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Abstract

Einstein’s general theory of relativity has withstood 100 years of testing
and will soon be facing one of its toughest challenges. In a few years
we expect to be entering the era of the first direct observations of gravi-

tational waves. These are tiny perturbations of space-time that are gen-
erated by accelerating matter and affect the measured distances between
two points. Observations of these using the laser interferometers, which
are the most sensitive length-measuring devices in the world, will allow
us to test models of interactions in the strong field regime of gravity and
eventually general relativity itself.

I apply the tools of Bayesian inference for the examination of gravitational
wave data from the LIGO and Virgo detectors. This is used for signal
detection and estimation of the source parameters. I quantify the abil-
ity of a network of ground-based detectors to localise a source position
on the sky for electromagnetic follow-up. Bayesian criteria are also ap-
plied to separating real signals from glitches in the detectors. These same
tools and lessons can also be applied to the type of data expected from
planned space-based detectors. Using simulations from the Mock LISA
Data Challenges, I analyse our ability to detect and characterise both burst
and continuous signals. The two seemingly different signal types will be
overlapping and confused with one another for a space-based detector; my
analysis shows that we will be able to separate and identify many signals
present.

Data sets and astrophysical models are continuously increasing in com-
plexity. This will create an additional computational burden for perform-
ing Bayesian inference and other types of data analysis. I investigate the
application of the MOPED algorithm for faster parameter estimation and



data compression. I find that its shortcomings make it a less favourable
candidate for further implementation.

The framework of an artificial neural network is a simple model for the
structure of a brain which can “learn” functional relationships between sets
of inputs and outputs. I describe an algorithm developed for the training of
feed-forward networks on pre-calculated data sets. The trained networks
can then be used for fast prediction of outputs for new sets of inputs. Af-
ter demonstrating capabilities on toy data sets, I apply the ability of the
network to classifying handwritten digits from the MNIST database and
measuring ellipticities of galaxies in the Mapping Dark Matter challenge.

The power of neural networks for learning and rapid prediction is also
useful in Bayesian inference where the likelihood function is computa-
tionally expensive. The new BAMBI algorithm is detailed, in which our
network training algorithm is combined with the nested sampling algo-
rithm MULTINEST to provide rapid Bayesian inference. Using samples
from the normal inference, a network is trained on the likelihood function
and eventually used in its place. This is able to provide significant increase
in the speed of Bayesian inference while returning identical results. The
trained networks can then be used for extremely rapid follow-up analyses
with different priors, obtaining orders of magnitude of speed increase.

Learning how to apply the tools of Bayesian inference for the optimal
recovery of gravitational wave signals will provide the most scientific in-
formation when the first detections are made. Complementary to this, the
improvement of our analysis algorithms to provide the best results in less
time will make analysis of larger and more complicated models and data
sets practical.
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Chapter 1
Introduction

I was born not knowing and have had only a
little time to change that here and there.

Richard P. Feynman

1.1 Gravitational Waves

Einstein’s general theory of relativity [1] (GR) predicts the existence of gravitational
waves (GWs), perturbations to the curvature of spacetime that are generated in regions
of strong gravity and will allow scientists to observe the universe through an entirely
new window. The direct detection of gravitational waves will usher in a new era of
astronomy. The GW spectrum in many ways independent of and complementary to
electromagnetic radiation. GWs can be used to probe astrophysical events otherwise
unobservable, such as the merger of two black holes, the inner processes of supernovae,
and the equation of state of neutron star matter. Projects are currently underway across
the world to detect these very weak signals. Indirect evidence for the existence of
gravitational waves exists from observations of binary pulsars spinning in towards each
other as the system loses energy due to the emission of GWs [2].

GR has withstood almost 100 years of testing and verification; however, it is now
facing one of its toughest challenges in gravitational wave searches. Direct observa-
tions may allow for the testing of alternate theories of gravity as a test of the strong
field predictions of general relativity.

1



1. INTRODUCTION

1.1.1 General Relativity Theory

In the linearised regime of general relativity, applicable for weak gravitational fields,
we can assume a flat Minkowski background metric for the spacetime, given by ηab =

diag(−1,1,1,1). The true metric can then be defined as

gab = ηab +hab, ‖ hab ‖� 1. (1.1)

This constrains us to a weak gravitational field and we will refer to hab as the metric
perturbation. We can now derive Einstein’s equations in the linearised regime, where
terms of order h2

ab and above will be ignored as they are significantlly small relative to
the first-order perturbation. I will only present the main results of this procedure, full
steps can be found in [3].

We calculate the Einstein tensor with this new metric, discarding small terms of
O(h2

ab) and higher, and obtain

Gab =
1
2
(∂c∂bhc

a +∂
c
∂ahbc−�hab−∂a∂bh−ηab∂c∂

dhc
d +ηab�h). (1.2)

We substitute in for the trace-reversed perturbation, h̄ab = hab− 1
2ηabh (where h = ha

a)
and choose to satisfy the Lorenz gauge condition that ∂ ah̄ab = 0. Doing so is allowed
because there is freedom to choose the gauge (coordinate system) we want to work in
without affecting the physical observables of the system. Therefore, the Einstein tensor
simplifies to Gab = −1

2�h̄ab, where � = ∂c∂ c = ∇2− ∂ 2
t . The linearised Einstein

equation is thus

�h̄ab =−16πTab. (1.3)

In a vacuum Tab = 0 and this equation describes the propagation of plane waves trav-
eling at the speed of light. These are gravitational waves.

Furthermore, in addition to the Lorenz gauge we can specify the gauge to be purely
spatial and traceless,

htt = hti = 0 and h = 0. (1.4)

This now fully specifies our coordinate system. The combination of these choices
determines that the perturbation is transverse, meaning that ∂ihi j = 0. Therefore, we
call this the transverse-traceless gauge and write it as hT T

i j . Being traceless, hT T
i j = h̄T T

i j .
This gauge choice is very useful and leaves only two independent components of the

2



1.1 Gravitational Waves

Figure 1.1: The effect of a passing sinusoidal gravitational wave with period T on a
ring of particles. Image from www.learner.org.

metric perturbation. When orienting our coordinate system to describe waves traveling
along the z axis, these degrees of freedom are given by

hT T
xx =−hT T

yy ≡ h+(t− z), (1.5a)

hT T
xy = hT T

yx ≡ h×(t− z). (1.5b)

The two components can now be seen as two independent polarisations, plus and cross,
whose effect on a ring of particles (for a sinusoidal GW source) can be seen in Fig-
ure 1.1. The matter source of a gravitational wave will specify the strengths of its two
polarisations as a function of time.

We are able to detect gravitational waves because they affect the geodesics that
free-falling bodies follow in spacetime. In the transverse-traceless gauge the spacetime
coordinates of a body will remain the same, as they move with the waves, but the proper
separation of two bodies will change as the metric varies with the passing wave. A
straightforward analysis [3] shows that the proper separation of two bodies on the x

axis will oscillate with a fractional length change of

δL
L
' 1

2
hT T

xx (t,z = 0), (1.6)

from a wave travelling along the z axis. This formula can be generalized for any
wave propagation direction and any coordinate separation. Because of this effect, the
amplitude of the GW signal is known as the GW strain.

3



1. INTRODUCTION

A complete mathematical background and derivation of general relativity, as well

as its various applications and extensions, can be found in [4].

1.1.2 Gravitational Wave Sources

If we consider a gravitational wave source that is near the origin of our coordinate

system, measure the field at a distance r that is large compared to the spatial extent of

the source, and assume that the constituents of the source are moving slowly compared

to c, then the solution to the linearised Einstein equation can be given by the compact-

source approximation (a full derivation and further details on the following analysis

can be found in [5]),

h̄µν(ct,~x) =−4G
c4r

∫
T µν(ct− r,~y)d3~y. (1.7)

Taking the different components of T µν separately,
∫

T 00d3~y=Mc2 and
∫

T 0id3~y=∫
T i0d3~y = Pic. These components describe the integrated energy and momentum of

the system, respectively, and are therefore constant for a closed system and will not

contribute to the varying gravitational wave strain. Additionally, we are able to trans-

form our coordinates to the source’s centre-of-momentum frame so that

h̄00 =−4GM
c2r

, h̄0i = h̄i0 = 0. (1.8)

Using the transverse property of T µν and Gauss’s law, we can re-write the integral

over the remaining components as∫
T i jd3~y =

1
2c2

d2

dt ′2

∫
T 00yiy jd3~y, (1.9)

where ct ′ = ct− r. Therefore we obtain the quadrupole formula

h̄i j(ct,~x) =−2G
c6r

d2Ii j(ct ′)
dt ′2

, (1.10)

where we define the quadrupole moment tensor of the source as

Ii j(ct) =
∫

T 00(ct,~y)yiy jd3~y. (1.11)

For a given source, this can be used to determine the far-field gravitational radiation.

4



1.1 Gravitational Waves

As an illustration, let us consider two particles of equal mass M moving non-
relativistically in circular orbits of radius a in the z = 0 plane about their common
centre of mass with angular frequency Ω. Since the particles are moving slowly, we
may use the approximation that T 00 ≈ c2ρ , where ρ is the density of the source in its
own reference frame. Therefore,

Ii j(ct) = c2
∫

ρ(ct,~y)yiy jd3~y. (1.12)

It is straightforward to show that for this source

Ii j(ct) = Mc2a2

 1+ cos(2Ωt) sin(2Ωt) 0
sin(2Ωt) 1− cos(2Ωt) 0

0 0 0

 . (1.13)

Substituting this into Equation (1.10) yields

h̄i j(ct,~x) =
8GMa2Ω2

c4r

 cos(2Ωt ′) sin(2Ωt ′) 0
sin(2Ωt ′) −cos(2Ωt ′) 0

0 0 0

 . (1.14)

Considering only the radiative part of hµν gives

h̄µν

rad(ct,~x) =
8GMa2Ω2

c4r


0 0 0 0
0 cos(2Ωt ′) sin(2Ωt ′) 0
0 sin(2Ωt ′) −cos(2Ωt ′) 0
0 0 0 0

 . (1.15)

We should note at this point two important aspects of our solution. First, the amplitude
scales as 1/r, which means that the GW is a spherical wave. However, at large radii
it can be approximated as a plane wave. Additionally, the 1/r scaling implies that
a factor of X improvement in detector sensitivity will yield the same factor of X in
observable distance and thus X3 in observable volume. Our second comment on the
solution is that the frequency of the GW is twice the orbital frequency of the binary;
this is due to the fact that the radiation is quadrupolar. Monopole and dipole radiation
are zero due to the conservation of mass and momentum, respectively.

We now consider the polarisation of the GW received by an observer. For an ob-
server on the z axis, we begin by noting that Equation (1.15) is already transverse-
traceless so h̄µν

T T = hµν

T T . h+(t) ∝ cos(2Ωt) and h×(t) ∝ sin(2Ωt), corresponding to
right-handed circularly polarised radiation. For an observer on the x axis, however,

5



1. INTRODUCTION

we must first convert Equation (1.15) to the transverse-traceless gauge. We zero the

non-transverse components and then subtract one-half of the trace from the remaining

diagonal components to obtain

(h̄T T
rad)

µν(ct,~x) =
4GMa2Ω2

c4r


0 0 0 0
0 0 0 0
0 0 −cos(2Ωt ′) 0
0 0 0 cos(2Ωt ′)

 . (1.16)

We observe that the radiation is in the plus polarisation entirely. It is also important to

note that the coefficient in front is a factor of 2 smaller. This combined with the fact

that there is radiation in only one polarisation state implies that the GW energy emitted

in the z direction will be eight times larger than that in the x or y directions, making it

highly anisotropic.

Integrating the energy flux over all angles and averaging over multiple GW periods

yields that the energy lost by the system due to the emission of gravitational waves is

LGW =
128GM2a4Ω6

5c2 . (1.17)

This loss of energy is not considered in the initial analysis where we maintained con-

servation of mass-energy. Waveforms defined in this manner must use a quasi-static

approximation – the evolution of the orbital radius is defined by the internal energy

and this further defines the orbital period through Kepler’s third law. The loss of en-

ergy means that system will evolve inwards (decreasing a) with increasing Ω until

collision/merger. The strong dependence of the emitted energy on frequency results

in this occurring at an increasing rate and creates a burst of radiation at the end. This

is the characteristic “chirp” signal that data analysis pipelines are searching for. For

sources far from merger, the energy lost in gravitational wave emission is low enough

that the frequency evolution can be modeled as an initial frequency f and a frequency

derivative ḟ over a period of observation that is short compared to the time to reach

merger.

In general, this approximation holds for binaries with large separations. As the

binary spirals inwards, further post-Newtonian [6–12] corrections must be made to

the waveform models. These are corrections that expand in powers of v/c, where v

is the transverse velocity of a binary member, and provide more accurate modeling

6



1.1 Gravitational Waves

Figure 1.2: A sample inspiral GW signal that LIGO might observe. Image from
www.ligo.org.

of the phase and amplitude of the GW signal. At higher post-Newtonian orders the

spin of the binary members becomes important and spin-orbit (L ·S1 and L ·S2 terms)

and spin-spin (S1 ·S2 terms) interactions can have significant effects on the waveform

(amplitude and frequency modulation and orbit precession) [13–18]. A sample inspiral

GW signal is shown in Figure 1.2.

Near to the point of merger, the effective-one-body (EOB) approach to waveform

modeling can provide a better template [19–23]. This method reconstitutes the prob-

lem as that of a test particle with some spin spiraling in to a Kerr black hole. Since

accurate numerical simulations of Einstein’s full equations have been performed [24–

29], this waveform can then be attached to a fit of the signal coming from the merger

of the two objects (this has been done for black hole binaries only). A ringdown

waveform derived from black hole perturbation theory and numerical simulations is

then used to complete the signal. This is characterised by constant modes of oscil-

lation exponentially decreasing in amplitude over time. Combining post-Newtonian

and/or EOB theory with numerical relativity simulations and black hole perturbation

theory allows for the construction of complete inspiral-merger-ringdown (IMR) [30–

36] hybrid waveform families that are analytic fits over specific parameter ranges. By

modeling the entire signal, these allow for the extraction of the most information and

signal-to-noise ratio. However, they are limited by our ability to perform numerical

simulations with enough orbits prior to merger and covering a large enough area of the

possible parameter space.

7



1. INTRODUCTION

Similar brief derivations of the quadrupole formula for gravitational wave radiation

from compact binaries can be found in [37, 38]. A more complete derivation and

analysis of the gravitational waves from compact binaries is available in [39] and a

review of the post-Newtonian formalism can be found in [40]. Gravitational waves

are created by a variety of astrophysical sources, such as supernova explosions [41]

and spinning neutron stars [42–47], but compact binaries are the most well-studied. A

review of sources that may be found in high and low frequency ranges can be found

in [48].

Follow-up searches to find GWs associated with observed gamma-ray bursts have

been performed [49] and studies are underway to cross-correlate GW and neutrino

observations [50]. Gravitational wave detections can be used to test general relativity

and measure any deviations from Einstein’s theory [51, 52], such as the existence of

a massive graviton [53] (as GR predicts a massless graviton). Observations can also

be used to test cosmological models by using binary mergers as a standard siren for

luminosity distance and redshift measurements [54–58].

1.1.3 Gravitational Wave Detectors

The Laser Interferometer Gravitational-wave Observatory (LIGO) [59] is a major US

project funded by the National Science Foundation for the detection of GWs. It con-

sists of a pair of observatories located in Livingston, Louisiana and Hanford, Wash-

ington in the United States. The detectors are sensitive in the audio band (∼ 30 Hz

to several kHz) with strain amplitudes as low as 10−21. The main research centres

are located at the California Institute of Technology in Pasadena, California and the

Massachusetts Institute of Technology in Cambridge, Massachusetts.

The basic geometry of each observatory is that of a 90◦ Michelson interferometer.

However, some changes have been made so as to increase their sensitivity. Each arm

consists of a resonant Fabry-Perot cavity, with the two mirrors also acting as the gravi-

tational test masses. The resonance amplifies the effect of a passing gravitational wave

on the phase difference between the two arms. Another mirror is placed between the

laser source and the beamsplitter so as to create a resonant cavity that increases the to-

tal power in the interferometer by not letting light escape back towards the laser—this

is called the power recycling mirror. An input mode cleaner before the PRM removes
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1.1 Gravitational Waves

unwanted spatial modes from the laser source, leaving only the (l,m) = (0,0) mode, a

single central Gaussian peak. The Livingston observatory has an interferometer with

4km arm lengths, denoted L1. The Hanford observatory has two interferometers in

the same vacuum system; H1 has 4km arms and H2 has 2km arms. In the final Initial

LIGO science run, S5, all detectors operated at design strain sensitivity. The status of

compact binary coalescence searches at that time is given in [60] and descriptions of

the standard analysis pipeline are found in [61, 62].

Enhanced LIGO (eLIGO) [63] was an improvement upon the sensitivity of LIGO

by a factor of approximately two that did not require opening the vacuum chambers.

A plot of the sensitivity measured during eLIGO’s science run (S6) as a function of

GW frequency can be seen in Figure 1.3. At the low frequency end, the sensitivity is

limited by seismic noise. At the high frequency end, the limiting factor is quantum shot

noise from the error in counting the photons that reach the detector; the fractional error

in photon counts on the shorter integration timescales approaches the same fractional

distance to be measured. For eLIGO, a more powerful 35 W laser was installed, the

GW signal was switched to a DC readout that operates slightly off the dark fringe,

and an output mode cleaner was installed to remove unwanted spatial modes that add

shot noise but do not contribute to the GW signal. The S6 science run was performed

over 2009–2010 in this configuration. Despite the many controls, LIGO experiences

transient noise sources that detection pipelines have to rule out as possible signals [64–

67].

The next stage of development is Advanced LIGO (aLIGO) [69–71], which aims

to increase the sensitivity by a further factor of five. aLIGO’s upgrades include adding

a signal recycling mirror that both increases the broadband sensitivity and allows the

sensitivity of the interferometer to be “tuned”. Additionally, the test masses will be

hung from triple pendulums to decrease their sensitivity to seismic noise and reduce

the lower limit on observations to ∼ 10Hz. A 180 W laser will be installed and active

modulators and isolators will be used on the test masses to compensate for thermal

deformation. The test masses are also larger in size at 40 kg, up from 10 kg in Initial

and Enhanced LIGO. The H2 interferometer will be removed and the mirrors sent to

India in support of the building of a detector there by the IndIGO project [72]. A

schematic of the aLIGO setup can be seen in Figure 1.4.
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1. INTRODUCTION

Figure 1.3: A plot of the strain sensitivities of the LIGO and Virgo interferometers
from the S6 and VSR2/3 science runs [68].

In addition to the LIGO project in the United States, there is a joint Italian-French

observatory, Virgo [73], located in Cascina, Italy. Virgo has a similar setup to LIGO

but with 3km arms and active seismic isolation. Virgo’s instrumental noise is similar

to LIGO’s as seen in Figure 1.3, but with a higher noise floor and better sensitivity

at frequencies below ∼ 50 Hz. Virgo’s second and third science runs were performed

in coincidence with LIGO’s S6. There is also a joint German-British observatory,

GEO600 [74], near Sarstedt, Germany that is part of the LIGO Scientific Collaboration.

GEO600 is primarily used for testing technology that will be used in upcoming LIGO

upgrades, but is currently on “astrowatch” while LIGO and Virgo are offline being up-

graded. Due to its shorter arm lengths and lack of Fabry-Perot cavities in the arms,

GEO’s sensitivity is much lower than LIGO or Virgo. In Japan the TAMA300 [75] ob-

servatory is operating while the KAGRA detector (the Large Cryogenic Gravitational-

wave Telescope) is under construction [76, 77]. Together, LIGO, Virgo, GEO, LCGT,

and IndIGO will form a worldwide network of detectors that will allow for simultane-

ous detection of GWs and improve our ability to determine the parameters of a signal.
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1.1 Gravitational Waves

Figure 1.4: A diagram of the aLIGO interferometer. ETM = end test mass, ITM =
initial test mass, BS = 50/50 beam splitter, PD = photodetector, PRM = power recycling
mirror, SRM = signal recycling mirror, and MOD = phase modulation. Image from
www.ligo.caltech.edu.
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Studies are also underway for the construction of a third-generation ground-based in-
terferometric detector, the Einstein Telescope [78, 79].

The next generation GW detector under development is ESA’s New Gravitational-
wave Observatory (NGO) [80, 81], a re-scoped version of the Laser Interferometer
Space Antenna project (LISA) [82]. NGO will consist of three satellites (one ‘mother’
and two ‘daughters’) that will be the vertices of an equilateral triangle one million km
on a side. The NGO constellation is planned to orbit the Sun in the same orbit as the
Earth, but behind and at an inclination of 60◦ to the ecliptic. NGO will form an inter-
ferometer that can observe GWs from ∼0.1 mHz up to ∼0.1 Hz. This will allow NGO
to detect the mergers of supermassive black holes [83, 84], quasi-stationary signals
from smaller compact binaries in the galaxy, extreme-mass-ratio inspirals, bursts from
cusps in cosmic strings, and a stochastic GW background [85, 86].

In preparation for the NGO mission, LISA Pathfinder [87] will be launched by
ESA to test new technology. LPF is an advanced geodesics explorer and will be a
proof of principle for NGO. Pathfinder is scheduled for launch in 2014, with NGO
launch currently unsure.

A summary of the use of interferometry for detection of gravitational waves both
on the ground and in space is given by [88].

The near-perfect clock nature of pulsars also allows for the detection of very long
wavelength gravitational waves. As a GW passes between a source pulsar and the
Earth, it periodically distorts the spacetime that the pulsar signal must pass through.
This results in periodic variations in the timing of the pulsar signal at Earth. By mea-
suring many pulsars’ timings to high precision over several years, these variations may
be cross-correlated to indicate the passing of a gravitational wave or the presence of a
GW background [89–91].

The Gravitational Wave International Committee’s roadmap [92] outlines plans for
GW detection in the coming decades.

1.2 Bayesian Inference

Gravitational wave detection poses a major data analysis problem. Most signals in the
collected data streams are expected to be of low SNR. Additionally, there may be many
overlapping signals, not all of the same type, and a non-stationary noise background.
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1.2 Bayesian Inference

Therefore, we need an efficient and robust method for identifying signals in the data
and determining their physical parameters, both intrinsic and extrinsic. To do this, we
turn to the methods of Bayesian statistics.

1.2.1 Bayes’ Theorem

In our analysis, we wish to estimate the parameters Θ in a model or hypothesis H for
given data D. Bayes’ theorem states that

Pr(Θ|D,H) =
Pr(D|Θ,H)Pr(Θ|H)

Pr(D|H)
. (1.18)

Pr(Θ|D,H)≡ P(Θ) is the posterior probability distribution, Pr(D|Θ,H)≡L(Θ) is the
likelihood function, Pr(Θ|H) ≡ π(Θ) is the prior distribution of the parameters, and
Pr(D|H)≡Z is the Bayesian evidence. The evidence is the factor required to normalise
the posterior over Θ, so we can ignore it for parameter estimation and analyse just the
un-normalised posterior. It can be found, however, with the following integral (where
N is the dimension of the parameter space):

Z=
∫

L(Θ)π(Θ)dN(Θ). (1.19)

To compare two models, H0 and H1, we compare their relative probabilities with
respect to given data. This is known as the odds ratio and is given by

Pr(H1|D)

Pr(H0|D)
=

Pr(D|H1)Pr(H1)

Pr(D|H0)Pr(H0)
=

Z1

Z0

Pr(H1)

Pr(H0)
. (1.20)

The prior probability ratio between the two models, Pr(H1)/Pr(H0), is taken to be
unity when no further information is available as to which model is more probable.
Thus, it can be seen from Equation (1.20) that the evidence plays a critical role in model
selection as it determines the relative probabilities; Z1/Z0 is known as the evidence ra-
tio. However, calculating the evidence requires the evaluation of a multi-dimensional
integral which is far from trivial, especially in the multimodal and degenerate parame-
ter spaces that we will be exploring.

In cases of both model selection and parameter estimation, we require a sampling
of the parameter space that provides us with information about the shape of the likeli-
hood function. From this information, we can numerically integrate and compare the
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1. INTRODUCTION

evidence of different models or compare the relative likelihoods (and, as we will see,
local evidences) of different parameter choices. A more detailed review of Bayesian
statistics and its particular applications to cosmology can be found in [93].

1.2.2 MCMC and Nested Sampling

Due to the difficulty in integrating Equation (1.19) for complicated likelihood func-
tions in many dimensions and the computational impracticality of grid approximations,
Markov chain Monte Carlo (MCMC) methods have long been used for computing the
integral and obtaining samples from the posterior distribution. One of the most popu-
lar implementations is the Metropolis-Hastings algorithm [94, 95]. In this algorithm,
an initial point is chosen and steps to new points are chosen according to proposal
distributions. New points are accepted with the following probability:

Pr(xt+1|xt) = min
(

1,
P(xt+1)Q(xt+1,xt)

P(xt)Q(xt ,xt+1)

)
, (1.21)

where xt is the initial point, xt+1 is the new point, and the proposal distribution Q(xt+1,xt)

is the probability of jumping to point xt+1 from point xt . If the point is not accepted
then xt+1 = xt . After an initial “burn-in” series of steps, the resulting distribution of
samples will be equivalent to sampling from P(x). We therefore set P(xt) =L(xt)π(xt)

to obtain samples from the posterior probability distribution. However, this methodol-
ogy will require many samples and likelihood evaluations, which can be computation-
ally expensive. Additionally, in order to obtain a calculation of the Bayesian evidence,
additional techniques such as simulated annealing (a.k.a. parallel tempering) [96, 97]
are typically used, further increasing the computational cost. Model selection with
MCMC may also be performed using a technique known as “reversible jump” MCMC
(RJMCMC), which allows jumps between different model parameter spaces [98].

Nested sampling [99, 100] is a Monte Carlo method targeted at the efficient cal-
culation of the evidence, but also produces posterior inferences as a by-product. It
calculates the evidence by transforming the multi-dimensional evidence integral into a
one-dimensional integral that is easy to evaluate numerically. This is accomplished by
defining the prior volume X as dX = π(Θ)dNΘ, so that

X(λ ) =
∫
L(Θ)>λ

π(Θ)dN
Θ, (1.22)

14



1.2 Bayesian Inference

(a) (b)

Figure 1.5: Cartoon illustrating (a) the posterior of a two dimensional problem; and
(b) the transformed L(X) function where the prior volumes Xi are associated with each
likelihood Li. Images from [101].

where the integral extends over the region(s) of parameter space contained within the

iso-likelihood contour L(Θ) = λ . The evidence integral, Equation (1.19), can then be

written as

Z=
∫ 1

0
L(X)dX , (1.23)

where L(X), the inverse of Equation (1.22), is a monotonically decreasing function of

X . Thus, if one can evaluate the likelihoods Li = L(Xi), where Xi is a sequence of

decreasing values,

0 < XM < · · ·< X2 < X1 < X0 = 1, (1.24)

as shown schematically in Figure 1.5, the evidence can be approximated numerically

using standard quadrature methods as a weighted sum

Z=
M

∑
i=1

Liwi, (1.25)

where the weights wi for the simple trapezium rule are given by wi =
1
2(Xi−1−Xi+1).

An example of a posterior in two dimensions and its associated function L(X) is shown

in Figure 1.5.
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The summation in Equation (1.25) is performed as follows. The iteration counter

is first set to i = 0 and N “active” (or “live”) samples are drawn from the full prior

π(Θ), so the initial prior volume is X0 = 1. The samples are then sorted in order of

their likelihood and the smallest (with likelihood L0) is removed from the active set

and replaced by a point drawn from the prior subject to the constraint that the point

has a likelihood L > L0. The corresponding prior volume contained within the iso-

likelihood contour associated with the new live point will be a random variable given

by X1 = t1X0, where t1 follows the distribution Pr(t) = NtN−1 (i.e., the probability

distribution for the largest of N samples drawn uniformly from the interval [0,1]). At

each subsequent iteration i, the removal of the lowest likelihood point Li in the active

set, the drawing of a replacement with L> Li and the reduction of the corresponding

prior volume Xi = tiXi−1 are repeated, until the entire prior volume has been traversed.

The algorithm thus travels through nested shells of likelihood as the prior volume is

reduced. The mean and standard deviation of log(t), which dominates the geometrical

exploration, are:

E[log t] =−1/N, σ [log t] = 1/N. (1.26)

Since each value of log(t) is independent, after i iterations the prior volume will shrink

down such that logXi ≈−(i±
√

i)/N. Thus, one takes Xi = exp(−i/N).

The nested sampling algorithm is terminated when the evidence has been computed

to a pre-specified precision. The evidence that could be contributed by the remaining

live points is estimated as ∆Zi =LmaxXi, where Lmax is the maximum-likelihood value

of the remaining live points, and Xi is the remaining prior volume. The algorithm

terminates when ∆Zi is less than a user-defnied value (we use 0.5 in log-evidence).

Once the evidence Z is found, posterior inferences can be easily generated using

the final live points and the full sequence of discarded points from the nested sam-

pling process, i.e., the points with the lowest likelihood value at each iteration i of the

algorithm. Each such point is simply assigned the probability weight

pi =
Liwi

Z
. (1.27)

These samples can then be used to calculate inferences of posterior parameters such

as means, standard deviations, covariances and so on, or to construct marginalised

posterior distributions.
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1.3 Thesis Outline

By providing both posterior samples and the value of the evidence, nested sampling

can greatly reduce the number of points at which we need to evaluate the likelihood.

This will provide us with what is necessary for both parameter estimation and model

selection in less time than traditional MCMC methods.

1.2.2.1 The MULTINEST Algorithm

The most challenging task in implementing nested sampling is to draw samples from

the prior within the hard constraint L> Li at each iteration i. The MULTINEST algo-

rithm [101, 102] tackles this problem through an ellipsoidal rejection sampling scheme.

The live point set is enclosed within a set of (possibly overlapping) ellipsoids and a new

point is then drawn uniformly from the region enclosed by these ellipsoids. The ellip-

soidal decomposition of the live point set is chosen to minimize the sum of volumes

of the ellipsoids. The ellipsoidal decomposition is well suited to dealing with poste-

riors that have curving degeneracies, and allows mode identification in multi-modal

posteriors, as shown in Figure 1.6. If there are subsets of the ellipsoid set that do not

overlap with the remaining ellipsoids, these are identified as a distinct mode and sub-

sequently evolved independently. The MULTINEST algorithm has proven very useful

for tackling inference problems in cosmology and particle physics [103–106], typi-

cally showing two orders of magnitude improvement in efficiency over conventional

techniques. More recently, it has been shown to perform well as a search tool for grav-

itational wave data analysis [107]. A different implementation of nested sampling for

LIGO analysis is described in [108].

1.3 Thesis Outline

In Chapter 2 I describe applications of Bayesian inference to LIGO observations of

binary inspirals. I begin with a simple example and proof-of-principle, followed by a

systematic analysis of the ability of a LIGO-Virgo network to localise the position of a

GW source on the sky. These are both performed with MULTINEST for Bayesian infer-

ence. I then consider using coherent versus incoherent model selection to distinguish

a real GW signal from glitches in actual LIGO data.
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(a)

(b)

Figure 1.6: Examples of MULTINEST enclosing live points in sets of ellipsoids. 1000
points have been randomly sampled from (a) a torus and (b) two non-intersecting el-
lipsoids. Images from [102].
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Chapter 3 describes Bayesian inference for LISA/NGO sources using MLDC sim-
ulations. The first section covers parameter estimation and model selection for burst
sources from cusps on cosmic strings. I then analyse continuous gravitational wave
sources for LISA, where there are many overlapping signals present in the data to the
point of presenting foreground confusion noise at lower frequencies. Finally, I consider
detecting burst sources in the presence of the foreground of continuous GW sources.

At this point I turn to looking at data analysis techniques in a more general sense.
Chapter 4 analyses the benefits and drawbacks of the Multiple Optimised Parame-
ter Estimation and Data compression (MOPED) algorithm. I consider cases where it
works and where it fails and attempt to set a prescription for determining the viability
of a MOPED analysis.

Artificial neural networks are introduced in Chapter 5 as a tool for learning and
performing regression and classification functions. I detail the structure of neural net-
works and the algorithm used for training them on prepared data sets. Several examples
are then provided to illustrate the capabilities of the networks and the training algo-
rithm. These include the learning of analytic functions, classification of complicated
data, and reduction of the dimensionality of data.

In order to further improve tools for general Bayesian inference, neural networks
are integrated into the MULTINEST algorithm to learn the structure of the likelihood
function. They can then be used to make future predictions of the likelihood at new
points. This is especially beneficial for problems where likelihood evaluations are par-
ticularly time-consuming. In addition, the networks may be used for follow-up analy-
ses that can now be performed up to a hundred thousand times faster. The new Blind
Accelerated Multimodal Bayesian Inference (BAMBI) algorithm is demonstrated on a
few toy problems and then applied to the task of cosmological parameter estimation,
where significant increases in speed are demonstrated for initial analyses and excep-
tional speed-ups are achieved in follow-up.
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Chapter 2
Analysis of LIGO Data

In theory, there is no difference between theory
and practice. But, in practice, there is.

Jan L. A. van de Snepscheut

In the next few years the Advanced LIGO and Advanced Virgo detectors will be
coming online and collecting science data. During their observation period, one or
more compact binary coalescence events are expected to be detected [71, 109]. These
signals are well-modeled by post-Newtonian theory [6–8, 40], the effective-one-body
approach [19–22], and numerical relativity [24–27], giving us a variety of waveform
models to use to search the data. Additionally, the sensitivity of the LIGO and Virgo
detectors is designed to be optimal for these sources. In this chapter I begin by in-
troducing a simple proof-of-principle for detecting the gravitational waveform from
one of these events using Bayesian inference techniques. I then present work done as
part of the LIGO Scientific Collaboration (LSC) to quantify the ability of Bayesian
inference to determine the sky location of a detected event for use in electromagnetic
follow-up searches. This was done in part with the Parameter Estimation sub-group of
the Compact Binary Coalescence group of the LSC and will form part of a publication
currently in preparation; code from the LSC Algorithm Library (LAL [110]) was used
in generating and analysing this data. I conclude with my contribution to the analysis
of a hardware blind injection into LIGO’s sixth and Virgo’s second science runs [68].
The analysis in this section was presented as a poster at the Ninth Edoardo Amaldi
Conference on gravitational waves [111].
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2. ANALYSIS OF LIGO DATA

2.1 Simple Inspiral Model

Many stars form as part of a binary system [112]. Over their lifetimes, these stars will

slowly spiral into each other as they lose energy from the emission of gravitational

waves. These predictions have been verified by the discovery of binary pulsar PSR

B1913+16 in 1974 by Hulse and Taylor and subsequent observations [2]. As the two

stars spiral in on each other, their GW signal produces a “chirp”, characterised by

increasing amplitude and frequency until a specific frequency of the last stable orbit,

after which they go through merger and ringdown phases.

2.1.1 Generating the Signal

The sensitivity of the LIGO observatory is best for the inspiral phase of a compact

binary coalescence for objects with sizes on the order of solar masses, so for this

reason and for computational simplicity we consider only the inspiral. We assume

the two black holes are nonspinning and have masses m1 and m2. We therefore define

the total mass, m=m1+m2, symmetric mass ratio, η = (m1m2)/(m1+m2)
2, and chirp

mass, M= (m1m2)
3/5(m1 +m2)

−1/5 = mη3/5. Following the approach of Veitch and

Vecchio [113], we take the leading Newtonian quadrupole order of the strain in the

frequency domain. The GW signal can thus be expressed as

h̃( f ;~θ) =

{
AM5/6 f−7/6eıψ( f ;~θ) f ≤ fLSO

0 f > fLSO
, (2.1)

where

ψ( f ;~θ) = 2π f tc−φc−
π

4
+

3
4
(8πM f )−5/3 (2.2)

is the signal phase and fLSO is the frequency of the last stable orbit in the Schwarzschild

spacetime. For a general system this is given by

fLSO = (63/22−1
πm)−1, (2.3)

but for simplicity we assume m1 = m2 so we can re-write fLSO as

fLSO = (63/221/5
πM)−1. (2.4)
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In equations (2.1) and (2.2), ~θ refers to the 4-dimensional parameter vector, where our
parameters are

~θ = {A,M, tc,φc}. (2.5)

A is the overall signal amplitude and depends on the source masses, distance, sky
location, inclination angle, and polarisation; tc and φc are the time and phase at coa-
lescence, respectively. In this analysis, geometrical units are being used, so c = G = 1
and therefore M� = 4.926×10−6 s and A has the units of s−2. It should be noted that
only the chirp mass, M, is being used in this formula. Therefore, a degeneracy exists
between the two black hole masses—any two masses that produce the same chirp mass
will give the same results with this formula. A more accurate model of the signal that
also uses the symmetric mass ratio, or any other function of the masses, would be able
to break this degeneracy.

The detector noise profile in the frequency domain is modelled as a Gaussian ran-
dom process in the real and imaginary parts, with zero mean and a variance at fre-
quency fk (k = 1, . . . ,K, where K is the number of frequency bins) given by

σ
2
k =

(
fk

f0

)−4

+1+
(

fk

f0

)2

. (2.6)

This is representative, within a multiplicative constant, of the LIGO interferometers
with f0 = 150 Hz setting the scale for the frequency of maximum sensitivity.

2.1.2 Calculating the Likelihood

We define our likelihood function to be a multi-variate Gaussian, centred on the true
parameter values:

L(~θ) =
K

∏
k=1

[
1

2πσ2
k

exp

(
−|h̃k(~θ)− d̃k|2

2σ2
k

)]
. (2.7)

To simplify this, we compute the log-likelihood and subtract out any constants. This
will give us an evidence value that is off by a constant factor, but all local evidences will
have this factor which will be cancelled out in the evidence ratio. The log-likelihood
is therefore

lnL(~θ) =
K

∑
k=1

(
−|h̃k(~θ)− d̃k|2

2σ2
k

)
. (2.8)
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Parameter Measured Actual
A (s−1/M�) 4.809 ± 0.328 5.00
M (M�) 8.000 ± 0.015 8.009

tc (s) 20.0 ± 0.21 ×10−3 20.0
φc (rad) 1.262 ± 0.280 1.00

Table 2.1: Results from the MULTINEST parameter inference on a simple inspiral chirp
signal.

In order to run the nested sampling algorithm MULTINEST [101, 102] on each data
set we need to define the prior volume for it to explore. In order to have the most
generality, we will use a uniform prior range defined over the following intervals:

A ∈ [0,1000] s−1/M�, (2.9a)

M ∈ [1,20]M�, (2.9b)

tc ∈ [19.5,20.5] s, (2.9c)

φc ∈ [0,2π) rad. (2.9d)

This is a significantly wider prior range than that used by Veitch and Vecchio.
Their prior ranges were A ∈ [0,10] s−1/M�, M ∈ [7.7,8.3]M�, tc ∈ [19.9,20.1] s, and
φc ∈ [0,2π) rad.

2.1.3 MULTINEST Results

MULTINEST was used to analyse the simulated data produced by the model described
in Section 2.1.1 with parameters of ~θ = {5s−1/M�,8.009M�,20,1}. The results of
the run are given in Table 2.1 and the final marginalized posterior distributions can be
seen in Figure 2.1. These results show that MULTINEST was able to estimate all four
parameter values very closely.

In Figure 2.2 is plotted the log-likelihood function as it varies over the amplitude
and chirp mass for the correct values of tc and φc. We can clearly see a ridge at constant
M and a background drop-off for increasing A and M. In order to ensure sampling from
this ridge, whose peak coincides with the true parameters, an increased number of live
points for MULTINEST need to be used. This had the expected side effect of increasing
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2.1 Simple Inspiral Model

Figure 2.1: Plots of the one-and two-dimensional marginalized posterior distributions
obtained by MULTINEST. Veritcal red lines and plus signs indicate true input values.
[A] = s−1/M�, [M] = M� and [φc] =rad.
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2. ANALYSIS OF LIGO DATA

Figure 2.2: The log-likelihood function for a given range of amplitude and chirp mass
values. The actual values of signal are A = 300s−1/M�, M = 3.52M�, tc = 20 s, and
φc = 0 rad. tc and φc have been set to their actual values for this calculation.

the computation time. On a single Linux machine, MULTINEST still took less than an

hour to run, even for signals with low SNRs.

If we were to look at the log-likelihood for the prior ranges of [113], the large

background feature in A and M is not significant, as can be seen in Figure 2.3. The

range of chirp masses they explore limits the effect of this background effect and also

causes the ridge to occupy a larger fraction of the sampled space. This makes the

likelihood easier to sample, but limits the detectability to signals from binaries whose

parameters fall within a narrow range.

We can now measure how well MULTINEST can find the true signal embedded in

noise. A natural measure of this is the Bayes factor, the ratio of the posterior odds of

the signal and noise-only models. We assume a prior odds ratio of one so the Bayes

factor is calculated simply by dividing the evidence of the signal model as measured

by MULTINEST and the evidence of the noise-only model. A Bayes factor greater than

one indicates that the signal model is more probable than the noise model; we ask for

a slightly larger Bayes factor to declare a detection. As the Bayes factor increases, the

confidence of our detection grows as well. To measure how detection is affected by

weaker signals, I computed the Bayes factor for several signal-to-noise ratios (SNRs).
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2.1 Simple Inspiral Model

Figure 2.3: The log-likelihood function for data with an input signal of ~θ =

{5/M�,8M�,20,0}, where tc = 20 s and φc = 0 rad have been set.

The SNR, specified by ρ , provides a measure of the relative strength of the signal to

the background noise and is calculated using the following formula:

ρ =

√√√√ N

∑
k=1

|h̃k(~θ)|2
σ2

k
. (2.10)

Varying values of the SNR were obtained by changing the amplitude of the signal.

The chirp mass (total mass and symmetric mass ratio), time of coalescence, and phase

of coalescence were all kept equal so as to minimize any effects other than varying sig-

nal strength. The global evidence of the signal model was given by MULTINEST at the

end of each run, which were performed using the original log-likelihood function and

1000 live points to ensure a thorough sampling of the prior volume. The null evidence

(that of the noise model) was computed by fixing the amplitude to zero. Figure 2.4

shows the log Bayes factor as a function of the measured SNR over a range of SNRs.

We can see that once a certain threshold has been reached by an SNR of 10, we can be

very confident in our detection of a signal. Below an SNR of ∼ 6, however, we cannot

be sure of a signal being present.
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Figure 2.4: The log Bayes factor as a function of SNR. Past an SNR of ∼ 10, our
confidence of detection increases exponentially.

This clearly shows that Bayesian inference as performed by MULTINEST is a
strong tool for detecting gravitational wave signals in instrument noise. Being able
to make detections at SNRs below 10 is important as the current instruments do not
expect to have many SNRs above that if a signal is in fact present. For comparison,
see Veitch and Vecchio’s original work on this same problem in [113, 114], which
shows similar results for Bayesian evidences to those obtained here, and their use of
delayed rejection in [115, 116]. MULTINEST has also been used to detect the fully
parameterised waveform from non-spinning supermassive black holes in [107]. The
usefulness of inspiral-only templates for detection of full inspiral-merger-ringdown
waveforms is examined in [117]. The use of MULTINEST for the detection of galaxy
clusters with a fully Bayesian analysis can be found in [118].

2.2 LIGO Sky Localisation

In order to confirm the first detections of gravitational waves and extract the most
science from an observed event, we will want to obtain follow-up observations from
electromagnetic telescopes [119–126]. For certain events, these will be able to confirm
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2.2 LIGO Sky Localisation

the event occurring as well as provide additional information. For binary black hole

mergers, the lack of an observed signal will confirm theory and the detection of a signal

could indicate the presence of an accretion disk around one or both of the black holes.

To this end, a project was begun in the Bayesian parameter estimation subgroup of the

CBC group in the LSC to determine our ability to localise the position of a source on

the sky and measure how fast we would be able to accomplish this. As this was also a

validation test of the Bayesian codes, we elected to use a simpler model for the inspiral

signals and analytically generate the noise according to a known power spectral density

(PSD).

Studies have already been performed to analyse the ability of GW detector net-

works to localise a source on the sky [127–134], but this is the first systematic Bayesian

study that utilises coherent detection and compares many inference algorithms to con-

firm results and measure speed. The full paper presenting results from the Parameter

Estimation group is in preparation. Other studies, such as [135], have measured statis-

tical uncertainties in measured parameters with the advanced detector network, but use

the Fisher matrix approximation that cannot capture the full nature of posterior degen-

eracies and does not apply at low SNRs. There have also been efforts to characterise

the ability of a detector network to measure other source parameters [136].

2.2.1 The Injections

The injections were performed with the restricted frequency-domain post-Newtonian

waveform model, TaylorF2 [10], at second order in phase (corrections of O(v4)) and

with zeroth order (Newtonian) amplitude. No spin was included in the models in order

to simplify the analysis so there were 9 total parameters: chirp mass, symmetric mass

ratio, luminosity distance, inclination of the orbital plane (angular momentum) to the

line of sight, polarisation, phase at coalescence, time of coalescence at the geocentre,

longitude (related to right ascension), and colatitude (related to declination). The last

two of these are the position on the sky of the source. The parameter vector is thus

given by ~θ = {M,η ,dL, ι ,ψ,φ0, tc,φs,θs}. φs and θs are related to the right ascension

α and declination δ by φs = α −GAST (GAST is the Greenwich Apparent Sidereal
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Time) and θs = π/2−δ . The waveform is given in the source frame by [10]:

h̃+( f ) =
M5/6

dL
f−7/6(1+ cos2(ι))cos(Φ( f )) (2.11a)

h̃×( f ) =−M5/6

dL
f−7/6 cos(ι)sin(Φ( f )) (2.11b)

Φ( f ) =2π f tc−φ0−
π

4
+

3
128ηv5× (2.11c)[

1+
20
9

(
743
336

+
11
4

η

)
v2−16πv3 +10

(
3058673
1016064

+
5429
1008

η +
617
144

η
2
)

v4
]

where v = (πM f )1/3. The waveform is evaluated for frequencies up to the last stable
orbit given by Equation (2.3).

This is measured by each of the LIGO and Virgo detectors with sensitivity patterns
given by:

F+(ψ,φs,θs) =−
1
2
(1+ cos2(θs))cos(2φs)cos(2ψ)− cos(θs)sin(2φs)sin(2ψ),

(2.12)

F×(ψ,φs,θs) =
1
2
(1+ cos2(θs))cos(2φs)sin(2ψ)− cos(θs)sin(2φs)cos(2ψ),

(2.13)

such that the signal measured is given by

h̃ = h̃+F++ h̃×F×. (2.14)

We analyse 200 injections chosen uniformly from the distributions given in Ta-
ble 2.2. Notice that the masses are sampled by m1 and m2 instead of M and η – this is
to allow equal-mass binaries more easily. The additional constraints of m1 > m2 and
m1 +m2 ≤ 20M� are also applied. tT is the pre-determined and supplied trigger time
of the signal that we use as the basis for a search interval. These same ranges are also
used as the priors for the subsequent data analysis.

The noise PSD was generated in the frequency domain according to the analytic
formula given below with f0 = 150Hz.

S2
h( f ) = 9×10−46

((
4.49

f
f0

)−56

+0.16
(

f
f0

)−4.52

+0.52+0.32
(

f
f0

)2
)
.

(2.15)
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Parameter Units Minimum Maximum
m1 M� 1 15
m2 M� 1 15

log(dL) Mpc 10 40
cos(ι) – −1 1

ψ rad 0 π

φ0 rad 0 2π

tc sec tT −0.1 tT +0.1
φs rad 0 2π

cos(θs) – −1 1

Table 2.2: Ranges for the sampling distributions of signal parameters. These are used
for both signal generation and prior probabilities.

This same function was used in the analysis for the PSD. Although this does not mir-

ror the non-stationarity and non-Gaussianities in real LIGO noise, it does allow us to

confirm the results of our analysis using statistical measures.

2.2.2 Analysis and Results

The 200 injections were analysed with MULTINEST on LIGO’s Caltech cluster, from

which we were able to obtain converged results on 187 (the remaining 13 were ex-

cluded due to computational issues that kept preventing analysis jobs from finishing).

5000 live points were used to ensure complete sampling of the prior. Run times on a

single processor varied from approximately 2 days to 2 weeks depending on the num-

ber of likelihood evaluations necessary. The loudest and quietest signals had the lowest

sampling efficiency due to sharp peaks or broad degenerate modes in the likelihood

function, respectively, and so took the longest to converge.

A typical posterior distribution is shown in Figure 2.5 for an event with a total

network SNR of 19.6. Strong correlations can be seen between certain parameters,

particularly between distance and inclination and between different pairs of mass pa-

rameters. We can also see that the phase at coalescence is not well constrained and

that there is a multimodal degeneracy in the polarisation of the GW signal. It is impor-
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tant to fully explore these modes and degeneracies as the true signal parameters can be

located anywhere within them.

Focusing on the intrinsic parameters of the system, which for this simple model is

limited to M (mc) and η , we see in Figure 2.6 a degeneracy but accurate recovery of

the true parameters within the 68% confidence interval. For the sky location, which is

what we need to measure for electromagnetic follow-up, there is again a degeneracy

but the location has been measured to within a fraction of a steradian and the true

value recovered just outside the 68% confidence interval. The 68% interval contains

less than 50 deg2 and the 95% interval less than 100 deg2; the posterior as mapped on

the entire sky can be seen in Figure 2.7.

For our first test that posteriors were recovered correctly, we look at the fraction

of injections recovered at a given level of each parameter’s integrated one-dimensional

posterior probability. We integrate the posteriors from the minimum to the maximum

of each parameter and record the cumulative distribution function (CDF) value at the

point of the true injected value. We expect the distribution of these values to map

directly to the posterior distribution. If we therefore plot the fraction of injections re-

covered below a given CDF value against CDF values, the distribution should follow

a line corresponding to y = x from 0 to 1. We are essentially comparing the CDF of

the injections with the CDF of the measured posteriors to confirm they are equal. In

Figure 2.8 we show this for all 9 model parameters as well as m1 and m2, which our

prior is defined on. We find that the 1D CDFs all match the expected distributions

very closely, usually to within 2σ error. Some deviations are seen, but these are most

exaggerated for poorly constrained parameters and correlations between parameters

can cause these errors to affect other measurements. To quantitatively measure the dif-

ferences in experimental and theoretical CDFs, we performed a Kolmogorov-Smirnov

(K-S) test on each. This test measures the maximum difference in CDFs to decide the

probability that the data supports the null hypothesis that both CDFs are from the same

distribution. A p-value less than the threshold of 0.05 indicates that we reject the null

hypothesis at 95% confidence. All parameters return p-values above 0.05 as indicated

in the subplot titles. This is a good indication that the recovered posterior distributions

do accurately represent our state of knowledge.

A more thorough check involves measuring the posterior confidence level at which

the injection was recovered in sky position. This interval is is calculated by measuring
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2.2 LIGO Sky Localisation

Figure 2.5: Marginalised 2D and 1D posterior distributions for event 22 (all parameters
except tc). This event has an SNR of 9.0 in H1, 13.4 in L1, and 11.1 in V1 for a total
network SNR of 19.6. Red vertical lines and crosses indicate the true values. Contours
on 2D plots indicate 68% and 95% confidence intervals.
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(a) (b)

Figure 2.6: Marginalised 2D posterior distributions for event 22 in (a) chirp mass and
symmetric mass ratio and (b) sky position. The red cross indicates the true value.
Contours indicate 68% and 95% confidence intervals.

Figure 2.7: The marginalised posterior probability distribution for the sky position of
event 22 as shown across the entire sky. The white × marks the true location.

34



2.2 LIGO Sky Localisation

Figure 2.8: The fraction of injections recovered at or below 1D posterior CDF values.
Error bars are given by

√
p(1− p)/N, where N is the number of injections. K-S test

p-values are given in the titles for each subplot. All parameters pass the test for a
threshold of 0.05.
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Figure 2.9: The fraction of injections recovered within high probability density inter-
vals of the posterior as computed over θs and φs. The sag is due to posterior biases and
K-D tree binning.

the accumulated posterior probability in regions with higher probability density than

where the injection is located. We perform a K-D tree [137] binning on the two sky

location variables and sum the posterior density for ‘leaves’ with higher density than

where the injection is found. As in the 1D case, we expect to find X% of injections

within the X% high probability density (HPD) region of the posterior. Figure 2.9

displays our measured recovery compared to the theoretical line. There is a degree

of ‘sag’ below the line, but this is an expected artifact from the process of K-D tree

binning and Poisson error on the number of samples in a certain region.

A final validation of the recovered posterior values involves direct measurement of

the full nine-dimensional HPD interval at which each injection is recovered. We do

this by calculating the log-prior at each posterior sample to add to the log-likelihood

and obtain an non-normalised log-posterior density value. The same value is computed

for the true parameters of the injection. We then count the fraction of posterior sam-

ples that have a higher density than the true parameters and this equals the confidence

interval at which the injection was recovered. We expect the fraction of injections re-
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Figure 2.10: The fraction of injections recovered within high probability density in-
tervals of the posterior as computed from posterior probability density values directly.
Error bars are given by

√
p(1− p)/N, where N is the number of injections. The sag is

due to accumulation of biases seen in the 1D cases (Figure 2.8). The K-S test p-value
is 0.179.

covered within a given HPD to follow y = x as in Figure 2.8 if the recovered posteriors

are, in fact, representative of the correct priors and likelihood. This comparison is

shown in Figure 2.10 along with 1σ error bars. The recovery is consistent to within

2σ of the theoretical value for all confidence intervals, but there is a systematic bias

towards lower values. This is likely due to the biases seen in the one-dimensional

CDFs in Figure 2.8 accumulating to push the peak away from the true value beyond

the expected statistical variation. The K-S test results in a p-value of 0.179, so the null

hypothesis that the CDFs are equal is not rejected.

Having passed these tests of the posterior distribution, we now look at the statis-

tics for the areas within certain intervals. Our first consideration is the area contained

within a particular posterior high probability density interval. Using the K-D tree bin-

ning, we calculate the sky area within 68%, 90%, and 95% confidence intervals. In

Figure 2.11 we plot the fraction of injections whose confidence intervals contain a
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Figure 2.11: The fraction of injections whose HPD posterior confidence intervals con-
tain the amount of sky area or less. Areas are calculated using K-D tree binning.

certain amout of sky area or less. This allows us to say that if we can search over a

certain amount of sky area, say 100 deg2, then ∼ 80% of all signals will have their

90% confidence intervals contained within that search area. We therefore expect to

place constraints on ∼ 72% of signals. We can also determine that our confidence

regions increase by approximately an order of magnitude in sky area in going from

68% to 90% and again from 90% to 95%. Therefore, using larger confidence intervals

may make the search regions impractically large for electromagnetic follow-up. Pos-

terior distributions tend to be ellipses in right ascension and declination, making them

slightly curved on the sky when extending further from the peak.

The next consideration is the fraction of injections that were recovered within a

given sky area. For this, we use the K-D tree binning to determine the sky area con-

tained within bins with posterior density equal to or greater than that for the bin in

which the true point is located. This comparison is shown in Figure 2.12 and allows us

to determine the amount of sky area we need to be able to search to find counterparts

for a given fraction of signals or conversely, the fraction of signals we can expect to

find counterparts for in a given search area. For example, if we can only search over an
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Figure 2.12: The fraction of injections that were recovered within the amount of sky
area or less. Areas are calculated using K-D tree binning.

area of 4 deg2, then we can expect to locate counterparts (where they exist) for 50% of

signals; however, if we wish to identify counterparts for 90% of signals then we will

need to search 300 deg2 of sky. With this information we can optimise our follow-up

search strategies based on either the sky area they can map or the fraction of signals

we wish to recover.

The first two analyses were averaged over all injections. However, we expect to be

able to localise signals with higher SNR to smaller sky areas. Therefore, the final com-

parison considers the sky area as a function of signal-to-noise ratio. Figure 2.13 shows

the sky area contained within the 90% posterior confidence interval as a function of

SNR. It also shows the area within the interval at which each signal was recovered,

but this measurement is subject to statistical variations in the relative positions of the

true location and the posterior peak due to the particular noise realisation. Overall,

we can see in both sets of points that increased SNR does result in smaller sky areas,

with the 90% interval area scaling roughly ∝ 1/SNR2. For SNRs above 25, all 90%

confidence regions contain 100 deg2 or less, but for all signals with SNR below 20

this same interval contains at least 20 deg2. We see then that in order to find electro-
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Figure 2.13: The sky area within 90% posterior confidence intervals and the posterior
interval at which an injected signal was recovered as a function of signal-to-noise ratio.
Areas are calculated using K-D tree binning. A line showing A ∝ 1/SNR2 is plotted
for comparison.

magnetic counterparts to weaker signals, we will have to be able to search larger areas

of the sky. Even with very loud signals, 90% confidence intervals still contain over a

square degree, which is a large area for electromagnetic telescopes.

Since our ability to localise sources is fundamentally limited to areas of O(10)

deg2 for 90% confidence intervals, optimised methods for electromagnetic follow-up,

such as those explored in [138], are necessary to increase the chances of observing

a counterpart. Combined detections of both GWs and electromagnetic signals (and

possibly neutrinos) will further confirm source models for GW observations and lead

to improved science. It may be possible to discover more about the internal physics of

supernovae, neutron star mergers that form black holes, and much more.
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2.3 The “Big Dog” Event and Coherence Tests

2.3 The “Big Dog” Event and Coherence Tests

Throughout 2009 and 2010, LIGO and Virgo were collecting data in their sixth and
second/third science runs, respectively (called S6 and VSR2/3). One of the primary
sources that these detectors could observe and that was searched for in the data is low-
mass compact binary coalescences. These involve binaries with a total mass less than
25M� and a minimum component mass of 1M�. The CBC group of the LVC has
published a report on the results of this search [68, 139], which made no detections
of gravitational waves. A complementary high-mass search was also performed [140].
A similar analysis was previously performed on the joint observations during S5 and
VSR1 [141–144]. A review of knowledge of event source rates following S5/VSR1 is
presented in [145].

During S6 and VSR2/3, a hardware injection was made into the detectors (by ac-
tuating test mass mirror controls) without the knowledge of the data analysis teams as
part of a “blind injection challenge”. The task was for the detection pipelines to find
the event and then for the analysis groups to correctly identify and characterise the
signal that was injected. The event came to be known as the “big dog” since initial
sky location estimates placed the source in the Canis Major constellation. The analysis
in this section was presented as a poster at the Ninth Edoardo Amaldi Conference on
gravitational waves [111] and used data from the S6 and VSR2 science runs.

One of the major considerations for determining the existence of a real signal is
the possibility of false coincidences. Each of the detectors registered an event trigger
at a similar time, but this could also potentially happen if they each glitched at ap-
proximately the same time. We are able to rule out coincident glitches by performing
a coherent search and comparing the evidence to that of an incoherent search. In the
case of just the LIGO detectors, this can be summarised as:

coherent =⇒
∫
LHLLdθ = ZHL

incoherent =⇒
∫
LHdθ1×

∫
LLdθ2 = ZHZL

If each detector did indeed observe the same signal, then the combined likelihood
function will provide a larger evidence ZHL than the product of the evidences from
the separate likelihoods ZHZL. If in fact this was not a real GW signal, then the two
detectors will favour different parameters and the coherent evidence will be severely
penalised. We can consider these as two separate models and compare the Bayesian
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evidences, such that if ZHL > ZHZL we will favour the coherent signal model and if

ZHL < ZHZL we favour the incoherent model, which implies no GW signal. A toy

example of this application can be found in [146].

A large number of time-slides were analysed in the calculation of the false alarm

rate for the “big dog” event. These involve taking data from one of the two LIGO de-

tectors and translating it in time such that there can be no coherent GW signal present.

This data is then analysed for potential triggers. Data from Virgo was not used in the

analysis that generated the time-slides and the signal in Virgo was of low SNR so V1

data is not used here, either. In total, 14 triggers were found with SNR or “newSNR”

(SNR modified by χ2 of data minus best-fit template) greater than that of the original

event; all of these contained the injected signal in H1 and a glitch in L1. Details of the

time-slides and newSNR calculation can be found in [68]. These time-slides provide

us with an opportunity to test the Bayesian criterion for comparing coherent and inco-

herent signal models. The 14 time-slide triggers and the “big dog” were each analysed

with the TaylorF2 waveform model at 2, 2.5, and 3.5 post-Newtonian order in phase

(0pN amplitude). Table 2.3 reports the Bayesian evidence ratios calculated for each

trigger using each waveform model.

The significantly negative log-evidence ratios clearly eliminate all time-slide trig-

gers from being coherent signals with probabilities much less than 1%. The most

significant time-slide, TS5, contained a weak signal in L1, so was thus able to disagree

with the signal in H1 the least. L1 on its own returned a very low evidence that would

not likely have passed as a trigger on its own. The cause for low evidence ratios for

the “big dog” event is parameter biases from the fact that we are not using the correct

waveform model. After the true signal was revealed, we found that the injection was

calculated with a time-domain waveform and contained significant spin in the larger

component, something the TaylorF2 waveform was not modeling. Even so, the lowest

coherent probability was still 37.5%, more than enough to prevent us from eliminating

the model as a possibility without further investigation.

This analysis demonstrated the usefulness of Bayesian evidence criteria for model

selection and detection for LIGO. When the noise is difficult to model but uncorre-

lated between separate detectors, comparing the Bayesian evidence from coherent and

incoherent signal models can be used as a further detection threshold to eliminate co-

incident glitches.
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Event log(R) 2pN log(R) 2.5pN log(R) 3.5 pN
BD 1.39 -0.509 1.90
TS1 -17.8 -15.4 -15.1
TS2 -11.5 -10.2 -10.1
TS3 -12.7 -14.3 -13.4
TS4 -11.1 -12.5 -10.8
TS5 -2.96 -3.88 -2.65
TS6 -14.2 -14.2 -14.1
TS7 -14.2 -12.0 -11.7
TS8 -8.38 -8.52 -6.59
TS9 -7.74 -9.21 -9.19

TS10 -14.2 -14.7 -14.0
TS11 -15.2 -13.1 -14.2
TS12 -7.39 -8.06 -8.07
TS13 -10.4 -7.53 -9.00
TS14 -10.6 -11.8 -12.3

Table 2.3: Logs of the Bayesian evidence ratios (R = ZHL/(ZHZL)) comparing coher-
ent and incoherent signal models for the time-slide triggers (TS1-TS14) and “big dog”
event (BD). This analysis clearly rules out all time-slide triggers as signals but is not
definitive with regards to the “big dog”.
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2.4 Conclusion

Throughout this chapter I have shown the useufulness of Bayesian inference methods
for the analysis of ground-based gravitational wave detector data. A first toy example
demonstrated the ability of Bayesian techniques to provide accurate parameter estima-
tion as well as a threshold for detection.

An analysis of many simulated signals injected into simulated noise representa-
tive of the LIGO-Virgo network further illustrates this applicability to ground-based
detector data. We are able to obtain accurate posterior inferences about the source
parameters, allowing us to measure intrinsic parameters of the system as well as de-
termine the location of a source on the sky. This latter capability was quantified as it
is important for obtaining electromagnetic follow-up observations to supplement the
information about the source event. We found that the LIGO-Virgo network will be
able to identify 50% of signals to within 4 deg2 and 90% of signals to within 300 deg2.
Louder signals will be more precisely measured on the sky, with the area in a given
posterior confidence interval scaling roughly ∝ 1/SNR2.

Lastly, through analysis of the “big dog” blind injection event in S6 and VSR2, we
were able to test a Bayesian criterion for the veracity of a detected signal. By requiring
that the signal in distant detectors be from the same source, we compared coherent and
incoherent signal models using the Bayesian evidence. Coincident but incoherent sig-
nals were simulated by using time-slides of detector data and the evidence ratio clearly
indicated that these were all incoherent detections, while supporting the hyposthesis
that the injection itself was a real signal.

These two tools of being able to distinguish signals from coincident glitches and
measure the probability distribution for source parameters are vital to future LIGO and
Virgo observations. Once detection claims are being made it is even more important
to be sure that these are in fact real astrophysical signals and not conspiring glitches
in the detectors. Additionally, measuring source parameters will allow for tests of
general relativity and astrophysical source and population models. Determining sky
locations facilitates electromagnetic follow-up observations to obtain even more infor-
mation about a detection and perform multi-messenger astronomy.
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Chapter 3
The Mock LISA Data Challenges

Measure what can be measured, and make
measureable what cannot be measured.

Galileo Galilei

In addition to ground-based gravitational wave searches, there are long-term plans

for a space-based detector. Originally the joint NASA and ESA project, the Laser

Interferometer Space Antenna (LISA) [82], it is now an ESA-only venture, the New

Gravitational-wave Observatory (NGO) [80, 81]. Preparation for this has involved both

technical development of the satellites as well as exploration of the science case. This

has involved modeling the populations of expected sources in the sensitivity range for

the detector and then preparing and analysing expected observational data [147, 148].

In this chapter I present the analysis of data from a few of the mock data challenges that

were run in order to spur development of data analysis code and demonstrate our ability

to obtain scientific information from future observations. The work in Section 3.1 was

done in collaboration with Jonathan Gair and Farhan Feroz and published in [149];

Section 3.2 was done in collaboration with F. Feroz and Stanislav Babak of the Max

Plank Institute for Gravitational Physics (Albert Einstein Institute, AEI) in Potsdam,

Germany; Section 3.3 was performed in collaboration with F. Feroz, S. Babak, and

Antoine Petiteau also of the AEI.
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3.1 Cosmic String Cusps

In preparation for the future launch of a space-based gravitational wave detector, such

as LISA or NGO, development of data analysis algorithms has been a field of active

research. To this end, LISA algorithm development has been encouraged by the Mock

LISA Data Challenges (MLDCs) [150]. Round number 3, completed in April 2009,

included data sets containing galactic white dwarf binaries (see Section 3.2), super-

massive black hole binary mergers, extreme-mass-ratio inspirals, cosmic string cusps,

or a stochastic background added to instrumental noise. In [149], we applied MULTI-

NEST to the problem of detecting and characterising cosmic string cusps (MLDC 3.4).

A summary of all submissions for MLDC 3 as well as plans for MLDC 4 can be found

in [151]. A separate analysis of MLDC 3.4 is described in [152], where the authors

focus on the problems of the degeneracies inherent in this signal type’s posterior dis-

tribution.

Cosmic string cusps in the observable frequency range of LISA are a burst source

with durations of hundreds of seconds or less, which is short on the timescale of a LISA

mission lasting up to two years. However, they are just one type of potential source for

burst signals. Since they can be physically modelled we can use a matched filtering

search with expected waveforms. There may be bursts of gravitational waves in the

LISA data stream from other sources and the question arises as to whether we would

be able to detect them and if we can distinguish cosmic string bursts from bursts due

to these other sources. The Bayesian evidence that MULTINEST computes is one tool

that can be used to address model selection. Evidence has been used for gravitational

wave model selection to test the theory of relativity in ground based observations [114],

and, in a LISA context, to distinguish between an empty data set and one containing

a signal [153]. Calculation of an evidence ratio requires a second model for the burst

as an alternative to compare against. We chose to use a sine-Gaussian waveform as a

generic alternative burst model, as this is one of the burst models commonly used in

LIGO data analysis (see for instance [154]). We find that the evidence is a powerful

tool for characterising bursts — for the majority of detectable bursts, the evidence

ratio strongly favours the true model over the alternative. While the sine-Gaussian

model does not necessarily well describe all possible un-modelled bursts, these results
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3.1 Cosmic String Cusps

suggest that the evidence can be used to correctly identify any cosmic string bursts that

are present in the LISA data stream.

3.1.1 Burst waveform models

3.1.1.1 Cosmic Strings

Gravitational waves can be generated by cosmic strings through the formation of cusps,

where portions of the string are traveling at nearly the speed of light [155, 156]. Such

radiation is highly beamed and when viewed along the emission axis is linearly po-

larised and takes a simple power-law form, h(t) ∝ |t − tc|1/3 [155]. When viewed

slightly off-axis, the waveform is still approximately linearly polarised but the cusp

spectrum is rounded off and decays rapidly for frequencies above fmax ∼ 2/(α3L),

where α is the viewing angle and L is the dimension of the feature generating the

cusp [155, 157]. The particular model for the frequency domain waveform adopted in

the MLDC is given by [150]

|h( f )|=

{
A f−4/3 f < fmax

A f−4/3exp
(

1− f
fmax

)
f > fmax

. (3.1)

In addition, the MLDC waveforms include a fourth-order Butterworth filter to mitigate

dynamic-range issues associated with inverse Fourier transforms. We adopt the same

ansatz as the MLDC, namely that the Fourier domain waveform amplitude is given by

|h+| =


A f−4/3

(
1+
(

flow
f

)2
)−4

f < fmax

A f−4/3
(

1+
(

flow
f

)2
)−4

exp
(

1− f
fmax

)
f > fmax

|h×| = 0 (3.2)

and the phase by exp(2πı f tc), where tc is the burst time.

3.1.1.2 Sine Gaussians

A sine-Gaussian waveform is centred on a particular frequency, and has exponentially

suppressed power at nearby frequencies. We choose to consider a linearly polarised
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sine-Gaussian, for which the waveform magnitudes in the frequency domain are given

by

|h+|=
A

2

√
Q2

2π f 2
c

exp

(
−Q2

2

(
f − fc

fc

)2
)
, |h×|= 0 (3.3)

where A is the dimensionless amplitude, fc is the frequency of the sinusoidal oscil-

lation, and Q is the width of the Gaussian envelope. The phase of the wave is again

exp(2πı f tc), where tc is the central burst time. In the time domain, the sine-Gaussian

is a small burst “packet” of particular frequency, fc, with the number of cycles in the

burst determined by Q.

3.1.1.3 Detector model

To include the LISA response we made use of the static LISA model as described

in [158]. This approximation is valid for burst sources, as LISA does not move signif-

icantly over the typically short duration of the bursts, which is of the order of 1000s

or less. The static LISA response model was also adopted for cosmic string bursts

in [157].

Three optimal detection time-delay interferometry (TDI) channels, A, E and T , can

be constructed from the LISA data stream [159]. The noise is uncorrelated within and

across these channels. For the search of the MLDC data, the A, E and T channels were

constructed as linear combinations of the three Michelson channels, X , Y and Z, that

were provided in the data release.

A = 1√
2
(Z−X), (3.4a)

E = 1√
6
(X−2Y +Z), (3.4b)

T = 1√
3
(X +Y +Z). (3.4c)
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The power spectral densities of the noise in the three channels are given by

SA( f ) = SE( f ) = 16sin2(2π f tL)
(
2
(
1+ cos(2π f tL)+ cos2(2π f tL)

)
Spm( f )

+(1+ cos(2π f tL)/2)Ssn f 2) (3.5)

ST ( f ) = 16sin2(2π f tL)
(
2
(
1−2cos(2π f tL)+ cos2(2π f tL)

)
Spm( f )

+(1− cos(2π f tL))Ssn f 2) (3.6)

Spm( f ) =

(
1+
(

10−4Hz
f

)2
)

Sacc

f 2

(3.7)

where tL = 16.678s is the light travel time along one arm of the LISA constella-

tion, Sacc = 2.5× 10−48Hz−1 is the proof mass acceleration noise and Ssn = 1.8×
10−37Hz−1 is the shot noise.

The LISA data stream will also contain a confusion noise foreground from unre-

solved white dwarf binaries in our galaxy. These were not included in the noise model

for the MLDC round 3.4, and so we have ignored the confusion noise contribution in

the current work. In practice, we found that the T channel was too noisy to be used in

the MLDC search and did not contribute any significant SNR, so we used the A and E

channels only for data analysis.

3.1.1.4 Likelihood evaluation

The space of gravitational waveform signals possesses a natural scalar product [160,

161],

〈h |s〉= 2
∫

∞

0

d f
Sn( f )

[
h̃( f )s̃∗( f )+ h̃∗( f )s̃( f )

]
, (3.8)

where

h̃( f ) =
∫

∞

−∞

dt h(t)e2πı f t (3.9)

is the Fourier transform of the time domain waveform h(t). The quantity Sn( f ) is

the one-sided noise spectral density of the detector. For a family of sources with

waveforms h(t;~λ ) that depend on parameters ~λ , the output of the detector, s(t) =

h(t; ~λ0) + n(t), consists of the true signal h(t; ~λ0) and a particular realisation of the
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Parameter Minimum Maximum
log(A) −23.3 −21

fmax (Hz) 0.001 0.5
tc (s) T0 T0 +∆T

sin(θ) −1 1
φ (rad) 0 2π

ψ (rad) 0 2π

Table 3.1: Prior probability distributions for the cosmic string cusp model.

noise, n(t). Assuming that the noise is stationary and Gaussian, the logarithm of the

likelihood that the parameter values are given by~λ is

logL
(
~λ
)
=C− 1

2

〈
s−h

(
~λ
)∣∣∣s−h

(
~λ
)〉

, (3.10)

and it is this log-likelihood that is evaluated at each point in the search. The constant,

C, depends on the dimensionality of the search space, but its value is not important

as we are only interested in the relative likelihoods of different points. As mentioned

earlier, the LISA data stream has several independent data channels. The total multi-

channel likelihood is obtained by summing the scalar product in Equation (3.8) over

the A and E channels that are used.

3.1.1.5 Priors

The parameter space over which to search for signals must also be specified. For the

searches with the cosmic string model, we used uniform priors for each parameter that

covered the signal space from which the MLDC sources were drawn. These correspond

to the ranges in Table 3.1. Here, θ is the sky colatitude, φ is the sky azimuthal angle,

and ψ is the polarization. The data stream was divided into segments for the search

and T0 is the start time of the particular data segment being searched and ∆T is that

segment’s length.

For the sine-Gaussian model, we maintained the approach of using uniform prior

ranges while making sure that all signals would fall within our specified bounds. The

priors used are given in Table 3.2. T0, ∆T , θ , φ , and ψ are the same physical quantities
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3.1 Cosmic String Cusps

Parameter Minimum Maximum
log(A) −22.3 −18
fc (Hz) 0.001 0.5

Q 1 10
tc (s) T0 T0 +∆T

sin(θ) −1 1
φ (rad) 0 2π

ψ (rad) 0 2π

Table 3.2: Prior probability distributions for the sine-Gaussian model.

as in the cosmic string model; the prior on log(A) was modified in order to cover the

same range of SNRs for the signals.

3.1.2 MLDC challenge 3.4 search

Mock LISA Data Challenge 3.4 [150] consisted of a data set of 221 samples at a ca-

dence of 1s, containing GW burst signals from cosmic string cusps [155, 156]. The

signals occurred as a Poissonian random process throughout the data set, with an ex-

pectation value of five events. To analyse the data, we divided the data stream into

segments of 32768s in length, with 2048s of overlap between neighbouring segments.

The overlap was chosen to ensure that each of the bursts, which were of maximum

duration of ∼ 1000s, would be entirely contained in at least one segment. To avoid

artefacts in the Fourier domain, we used Welch windowing before performing the Fast

Fourier Transform (FFT) of each segment. We also analysed data segments of the same

length, offset from the first set by 16384s, to check no signals had been missed and to

verify that the detected signals were not edge artefacts. We also repeated the search

with segments of 16384s and 8192s in length to verify our results. MULTINEST was

run with 4000 live points on each segment, using 8 3GHz Intel Woodcrest processors

in parallel; the algorithm took approximately 5 minutes to run on a single segment

when no signal was present, and twice this when one was present. The search of the

offset and shorter segments returned all of the same detections. We ran the search on

the MLDC training data set to test the algorithm, and then on the challenge data set.
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3. THE MOCK LISA DATA CHALLENGES

To assess the quality of our solutions we will not only use the recovered parameters

for a source, but also the signal-to-noise ratio (SNR) of the recovered solution. The

degeneracies in the parameter space mean that a waveform can match the true wave-

form very well with very different parameter values. The recovered SNR is a measure

of how much of a residual would be left in the data stream if the recovered parameters

were used to subtract a given source from the data set. If the recovered SNR is close to

the true SNR we can say that we have correctly identified the waveform of the source

even if the parameters are quite different.

3.1.2.1 Challenge data

Three signals were found in the challenge data set at tc ∼ 6× 105s, tc ∼ 1.07× 106s

and tc ∼ 1.6× 106s and this was the correct number of signals. We label these as

source candidates 3, 2 and 1 respectively for consistency with the MLDC key file. For

source candidates 1 and 3, MULTINEST returned a flat distribution in fmax, thereby

leading us to conclude that the actual maximum was above the Nyquist frequency of

0.5 Hz. We identified several modes in the posterior in each case, and used the local

Bayesian evidence to characterise these. We decided to submit the two modes of high-

est evidence; these generally corresponded to two antipodal sky solutions. However,

for source candidate 3 there was a third mode of almost equal local evidence, and so

we submitted that mode as well. The middle source, 2, was found to have a break

frequency of 0.0011 Hz, very close to the minimum value in the prior range of 0.001

Hz. At this low frequency, LISA is not able to resolve the sky position for a burst

source. As expected, we found very broad posteriors for all parameters other than the

maximum frequency. As the posterior was not well separated into modes, we chose

to submit only one set of parameters in this case, which we took to be the maximum

a-posteriori parameters.

In Table 3.3 we list the true parameters for the three sources in the challenge data

set (available at [162]), and the parameters recovered by MULTINEST. For simplicity

we only include the parameters for the mode of highest local evidence, not all of the

modes submitted. The agreement between the true and recovered parameters is broadly

consistent with our expectations, and the true parameters lie within a few standard

deviations of the means in most cases. For source 1, tc is quite far from the true value
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3.1 Cosmic String Cusps

by this measure. However, this is due to the correlated degeneracies between tc, θ

and φ . The true time of coalesence was consistent with the full recovered posterior

distribution. Additionally, for source 1 the true value of fmax is considerably below

Nyquist, while our analysis recovered a flat distribution indicative of a value above

Nyquist. We carried out further checks, but there is no indication that the data favours

a particular value of fmax in this case.

In Figure 3.1 we show the true waveforms, in the A channel, for the three sources

present in the data set, and overlay them with the waveforms corresponding to each of

the modes that we included in our submission. We see clearly that, in all three cases,

the recovered waveforms reproduce the true waveforms well, with small differences

that arise from noise fluctuations in the detector. We expect the recovered SNR to be

a better measure of the quality of the solution than the values of the recovered pa-

rameters. In Table 3.4 we list the true SNRs in the A and E channels, and the SNRs

recovered by each of the solutions included in the submission. We have clearly recov-

ered all of the SNR of the true signal, and the residual after subtraction would be at the

level of instrumental noise. We thus regard the search as a success.

In Figure 3.2 we show 1D and 2D marginalised posterior probability distributions

for the second of the sources present in the challenge data set. We see that in this case

fmax can be measured very well, since it is far below Nyquist, but degeneracies in sky

position and time of coalesence are clearly evident. The sky position degeneracies are

particularly severe since the source is at very low frequency.

3.1.3 Model selection using Bayesian evidence

The MLDC search demonstrated that MULTINEST is able to correctly identify and

characterize bursts from cosmic string cusps in LISA data. However, cosmic string

cusps produce a very particular waveform signature. LISA might also detect bursts

of gravitational radiation from other sources, such as supernovae of hypermassive ob-

jects, or even unmodelled sources. A search of the LISA data using a cosmic string

cusp model could conceivably detect these other types of burst. In order to make sci-

entific statements it is important to be able to say what the most likely origin for an

observed burst could be. The Bayesian evidence provides a tool for carrying out model
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Source A (×10−21) ψ (rad) θ (rad) φ (rad) fmax (Hz) tc (×106s)

1

True 0.866 3.32 0.556 3.71 0.0296 1.6022
Recovered 1.65 2.82 0.349 6.01 0.5∗ 1.6030

Mean 1.13 2.70 −0.141 4.38 0.27 1.6030
Std. Dev. ±0.22 ±0.14 ±0.30 ±2.6 ±0.14 ±0.000071

2

True 2.79 5.12 −0.444 3.17 0.00108 1.0727
Recovered 2.97 0.271 −0.893 5.12 0.00108 1.0732

Mean 2.75 0.91 −0.00804 5.31 0.00108 1.0733
Std. Dev. ±0.63 ±0.28 ±0.52 ±0.46 ±0.000048 ±0.00019

3

True 0.854 4.66 −0.800 0.217 6.15 0.60000
Recovered 1.14 0.927 −0.562 5.45 0.5∗ 0.59991

Mean 1.16 0.962 −0.488 5.48 0.24 0.59992
Std. Dev. ±0.18 ±0.16 ±0.16 ±0.18 ±0.14 ±0.000076

Table 3.3: Parameters of the three signals present in the challenge data set, and the
parameters recovered by MULTINEST for the mode of highest local evidence identified
by the search. The parameters are amplitude, A, polarisation, ψ , sky colatitude, θ ,
and longitude, φ , break frequency, fmax, and time of coalesence at the Solar System
barycentre, tc. In the row labelled “Recovered” we quote the maximum likelihood
parameters of the mode with highest evidence identified by MULTINEST. In the rows
labelled “Mean” and “Std. Dev.” we quote the mean and standard deviation in that
parameter, as computed from the recovered posterior for the mode of highest evidence.
Where the value of fmax is marked by a ∗, the distribution in this parameter was very
flat, indicating that fmax was probably above Nyquist. In these cases, we set fmax to
the Nyquist frequency of 0.5Hz for the maximum likelihood parameters, but still quote
the actual recovered mean and standard deviation.
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Figure 3.1: Plots comparing the true waveforms with the waveforms for the various
modes recovered by MULTINEST and included in our submission for the analysis of
the challenge data set. (a) Source 1, (b) Source 2, and (c) Source 3.
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Figure 3.2: Two-dimensional marginalised posteriors as recovered by MULTINEST in
the search for the second of the cosmic string bursts in the MLDC challenge data set.
The parameters, from top-to-bottom and left-to-right, are colatitude, longitude, burst
time, burst amplitude, burst break frequency and waveform polarization. At the top of
each column we also show the one-dimensional posterior for the column parameter.

56



3.1 Cosmic String Cusps

Recovered SNR
Source tc(s) Channel True SNR Mode 1 Mode 2 Mode 3

1 1.6×106 A
E

41.0
14.5

41.2
14.5

41.0
14.6

N/A

2 1.1×106 A
E

30.7
13.9

30.7
13.9

N/A N/A

3 6×105 A
E

18.8
36.9

18.9
36.7

18.5
37.1

18.4
36.8

Table 3.4: Signal-to-noise ratios for the three sources in the challenge data set. We
show the true SNRs in the A and E channels, plus the SNRs for all of the modes we
submitted for analysis.

selection of this type, although it relies on having two alternative hypotheses to com-
pare. As an alternative to a cosmic string model, we consider a sine-Gaussian burst,
which is a generic burst waveform commonly used in burst analysis for ground-based
gravitational wave detectors [154]. We can use the evidence ratio to compare these two
models when analysing a data stream containing a cosmic string burst or containing a
sine-Gaussian burst. There are two stages to this analysis — 1) determining the signal-
to-noise ratio at which we begin to be able to detect a signal of each type in a LISA
data set; 2) determining the SNR at which the Bayesian evidence begins to favour the
true model over the alternative.

3.1.3.1 Detection threshold

To determine the SNR needed for detection of a burst source with the MULTINEST al-
gorithm, we generated a sequence of data sets containing a particular source and Gaus-
sian instrumental noise generated using the theoretical noise spectral densities given in
Equation (3.7), but varying the burst amplitude between the data sets to give a range
of SNRs between 5 and 15. Note that here and in the following we quote total SNRs
for the A and E channels combined, ρ2

Total = ρ2
A + ρ2

E . Each data set was searched
with MULTINEST and the global log-evidence of the data set, as computed by MULTI-
NEST, was recorded. This was repeated for 8 different cosmic string sources and 9 dif-
ferent sine-Gaussian sources. The parameters for the cosmic string sources were taken
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from the parameters of the five training and three blind sources injected in the MLDC

data sets, as these covered the parameter space of possible signals nicely. The im-

portant parameters of the sine-Gaussian model are the frequency and the burst width,

so we considered three different values of each, and constructed waveforms for the

nine possible combinations, while choosing a random value for the sky position and

waveform polarisation in each case.

In Figure 3.3 we show the global log-evidence of the data as a function of the SNR

of the injected signal for the cosmic string burst sources. Figure 3.4 shows the corre-

sponding results for the sine-Gaussian bursts. The detection threshold for cosmic string

bursts is at an SNR of 5–8 depending on the source parameters. Most of the sources

have a significant log-evidence (greater than 3) at an SNR of 7, but the SNR required

for detection is higher for the first training source and the second blind source. These

are the two sources with the lowest values of the break frequency fmax, which makes

the waveforms much smoother and simpler in the time domain. This may explain why

it is more difficult to distinguish them from noise. The MLDC data sets had a prior

for the source SNR, in a single Michelson channel, of ρ ∈ [10,100], so these results

suggest we would be able to detect any source drawn from the MLDC prior.

The sine-Gaussian bursts require a slightly higher SNR for detection, of 6–9, but

this increase in threshold is only of the order of 1 in SNR. The sine-Gaussian signals

are in general much simpler in form than the cosmic strings and therefore it is perhaps

unsurprising that it requires a higher SNR to distinguish them from noise. In this case,

it was the sources with highest frequency, fc = 0.49Hz, that were most difficult to

detect. However, since the Nyquist frequency of the data sets was 0.5Hz, the difficulty

of detection may have arisen because the signal was partially out of band.

3.1.3.2 Model selection

To explore model selection, we used MULTINEST to search the same data sets de-

scribed above, but now using the alternative model, i.e., we searched the cosmic string

data sets using the sine-Gaussian likelihood and vice versa. For sufficiently high SNR,

in both cases the alternative model was able to successfully detect a signal in the data

set. Typically, the best-fit sine-Gaussian signal to a cosmic string source has low Q and

a frequency that matches the two lobes of the cosmic string burst. The parameter Q sets
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Figure 3.3: The Bayesian log-evidence for the data set as a function of the SNR for
eight different cosmic string cusp signals. These signals had the same parameters,
other than amplitude, as the various sources used in the training and blind data sets
of the MLDC. The labels in the key are consistent with labels in Table 3.3 and the
solutions at [162].

Figure 3.4: As Fig. 3.3, but now showing results for nine different sine-Gaussian sig-
nals, with frequency, f , and width, Q, as shown.

59



3. THE MOCK LISA DATA CHALLENGES

2.0596 2.0597 2.0598 2.0599 2.06 2.0601 2.0602 2.0603
x 106

−20

−15

−10

−5

0

5
x 10−21

Time (s)

A 
ch

an
ne

l a
m

pl
itu

de

Comparison of Recovered Signals for a Cosmic String

 

 

True Cosmic String
Recovered Sine Gaussian
Recovered Cosmic String

Figure 3.5: Typical example of confusion when searching a cosmic string data set with
the wrong model. The plot shows a comparison of the injected cosmic string signal to
the best-fit signals found by MULTINEST using the cosmic string model as templates
and using the sine-Gaussian model as templates.

the number of cycles in the sine-Gaussian wave packet, and so a sine-Gaussain with
Q ∼ 2 most closely resembles a cosmic string event, which typically has two cycles.
This is illustrated for a typical case in Figure 3.5. Similarly, the best-fit cosmic string
source to a sine-Gaussian signal matches the central two peaks of the sine-Gaussian
waveform as well as possible. A typical case is shown in Figure 3.6.

From the results of these searches it is possible to construct the evidence ratio
of the two models for each of the data sets. In Figure 3.7 we show the ratio of the
Bayesian evidence for the cosmic string model to that of the sine-Gaussian model
when searching the cosmic string data sets. We see that for some signals the evidence
ratio starts to significantly favour the true model, i.e., the cosmic string, at an injected
SNR of ∼ 5, which is the point at which we first start to be able to detect the cosmic
string burst at all. However, for the two low frequency sources, training source 1
and blind source 2, the evidence ratio only starts to favour the true model at SNR∼
11 or higher. This partially reflects the higher SNR required to detect the source,
but also includes the confusion caused by the signal very closely resembling a sine-
Gaussian. We conclude that when a cosmic string burst is loud enough to be detected,
then the evidence favours the interpretation of the event as a cosmic string burst, with
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Figure 3.6: As Figure 3.5, but we now show a typical confusion example for searches
of the sine-Gaussian data sets. We compare the injected sine-Gaussian signal to the
best-fit signals recovered by MULTINEST using both the cosmic string and the sine
Gaussian models.

lower frequency sources requiring additional SNR. Since MLDC sources have an SNR

greater than 10 in each Michelson channel, they should be clearly distinguishable from

sine-Gaussian bursts.

In Figure 3.8 we show the ratio of the evidence of the sine-Gaussian model to that of

the cosmic string model when searching the data sets containing sine-Gaussian signals.

These are distinguishable from cosmic strings at SNRs of ∼ 6–9. This slightly higher

SNR in order to correctly choose the sine-Gaussian model reflects the fact that we need

a somewhat higher SNR to detect the sine-Gaussians in the first place. The only case

for which the evidence ratio does not begin to favour the sine-Gaussian model at the

point where the source becomes detectable is the case with f = 0.002 Hz and Q = 2.

This is a sine-Gaussian signal with only two smooth oscillations, and so it does look

rather like a low frequency cosmic string event. Even in that case, the evidence begins

clearly to favour the correct model for SNRs of ∼ 12 and higher.
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Figure 3.7: The ratio of the Bayesian evidence for the cosmic string model to that of
the sine-Gaussian model when searching a data set containing a cosmic string burst
source. We show the Bayesian evidence ratio as a function of signal SNR for a variety
of different cosmic string sources.

Figure 3.8: As Fig. 3.7, but now showing the ratio of the Bayesian evidence for the
sine-Gaussian model to that of the cosmic string model when searching a data set
containing a sine-Gaussian burst source.
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3.1.4 Discussion

We have considered the use of the multi-modal nested sampling algorithm MULTI-

NEST for detection and characterisation of cosmic string burst sources in LISA data.

As a search tool, the algorithm was able successfully to find the three cosmic string

bursts that were present in the MLDC challenge data set. These sources were cor-

rectly identified in the sense that the full signal-to-noise ratio of the injected source

was recovered, and a posterior distribution for the parameters obtained. The maximum

likelihood and maximum a-posteriori parameters were not particularly close to the true

parameters of the injected signals, but this was a consequence of the intrinsic degen-

eracies in the cosmic string model parameter space and in all cases the true parameters

were consistent with the recovered posterior distributions.

In controlled studies, we found that the SNR threshold required for detection of the

cosmic string bursts was ∼ 5–8, depending on the burst parameters. Bursts with a low

break-frequency require a higher SNR to detect than those with high break frequen-

cies. We also explored the detection of sine-Gaussian bursts and in that case the SNR

required for detection was slightly higher, being typically 6–9, with sources having

frequency close to Nyquist being more difficult to detect.

MULTINEST is designed to evaluate the evidence of the data under a certain hy-

pothesis, and this can be used to compare possible models for the burst sources. LISA

may detect bursts from several different sources, and it is important for scientific in-

terpretation that the nature of the burst be correctly identified. We used the Bayesian

evidence as a tool to choose between two different models for a LISA burst source —

the cosmic string model and the sine-Gaussian model, which was chosen to represent

a generic burst. The Bayesian evidence works very well as a discriminator between

these two models. The evidence ratio begins to clearly favour the correct model over

the alternative at the same SNR that the sources become loud enough to detect in the

first place.

The usefulness of MULTINEST as a search tool in this problem is a further illus-

tration of the potential utility of this algorithm for LISA data analysis, as previously

demonstrated in a search for non-spinning SMBH binaries [107]. Other algorithms

based on Markov Chain Monte Carlo techniques have also been applied to the search

for cosmic strings [157]. Both approaches performed equally well as search tools in
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the last round of the MLDC. MULTINEST was not designed primarily as a search al-

gorithm, but as a tool for evidence evaluation, and this work has demonstrated the

utility of the Bayesian evidence as a tool for model selection in a LISA context. Other

problems where the evidence ratio approach could be applied include choosing be-

tween relativity and alternative theories of gravity as explanations for the gravitational

waves observed by LISA, or choosing between different models for a gravitational

wave background present in the LISA data set. The Bayesian evidence was previously

used in a LIGO context as a tool to choose between alternative theories of gravity [114]

and in a LISA context to distinguish a data set containing a source from one containing

purely instrumental noise [153].

In the context of interpretation of LISA and NGO burst events, what we have con-

sidered here is only part of the picture. We have shown that we are able to correctly

choose between two particular models for a burst, and this can easily be extended

to include other burst models. However, LISA/NGO might also detect bursts from un-

modelled sources. In that case, algorithms such as MULTINEST which rely on matched

filtering would find the best fit parameters within the model space, but a higher intrin-

sic SNR of the source would be required for detection. In such a situation, we would

like to be able to say that the source was probably not from a model of particular type,

e.g., not a cosmic string burst. There are several clues which would provide an indi-

cation that this was the case. The sine-Gaussian model is sufficiently generic that we

would expect it, in general, to provide a better match to unmodelled bursts than the

cosmic string model, which has a very specific form. Therefore, we could say that if

the evidence ratio favoured the cosmic string model over the sine-Gaussian model it

was highly likely that the burst was in fact a cosmic string and not something else.

Similarly, if we found that several of the alternative models had almost equal evidence,

but the SNR was quite high, it would be indicative that the burst was not described by

any of the models. We have seen that at relatively moderate SNRs, when the signal is

described by one of the models, the evidence clearly favours the true model over an

alternative. If we found that two models gave almost equally good descriptions of the

source, it would suggest that the burst was not fully described by either of them. A

third clue would come from the shape of the posterior for the source parameters. The

cosmic string waveform space contains many degeneracies, but these can be charac-

terised theoretically for a given choice of source parameters. If the signal was not from
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a cosmic string, we might find that the structure of the posterior was modified. Fi-
nally, some techniques have been developed for the Bayesian reconstruction of generic
bursts [163] which could also be applied in a LISA/NGO context. The usefulness of
these various approaches can be explored further by analysing data sets into which nu-
merical supernovae burst waveforms have been injected. While the necessary mass of
the progenitor is probably unphysically high for a supernova to produce a burst in the
LISA/NGO frequency band, such waveforms provide examples of unmodelled burst
signals on which to test analysis techniques. The final LISA/NGO analysis will em-
ploy a family of burst models to characterize any detected events. The work described
here demonstrates that the Bayesian evidence will be a useful tool for choosing be-
tween such models, and MULTINEST is a useful tool for computing those evidences.

3.2 Galactic White Dwarf Binaries

The Milky Way Galaxy has a population of order tens of millions of objects that can
be classified as compact binaries. These include separated binaries of two objects that
interact only gravitationally and interacting binaries which have mass transfer from
one object to the other. Separated binaries may consist of two white dwarfs, two neu-
tron stars, or one of each. Types of interacting binaries include AM CVn stars (white
dwarf accreting mass from a companion) and ultra-compact X-ray binaries (neutron
star accreting mass from a companion). Mock LISA Data Challenge 3.1 [150] uses
a population model which is described by [164]. It consists of ∼ 26 million detached
binaries and∼ 34 million interacting binaries, each modeled as two point masses in cir-
cular orbit with increasing or decreasing orbital frequency depending on the dominant
process (gravitational radiation or mass transfer, respectively).

3.2.1 Data Model

The plus and cross polarizations of the binary signal are given by [150]

h+(t) =A(1+ cos2
ι)cos

[
2π( f t + ḟ t2/2)+φ0

]
, (3.11)

h×(t) =−2A(cos ι)sin
[
2π( f t + ḟ t2/2)+φ0

]
, (3.12)

A =
4(GM)5/3

c4DL
(π f )2/3, (3.13)
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where M is the chirp mass as defined before, ḟ is the constant frequency derivative,

φ0 is the phase at t = 0, and ι is the inclination of the binary to our line of sight. A

fast-slow decomposition of the LISA orbital motion can also be used to simulate the

detector phase measurements in the frequency domain, as described in [165].

This work was performed as an extension to that done in [166]. In that paper,

the authors use an F-statistic to analytically maximise over most amplitude and phase

factors and then perform a template bank search followed by parameter refinement

with the Nelder-Mead optimisation algorithm [167]. The search is done in the four-

dimensional space defined by the initial frequency, f , frequency drift, ḟ , and sky lati-

tude and longitude, β and λ .

The challenge data set was broken into 0.1 mHz frequency bands to simplify the

analysis; each band was separated with Butterworth bandpass filters as described in

Section V of [166]. In the initial analysis for each frequency band, the loudest signal

is subtracted and then the search is performed again until no signal can be identified.

This process is able to handle the large number of signals present in the data, espe-

cially below ∼ 7mHz, but can be very time-consuming at higher frequencies where

larger template banks are needed to ensure a minimum correlation with any signals

present. We therefore aimed to use the ability of MULTINEST to identify multiple

signals present in each band and evaluate local Bayesian evidences and a posterior

maximum for each.

Each bandpassed frequency range was analysed for signals with frequencies in

the centre of the band. The prior on f was U[ fc− 0.06, fc + 0.06]mHz. Since the

bandpasses were performed at 0.1 mHz intervals, this allowed for 0.01 mHz of overlap

on either side while not searching too close to the edges of the filter. The frequency

drift, ḟ for detached binaries evolving via gravitaitonal radiation is given by

ḟ =
24
5π

(
GM

2c3

)5/3

(2π f )11/3. (3.14)

Therefore, in order to set prior limits on this parameter, we assumed a uniform prior

over [(−0.25) ḟmax, ḟmax]. ḟmax is calculated with a maximum chirp mass of 1.5M� at

the highest frequency in the prior. A minimum ḟ of −1/4 times the maximum is used

because as [165, 168] describe, contact binaries with mass transfer are driven to longer

periods with similar frequency evolution to Equation (3.14), but with opposite sign and
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slightly lower magnitude. We have the benefit of knowing the true signals present in

the data and these prior bounds were confirmed to include them all. The sky position

prior is taken to be uniform over the sphere: uniform in λ ∈ [0,2π] and uniform in

cosβ ∈ [−1,1].

The noise in each TDI channel can be taken as approximately constant over the

frequency band and is calculated at the central frequency using the formulas provided

in [166].

3.2.2 Results

We searched 71 frequency ranges, spanning 4.99–12.11mHz. The density of signals

is much greater at lower frequencies so we expect more modes of the posterior to be

identified in those bands. Modes were clustered by starting frequency only. Once the

analyses were complete, the posteriors were evaluated to determine how many signals

were found and with what parameter values. This was done by collecting all posterior

modes with local log-evidences above 100. If any two were found to have frequencies

within 0.16µHz and frequency derivative within 2.6×10−14Hz/s, the one with larger

evidence was considered. These constraints on saying two signals are potentially the

same are determined by 10/Tobs and 100/T 2
obs, where Tobs is the total two year obser-

vation time. This served to eliminate potential false detections and secondary max-

ima. Maximum likelihood parameter values were saved for each detected signal; very

narrow modes meant that these did not differ significantly from maximum posterior

values. In total, 754 signals were identified in the 4.99–12.11mHz range this way.

Using the criteria from [166] to determine the true/false positive rate for these de-

tections we find that the majority of signals found are true. The frequency resolution is

given by the width of bins in Fourier space, which is given by ∆ f = 1/Tobs ' 16nHz.

The resolution in the frequency drift is the difference at which over the total obser-

vation time the frequency will drift by the resolution in frequency; this is given by

∆ ḟ = 1/T 2
obs ' 2.5× 10−16Hz/s. We therefore require our reported solutions to be

correct within the resolution possible. However, in this frequency range we find only

about one quarter of the 2924 total signals present. At higher frequency bands we find

all or nearly all of the signals but the recovery decreases as more signals add to the

confusion. Figure 3.9 shows the number of true signals in the MLDC3.1 key (bright
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Figure 3.9: Number of true, recovered, and correctly detected signals in each frequency
band analysed.

signals that can be measured above the background) as well as the number of reported

and correct detections in each frequency band. Complementary to this, Figure 3.10

shows the purity and completeness of the reported detections from the analysis of each

frequency band. The purity is the percent of reported detections that are correct and

completeness is the percentage of all true signals that are correctly detected. The purity

is roughly consistent across all frequency bands, staying above 80% most of the time

and only once dipping just below 70%. Completeness is very poor at low frequencies,

with values as low as 10%. However, at frequencies above 10mHz most signals present

are recovered.

Values of f and ḟ for true signals present in the data versus those recovered are

shown in Figure 3.11. The first plot shows all signals within the 4.99–12.11mHz band,

while the second and third plots show the upper and lower 0.5mHz ranges, respectively.

We can compare in these last two the relative density of signals and how that has an

effect on the completeness of the detections and the rate of false positives (indicated

by a red ×). In the range of less dense signals we not only recover a larger fraction of
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Figure 3.10: The purity and completeness of detections for all frequency bands anal-
ysed. The purity is the percent of reported detections that are correct and completeness
is the percentage of all true signals that are correctly detected.
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signals present, but also with smaller errors and, in this case, no false positives.
For all correctly recovered signals we can consider the recovery errors. Figure 3.12

plots histograms of the difference in the reported values of the measured parameters
versus their true values. f and ḟ are reported in units of the resolution size. We find that
f and ḟ are found to high precision, with most values being correct to within a fraction
of the resolution. This is possible as the signals will not be entirely in one frequency
bin over the entire observation period and the relative magnitudes can provide this extra
resolution. In addition, the sky location is found to good precision with most errors
much less than a radian.

3.2.3 Discussion

This analysis has shown that MULTINEST, and nested sampling in general, is a useful
tool for detecting multiple signals present in a single data set. Even in the presence
of a much larger number of signals causing confusion, the purity of recovered signals
is not adversely affected. This will be very useful for analysis of eLISA/NGO data
that will have many white dwarf binary signals present. In order to improve the purity
and completeness of these detections, it will likely be necessary to implement a multi-
stage analysis where the loudest detected signals are subtracted and the residual data
re-analysed for more signals. This type of pipeline has been tested for white dwarf
binary sources for LISA [169]. At lower frequencies it may also be necessary to use
narrower frequency bands for analysis to lower the number of signals present. The
status of detection at this time is very promising as this analysis may be performed
very rapidly and in parallel to detect multiple signals at a time.

3.3 Cosmic Strings in the Presence of a Galactic Fore-
ground

When a space-based GW detector is eventually launched, it will observe many signals
from various sources all at the same time. As considered in the previous section, 3.2,
there may be a foreground of galactic white dwarf binary signals. The impact of this
will depend on the final sensitivity of the eLISA/NGO detector. Here we consider the
data from the fourth round of the Mock LISA Data Challenge in an attempt to recover
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(a) (b)

(c)

Figure 3.11: Plots comparing the values of f and ḟ for true signals present in MLDC
3.1 challenge data in the 4.99–12.11mHz range. True positive detections are indicated
by a blue +, false positives by a red ×. (a) Displays the entire frequency range, (b) the
upper 0.5mHz, and (c) the lower 0.5mHz. Dashed green lines indicate the maximum
and minimum for the ḟ prior.
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Figure 3.12: The error in recovered parameters for correctly detected signals. f and ḟ
are reported in terms of the resolution size.
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cosmic string bursts in the presence of no galaxy, a reduced galactic component, and
the full galaxy foreground.

The data generation procedure is described in [151]. With the training data key
file for MLDC 4, we generated data sets with just the cosmic strings, instrumental
noise, and one of three options for the level of inclusion for galactic white dwarf (WD)
binaries. At the lowest level, no WDs are included. In the middle level, a confusion
foreground of millions of WD binaries that cannot be separated from each other is
added. These have an approximate power spectral density given by Equation (3.15),
which was calculated in [170] (Equation 14) for the specific model of the galactic
stellar population used in MLDC 4.

Sconf( f ) =


10−44.62 f−2.3 10−4.0 < f ≤ 10−3.0

10−50.92 f−4.4 10−3.0 < f ≤ 10−2.7

10−62.80 f−8.8 10−2.7 < f ≤ 10−2.4

10−89.68 f−20.0 10−2.4 < f ≤ 10−2.0

0 else

m2Hz−1 (3.15)

Finally, the full WD galaxy population, including the confusion foreground and thou-
sands of louder, separable binaries is added.

3.3.1 Data and Signal Models

The full MLDC 4 data spanned approximately 2 years and was sampled at a 1.875s
cadence, yielding 225 total samples. Cosmic string signals were injected at times ran-
domly sampled from a uniform distribution over the entire span, with a number that
was sampled from a Poisson distribution with a mean of 20 signals (22 were actually
injected). In order to efficiently search the data for these sparse signals, we segmented
the data into stretches that were 61440s long with 15360s of overlap (each start was
46080s after previous), to avoid missing signals potentially at the edges. Additionally,
we applied a Tukey window to each segment to avoid edge effects in the Fourier trans-
form; the Tukey window was used in place of the Welch window that was implemented
in Section 3.1.2 as it ensures that no data point was windowed by more than 50% with
the given overlap (the minimum overlap from the Welch window was ∼ 25%). There
were 1366 segments in total for each data set.

The instrumental noise model was the same as in MLDC3, so Equations (3.5), (3.6),
and (3.7) were used. Additionally, for the data sets that included either the reduced
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or full galaxy population we added the galactic foreground confusion noise given by

Equation (3.15). Values from Equation (3.15) were further multiplied by a factor to

bring them into the same units as the instrumental noise and our data values.

S′conf( f ) = 64π
2 f 2t2

L sin2(2π f tL)×Sconf( f ) (3.16)

3.3.2 Comparison of Results

3.3.2.1 No Galaxy

In this data set, only instrumental noise and cosmic strings were present. MULTINEST

was run on each segment of data and modes found with a local log-evidence of more

than 7 were recorded as potential detections. This limit is chosen due to the analy-

sis in Section 3.1.3.1. Additionally, the global log-evidence from each segment was

recorded. Of the 1366 segments, 1339 contained no GW signals. The 22 signals were

present in 27 of the segments due to overlap. When compiling the list of detected sig-

nals, any two within 998s of each other were considered to be the same signal; this

time was chosen as it is approximately equal to the light travel time across the diam-

eter of the Earth’s orbit, along which LISA would travel. If a signal was found twice,

the mode with higher log-evidence was chosen to give the evidence and parameters

of detection. This always selected the segment in which the signal was further from

the edge and thus suffered less from windowing. Each signal was recovered to high

accuracy with log-evidences of 70 or greater. In Figure 3.13 we plot the receiver-

operator curve (ROC) for using the log-evidence as a threshold for detection and the

true and false positive rates as a function of this threshold. The ROC is perfect, which

indicates that there is a clear detection threshold for these signals in the presence of

only instrumental noise and that all signals pass. Figure 3.14 shows a histogram of the

global log-evidences from noise-only segments and a plot of the same log-evidences

for each segment versus time. The frequency distribution of log-evidences follows an

inverse-χ2 distribution and there is no time dependency, as expected. All segments

that contained only noise had log-evidences of 4 or less, with 98.5% having ln(Z)< 0

and thus supporting the noise-only model.

74



3.3 Cosmic Strings in the Presence of a Galactic Foreground

Figure 3.13: (Top) ROC for cosmic strings in instrumental noise, showing true positive
rate vs. false positive rate as the threshold varies. (Bottom) The true and false positive
detection rates as a function of the log-evidence. ln(Z) is adjusted by adding a constant
to all values so that the minimum is greater than 1.
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Figure 3.14: (Top) Histogram of global log-evidences for the segments that do not
contain a cosmic string GW signal. These fit an inverse-χ2 distribution and 98.5%
have ln(Z) < 0. (Bottom) The log-evidence values of noise-only segments over time
(segment number). No time dependence is present.
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Figure 3.15: (Top) Histogram of global log-evidences for the segments that do not
contain a cosmic string GW signal with the reduced galaxy population. (Bottom) The
log-evidence values of noise-only segments over time (segment number). There is a
clear time-dependence as the detector’s sensitivity sweeps over the galaxy.

3.3.2.2 Reduced Galaxy

The second data set analysed contained the reduced population of galactic binaries in

addition to instrumental noise. MULTINEST was run and we recorded detections and

evidences as before. Figure 3.15 shows the histogram and time-dependent plot of log-

evidences from segments that were known not to contain signals. The histogram does

not follow the inverse-χ2 distribution expected if Equation (3.15) correctly accounts

for the presence of the galactic foreground confusion noise. We can also see in the

time-dependent plot that the distribution of ln(Z) is not time-independent.

This time-dependence of the magnitude of the foreground confusion noise is due

to the varying sensitivity of the LISA detector to signals coming from the galaxy over

the course of the simulated mission. To account for this, the foreground confusion

noise was multipled by a time-varying factor that applied the necessary modulation and
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Figure 3.16: Power spectral density of a data segment containing only instrumental
and reduced galaxy foreground confusion noise. On top are plotted the instrumental
and instrumental plus reduced galaxy noise models.

increase in PSD when the detector is most sensitive to the galaxy. The new confusion

noise is given, up to an unimportant normalisation factor, by

S′′conf =

(
1+ sin2

(
2π

tm
1 year

))
×S′conf, (3.17)

where tm is the time of the mid-point of a data segment. Figure 3.16 shows the power

spectral density from a data segment containing no cosmic string signal, only instru-

mental and reduced galactic foreground confusion noise. The instrumental and in-

strumental plus reduced galaxy confusion noise models have been plotted on top for

comparison.

The analysis was re-run with this new model for the galactic foreground and the

resulting histogram and time-dependent plot of ln(Z) from segments without a cos-
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Figure 3.17: (Top) Histogram of global log-evidences for the segments that do not
contain a cosmic string GW signal with the reduced galaxy population and modulated
foreground noise model. These fit the correct distribution much more closely and
99.6% have ln(Z)< 0. (Bottom) The log-evidence values of noise-only segments over
time (segment number). The time-dependence is much less significant.

mic string signal now have the features we expect, as seen in Figure 3.17. The time-

dependence is nearly gone, but what remains does not significantly affect further re-

sults. The ROC along with true and false positive rates as a function of detection

threshold are shown in Figure 3.18. Again the ROC is perfect and the detection thresh-

old set is consistent with the results from Section 3.1.3.1.

Figures 3.19 and 3.20 show the true and recovered waveforms in the A and E

channels for a selection of four of the 22 signals (true in solid black, recovered in

dashed red). Differences from the true signal are a result of the addition of instrumental

and galactic foreground noise as well as windowing for signals that were nearer to the

edge of a segment. Low-frequency signals, such as signals 2 and 6 in Figure 3.19, were

often recovered with higher precision due to their simpler structure and the fact that

the entire signal is within the frequency sensitivity of the detector. Signals with higher
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Figure 3.18: (Top) ROC for cosmic strings in instrumental and galactic foreground
confusion noise, showing true positive rate vs. false positive rate as the threshold
varies. (Bottom) The true and false positive detection rates as a function of the log-
evidence. ln(Z) is adjusted by adding a constant to all values so that the minimum is
greater than 1.

80



3.3 Cosmic Strings in the Presence of a Galactic Foreground

Figure 3.19: A comparison of the true and recovered waveforms in the A and E chan-
nels for two of the 22 signals. The true signal is in solid black and the recovered is in
dashed red. These signals have a low value of fmax.

fmax show more discrepancies, as can be seen for signals 3 and 14 in Figure 3.20.

3.3.2.3 Full Galaxy

The final data set analysed consisted of instrumental noise, the full galaxy population

of white dwarf binaries, and the cosmic strings we were looking for. The modulated

foreground confusion noise model given in Equation (3.17) was used in this analysis,

which was performed in the same way as for the previous two data sets. In this sce-

nario, we do not expect the noise model to account for all contaminating sources and

thus we will be presented with many false detections.

Due to the presence of loud signals across all frequencies in each data segment,
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Figure 3.20: A comparison of the true and recovered waveforms in the A and E chan-
nels for two of the 22 signals. The true signal is in solid black and the recovered is in
dashed red. These signals have a high value of fmax.
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Figure 3.21: (Top) Histogram of global log-evidences for the segments that do not
contain a cosmic string GW signal with the full galaxy population and modulated fore-
ground noise model. (Bottom) The log-evidence values of noise-only segments over
time (segment number).

evidences for all segments were significantly increased. In Figure 3.21 we show the

histrogram and time scatter plot of log-evidences of segments that do not contain a

cosmic string GW signal. There is clearly a much larger base level that will obscure

finding true signals. The ROC along with true and false positive rates for detecting

segments with signals present are shown in Figure 3.22. It is clear that some level of

contamination will be present if we wish to set a threshold that does not exclude true

cosmic string signals.

3.3.2.4 Summary

The results presented in this section clearly show that perfect identification and excel-

lent recovery of cosmic string burst signals is possible in the presence of instrumental

noise and reduced galactic foreground. The population of galactic WD binaries with
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Figure 3.22: (Top) ROC for cosmic strings in instrumental noise with the full galactic
population, showing true positive rate vs. false positive rate as the threshold varies.
(Bottom) The true and false positive detection rates as a function of the log-evidence.
ln(Z) is adjusted by adding a constant to all values so that the minimum is greater than
1.
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the loudest signals removed forms a confusion foreground that, when appropriately

modeled, can be accounted for and will not affect detection of cosmic string bursts.

However, when the full WD population is left in the data, there is significant contami-

nation and keeping this to a manageable amount will result in potentially missing some

cosmic string signals. Spurious signals may be identified by comparing to either a sine-

Gaussian or constant frequency model, using the Bayesian evidence to determine if one

of these is preferred over the cosmic string burst model.

This demonstrates the need to identify and subtract out of the data the loudest WD

binaries detected by LISA, or any similar detector, in order to be able to detect other

signals underneath. Doing so should not be affected by cosmic strings still present in

the data since the latter are transient while the former are present over the entire two

year data span. A main caveat is that this analysis was performed without the presence

of SMBH or EMRI signals, which are transient but significantly longer (typically of

duration three months or longer) and potentially much louder than any cosmic string

bursts. SMBH signals can have SNRs of thousands when coalescing during the ob-

servation period; EMRIs, however, build up an SNR of similar magnitude to cosmic

strings (typically 10 to 100) but over a duration of months. Detection and removal of

these sources in the presence of all others will need to be performed as well. We have

shown, however, that cosmic string bursts can be detected even in the presence of the

full galactic WD population and that the Bayesian evidence can be used as a detection

threshold. Like any detection statistic, some false positives may be included and will

require further analysis to be filtered out.

3.4 Discussion

The eLISA/NGO detector that is eventually launched will be able to observe multiple

signals that evolve on very different time scales. From bursts that last only a few

minutes to supermassive black hole binaries that coalesce over months to galactic white

dwarf binaries that are essentially monochromatic over a two year observation, these

signals will need to be detected and characterised from a single data stream. Data

analysis methods investigated here that utilise nested sampling will be essential in

obtaining the most information from the data as possible.
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Segmenting data to look for transients will enable us to separate these short-lived
signals from the more constant sources that require time to build up a significant SNR.
Modeling of other sources present in the data in the noise estimation will further im-
prove our ability to recover the signals we are looking for. In searching for cosmic
string burst signals with a reduced WD binary foreground, the quality of parameter
estimation was not adversely affected as the additional sources were well-modeled by
the noise PSD and the signals of interest were of sufficiently high SNR. Analysing fre-
quency bands for near-monochromatic signals such as white dwarf binaries can yield
many detections that will not be influenced by noise at other frequencies. Subtracting
the loudest signals and re-analysing should return a high rate of detection. For data
with other signals present, analysing the two years of observation separately and re-
quiring coherent detection should reduce the effect of transient sources passing through
the frequency bands of interest.

The source environment for eLISA/NGO will require many diverse techniques for
separating out the different signal types which can also vary over orders of magnitude
in SNR. Some of these methods have been explored here and present promising results
for future data analysis pipeline development.
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Chapter 4
An Investigation into the MOPED
Algorithm

Science is what we understand well enough to
explain to a computer.

Donald Knuth

The analysis of gravitational wave data involves measuring a signal that is given
by thousands of data points but is only defined by 17 or fewer individual parame-
ters. This drastic increase in the number of values to be measured slows down like-
lihood calculations and requires large amounts of computer memory. Additionally,
estimation and inversion of noise covariance matrices needs increased computational
resources. Simplifying assumptions are used to reduce these requirements, but remov-
ing the need analytically without losing information would be preferable. With this
goal in mind, I investigated implementing the Multiple Optimised Parameter Estima-
tion and Data compression (MOPED) algorithm for use in gravitational wave burst
searches for LISA.

I begin this chapter by introducing the general likelihood function and a simple
method of decreasing its complexity in Section 4.1. I then introduce MOPED in Sec-
tion 4.2 and define the MOPED likelihood function along with comments on the poten-
tial speed benefits of MOPED. In Section 4.3 I introduce my astrophysical scenario of
gravitational wave burst signals where we found that MOPED did not accurately por-
tray the true likelihood function. In Section 4.4 I expand upon this scenario to another
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where MOPED is found to work and to two other scenarios where it does not. I present
a discussion of the criteria under which I believe MOPED will accurately represent the
likelihood in Section 4.5, as well as a discussion of an implementation of a solution
provided by [171]. Work presented in this chapter has been published in [172].

4.1 The Likelihood Function

We begin by defining our data as a vector, x. Our model describes x by a signal plus
random noise,

x = u(θθθ T )+n(θθθ T ), (4.1)

where the signal is given by a vector u(θθθ) that is a function of the set of parameters θθθ =

{θi} defining our model, and the true parameters are given by θθθ T . The noise is assumed
to be Gaussian with zero mean and noise covariance matrix N jk =

〈
n jnk

〉
, where the

angle brackets indicate an ensemble average over noise realisations. In general this
matrix may also be a function of the parameters θθθ , as in the case of galaxy spectra
explored in [173] where noise in a frequency bin depends on the amplitude of the
signal in the bin; however, in the examples explored in this chapter we will not be
considering this fully general case in a GW context. The full likelihood for N data
points in x is given by

L(θθθ) =
1

(2π)N/2
√
|N(θθθ)|

exp
{
−1

2
[x−u(θθθ)]TN−1(θθθ)[x−u(θθθ)]

}
. (4.2)

At each point, then, this requires the calculation of the determinant and inverse of
an N ×N matrix. Both scale as N3, so even for smaller datasets this can become
cumbersome.

4.1.1 A Simple Iterative Approach

One can perform a simple approximation to avoid performing the O(N3) matrix oper-
ations repeatedly by following the steps below.

1. Choose a fiducial point from the prior, θθθ F .

2. Calculate N−1(θθθ F) and |N(θθθ F)|.
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3. Locate the peak of the posterior probability distribution of θθθ assuming constant

N−1(θθθ F) and |N(θθθ F)| instead of evaluating these at each point θθθ .

4. Take the posterior maximum as the new fiducial point and repeat steps 2 and 3.

Continue doing so until convergence is reached; the final posterior distribution

is the solution.

This method will provide a quick approximation of the true likelihood function and

only requires one matrix inversion and determinant calculation per iteration.

4.2 The MOPED Algorithm

Multiple Optimised Parameter Estimation and Data compression (MOPED; [173]) is a

patented algorithm for the compression of data and the speeding up of the evaluation of

likelihood functions in astronomical data analysis and beyond. It becomes particularly

useful when the noise covariance matrix is dependent upon the parameters of the model

and so must be calculated and inverted at each likelihood evaluation. However, such

benefits come with limitations. Since MOPED only guarantees maintaining the Fisher

matrix of the likelihood at the chosen fiducial point, multimodal and some degenerate

distributions will present a problem. In this chapter I report on some of the limita-

tions of the application of the MOPED algorithm. In the cases where MOPED does

accurately represent the likelihood function, however, its compression of the data and

consequent much faster likelihood evaluation does provide orders of magnitude im-

provement in runtime. In [173], the authors demonstrate the method by analysing the

spectra of galaxies and in [174] they illustrate the benefits of MOPED for estimation

of the CMB power spectrum. The problem of “badly” behaved likelihoods was found

by [171] for the problem of light transit analysis; nonetheless, the authors present a

solution that still allows MOPED to provide a large speed increase.

4.2.1 Data Compression with MOPED

Full details of the MOPED method are given in [173], here we will only present a

limited introduction.
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MOPED allows one to eliminate the need for the full matrix inversion by compress-
ing the N data points in x into M data values, one for each parameter of the model. Ad-
ditionally, MOPED creates the compressed data values such that they are independent
and have unit variance, further simplifying the subsequent likelihood calculation to an
O(M) operation. Typically, M� N so this gives us a significant increase in speed. A
single compression is done on the data, x, and then again for each point in parameter
space where we wish to compute the likelihood. The compression is done by generat-
ing a set of weighting vectors, bi(θθθ F) (i = 1 . . .M), from which we can generate a set
of MOPED components from the theoretical model and data,

yi(θθθ F)≡ bi(θθθ F) ·x = bT
i (θθθ F)x. (4.3)

Note that the weighting vectors must be computed at some assumed fiducial set of
parameter values, θθθ F . The only choice that will truly maintain the likelihood peak is
when the fiducial parameters are the true parameters, but obviously we will not know
these in advance for real analysis situations. Thus, we can choose our fiducial model
to be anywhere and iterate the procedure, taking our likelihood peak in one iteration
as the fiducial model for the next iteration. This process will converge very quickly,
and may not even be necessary in some instances. For our later examples, since we
do know the true parameters we will use these as the fiducial (θθθ F = θθθ T ) in order to
remove this as a source of confusion (all equations, however, are written for the more
general case). Note that the true parameters, θθθ T , will not necessarily coincide with
the peak θ̂θθ O of the original likelihood or the peak θ̂θθ M of the MOPED likelihood (see
below).

The weighting vectors must be generated in some order so that each subsequent
vector (after the first) can be made orthogonal to all previous ones using Gram-Schmidt
orthonormalisation. We begin by writing the derivative of the model with respect to
the ith parameter as ∂u

∂θi

∣∣∣
θθθ F

= u,i(θθθ F). This gives us a solution for the first weighting
vector, properly normalised, of

b1(θθθ F) =
N−1(θθθ F)u,1(θθθ F)√

uT
,1(θθθ F)N−1(θθθ F)u,1(θθθ F)

. (4.4)

The first compressed value is y1(θθθ F) = bT
1 (θθθ F)x and will weight up the data combina-

tion most sensitive to the first parameter. The subsequent weighting vectors are made
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orthogonal by subtracting out parts that are parallel to previous vectors and are then
normalised. The resulting formula for the remaining weighting vectors is

bm =
N−1u,m−∑

m−1
q=1 (uT

,mbq)bq√
uT
,mN

−1u,m−∑
m−1
q=1 (uT

,mbq)2
, (4.5)

where m= 2 . . .M and all values are evaluated at θθθ F . Weighting vectors generated with
Equations (4.4) and (4.5) form an orthonormal set with respect to the noise covariance
matrix so that

bT
i (θθθ F)N(θθθ F)b j(θθθ F) = δi j. (4.6)

This means that the noise covariance matrix of the compressed values yi is the identity,
which significantly simplifies the likelihood calculation. The new likelihood function
is given by

LMOPED(θθθ) =
1

(2π)M/2 exp

{
−1

2

M

∑
i=1

(yi(θθθ F)−〈yi〉(θθθ ;θθθ F))
2

}
, (4.7)

where yi(θθθ F) = bT
i (θθθ F)x represents the ith compressed data value and 〈yi〉(θθθ ;θθθ F) =

bT
i (θθθ F)u(θθθ) represents the ith compressed signal value. This is a much easier likeli-

hood to calculate and is time-limited by the generation of a new signal template instead
of the inversion of the noise covariance matrix. The peak value of the MOPED likeli-
hood function is not guaranteed to be unique as there may be other points in the original
parameter space that map to the same point in the compressed parameter space; this is
a characteristic that we will investigate.

The MOPED likelihood will closely approximate the true likelihood function. Most
importantly, the peak value will remain the same when the true parameters (or very
similar) are used for the fiducial. Additionally, in the limiting case where the noise
covariance matrix does not depend on the parameters, the Fisher matrix describing
the curvature of the likelihood surface at the peak is identical to the original. How-
ever, properties of the likelihood away from the peak value are not guaranteed to be so
well-behaved.

4.2.2 Speed Gains with MOPED

MOPED implicity assumes that the covariance matrix, N, is independent of the param-
eters θθθ . With this assumption it is appropriate to compare MOPED to the approximate
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method described in Section 4.1.1. Therefore, a full likelihood calculation with N data

points would require an O(N2) operation at each point in parameter space (or O(N)

if N is diagonal). In MOPED, however, the compression of the theoretical data is an

O(NM) linear operation followed by an O(M) misfit calculation, leading to an overall

complexity of O(NM)+O(M) ' O(NM) for each likelihood calculation. Thus, one

loses on speed if N is diagonal but gains by a factor of N/M otherwise. For the data

sets we will analyze, N/M > 100. We begin, though, by assuming a diagonal N for

simplicity, recognizing that this will cause a speed reduction but that it is a necessary

step before addressing a more complex noise model.

One can iterate the parameter estimation procedure if necessary, taking the maxi-

mum likelihood or posterior point found as the new fiducial and re-analyzing (perhaps

with tighter prior constraints) as in the approximate method suggested in the previous

section. This procedure is recommended for MOPED in [173] but is not always found

to be necessary.

MOPED has the additional benefit that the weighting vectors, bi, need only be

computed once provided the fiducial model parameters are kept constant over the anal-

ysis of different data sets. Computed compressed parameters, 〈yi〉, can also be stored

for reference and require significantly less memory than storing the entire theoretical

data set.

4.3 Simple Example With One Parameter

In order to demonstrate some of the limitations of the applicability of the MOPED

algorithm, we will consider a few test cases. These originate in the context of gravita-

tional wave data analysis for LISA since it is in this scenario that we first discovered

such cases of failure. The full problem is seven-dimensional parameter estimation, but

we have fixed most of these variables to their known true values in the simulated data

set in order to create a lower-dimensional problem that is simpler to analyse.

We consider the case of a sine-Gaussian burst signal present in the LISA detector.

The short duration of the burst with respect to the motion of LISA allows us to use

the static approximation to the response. As in Section 3.1.1.2, the frequency-space
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waveform is described by [149]

h̃( f ) = AQ
f exp

{
−1

2Q2( f− fc
fc

)2
}

exp(2πıt0 f ). (4.8)

Here A is the dimensionless amplitude factor; Q is the width of the Gaussian envelope

of the burst measured in cycles; fc is the central frequency of the oscillation being mod-

ulated by the Gaussian envelope; and t0 is the central time of arrival of the burst. This

waveform is further multiplied by a projection factor dependent on the sky position of

the burst source, θ and φ , and the burst polarisation, ψ , with respect to the detector.

The one-sided noise power spectral density of the LISA detector is given by [149]

Sh( f ) = 16sin2(2π f tL)×(
2
(
1+ cos(2π f tL)+ cos2(2π f tL)

)
Spm( f )

+(1+ cos(2π f tL)/2)Ssn f 2) , (4.9)

Spm( f ) =

(
1+
(

10−4Hz
f

)2
)

Sacc

f 2 , (4.10)

where tL = 16.678s is the light travel time along one arm of the LISA constella-

tion, Sacc = 2.5× 10−48Hz−1 is the proof mass acceleration noise and Ssn = 1.8×
10−37Hz−1 is the shot noise. This is independent of the signal parameters and all

frequencies are independent of each other, so the noise covariance matrix is constant

and diagonal. This less computationally expensive example allows us to show some

interesting properties.

We begin by taking the one-dimensional case where the only unknown parameter

of the model is the central frequency of the oscillation, fc. We set Q = 5 and t0 =

105s; we then analyze a 2048s segment of LISA data, beginning at t = 9.9× 104s,

sampled at a 1s cadence. For this example, the data were generated with random noise

(following the LISA noise power spectrum) at an SNR of ∼ 34 with fc,T = 0.1 Hz

(thus fc,F = 0.1 Hz for MOPED). The prior range on the central frequency is uniform

from 10−3 Hz to 0.5 Hz. 10,000 samples uniformly spaced in fc were taken and their

likelihoods calculated using both the original and MOPED likelihood functions. The

log-likelihoods are shown in Figure 4.1. Note that the absolute magnitudes are not

important but the relative values within each plot are meaningful. Both the original

and MOPED likelihoods have a peak close to the input value fc,T .
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Figure 4.1: The original and MOPED log-likelihoods as a function of fc for the chosen
template.

We see, however, that in going from the original to MOPED log-likelihood, the
latter also has a second peak of equal height at an incorrect fc. To see where this
peak comes from, we look at the values of the compressed parameter 〈y1〉( fc; fc,F) as
it varies with respect to fc as shown in Figure 4.2. The true compressed value peak
occurs at fc ' 0.1 Hz, where y1( fc,F) = 〈y1〉( fc; fc,F). However, we see that there
is another frequency that yields this exact same value of 〈y1〉( fc; fc,F); it is at this
frequency that the second, incorrect peak occurs. By creating a mapping from fc to
〈y1〉( fc; fc,F) that is not one-to-one, MOPED has created the possibility for a second
solution that is indistinguishable in likelihood from the correct one. This is a very
serious problem for parameter estimation.

4.4 Recovery in a 2 Parameter Case

Interestingly, we find that even when MOPED fails in a one-parameter case, adding
a second parameter may actually rectify the problem, although not necessarily. If we
now allow the width of the burst, Q, to be a variable parameter, there are now two
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Figure 4.2: The value of the MOPED compressed parameter as a function of the orig-
inal frequency parameter.

orthogonal MOPED weighting vectors that need to be calculated. This gives us two
compressed parameters for each pair of fc and Q. Each of these may have its own
unphysical degeneracies, but in order to give an unphysical mode of equal likelihood
to the true peak, these degeneracies will need to coincide. In Figure 4.3, we plot the
loci in ( fc,Q) space where 〈yi〉(θθθ ;θθθ F) = 〈yi〉(θ̂θθ M;θθθ F) as θθθ ranges over fc and Q

values. We can clearly see the degeneracies present in either variable, but since these
only overlap at the one location, near to where the true peak is, there is no unphysical
second mode in the MOPED likelihood. Hence, when we plot the original and MOPED
log-likelihoods in Figure 4.4, although the behaviour away from the peak has changed,
the peak itself remains in the same location and there is no second mode.

Adding more parameters, however, does not always improve the situation as the
signal varies in different ways for each. We now consider the case where Q is once
again fixed to its true value and we instead make the polarisation of the burst, ψ , a vari-
able parameter. There are degeneracies in both of these parameters and in Figure 4.5
we plot the loci in ( fc,ψ)-space where the compressed values are each equal to the
value at the maximum MOPED likelihood point. These two will necessarily intersect
at the maximum likelihood solution, near the true value ( fc = 0.1 Hz and ψ = 1.3 rad),
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Figure 4.3: Loci of 〈y1〉(θθθ ;θθθ F) = 〈y1〉(θ̂θθ M;θθθ F) and 〈y2〉(θθθ ;θθθ F) = 〈y2〉(θ̂θθ M;θθθ F) in
the parameter space θθθ = { fc,Q}. The one intersection is the true maximum likelihood
peak.

but a second intersection is also apparent. This second intersection will have the same

likelihood as the maximum and be another mode of the solution. However, as we can

see in the left plot of Figure 4.6, this is not a mode of the original likelihood function.

MOPED has, in this case, created a second mode of equal likelihood to the true peak.

For an even more extreme scenario, we now fix to the true ψ and allow the time of

arrival of the burst t0 to vary (we also define ∆t0 = t0− t0,T ). In this scenario, the loci in

( fc,∆t0)-space where 〈yi〉(θθθ ;θθθ F) = 〈yi〉(θ̂θθ M;θθθ F) are much more complicated. Thus,

we have many more intersections of the two loci than just at the likelihood peak near

the true values and MOPED creates many alternative modes of likelihood equal to that

of the original peak. This is very problematic for parameter estimation. In Figure 4.7

we plot these loci so the multiple intersections are apparent. Figure 4.8 shows the

original and MOPED log-likelihoods, where we can see the single peak becoming a

set of peaks.
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Figure 4.4: Contours of the original and MOPED log-likelihoods (left and right, re-
spectively). The MOPED likelihood has been multiplied by a constant factor so that
its peak value is equal to the peak of the original likelihood. Contours are at 1, 2, 5, 10,
20, 30, 40, 50, 75, and 100 log-units below the peak going from the inside to outside.
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Figure 4.5: Loci of 〈y1〉(θθθ ;θθθ F) = 〈y1〉(θ̂θθ ;θθθ F) and 〈y2〉(θθθ ;θθθ F) = 〈y2〉(θ̂θθ ;θθθ F) in the
parameter space θθθ = { fc,ψ}.

4.5 Discussion

What we can determine from the previous two sections is a general rule for when

MOPED will generate additional peaks in the likelihood function equal in magni-

tude to the true one. For an M-dimensional model, if we consider the (M − 1)-

dimensional hyper-surfaces where 〈yi〉(θθθ ;θθθ F) = 〈yi〉(θ̂θθ M;θθθ F), then any point where

these M hyper-surfaces intersect will yield a set of θθθ -parameter values with likelihood

equal to that at the peak near the true values. We expect that there will be at least one

intersection at the likelihood peak corresponding to approximately the true solution.

However, we have shown that other peaks can exist as well. The set of intersections of

contour surfaces will determine where these additional peaks are located. This degen-

eracy will interact with the model’s intrinsic degeneracy, as any degenerate parameters

will yield the same compressed values for different original parameter values.

Unfortunately, there is no simple way to find these contours other than by mapping

out the 〈yi〉(θθθ ;θθθ F) values, which is equivalent in procedure to mapping the MOPED

likelihood surface. The benefit comes when this procedure is significantly faster than

mapping the original likelihood surface. The mapping of 〈yi〉(θθθ ;θθθ F) can even be per-
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Figure 4.6: Contours of the original and MOPED log-likelihoods (left and right, re-
spectively). The MOPED likelihood has been multiplied by a constant factor so that
its peak value is equal to the peak of the original likelihood. Contours are at 1, 2, 5, 10,
20, 30, 40, 50, 75, and 100 log-units below the peak going from the inside to outside.
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Figure 4.7: Loci of 〈y1〉(θθθ ;θθθ F) = 〈y1〉(θ̂θθ ;θθθ F) and 〈y2〉(θθθ ;θθθ F) = 〈y2〉(θ̂θθ ;θθθ F) in the
parameter space θθθ = { fc,∆t0}. We can see many intersections here other than the true
peak.

formed before data is obtained or used, if the fiducial model is chosen in advance; this

allows us to analyse properties of the MOPED compression before applying it to data

analysis. If the MOPED likelihood is mapped and there is only one contour intersec-

tion, then we can rely on the MOPED algorithm and will have saved a considerable

amount of time, since MOPED has been demonstrated to provide speed-ups of a factor

of up to 107 in [174]. However, if there are multiple intersections then it is necessary to

map the original likelihood to know if they are due to degeneracy in the model or were

created erroneously by MOPED. In this latter case, the time spent finding the MOPED

likelihood surface can be much less than that which will be needed to map the original

likelihood, so relatively little time will have been wasted. If any model degeneracies

are known in advance, then we can expect to see them in the MOPED likelihood and

will not need to find the original likelihood on their account.

One possible way of determining the validity of degenerate peaks in the MOPED

likelihood function is to compare the original likelihoods of the peak parameter values

with each other. By using the maximum MOPED likelihood point found in each mode

and evaluating the original likelihood at this point, we can determine which one is
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Figure 4.8: Contours of the original and MOPED log-likelihoods (left and right, re-
spectively). The MOPED likelihood has been multiplied by a constant factor so that
its peak value is equal to the peak of the original likelihood. Contours are at 1, 2, 5, 10,
20, 30, 40, 50, 75, and 100 log-units below the peak going from the inside to outside.
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correct. The correct peak and any degeneracy in the original likelihood function will
yield similar values to one another, but a false peak in the MOPED likelihood will have
a much lower value in the original likelihood and can be ruled out. This means that a
Bayesian evidence calculation cannot be obtained from using the MOPED likelihood;
however, the algorithm was not designed to be able to provide this.

The solution for this problem presented in [171] is to use multiple fiducial mod-
els to create multiple sets of weighting vectors. The log-likelihood is then averaged
across these choices. Each different fiducial will create a set of likelihood peaks that
include the true peaks and any extraneous ones. However, the only peaks that will be
consistent between fiducials are the correct ones. Therefore, the averaging maintains
the true peak(s) but decreases the likelihood at incorrect values. This was tested with
20 random choices for θθθ F for the two-parameter models presented and was found to
leave only the true peak at the maximum likelihood value. Other, incorrect, peaks are
still present, but at log-likelihood values five or more units below the true peak. When
applied to the full seven parameter model, however, the SNR threshold for signal re-
covery is increased significantly, from ' 10 to ' 30.

The MOPED algorithm for reducing the computational expense of likelihood func-
tions can, in some examples, be extremely useful and provide orders of magnitude of
improvement. However, as we have shown, this is not always the case and MOPED
can produce erroneous peaks in the likelihood that impede parameter estimation. It is
important to identify whether or not MOPED has accurately portrayed the likelihood
function before using the results it provides. Some solutions to this problem have been
presented and tested but further implementation was not pursued.
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Chapter 5
Artificial Neural Networks

The computer was born to solve problems that
did not exist before.

Bill Gates

Many calculations in gravitational wave physics, and astrophysics in general, are

very computationally expensive. If a calculation needs to be performed a large number

of times then it can slow down simulations and analysis significantly. One example

in gravitational wave physics is the calculation of waveforms for binary black hole

mergers where the full spin dynamics of both black holes are considered. A single

waveform can take on the order of seconds to calculate, or even longer in the case of

numerical relativity simulations. For this and other problems, we set out to develop a

generic algorithm for the training of artificial neural networks in order to facilitate and

expedite these repeated difficult computations.

Artificial neural networks (NNs) are a method of computation loosely based on

the structure of a brain. They consist of a group of interconnected nodes, which pro-

cess information that they receive and then pass this product along to other nodes via

weighted connections. We will consider only feed-forward NNs, for which the struc-

ture is directed; an input layer of nodes passes information to an output layer via zero,

one, or many “hidden” layers in between. A network is able “learn” a relationship

between inputs and outputs given a set of training data and can then make predictions

of the outputs for new input data. Further introduction can be found in [175].
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In section 5.1 I describe the general structure of NNs and how they may be trained
on a specific problem. Section 5.2 will then detail the procedure used to train NNs
to solve a particular task. This is then applied to some toy examples in Section 5.3.
Applying NNs to learning how to classify images of handwritten digits is described
in Section 5.4 and to the problem of measuring the shape of sheared, blurred, and
pixelated images of galaxies in Section 5.5. Work in this chapter was performed in
collaboration with Farhan Feroz.

5.1 Network Structure

A multilayer perceptron artificial neural network (NN) is the simplest type of network
and consists of ordered layers of perceptron nodes that pass scalar values from one
layer to the next. The perceptron is the simplest kind of node, and maps an input
vector x ∈ℜn to a scalar output f (x;w,θ) via

f (x;w,θ) = θ +
n

∑
i=1

wixi, (5.1)

where w = {wi} and θ are the parameters of the perceptron, called the “weights” and
“bias”, respectively. For a 3-layer NN, which consists of an input layer, a hidden layer,
and an output layer as shown in Figure 5.1, the outputs of the nodes in the hidden and
output layers are given by the following equations:

hidden layer: h j = g(1)( f (1)j ); f (1)j = θ
(1)
j +∑

l
w(1)

jl xl, (5.2)

output layer: yi = g(2)( f (2)i ); f (2)i = θ
(2)
i +∑

j
w(2)

i j h j, (5.3)

where l runs over input nodes, j runs over hidden nodes, and i runs over output
nodes. The functions g(1) and g(2) are called activation functions and must be bounded,
smooth, and monotonic for our purposes. We use g(1)(x) = 1

/
(1+ e−x) = sig(x) (sig-

moid) and g(2)(x) = x; the non-linearity of g(1) is essential to allowing the network to
model non-linear functions.

The weights and biases are the values we wish to determine in our training (de-
scribed in Section 5.2). As they vary, a huge range of non-linear mappings from inputs
to outputs is possible. In fact, a universal approximation theorem [176] states that a
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5.1 Network Structure

Figure 5.1: A 3-layer neural network with 3 inputs, 4 hidden nodes, and 2 outputs.
Image courtesy of Wikimedia Commons.

NN with three or more layers can approximate any continuous function as long as the

activation function is locally bounded, piecewise continuous, and not a polynomial

(hence our use of sigmoid g(1), although other functions would work just as well, such

as a tanh). By increasing the number of hidden nodes, we can achieve more accuracy

at the risk of overfitting to our training data. To expand the NN to include more hidden

layers, we mirror Equation (5.2) for each connection from one hidden layer to the next,

each time using the same g(1) activation function. The final hidden layer will connect

to the output layer with Equation (5.3).

5.1.1 Choosing the Number of Hidden Layer Nodes

An important choice when training a NN is the number of hidden layer nodes to use.

The optimal number and organisation into one or more layers is a complex relationship

between the number of training data points, the number of inputs and outputs, and the

complexity of the function to be trained. Choosing too few nodes will mean that the

NN is unable to learn the relationship to the highest possible accuracy; choosing too

many will increase the risk of overfitting to the training data and will also slow down

the training process. As a general rule, we find that a NN should not need more hidden

nodes than the number of training data values used (each with a vector of inputs and

outputs).
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We choose to use 5–10 nodes in the hidden layer in our toy examples (see Sec-
tion 5.3). These choices allow the network to model the complexity of the function
without unnecessary work. In practice, it will be better to slightly over-estimate the
number of hidden nodes required. There are checks built in to prevent over-fitting (de-
scribed in Section 5.2) and the additional training time will not be a large penalty if an
optimal network can be obtained in an early attempt. The optimal NN structure can be
determined by comparing the Bayesian evidence of different trained NNs as calculated
in Section 5.2.6.

5.2 Network Training

In training a NN, we wish to find the optimal set of network weights and biases that
maximise the accuracy of predicted outputs. However, we must be careful to avoid
overfitting to our training data at the expense of making predictions for input values
the network has not been trained on. The NN can be trained from a random initial state
or can be pre-trained, a procedure which will be discussed in Section 5.2.5. But first
we will discuss the general process of NN training. The set of training data inputs and
outputs, D= {x(k), t(k)}, is provided by the user. Approximately 75% should be used
for actual NN training and the remainder provided as a validation set of data that will
be used to determine convergence to avoid overfitting. This ratio of 3:1 gives plenty of
information for training but still leaves a representative subset of the data for checks to
be made.

5.2.1 Overview

The weights and biases we will collectively call the network parameter vector a. We
can now consider the probability that a given set of network parameters is able to
reproduce the known training data outputs – representing how well our NN model of
the original function reproduces the true values. For problems of regression (fitting
the model to a function), this gives us a log-likelihood function for a, depending on a
standard χ2 error function, given by

log(L(a;σσσ)) =−K log(2π)

2
−

N

∑
i=1

log(σi)−
1
2

K

∑
k=1

N

∑
i=1

[
t(k)i − yi(x(k);a)

σi

]2

, (5.4)
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where N is the number of outputs, K is the number of data points and y(x(k);a) is
the NN’s predicted output vector for the input vector x(k) and network parameters a.
The values of σσσ = {σi} are hyper-parameters of the model that describe the standard
deviation (error size) of each of the outputs.

For a classification network that aims to learn the probabilities that a set of inputs
belongs to a set of output classes, the outputs are transformed according to the softmax

procedure in order that they are all non-negative and sum to one.

y′i(x
(k);a) =

exp
(

yi(x(k);a)
)

∑
N
j=1 exp

(
y j(x(k);a)

) (5.5)

The classification likelihood is then given by the cross entropy function [175],

log(L(a;σσσ)) =−
K

∑
k=1

N

∑
i=1

t(k)i log(y′i(x
(k);a)). (5.6)

In this scenario, the true and predicted output values are probabilities (in [0,1]). In the
true outputs, all are zero except for the correct output which has a value of one. For
classification networks, the σσσ hyper-parameters do not factor into the log-likelihood.

Our algorithm considers the parameters a to be probabilistic with a log-prior dis-
tribution given by

log(S(a;α)) =−α

2 ∑
i

a2
i . (5.7)

α is a hyper-parameter of the model, called the “regularisation constant”, that gives
the relative influence of the prior and the likelihood.

The posterior probability of a set of NN parameters is thus

Pr(a;α,σσσ) ∝ L(a;σσσ)×S(a;α). (5.8)

The network training begins by setting random values for the weights, sampled
from a normal distribution with zero mean. The initial value of σσσ is set by the user
and can be set on either the true log-likelihood values themselves or on their whitened
values (as defined in Section 5.2.2). The only difference between these two settings is
the magnitude of the error used. The algorithm then calculates a large initial estimate
for α ,

α =
|∇ log(L)|√

Mr
, (5.9)
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where M is the total number of weights and biases (NN parameters) and r is a rate set

by the user (0 < r ≤ 1, default r = 0.1) that defines the size of the “confidence region”

for the gradient. This formula for α sets larger regularisation (a.k.a. “damping”) when

the magnitude of the gradient of the likelihood is larger. This relates the amount of

“smoothing” required to the steepness of the function being smoothed. The rate factor

in the denominator allows us to increase the damping for smaller confidence regions

on the value of the gradient. This results in smaller, more conservative steps that are

more likely to result in an increase in the function value but results in more steps being

required to reach the optimal weights.

The training then uses conjugate gradients to calculate a step, ∆a, that should be

taken (see Section 5.2.3). Following a step, adjustments to α and σσσ may be made be-

fore another step is calculated. The methods for calculating the initial α value and then

determining subsequent adjustments of α and/or σσσ are as developed for the MEMSYS

software package, described in [177].

5.2.2 Data Whitening

Most of the time, it is prudent to “whiten” the data before training a network. Whiten-

ing normalises the input and/or output values according to a specified format, which

makes it easier to train from the initial weights which are small and centred on zero.

The network weights in the first and last layers can then be “unwhitened” after training

so that the network will be able to process the original inputs and outputs.

Standard whitening will transform each input to a standard normal distribution by

subtracting the mean and dividing by the standard deviation over all elements in the

training data.

x(k)′l =
x(k)l − xl

σl
(5.10a)

xl =
1
K

K

∑
k=1

x(k)l (5.10b)

σ
2
l =

1
K−1

K

∑
k=1

(x(k)l − xl)
2 (5.10c)
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Data can also be whitened by bringing all values into [0,1].

x(k)′l =
x(k)l −mink(x

(k)
l )

maxk(x
(k)
l )−mink(x

(k)
l )

(5.11)

These two functions are normally performed separately on each input, but can be cal-

culated across all inputs if the inputs are related. The mean, standard deviation, min-

imum, or maximum would then be computed over all inputs for all data values. The

same whitening functions are also used for whitening the outputs. Since both functions

consist of subtracting an offset and multiplying by a scale factor, they can easily be per-

formed and reversed. To unwhiten network weights the inverse transform is applied,

with the offset and scale determined by the source input node or target output node.

Outputs for a classification network are not whitened since they are already simple

probabilities.

5.2.3 Finding the next step

In order to find the most efficient path to an optimal set of parameters, we perform

conjugate gradients using second-order derivative information. Newton’s method gives

the second-order approximation of a function,

f (a+∆a)≈ f (a)+(∇ f (a))T
∆a+

1
2
(∆a)TB∆a, (5.12)

where B is the Hessian matrix of second derivatives of f at a. In this approximation,

the maximum of f will occur when

∇ f (a+∆a)≈ ∇ f (a)+B∆a = 0. (5.13)

Solving this for ∆a gives us

∆a =−B−1
∇ f (a). (5.14)

Iterating this stepping procedure will eventually bring us to a local maximum value

of f . For our purposes, the function f is the log-posterior distribution of the NN

parameters and hence Equation (5.12) is a Gaussian approximation to the posterior.

The Hessian of the log-posterior is the regularised (“damped”) Hessian of the log-

likelihood function, where the prior – whose magnitude is set by α – provides the
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regularisation. If we define the Hessian matrix of the log-likelihood as H, then B =

H+αI (I being the identity matrix). Regularisation increases the probability that the

local maximum found is also the global maximum.

Using the second-order information provided by the Hessian allows for more effi-

cient steps to be made, since curvature information can extend step sizes in directions

where the gradient varies less and shorten where it is varying more. Additionally, using

the Hessian of the log-posterior instead of the log-likelihood adds the regularisation of

the prior. As mentioned before, this helps prevent the algorithm from getting stuck in a

local maximum by smoothing out the function being explored. It also aids in reducing

the region of confidence for the gradient information which will make it less likely that

a step results in a worse set of parameters.

Given the form of the log-likelihood, Equation (5.4), is a sum of squares (plus

a constant), we can also save computational expense by utilising the Gauss-Newton

approximation of its Hessian, given by

Hi j =−
K

∑
k=1

(
∂rk
∂ai
· ∂rk

∂a j
+ rk ·

∂ 2rk
∂ai∂aj

)
≈−

K

∑
k=1

(
∂rk
∂ai
· ∂rk

∂a j

)
, (5.15)

where

rk =
t(k)−y(x(k);a)

σσσ
. (5.16)

The drawback of using second-order information is that calculation of the Hessian

is computationally expensive and requires large storage, especially so in many dimen-

sions as we will encounter for more complex networks. In general, the Hessian is

not guaranteed to be positive semi-definite and so may not be invertible; however, the

Gauss-Netwon approximation does have this guarantee and does not require calculat-

ing second derivatives. Inversion of the very large matrix will still be computationally

expensive.

As noted in [178] however, we only need products of the Hessian with a vector to

compute the solution, never actually the full Hessian itself. To calculate these approx-

imate Hessian-vector products, we use a fast approximate method given in [179, 180].

This method takes advantage of the approximation made in Equation (5.13). If we
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choose ∆a = rv where v is any vector and r is a small number we can solve for the

Hessian-vector product,

Bv≈ ∇ f (a+ rv)−∇ f (a)
r

. (5.17)

This is a simple approximation for the product and can be computed in about the same

time as required to find the gradient, which must be calculated anyway. In order to

make this an exact method and less susceptible to numerical errors, we take the limit

as r→ 0. Doing so gives us

Bv =
∂

∂ r
∇ f (a+ rv)

∣∣∣∣
r=0

. (5.18)

We can therefore define the Rv{·} operator,

Rv{ f (a)} ≡ ∂

∂ r
f (a+ rv)

∣∣∣∣
r=0

, (5.19)

such that Bv = Rv{∇ f (a)}. This operator is then applied to all of the same equations

and procedures used to calculate the gradient. These equivalent functions have the

same cost as a gradient calculation, which is an O(M) operation for M weights. This

is a vast improvement over calculating and storing the entire Hessian matrix.

By combining all of these methods, second-order information is practical to use

and significantly improves the rate of convergence of NN training.

5.2.4 Convergence

Following each step, the posterior, likelihood, correlation, and error squared values are

calculated for the training data and the validation data that was not used in training

(calculating the steps). Convergence to a best-fit set of parameters is determined by

maximising the posterior, likelihood, correlation, or negative of the error squared of the

validation data, as chosen by the user. This prevents overfitting as it provides a check

that the network is still valid on points not in the training set. We use the error squared

as the default function to maximise as it does not include the model hyper-parameters

in its calculation and is less prone to problems with zeros than the correlation.
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5.2.5 Autoencoders and Pre-Training

Autoencoders are a specific type of neural network wherein the inputs are mapped to

themselves through one or more hidden layers. These typically have a symmetric setup

of several hidden layers with a central layer containing fewer nodes than there are in-

puts. The NN can be split in half, with one part mapping the inputs to this central layer

and the second part mapping the central layer weights to the outputs (same as original

inputs). These two parts are called the “encoder” and “decoder” respectively and map

either to or from a reduced basis set of “feature vectors” embodied in the central layer.

This is akin to a non-linear principle component analysis (PCA). The non-linearity

should allow for more complex relationships and more information to be contained in

the same number of components/feature vectors. The individual feature vectors can

be found by decoding (1,0,0, ...,0), (0,1,0, ...,0), and so on. A basic diagram of an

autoencoder is shown in Figure 5.2. The three inputs (x1,x2,x3) are mapped to them-

selves via three symmetric hidden layers, with 2 nodes in the central layer. The weights

of the central layer (z1,z2) are feature vector weights for the reduced non-linear basis

set.

Autoencoders are notoriously difficult to train. A broad local maximum exists

wherein all outputs are the average value of the inputs. Geoffrey Hinton, Simon Osin-

dero, and Yee-Whye Teh developed a method for “pre-training” networks to obtain a

set of weights near the true global maximum [181]. This method was created with

symmetric autoencoders in mind. The map from the inputs to the first hidden layer

and then back is treated symmetrically and the weights are adjusted through a num-

ber of “epochs”, gradually reducing the reproduction error. This is repeated for the

first to second hidden layer and so on until the central layer is reached. The network

weights can then be “unfolded” by using the transpose for the symmetric connections

in the decoding half to provide a decent starting point for the full training to begin.

This is shown in Figure 5.2, where the W1 and W2 weights matrices are defined by

pre-training. More details can be found in [181] and [182] has useful diagrams and

explanations.

This pre-training can also be used for non-autoencoder networks. All layers of

weights, except for the final one that connects the last hidden layer to the outputs,

are pre-trained as if they were the first half of a symmetric autoencoder. However,
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Figure 5.2: Schematic diagram of an autoencoder. The 3 input values are being en-
coded to 2 feature vectors. Pre-training defines the W1 and W2 weight matrices to
provide a starting point for fine-tuning in training.
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the network weights are not unfolded; instead the final layer of weights is initialised

randomly as would have been done without pre-training. In this way, the network

“learns the inputs” before mapping to a set of outputs.

When an autoencoder is pre-trained, the activation function to the central hidden

layer is made linear and the activation function from the final hidden layer to the out-

puts is made sigmoidal. Regular networks that are pre-trained continue to use the

original activation functions. Examples of the use of pre-training for autoencoders and

other networks will be provided in the following sections of this chapter.

5.2.6 The Evidence of a Network

As we are determining the NN’s optimal weights from a Bayesian formalism with like-

lihood and prior functions, we can also define the Bayesian evidence of the network

model. This may be used to compare different types of networks and determine the op-

timal NN structure. The best NN model will have a larger evidence than other models

and will, in general, be the smallest network that provides the best predictions possible

for the given data. We approximate the evidence as deriving from a single Gaussian

peak about the optimal weights found as in [183]. In practice, this approximation is

close enough to the true value to provide a good guide. From [183] the evidence for an

optimised network is given by

log(Znetwork) = log(S(aMP;α))+ log(L(aMP);σσσ)− 1
2

log(|HMP|)

+
M
2

log(α)− 1
2

N

∑
i=1

log(σi)−
N
2

log(2π), (5.20)

where ‘MP’ indicates the value at the posterior maximum and M and N are defined as

before (number of NN weights and outputs, respectively). There can be significant un-

certainty in this measurement due to the statistical method of calculating log(|H|) that

avoids calculating H itself. However, later examples will display trends that indicate

when an optimal network structure has been obtained.
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Figure 5.3: Comparisons of the true and predicted values for the sinc function on the
training and validation data sets.

5.3 Toy Examples

5.3.1 Sinc Function with Noise

The first toy example we examined was a simple regression problem. In this, we gen-
erate 200 samples of x ∈ U[−5π,5π] for which we evaluate a modified sinc function,

y(x) =
sin(x)

x
+0.04x, (5.21)

and then add Gaussian noise with zero mean and a standard deviation of 0.05. The
noise is added to make the learning of the function more difficult and prevent any
exact solution being possible. The samples are split, using a random selection of 150
for training and 50 for validation. We use Equation (5.10) to whiten the inputs and
outputs and train a network with 7 hidden layer nodes, obtaining correlations of greater
than 99.3%. A comparison of the true and predicted outputs is shown in Figure 5.3.

The optimal number of hidden layer nodes can be determined by comparing the
calculated evidence from networks with different numbers of hidden nodes. These
results are shown in Table 5.1. The evidence clearly increases until we reach 6 hidden
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Nhid Avg. Err. Sqr. Correlation % ln(Znet)±25
3 7.08×10−3 98.23 −279
4 6.44×10−3 98.38 −256
5 3.20×10−3 99.26 −161
6 2.93×10−3 99.31 −142
7 2.76×10−3 99.35 −143
8 2.86×10−3 99.34 −144
9 2.87×10−3 99.34 −143
10 2.73×10−3 99.36 −137
11 2.75×10−3 99.36 −134
12 2.92×10−3 99.32 −154
13 2.77×10−3 99.35 −134
14 2.72×10−3 99.37 −170
15 2.82×10−3 99.35 −183

Table 5.1: Results for training regression networks on a modified sinc function with
noise.

nodes and then levels off to within its own measurement error. We can say then that any

increase in accuracy for larger networks is offset by the increased complexity of the

network. This additional complexity does not contribute enough additional accuracy

beyond 13 nodes, when the evidence begins to drop significantly again.

5.3.2 Three-Way Classification

Radford Neal created a three-way classification data set [184] for testing his own al-

gorithm for NN training. In this data set, four variables x1, x2, x3, and x4 are sampled

from U[0,1] 1000 times each. If the two-dimensional Euclidean distance between

(x1,x2) and (0.4,0.5) is less than 0.35, the point is placed in class 0; otherwise, if

0.8x1 + 1.8x2 < 0.6, the class was set to 1; and if neither of these conditions is true,

the class was set to 2. Note that the values of x3 and x4 play no part in the classifica-

tion. Gaussian noise with standard deviation 0.1 was then added to the input values.

Figure 5.4 shows the data set with classifications. Approximately 75% of data was

used for training and the remaining 25% for validation. A network was trained using 8
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Figure 5.4: The classifications for all data points (training and validation).

True Class Number
Predicted Class (%)

0 1 2
0 282 84.0 4.96 11.0
1 93 14.0 82.8 3.2
2 386 7.0 1.3 91.7

Table 5.2: Classifications for the toy training data set.

hidden layer nodes with the inputs whitened using Equation (5.10). In total, 87.8% of

training data points and 85.4% of validation points were correctly classified. The sum-

mary of classifications is given in Tables 5.2 and 5.3. These results compare well with

Neal’s own original results [184] and are similar to classifications based on applying

the original criteria to the new points that have noise added.

5.3.3 Autoencoders as Non-Linear PCA

As a first test, we trained an autoencoder network on the three-way classification in-

puts. For this we used hidden layers of 10 and then 4 units, so the final network
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True Class Number
Predicted Class (%)

0 1 2
0 99 75.7 6.1 18.2
1 19 21.1 78.9 0.0
2 121 5.0 0.8 94.2

Table 5.3: Classifications for the toy validation data set.

was 4+10+4+10+4. This network is not reducing the dimensionality, but does per-

form a non-linear transformation. Without pre-training, even this relatively simple

autoencoder with 188 weights continuously achieves an average error squared value of

0.0950269, which corresponds to each output being equal to the average value of that

particular input across all data points. However, with pre-training we can obtain an av-

erage error squared of 0.00352961, which corresponds to a correlation of 99.7%. After

just one step of training the error squared is already below the best without pre-training.

Reducing the central layer to 3 nodes does not affect the results without pre-training;

with pre-training we are now only able to obtain an error squared of 0.00621163, which

is a correlation of 92.6%. Clearly some significant information is lost, which agrees

with the fact that there are four independent inputs.

To provide a quick comparison with traditional principle component analysis (PCA),

we use the example of data points sampled from a multivariate Gaussian distribution.

The eigenvalues and eigenvectors of this data represent the components that a PCA

analysis would measure and use for data compression. In the first example, a 3D non-

singular covariance matrix is used to generate samples from a multivariate Gaussian.

The eigenvalues and eigenvectors of the covariance matrix calculated from these sam-

ples are then computed, to compare with the analytic values. As expected, these match

very closely. Autoencoders with an increasing number of hidden layer nodes (in a

single layer) are then trained. In the simplest case of a single hidden layer node, we

expect that the one feature vector that will be represented will be the eigenvector with

the largest eigenvalue, as this captures as much information as possible. For two hid-

den layer nodes, the two feature vectors will now be a linear combination of the two

eigenvectors with the two largest eigenvalues, so that the same plane in the 3D space is
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Nhid Avg. Err. Sqr. Correlation % ln(Znet)

1 0.00191 94.06 5984
2 5.73×10−4 98.08 7510
3 5.93×10−5 99.82 10243

Table 5.4: Results for training autoencoder networks on a 3D multivariate Gaussian.

spanned. Finally, with three hidden layer nodes the three feature vectors should span

the 3D space and be able to generate a nearly 100% correlation.

Pretraining was used as, even in these very small networks, it is easy to fall into the

large local maximum of each output always containing the average value. Table 5.4

shows the results obtained when training autoencoders with increasing hidden layer

nodes. As more nodes are added, there is a significant decrease in the average error

squared as well as increasing correlation, up to 99.82%. The evidence value for the net-

work also increases, giving another indication of a better fit. Furthermore, the feature

vector from the network with a single hidden layer node was indeed an eignenvector

with the highest eigenvalue and the feature vectors from the two hidden layer nodes

network spanned approximately the same plane as the two eigenvectors with highest

eigenvalues.

Additionally, we tested our ability to determine the optimal number of hidden layer

nodes for an autoencoder when additional, redundant, information is provided. To ac-

complish this, a 3D multivariate Gaussian was rotated into 5D space. Therefore, there

were only three independent combinations of the five provided values. The known

optimal number of hidden nodes is thus also three and the autoencoders reflect that

clearly in the evidences shown in Tabke 5.5. Once three hidden nodes are used, adding

more neither decreases the error squared or increases the correlation; however, the ev-

idence does decrease as Occam’s razor applies a penalty for using more parameters

without improving the fit to the data.

In both of these examples, it is found that with one hidden layer node the feature

vector that is represented is equivalent to the primary eigenvector of the covariance

matrix of samples, exactly consistent with a PCA analysis. Having shown that PCA-

like results can be reproduced on a simple example, we can now apply autoencoders
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Nhid Avg. Err. Sqr. Correlation % ln(Znet)

1 0.00613 79.6 −6293
2 0.00127 96.0 12430
3 4.87×10−5 99.86 17164
4 4.87×10−5 99.86 16823
5 4.87×10−5 99.86 16859

Table 5.5: Results for training autoencoder networks on a 3D multivariate Gaussian in
5D space.

for finding non-linear features in more complicated data sets by using larger network

structures.

5.4 MNIST Handwriting Recognition

The MNIST database of handwritten digits is a subset of a larger set available from

NIST (National Institute for Standards and Technology). It consists of 60,000 training

and 10,000 validation samples of handwritten digits. The images have been size-

normalised and centred in 28×28 pixel greyscale images. They are publicly available

at [185], which also provides more information on the generation of the data set and re-

sults from previous analyses by other researchers. This data set has become a standard

for testing of machine learning algorithms. The learning task is to correctly identify

the digit written in each image, with the chosen digit being given by the output class

(0 to 9) with the highest probability. Some sample digits are shown in Figure 5.5.

We have trained several different networks on this data set, using pre-training for

any hidden layers. All networks whitened the inputs using Equation (5.11) across

all inputs. Additionally, all networks had 784 inputs (each pixel of the image) and

10 outputs (one for each possible digit). Deeper and larger networks were able to

obtain the best results. Results are summarised in Table 5.6, where the error rates are

those calculated on the validation set of images. These can be compared with results

referenced at [185], which obtain error rates as low as 0.35% [186] but more typically

between 1% and 5% [187].
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Figure 5.5: Sample handwritten digits from the MNIST database.

Hidden Layer Nodes Error Rate (%)

0 8.08
100 4.15
250 3.00

1000 2.38
300+30 2.83
500+50 2.62

1000+300+30 2.31
500+500+2000 1.76

Table 5.6: Error rates for different networks trained to predict the MNIST data set.
Training with larger networks was stopped before full convergence due to the large
computational cost for marginal improvements.
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True Count
Predicted Digit (%)

0 1 2 3 4 5 6 7 8 9
0 980 99.1 0.0 0.2 0.1 0.0 0.3 0.2 0.1 0.0 0.0
1 1135 0.0 99.0 0.1 0.3 0.0 0.3 0.1 0.1 0.2 0.0
2 1032 0.2 0.1 97.6 0.9 0.1 0.1 0.2 0.4 0.5 0.0
3 1010 0.0 0.0 0.0 98.4 0.0 0.4 0.0 0.3 0.7 0.2
4 982 0.0 0.0 0.2 0.0 98.3 0.0 0.5 0.0 0.0 1.0
5 892 0.1 0.0 0.0 1.1 0.0 98.0 0.3 0.0 0.3 0.1
6 958 0.3 0.2 0.0 0.2 0.2 0.3 98.3 0.0 0.4 0.0
7 1028 0.0 0.1 0.5 0.5 0.1 0.0 0.0 98.0 0.2 0.6
8 974 0.2 0.0 0.1 0.8 0.1 0.4 0.0 0.1 97.7 0.5
9 1009 0.2 0.1 0.0 0.5 0.5 0.2 0.1 0.4 0.2 97.8

Table 5.7: Classifications for the MNIST blind data set. (Rows may not add up to
exactly 100 due to rounding.)

In Table 5.7 we provide the classification rates made the best-performing (784 +

500 + 500 + 2000 + 10) network on the blind data set. From this we can see how the

network is distributing its correct and incorrect predictions. To further illustrate, in

Figure 5.6 we show a sample selection of the digits predicted incorrectly. Some are

indeed hard even for a human to distinguish but some are unclear as to why they were

mis-identified.

A pair of auto-encoder networks were also trained on the data set, one with hid-

den layers of 1000+ 300+ 30+ 300+ 1000 (called AE-30) and another with hidden

layers of 1000+500+50+500+1000 (called AE-50). Both had 784 inputs/outputs

to match the image size. The AE-30 network was able to obtain an average total error

squared of only 4.64 on reproducing the digits and AE-50 obtained an average total

error squared of 3.29. The networks encoded each image as 30 or 50 feature vector

weights, respectively, and then decoded these weights to produce an image of the digit

comparable to the original. The error squared values are comparable to those obtained

by Hinton and Salakhutdinov in [182]. The feature vectors from the AE-30 network

are shown in Figure 5.7 – each one being obtained by setting a single decoder input

weight to one and all others to zero. Non-linear weighted combinations of these fea-
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5.4 MNIST Handwriting Recognition

Figure 5.6: A sample of digits predicted incorrectly by the 784+500+500+2000+10
network. The true and predicted digit values are given above each image (true →
predicted).
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Figure 5.7: Feature vectors of the MNIST handwriting samples for the AE-30 network.
The total error squared from these features is 4.64.

tures are used to reproduce each of the handwriting samples to within a small error.

We are able to use the feature vector weights of the encoded writing samples for

classification. All of the training data images were passed through the two encoders to

obtain the sets of 30 or 50 feature vector weights. Networks with 30 or 50 inputs and

the ten classification outputs were then trained on this compressed data set. Results of

the NN training are given in Table 5.8.

An autoencoder that calculated only two feature vectors using a deep network

(1000+ 500+ 250+ 2 symmetric hidden layers) was also trained. Although this net-

work was significantly less able to reproduce the original digits, having an average

total error squared of 31.0, we can plot the values of the two feature vector weights for
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Encoder Hidden Layers Error Rate (%)

AE-30

0 9.57
10 6.39
30 3.03

100+50+10 2.55

AE-50

0 8.68
10 6.61
50 2.65

100+50+10 2.71

Table 5.8: Error rates for different networks trained to predict the MNIST data set
based on encoded feature vector weights.

each of the classes to illustrate the classification differences. We do so in Figure 5.8 for

the 10,000 blind data points. There is some clear overlap between digits with similar

shapes, but some digits do occupy distinct regions of the parameter space (particularly

1 in the top right, some 0s in the bottom right, and many 2s in the middle right).

Through this example, we have shown the NN training algorithm to be able to

handle the training of both deep classification and autoencoder networks. Using pre-

training and second-order gradient descent we trained several networks to classify im-

ages of handwritten digits to a high degree of accuracy. Although this may be an easy

task for a human brain, it is quite difficult for a computer to learn. Additionally, we

were able to train autoencoder networks with millions of weights in order to reduce

the dimensionality of the information we were attempting to classify from 784 pix-

els to 30 or 50 non-linear feature vector weights. These reduced basis sets retained

enough information about the original images to reproduce them to within small er-

rors, thus enabling us to perform classification using these weights. This classification

was nearly as accurate as our best-performing network trained on the full images.

5.5 Mapping Dark Matter Challenge

The Mapping Dark Matter Challenge was presented on www.kaggle.com as a sim-

plified version of the GREAT10 Challenge [188]. In this problem, each data value
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Figure 5.8: Scatterplot distribution of feature vector weights for blind data set digits
as given from the encoding half of the 784+1000+500+250+2 symmetric autoencoder.
This is comparable to Figure 3B in [182].
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5.5 Mapping Dark Matter Challenge

consists of an image of a galaxy and an image of a corresponding star. Each image is

48× 48 pixels and greyscale. The galaxy has some ellipticity that has been obscured

by a point-spread function and statistical noise. The star is a point source that has

also been transformed by the same point-spread function and statistical noise. The

trained network must take the galaxy and star images as inputs and predict the galaxy’s

ellipticity. The training data set contained 40,000 image pairs and a challenge (vali-

dation) data set contained 60,000 image pairs. During the challenge, the solutions for

the validation data set were kept secret and participating teams submitted their predic-

tions. Further details on the challenge and descriptions of the top results can be found

in [189].

5.5.1 The Data and Model

Each galaxy image is an ellipse with a simple brightness profile. This is then convolved

with a point-spread function which blurs the ellipse in a similar way to telescope obser-

vations. There is also Poisson noise degrading the image. Accompanying each galaxy

image is a star image, which is a point source convolved with the same point-spread

function and similar noise. A sample galaxy and star image pair is shown in Figure 5.9.

The ellipticity of a galaxy, which is essentially an ellipse, is given by two param-

eters, e1 and e2. These measure the relative lengths of the major and minor axes and

the angle of the ellipse and may vary in [−1,1]. Equation (5.22) gives these definitions

with a, b, and θ shown in Figure 5.10.

e1 =
a−b
a+b

cos(2θ) (5.22a)

e2 =
a−b
a+b

sin(2θ) (5.22b)

Further details about the data set can be found at the challenge’s webpage [190].

The website also gives the unweighted quadrupole moments (UWQM) formula for

calculating the ellipticity. However, as the competition organisers note, this formula

will not provide very good measurements as it does not account for the point-spread

function. Our aim was to use NNs to provide a better way of measuring the ellipticity.
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(a) (b)

Figure 5.9: Example pair of (a) galaxy and (b) star images for the Mapping Dark
Matter challenge. Each image is 48×48 greyscale pixels.

Figure 5.10: Definition of ellipse measurements for Equation (5.22). Image
from [190].
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Data Set Hidden Layers RMSE

Full Images

0 0.0224146
2 0.0186944
5 0.0184237

10 0.0182661

Cropped Star

0 0.0175578
2 0.0176236
5 0.0175945

10 0.0174997
50 0.0172977

50+10 0.0171719

Galaxy Only

0 0.0234740
2 0.0234669
5 0.0236508

10 0.0226440

Table 5.9: Root mean square error rates on ellipticity predictions for different networks
trained on the MDM data sets and evaluated on the 60,000 challenge image pairs.

5.5.2 Results of Training

The quality of a network’s predictions are measured by the root mean squared error of

its predictions of the ellipticities for the 60,000 challenge galaxies. Better predictions

will result in lower values of the RMSE. The magnitude of the problem and the size

of the dataset limited the ability to train large networks due to immense computational

cost. Therefore, for this demonstration we only trained relatively smaller networks, but

used three different data sets: (A) the full galaxy and star images, (B) the full galaxy

image and a centrally cropped star image, and (C) just the full galaxy image. 75%

of the provided training data was used for the training subset and the remaining 25%

was used for validation. We originally trained on just 25% of the training subset and

without using pre-training. Networks were then fine-tuned using the entire training

subset. RMSE values for trained networks evaluated on the challenge set are given in

Table 5.9.

These scores show naive first results that already perform very well; the standard
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software package SourceExtractor scores 0.0862191 on this test data and UWQM
scores 0.1855600. The results could potentially be further improved by fitting pro-
files to the images and using these fits for training, which would reduce the number
of inputs by about two orders of magnitude. Additionally, an autoencoder could be
trained to allow us to decompose the images into feature vectors and use the corre-
sponding weights for training, thereby reducing the dimensionality and the impact of
noise in the images.

By reducing the number of inputs without affecting the information content – in
this problem by cropping the star images to the central 24×24 pixels – we were able
to improve the precision of predictions and lower our RMSE. Due to its better per-
formance on the initial networks trained, the “CroppedStar” data set was also used
to train two slightly larger networks with 50 and 50+ 10 hidden layer nodes. These
continued to show improving predictions, indicating that even more complex networks
could further improve ellipticity measurements. The best results obtained, with an
RMSE of 0.0171719, compare well with the competition winners who had an RMSE
of 0.0150907 [189, 190] and used a mixture of methods that included NNs. This scored
would have placed us in 32nd place out of 66 teams that entered.

The “GalaxyOnly” data set shows us that removing the star images does not al-
low the NN to account for the point-spread function and therefore gives a significant
increase in the RMSE as might be expected.

The RMSE on the challenge data was slightly increased relative to that obtained on
initial training data because it was generated with a non-zero mean ellipticity (actual
mean of 0.01). Since the network is only able to predict what it has been trained on, the
statistical differences between the two data sets led to a slightly increased prediction
error on average.

5.6 Discussion

In this chapter I have introduced the framework of artificial neural networks used for
machine learning. By using an efficient and robust algorithm, we are able to train large
and deep networks. We use second-order information to allow convergence in fewer
steps and prevent overfitting with prior information and checks on separate validation
data. The algorithm is demonstrated on toy examples of regression, classification, and
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autoencoder networks. The framework was then applied to handwriting classification
in determining digits from the MNIST database. Shallow and deep classification net-
works as well as autoencoders were used to accomplish this machine learning task.
Lastly, NNs were applied to measuring the ellipticity of noisy and convolved galaxy
images in the Mapping Dark Matter Challenge. NNs proved to perform well given the
raw, un-treated data.

The learning power of NNs combined with the training algorithm described is a
powerful tool for use in further astrophysics projects, such as the generation of grav-
itational wave signals, as well as computational tasks of other types that involve re-
peated and complex functions. This includes evaluations of likelihoods for Bayesian
inference, an application that is investigated in the next chapter.
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Chapter 6
The BAMBI Algorithm

G-d does not care about our mathematical
difficulties. He integrates empirically.

Albert Einstein

Bayesian methods of inference are widely used in astronomy and cosmology and

are gaining popularity in other fields, such as particle physics. Some uses have al-

ready been described in Chapters 2 and 3. At each point in parameter space, Bayesian

methods require the evaluation of a likelihood function describing the probability of

obtaining the data for a given set of model parameters. For some cosmological and

particle physics problems each such function evaluation takes up to tens of seconds.

MCMC applications may require millions of these evaluations, making them pro-

hibitively costly. MULTINEST is able to reduce the number of likelihood function

calls by an order of magnitude or more, but further gains can be achieved if we are

able to speed up the evaluation of the likelihood itself.

An artificial neural network is ideally suited for this task. A universal approx-

imation theorem [176] assures us that we can accurately and precisely approximate

the likelihood with a three-layer, feed-forward NN. The training of NNs is one of the

most widely studied problems in machine learning, so techniques for learning the like-

lihood function are well established. In the Blind Accelerated Multimodal Bayesian

Inference (BAMBI) algorithm [191], we incorporate NNs with MULTINEST. Samples

from MULTINEST are used to train a NN or set of NNs on the likelihood function
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which can subsequently be used to predict new likelihood values in a tiny fraction of

the time originally required. We implement the algorithm described in Chapter 5 for

our NN training.

In this chapter, Section 6.1 will describe the structure of the new algorithm, BAMBI.

Section 6.2 then demonstrates this algorithm performing on a few toy examples. The

algorithm is applied to the computationally costly problem of cosmological parameter

estimation in Section 6.3. For this same problem, we then demonstrate rapid follow-

up analyses in Section 6.4. Work in this chapter was performed in collaboration with

Farhan Feroz and large portions are published in [191].

6.1 The Structure of BAMBI

The Blind Accelerated Multimodal Bayesian Inference (BAMBI) algorithm combines

nested sampling and neural networks. After a specified number of new samples from

MULTINEST have been obtained (specified by the updInt run parameter), BAMBI

uses these to train a regression network on the log-likelihood function. Approximately

80% of the samples are used for training and the remaining 20% are used for the val-

idation set. These values are slightly different from the previous chapter to give more

information for training on the likelihood, but at the sacrifice of a smaller validation

set. After convergence to the optimal NN weights, we test that the network is able to

predict likelihood values to within a specified tolerance level. If not, sampling con-

tinues using the original log-likelihood until enough new samples have been made for

training to be resumed. Once a network is trained that is sufficiently accurate, its pre-

dictions are used in place of the original log-likelihood function for future samples in

MULTINEST. Consistency checks are made to ensure the NN is not making predic-

tions outside the range of data on which it was trained. Using the network reduces the

log-likelihood evaluation time from seconds to microseconds, allowing MULTINEST

to complete analysis much more rapidly. As a bonus, the user also obtains a network

or set of networks that are trained to easily and quickly provide more log-likelihood

evaluations near the peak if needed, or in subsequent analyses.
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6.1.1 When to Use the Trained Network

The optimal network possible with a given set of training data may not be able to

predict log-likelihood values accurately enough, so an additional criterion is placed on

when to use the trained network. This requirement is that the root-mean-square error

of log-likelihoods evaluations by the network is less than a user-specified tolerance,

tol. When the trained network does not pass this test, then BAMBI will continue

using the original log-likelihood function to obtain updInt/2 new samples to generate

a new training data set of the last updInt accepted samples. Network training will then

resume, beginning with the weights that it had found as optimal for the previous data

set. Since samples are generated from nested contours and each new data set contains

half of the previous one, the saved network will already be able to produce reasonable

predictions on this new data; resuming therefore enables us to save time as fewer steps

will be required to reach the new optimum weights.

Once a NN is in use in place of the original log-likelihood function its evalua-

tions are taken to be the actual log-likelihoods, but checks are made to ensure that

the network is maintaining its accuracy. If the network makes a prediction outside of

[mintraining(logL)−tol,maxtraining(logL)+tol], then that value is discarded and the

original log-likelihood function is used for that point. Additionally, the central 95th per-

centile of the output log-likelihood values from the training data used is calculated and

if the network is making > 95% of its predictions outside of this range then it will be

re-trained. To re-train the network, BAMBI first substitutes the original log-likelihood

function back in and gathers the required number of new samples from MULTINEST.

Training then commences, resuming from the previously saved network. These crite-

ria ensure that the network is not trusted too much when making predictions beyond

the limits of the data it was trained on, as we cannot be sure that such predictions are

accurate.

The flow of sampling and training within BAMBI is demonstrated by the flowchart

given in Figure 6.1. Red boxes indicate sampling with the original likelihood function

and we want to minimise the time spent in these. The brown box is time spent training

the NN and so does not advance the Bayesian inference; time here should be minimized

as well. Lastly, the green box is sampling done with a trained NN and this is where we
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Figure 6.1: A flowchart depicting the transitions between sampling and NN training
within BAMBI. N is given by updInt from MULTINEST.

want to maximise usage, so that a larger percentage of the log-likelihood evaluations

are done rapidly.

6.2 BAMBI Toy Examples

In order to demonstrate the ability of BAMBI to learn and accurately explore multi-

modal and degenerate likelihood surfaces, we first tested the algorithm on a few toy

examples. The eggbox likelihood has many separate peaks of equal likelihood, mean-

ing that the network must be able to make predictions across many different areas of

the prior. The Gaussian shells likelihood presents the problem of making predictions

in a very narrow and curving region. Lastly, the Rosenbrock function gives a long,

curving degeneracy that can be extended to higher dimensions. They all require high

accuracy and precision in order to reproduce the posterior truthfully and each presents

unique challenges to the NN in learning the log-likelihood. It is important to note

that running BAMBI on these problems required more time than the straightforward

analysis; this was as expected since the actual likelihood functions are simple analytic

expressions that do not require much computational expense.
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Figure 6.2: The eggbox log-likelihood surface, given by Equation (6.1).

6.2.1 Eggbox

This is a standard example of a very multimodal likelihood distribution in two dimen-
sions. It has many peaks of equal value, so the network must be able to take samples
from separated regions of the prior and make accurate predictions in all peaks. The
eggbox log-likelihood [102] is given by

log(L(x,y)) =
(
2+ cos( x

2)cos( y
2)
)5
, (6.1)

where we take a uniform prior U[0,10π] for both x and y. The structure of the surface
can be seen in Figure 6.2.

We ran the eggbox example in both MULTINEST and BAMBI, both using 4000
live points. For BAMBI, we used 4000 samples for training a network with 50 hidden
nodes. These values were chosen after some initial testing to give the NN sufficient
complexity and data to learn the function. In Table 6.1 we report the evidences re-
covered by both methods as well as the true value obtained analytically from Equa-
tion (6.1). Both methods return evidences that agree with the analytically determined
value to within the given error bounds. Figure 6.3 compares the posterior probability
distributions returned by the two algorithms via the distribution of lowest-likelihood
points removed at successive iterations by MULTINEST. We can see that they are
identical distributions; therefore, we can say that the use of the NN did not reduce
the quality of the results either for parameter estimation or model selection. During
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Method log(Z)

Analytical 235.88
MULTINEST 235.859±0.039

BAMBI 235.901±0.039

Table 6.1: The log-evidence values of the eggbox likelihood as found analytically and
with MULTINEST and BAMBI.

(a) (b)

Figure 6.3: Points of lowest likelihood of the eggbox log-likelihood from successive
iterations as given by (a) MULTINEST and (b) BAMBI.

the BAMBI analysis 51.3% of the log-likelihood function evaluations (∼ 70,000 to-

tal) were done using the NN; if this were a more computationally expensive function,

significant speed gains would have been realised.

6.2.2 Gaussian Shells

The Gaussian shells likelihood function has low values over most of the prior, except

for thin circular shells that have Gaussian cross-sections. We use two separate Gaus-

sian shells of equal magnitude so that this is also a mutlimodal inference problem.

Therefore, our Gaussian shells likelihood is

L(x) = circ(x;c1,r1,w1)+ circ(x;c2,r2,w2), (6.2)
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Figure 6.4: The Gaussian shell likelihood surface, given by Equations (6.2) and (6.3).

where each shell is defined by

circ(x;c,r,w) =
1√

2πw2
exp
[
−(|x− c|− r)2

2w2

]
. (6.3)

We used values of r1 = r2 = 2, w1 = w2 = 0.1, c1 = (−3.5,0), and c2 = (3.5,0). This

is shown in Figure 6.4.

As with the eggbox problem, we analysed the Gaussian shells likelihood with both

MULTINEST and BAMBI using uniform priors U[−6,6] on both dimensions of x.

MULTINEST sampled with 1000 live points and BAMBI used 2000 samples for train-

ing a network with 100 hidden nodes (again, tests were performed to find suitable

values for NN learning). In Table 6.2 we report the evidences recovered by both meth-

ods as well as the true value obtained analytically from Equations (6.2) and (6.3). The

evidences are both consistent with the true value. Figure 6.5 compares the posterior

probability distributions returned by the two algorithms (in the same manner as with

the eggbox example). Again, we see that the distribution of returned values is nearly

identical when using the NN, which BAMBI used for 18.2% of its log-likelihood func-

tion evaluations (∼ 10,000 total). This is a significant fraction, especially since they

are all at the end of the analysis when exploring the peaks of the distribution.
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Method log(Z)

Analytical −1.75
MULTINEST −1.768±0.052

BAMBI −1.757±0.052

Table 6.2: The log-evidence values of the Gaussian shell likelihood as found analyti-
cally and with MULTINEST and BAMBI.

(a) (b)

Figure 6.5: Points of lowest likelihood of the Gaussian shell likelihood from successive
iterations as given by (a) MULTINEST and (b) BAMBI.
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Figure 6.6: The Rosenbrock log-likelihood surface given by Equation (6.4) with N = 2.

6.2.3 Rosenbrock function

The Rosenbrock function is a standard example used for testing optimization as it

presents a long, curved degeneracy through all dimensions. For our NN training, it

presents the difficulty of learning the likelihood function over a large, curving region

of the prior. We use the Rosenbrock function to define the negative log-likelihood, so

the log-likelihood function is given in N dimensions by

log(L(x)) =−
N−1

∑
i=1

[
(1− xi)

2 +100(xi+1− x2
i )

2]. (6.4)

Figure 6.6 shows how this appears for N = 2.

We set uniform priors of U[−5,5] in all dimensions and performed analysis with

both MULTINEST and BAMBI with N = 2 and N = 10. For N = 2, MULTINEST sam-

pled with 2000 live points and BAMBI used 2000 samples for training a NN with 50

hidden-layer nodes. With N = 10, we used 2000 live points, 6000 samples for network

training, and 50 hidden nodes. Tests ensured that these settings allowed good sam-

pling of the prior and ample information and NN structure to allow training to a high

enough accuracy. Table 6.3 gives the calculated evidences returned by both algorithms

as well as the analytically calculated values from Equation (6.4) (there does not exist

an analytical solution for the 10D case so this is not included). Figure 6.7 compares

the posterior probability distributions returned by the two algorithms for N = 2. For
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Method log(Z)

Analytical 2D −5.804
MULTINEST 2D −5.799±0.049

BAMBI 2D −5.757±0.049
MULTINEST 10D −41.54±0.13

BAMBI 10D −41.53±0.13

Table 6.3: The log-evidence values of the Rosenbrock likelihood as found analytically
and with MULTINEST and BAMBI.

N = 10, we show in Figure 6.8 comparisons of the marginalised two-dimensional pos-

terior distributions for 12 variable pairs. We see that MULTINEST and BAMBI return

nearly identical posterior distributions as well as consistent estimates of the evidence.

For N = 2 and N = 10, BAMBI was able to use a NN for 64.7% and 30.5% of its

log-likelihood evaluations respectively (∼ 40,000 total for N = 2 and ∼ 1.3×106 for

N = 10). Even when factoring in time required to train the NN this would have resulted

in large decreases in running time for a more computationally expensive likelihood

function. In the N = 2 case the network was trained twice, with re-training required

because the first training did not achieve sufficient accuracy. In the N = 10 case the

network was trained 12 times since the first 10 times did not achieve enough accu-

racy and the first network used needed re-training once the sampling moved further up

in log-likelihood contours and the distribution of predictions no longer resembled the

data on which it was trained.

6.3 Cosmological Parameter Estimation with BAMBI

While likelihood functions resembling our previous toy examples do exist in real phys-

ical models, we would also like to demonstrate the usefulness of BAMBI on simpler

likelihood surfaces where the time of evaluation is the critical limiting factor. One

such example in astrophysics is that of cosmological parameter estimation and model

selection.

We implement BAMBI within the standard COSMOMC code [192], which by de-

fault uses MCMC sampling. This allows us to compare the performance of BAMBI
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(a) (b)

Figure 6.7: Points of lowest likelihood of the Rosenbrock likelihood for N = 2 from
successive iterations as given by (a) MULTINEST and (b) BAMBI.

Figure 6.8: Marginalised 2D posteriors for the Rosenbrock function with N = 10. The
12 most correlated pairs are shown. MULTINEST is in solid black, BAMBI in dashed
blue. Inner and outer contours represent 68% and 95% confidence levels, respectively.
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with other methods, such as MULTINEST, COSMONET, INTERPMC, PICO, Particle

Swarm Optimization, and others [102, 193–198]. In this work, we will only report

performances of BAMBI and MULTINEST, but these can be compared with reported

performance from the other methods.

Bayesian parameter estimation in cosmology requires evaluation of theoretical tem-

perature and polarisation CMB power spectra (Cl values) using cosmological evolution

codes such as CAMB [199]. These evaluations can take on the order of tens of seconds

depending on the cosmological model. The Cl spectra are then compared to WMAP

and other observations for the likelihood function. Considering that tens of thousands

of these evaluations will be required, this is a computationally expensive step and a

limiting factor in the speed of any Bayesian analysis. With BAMBI, we use samples to

train a NN on the combined likelihood function which will allow us to avoid evaluating

the full power spectra. This has the benefit of not requiring a pre-computed sample of

points as in COSMONET and PICO, which is particularly important when including

new parameters or new physics in the model. In these cases we will not know in ad-

vance where the peak of the likelihood will be and it is around this location that the

most samples would be needed for accurate results.

The set of cosmological parameters that we use as variables and their prior ranges

are given in Table 6.4; the parameters have their usual meanings in cosmology [200].

The prior probability distributions are uniform over the ranges given. A non-flat cos-

mological model incorporates all of these parameters, while we set ΩK = 0 for a flat

model. We use w = −1 in both cases. The flat model thus represents the standard

ΛCDM cosmology. We use two different data sets for analysis: (1) CMB observa-

tions alone and (2) CMB observations plus Hubble Space Telescope constraints on

H0, large-scale structure constraints from the luminous red galaxy subset of the SDSS

and the 2dF survey, and supernovae Ia data. The CMB dataset consists of WMAP

seven-year data [200] and higher resolution observations from the ACBAR, CBI, and

BOOMERanG experiments. The COSMOMC website [192] provides full references

for the most recent sources of these data.

Analyses with MULTINEST and BAMBI were run on all four combinations of

models and data sets. MULTINEST sampled with 1000 live points and an efficiency

of 0.5, both on its own and within BAMBI; BAMBI used 2000 samples for training
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6.3 Cosmological Parameter Estimation with BAMBI

Parameter Min Max Description

Ωbh2 0.018 0.032 Physical baryon density
ΩDMh2 0.04 0.16 Physical cold dark matter density

θ 0.98 1.1
100× Ratio of the sound horizon to angular

diameter distance at last scattering
τ 0.01 0.5 Reionisation optical depth

ΩK −0.1 0.1 Spatial curvature
ns 0.8 1.2 Spectral index of density perturbations

log[1010As] 2.7 4
Amplitude of the primordial spectrum of

curvature perturbations
ASZ 0 2 Amplitude of the Sunyaev-Zel’dovich spectrum

Table 6.4: The cosmological parameters and their minimum and maximum values.
Uniform priors were used on all variables. ΩK was set to 0 for the flat model.

a NN on the likelihood, with 50 hidden-layer nodes for both the flat model and non-

flat model. These values were chosen based on the toy examples and analysis runs

confirmed their viability. Table 6.5 reports the recovered evidences from the two al-

gorithms for both models and both data sets. It can be seen that the two algorithms

report equivalent values to within statistical error for all four combinations. In Fig-

ures 6.9 and 6.10 we show the recovered one- and two-dimensional marginalised pos-

terior probability distributions for the non-flat model using the CMB-only data set.

Figures 6.11 and 6.12 show the same for the non-flat model using the complete data

set. We see very close agreement between MULTINEST (in solid black) and BAMBI

(in dashed blue) across all parameters. The only exception is ASZ since it is uncon-

strained by these models and data and is thus subject to large amounts of variation in

sampling. The posterior probability distributions for the flat model with either data set

are extremely similar to those of the non-flat flodel with setting ΩK = 0, as expected,

so we do not show them here.

A by-product of running BAMBI is that we now have a network that is trained to

predict likelihood values near the peak of the distribution. To see how accurate this net-

work is, in Figure 6.13 we plot the error in the prediction (∆ log(L) = log(Lpredicted)−
log(Ltrue)) versus the true log-likelihood value for the different sets of training and val-
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Algorithm Model Data Set log(Z)

MULTINEST ΛCDM CMB only −3754.58±0.12
BAMBI ΛCDM CMB only −3754.57±0.12

MULTINEST ΛCDM all −4124.40±0.12
BAMBI ΛCDM all −4124.11±0.12

MULTINEST ΛCDM+ΩK CMB only −3755.26±0.12
BAMBI ΛCDM+ΩK CMB only −3755.57±0.12

MULTINEST ΛCDM+ΩK all −4126.54±0.13
BAMBI ΛCDM+ΩK all −4126.35±0.13

Table 6.5: Evidences calculated by MULTINEST and BAMBI for the flat (ΛCDM) and
non-flat (ΛCDM+ΩK) models using the CMB-only and complete data sets. The two
algorithms are in close agreement in all cases.

Figure 6.9: Marginalised 1D posteriors for the non-flat model (ΛCDM+ΩK) using
only CMB data. MULTINEST is in solid black, BAMBI in dashed blue.
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6.3 Cosmological Parameter Estimation with BAMBI

Figure 6.10: Marginalised 2D posteriors for the non-flat model (ΛCDM+ΩK) using
only CMB data. The 12 most correlated pairs are shown. MULTINEST is in solid black,
BAMBI in dashed blue. Inner and outer contours represent 68% and 95% confidence
levels, respectively.

Figure 6.11: Marginalised 1D posteriors for the non-flat model (ΛCDM+ΩK) using
the complete data set. MULTINEST is in solid black, BAMBI in dashed blue.
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6. THE BAMBI ALGORITHM

Figure 6.12: Marginalised 2D posteriors for the non-flat model (ΛCDM+ΩK) using
the complete data set. The 12 most correlated pairs are shown. MULTINEST is in
solid black, BAMBI in dashed blue. Inner and outer contours represent 68% and 95%
confidence levels, respectively.

idation points that were used. What we show are results for networks that were trained

to sufficient accuracy in order to be used for making likelihood predictions; this results

in two networks for each case shown. We can see that although the flat model used the

same number of hidden-layer nodes, the simpler physical model allowed for smaller

error in the likelihood predictions. Both final networks (one for each model) are signif-

icantly more accurate than the specified tolerance of a maximum average error of 0.5.

In fact, for the flat model, all but one of the 2000 points have an error of less than 0.06

log-units. The two networks trained in each case overlap in the range of log-likelihood

values on which they trained. The first network, although trained to lower accuracy, is

valid over a much larger range of log-likelihoods. The accuracy of each network in-

creases with increasing true log-likelihood and the second network, trained on higher

log-likelihood values, is significantly more accurate than the first.

The final comparison, and perhaps the most important, is the running time required.

The analyses were run using MPI parallelisation on 48 processors. We recorded the

time required for the complete analysis, not including any data initialisation prior to

initial sampling. We then divide this time by the number of likelihood evaluations

performed to obtain an average time per likelihood (twall clock, sec×NCPUs/Nlog(L) evals).
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6.3 Cosmological Parameter Estimation with BAMBI

Figure 6.13: The error in the predicted likelihood (∆ log(L) = log(Lpredicted) −
log(Ltrue)) for the BAMBI networks trained on the flat (top row) and non-flat (bot-
tom row) models using the complete data set. The left column represents predictions
from the first NN trained to sufficient accuracy; the right column are results from the
second, and final, NN trained in each case. The flat and non-flat models both used 50
hidden-layer nodes.

Therefore, time required to train the NN is still counted as a penalty factor. If a NN

takes more time to train, this will hurt the average time, but obtaining a usable NN

sooner and with fewer training calls will give a better time since more likelihoods

will be evaluated by the NN. The resulting average times per likelihood and speed

increases are given in Table 6.6. Although the speed increases appear modest, one must

remember that these include time taken to train the NNs, during which no likelihoods

were evaluated. This can be seen in that although 30–40% of likelihoods are evaluated

with a NN, as reported in Table 6.7, we do not obtain the full equivalent speed increase.

We are still able to obtain a significant decrease in running time while adding in the

bonus of having a NN trained on the likelihood function.

6.3.1 Updated Timing Comparisons

The NN training algorithm code was updated to improve memory efficiency and to

use single-precision variables by default. Following these updates, we decided to re-

run the analyses on the cosmological parameter estimation to confirm that results were
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Model Data set MULTINEST BAMBI Speed
tL (s) tL (s) factor

ΛCDM CMB only 2.394 1.902 1.26
ΛCDM all 3.323 2.472 1.34

ΛCDM+ΩK CMB only 12.744 9.006 1.42
ΛCDM+ΩK all 12.629 10.651 1.19

Table 6.6: Time per likelihood evaluation, factor of speed increase from MULTINEST

to BAMBI (tMN/tBAMBI).

Model Data set %log(L) Equivalent Actual
with NN speed factor speed factor

ΛCDM CMB only 40.5 1.68 1.26
ΛCDM all 40.2 1.67 1.34

ΛCDM+ΩK CMB only 34.2 1.52 1.42
ΛCDM+ΩK all 30.0 1.43 1.19

Table 6.7: Percentage of likelihood evaluations performed with a NN, equivalent speed
factor, and actual factor of speed increase.
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Model Data set MULTINEST BAMBI Speed
tL (s) tL (s) factor

ΛCDM CMB only 2.70 2.02 1.34
ΛCDM all 3.69 2.46 1.50

ΛCDM+ΩK CMB only 13.56 9.33 1.45
ΛCDM+ΩK all 13.85 10.36 1.34

Table 6.8: Time per likelihood evaluation, factor of speed increase from MULTINEST

to BAMBI (tMN/tBAMBI).

not adversely affected by use of single-precision. As before, a single hidden layer

with 50 nodes was used for all four pairings of model and data and a tolerance of 0.5

was set for accepting a network as sufficiently accurate. MULTINEST used 1000 live

points and 2000 points were used for network training. After completing, all calculated

evidences were confirmed to agree between MULTINEST and BAMBI and previous

results. Table 6.8 is like Table 6.6 but for the new runs. The reduction in time spent

training a network is reflected in the speed factors which have in all cases increased

from the initial comparisons.

6.4 Using Trained Networks for Follow-up in BAMBI

A major benefit of BAMBI is that following an initial run the user is provided with a

trained NN, or set of NNs, that model the log-likelihood function. These can be used

in a subsequent analysis with different priors to obtain much faster results. This is a

comparable analysis to that of COSMONET [193, 194], except that the NNs here are

a product of an initial Bayesian analysis where the peak of the distribution was not

previously known. No prior knowledge of the structure of the likelihood surface was

used to generate the networks that are now able to be re-used. In this section we will

examine two methods for calculating the error in a network’s prediction and provide

results for performing a follow-up analysis on the cosmological parameter estimation

problems.
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6. THE BAMBI ALGORITHM

6.4.1 Exact Error Calculation

When multiple NNs are trained and used in the initial BAMBI analysis, we must deter-

mine which network’s prediction to use in the follow-up. The approximate uncertainty

error in a NN’s prediction of the value y(x;a) (x denoting input parameters, a the NN

weights and biases as before) that models the log-likelihood function is given by [201]

as

σ
2 = σ

2
pred +σ

2
ν , (6.5)

where

σ
2
pred = gTB−1g (6.6)

and σ2
ν is the variance of the noise on the output from the network training (the network

hyper-parameter σσσ2 on the single output defined in Equation (5.4)). In Equation (6.6),

B is the Hessian of the log-posterior as before, and g is the gradient of the NN’s pre-

diction with respect to the weights about their maximum posterior values,

g =
∂y(x;a)

∂a

∣∣∣∣
x,aMP

. (6.7)

This uncertainty of the prediction is calculated for each training and validation data

point used in the initial training of the NN for each saved NN. The threshold for ac-

cepting a predicted log-likelihood from a network is then set to be 1.2 times the max-

imum uncertainty value found for points in its training and validation data sets. We

can therefore ignore the value of σ2
ν in Equation (6.5) as it is a constant value for all

inputs and we only ever compare predictions of a network to previous predictions of

that same network.

A log-likelihood is calculated by first making a prediction with the final NN to be

trained and saved and then calculating the error for this prediction. If the error, σpred, is

greater than that NN’s threshold, then we consider the previous trained NN. We again

calculate the predicted log-likelihood value and error to compare with its threshold.

This continues to the first NN saved until a NN makes a sufficiently confident predic-

tion. If no NNs can make a confident enough prediction, then we set log(L) = −∞.

This is justified because the NNs are trained to predict values in the highest likelihood

regions of parameter space and if a set of parameters lies outside their collective region

of validity, then it must not be within the region of highest likelihoods. This effectively
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limits the prior and so will bias evidences upwards but not significantly affect parame-

ter estimation.

To demonstrate the speed-up potential of using the NNs, we first ran an analysis of

the cosmological parameter estimation using both models and both data sets. This time,

however, we set the tolerance of the NNs to 1.0 instead of 0.5, so that they would be

valid over a larger range of log-likelihoods and pass the accuracy criterion sooner. Each

analysis produced two trained NNs. We then repeated each of the four analyses, but

set the prior ranges to be uniform over the region defined by xmax(log(L))±4σσσ , where

σσσ is the vector of standard deviations of the marginalised one-dimensional posterior

probabilities.

In Figure 6.14 we show predictions from the two trained NNs on the two sets of

validation data points in the case of the non-flat model using the complete data set. In

the left-hand column, we can see that the first NN trained is able to make reasonable

predictions on its own validation data as well as on the second set of points, in red

crosses, from the second NN’s validation data. The final NN is able to make more pre-

cise predictions on its own data set than the initial NN, but is unable to make accurate

predictions on the first NN’s data points. The right-hand column shows the error bar

sizes for each of the points shown. For both NNs, the errors decrease with increasing

log-likelihood. The final NN has significantly lower uncertainty on predictions for its

own validation data, which enables us to set the threshold for when we can trust its

prediction. The cases for the other three sets of cosmological models and data sets are

very similar to this one. This demonstrates the need to use the uncertainty error mea-

surement in determining which NN prediction to use, if any. Always using the final

NN would produce poor predictions away from the peak and the initial NN does not

have sufficient precision near the peak to properly measure the best-fit cosmological

parameters. But by choosing which NN’s prediction to accept, as we have shown, we

can quickly and accurately reproduce the log-likelihood surface for sampling. Fur-

thermore, if one were interested only in performing a re-analysis about the peak, then

one could use just the final NN, thereby omitting the calculational overhead associated

with choosing the appropriate network.

For this same case, we plot the one- and two-dimensional marginalised posterior

probabilities in Figures 6.15 and 6.16, respectively. Although the priors do not cover

exactly the same ranges, we expect very similar posterior distributions since the priors
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6. THE BAMBI ALGORITHM

Figure 6.14: Predictions with uncertainty error bars for NNs saved by BAMBI when
analysing the non-flat model using the complete data set. The left-hand side shows
predictions with errors for the two NNs on their own and the other’s validation data
sets. Each network’s own points are in blue plusses, the other NN’s points are in red
crosses. As many error bars are too small to be seen, the right-hand side uses the same
colour and label scheme to show the magnitudes of the error bars from each NN on the
predictions.
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Figure 6.15: Marginalised 1D posteriors for the non-flat model (ΛCDM+ΩK) using
the complete data set. BAMBI’s initial run is in solid black, the follow-up analysis in
dashed blue.

are sufficiently wide as to encompass nearly all of the posterior probability. We see

this very close agreement in all cases.

Calculating the uncertainty error requires calculating approximate inverse Hessian-

vector products which slow down the process. We sacrifice a large factor of speed

increase in order to maintain the robustness of our predictions. Using the same method

as before, we computed the time per likelihood calculation for the initial BAMBI run

as well as the follow up; these are compared in Table 6.9. We can see that in addition

to the initial speed-up obtained with BAMBI, this follow-up analysis obtains an even

larger speed-up in time per likelihood calculation. This speed-up is especially large

for the non-flat model, where CAMB takes longer to compute the CMB spectra. The

speed factor also increases when using the complete data set, as the original likelihood

calculation takes longer than for the CMB-only data set; NN predictions take equal

time regardless of the data set.
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6. THE BAMBI ALGORITHM

Figure 6.16: Marginalised 2D posteriors for the non-flat model (ΛCDM+ΩK) using
the complete data set. The 12 most correlated pairs are shown. BAMBI’s initial run is
in solid black, the follow-up analysis in dashed blue. Inner and outer contours represent
68% and 95% confidence levels, respectively.

Model Data set Initial Follow-up Speed
tL (s) tL (s) factor

ΛCDM CMB only 1.635 0.393 4.16
ΛCDM all 2.356 0.449 5.25

ΛCDM+ΩK CMB only 9.520 0.341 27.9
ΛCDM+ΩK all 8.640 0.170 50.8

Table 6.9: Time per likelihood evaluation, factor of speed increase from BAMBI’s
initial run to a follow-up analysis.
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6.4.2 Fast Error Calculation

One possible way to avoid the computational cost of computing error bars on the pre-
dictions is that suggested by [201] (see Section 9). One can take the NN training data
and add Gaussian noise and train a new NN, using the old weights as a starting point.
Performing many realisations of this will quickly provide multiple NNs whose aver-
age prediction will be a good fit to the original data and whose standard deviation from
this mean will measure the error in the prediction. This will reduce the time needed
to compute an error bar since multiple NN predictions are faster than a single inverse
Hessian-vector product. The steps are given as:

1. Start with the converged network with weights w∗ trained on true data set D∗ =

{x(m), t(m)}. Estimate the Gaussian noise level of the residuals using σ2 =

∑m(t(m)− y(x(m),w∗))2/N.

2. Define a new data set D1 by adding Gaussian noise of zero mean and variance
σ2 to the outputs in D∗.

3. Train a NN on D1 using w∗ as a starting point. Training should converge rapidly
as the new data set is only slightly different from the original. Call the new
network w1.

4. Repeat Steps 2 and 3 multiple times to find an ensemble of networks w j.

5. Use each of the networks w j to make a prediction for a given set of inputs. The
error on the predicted value can be estimated as the standard deviation of this set
of values.

In addition to these steps, we include the option for the user to add a random Gaus-
sian offset to the saved weights read in before training is performed on the new data set
(Step 3). This offset will aid the training in moving the optimisation from a potential
local maximum in the posterior distribution of the network weights, but its size must
be chosen for each problem. We are thus adding noise to both the training data and the
saved network weights before training a new network whose posterior maximum will
be near to, but not exactly the same as, the original network’s.

The training of the additional networks is performed by a separate program and the
resulting error estimates can be compared with those from the exact, slow calculation
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Figure 6.17: Comparison of NN prediction error calculations for the 2D Gaussian
shells likelihood from the exact, slow method (Equation (6.6)) and the fast method
with different weight offsets applied. Fast method calculations employ the original
network and networks from 29 realisations of Gaussian noise added to the training
data outputs for a total of 30 networks used in the error estimate.

(Equation (6.6)) described in the previous section (6.4). Time taken for this additional

training of networks depends only on the size of the networks and the training data

sets, not on the complexity of the likelihood function being modeled.

The method for estimating error was initially tested on two of the problems already

analysed with BAMBI – the 2D Gaussian shells and the non-flat cosmology using the

complete data set. Comparisons of the error estimates from different choices of the

random offset applied to saved weights and from the exact, slow method are shown

in Figures 6.17 and 6.18. The estimates from the fast method just described use the

original network plus 29 different realisations of Gaussian noise added to the outputs

to give a total of 30 networks, which results in total training time of less than one hour

when run on 24 parallel CPUs.

From Figures 6.17 and 6.18 we can see that the value of the offset applied has a

significant effect on the size of the resulting error estimates. In general, larger offsets

result in larger error estimates. However, the general trend of increasing error for lower

log-likelihoods (further from the peak) is followed in all cases. We can determine
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Figure 6.18: Comparison of NN prediction error calculations for the non-flat cosmol-
ogy with complete data set likelihood from the exact, slow method (Equation (6.6))
and the fast method with different weight offsets applied (Gaussian random variable
with mean 0 and standard deviation as noted). Fast method calculations employ the
original network and networks from 29 realisations of Gaussian noise added to the
training data outputs for a total of 30 networks used in the error estimate.
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from Figure 6.17 that an offset with standard deviation s ∼ 0.01 is best for the 2D

Gaussian shells and from Figure 6.18 that an offset with s∼ 0.0 is best for the non-flat

cosmology with the complete data set. Therefore, we find that the value of the best

offset is roughly inversely proportional to the prior weight, s ∝ 1/α , from the best fit

network w∗. In the 2D Gaussian shells example α ' 5 and in the non-flat cosmology

example α ' 54000. Therefore, the non-flat cosmology will require a significantly

smaller offset to accurately reproduce the prediction error values. Since the absolute

error values are not used for determining the quality of a fit, but rather the relative

magnitudes, the fast calculations do not need to be too precise. We suggest using an

offset with a standard deviation of s. 1/α as this will yield usable error estimates.

An additional option has been included at this stage to not discard points whose

NN predictions fail error-checking; instead the original likelihood function will be

evaluated at these points. Discarding the points (assigning them log(L) =−∞) essen-

tially removes them from the prior and will only affect points further from the peak

where the networks are not all well trained. As such it will bias the evidence upwards

but should not generally affect parameter estimation as the discarded points will be

of significantly lower likelihood so as to be in the far tails of the distribution. These

points will also be heavily weighted towards early in the analysis before the likelihood

contours move well within the NNs’ region of confident predictions.

To observe the potential speed increases with this method of error estimation, we

re-analysed the cosmological models and data sets and then performed both the slow

and fast methods of error calculation in separate follow-up analyses on restricted prior

ranges. Our initial analyses were performed with the updated version of the NN train-

ing algorithm mentioned in Section 6.3.1. The follow-up analysis limited the prior to

xmax(log(L))±4σσσ , where σσσ is the vector of standard deviations of the marginalised one-

dimensional posterior probabilities as in the previous section. When training networks

for the fast error approximation, an offset with standard deviation s ≈ 1/α was used

for an ensemble of 20 total networks per saved network.

Table 6.10 shows the average time taken per log-likelihood function evaluation

when this follow-up was performed with MULTINEST and with BAMBI using both

the slow error calculation and the fast method. This timing includes any MULTINEST

operations as well as loading the saved networks in the beginning and preparing to use

them (it does not include COSMOMC data initialisation). In all cases where points
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Method Model Data
tL (ms) tL (ms) factor factor

(discard) (discard)

MULTINEST

ΛCDM
CMB 2775 — — —

all 3813 — — —

ΛCDM+ΩK
CMB 12830 — — —

all 10980 — — —

BAMBI slow
ΛCDM

CMB 558.7 378.1 4.96 7.33
all 639.5 393.4 5.96 9.68

ΛCDM+ΩK
CMB 1823.8 97.67 7.03 131.4

all 1181.5 219.8 10.86 49.95

BAMBI fast
ΛCDM

CMB 3.883 0.2077 714.7 13360
all 28.01 0.2146 136.1 17770

ΛCDM+ΩK
CMB 1105 0.08449 11.61 151900

all 402.9 0.2032 27.25 54040

Table 6.10: Time per likelihood evaluation in a follow-up analysis and speed factors
with respect to MULTINEST. Average times without discarding bad predictions are
limited by the number of calls to the original likelihood function.

were not discarded, the BAMBI evidences matched the MULTINEST values to within

statistical error. When discarding points, only the non-flat model with CMB-only data

calculated an evidence that did not agree; this was due to this being the only case with

only a single trained NN. In the other three cases, two trained networks were available

to use. These three cases therefore required fewer points to be calculated with the

original likelihood or discarded (< 2% for nonflat model and < 0.2% for flat model)

but took additional time to load and find the best network prediction. The analysis

using the non-flat model and CMB-only data, that had only a single network, runs more

rapidly when points are discarded, but requires more likelihood samples and picks up

a small error in the evidence calculation of approximately one log-unit (compared to

an evidence uncertainty of approximately a tenth of a log-unit). When not discarding,

this model and data combination required∼ 10% of points to have their log-likelihood

computed with the original function.
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Overall, the massive gains in speed from using the fast method along with discard-

ing points (that the networks cannot predict precisely enough) of O(104) to O(105)

make it worthwhile to use this as an initial follow-up procedure. Should there be too

many discarded points, the analysis may be performed again without discarding to

compute a more reliable evidence value but still obtaining a speed increase of O(10) to

O(100). We can thus obtain accurate posterior distributions and evidence calculations

orders of magnitude faster than originally possible. Follow-up without discarding is

limited by the number of calls to the original likelihood function while follow-up with

discarding is limited by the number of stored networks being used.

6.5 Summary

We have introduced and demonstrated a new algorithm for rapid Bayesian data anal-

ysis. The Blind Accelerated Multimodal Bayesian Inference algorithm combines the

sampling efficiency of MULTINEST with the predictive power of artificial neural net-

works to reduce significantly the running time for computationally expensive prob-

lems.

The first applications we demonstrated are toy examples that demonstrate the abil-

ity of the NN to learn complicated likelihood surfaces and produce accurate evidences

and posterior probability distributions. The eggbox, Gaussian shells, and Rosenbrock

functions each present difficulties for Monte Carlo sampling as well as for the train-

ing of a NN. With the use of enough hidden-layer nodes and training points, we have

demonstrated that a NN can learn to accurately predict log-likelihood function values.

We then apply BAMBI to the problem of cosmological parameter estimation and

model selection. We performed this using flat and non-flat cosmological models and

incorporating only CMB data and using a more extensive data set. In all cases, the

NN is able to learn the likelihood function to sufficient accuracy after training on early

nested samples and then predict values thereafter. By calculating a significant fraction

of the likelihood values with the NN instead of the full function, we are able to reduce

the running time by a factor of up to 1.50 and potentially more. This is in comparison to

use of MULTINEST only, which already provides significant speed-ups in comparison

to traditional MCMC methods [102].
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Through all of these examples we have shown the capability of BAMBI to increase

the speed at which Bayesian inference can be done. This is a fully general method and

one need only change the settings for MULTINEST and the network training in order

to apply it to different likelihood functions. For computationally expensive likelihood

functions, the network training takes less time than is required to sample enough train-

ing points and sampling a point using the network is extremely rapid as it is a simple

analytic function. Therefore, the main computational expense of BAMBI is calculat-

ing training points as the sampling evolves until the network is able to reproduce the

likelihood accurately enough.

With the trained NNs, we can perform additional analyses using the same likeli-

hood function but different priors and save large amounts of time in sampling points

with the original likelihood and in training a NN. Follow-up analyses using already

trained NNs provide much larger speed increases, with factors of 4 to 11 obtained

for cosmological parameter estimation relative to BAMBI speeds when not discarding

poorly estimated points, and 7 to 130 when discarding using the slow exact method.

Having trained an ensemble of networks to provide error estimates, the speed-ups pos-

sible increase drastically to potentially O(102) times faster when not discarding and

O(104) to O(105) times faster when discarding. The limiting factor in these runs is

the fraction of points early in the analysis that the NNs are unable to make sufficiently

accurate predictions for and thus require the use of the original likelihood function or

re-sampling. The calculation of the error of predictions is a flat cost based on the size

of the NN and data set regardless of the original likelihood function, so the more com-

putationally expensive the original likelihood function is the more benefit is gained

from using NNs.

The NNs trained by BAMBI for cosmology cover a larger range of log-likelihoods

than the one trained for COSMONET. This allows us to use a wider range of priors

for subsequent analysis and not be limited to the four-sigma region around the max-

imum likelihood point. By setting the tolerance for BAMBI’s NNs to a larger value,

fewer NNs with larger likelihood ranges can be trained, albeit with larger errors on

the predictions. Allowing for larger priors requires us to test the validity of our NNs’

approximations, which ends up slowing the overall analysis when no networks can

provide a precise enough prediction.
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6. THE BAMBI ALGORITHM

Since BAMBI uses a NN to calculate the likelihood at later times in the analysis
where we typically also suffer from lower sampling efficiency (harder to find a new
point with higher likelihood than most recent point removed), we are more easily able
to implement Hamiltonian Monte Carlo [202, 203] for finding a proposed sample.
This method uses gradient information to make better proposals for the next point that
should be sampled. Calculating the gradient is usually a difficult task, but with the NN
approximation they are very fast and simple. This improvement may be investigated
in future work.

As larger data sets and more complicated models are used in cosmology, particle
physics, and other fields, the computational cost of Bayesian inference will increase.
The BAMBI algorithm can, without any pre-processing, significantly reduce the re-
quired running time for these inference problems. In addition to providing accurate
posterior probability distributions and evidence calculations, the user also obtains NNs
trained to produce likelihood values near the peak(s) of the distribution that can be
used in extremely rapid follow-up analysis.
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Chapter 7
Conclusions and Future Work

Somehere, something incredible is waiting to

be known.

Carl Sagan

7.1 Summary of Results

Einstein’s general theory of relativity predicts the existence of gravitational waves,
which are perturbations to the curvature of spacetime caused by the acceleration of
matter and propagate at the speed of light. The periodic strain signal they carry affects
measured distances between points in space, enabling their passing to be detected by
laser interferometers. These signals originate in the regimes of strongest gravity, al-
lowing for one of the first tests of GR where the full non-linear equations must be
used.

Binary star systems emit gravitational radiation and thus lose energy and fall in
toward one another in a characteristic inspiral, generating a “chirp” signal observable
by ground-based detectors such as LIGO and Virgo. By approximating the evolution
of these systems we can obtain waveform functions that model the signal we expect to
observe. Using the tools of Bayesian inference, we are then able to measure probability
distributions for source parameters given these waveform models and detector data.

In Chapter 2 we consider these binary systems and test the posterior probability
distributions given by the MULTINEST algorithm. We then use these posteriors to
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quantitatively analyse the ability of a network of ground-based detectors to localise

the position of a source on the sky. We do this for a sample of injected waveforms

into simulated noise from which we can infer the area of sky that will need to be

observed in electromagnetic follow-ups in order to find a counterpart signal. We then

use Bayesian model selection criteria for ruling out incoherent signals in LIGO data.

This is performed in the context of the “big dog” blind hardware injection, where

the coherent signal model was shown to be favoured over the incoherent; this same

statistic ruled out manufactured incoherent signals, displaying its ability to differentiate

between real gravitational waves and detector glitches.

Further advances in gravitational wave detection will be realised by the launch of

a space-based laser interferometer (formerly LISA and now NGO). This will allow for

the detection of GWs at much lower frequencies and with much higher SNRs. Simu-

lated data was generated in the MLDCs in order to encourage the development of data

analysis code for LISA and demonstrate the community’s ability to extract scientific

information from the kind of data that was expected. In Chapter 3 I analyse some of

this data, initially looking for burst signals in long stretches of instrument noise. We

are able to use Bayesian criteria to detect and characterise signals and demonstrate the

ability to perform model selection to determine the correct injected signal waveform.

A similar analysis is then performed on LISA data containing a large number of con-

tinuous sources. Despite the confusion, we are able to accurately find many signals at

once, with near-constant purity across a large range of frequencies and high complete-

ness at higher frequencies where there are fewer signals present. Lastly we combine

these two in order to attempt to detect burst signals in the presence of many continuous

sources. Again Bayesian criteria prove to be powerful in separating true from false

detections.

As more detailed signal models and larger data sets are analysed, performing Bayesian

inference will become a more cumbersome task. To assist in simplifying our data anal-

ysis procedures, I investigated the application of the MOPED (Multiple Optimised

Parameter Estimation and Data compression) algorithm. I found, as detailed in Chap-

ter 4, that in some cases the algorithm will work, but as the analysis involves more

parameters, there is the potential for additional modes in the likelihood to be falsely

created, each with equal likelihood to that of the peak. A solution is tested, but the

total overhead is found to not warrant further implementation.
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7.1 Summary of Results

An ever-increasingly popular tool for handling large computations is artificial neu-

ral networks. These mimic the structure of a brain by passing information through a

set of interconnected nodes with the ability to “learn” a function by adjusting connec-

tion weights. In Chapter 5 I consider the application of feed-forward networks, where

nodes are arranged in ordered layers. These can be trained on a pre-calculated set of

data points from the function to be learned, which can either involve regression or clas-

sification. We implement a Bayesian optimisation algorithm that uses second-order in-

formation on the log-posterior function in order to find the optimal set of weights in as

few steps as possible. We also prevent over-fitting to the precise training data set pro-

vided by using regularisation and a validation data set. The capabilities of the network

are first demonstrated on a few toy problems. The network training algorithm is then

applied to solve two larger and more complex examples. In the first, we identify hand-

written digits from the MNIST database, which involves finding patterns in images to

make ideal classifications. In the second, we measure the ellipticities of sheared and

convolved galaxies, a difficult task addressed by the Mapping Dark Matter challenge.

As its name suggests, if this procedure can be done accurately and rapidly it may be

applied to large surveys of galaxies and can help in mapping dark matter distributions

throughout the universe and testing cosmological models. Our neural network training

algorithm is able to learn both of these data sets very well; prediction error on a further

sample of handwritten digits produces an error rate of less than 2% and the error in

galaxy ellipticity measurements in reduced by a factor of ∼ 5 compared to previous

standard methods.

In Chapter 6 I look to applying neural networks directly to Bayesian inference. The

Blind Accelerated Multimodal Bayesian Inference (BAMBI) algorithm is described,

wherein samples of the log-likelihood function from MULTINEST are used to train a

neural network. This can then be used in place of the original log-likelihood once it

is able to make sufficiently accurate predictions. I first test BAMBI on a few toy like-

lihoods to ensure that the neural network is able to learn the function from a reason-

able number of samples before MULTINEST’s sampling converges. We then address

the task of performing cosmological parameter estimation. This is a problem with a

well-defined likelihood function and common data sets through the CosmoMC soft-

ware package. Likelihood function calls normally take on the order of seconds each
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so analysis may take many CPU days. With BAMBI, however, we are able to demon-

strate speed increases of 50%, indicating that ∼ 33% of likelihood samples were per-

formed using a trained neural network. Even more impressive gains in speed come

from follow-up analyses with different priors. We can re-use the trained NNs, thereby

avoiding the original likelihood function entirely. Doing so with a rapid method of

calculating the error in NN predictions yields posterior inferences O(104) to O(105)

times faster than using only MULTINEST. BAMBI’s ability to decrease the computa-

tional expense of initial Bayesian inference and perform incredibly rapid follow-up in

a fully general way means it can be applied to all types of parameter estimation and

model selection problems.

7.2 Avenues for Future Work

Analysis of data from ground-based GW detectors in the advanced era will need to

utilise more advanced waveform families. Inspirals that include the full effects of spin

in the phase and amplitude corrections will provide the best measurements of compact

binary signals we hope to detect. Additionally, the inclusion of merger and ringdown

stages to create a hybrid waveform should provide the most information about a GW

source. Creating these waveform models and analysing their different parameter es-

timation biases is important before and during the advanced detector era where de-

tections are expected. Model selection will prove to be important when determining

which waveform type best fits an observed signal and for filtering out detector glitches.

As the LISA mission has been reconfigured to NGO, we must reconsider the sci-

entific potential of the new detector. Data analysis pipelines will need to work even

harder as there will be lower SNR for NGO-observed signals than for LISA.

Neural networks and the BAMBI algorithm can play a large role in these projects.

NNs can be applied to computing very difficult gravitational waveforms in order to

more rapidly model systems. BAMBI will greatly increase the speed at which Bayesian

analysis may be performed on GW signals, providing sky location and other parameter

estimates with significantly less lag time from the initial trigger. We are always look-

ing to improve our NN training and BAMBI and will continue to develop these two

algorithms to add more functionality and improve the quality and speed of results.
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7.2 Avenues for Future Work

There is an optimistic future for the search for gravitational waves and the scien-
tific potential they hold. With the right tools we can efficiently and rapidly analyse
detector data to find and characterise any signals present. These tools are not limited
to just gravitational wave astronomy, but may be applied to solve computational or data
analysis problems in a wide number of fields.
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B. Brügmann, P. Diener, J. Gonzalez, M. Hannam, S. Husa, M. Koppitz, D. Poll-

ney, L. Rezzolla, L. Santamarı́a, A. M. Sintes, U. Sperhake, and J. Thornburg,

“A phenomenological template family for black-hole coalescence waveforms,”

Classical and Quantum Gravity, vol. 24, p. 689, Oct. 2007, arXiv:0704.3764.

[33] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Brügmann, N. Dorband,
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