against the data, but

it does make use of the PSDs of the detectors. For this study, we use data from

the three LIGO detectors during the S4 run.

A template bank was generated by taking a standard non-spinning template

bank [83] in the mass space and, for each value of the masses, creating 15 templates

with identical masses but spin parameters gridded over the two dimensional spin

space, as described in [127]. The precessing single spin templates are most needed

in the high mass ratio region of the parameter space. For this template bank,

there are 35395 templates to be analysed with the restricted method and 14660

templates to be analysed with the full PTF method.

6.7 Search method and example results

In section 6.5 we derived a detection statistic appropriate for a coherent search

using the PTF waveforms as templates. In section 6.6 we described a method

through which one can identify where the PTF search is most needed and to split
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a template bank into those templates that should be analysed with the full PTF

statistic and those that should be analysed with the restricted PTF statistic. We

have combined these two methods together to create a search pipeline than can be

used to coherently analyse gravitational wave data to search for precessing NSBH

signals associated to short GRBs. We will briefly describe the analysis procedure

before presenting an example result.

The search uses much of the same architecture as that described in chapter 5

and [4]. Namely we search for gravitational wave signals in the “on-source” time,

defined to be [-5,+1) seconds around the reported time of the GRB. Background

is estimated from performing 324, 6 second trials around the GRB time, but at

least 48s away from the on-source time. The coherent PTF search makes use of the

same infrastructure as the coherent non-spinning search described in chapter 5. In

particular, the data handling, PSD estimation and matched filtering routines are

the same. Of course, the coherent PTF search makes use of spinning, precessing

waveforms in the filtering and computes the SNR given in equation (6.67).

To demonstrate the performance of the coherent PTF, we ran it over a stretch

of data from S4. The data was chosen randomly, subject to the condition that all

three of the LIGO detectors were operational at the time. This is the same data

as was used to illustrate the template bank splitting in section 6.6, and the same

bank with 15,000 full PTF and 35,000 restricted PTF templates was used.

In Figure 6.4 we show the distribution of the SNR of the triggers produced using

both the full and restricted statistic. This is shown for the stretch of real S4 data

and for a stretch of simulated Gaussian data. As expected, the SNRs of triggers

in Gaussian noise are larger for the precessing templates than the restricted ones,

even though significantly fewer templates were analysed with the full statistic.

The results from real data are badly affected by non-Gaussianities in the data. A

number of loud transients are clearly visible as short duration peaks of large SNR,

while there are an even greater number of quieter peaks throughout the analyzed

time. This has a similar effect on both the full and restricted waveforms.

In chapter 5, we described and developed a number of tools which can be

used to effectively remove the majority of the non-Gaussian features from a non-

spinning, coherent analysis. These include null stream consistency [112], ampli-

tude consistency and χ2 signal consistency tests [80, 113]. All of these can be ap-

plied without modification to the restricted PTF search, and it seems reasonable to

expect they would be similarly effective in reducing the effect of non-Gaussianities

in the data. However, we currently have no such tools which can be used for the full

PTF waveforms. Before using this search on real data we will need to implement
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Figure 6.4: The distribution of triggers found by the coherent PTF search. The
left panels show the distribution of triggers from templates that were analysed
using the “restricted” coherent PTF search, the right panels show the distribution
from the templates that were analysed using the “full” coherent PTF search. The
top panels were created from analysing Gaussian noise. The bottom panels were
created from analysing a stretch of real data from S4. All these plots have been
rescaled to use the same y-axis. For the two cases using real data the non-Gaussian
spikes extend much higher than is shown, the loudest trigger has an SNR of 39 in
the restricted case and 45 in the full case.

a set of tests that can discriminate glitches from real signals for the full statistic.

It should be relatively straightforward to implement the null stream consistency

test. Unfortunately, as discussed in chapter 5, the null stream for the LIGO S4

detectors is constructed only from the two instruments in Hanford. In this stretch

of data the loudest background triggers are caused by non-stationarities in the

Livingston detector and thus the null stream is ineffective. Alternatively a χ2

test such as the ones described in [80, 113] could be adapted to this search, [127]

presents a possible way of doing this for single detectors. We are working on de-

veloping an alternative version of this χ2 test, which would test the consistency

of the six independent components of a single detector PTF waveform, and then

extending this to the fully coherent analysis.
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6.8 Discussion and generic spin systems

In this section we have explored how the presence of spin on the components effects

the dyamics of a compact binary coalescence. We have discussed how one could

conduct a search using templates that include spin, but not precessional effects,

and presented a method for performing a coincidence and coherent search for pre-

cessing, single spin black hole–neutron star coalescences using PTF templates. We

have compared the performance of PTF to searches using non-precessing wave-

forms and have identified regions of the parameter space where the PTF search

offers increased sensitivity. We have presented a method by which these areas

could be identified and demonstrated these techniques on a short stretch of S4

data.

The PTF method should allow for the detection of highly precessing NSBH

systems with greater efficiency then the current non-spinning searches. However,

more work is required before this search is ready to be used. The main need is for

the development of effective methods of separating glitches from real events in the

full PTF search, whether performing a coincident or coherent search. It should be

possible to adapt a lot of the methods that have proven effective in non-spinning

searches but this is a non-trivial task.

We also demonstrated that the coincidence and coherent PTF statistics allow

for a large degree of unphysical freedom when maximizing over the extrinsic pa-

rameters. The efficiency of a PTF search could be increased if this unphysical

freedom is reduced or removed. Additionally the efficiency of the PTF search

could be increased if a marginalization technique was used to downweight phys-

ically unlikely values of the parameters. We are investigating methods of doing

both of these things.

Real CBC systems will likely have some spin associated to both compact bodies

and it is important that we are able to detect any manner of physically possible

CBC system. Unfortunately, at the moment there is no reliable search method

that uses double spin systems as templates. However, the aligned spin and single

spin templates are capable of covering a good deal of the parameter space. It

is believed that the spin of the components of a BNS system will be very small

when the system becomes sensitive to ground based interferometers [141]. For

these cases non-spinning templates have been shown to have a good sensitivity to

most physically possible BNS systems, at least given initial detector sensitivities

[1]. For NSBH systems, any spin on the neutron star will have a negligible effect

on the overall dynamics of the system. Therefore the PTF search should be able
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to detect any manner of NSBH system.

The only potential problem arises with BBH systems. However, even here it

is hoped that aligned spin templates and single spin templates (including single

spin templates with overmaximal spin, χ > 1), have a good ability to detect such

systems. For initial LIGO, the combination of non spinning, aligned spin and

single spin searches should be able to detect almost any manner of CBC signal

that might be in the data, though more investigation is needed to verify this.

It is important however, that the aligned spin and PTF searches are run on the

current LIGO and Virgo data. It is unlikely, but there could be a highly precessing

NSBH signal buried in the current data that the non-spinning pipeline has failed

to detect.

As the second and third generation of gravitational wave detectors are devel-

oped, and the sensitive frequency range of the instruments increases, it will become

increasingly important to develop a search using double spin systems as templates.

Many of the techniques we have discussed for the single spin PTF search would

be equally applicable to the dominant harmonic of any family of precessing wave-

forms. In particular, the method of maximizing freely over the amplitudes of the

five components of the l = 2 spin weighted-spherical harmonic is directly appli-

cable to other waveform families. As the catalogue of numerical simulations of

precessing binaries grows, these methods may well find applications in searches

such as ones using numerical relativity inspired inspiral-merger-ringdown wave-

forms.
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Chapter 7

A stochastic template placement

algorithm for gravitational wave

data analysis

The past two decades have seen the development of methods [153, 79, 88, 154]

for setting up template banks which minimize the computational cost in a search

without reducing the detectability of signals. For instance, a geometric framework

was developed [155, 87, 86] in the 1990’s to address the problem of template place-

ment. This works quite well when the parameter space is of a small dimension

(2, 3, or 4 at most) [85, 156, 84, 83]. The most important tool in this geomet-

ric framework is a positive-definite metric which measures the fractional loss in

(squared) signal-to-noise ratio of a putative signal (at one point in the parameter

space) filtered through the optimal filter corresponding to a nearby point in the

parameter space. The metric gives the parameter space the geometric structure of

a (possibly curved) Riemannian manifold, which is often called the signal manifold

(in this chapter we continue to refer to it as the parameter space).

When the dimension of the parameter space becomes large there are problems

with existing methods. First, even for flat parameter spaces, there are no known

optimal placement algorithms for dimensions greater than 5 (the analogue of the

two-dimensional hexagonal lattice) [157] (and references therein). Second, it is not

clear how to place templates in a curved parameter space. For example, one cannot

set up an optimal (equally-spaced) lattice on a two-sphere unless the number of

points is very small (for example, 12). This issue becomes increasingly important

in parameter spaces with dimension greater than 2. Third, if the parameter space

includes irregular boundaries, or is formed of regions with differing dimensions, it

is extremely difficult to “step around” the parameter space in a deterministic way
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that covers the parameter space completely but does not significantly over-cover

it.

This chapter gives a template placement algorithm that works for any parametrized

signal model in any number of dimensions, provided that one can determine if two

points in the parameter space are a large metric distance apart, and, if they are

not, accurately calculate the metric distance between them. The idea is simple.

Pick points at random in parameter space, rejecting any points that are too close

to those previously retained. Continue this process until no new points are added,

because any newly selected random points are close to previously retained points.

We call this a stochastic template placement algorithm, and the resulting grid a

stochastic template grid or stochastic template bank.

By construction, the stochastic template bank does not over-populate the pa-

rameter space. But does it properly populate all regions? The answer depends

upon the properties of the signal manifold and its metric. It is very similar to the

question of whether the Monte-Carlo approximation to an integral converges to

the correct value. And in the same way as with Monte-Carlo integration, these

stochastic template banks appear to perform very well in real-world applications.

This method is closely related to another way of creating random template

banks, [158], in which the filtering stage is not carried out, but has certain ad-

vantages. In particular, fewer templates are needed to obtain a given degree of

coverage of the parameter space. However, the filtering stage can become compu-

tationally expensive.

Some practical issues remain. The most convenient way to generate a random

template bank is to use computer-generated uniformly-distributed random num-

bers as random coordinate values in parameter space. However, the distribution

of the resulting points then depends strongly upon the choice of the coordinate

system. If global coordinates can be found in which the determinant of the metric

is constant (or nearly constant) then choosing uniformly distributed random num-

bers for the coordinate values will result in a uniform density of points. This is

optimal. If not, the random points should ideally be generated with a probability

density in coordinate space proportional to the square root of the determinant of

the metric in those coordinates. (One can also pick a small number of points in

the space, and at each point define a local coordinate system in which the metric

is proportional to δab, then place many points uniformly in those coordinates.) In

practice, this is not necessary: this chapter shows that a stochastic template bank

can still be effectively generated by choosing uniform probability distributions

for the coordinate values, even if the determinant of the metric is not constant
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on those coordinates. The only downside is additional computational cost as we

discuss in Sec. 7.2.

Later in this chapter, two examples are shown to illustrate this: the placement

of templates in a D-dimension cube, and the placement of templates on the signal

manifold of gravitational wave chirps from inspiralling compact binaries calculated

in the first post-Newtonian approximation. In both cases, one can create stochas-

tic template banks using coordinates (polar, and masses (m1,m2), respectively)

in which the determinant of the metric is not constant. This incurs unneces-

sary computation cost, but it works. Alternatively, one can create a stochastic

template bank using coordinates (Cartesian, and chirp-time coordinates (τ1, τ3),

respectively) in which the metric (and hence its determinant) is approximately

constant [154]. This works better, since it is computationally more efficient, but

the end result is the same.

The chapter is organized as follows. Sec. 7.1 presents the stochastic template

placement algorithm. An implementation and results of testing are presented in

Sec. 7.2 for some simple cases where the number of templates is known analyti-

cally. Sec. 7.3 is devoted to the application of the algorithm to the case of gravi-

tational wave chirps from inspiralling compact binaries where the performance of

the stochastic template placement method is compared with existing geometrical

template placement algorithms.

7.1 Stochastic template placement algorithm

Let M denote a signal manifold of dimension D, with d(x, y) being a positive-

definite distance function. Here x, y ∈ M are points in the manifold. Note that

the signal manifold M might cover only part of the space of possible signals of

a particular type, for example one might only want to lay a bank to search for

binary inspiral signals within a specific range of masses.

A template bank T is a set of n points taken from M: T = {x1, · · · , xn; xi ∈
M}. A template bank is said to cover the signal manifold with radius ∆ (or to

be complete) if every point in M lies within distance ∆ of at least one of the n

points: ∀y ∈M, d(y, xi) ≤ ∆ for at least one i ∈ 1, · · · , n.

An optimal template bank of radius ∆ would fulfill two conditions. First, it

would cover the signal manifold with radius ∆. Second, it would contain the

minimum number of points. However, it is difficult to achieve this in practice!

The method proposed in this chapter creates a template bank according to the

following algorithm:
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1. Let T be a list of n points fromM. Initially n = 0 and the list is empty. As

points get added to this list, they will be denoted by x1, · · · , xn.

2. Pick a point z at random from M. If d(z, xi) > ∆ for all points in the list

T , then add z to T and increment n by one. Else discard the point z.

3. Repeat the previous step, until the list T stops changing in length, or some

other stopping criterion is met.

7.1.1 Expected size of complete stochastic template banks

An important question to ask is at what point will this iterative process terminate?

This is determined by the number of templates needed to completely cover the

space. To understand this, it is useful to first ask the more general question,

how large does a complete template bank (not necessarily one generated by the

algorithm above) need to be? To try to understand these questions this sub-section

begins by discussing upper and lower bounds on the size of the stochastic bank.

Two commonly used lattice algorithms are then discussed and the performance of

the stochastic bank, at low dimension, is compared to these quantities.

In this discussion we follow [159, 158] and use thickness (Θ) and normalized

thickness (θ) to assess the efficiency of a specific template covering. Thickness

is defined [159] as the average number of templates covering any point in the

parameter space while normalized thickness is defined as the number of templates

per unit volume in the case where the radius of the templates is unity. They are

related by [159]

θ = Θ/VS, (7.1)

where VS is the volume enclosed by a D-dimensional sphere of unit radius

VS =
2πD/2

D Γ(D/2)
. (7.2)

The advantage of using these quantities is that they are independent of the size

of the parameter space and independent of the template radius. These quantities

are also directly related to the number of templates that will be required [158], by

θ =
n∆D

V
(7.3)
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where V is the proper D−volume of the parameter space,

V =

∫
M

√
g dDx (7.4)

and g is the determinant of the metric gij on the manifold M.

We also assume, in this section, that “boundary effects” can be ignored. Except

in pathological cases, this is true if the total volume within distance ∆ of ∂M is

small compared with the total volume of M.

A simple theoretical lower bound on the number of templates needed in any

complete template bank is the ratio of the volume of the parameter space to the

volume of a single template. The volume of a single template is the D−volume

contained in a ball of radius ∆ is given by

Vtemplate = B(∆) = VS∆D. (7.5)

Hence the number of required templates is bounded below by V/Vtemplate. Alterna-

tively we can say that the thickness of a complete template bank must be greater

than unity or that the normalized thickness must be greater than 1/VS. For the

case of flat spaces a great deal of work has been carried out in trying to obtain

better estimates of the minimum possible thickness for a complete template bank;

it is clear, for example, that even in the 2 dimensional case a complete template

bank cannot have a thickness of 1, there must be some overlap between the tem-

plates. In [159] the best currently known theoretical bounds on thickness are given

and these are the values that are shown as the lower bound in Figure 7.1.

To try to obtain an upper bound on the thickness of the stochastic template

bank one can consider the sphere-packing problem, this is the question of how

many non-overlapping spheres can be packed into a certain volume. Consider the

packing problem with hard spheres of radius ∆/2. Since the centers of any of

these spheres are distances of ∆ or more apart, they are suitable locations for a

stochastic template bank. In Ref. [159] a bound is given on the number of hard

spheres of radius ∆/2 that can be placed into a volume V . This can be considered

as an upper bound on the number of templates that the stochastic algorithm can

place. Figure 7.2 also suggests that this bound may be a reasonable estimate

of the thickness of a complete stochastic bank, it can be seen that the average

minimum distance between any template and the rest of the bank is close to ∆,

as it would be in the sphere packing problem. However, at least for low dimension

(D < 4), Figure 7.1 shows that the a complete stochastic template bank requires

considerably fewer templates than this sphere packing upper bound.
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Figure 7.1: The theoretical upper and lower bounds on normalized thickness of
a stochastic template bank [159] and the normalized thickness of known lattice
algorithms as a function of dimension as defined by equations (7.7) and (7.8). Also
the obtained thickness of stochastic banks at dimensions less than 5.

Figure 7.2: A histogram of the distribution of distances from a template to the
nearest template, in units of the closest possible spacing ∆, for a simple three-
dimensional example. The distances are clustered close to the minimum possible
spacing ∆, showing that the covering locations found by the stochastic template
placement method are close to the positions found by packing spheres of radius
∆/2.
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It is also useful to compare this with the performance of known lattice algo-

rithms. In this work two different lattice algorithms are considered. The first

is the hyper-cubical lattice, where the hyper-cubes of the lattice are just small

enough to fit entirely inside a single ball of radius ∆. The side length δ of such a

cube is given by

δ = 2∆ (1/D)0.5 , (7.6)

since the longest diagonal of this D-cube is then 2∆ long. Thus

θhyper−cubic =
DD/2

2D
(7.7)

describes the normalized thickness of a template bank in a hyper-cubic arrange-

ment.

The second lattice algorithm considered in this work is the A∗n lattice [159,

157]. The 2 dimensional A∗n lattice is the well known hexagonal lattice. For this

algorithm the normalized thickness is given by [158]

θA∗
N

=
√
D + 1

[
D (D + 2)

12 (D + 1)

]D/2
. (7.8)

From Figure 7.1 it can be seen that the A∗n lattice requires less templates than the

hyper-cubic lattice in all dimensions (except the trivial one-dimensional case). It

is also the most efficient lattice known in dimensions up to 20 [159]. This figure

also shows that the number of templates required to create a complete stochastic

bank is less than the hyper-cubic lattice, but only when the dimension D is greater

than 3. A stochastic template bank with full coverage, however, will require more

templates than the A∗n lattice at least up to four dimensions. We have no reason to

believe that a complete stochastic bank will be more efficient than the A∗n lattice

in any dimension.

One must consider however that these lattice algorithms are only defined in

the case of flat parameter spaces. The stochastic algorithm on the other hand can

be used in any parameter space and it is in the cases where the parameter space

is not flat that we believe the stochastic bank would be the most useful.

7.1.2 The convergence of a stochastic template bank

In real world applications it may not be necessary for the template bank to be

complete. It is therefore useful to be able to understand the convergence of the

iteration that creates a stochastic template bank. This sub-section is devoted to
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trying to understand this convergence and comparing it to the method describe

in [158].

To begin to understand how a stochastic bank converges it is necessary to define

a covering fraction f ∈ [0, 1]. The covering fraction is the ratio of the volume of

the subset ofM that lies within a distance ∆ of the points in the template bank,

to the total volume of M. The expected number of trials required to add a new

template to the list is given by 1/(1−f), as can be seen by considering the template

placement process as a form of Monte-Carlo integration.

At the beginning of the iterative process, the template bank is empty, and

f = 0. After the first template is added (and assuming that boundary effects

can be ignored!) the covering fraction is f = ε, where ε = Vtemplate/V , which is

the fraction of the entire volume covered by a single template. During the first

iterative steps, while the number of templates n in the bank is small, n � 1/ε,

the covering fraction increases linearly with the template number according to

f = εn = nVtemplate/V .

How does the covering fraction increase when n becomes larger? To understand

this, it is helpful to first consider the behavior that the covering fraction would

have in the case where the n points in the template bank were simply selected at

random from M, without any consideration of whether or not they were closer

together than ∆. This case is considered in some detail in a recent paper on

random template banks [158]. (In contrast, we use the name stochastic template

bank.) In that case, since on average each additional template removes a fraction

ε of the volume that is not already covered, one obtains

E(f(n)) = 1− exp(−εn) (7.9)

or

E(f(Θ)) = 1− exp(−Θ) (7.10)

for the expectation value of the coverage. For small n, this gives a linear increase

in the covering fraction, which also describes the stochastic template bank.

Compared to the random template bank, on the average, a stochastic template

bank gives higher coverage for a given number of templates. This is illustrated in

Figure 7.3, which shows the covering fraction as a function of thickness, where the

signal manifoldM is a unit box in 2, 3 and 4 dimensions. Thus, if it is desirable to

minimize the computation cost because a single template bank is going to be used

and re-used many times, the stochastic banks could offer a significant improvement

compared with the random ones. The graph does seem to indicate, however, that
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Figure 7.3: The relationship between the covering fraction and the thickness of
the bank in 2, 3 and 4 dimensions. This is also compared to what one would
expect in the case of the random template bank [158], as well as the case where
no templates overlap each other.

the stochastic bank converges toward the random case as dimension increases.

Further investigation is needed to demonstrate what level of improvement the

stochastic bank would have over the random bank at high dimension.

7.1.3 Computational cost of filtering templates

While the stochastic bank will provide a better coverage for the same number of

templates, one must incur an extra computational cost to carry out the filtering

stage of the stochastic placement algorithm. This sub-section investigates what

this computational cost would be as a function of number of templates and covering

fraction.

If every random point was accepted as a template, because it was farther than

∆ from all previous templates, then the computational cost would be

C = αn(n− 1)/2, (7.11)

where α is the cost of computing the distance between two points. This follows

because the distance must be calculated between all possible pairs of templates,

and there are n(n − 1)/2 such pairs. This also correctly describes the cost of

stochastic template bank creation when the covering fraction is substantially less

than one, and few potential templates are rejected. But when the covering fraction

approaches one, the computational cost explodes, because the dominant compu-

tational cost is the cost of rejecting templates. This is shown in Figure 7.4.

This also allows us to provide an estimate of the computational cost. In prac-
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Figure 7.4: The computational cost (number of distance calculations) depends on
the covering fraction.

tice, 100% coverage is not necessary or desired. For a typical binary inspiral

search one might be happy with a coverage f ∈ [0.9, 0.99]. For such coverages the

computation cost is bounded above by

C =
α

1− f
n2

estimated

2
, (7.12)

which is obtained by assuming that the cost of adding the last template is the same

as the cost of adding every template. This is an upper bound because the factor

of 1/2 is larger than n(f = 1/2)/nestimated, and because the computational cost of

adding the earlier templates is smaller than that of adding the final template.

The computational cost of this method grows faster than the square of the

number of templates. However, there is a modified version of this algorithm in

development that has a cost proportional to n log n.

This works by (conceptually) dividing the space into a set of hypercubic cells

whose linear size is 2∆. Each template is assigned to a particular cell. The

algorithm maintains an internal list of hyper-cubic cells, which contain points sep-

arated by distances of less than 2∆. When a new random template is considered,

its distance only needs to be compared to the points in the same cell, and the

3D − 1 neighboring cells. The process of looking to see if there are neighboring

cells requires a binary search in an index list, and accounts for the additional log n

factor.

It is this prohibitive computational cost that has prevented us from being

able to test the stochastic template bank in dimensions higher than 4 without

boundary effects becoming rather pronounced. With this improved version of the

algorithm it is hoped that a test of the stochastic bank in higher dimensions can
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be performed.

7.2 Testing the algorithm

This section investigates how the stochastic template placement performs in di-

mensions less than 5 and how this compares with geometrical placement algo-

rithms. An investigation of how the algorithm performs when the distribution of

initial seed points is not proportional to the determinant of the metric is carried

out as well as a demonstration that the stochastic algorithm will perform well in

intrinsically curved parameter spaces.

7.2.1 Templates in flat spaces of different dimensions

First consider a flat unit hyper-cube in D-dimensions, with Cartesian coordinates

and the metric gij = δij. Each coordinate lies in the range [0, 1]. ∆ is chosen so

that 1/ε is equal to 10000.

Figures 7.3 and 7.4 show the coverage, in 2, 3 and 4 dimension, and computa-

tional cost as a function of the number of templates in the bank. The coverage in

Fig. 7.3 was computed using Monte-Carlo integration with 20,000 sample points.

The coverage is the fraction of these points that are less than ∆ from a template

in the bank. To generate Fig. 7.3 as well as Figures 7.5, 7.4, 7.9 and Tables 7.1 and

7.2 this process was carried out 100 times and the mean of the values obtained

was used.

Figure 7.1 compares the number of templates being converged upon by the

stochastic bank with the estimates and the lattice algorithms as described in

section 7.1. It can be seen from this table that the stochastic template banks

perform better than the naive hyper-cubic lattices as the dimension D of the

parameter space increases. This is what was predicted in the previous section: the

stochastic template banks converge to “complete” coverage with fewer templates

than would be needed in a cubic lattice. Also, as predicted, the A∗n lattice is more

efficient than the stochastic bank when the stochastic bank has reached complete

coverage.

An interesting feature, which is more noticeable when the number of templates

in the banks is reduced, is that they show effects due to the boundaries, especially

noticeable in the higher dimensions. This is easy to understand. Any template

located closer than distance ∆ to the boundary of the unit D−cube will have part

of its coverage region lying outside the cube. Consequently, if ∆ is too large, then
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Figure 7.5: As Figure 7.3 but setting the value of Nlower−bound to be 50. By
comparing the two figures one can see how boundary effects manifest themselves
both by decreasing the initial slope df/dn and by requiring a much larger number
of templates than the estimate.

many of the templates will fail to produce the amount of coverage that would arise

if no boundaries were present. Thus, a sign that boundary effects are appearing is

that the initial coverage grows more slowly with template number than expected.

This effect can be seen in Figure 7.5 where the initial slope df/dΘ at Θ = 0 is

smaller than unity and also the final thickness is much larger than the estimate,

which was not seen in Figure 7.3. At what template radius ∆ do boundary effects

become significant? This can be easily understood by estimating the volume that

lies within distance ∆ of the boundary of the D−cube. This is V∆−boundary =

V − (V 1/D − 2∆)D ≈ 2D∆V 1−1/D. Hence the initial coverage, when Θ� 1, is(
df

dΘ

)
Θ=0

= 1− βV∆−boundary

V
. (7.13)

Here β is a numerical factor, of order 1/6 in three dimensions, which measures the

average fraction of volume of a template that lies outside the cube, as the center

of the template moves through all positions in the ∆−boundary.

7.2.2 Choice of coordinate system and convergence of tem-

plate numbers

How does the convergence of the stochastic template bank generation depend

upon the distribution of the random template candidates in the underlying pa-

rameter space? This question is of practical interest, because the optimal distri-

bution of the random points has a probability proportional to the volume element
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Cartesian Polar
N n σn f σf n σn f σf

1500 1397.1 1.0 0.1353 0.0003 1313.4 1.3 0.1246 0.0003
5000 3994.4 2.6 0.3632 0.0004 3613.9 2.6 0.3237 0.0004
15000 8494.5 3.9 0.6818 0.0004 7605.3 3.9 0.6140 0.0004
50000 13961.5 4.1 0.9221 0.0002 12979.6 4.0 0.8825 0.0003
150000 17307.8 4.0 0.9847 0.0001 16676.6 3.6 0.9747 0.0001
500000 19365.5 3.1 0.99746 0.00004 19025.4 3.5 0.99582 0.00005
1500000 20439.3 3.0 0.99949 0.00001 20241.3 3.6 0.99917 0.00002
5000000 21141.9 3.5 0.99990 0.00001 21023.4 3.2 0.99987 0.00001
10000000 21401.3 3.1 0.999971 0.000003 21305.4 3.3 0.999948 0.000005

Table 7.1: Number of templates n and fractional coverage f with associated stan-
dard deviations as a function of the cumulative number of trials N in the case of
Cartesian (nC) and polar (nP ) coordinates.

√
det (gab)d

Dx. However, it can be difficult in practice to generate such a dis-

tribution, whereas it is simple to generate random points that have a uniform

distribution in the coordinates.

For example, in two-dimensional flat space, one could choose trial points with

uniform probability distributions in polar coordinates. This means that too many

random templates are tested from the region near the origin, and then rejected.

However, they are soon rejected, as being too close to points already in the tem-

plate bank, and in the end, the template points that survive have the correct

probability distribution proportional to dx dy = r dθ dr. This is shown in Figure

7.6.

The only disadvantage of using a non-optimal distribution of random points is

that the computational cost of generating the stochastic bank will increase. The

added computational cost can be easily estimated: it is proportional to the square

of the number of grid points which are un-necessarily added and then subsequently

removed. This is bounded above by the ratio
√
g

max
/
√
g

min
where the maximum

and minimum are taken over the entire parameter space. More precisely, the factor

is proportional to the square of the average over the space of <
√
g > /

√
g where

the angle brackets mean “volume average”.

Table 7.1 shows the number of templates n as a function of the number of trial

points N for random template candidates distributed uniformly in Cartesian and

polar coordinates. Also shown is the coverage of the template bank, calculated

using Monte-Carlo integration as described in the previous section.

This is very useful because in many cases one does not know coordinates in

which the determinant of the metric is constant. Of course one could simply

distribute points with a probability density proportional to the volume measure!
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Figure 7.6: The distribution of trial points chosen uniformly in polar coordinates
(left panel) and the points that remain as templates after the application of the
stochastic placement algorithm (right panel).
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7.2.3 Templates on a sphere

So far in this chapter we have considered templates in a flat signal space. However

one can consider examples where the signal manifold is not flat, but is curved. This

introduces two new issues.

First, the distance between widely separated points can no longer be easily

computed. However, the only important case is the one in which the points are

nearby. In this case, one can use the metric to approximate the distance at small

separations:

dl2 = gik(x
j
A)
(
xiA − xiB

) (
xkA − xkB

)
. (7.14)

Since the components of the metric can be expensive to calculate, an efficient ap-

proach is to calculate and store those components only for points that are included

in the template bank. Those metric components are then used for the distance

comparisons with potential new (randomly chosen) template candidates.

Second, depending upon the choice of the coordinate system, the determinant

of the metric may be non-constant. In this case, an efficient approach would

be to generate random points with a probability distribution proportional to the

volume element
√

det (gab)d
Dx. However, in practice one can generate points with

any distribution in the coordinates: the stochastic template placement algorithm

simply rejects those points that are not needed, and produces a distribution with

the correct density proportional to
√

det (gab)d
Dx.

To demonstrate the performance of the stochastic template placement algo-

rithm on a curved manifold, consider a unit-radius two-sphere S2 with standard

spherical polar coordinates (θ, ϕ). The metric is

dl2 = dθ2 + sin2 θ dϕ2. (7.15)

Table 7.2 shows the number of templates n as a function of the number of trial

pointsN. The size of the templates has been chosen so that the ratio ε = Vtemplate/V

is the same as for the unit cube examples given in the previous section. In this

case the stochastic algorithm converges for a smaller number of templates than for

the unit cube. This is for the reasons described above: since the unit sphere has

no boundary, no templates lie partly outside the space, so every template provides

the largest possible coverage.

Figure 7.7 shows the distribution of 5000 candidate points, chosen uniformly in

spherical polar coordinates (θ, ϕ) (top panel). The points that survive and remain

in the stochastic template bank are shown in the middle panel. A histogram of the

distribution of the templates as a function of θ is also shown (right panel). As ex-
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Figure 7.7: Trial points chosen uniformly in the (θ, ϕ) coordinates (left panel)
and the templates on the surface of a sphere of unit area that remain after the
application of the stochastic template placement algorithm (middle panel). Also
the distribution of these templates in θ-coordinate (right panel) where the solid
line shows the expected distribution.

pected, the density of templates is proportional to the volume element sin θ dθ dφ:

it is smallest at the poles and the greatest at the equator.

7.3 Templates for gravitational wave chirps

As we discussed in chapter 3, binary systems of compact objects (i.e., black holes

and/or neutron stars) evolve by emitting gravitational radiation. The loss of

energy and angular momentum into gravitational waves causes the two bodies

to spiral in toward each other, emitting a burst of radiation just before they

merge. Although there is no exact solution to the two-body problem in general

relativity, an approximation method called the post-Newtonian formalism has been

used to compute the amplitude and phase of the waves emitted in the adiabatic

inspiral phase to a very high accuracy [160, 39, 161] (for a recent review see [69]).

Moreover, recent progress in numerical relativity has provided a good knowledge

of the waveform even in the strong gravity regime of the merger dynamics [162].

Thus, one can use matched filtering to dig out astrophysical signals from the noise

background of an interferometric detector.

In general, the radiation from a binary is characterized by as many as seventeen

parameters. However, some of these parameters (the distance to the binary, the

inclination of the orbit relative to the detector, etc.) only affect the amplitude of

the waveform, which does not modify the search template. Therefore, one would

only need to place templates in a lower-dimensional parameter space. State-of-

the-art template placement algorithms deal only with a binary composed of non-

spinning objects; in which case templates are only needed in the two-dimensional

parameter space of the masses of the component objects. We discussed some

simple techniques to create 3 or 4 dimensional template banks in chapter 6 but
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N n σn f σf
1500.0 1330.3 1.2 0.1989 0.0004
5000.0 3688.3 2.8 0.4253 0.0004
15000.0 7807.1 3.7 0.7027 0.0004
50000.0 13198.7 4.1 0.9192 0.0002
150000.0 16779.5 4.4 0.9836 0.0001
500000.0 19007.0 3.6 0.99735 0.00003
1500000.0 20171.6 3.6 0.99947 0.00002
5000000.0 20906.6 3.8 0.99991 0.00001
10000000.0 21182.9 4.0 0.999967 0.000004

Table 7.2: Number of templates n and coverage f as a function of the number of
trials N on a sphere of unit radius.

these methods were far from optimal and did not guarantee that a template bank

would be complete. The stochastic placement algorithm would be preferable in

such cases.

The goal of the stochastic template placement algorithm is to address the

problem of choosing templates on a manifold of arbitrary dimensions. However,

in this chapter, the algorithm is only applied to the case of a binary consisting of

non-spinning bodies where the results are well known, thus facilitating a straight-

forward comparison with established results. This algorithm has also been applied

in a recent search for spinning binaries in the first year of LIGO’s fifth science run

using templates placed in a three-dimensional parameter space [126] as well as a

five-dimensional search for super-massive black holes in a mock data challenge,

see chapter 8. A similar, but independently developed, algorithm was also used

in this mock data challenge [163]. This algorithm was effectively the same as the

one described in this work but the author calculates the overlap between points

explicitly, instead of using the metric approximation as in this work. While this

will more accurately determine the overlap, especially for overlaps not close to

unity, it will come at considerable additional computational cost.

7.3.1 Choice of coordinate system

Begin by choosing a suitable coordinate system on the signal manifold. The masses

m1 and m2 of the component stars are the most obvious coordinates on the mani-

fold. However, when one uses masses as the coordinate system the determinant of

the metric will vary significantly over this parameter space [85]. Because of this

a much higher density of templates is needed in the low mass region than in the

high mass region.
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A better coordinate system is chirp times [154, 84], defined by

τ0 =
5

128πfLη
(πMfL)−5/3 , τ3 =

1

8fLη
(πMfL)−2/3 (7.16)

Using this coordinate system the determinant of the metric does not vary much

over this parameter space. This can be illustrated by looking at the distribution

of templates in both coordinate-systems as shown in Figure 7.8. The algorithm

used in this case [83] places templates first along the m1 = m2 curve (the lower

right boundary in the left panel and upper left boundary in the right panel).

This is dictated by the fact that the region below the equal-masses curve (in τ0,

τ3 coordinates) corresponds to binaries with imaginary component masses1. The

algorithm uses a hexagonal placement over the rest of the parameter space.

7.3.2 Comparison of stochastic lattice with a square lattice

Let us now compare the stochastically generated template bank with a hexagonal

lattice and with a square lattice. In this case the template banks are created to

cover binary compact objects whose components have a mass range of 1 to 10

solar masses such that any real signal within this range of masses would have an

“overlap” greater than 0.96 with at least one of the templates in the bank. This

overlap, defined by 1 −∆2, is calculated using the assumption made in equation

(7.14) and the metric defined in [84]. For the stochastic algorithm the trial points

are placed uniformly in (τ0, τ3) coordinates (and limited by the restrictions on

the masses). This is also compared to trial points placed uniformly in (m1, m2)

coordinates.

For this choice of parameters and for trial points placed uniformly in both

coordinate systems, the number of templates is plotted as a function of the number

of trial points in Fig. 7.9. Fig. 7.10 shows the distribution of resultant templates

for both initial trial point distributions.

In this two-dimensional example, the stochastic algorithm, in both cases, con-

verges at about 7500 templates. For comparison, with the same range of masses

a hexagonal lattice has 5914 templates and and a square lattice has 8353 tem-

plates. This may seem to be in conflict with the statement in section 7.1 that the

stochastic algorithm performs worse than hyper-cubic lattices in two dimensions.

However, one must remember that the geometrical algorithm used here begins by

1Although the waveform, which depends only on the total mass M and symmetric mass ratio
η, which are real in that region, can be generated in this part of the parameter space, it is
unphysical and, therefore, not of any interest.
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Figure 7.8: The distribution of templates placed by the hexagonal lattice algorithm
in (τ0, τ3) coordinates (top panel) and the same templates in (m1, m2) coordinates
(bottom panel). Clearly, the distribution is highly skewed in the latter coordinates.

placing templates along the boundaries, which is quite inefficient. One also must

remember that though this parameter space is close to flat it is not flat.

7.3.3 Efficiency of the Stochastic bank

The quality or performance of a template bank can be assessed by measuring

the overlap between randomly simulated compact binary signals in the relevant

range of parameters of the template bank in question. To test the performance of

the stochastic template banks, a set of 20,000 signals (standard post-Newtonian

waveforms of type TaylorT3 [164]) was generated and the maximum overlap of each

over the entire template bank was calculated. In this case templates with masses

between 3 and 30 solar masses were used (a different mass range was used here

to produce less templates, thus making it easier to show the results graphically)

and an overlap of 0.95 was used, equivalently, ∆2 = 0.05. The template bank was
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Figure 7.9: The number of templates as a function of the number of random trial
points is shown when the trial points are assigned uniformly in (τ0, τ3) coordinates
as well as uniformly in (m1, m2) coordinates.

Figure 7.10: The distribution of stochastically generated templates in (τ0, τ3)
coordinates (top panel) and in (m1, m2) coordinates (bottom panel).
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Figure 7.11: The signals which had an overlap larger than 0.95 (gray crosses) as
well as signals with an overlap less than 0.95 (black circles) in (m1, m2) coordinates
(left) and (τ0, τ3) coordinates (middle). Also a histogram of the overlaps of all
injections with the stochastic template bank (right).

generated from 60,000 trial points placed uniformly in (τ0, τ3) coordinates.

The result of the test is shown in Fig. 7.11. One can see that the stochastic

placement algorithm struggles to cover certain areas of this parameter space. If a

larger number of trial points had been used, the coverage would have been better.

The areas of the parameter space with poor coverage from the stochastic tem-

plate bank are in regions of the parameter space that are very thin, almost one-

dimensional and therefore have very little volume. The hexagonal and square

lattices overcome this problem by placing templates along the boundary of the

space, especially along the m1 = m2 curve. A stochastic placement algorithm can

overcome this problem in the same manner, or by increasing the mass range of

allowed templates. But both solutions come with the cost of additional templates

in the bank.

7.4 Conclusions

This chapter presents a method for stochastically generating template banks in

parameter spaces of arbitrary dimension and with arbitrary metrics. The rela-

tionship between coverage and the number of templates required to reach that

coverage has been investigated for dimensions up to 4. The performance of the

stochastic placement algorithm has been compared to lattice placement algorithms

in flat spaces and was found to only be marginally less effective at dimension less

than 4. The area where we believe this algorithm would be of most use is in

signal manifolds that have a large intrinsic curvature, where lattice placement al-

gorithms can not easily be applied. Stochastic banks which cover less than 100% of

the signal manifold may be useful for large dimensional manifolds, though further

investigation is needed to show that this is the case.
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For cases where the number of required templates is very high, the algorithm

will become very computationally expensive. In these cases other “random tem-

plate banks”, which do not use our filtering stage might become more practical

[158]. Nevertheless the stochastic template bank will provide better coverage for

a given number of templates. The construction of stochastic template banks can

be made less expensive, however, by utilizing the fact that it is not necessary to

compute the distance between a trial point and every template in the bank. This

is a topic of ongoing investigation.
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Chapter 8

A hierarchical search for

gravitational waves from

supermassive black hole binary

mergers

There is growing evidence that some fraction of quasars [165], and X-ray and

infrared sources [166] host supermassive binary black holes (SMBBH) that are po-

tential sources of gravitational radiation. The late time evolution of such systems

is dominated by the emission of gravitational waves, the radiation back reaction

torque driving the system to coalesce. The proposed space-based Laser Interfer-

ometer Space Antenna (LISA) [167] targets gravitational waves from these systems

in the frequency range of [few × 10−5, 0.1] Hz which corresponds to SMBBH of

masses in the range [104, few × 107]M�. Within a redshift of z ∼ 10, SMBBH co-

alescence rates could be as high as several tens per year but depending on the way

galaxies and black holes at their cores formed the rates could be several hundreds

per year [168, 169].

At a redshift of z ' 1 SMBBHs would be expected to produce a signal to noise

ratio (SNR) of several thousands. This implies that even at redshifts of z ' 10

LISA could detect SMBBH systems with an SNR of z ∼ 10. LISA is, therefore, an

excellent probe of the seed black holes that are believed to be responsible for the

formation and evolution of galaxies [168, 169, 170] and the large-scale structure

in the Universe.

SMBBH mergers from redshifts up to about z ∼ 3 are expected to produce a

response in LISA loud enough that they can be detected without any sophisticated

data analysis; Although accurate models of the merger dynamics would be needed
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for parameter extraction. Indeed, these sources will be so bright that one has

to worry about systematics due to our limited theoretical understanding of their

dynamics [171]. At larger red-shifts, however, it would be necessary to employ data

analysis techniques that are sensitive to weaker signals, such as those discussed

in earlier chapters. This is an important goal for LISA as there is significant

uncertainty in when the first seed black holes and galaxies might have formed and

it would be good to be able to probe as far back as a red-shift of z ∼ 10-15. At

a red-shift of z, an SMBBH of intrinsic total mass M would appear in LISA to

have a red-shifted total mass of (1 + z)M. Thus, at z = 10 LISA would probe

masses that are intrinsically 11 times smaller than at z = 0. Therefore, searching

for SMBBH at higher red-shifts would probe smaller masses too.

In addition to SMBBH mergers LISA will observe a host of other sources (see

[172] and references therein). These include binary white dwarfs in the Milky-way

(both a stochastic signal from an unresolved background population and contin-

uous signals from resolved foreground sources), inspirals of small black holes into

supermassive black holes (again a stochastic background from overlapping sources

and a foreground of individual sources), etc. Analysing LISA data and resolv-

ing tens of thousands of signals belonging to different classes is unprecedented

and likely to be a daunting task. As we have demonstrated in earlier chapters,

matched filtering is a very powerful approach that has been extensively used in

searching for gravitational wave signals in ground based detectors. In this paper

we report the results from a hierarchical matched filtering algorithm to search for

SMBBH mergers.

From a computational point of view, matched filtering is very expensive, com-

putational cost increasing as a power-law of the number of search parameters.

While the parameter space of stellar mass binaries consisting of non-spinning black

holes is only two-dimensional, the number of parameters in the case of SMBBH,

even while neglecting spins, is quite large. This is because the source’s position

relative to LISA changes during the course of observation, causing a modulation

in the signal’s amplitude and phase that must be taken into account in the search

templates as well as the waveform’s polarization angle. Thus, the computational

cost of a naive implementation of a matched filtered search would be formidable.

In an attempt to test our ability to detect signals observed in LISA, the LISA

International Science Team has put together a task force to develop a set of data

analysis challenges [173] of ever increasing complexity [174] to encourage data

analysts to explore and test their search algorithms on simulated data. These

are referred to as the Mock LISA Data Challenges (MLDC). We participated in
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Challenge 1B, a rerun of the Challenge 1, consisting of the simplest possible data

sets with only one inherent signal.

In the MLDC 1B one of the challenges was to detect and characterize one

SMBBH coalescence buried in LISA instrumental noise only. Two datasets were

released, one where the coalescence was in the middle of the observation period

and a second where the coalescence was two months after the observation period

ended. We only took part in the Challenge where the binary coalesced during the

observation time.

We developed a hierarchical approach to this challenge in which the goal was to

zoom-in onto an interesting region of the parameter space in several steps, each of

which uses a progressively greater density of templates. We tested our algorithm

on the training and challenge data sets from Challenge1B of the MLDC.

For our templates we used post-Newtonian waveforms at the second post-

Newtonian order. We tapered the end point of our templates to prevent the

bleeding of spurious power in the Fourier domain arising from the step function

that is implicit if the waveform were to be terminated abruptly. The signal is char-

acterized by nine independent parameters. We separate these into the ‘intrinsic’

parameters consisting of the two component masses, the binary’s position on the

sky and its epoch of coalescence and ‘extrinsic’ parameters comprising the inclina-

tion angle, the polarization phase, the coalescence phase and the distance to the

binary. We devised a search that was capable of determining all these parameters

in an efficient manner, albeit not to accuracies that are theoretically possible. Let

us note, however, that the goal of this exercise is not to measure the parameters

accurately but to efficiently detect the signal and constrain the parameter space

well enough so that other techniques, such as the Markov Chain Monte Carlo, can

be deployed in a follow-up study to determine the parameters more accurately.

Other groups have, of course, participated in the search for SMBBHs in the

Mock LISA Data Challenges, and their methods differ from ours [173, 175, 176,

177, 178, 179, 118]. The majority of these searches involve a variety of methods

to detect the source and constrain somewhat its parameters followed by a Markov

Chain Monte Carlo followup to determine accurately all the parameters.

8.1 Search method

A search for supermassive binary black hole signals in the LISA data requires, in

general, the determination of seventeen parameters. In this paper, and in Chal-

lenge 1B of the MLDC, spins of the component black holes are ignored, restricting
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to non-spinning components. In addition, the orbit is assumed to be circularized

sufficiently by the time it enters LISA’s sensitive band that eccentricity can be

ignored. This allows us to neglect eight parameters leaving the parameters of

interest to be:

• The masses of the two components of the binary, M1 and M2. It is often

convenient to express the mass parameters in terms of the chirp mass M
and reduced mass µ, defined in section 3.1.

• The time that the binary coalescences, tc, which is assumed to be within the

LISA data.

• The sky location of the binary, determined by its ecliptic latitude, θ, and

longitude, φ.

• The orientation of the binary system, given by the inclination angle, ι, and

polarization angle, ψ.

• The initial phase of the binary, Ψ0.

• The luminosity distance to the binary, DL.

In this search, similarly to the coherent search described in chapter 5, we

make use of the ‘F -statistic’ [46]. This lets us analytically maximize over four

of the parameters introduced above (the ‘extrinsic parameters’): the distance to

the binary, and its inclination, polarization and initial phase. This procedure is

discussed in Section 8.1.1. We note that, unlike the earlier ground-based coherent

search, the sky location cannot be treated as constant in the LISA case and thus

cannot be easily maximized over.

The remaining five parameters are determined by searching over stochastically

generated template banks as described in chapter 7. Since some parameters, in

particular the chirp mass and coalescence time, are more easily determined we

employ a hierarchical search whereby we obtain good estimates of these parameters

before refining our search to determine the full parameter set. The stochastic

bank used in this search is described in Section 8.1.2 and the hierarchical search

method is discussed in 8.1.3. Results of this search applied to the MLDC 1B data

are presented in Section 8.2.

8.1.1 Matched filtering with the F-statistic

When the signal waveform is well known, the technique of matched-filtering is

typically used to search for the signal (see, for example [78, 180]). The F -statistic
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is an elegant way to maximize over the extrinsic parameters, and thereby simplify

the search. As well as the coherent search discussed earlier, it is used in a number

of other searches by other groups for the MLDC and in the pulsar search with

ground-based detectors (for example [48, 181]. We quickly recap how it is used

in this section. We follow closely Ref. [46] when describing this method. Given a

template waveform h and the data s, we calculate the likelihood function, defined

as:

ln Λ = (s|h)− 1

2
(h|h) , (8.1)

where the inner product between the signal and template is given by

(s|h) = 4 Re

 ∞∫
0

h̃∗(f)s̃(f)

Sn(f)
df

 , (8.2)

and Sh(f) is the one-sided power spectral density of the LISA detector.

For a signal present in the LISA data, it can be shown that the gravitational

wave signal can be decomposed as [182]

h(t) =
4∑
i=1

Ai(DL,Ψ0, ι, ψ) · hi(t; tc,M1,M2, θ, φ) . (8.3)

The amplitudes Ai are functions only of the extrinsic parameters: DL,Ψo, ι and ψ.

The hi(t) are functions of the remaining, intrinsic, parameters only. In contrast

to searches with ground based detectors, the sky location cannot be considered

during the observation of a signal and must enter as an intrinsic parameter. The

benefit of expressing the waveform in this manner is that it is straightforward to

maximize the likelihood parameters over these Ai by requiring

∂ ln Λ

∂Ai
= 0 . (8.4)

As discussed in chapter 5 this can be shown to be equivalent to

Ai =
4∑
j=1

M−1
ij (s|hj) where Mij = (hi|hj) . (8.5)

Therefore, the Ai can be determined from the (hi|hj) and (s|hi). Furthermore,

for each possible set of values for Ai we obtain a unique value for the four extrinsic

parameters: distance DL, initial phase ϕo, inclination angle ι and polarization

angle ψ. However, there remain implicit degeneracies in these values. Specifically,
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as we use only the dominant, 2Φ harmonic in the waveform, there is a degeneracy

in the initial phase corresponding to Ψ0 → Ψ0 + π. The same degeneracy exists

for the polarization angle. Additionally, a system with polarization ψ and phase

Ψ0 is indistinguishable from one with values ψ + π
2

and phase Ψ0 + π
2
. Finally, by

substituting the expression for Ai from (8.5), the likelihood expression becomes

ln Λ =
1

2

4∑
i,j=1

(s|hi)M−1
ij (s|hj) . (8.6)

In the above discussion, we have used the gravitational wave strain h(t) in

discussing the F -statistic. In the MLDC, the signals were released in the form

of time delay interferometry (TDI) variables X, Y and Z [183, 184]. These TDI

variables are used as a way of cancelling the laser phase noise in the output of

LISA.1 The F -statistic method is equally applicable to the TDI variables. To

maximize the efficiency of our search method we simultaneously utilize two of the

TDI outputs, X and Y , to conduct our search. We do not use the Z output since

the gravitational wave content in it can be constructed from the other two and is

therefore not independent.

It is a trivial matter to convert the one-detector search outlined above to a

two-detector TDI search. We simply rewrite our likelihood function as:

ln Λ = (sX |hX) + (sY |hY )− 1

2
(hX |hX)− 1

2
(hY |hY ) , (8.7)

where the subscripts X and Y denote the data or template appropriate for either

the X or Y TDI data stream2. The F -statistic maximization can similarly be

extended to the two detector search. In this case, the expressions in (8.5) and

(8.6) generalize to include a summation over detector. For example:

Mij = (hi,X |hj,Y ) + (hi,Y |hj,Y ) . (8.8)

8.1.2 Stochastically generated template bank

Even after maximizing over the ‘extrinsic’ variables, there are still five remaining,

‘intrinsic’ parameters that we would like to determine. We utilize a template bank

1It is assumed for the purposes of this Challenge that this time delay interferometry process
will completely cancel all of the laser phase noise.

2 Strictly speaking this expression is incorrect for the X and Y channels as the noise in
them is correlated. It is, of course, preferable to use the synthetic A and E variables which are
generated from X, Y , Z and are independent. Due to time constraints, for this challenge we did
not get around to moving the code over to A E and T . This has since been implemented.
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to search over this five dimensional parameter space [86, 85]. The signal manifold

for the SMBBH search in LISA data is 5 dimensional and is not flat. Therefore, we

use the method outlined in chapter 5 and create stochastically generated template

banks.

While the stochastic bank generation is generic, there are certain subtleties

which arise in employing it for the F -statistic search for SMBBH described in

Section 8.1.1. First note that, in contrast to searches for binaries in ground-based

detectors, we must include the coalescence time when generating the template

bank. Binary coalescence signals in ground-based decectors last at most ∼ 1, 000

seconds, during which the motion of the Earth, and the detector, can be neglected.

Hence, the waveforms of binaries with different coalescence times differ only by

a time-shift and amplitude rescaling. However, SMBBH signals spend several

months in LISA’s sensitive band, during which LISA completes a significant frac-

tion of an orbit around the Sun. Consequently, the template-shape depends on

the coalescence time, and this parameter must be included in the template bank.

Next, we consider the effect of maximization over the four extrinsic parameters

in the F -statistic. This is dealt with by generating a metric on the full parameter

space and projecting down to the five-dimensional subspace (see [84] for details).

A complication arises in that the projected metric depends upon the value of

three of the extrinsic parameters ι, ψ and Ψ0.3 This is a well known issue, see for

example [120]. To proceed, we simply choose a fiducial value of 0.5 radians for

these angles. The value was chosen arbitrarily, ensuring that none of the four Ai

values was zero and they would all contain contributions from both gravitational-

wave polarizations.

To generate the metric, we calculated the inner product (8.2) for theX-detector

using gravitational-wave strain h(t) rather than the TDI variables. This introduces

two additional approximations. First, by using the strain, rather than the TDI

variables, we are neglecting the directional dependence of the detector’s response

function and implicitly working at the long-wavelength approximation. Second,

we have performed the search using both the X and Y data streams while only the

metric for X was used to generate the template bank. The above simplifications

will mean that the stated minimal match of the metric would not have been

achieved. However, in performing the search, as described in Section 8.1.3, we

continually refined the template bank to determine the correct parameter values

and did not rely on the minimal match to decide stopping conditions.

3The distance, DL, will always enter only as an amplitude scaling and therefore will not affect
the metric at all and can safely be neglected.
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Clearly these issues would need to be resolved if this search were to to be used

in future MLDCs or in a future search of real LISA data.

8.1.3 Hierarchical search technique

Populating even the reduced, 5-dimensional parameter space with sufficient tem-

plates to determine the binary’s parameters to the required accuracy would neces-

sitate far more templates than could feasibly be filtered. Thus we must employ a

hierarchical method to search for the parameters.

We began by match-filtering the data against a bank comprised of templates

that are sparsely spaced and placed in only the two-dimensional space of mass

parameters. This bank enabled us to make an initial estimate of the binary’s

masses and coalescence time with 1,000 templates in the allowed range of masses,

setting the sky location arbitrarily to λ = 0.5 and β = 0.5 for all templates

and fixing the coalescence time to be the value at the beginning of the allowed

range. This enabled us to estimate the chirp mass and reduced mass to within

30% accuracy and coalescence time to within 10,000 seconds.

We then placed a second bank of 1,000 templates within a reduced range of

the parameter space, using the best estimate of the coalescence time, sky locations

again set to λ = β = 0.5 and repeat the process. By this method we could

estimate the chirp mass to at least ±5%, the reduced mass to at least ±10% and

the coalescence time to within 10,000s. Using these initial estimates we were then

able to place a template bank with restricted parameter ranges to determine all

five of the ‘intrinsic’ parameters.

The final step in determining the parameters could be performed by two dif-

ferent methods. The first method involves placing a template bank over the full

five-dimensional parameter space and using a hierarchical procedure to ‘zoom in’

on the true values of the binary’s parameters. While this is the preferred search

method, a large number of templates are still required to fill this reduced five-

dimensional template space, to do this in one step would require 1013 templates.

We would thus have to use a heirarchical procedure to construct a series of five

dimensional banks, but, this search can still become computationally costly. An

alternative technique is to alternate between placing two-dimensional template

banks in the mass space, using the best current estimates of coalescence time and

sky location, and placing three-dimensional banks in sky location and coalescence

time, using the best current estimates for the masses. This method is computa-

tionally quicker as we limit the template bank size to under 1000 templates for

the two dimensional case and under 10,000 templates for the three dimensional
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banks. However, much more than when using 5 dimensional banks, care must be

taken to avoid ‘zooming in’ on secondary maxima. For example, LISA has similar

sensitivity to binary systems on opposite sides of the sky, so restricting the range

of sky locations used in our template bank searches is not trivial.

The figures quoted above for template bank size and parameter accuracy are

those for the binary systems in the MLDC datasets where the SNR is very large

(approx. 500). For SMBBH systems where the SNR is significantly lower the main

issue would be whether any templates at the initial stage were similar enough to the

signal to pick it up. If so, the parameter accuracies at this stage would be similar

as they are limited by the template spacing. Further investigation is warranted

to determine what strength of signals can be detected by this method, how many

more templates are needed at initial stage to detect weaker signals and how final

parameter accuracy depends on SNR.

In future searches using this method it would be desirable to automate the

heirarchical technique. To do so, we would need to quantify how many iterations

are needed to adequately determine the parameters and how much each iteration

reduces the possible range of values for each parameter. Although this method is

still under development, it is interesting to note that it uses a comparable number

of templates as the MCMC search implemented in [118]. It is also worth noting

that in a template bank based search it is straightforward to parallelize the search

over numerous computers.

8.2 Results

The MLDC Challenge 1B data set for SMBBH consists of one year of simulated

LISA data with a single supermassive binary black hole coalescence occuring dur-

ing the year. In addition, a “training” data set was released for which the binary’s

parameters were also made public. Due to unforeseen technical issues we were

unable to run as full an analysis as we would have liked on the challenge dataset,

and our results reflect this. Therefore, we have also included the results from the

training run, as they provide a more accurate reflection of the sensitivity of our

current search technique. The released training data parameters were not used in

running the search, as it was treated as a warm up to the challenge. For both

training and challenge results we have taken into account the parameter degen-

eracies discussed in Section 8.1.1 by choosing the values of polarization and initial

phase that are closest to the true values.

The results from the training data set are presented in Table 8.1, while the
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Parameter True Value Our Value Error Fract. Error

Chirp Mass, M (M�) 1.3769× 106 1.3772× 106 360 2.6× 10−4

Symmetric Mass Ratio, η 0.1959 0.1972 0.0013 –
Ecliptic Latitude, β 1.028 1.072 0.044 –
Ecliptic Longitude, λ 5.050 5.037 0.013 –
Coalescence Time, tc (s) 17523096.4 17523090 6.4 –
Polarization Angle, ψ 0.826 0.668 0.158 –
Inclination Angle, ι 2.846 2.313 0.533 –
Initial Phase, ϕo 1.844 1.836 0.048 –
Luminosity Distance, DL (Gpc) 36.3 26.6 9.6 0.27

Table 8.1: Table showing the results of our analysis on a training dataset.

Parameter True Value Our Value Error Fract. Error

Chirp Mass, M (M�) 2.6832× 106 2.6904× 106 7178.8 2.68× 10−3

Symmetric Mass Ratio, η 0.2159 0.2316 0.0158 –
Ecliptic Latitude, β 1.139 -0.235 1.374 –
Ecliptic Longitude, λ 3.931 3.382 0.549 –
Coalescence Time, tc (s) 15045887.8 15046429.6 541.2 –
Polarization Angle, ψ 6.063 5.941 0.123 –
Inclination Angle, ι 1.939 1.252 0.687 –
Initial Phase, ϕo 0.213 1.031 0.818 –
Luminosity Distance, DL (Gpc) 10.7 26.0 15.3 1.43

Table 8.2: Table showing the results of our analysis on the official challenge
dataset.
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Challenge results are shown in Table 8.2. It is interesting to compare our results to

those obtained by other groups applying different methods to search for SMBBH

coalescences in the Mock LISA Data Challenge [173, 175, 176, 177, 178, 179, 118].

It is clear that our Challenge results are substantially less accurate, for reasons

described above. However, our results from the training data set are comparable

to those obtained using other methods. In particular, it is gratifying to see that

we were able to obtain the correct sky location. Furthermore, the sky location is

recovered to within a few square degrees, which is the accuracy required to make

an optical followup feasible (see for example [185]).

8.3 Summary and future plans

We have presented a hierarchical, template-based search method for SMBBH in

LISA data. This method makes use of the F -statistic to reduce the parameter

space for non-spinning black holes from nine to five dimensions, and then employs

a stochastically generated template bank to search over the remaining parameter

space. This method has been applied to perform a search on the data from Chal-

lenge 1B of the MLDC. We were able to successfully locate the signal and, in the

case of the training data, recover its parameters with good accuracy.

In the future, we hope to continue our participation in the mock LISA data

challenges. Challenges 3 and 4 have already been started and include SMBBH

data sets where spin effects have been included in the waveform [176]. In order to

participate, we must develop an analysis technique to be able to search for inspi-

ralling supermassive black holes with spin. Initially, we want to investigate how

effectively we are able to search for spinning binaries with non-spinning templates

and see if this approach might enable us to get a good estimate of the masses and

coalescence time of the binaries. However, to obtain good parameter estimates, we

will need to incorporate the effects of spin into our signal model. Unfortunately

the F -statistic is not directly applicable due to the added complications spinning

binaries bring. We will either have to develop a new technique to analytically

maximize over some of the parameters, adapt some of the techniques discussed

in chapter 6, or be forced to place templates in a much higher dimensional signal

manifold.
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Chapter 9

Black hole hunter

The fast developing field of gravitational wave astronomy provides an ideal op-

portunity to inspire public interest and excitement in science. There is a large

outreach effort in the gravitational wave community, including public education

centres [186], teaching projects in schools, and a travelling gravitational waves

exhibit [187]. In 2008, a collaboration of gravitational wave physics groups from

across the U.K. and Germany presented “Can you hear black holes collide?” [188]

at the Royal Society Summer Exhibition [189]. As part of the exhibit, we de-

veloped Black Hole Hunter to provide insight into how searches for gravitational

waves are performed. The game was enjoyed by the attendees at the exhibition

and has subsequently been incorporated in many further outreach projects.

9.1 “Can you hear black holes collide?”

The Royal Society annually hosts a summer science exhibition at its offices in cen-

tral London. This exhibition, which is open to the general public, aims to inform

visitors of the latest developments and discoveries in all fields of science and inspire

young people’s interest and involvement in science. The Royal Society Summer

Exhibition 2008 [189] consisted of twenty-three science, two art and two history

of science exhibits. These exhibits covered a vast range of scientific fields from

bioscience to astrophysics, and the exhibition was attended by several thousand

visitors over four days.

Among the exhibits selected for the summer exhibition in 2008 was “Can you

hear black holes collide?” presented by a collaboration of British and German

gravitational wave researchers. Detectors such as LIGO and GEO, are sensitive

to gravitational waves with frequencies between approximately 50Hz and a few

thousand Hertz. This range is comparable to the frequency range of the human
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Figure 9.1: People enjoying the Black Hole Hunter game and the “Can you hear
black holes collide” exhibition, London 2008.
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ear, motivating the choice of title.

The goal of this exhibit was two-fold: to give the public an idea of what grav-

itational waves are; and how we go about searching for them. The exhibition

featured a looping 5-minute long video to attract visitors. A “rubber sheet uni-

verse” was used to illustrate Einstein’s concept of space-time and curvature and to

demonstrate heuristically how orbiting bodies might emit gravitational radiation.

A fully-functional table-top interferometer was used to explain and demonstrate

to visitors the basic principles of laser interferometric detectors. In order to il-

lustrate the methods and challenges involved in searching for gravitational waves,

the “Black Hole Hunter” game was available to play on multiple computers.

Additionally a group of researchers actively involved in gravitational wave sci-

ence were stationed at the exhibit to talk to visitors and to answer their questions.

A variety of handouts were distributed which provided visitors with some addi-

tional information about gravitational wave astronomy and links to relevant web

pages. Several images of the exhibition and the Black Hole Hunter setup are shown

in Figure 9.1.

9.2 The Black Hole Hunter game

Figure 9.2: Screenshots of the Black Hole Hunter game. The first screenshot
shows the welcome screen. The second shows the gravitational wave signal at
the top and the four data streams below, one of which has the signal embedded
in it. The third screenshot displays the four data streams again, this time with
the gravitational wave signal clearly visible. The third page also has a “Did you
know” factoid about gravitational waves and general relativity.

The aim of the Black Hole Hunter game is to give the player insight into the

various techniques used, and challenges faced, in the search for gravitational waves.

There are many potential sources of gravitational waves, and for the game we chose

to focus on those emitted during the merger of two black holes or neutron stars.
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These systems produce a characteristic “chirp” waveform which sweeps upwards

in both frequency and amplitude as the stars draw closer to merger.

The game begins by showing the player a gravitational wave signal from a bi-

nary merger, as a time-domain waveform, and also what it sounds like, by allowing

the player to play a short sound clip.1 The player is then told that they must “de-

tect” this gravitational wave signal. Once the player has listened to the signal

he/she is presented with four graphs, and corresponding audio clips, of simulated

data ouput from a gravitational wave detector, one of which contains the signal.

The signal to noise ratio (SNR), which determines the relative amplitudes of the

signal and the simulated detector noise, varies depending on the difficulty level.

The idea is that the player must work in a similar way to real search algorithms

and match the gravitational wave signal to what they can see or hear in the noisy

data. Interestingly, it is much easier to pick out a signal by listening than by

looking at the plots.

Once the player has decided which of the four data streams they think contains

the signal he/she gives an answer and the game reveals whether they are correct

by showing which of the data streams contained the signal and the position of

the signal in the noise. If the chosen answer is correct the player will proceed on

to the next level where the SNR will be lower, and thus harder to find. If the

wrong answer is given the player will be able to try again with a different signal

at the same SNR. This repeats until the player runs out of “lives” or reaches the

furthest level. The player can choose between beginner, intermediate or advanced

at the start of the game, which adjusts the SNR of the first and hardest levels

accordingly.

To demonstrate some of the problems faced in real gravitational wave data

analysis (and to make the game more fun), the hardest levels also contain “glitches”

in some of the simulated data. The glitches are designed to confuse the player.

They are either short sine waves of random frequency with Gaussian envelopes

or other simulated gravitional waves that are similar to the signal, but shorter in

duration. The hardest levels contain simulated data with several glitches of both

kinds!

As well as giving a basic demonstration of the problems data analysts face in

searching for gravitational wave sources, the Black Hole Hunter game aims to teach

the player more about gravitational physics in general. This is acheived in two

ways during the game. Firstly, the home page and the “Game Over” pages of Black

1Although the signal frequencies are within human hearing range they were in fact shifted
to higher pitches because typical laptop speakers and headphones were not deemed adequate at
low frequencies.
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Hole Hunter both have an information bar on the right hand side, which contains

links to a variety of pages where the player can find out more about gravitational

wave physics, and even actively participate in real gravitational wave research

through the Einstein@Home project [190]. Secondly, when the player has given

their answer he/she is presented with a prominent “Did you know?” box. The box

contains a snippet of information about gravitational physics and an associated

internet link leading to more information. There is a set of nearly 100 of these

snippets, so it is unlikely that a player will encounter the same information twice

in one game. Figure 9.2 shows screenshots of various parts of the game.

In addition to the website the Black Hole Hunter game has been modified to

run on a local machine without requiring access to the internet. This version is

available in German as well as English.

9.3 Dowloadable ringtones

In addition to the game itself, the Black Hole Hunter website also gives players

the opportunity to download gravitational wave ringtones. These consist of short

snippets of sound or music in WAV and MP3 format which are suitable for use

as a ringtone on a mobile phone. The ringtones themselves were produced by

manipulating sound files generated from the expected gravitational wave signals of

a variety of sources. The manipulations included significant editing, pitch shifting,

layering signals on top of each other, and applying a number of audio effects. These

processes were performed using audio editing software such as Cubase[191], LMMS

[192] and Audacity [193].

9.4 Response to the Black Hole Hunter game

Following its launch at the 2008 exhibition, Black Hole Hunter was featured in

a New Scientist blog [194] and linked from the Einstein@Home web site [190].

With this publicity, in the first month the site received 3123 unique visitors (IP

addresses) from at least 66 different countries. Since then, popularity has stabilised

at about 900 unique visitors per month in 2009 and around 800 unique visitors

per month in 2010.

Black Hole Hunter has been used in exhibitions in the U.K. and Germany, as

a teaching aid in Australia and is forming a major part of a travelling exhibition

in the U.S.A. [187]. Visitors to these exhibitions typically include school teach-

ers, school children and their parents. By appealing to their existing interests in

190



computer games and mobile phones and presenting science in a non-traditional

manner both the game and ringtones have been commended as progressive meth-

ods of promoting science to schoolchildren.
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Chapter 10

Concluding remarks

In this work we have described many aspects of the search for compact binary

coalescences using interferometric detectors. We have discussed the current non-

spinning LIGO-Virgo all-sky, all-time search, which has been used to search for

CBC signals in S5 and VSR1 and is being used to search for CBC signals in S6

and VSR2 and VSR3. We have also described the coincident triggered search,

that has been used to search for CBC signals in coincidence with electromagnetic

observations in S5 and VSR1. We have presented the latest results from these

searches, which have, as of yet, detected no gravitational waves. Nevertheless, in

the next five years LIGO and Virgo will begin taking data from the “advanced”

detectors. These are expected to increase sensitivity by a factor of 10 over the

current instruments. With this increase in sensitivity these searches will be capable

of regularly observing CBC systems.

We have presented the coherent search, which is an alternative method to the

coincidence search in which the data from all detectors is combined coherently

and events are searched for in this coherent data. We have demonstrated that

the coherent search will offer an improvement in sensitivity when compared to the

coincidence method. We have applied the coherent search to searches for CBC sig-

nals triggered by electromagnetic observations and demonstrated its performance

on a stretch of LIGO S4 data. We hope that this technique will be used to search

for CBC signals coincident with short GRBs during S6 and VSR2 and VSR3.

Additionally, it would require minor additions to this triggered coherent search

method to allow it to be used as an all-sky, all-time coherent search. The ability

to search over multiple sky points and the ability to do time sliding must be added.

We plan to implement these changes in the near future, however it is not clear

how much of a computational burden this will become as SNR must be calculated

for every time point, sky location and time slide.
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We have discussed how we might search for CBC signals using templates that

incorporate spin effects. We have described a method which would allow non-

precessing templates to be used in the current search implementation. To do this

the problem of template placement over the additional spin parameters must be

solved and the definition of coincidence must be extended to cover the additional

parameters. We have discussed the single spin PTF search method and described

how this is implemented as a coincidence search. We have also presented an

implementation of a coherent PTF search method, and demonstrated that it would

provide an improvement in sensitivity over the coincident PTF search when more

than two detectors are operating. As no searches for CBC signals using spinning

templates has yet been performed on data more recent than S4 we feel it is vital

that such a search is run on the most recent LIGO and Virgo data.

Finally we have presented a “stochastic” algorithm to place efficient template

banks in arbitrary parameter spaces of arbitrary dimension. We have demon-

strated the performance of this algorithm in some simple examples and shown

that its performance when placing a two dimensional template bank for the non

spinning CBC search is not significantly worse than the current geometrical algo-

rithm. However, this algorithm would be most useful in placing template banks

in higher dimension parameter spaces, such as that of searches that incorporate

spin effects.

It is now a very exciting time for everyone involved in gravitational wave as-

tronomy as we wait for the next generation of detectors to be built and reach

the predicted sensitivity levels. It is (hopefully!) only a matter of time now be-

fore the first direct detection of gravitational waves is made and we truly become

gravitational wave astronomers.
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