
PRECISION INTERFEROMETRY IN A NEW SHAPE:

HIGHER-ORDER LAGUERRE-GAUSS MODES FOR

GRAVITATIONAL WAVE DETECTION

by

PAUL FULDA

A thesis submitted to the

University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

Astrophysics and Space Research Group

School of Physics and Astronomy

College of Engineering and Physical Sciences

University of Birmingham

June 2012



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Abstract

The sensitivity of the next generation of interferometric gravitational wave detectors

will be limited in part by thermal noises of the optics. It has been proposed that using

higher-order Laguerre-Gauss (LG) beams in the interferometers can reduce this noise

[MTV06]. This thesis documents the progress made in assessing the compatibility of

higher-order LG beam technology with the existing precision interferometry framework

used in the gravitational wave detector community.

A numerical study into the interferometric performance of the LG33 mode [CHF09]

showed that the LG33 mode is compatible with the Pound-Drever-Hall (PDH) lon-

gitudinal control scheme [DHK+83], and the Ward technique for alignment control

[MRWM94a]. A sensitivity study was performed for the LG33 mode in an Advanced-

Virgo-like detector, with the result that the LG33 mode could offer a potential increase

in the observed gravitational wave event rate by over a factor of 2.

A numerical investigation was made into techniques for generating higher-order LG

modes with a phase modulating surface. The optimal conditions for mode conversion

were determined using fast Fourier transform (FFT) simulations, and predictions were

made for the mode purity achievable with this method.

Table-top experiments performed at Birmingham demonstrated the generation of higher-

order LG modes using a spatial light modulator, and showed for the first time the

feedback control of an optical cavity on resonance for higher-order LG modes. An

increase in the purity of LG33 modes from 51 % to over 99 % upon transmission through

a mode cleaner cavity was shown. The incompatibility of helical LG modes with three-

mirror optical cavities was also experimentally demonstrated.

Investigations were carried out at the Glasgow 10 m prototype detector into the perfor-

mance of the LG33 mode in a suspended 10 m cavity. This work has provided useful

insights into the compatibility of LG modes with larger scale interferometer systems,

highlighting the issue of LG mode degeneracy within high-finesse cavities. This remains

the main difficulty to be overcome before the LG mode technology can be implemented

in full scale detectors.
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Statement of originality

This thesis represents research work carried out at the University of Birmingham be-

tween September 2008 and June 2012.

Chapter 1 gives an introduction to the topic of gravitational wave detection. This

includes a brief description of the theoretical basis for gravitational waves, a short his-

tory of gravitational wave detection experiments, a description of some of the leading

interferometric gravitational wave detectors, and the principal noise sources that limit

their sensitivity.

Chapter 2 provides an explanation of the technique of using higher-order laser modes

to reduce the levels of test mass thermal noise in gravitational wave detectors. This

includes an overview of the relevant test mass thermal noise processes, a description of

Laguerre-Gauss (LG) modes and Hermite-Gauss (HG) modes, and the noise reduction

factors for a range of LG and HG modes.

Chapter 3 describes the results of simulation investigations into the use of higher-

order LG modes in gravitational wave interferometers. The first section of this chapter

describes simulation work led by Simon Chelkowski at the University of Birmingham,

using the interferometer simulation software FINESSE [FHL+04] to investigate the in-

terferometric performance of LG modes in gravitational wave detectors. Many of the

results shown in this section are also presented in

S. Chelkowski, S. Hild and A. Freise, Prospects of higher-order Laguerre-Gauss modes

in future gravitational wave detectors, Physical Review D, 79(12):122002, (2009).

Although I was not directly involved in this work, much of the work described in chapter

4 was aimed at experimentally verifying the results of these simulations. As a result

I have reproduced several of the results, and become very familiar with the simulation

code used. The code is included in the appendix B.1.

The second section of this chapter describes simulations investigating the means of LG

mode generation by interaction with a phase modulating surface. I wrote several scripts

and functions in Matlab to produce these results, some of which are included in the

appendix B.2. The phase profiles that I designed during this work were used to produce

higher-order LG modes using a spatial light modulator, as described in chapter 4.

Chapter 4 reports on the work that I led and carried out in table-top laboratory
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investigations of LG mode interferometry. This work included the first demonstration

of an optical cavity feedback controlled for resonance of higher-order LG modes, as well

as a demonstration of the decomposition of a helical LG33 mode into two sinusoidal

LG33 modes by interaction with a triangular optical cavity. The main results of the

work described in this chapter were published in

P. Fulda, K. Kokeyama, S. Chelkowski, A. Freise, Experimental demonstration of higher-

order Laguerre-Gauss mode interferometry, Physical Review D, 82(1):012002, (2010).

Chapter 5 describes the work carried out towards a demonstration of LG33 mode

technology at the Glasgow 10 m gravitational wave detector prototype. The first section

explains the crucial issue of higher-order LG mode degeneracy in optical cavities, which

we aimed to investigate with the prototype experiments. The results of simulation work

into the mode degeneracy issue in which I was involved, but which was led by Charlotte

Bond, are briefly reported in this section, and more fully in

C. Bond, P. Fulda, L. Carbone, K. Kokeyama, A. Freise, Higher-order Laguerre-Gauss

mode degeneracy in realistic, high finesse cavities, Physical Review D, 84(10):102002,

(2011).

Section two of this chapter describes the design of the etched diffractive optic used for

generation of LG33 modes for the prototype experiment, as well as for the high-power

LG mode experiments recently carried out at the AEI in Hanover. These designs were

made in collaboration between myself and the company Jenoptik.

Section three of this chapter describes the LG33 mode generation optical path that I

designed and installed for the experiments at the 10 m prototype in Glasgow.

Section four reports on the methods and results of the investigation into the performance

of the LG33 mode in a 10 m suspended optical cavity at the Glasgow prototype. This

work was performed in a collaboration between members of the interferometry groups in

the University of Birmingham and Glasgow University. I was heavily involved from both

sides, spending several weeks at the facility in Glasgow, as well as assisting in simulation

efforts from Birmingham. The work described here is also reported in a paper recently

submitted for publication by Borja Sorazu.

Appendix A consists of reduction factors for higher-order modes test-mass thermal

noises other than coating Brownian noise. The bulk of the calculations are from ref-

erences [Vin09] and [Vin10], but are presented here after scaling to account for the
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different clipping losses associated with each mode.

Appendix B consists of the FINESSE master input file written initially by Simon

Chelkowski for producing many of the plots shown in the first section of chapter 3, as

well as the Matlab scripts and functions written by myself and others for producing the

results shown in the second section of chapter 3.
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Chapter 1.

Introduction

1.1. Project background

Highly sensitive laser interferometers are currently at the forefront of the scientific field

of gravitational wave detection. Despite being extremely low noise instruments, these

interferometers are yet to reach the sensitivity required to reliably make gravitational

wave detections. Several limiting noise sources have been identified, and much of the

work in the field of gravitational wave detection goes into reducing their effects. Thermal

noise of the interferometer test masses is expected to be a limiting noise source in future

detectors, unless new techniques are used to reduce this noise. Presented in this report

is an investigation into a new method for reducing the level of thermal noise in ground-

based interferometric gravitational wave detectors using higher-order Laguerre-Gauss

(LG) beam shapes in place of the heretofore used fundamental Gaussian beam [MTV06].

There is great scientific interest in detecting gravitational waves for two main reasons.

The first of these is that the existence of gravitational waves remains an unverified

prediction of Einstein’s theory of General Relativity, and thus to prove their existence

would be another confirmation of the adequacy of the theory as a model for spacetime.

The second reason is that information from astrophysical gravitational wave sources is

likely to be very valuable in the fields of astronomy and cosmology. The development

of gravitational wave astronomy in the foreseeable future would open up a whole new

spectrum for observation, and thus give astronomers and cosmologists another vital tool

for distinguishing between competing theories on the nature of the universe.

The nature of gravitational waves is such that they interact very weakly with matter;

an advantageous property for astronomy in that it means gravitational wave signals
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Chapter 1. Introduction

from distant objects are not absorbed or scattered to the extent that electromagnetic

signals are. Gravitational waves therefore carry well preserved information about their

sources [MTW73]. The weak nature of gravitational waves unfortunately also makes

them very difficult to detect directly. Although no conclusive direct detections of grav-

itational waves have been made, indirect evidence for their existence was discovered by

R. A. Hulse and J. H. Taylor in their 1975 Nobel Prize winning paper [HT75]. In this

paper they described the shortening orbital period of a binary neutron star system, and

concluded that the shortening of the period was due to the radiation of energy from the

system in the form of gravitational waves. The rate of decrease of the orbital period due

to gravitational radiation which was predicted by Einstein’s theory of General Relativity

was found to closely match that observed by Hulse and Taylor. These results provide

strong evidence for the existence of gravitational waves, yet direct detections remain

elusive.

A number of so called ‘first generation’ interferometric ground-based detectors have

already been built and have recorded data. To this date the sensitivity of all these

detectors has been limited to the extent that they have not conclusively detected gravi-

tational waves. Groups around the world are working on ways to increase the sensitivity

of gravitational wave detectors in order to make the first conclusive gravitational wave

detection. The long term aim in the field is to build detectors that are capable of acting

as gravitational wave observatories. Such observatories could in the future be used to

greatly increase our knowledge about the structure and formation history of the universe

and the astrophysical objects which inhabit it.

1.2. Gravitational wave theory

This section is by no means intended as a treatise on gravitational wave theory, but

merely as a basic introduction to the concepts involved. For a more in depth descrip-

tion of gravitational wave theory, I would point the interested reader towards [Sau94].

Gravitational waves are often described as ripples in spacetime created by accelerating

masses, and are wave-like solutions to Einstein’s field equations. Their existence solves

the problem of causality that Sir Isaac Newton identified in his own theory of gravi-

tation; that gravitational information cannot be instantaneously transferred across the

universe, but must travel at the speed of light.
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1.2. Gravitational wave theory

Using Einstein’s field equations from General Relativity, it is possible to predict the

amplitude, polarisation and frequency of gravitational waves emitted by a range of

astrophysical sources [CT02]. These include sources such as compact binary star sys-

tems, black hole and neutron star coalescences, and supernova explosions [Fin96, ZM97].

The generation mechanism of gravitational waves is quadrupole in nature. This fact,

combined with the weakness of the gravitational force, means that the amplitude of

gravitational waves is expected to be very small.

Figure 1.1.: The influence of both + and x polarisation gravitational waves on ring of test

mass particles. The incident gravitational wave is travelling perpendicular

to the plane of the ring of test mass particles.

The gravitational wave amplitude, often referred to as the strain in spacetime, h, that

is observed at a distance r away from a source, is given by

h(r) =
2G

c4

1

r

d2I

dt2
, (1.1)

where G is the gravitational constant, c is the speed of light in a vacuum and I is

the quadrupole moment of the source. The second time derivative of the quadrupole

moment can be thought of as an asymmetric acceleration term. From this equation it

can be seen that the amplitude of gravitational waves is likely to be small due to the

factor G
c4

. Even for large scale cosmic events such as supernovae, the predicted amplitude

of gravitational waves at the Earth is extremely small. The influence of a gravitational
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wave of amplitude h on a region of spacetime is characterised by

h =
δl

l
, (1.2)

where l is the proper distance between two spacetime events and δl is the change in this

distance caused by the gravitational wave. From this expression it can be seen that for

gravitational wave detectors which rely upon measuring an induced length change δl, it

is preferable to have a large separation between any test masses in the detector so as to

maximise the measurable effect.

Gravitational waves, like their electromagnetic counterparts, are expected to exist in a

whole spectrum of frequencies. The frequency of gravitational waves is determined by

the acceleration that generates them. For example, the frequency of gravitational waves

emitted by two large masses orbiting one another is simply twice the frequency of the

rotation [MTW73]. In the case of an inspiral binary system, such as the aforementioned

Hulse-Taylor binary star system, the gravitational waves radiated increase in frequency

as the period of the orbiting objects decreases. Gravitational waves are described by a

linear combination of two orthogonal polarisations; + polarisation and × polarisation.

Figure 1.1 shows how gravitational waves of both polarisations interact with a ring of

test mass particles.

1.3. History of gravitational wave detection

The history of experimental gravitational wave detection began in earnest in the late

1950s with Joseph Weber’s development of a resonant bar detector. Resonant bar de-

tectors are designed to work in a small frequency bandwidth by measuring resonant

vibrations in a metal bar caused by passing gravitational waves [BM72]. Although We-

ber claimed to have detected a gravitational wave with his resonant bar detectors, the

result was not accepted within the scientific community due to its lack of reproducibil-

ity. Subsequent designs of resonant bar detectors included the use of cryogenic cooling

systems to reduce thermally induced excitations of the resonant modes of the bars and

improve upon the sensitivity of the early detectors [SM04]. However, in recent years

the scientific community has been more focussed on the development of interferometric

gravitational wave detectors.

The design of interferometric gravitational wave detectors is based on the idea that
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1.3. History of gravitational wave detection

an interferometer can be used to measure the tiny changes in the separations of test

masses that are caused by the influence of a gravitational wave. The first generation

of ground-based interferometric detectors has been built and used to collect data in the

latter part of the 1990s, and the 2000s. The most well known first generation detec-

tors include the American LIGO detectors [BW99], the French-Italian detector Virgo

[AAA+08], the German-British detector GEO600 [Hil06] and the Japanese detector

TAMA300 [KKF+95]. These detectors were designed to detect gravitational waves in

a band roughly equal to the audio frequency band; about 20 Hz to 20 kHz. However,

the first generation of interferometric gravitational wave detectors were not sensitive

enough at any frequencies to distinguish any possible gravitational wave signals from

noise sources. The designs of the first generation interferometric detectors are described

in section 1.6 of this report.

Work is currently under way towards upgrading some of the first generation detectors

in a bid to increase their sensitivities by a factor of around 10 in the most sensitive

frequency region. These upgraded detectors are known as second generation detectors,

and will include Advanced LIGO [ABHK08], Advanced Virgo [FFG+05] and GEO-HF

[WAA+06]. A new Japanese second generation detector called KAGRA is also currently

under development [KLC06]. Much of the design of the second generation detectors is

expected to be based around techniques developed for the GEO600 detector, which was

able to achieve a high frequency sensitivity similar to LIGO despite its considerably

shorter baseline length. Some of these new techniques are described in section 1.7 of

this thesis.

The nature of gravitational wave detection is such that new techniques and technologies

often take many years to refine and implement. This being the case, work has already

begun on the third generation interferometric detector designs. The aspiration of the

gravitational wave community is that by the end of the science runs of the second

generation detectors, proposals which are now only in their earliest formative stages may

be fully fledged designs for interferometric gravitational wave detectors that are capable

of operating at sensitivities some 100 times that of the first generation detectors. The

use of higher-order LG modes is one such new technology, and this thesis represents my

work towards bringing this technology closer to a state of readiness for implementation

in future gravitational wave detectors.
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1.4. Michelson interferometer type gravitational wave

detectors

There are currently a number of ground-based interferometric gravitational wave detec-

tors that are either actively taking data, or have done so in the past. At present most of

the currently favoured detectors use interferometric methods to detect the changes in the

separations of test masses. All of the currently operating interferometric gravitational

wave detectors are based on the Michelson interferometer design [MM87].

A Michelson interferometer has two main light paths. One path propagates through each

of its two so called ‘arms’. Light from a laser is made incident upon a beam-splitter,

which reflects half of the light along one arm while transmitting the rest of the light along

the other arm. Mirrors are positioned at the ends of the two arms in order to reflect

the light back to the beam-splitter. Light from both of the arms is then recombined at

the beam-splitter, causing interference in accordance with the superposition principle.

Some of the recombined light incident upon the beam-splitter propagates back towards

the laser, and some propagates towards the output of the detector. How much light

propagates in each of these directions is dependent upon the phase difference between

the beams from the two arms of the detector.

A photodetector placed at the output of a Michelson interferometer can be used to

measure the interference of the light from the two arms. The mirrors at the ends of the

arms act as the test masses in Michelson type gravitational wave detectors, since any

change in their positions causes a change in the interference at the beam-splitter which

can then be measured at the output of the detector. Michelson type gravitational wave

detectors are configured so that in the absence of any gravitational wave signal, the

interference of light from both arms of the detector is destructive in the output port,

resulting in all the light being reflected back towards the laser and none being observed

at the photodetector.

According to the theory of General Relativity, a gravitational wave will cause a strain

in the spacetime through which it passes, and in orthogonal directions these induced

strains are 180 degrees out of phase. The result of this effect for a Michelson interfer-

ometer is that one arm increases in length while the other arm decreases in length, as

depicted in figure 1.2. The differential length change of the two arms of a Michelson type

gravitational wave detector which is caused by an incident gravitational wave results in
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1.4. Michelson interferometer type gravitational wave detectors

Figure 1.2.: The influence of both + and × polarisation gravitational waves on a Michel-

son interferometer. The incident gravitational wave is travelling perpendic-

ular to the plane of the interferometer arms. Note the insensitivity of the

interferometer to the × polarised gravitational wave. Image courtesy of S.

Chelkowski.

a change of phase of the beams in both arms. The relative phase change between both

arms, δφ, which is caused by a change in arm length δl is given by

δφ =
4π

λ
δl, (1.3)

where λ is the wavelength of light in the interferometer. The relative phase change

caused by a gravitational wave will cause a change in the interference at the beam-

splitter, which will be observed as a change in the light intensity detected by the pho-

todetector at the output port. It must be noted however that the strength of this effect

is dependent upon the orientation of the polarisation vector of the gravitational wave

relative to the arms, as well as the orientation of the gravitational wave propagation

vector relative to the arms.

The change in spatial separation δl of two test masses caused by a gravitational wave

is proportional to the proper distance between them, l. Thus it can be seen that for an

interferometric detector which attempts to measure a δl caused by a gravitational wave,

a large initial spatial separation of test masses (base-line) is advantageous. This is the

reason why all of the first generation ground-based interferometric gravitational wave
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detectors utilise such large base-lines, in two cases 4 km in length.

1.5. Noise sources in interferometric gravitational wave

detectors

The reason that gravitational waves have not been reliably detected thus far is because

of the difficulty associated with isolating detectors from noise sources. The expected

strains induced at the Earth by gravitational waves from even the largest astrophysical

sources are so small that detectors must be able to limit the strain equivalent noise in

the observation band to 10−22 or lower in order to reliably detect them. There are many

noise sources which have to be considered in the design of ground-based interferometric

gravitational wave detectors. A brief description of some of these is provided in this

section.

Seismic noise

Seismic noise originates from the vibrations that are ever present across the surface of

the Earth. Disturbances in the ground position at the detector site can couple to the

positions of the test masses, thus generating noise in the detector output. In order to

minimise this coupling, the test masses are isolated from the ground motions by means of

multi-stage pendulum suspensions such as described in [Goß04]. For the first generation

of gravitational wave detectors, mechanically coupled seismic noise was the dominant

noise contribution at frequencies below about 10 Hz. Seismic motion can also couple

to noise in the interferometer gravitationally, an effect known as Newtonian noise, or

gravity gradient noise [Sau84]. Though this coupling is typically much weaker than the

mechanical coupling, there is no known effective way to isolate the test masses from it,

so it is expected to become a more pressing concern in the design of future detectors.

Shot noise

Shot noise originates from the quantum nature of light. It can be interpreted in many

different ways, but most commonly it is understood as a photon counting noise. The

total amount of energy transferred to a photodetector from an incident laser beam within
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1.5. Noise sources in interferometric gravitational wave detectors

a given time is dependent upon the number of discrete photons that hit it during that

time. There is a statistical fluctuation in the number of photons from a laser beam that

will hit a photodetector in a given time, characterised by a Poissonian distribution. This

statistical fluctuation is what produces the shot noise. The shot noise is proportional to
√
P , where P is the light power present in the arms of the interferometer. The signal

intensity in laser interferometers, however, is proportional to P , and thus it can be seen

that the signal to shot noise ratio can be improved by increasing the light power in the

arms of the interferometer [Cav81].

Radiation pressure noise

A well known outcome of the quantum nature of light is that photons carry momentum.

When a photon is reflected from a mirror surface, this momentum is imparted to the

mirror. The combined effect of many photons interacting with a mirror surface is known

as the radiation pressure on the mirror. Due to the same statistical fluctuation in the

number of photons interacting with a mirror as described for shot noise, this pressure

also fluctuates statistically, thus leading to a fluctuation in the position of the mirror.

This is currently not a limiting factor for the sensitivity of gravitational wave detectors.

However, the level of radiation pressure noise increases with the intensity of light within

the arms of an interferometer. Therefore in future detectors, which are expected to have

circulating light powers some orders of magnitude larger than current detectors in order

to reduce the effects of shot noise, radiation pressure noise may become a limiting noise

source [Cav80]. Research is currently under way into possible ways in which the effects

of radiation pressure can be used to amplify the signals created by a small bandwidth of

gravitational waves within an interferometer. The use of so called ‘optical springs’ may

even be incorporated into future detectors to increase their sensitivity within a certain

bandwidth [HCC+03].

Thermal noise

Thermal noise in interferometric gravitational wave detectors can be broadly separated

into two categories; test mass thermal noise and suspension thermal noise. The domi-

nant component of test mass thermal noise arises due to the Brownian motions of the

molecules which make up the test masses and their reflective coatings. These vibrations
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create an uncertainty in the position of the reflecting surfaces of the mirrors, and thus

create a changing output signal from the detector which can obscure any gravitational

wave signals. It is the reduction of test mass thermal noises in detectors that is the goal

of this work; consequently a significant portion of chapter 2 is devoted to discussing this

noise source in greater detail.

As previously mentioned, the core optics of all the leading gravitational wave interfer-

ometers are suspended in a manner such as to reduce the coupling of ground vibrations

to the optics. The Advanced LIGO suspensions, for example, consist of multi-stage

pendulums hung from blade-springs [CBB+12]. The pendulum reduces the coupling of

horizontal ground vibrations to the optics, and the springs reduce coupling of vertical

ground vibrations to the optics. Suspension thermal noise arises from the Brownian

motion of the atoms within the suspension wires exciting the resonant modes of the

suspension. At around 1 Hz, the frequencies of these resonant modes are typically below

the detector observation band. However, if the suspension is lossy, some of the energy

in the resonant modes dissipates and causes displacements at higher frequencies within

the observation band.

The best way to reduce the effect of suspension thermal noise is to implement a suspen-

sion system with a very low mechanical dissipation (i.e. a very high Q-factor) as such a

suspension confines the vibrations to a very narrow band near the resonant frequencies.

The final stage of the Advanced LIGO test mass suspensions are made from monolithic

fused-silica, due primarily to its high Q-factor. Losses in the suspension material are

inevitable however, and these set the suspension thermal noise lower limit.

Technical noises

In this context, technical noises include all non fundamental sources of noise in detectors,

which in principle could be eliminated. Some main technical noise sources include laser

amplitude and frequency noise, beam pointing or ‘jitter’ noise, and residual gas pressure

noise. Fluctuations of the laser amplitude can couple to noise, as these fluctuations may

be detected at the output of the interferometer. The coupling of these fluctuations to

the detector output is drastically reduced by operating the interferometers at a ‘dark

fringe’ working point, where in the absence of any signal the interferometer output is

null. In an interferometer with exactly matched arms, fluctuations in the laser frequency

do not couple to the detector output. However, in reality small differences between the
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1.6. First generation ground-based gravitational wave detectors

two arms inevitably exist, and so the laser frequency must be stabilised by means of a

feedback loop using a high-finesse optical cavity as a reference [DHK+83].

Beam jitter noise arises from a coupling of fluctuating beam alignment to power in the

detector output. If the beams from the two arms do not spatially overlap perfectly at

the beam splitter, the superposition will be incomplete and the interferometer output

will no longer be null. The most common way to reduce the beam jitter to acceptable

levels is by passing the beam through one or more mode cleaner cavities, which filter

out the higher-order modes which are equivalent to misalignments [RSS+81].

Residual gas pressure noise arises from the difference in refractive indices of volumes of

different gas pressure within the arms of an interferometer. The phase of light in the

arms of an interferometer is dependent upon the refractive index of the medium which

fills the arms. Therefore if the medium in one arm is of a higher refractive index than the

medium in another arm, the interference at the beam-splitter will be affected. This very

effect is used to measure refractive indices of materials in Michelson interferometers. In

an interferometric gravitational wave detector however, any changes in these refractive

indices will be observed at the output as noise. In order to reduce the effect of residual

gas pressure noise, the arms of all interferometric gravitational wave detectors are kept

in a state of high vacuum.

1.6. First generation ground-based gravitational wave

detectors

In the 1990s and the 2000s a number of large-scale interferometric gravitational wave

detectors were built; these are classed as members of the ‘first generation’ of interfer-

ometric gravitational wave detectors. Figure 1.3 shows the optical topology of a basic

Michelson interferometer, along with the topologies of some of these first generation

detectors. These detectors were designed to reach broadband strain sensitivities on the

order of 10−22
√

Hz, and they achieved this goal in the late 2000s. Even with such un-

precedented levels of sensitivity, the rate of detectable events was expected to be low - on

the order of 0.2 events per year for the most optimistic prediction for the most common

sources [AAA+10]. Despite the lack of a detection, the work that went into designing

and building these detectors has pushed back the boundaries of what is achievable with

interferometers. In building the detectors a wealth of knowledge has been built up about

11



Chapter 1. Introduction

the noise sources present in interferometric detectors and the ways in which they can

be reduced. Pioneering work on the GEO600 detector in particular has led to the de-

velopment of many new techniques which are likely to be used in the second-generation

detectors which are approaching the commissioning stage.

Figure 1.3.: Three different optical layouts for Michelson type gravitational wave de-

tectors. Layout 1 is the basic Michelson topology. Layout 2 includes a

power recycling mirror and Fabry-Perot arm cavities, and is similar to the

topologies of the LIGO, Virgo and TAMA300 detectors. Layout 3 includes

a power recycling mirror, a signal recycling mirror and delay lines. This is

similar to the topology of the GEO600 detector. Image used courtesy of S.

Chelkowski.

The GEO600 detector, situated in Ruthe, Germany is a 600 m arm length interferometer

built as the result of a collaboration between interferometry groups from Glasgow in

Scotland, and Hannover in Germany [WAA+04]. This detector has served as a test-bed

for a range of advanced interferometric techniques, such as dual recycling [GLSC08], the

DC readout method [HGD+09], and squeezed light injection [KVL+11]. Dual recycling

is a combination of two techniques; power recycling and signal recycling. Power recycling

is a method whereby a mirror placed between the laser source and the beam-splitter

is used to create an enhanced light power within the detector. The power recycling

technique is feasible in gravitational wave detectors because the interferometer is kept

on a dark fringe in the absence of gravitational wave signals. As a result, little light

escapes from the output in the absence of a signal, instead being reflected towards the

input. By placing a mirror at the interferometer output it is possible to keep the light

circulating in the interferometer, thus enabling very high light powers to be reached in

the arms and improving the signal to shot noise ratio. Signal recycling may be considered
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a second generation technique, and so is described briefly in section 1.7. GEO600 also

makes use of so-called delay lines in the arms to increase the effective arm length.

The LIGO, Virgo and TAMA detectors are all very similar in the principle of their design.

They are essentially large scale Michelson interferometers, with the addition of the

aforementioned power recycling mirror, and Fabry-Perot arm cavities. The arm cavities

increase the effective length of the arms in a similar manner to delay lines; light circulates

many times within the cavities before recombining at the beam-splitter. The American

LIGO detector consists of three interferometers; two based in Hanford, Washington,

and one based in Livingston, Louisiana [BW99]. Two of these interferometers have arm

lengths of 4 km, and the other has arms of length 2 km. The Virgo detector situated

near Pisa in Italy, is the result of a French-Italian collaboration and has arms of length

3 km [AAA+08]. The Japanese TAMA300 detector has arms of length 300 m, and is

situated near Tokyo [KKF+95].

1.7. Second generation ground-based detectors

The first generation detectors have recently completed their period of scientific data

recording. Work has now begun on upgrading them to second generation detectors,

which are expected to reach sensitivities around 10 times greater than their previous

incarnations. This is increase in sensitivity will have a strong impact on the expected

rates of observable events, due to the cubic dependence of the searchable volume of

space on the sensitivity. The optimistic event rate for the most common source, neutron

star - neutron star binary inspiral systems, increases from 0.2 events per year to 400

events per year with the increase in sensitivity from the first generation of detectors to

the second generation [AAA+10].

An upgrade of two of the LIGO detectors is nearly complete; the upgraded detector will

be known as Advanced LIGO, or aLIGO. The updates will include the implementation

of the signal recycling technique as well as advanced suspensions for the optics and a new

laser with higher power [ABHK08]. The go-ahead was also recently given to move one of

the aLIGO interferometers to India, where the geographical separation will improve the

sky localisation abilities of the detector network, as described for the slightly different

case of moving one interferometer to Australia in [AFK+11]. The Virgo detector will

undergo similar changes to its layout and will be known in the future as Advanced Virgo
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[FFG+05]. The Japanese gravitational wave detection community is currently working

on a new detector called KAGRA. This detector will use cryogenic methods to cool the

optical components of the interferometer to very low temperatures in a bid to reduce

the effects of thermal noise [KLC06]. Some of the second generation techniques, along

with the benefits they offer, are described here.

Signal recycling

Signal recycling is a technique whereby the signal sidebands of the electromagnetic field,

which are created when a gravitational wave passes through the detector, are recycled

back into the arms of the interferometer by means of a mirror placed at the output

[Bar97]. The light can then interact many times with gravitational waves propagating

through the detector, and for a small frequency band this effect will be resonant, result-

ing in amplification of the gravitational wave signal. A tunable signal recycling technique

may be a viable option for second generation detectors, whereby the frequency of opti-

mum sensitivity can be adjusted in order to search for gravitational waves at different

frequencies.

Schemes to increase circulating light power

The power recycling technique has already led to an improvement in the level of light

power which can be obtained within interferometers. Further research into new laser

technology has also lead to the development of lasers with higher output powers, helping

to further reduce the effects of shot noise in interferometric gravitational wave detectors

[WPK+11]. As the light powers in detectors gets higher, the effects of radiation pressure

and thermal lensing become increasingly serious problems. It is conceivable that a

maximum feasible light power will be reached, until the effects of radiation pressure and

thermal lensing are reduced.
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1.8. Future gravitational wave detectors

Third generation ground-based detectors

There are a number of interferometry techniques which are so new that they are not

being considered for inclusion in the majority of second generation gravitational wave

detectors. These techniques are described as third generation techniques, and it is ex-

pected that their implementation in future detectors will enable them to reach sensitivi-

ties roughly 100 times those of current detectors. One example of such a technique is the

use of ‘squeezed light’ interferometers [Che07]. The use of cryogenically cooled optical

components in order to reduce the effects of thermal noise may be a common feature of

third generation detectors. These techniques may include the use of so called ‘quantum

non-demolition’ interferometry to surpass the standard quantum limit on interferome-

ter sensitivity [DK12]. Higher-order LG mode interferometry, the technique with which

this project is chiefly concerned, may also feature among the new technologies present

in third generation gravitational wave detectors.

1.9. Structure of this thesis

The goal of this thesis is to present a motivation for my studies on higher-order LG

mode interferometry in the context of improving the sensitivity of future gravitational

wave detectors, and then to describe the work carried out during my PhD. The aim is

also to provide the necessary background to understand the work described, as well as

its implications for future research on this topic.

In this thesis I will focus first on the thermal noise of the test masses in ground-based

interferometric gravitational wave detectors, and then discuss the potential of higher-

order modes to reduce the effects of this noise in chapter 2. Next I will discuss some

initial theoretical and numerical investigations into the generation of higher-order LG

modes, as well as their interferometric performance in chapter 3. In chapter 4 I will

describe the table-top experiments I performed at Birmingham to investigate the gen-

eration of higher-order LG modes with a spatial light modulator, and their interactions

with optical resonators. I will then discuss the issue of higher-order LG mode degener-

acy in high-finesse optical cavities, and describe my work carried out in collaboration

with the interferometry group at the University of Glasgow on the 10 m prototype de-
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tector facility with the goal of assessing the impact of the mode degeneracy issue on the

feasibility of using LG modes in future detectors in chapter 5. Finally, a summary of

the work and the conclusions drawn from it, as well as the outlook and future prospects

of the topic will be presented in chapter 6.
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Chapter 2.

Laguerre-Gauss beams for test mass

thermal noise reduction

Test mass thermal noise was not a dominant noise source in the first generation of grav-

itational wave detectors. However, with the upgrade to second generation detectors,

a factor of 10 increase in sensitivity in the whole frequency band is aimed for, and at

such improved sensitivities thermal noise is expected to be one of the major limiting

noise sources. The Brownian thermal noise in particular is expected to be of sufficient

magnitude to obscure gravitational wave signals around the 100 Hz region in the ad-

vanced detectors, unless new techniques are employed to reduce the effect. This point

is illustrated in the projected sensitivity of the Advanced LIGO detector, shown in fig-

ure 2.1. From the second generation onwards therefore, advancements in other areas

of the interferometers, such as the implementation of higher laser powers, will make a

limited impact in the 100 Hz region unless the thermal noise of the test masses can be

reduced. Research into methods for reducing the effects of this noise source is therefore

of paramount importance to the gravitational wave community.

2.1. Test mass thermal noise

The total thermal noise of the test masses is commonly considered as a sum of four

different sources of thermal noise in the phase of light reflected from the test mass. First

of all, contributions from the coating and the substrate are dealt with separately, as a

result of different approximations being appropriate for each of these two components

of the test mass. For each of the coating and the substrate, the total thermal noise is
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considered as an incoherent sum of Brownian noise and themo-optic noise contributions1.

A rigorous description and analysis of Brownian noise, and thermoelastic and thermore-

fractive noises (the two components of thermo-optic noise), as well as thermal defor-

mation of substrates in the context of higher-order LG beams in gravitational wave

detectors can be found in [Vin09]. For a coherent treatment of thermo-optic noise for

the LG00 mode see [EBF+08]. As yet a coherent analysis of thermo-optic noise for

higher-order LG modes is not available.

Brownian thermal noise

This noise source arises due to excitations of the elastic modes of mirrors and their

coatings caused by Brownian motion of their constituent atoms. These excitations lead

to an uncertainty in the position of the reflecting surface. The fluctuation in the phase of

the reflected light that results is indistinguishable from a phase change in the light that

would be caused by gravitational waves, and thus appears as noise at the detector output.

As with the suspensions, the effect of the thermal excitations can be minimised by using

materials with very high Q-factors. Using high Q materials confines the fluctuations

due to each resonant mode of the mirror or coating to a very narrow band around the

resonance frequency. Since the resonant frequencies of the modes of oscillation lie above

the observation band of the detector (>6 kHz) [Lev98], the amplitude of oscillations

within the observation band are significantly suppressed.

Brownian noise of the test mass substrates was initially calculated by summing the

contributions from many normal-modes of the substrate until convergence was reached

[GR95]. Levin showed in [Lev98], however, that a more computationally efficient solu-

tion could be found by implementing the fluctuation dissipation theorem (FDT) [CW51].

Levin also showed that the FDT method calculated contributions from surface losses

more accurately than the normal-mode decomposition method, which relies on the as-

sumption of homogeneously distributed sources of friction within the material. It should

be kept in mind when using the results of the FDT treatment of Levin that they also

have assumptions inherent; in particular, the assumption that one is only interested in

calculating the thermal noise at frequencies well below the lowest eigenfrequency of the

1Previously, the thermo-optic noise had been considered as an incoherent sum of thermoelastic noise

and thermorefractive noise. This view has been revised however, in light of the fact that thermoelastic

and thermorefractive effects are not necessarily incoherent processes [EBF+08].
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Figure 2.1.: The Advanced LIGO noise budget, in tuned signal recycling configuration

for optimal broadband sensitivity (upper plot) and detuned signal recycling

configuration for optimal sensitivity to binary neutron star sources (lower).

The contributions of the individual noise sources are shown by the coloured

lines. The quantum noise shown is the sum of shot noise and radiation

pressure noise, as described in section 1.5.
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Chapter 2. Laguerre-Gauss beams for test mass thermal noise reduction

system. While this may be a valid assumption for current designs, this should be re-

evaluated for different test masses in the future, which if larger than current test masses

may have resonant frequencies closer to the detection band.

Using the method described in [Lev98], the spectral density of Brownian thermal noise

is given by

Sx(f) =
4kBT

πf
φU, (2.1)

where T is the temperature of the relevant material, φ is known as the ‘loss angle’ and

represents the retardation effect associated with dissipation in the material, and U is

the strain energy at static pressure normalised for 1 N [Lev98]. The factor U has some

dependence on the material properties, but interestingly also depends on the intensity

distribution of the readout beam. This is where the advantage of higher-order LG beams

manifests itself, as shall be discussed in more detail later on in this chapter.

For the Brownian noise in the substrate, in the case of an infinite sized mirror where

the beam radius is considered much less than the mirror radius,

U =
1− σ2

2
√
πY w

, (2.2)

where σ is the Poisson ratio of the material, Y is the Young’s modulus of the material,

and w is the 1/e2 radius of the fundamental Gaussian mode readout beam [BHV98].

For the Brownian noise in the coating, under the same infinite mirror approximation,

Vinet showed that

U = δC
(1 + σ)(1− 2σ)

πY w2
Ω1, (2.3)

where δC is the coating thickness, and Ω1 is a factor which includes higher order cor-

rections due to differences between the coating material parameters and the substrate

parameters [Vin09]. It should be noted that the coating Brownian noise level, which in

the second generation detectors is expected to be the leading test mass thermal noise

contribution, scales with the inverse square of the readout beam size. The substrate

Brownian noise level, on the other hand, scales inversely with the beam size. This

dependence of the thermal noise level on beam size was the driving factor for the Ad-

vanced LIGO design to use significantly larger beam sizes on the test masses than in

initial LIGO [HLSC10].
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2.1. Test mass thermal noise

Thermo-optic noise

Thermo-optic noise arises from the fluctuating temperature field within a material. The

changes in temperature couple to the phase of light reflected from the test mass in two

ways; via the thermal expansion of the test mass, and the change in refractive index

of the coating. Previously, these two couplings of temperature fluctuations to readout

beam phase have been referred to as thermoelastic noise and thermorefractive noise

respectively, as discussed in for example [LT00] and [BV03].

Thermoelastic noise is caused when the thermodynamic fluctuations cause strain fluctu-

ations within the material as the hotter volumes expand and the colder volumes contract.

These strain fluctuations then cause an additional excitation of the elastic modes of the

materials, leading to uncertainties in the surface position as in the case of Brownian

thermal noise. The spectral density for thermoelastic noise in the low frequency limit is

given by

Sx(f) =
kBT

π2f2
W (2.4)

where the variables are as previously defined for Brownian noise except for W , which

is the average energy dissipated by the coupling of the temperature field to strain in

the material [Vin09]. This is effectively equivalent to equation 2.1, expect this time

we consider W as the energy dissipated through coupling between the strain and the

temperature field in the material. The thermal expansion coefficient α effectively deter-

mines the coupling of temperature fluctuations to strain fluctuations, and appears later

in calculations of the W factor. In fused silica, α is relatively small at room tempera-

ture, and so the predicted thermoelastic noise level in gravitational wave interferometers

is orders of magnitude lower than the Brownian thermal noise level. This may not al-

ways be the case however. Sapphire has been proposed as another candidate substrate

material, largely due to its good Brownian noise performance. However, the thermal

expansion coefficient of sapphire is significantly higher than that of fused silica and so

thermoelastic noise may be the limiting thermal noise if sapphire test masses are used

in the future [RHC05]. The choice of new substrate materials for reducing thermal noise

is further discussed in section 2.2.

Thermorefractive noise is similar to thermoelastic noise in that it arises from the temper-

ature fluctuations within the material, but the coupling to phase noise is in this case via

the ∂n
∂T coefficient; the rate of change of refractive index with temperature [EBF+08].
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The level of thermorefractive noise is also expected to be orders of magnitude lower

than the Brownian noise contribution for the currently used test masses, although as

with thermoelastic noise, this may change in the future. Preliminary investigations have

shown a very low ∂n
∂T coefficient for silicon at cryogenic temperatures. As is discussed

in the next section, this may be an important factor in the choice of materials for the

mirror substrates in future detectors.

Since these two noise sources share the same origin, however, the simple treatment

of them as incoherent is not necessarily adequate. In [EBF+08], Evans demonstrates

a rigorous coherent treatment of thermoelastic and thermorefractive noise, and shows

that the incoherent treatment leads to an overestimation of the thermo-optic noise at

100 Hz in Advanced LIGO of around a factor of 4.

The power spectrum of the thermal fluctuations that give rise to the thermo-optic noise

is given by

STO =
2

π
3
2

kBT
2

w2
√
κCf

, (2.5)

where w is the beam spot size, κ is the thermal conductivity of the material, and C is

the heat capacity per unit volume of the material. Estimates for the coating thermo-

optic noise level in aLIGO using this treatment put it at around a factor of 8 below the

coating Brownian noise level, as shown in figure 2.1. As a result, Evans states that this

noise source should not considered a driving force in the design of aLIGO [EBF+08].

However, this result should be re-evaluated for designs of future detectors, which may

use different materials and may operate in different temperature regimes, both of which

may give rise to different α and ∂n
∂T coefficients, as well as a different coherence level

between the two dissipation processes.

2.2. Thermal noise reduction techniques

Cryogenic interferometry

Perhaps the most obvious technique that can be employed to reduce the level of thermal

noise in gravitational wave detectors is to cool the optics and final stage suspensions

to cryogenic temperatures. The noise spectral density of most of the aforementioned
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2.2. Thermal noise reduction techniques

thermal noises reduces with temperature in most cases, although there is the possibility

for exceptions to this rule caused by the variation in α and ∂n
∂T with temperature.

There are unfortunately some difficulties associated with implementing cryogenic test-

masses in large scale interferometers. Firstly, the test-masses are deliberately well iso-

lated, and thus extracting heat from them is difficult. The current suspensions have a

high thermal resistance due to their small cross sectional area, large length, and low

thermal conductivity. Also, large low temperature baffles known as cryo-shields are re-

quired to avoid the heating up of the mirrors due to absorption of thermal radiation

from the room temperature beam tubes. Cryogenic interferometry has been demon-

strated nonetheless, at the Japanese interferometer CLIO [YUM+08]. A new Japanese

cryogenic interferometer, KAGRA, has been funded and will begin construction very

soon. This detector will serve well to elucidate the subject of cryogenic interferometry

for the gravitational wave community, as well as serving as a highly sensitive detector

in its own right [SKC11].

New coating methods and materials

The levels of all thermal noises in mirror coatings depend on the mechanical loss mech-

anisms of the materials from which they are made. The Q-factor of the material is of

primary importance for determining how excitations caused by either the Brownian or

the thermoelastic noise mechanisms translate into noise in the detector. Materials with

high Q-factors confine the movement of the mirrors caused by these noise mechanisms

to narrow frequency bands, and therefore mitigate the effect on the sensitivity. The level

of thermo-optic noise is also determined by the α and ∂n
∂T coefficients, so these should

be considered when choosing new materials.

Fused silica performs well enough at room temperature in all respects for the first gen-

eration of gravitational wave detectors not to be limited by thermal noise. However, the

more exacting requirements of the next generation of detectors have triggered a search

for better coating methods and materials, as described in for example [IWM10] and

[HABT+07]. The possibility of employing cryogenic interferometry must also be consid-

ered, as the α and ∂n
∂T coefficients as well as the Q-factor can vary significantly over the

temperature range from a few to 300 K, in addition to the obvious gains from reducing

T . Silicon has shown considerable promise as a possibly well performing substrate and

coating material at low temperatures, to the extent that it is strongly considered for
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inclusion in the third-generation Einstein Telescope design [HAA+11].

In addition to the search for new materials, new methods of making high-reflective

coatings are also being investigated. The ‘waveguide coating’ technique developed in

collaboration between Jena and Hannover has shown promising results so far [FBB+11],

and crystalline ‘epitaxial coatings’ are also a strong consideration in a potential Ad-

vanced LIGO upgrade [BGH+12].

All-reflective interferometers

One way to avoid the thermal problems that result from using very high laser powers

is to reduce the number of transmissive optical elements that the main laser travels

through. By employing diffractive grating cavities instead of the currently used trans-

missive ones, all reflective interferometer configurations can be designed [Dre96]. There

are two advantages of using all reflective configurations; firstly since the optics are no

longer required to be transmissive, a greater selection of materials with potentially bet-

ter thermal noise characteristics become viable options for substrates. Secondly in all

reflective configurations less beam power will be absorbed by the optics, thus making

cryogenic operation easier to achieve and reducing the impact of all thermal problems.

This technology has encountered some difficulties due to the introduction of additional

phase noise due to translation of the gratings [HCF+09], but on the positive side inves-

tigations into this effect were partially responsible for the development of the waveguide

coating technology [FBB+11].

Compound end mirrors - ‘Khalili cavities’

Another idea for reducing the effects of coating thermal noise is to employ compound

mirrors in place of the end test masses [Kha05]. The idea is based on the fact that the

level of coating Brownian noise scales with the number of coating layers used to make

the reflective surface of the test mass. In typical gravitational wave interferometers,

most of the coating layers are on the end test mass surfaces, as these are required to

have the highest reflectivity. By replacing the single end mirror with a compound mirror

made up of two mirrors controlled to a state which is anti-resonant for the carrier light,

a high reflectivity can potentially be achieved with significantly fewer coating layers

on the first of the two mirrors. Although there will be many coating layers on the
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second mirror, a relatively small proportion of the light intensity will actually probe

this mirror surface, and so the coupling to the detector output is small. This technology

is still in early stages of development, but there are plans to test it at the Hannover

10 m prototype facility [GBB+10]. The main difficulties in employing this technique

are expected to arise from the lack of geometric stability in the short cavity, and the

associated problems in controlling the extra degrees of freedom that are introduced.

Flat readout beams

Spreading the readout beam power over a larger portion of the mirror surface area can

reduce the thermal lensing effect and all of the substrate and coating thermal noises.

This requires the introduction of so-called flat readout beams, such as higher-order LG

beams. As this technology was the main focus of the work comprising this thesis, the

thermal noise advantages it may bring are described in more detail in later on in this

chapter in section 2.6.

2.3. The mode picture for laser beams

Throughout this thesis I will be discussing the properties of different spatial laser modes,

so it is fitting to give an introduction to the concept of these modes. In this section I

will first describe what is meant by the term spatial laser modes, and then describe two

of the mode sets commonly used to describe the transverse properties of laser beams;

the Hermite-Gauss (HG) modes and the LG modes.

Figure 2.2.: A cartoon picture of an optical cavity. Light enters the cavity through the

input mirror from the left, and resonates inside the cavity if its length is

divisible by an integer number of half wavelengths. The maroon sinusoid

represents the longitudinal mode properties, and the red shaded area rep-

resents the transverse mode properties.
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The mode picture of laser beams is intimately related to the properties of light within

optical resonators. In lasers, an optical resonator, or cavity, is almost always used

to predefine the geometric properties and the frequency of the generated laser light.

Light produced from the laser transitions in the lasing material circulates in an optical

resonator, and the output beam is transmitted through a semi-transparent mirror. For

the purposes of this discussion, however, we will consider a two mirror optical cavity,

as shown in figure 2.3 with light incident on one mirror. In a similar manner to other

resonators, an optical resonator has the potential to produce any of an infinite number

of resonant modes. The mode of operation of a laser is defined by both the frequency of

the light and the geometric properties of the beam. In the context of optical resonators,

these two properties are known as the longitudinal and transverse and mode orders

respectively.

For the longitudinal mode order of an optical resonator, it is instructive to consider the

response of an ideal optical resonator in the plane wave approximation, i.e. without

considering the transverse properties of the light. The circulating power within an

optical resonator for an input power of 1 W is given by

Pcirc =
T1

1 +R1R2 − 2r1r2 cos(2kL)
, (2.6)

where T1 is the power transmissivity of the input mirror, R1 and R2 are the power

reflectivities of the input and output mirrors respectively, L is the cavity length, and

k = 2π/λ is the wavenumber of the light [FS10]. It can be seen that there is an infinite set

of discrete light frequencies that give a maximal circulating light power for a given cavity

length, wherever 2kL=nπ (n=1,2,3...). This can be easily understood if we consider each

resonance as a case fulfilling the criterion that an integer number of half wavelengths

matches the cavity length exactly, creating a resonant standing wave inside the cavity.

The transverse mode of an optical resonator describes the geometry of the beam cross

section, in a plane perpendicular to the propagation vector. An infinite set of transverse

modes of an optical resonator with spherically curved mirrors can be found by solving

the paraxial wave equation with the boundary conditions given by the cavity parameters,

namely the cavity length and the curvatures of the mirrors. The paraxial wave equation

is simply the wave equation for the electric field with the additional approximation that

the light field is beam-like, i.e. varying much more rapidly along the transverse axes

than the propagation axis. We can describe an electric field to be a product of a function

describing the spatial properties and the oscillating function in the propagation direction
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2.3. The mode picture for laser beams

z as

E(x, y, z) = u(x, y, z) exp(−ikz). (2.7)

If we substitute this into the wave equation for the electric field we get

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2ik

∂u

∂z
= 0. (2.8)

The condition on the variation in beam shape being slower in z than in x and y is

formalised as∣∣∣∣∂2u

∂z2

∣∣∣∣ << ∣∣∣∣∂2u

∂x2

∣∣∣∣ , ∣∣∣∣∂2u

∂y2

∣∣∣∣ , ∣∣∣∣2k∂u∂z
∣∣∣∣ , (2.9)

leading us to the paraxial form of the wave equation if we neglect the much smaller

second derivative in z:

∂2u

∂x2
+
∂2u

∂y2
− 2ik

∂u

∂z
= 0. (2.10)

There exist many solutions to equation 2.10, each representing a transverse mode of the

electric field. The lowest order solution is the commonly observed Gaussian beam, with

transverse field distribution given by

u(x, y, z) =

√
2

π

1

w(z)
exp(iΨ(z)) exp

(
−ik

x2 + y2

2RC(z)
− x2 + y2

w2(z)

)
, (2.11)

where w(z) is known as the Gaussian spot size parameter2, Ψ(z) is the Gouy phase

(which is discussed in more detail in section 4.3), and RC(z) is the radius of curvature

of the spherical phase front.

There also exist several infinite sets of solutions to the paraxial wave equation, each

including the Gaussian mode as well as higher-order solutions. The two sets which are

of interest in this work are the LG modes and the Hermite-Gauss (HG) modes. Both

of these mode sets are complete, which means that they can be used to construct an

orthonormal basis-system in which all solutions to the paraxial wave equation can be

represented as linear combinations of the basis modes. Since all beam-like electric fields

should satisfy the paraxial wave equation, we can therefore use linear combinations of

LG or HG modes to describe any beam shape.

One feature that is common to all transverse modes of spherical optical resonators is their

self-reproducing intensity patterns; as they propagate, the overall scale of the transverse

2The distance from the optical axis at which the beam power is 1/e2 of the power at the optical axis.

27



Chapter 2. Laguerre-Gauss beams for test mass thermal noise reduction

field distribution will change, but the shape remains constant. This is to be expected,

since in order for a mode to be resonant in an optical cavity it must have the same

transverse field distribution after successive round trips of the cavity. The Gaussian

mode is an obvious example of a mode with a self-reproducing intensity pattern, since

the propagation of a mode may be described by Fourier transforming the initial Gaussian

amplitude cross section, and the Fourier transform of a Gaussian function is another

Gaussian function. In the next two sections we describe the two aforementioned sets of

higher-order solutions to the paraxial wave equation, the HG and LG mode sets.

2.4. The Hermite-Gauss mode set

The HG mode set are solutions to the paraxial wave equation in Cartesian coordinates,

and exhibit rectangular symmetry. As a result of this, their amplitude profiles can be

easily separated into the x and y components. The separability in x and y means that

HG modes can be eigenmodes of astigmatic spherical optical resonators, which is a result

of significance for the work described in chapter 5. As a consequence of this separability,

the full amplitude profile of HG modes can be expressed as

unm(x, y, z) = un(x, z)um(y, z). (2.12)

The un(x, z) and um(y, z) functions describe the variation of amplitude in the orthogonal

x, z and y, z planes, and have an identical form. The variation in the x, z plane is given

by

un(x, z) =

(
2

π

) 1
4

exp (i (2n+ 1) Ψ(z))

× Hn

(√
2x

w(z)

)
exp

(
−i

kx2

2RC(z)
− x2

w2(z)

)
,

(2.13)

where n is the relevant mode index, Hn is the Hermite polynomial of order n, and the

rest of the parameters are as previously defined. The order of a HG mode is simply the

sum of the two orthogonal transverse mode indices. The intensity patterns of the HG

modes up to the order 6 are shown in figure 2.3.

Although we first described the higher-order HG modes as mathematical solutions to

the paraxial wave equation, these modes are readily observed in a table-top optical

resonator when the input beam is slightly misaligned. This is because misalignments
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Figure 2.3.: Intensity patterns for Hermite-Gauss modes up the order 6. The intensity

patterns are normalised to have the same peak intensity, for visibility.

or translations of the input beam with respect to the optical axis of the cavity cause

coupling from the HG00 mode into higher-order HG modes. This modal description

of misalignments and translations was formalised by Bayer-Helms in [Bay84], and is

illustrated in figure 2.4. This plot shows the amplitude cross sections of a HG00 mode,

a HG10 mode, and the linear combination of both. We can see that to a reasonable

approximation, the combination of the two modes appears as a translated HG00 mode.

The addition of higher order modes to the sum, as prescribed by the Bayer-Helms

relations published in [Bay84], increases the accuracy of the description of translations

in this manner. This modal description of beam shapes is employed in the interferometer

simulation package FINESSE [FHL+04], which was used for several simulation tasks

described in this thesis.

2.5. The Laguerre-Gauss mode sets

The LG modes are solutions to the paraxial wave equation in cylindrical polar coordi-

nates, as opposed to in Cartesian coordinates in the case of HG modes. Unlike the HG
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Figure 2.4.: Amplitude cross sections of a HG00 mode of power 0.9 W, a HG10 mode of

power 0.1 W, and the sum of both with a total power of 1 W. To first order,

the combination of HG00 and HG10 modes is equivalent to a translated

HG00 mode.

modes therefore, the complex amplitude function for LG modes is not separable in x

and y, and so LG modes are not eigenmodes of astigmatic optical resonators. LG modes

are commonly expressed in two different forms, which I will refer to as the sinusoidal

mode set and the helical mode set. While both sets of LG modes have the property of

axisymmetry, only the helical set all have circularly symmetric intensity profiles. This

property can be useful for reducing the effects of Brownian thermal noise, as is described

in further detail later on in section 2.6. Helical LG beams also have the unusual property

of carrying orbital angular momentum, which has made them the subject of study by

the scientific community in the last two decades or so [ABSW92]. This trait has led to

their use as ‘optical spanners’ and ‘optical waveguides’ [HFHRD95] in the bio-photonics

and cold atoms fields.

The complex amplitude distribution of the sinusoidal LG mode set is given by

ucosine
p,l (r, φ, z) =

2

w(z)

√
2p!

π(|l|+ p)!
exp (i (2p+ |l|+ 1) Ψ(z))

×

(√
2r

w(z)

)|l|
Llp

(
2r2

w(z)2

)
exp

(
−ik

r2

2q(z)

)
cos(lφ),

(2.14)
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where all variables are as defined for equation 2.11, except p, l and Llp, which are the

radial mode index, the azimuthal mode index, and the associated Laguerre polynomials

respectively. The complex amplitude of helical LG modes shown in equation 2.15 is

similar in most respects to that for the sinusoidal set, except for the different azimuthal

dependence of exp(ilφ) instead of cos(lφ). This azimuthal phase dependence is what

gives helical LG modes with non-zero l orbital angular momentum. The mode order of

both sets of LG beams is given by 2p+ l.

uhelical
p,l (r, φ, z) =

1

w(z)

√
2p!

π(|l|+ p)!
exp (i (2p+ |l|+ 1) Ψ(z))

×

(√
2r

w(z)

)|l|
Llp

(
2r2

w(z)2

)
exp

(
−ik

r2

2q(z)
+ ilφ

) (2.15)

Figure 2.5.: Intensity patterns for helical LG modes up to order 9. The intensity patterns

are normalised to have the same peak intensity, for visibility.

The intensity distributions for the modes up to the order 9 of the helical and sinusoidal

LG mode sets are shown in figures 2.5 and 2.6 respectively. The radial mode index p

determines the number of radial nodes that appear in the amplitude cross section of the

beam and is equivalent for sinusoidal and helical modes. The azimuthal mode index l
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Figure 2.6.: Intensity patterns for sinusoidal LG modes up to order 9. The intensity

patterns are normalised to have the same peak intensity, for visibility.

determines the number of azimuthal nodes for the cosine modes. For the helical modes

however, l determines the number of 2π phase shifts that appear around a circle of

constant r and consequently the angular momentum per photon in the beam, which is

known to be l~ [ABSW92]. One may think of the helical LG modes as being a linear

combination of two sinusoidal LG modes with the same mode indices but with a phase

shift of π/2 between them, since Euler’s theorem states that exp(ilφ) = cos(lφ)+i sin(lφ).

This fact is useful in understanding the results reported in section 4.4.

As with the HG modes, the LG modes are often observed in optical resonators as the

result of imperfect matching of the input beam to the cavity eigenmode. LG modes tend

to appear more as the result of axisymmetric mismatches however, such as the mismatch

of the input beam waist position or size to that of the cavity eigenmode, rather than

misalignments. This coupling can also be seen in the work of Bayer-Helms in [Bay84].

Figure 2.7 illustrates the connection between a mismatch of beam size or position and

the effects of adding higher-order LG modes. We see that to a rough approximation,

adding a LG10 mode to a LG00 mode results in another LG00 mode but with a different

beam size parameter. As in the case of figure 2.4, the addition of higher order modes to
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the sum will increase the accuracy of this approximation.
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Figure 2.7.: Amplitude cross sections of a LG00 mode of power 0.9 W, a LG10 mode

of power 0.1 W, and sum of both with total power 1 W. To a reasonable

approximation, the combination of LG00 and LG10 modes is equivalent to

a LG00 mode with a smaller beam spot size parameter.

Since both the LG mode sets and the HG mode sets are complete sets of solutions to

the paraxial wave equation, it follows that it is possible to describe any LG mode as

a linear combination of HG modes, and vice-versa. We can decompose the LG modes

into a weighted sum of HG modes by making use of the relations between Laguerre

polynomials and Hermite polynomials, as shown in [BAvW93]. The complex amplitude

of a LG mode may be given in terms of HG modes by

upl(x, y, z) =

2p+l∑
k=0

ikb(l + p, p, k)uHG
2p+l−k,k(x, y, z), (2.16)

where b(l + p, p, k) are the real coefficients given by

b(l + p, p, k) =

√
(2p+ l − k)!k!

2(2p+l)(l + p)!p!
(−2)kPl+p−k,p−kk (0), (2.17)

and Pα,βn (x) are the Jacobi polynomials. This transformation between LG and HG mode

sets is used to model LG modes with the simulation software FINESSE, which was de-

signed to use the HG mode set to describe beam shapes. The relation between LG
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and HG modes demonstrates that it is incorrect to say that HG modes exclusively de-

scribe misalignments and translations while LG modes describe exclusively mismatches

of beam waist size and position, since both mode sets can describe all four mismatches

independently. However, due to the symmetries inherent in the two mode sets, each is

a more convenient basis set for describing the mismatches which share their symmetry.

2.6. Reduction in thermal noise for higher-order LG beams

The thermal noise equations given in section 2.1 have a dependence on the intensity

distribution of the readout beam. This dependence appears in the strain energy factor

U in equation 2.1 for the case of Brownian noise as

U = 2π
1− σ2

Y

∫ ∞
0

Ĩ(k)2dk, (2.18)

where σ is the Poisson ratio, Y is the Young’s modulus and Ĩ(k) is the Hankel transform

of I(r), the normalised intensity of the readout beam [Vin09]:

Ĩ(k) =

∫ ∞
0

I(r)J0(kr)r dr. (2.19)

In the case of a fundamental Gaussian mode readout beam, this gives the results for U

shown in equations 2.2 and 2.3, for noise in the substrate and coating respectively. In

these equations we see an inverse relationship between Usub and the beam spot size, w,

and an inverse square relationship between Ucoat and w.

The dependence of the Brownian noise on the intensity distribution of the readout beam

is best understood in terms of ‘averaging’ over the fluctuations on the mirror surface.

Put simply, the more evenly spread the power in the readout beam is, the better the

beam averages over surface distortions, and the less significant the Brownian component

of phase noise in the beam becomes. The intensity of fundamental mode beams with

very large beam sizes on the mirrors will be very evenly distributed. However, beam

sizes on the mirrors cannot be made arbitrarily large due to problems associated with

beam clipping losses. This is where so-called flat beams such as mesa-beams and higher-

order LG beams have an advantage over the fundamental Gaussian beam, as they can

average over the surface better for a given clipping loss.

The clipping loss at an optical component is the fraction of the optical power in the beam

that is not incident on the optical surface, i.e. that which is lost beyond its perimeter.
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2.6. Reduction in thermal noise for higher-order LG beams

This can be calculated as

Lclip = 1−
2π∫
0

dφ

R∫
0

I(r, φ)rdrdφ, (2.20)

where I(r, φ) is the beam intensity distribution function and R is the radius of the optical

component. In order to make a fair comparison between the thermal noise performances

of different mode shapes we must ensure that all the modes compared have the same

clipping losses at a mirror of given size. Since higher-order LG beams are more spatially

extended it is therefore necessary to compare beams with different spot sizes.
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Figure 2.8.: The upper panel shows the intensity as a function of distance from the

optic axis for a LG33 beam and a LG00 beam, both of which experience a

1 ppm clipping loss on a mirror with a radius of 25 cm and have equal total

beam powers of 1 W. The lower panel shows the integrated beam power as

a function of distance from optic axis for the same two beams.
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Chapter 2. Laguerre-Gauss beams for test mass thermal noise reduction

For a given amount of clipping loss on a circular3 mirror face of a given radius, the optical

power is distributed more evenly for higher-order LG beams than for the fundamental

LG00 beam. This effect is illustrated in figure 2.8. The upper panel of figure 2.8 is a

plot of the intensity profiles of a LG33 mode and a LG00 mode, both of which have the

same total power, and the same clipping loss of 1 ppm on a fixed optic size. It is clear

that the peak intensity of the LG00 is higher than that of the LG33, indicating that more

of the total power is concentrated in one region. The lower panel shows the integrated

beam power as a function of distance from the optical axis, for the same two beams.

The average gradient of the slope for the LG33 beam is shallower than that of the LG00

beam, again demonstrating that the beam power is more evenly spread over the surface

of the optic for the LG33 beam.

The idea of using different beam shapes to reduce the thermal noise levels in this way

originally came from a proposal to use flat top, or ‘mesa’ beams [DOS+04]. However,

these beams have the disadvantage of being incompatible with the currently used spher-

ical mirror surfaces. The maturity of the technology to manufacture the ‘Mexican hat’

mirrors that would be required to support such a beam in a cavity is much less than

the technology for manufacturing spherical mirrors. Since higher-order LG modes also

offer a thermal noise advantage, but are compatible with the currently used spherical

mirrors, we found this idea to be more favourable for consideration in the context of

gravitational wave interferometers.

2.7. Coating Brownian thermal noise reduction factors for

higher-order modes

2.7.1. Helical Laguerre-Gauss modes

After Mours’ initial paper suggesting the use of higher-order LG modes as a flat beam

candidate for thermal noise reduction [MTV06], Vinet published calculations of the

thermal noise performance for mesa-beams and higher-order LG modes in [Vin09], and

also for higher-order HG modes in [Vin10]. I will summarise these results here for the

3Only cylindrical mirrors are considered in this discussion because this geometry gives the mirror a

high Q factor. This reduces the advantage of using higher-order HG modes, which would average

better over the surface of rectangular mirrors.
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2.7. Coating Brownian thermal noise reduction factors for higher-order modes

coating Brownian noise, as this is currently expected to be the dominant test mass

thermal noise source in the second generation of gravitational wave detectors. I will also

take the additional step of accounting for the different beam sizes required to maintain

a fixed clipping loss of 1 ppm for each mode.

In [Vin09] Vinet calculated the advantage of higher-order beams is calculated for coating

Brownian noise in the numerical values gpl, which scale the strain energy as

UCoatBrown
pl = δC

(1 + σ)(1− 2σ)

2
√
πY w2

gpl (2.21)

where all other symbols are as defined in equation 2.3 . Table 2.1 shows some numerical

values of gpl. However, in order to make a fair comparison between the different modes,

l 0 1 2 3 4 5

p

0 1 0.5 0.34 0.27 0.22 0.19

1 0.5 0.31 0.23 0.19 0.16 0.14

2 0.38 0.25 0.19 0.16 0.14 0.12

3 0.31 0.21 0.17 0.14 0.12 0.11

4 0.27 0.19 0.15 0.13 0.11 0.10

5 0.25 0.17 0.14 0.12 0.11 0.10

Table 2.1.: Coating Brownian noise scaling factors gpl for LGpl modes relative to the

LG00 mode. The same beam size parameter is assumed for each mode.

we should compare beams with the same clipping losses. Table 2.2 shows the beam size

scaling factors apl for LGpl modes relative to the LG00 mode in order that each mode

has the same clipping loss of 1 ppm on an arbitrary sized mirror.

Since the coating Brownian noise scales with the inverse square of the beam size param-

eter (see equations 2.3 and 2.21), we must take account of the beam size scaling factors

when calculating the real thermal noise improvement of higher-order LG modes. We

therefore calculate the actual coating Brownian noise power spectral density improve-

ment factor as

ΘCoatBrown
pl =

a2
pl

gpl
. (2.22)

These coating Brownian noise improvement factors for higher-order LG modes, nor-

malised for 1 ppm clipping loss, are shown in table 2.3.
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Chapter 2. Laguerre-Gauss beams for test mass thermal noise reduction

l 0 1 2 3 4 5

p

0 1.00 0.836 0.741 0.675 0.626 0.587

1 0.920 0.785 0.707 0.650 0.606 0.571

2 0.850 0.747 0.679 0.628 0.589 0.556

3 0.804 0.715 0.655 0.609 0.573 0.544

4 0.768 0.689 0.634 0.593 0.559 0.535

5 0.737 0.666 0.616 0.578 0.547 0.529

Table 2.2.: Beam size scaling factors apl between LG00 and LGpl modes that give 1 ppm

clipping loss on an arbitrary sized circular mirror [Vin10].

l 0 1 2 3 4 5

p

0 1.00 1.40 1.61 1.69 1.78 1.81

1 1.66 1.99 2.17 2.22 2.30 2.33

2 1.90 2.23 2.42 2.47 2.47 2.58

3 2.09 2.44 2.52 2.65 2.74 2.69

4 2.18 2.50 2.68 2.70 2.84 2.86

5 2.17 2.61 2.71 2.78 2.72 2.80

Table 2.3.: Coating Brownian noise power spectral density improvement factors

ΘCoatBrown
pl for LGpl modes over the LG00 mode, where all modes are scaled

to give 1 ppm clipping loss on a fixed mirror size.

In the case of the LG33 mode, for which the majority of the research described in thesis

was carried out, we see that the coating Brownian noise power spectral density is reduced

by a factor of 2.65 from the level experienced when using the LG00 mode as the readout

beam. It was this clear and significant potential advantage of using the LG33 mode

that encouraged us to investigate it further within the context of gravitational wave

interferometers. The improvement factors offered by LGpl modes for other thermal

noise sources are shown in appendix A.
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2.7. Coating Brownian thermal noise reduction factors for higher-order modes

2.7.2. Hermite-Gauss modes

Although higher-order HG modes might not be expected to give as good thermal noise

performance as the higher-order helical LG modes due to their lack of circularly symmet-

ric intensity profiles, it is still interesting to see what improvement they can offer over

the LG00 mode. This is especially interesting in light of some of the results reported

in chapter 5, where we saw that a 10 m suspended cavity appeared to preferentially

resonate with HG modes despite being pumped with a LG mode.

The beam size scaling factors anm for HGnm modes, relative to the LG00 mode, required

to give a 1 ppm clipping loss are shown in table 2.4

m 0 1 2 3 4 5

n

0 1 0.910 0.842 0.789 0.746 0.710

1 0.910 0.850 0.798 0.754 0.718 0.686

2 0.842 0.798 0.756 0.721 0.689 0.662

3 0.789 0.754 0.721 0.690 0.664 0.640

4 0.746 0.717 0.690 0.664 0.640 0.619

5 0.710 0.687 0.662 0.640 0.619 0.600

Table 2.4.: Beam size scaling factors anm between HG00 and HGnm modes to give 1 ppm

clipping loss on an arbitrary sized circular mirror.

The results for the coating Brownian noise power spectral density improvement factors

ΘCoatBrown
nm for HGnm modes over the LG00 mode were calculated in the same way as

for LG modes as

ΘCoatBrown
nm =

a2
nm

gnm
. (2.23)

The numerical values for these improvement factors are shown in table 2.5 for HGnm

modes up to HG55. From this table we can see that higher-order HG modes do have a

coating Brownian noise power spectral density advantage over the HG00 mode, though

this improvement is less significant than those calculated for the LG modes as shown in

table 2.3. At the equivalent mode order as the LG33 mode, the HG45 offers only a factor

1.47 improvement, compared with the LG33 improvement of 2.65. The improvement

39



Chapter 2. Laguerre-Gauss beams for test mass thermal noise reduction

factors offered by HGnm modes for other thermal noise sources are shown in appendix

A.

m 0 1 2 3 4 5

n

0 1 1.10 1.11 1.08 1.05 1.02

1 1.10 1.29 1.33 1.40 1.30 1.27

2 1.10 1.33 1.40 1.41 1.41 1.39

3 1.08 1.32 1.41 1.44 1.45 1.45

4 1.05 1.30 1.41 1.45 1.47 1.47

5 1.02 1.27 1.39 1.45 1.47 1.48

Table 2.5.: Coating Brownian noise power spectral density improvement factors

ΘCoatBrown
nm for HGnm modes over the HG00 mode, where all modes are scaled

to give 1 ppm clipping loss on a fixed mirror size.

2.8. Thermal lensing

Another thermal effect, aside from thermal noise itself, which must be considered is

that of thermal lensing in the optical substrate materials. Light is absorbed in the

substrates and coatings of the partially transmissive mirrors; most significantly the

power recycling mirror, the arm cavity mirrors and the central beam splitter. For the

LG00 mode, absorption is strongest in the centre of the mirrors, on the optic axis of

the beam. A radial thermal gradient results, and if the thermo-refractive coefficient
∂n
∂T or the thermal expansion coefficient α of the substrate is non-zero, a thermal lens

is produced. An inability to accurately compensate for the thermal lens effect, which

will vary with different laser powers and may be non-stationary in time, will lead to

imperfect matching of the beam to the interferometer eigenmode and those of the arm

cavities therein. This leads to a power loss within the interferometer and an increase in

light coupled into higher-order modes [DZJB04].

Thermal compensation systems have been in place at the LIGO and Virgo detectors

already, but these have proven tricky to implement successfully [LZF+02]. With higher

laser powers expected in future detectors an advance in the methods of thermal com-
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pensation may be required to capitalise on the potential shot noise improvement. Vinet

shows in [Vin09] that the higher-order LG modes have a significantly better perfor-

mance than the LG00 mode in terms of thermal distortions of mirrors caused by power

absorption in the coating, due to the more even absorption of power across the mirror

surface. This is a considerable advantage of higher-order LG beams, as dealing with

high-power instabilities such as non-stationary thermal lensing is expected to be one of

the major difficulties in commissioning and running the advanced detectors. The use

of higher-order LG modes can be expected to relax the requirements on the thermal

compensation subsystem.
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Chapter 3.

Simulation study into LG33 mode

interferometry and production

Motivated by the potential factor of 2.65 improvement in coating Brownian noise power

spectral density using the LG33 mode, as shown in section 2.7, a numerical numerical

investigation into the interferometric performance of the LG33 mode was pursued. This

chapter includes the methods and results of the numerical interferometric performance

study, in which the compatibility of the LG33 mode with standard techniques in the grav-

itational wave interferometer community were investigated, such as the Pound-Drever-

Hall longitudinal error signal generation for optical cavities, and the Ward technique for

generating alignment error signals for cavities. Also investigated investigated were the

coupling of alignment degrees of freedom to phase noise in an advanced detector-like

layout, and finally the potential increase in observable event rate was calculated for two

typical gravitational wave sources with the Advanced Virgo detector, in the case where

the LG33 mode was used in place of the LG00 mode.

Following the positive results of the numerical interferometric performance study, we

proceeded with a numerical study into the means of higher-order LG mode generation.

This study included the design of phase profiles for use with spatial light modulators

or diffractive optical elements that can convert the LG00 mode into higher-order LG

modes, as well as the optimisation of the beam size parameter upon conversion and a

derivation of the beam parameters subsequent to conversion.

43



Chapter 3. Simulation study into LG33 mode interferometry and production

3.1. Interferometric performance simulation study of the LG33

mode

For any new technology to be seriously considered for inclusion in the design of a grav-

itational wave interferometer, its compatibility with other techniques that are already

in place must first be demonstrated. Typically the development of a new technology for

gravitational wave interferometers happens in several stages; first the potential advan-

tages of the technology are evaluated, secondly a simulation study is performed to assess

the compatibility with the interferometer, thirdly table-top experiments are performed

to demonstrate the technology, and finally the technology is tested on a suspended pro-

totype interferometer. In this section we will describe the second, and to some degree

also the first of these stages, under the banner of an interferometric performance study.

Interferometric performance in this context refers specifically to the ability to generate

the required longitudinal and alignment control signals, the level of coupling of a num-

ber of variables to the measured phase (phase noise analysis), and finally the maximum

achievable detector sensitivity.

The first consideration to ensure a realistic analysis of the performance of the LG33

mode was the beam sizes which should be compared. As we saw in sections 2.6 and 2.7,

a smaller beam size is required for the LG33 mode in order to have the same clipping

loss as the LG00 mode for a fixed optic size. If we take the maximum allowed clipping

loss to be 1 ppm1, the LG33 beam size at an optic must be a factor of 1.64 smaller than

the LG00 beam which also experiences the same clipping loss.

The performance of three different configurations for a symmetric 3 km cavity were

compared, which are referred to as the LG33, LGlarge

00 and LGsmall
00 configurations. The

LG33 and LGlarge

00 configurations both have a clipping loss of 1 ppm at the cavity mirrors,

thus the beam size at the mirrors for the LGlarge

00 configuration is a factor of 1.64 larger

than for the LG33 configuration. The LGsmall
00 configuration has the same spot size at

the mirrors as the LG33 configuration, but uses a LG00 beam, and therefore has a lower

clipping loss. The LGsmall
00 configuration is really a control configuration, included in

the study in order to better separate the effects due beam parameters and effects due

directly to mode shape. The cavity mirror curvatures for each configuration are shown

1This is a somewhat arbitrary number, but it is commonly used throughout the gravitational wave

community, and is related to the acceptable round trip cavity losses.
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3.1. Interferometric performance simulation study of the LG33 mode

in table 3.1, and the rest of the cavity parameters were as detailed in the Advanced

Virgo reference design [FM06].

Configuration LGlarge

00 LG33 LGsmall
00

RC (m) 1537 1910 1910

w (mm) 57.7 35.2 35.2

w0 (mm) 8.9 16.3 16.3

L (km) 3 3 3

Finesse 1227 1227 1227

Table 3.1.: Cavity parameters for each of the three different configurations used in the

study. RC , w, w0 and L refer to the mirror radii of curvature, the beam spot

size at the mirrors, the beam waist size, and the cavity length respectively.

The cavity finesse is defined as the ratio of the full width at half maximum

of a cavity resonance to the separation of successive resonances [Sie86]. The

LG33 and LGsmall
00 configurations have the same cavity parameters, since the

LGsmall
00 configuration was a control test to help distinguish between the effects

of beam parameters and mode shape.

3.1.1. Longitudinal control signals

The first control signal investigated was the longitudinal error signal for a single cavity,

generated using the Pound-Drever-Hall (PDH) modulation/demodulation error signal

generation technique [DHK+83]. The compatibility of the LG33 mode with the PDH

method is crucial to its application in gravitational wave interferometers, as this method

is used to control many degrees of freedom within gravitational wave interferometers,

and as such is one of the key techniques that enables their successful operation. One

would expect the LG33 mode to perform identically as for the LG00 in this test, as the

PDH error signal is known to be dependent not on the transverse beam profile, nor on

the cavity geometry, but simply on the average phase of the beam within the cavity.

Nonetheless, a demonstration of this result was required to confirm the expectation.

A FINESSE [FHL+04] model was made of each configuration, in which a carrier light

field is phase modulated and then used as the pump light for a 3 km cavity, with geometry

prescribed by the particular beam parameters for that configuration. The reflected
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Figure 3.1.: PDH error signals for the 3 km cavity, for the three different configurations.

The upper plot shows the results for the LG33 configuration, the lower left

plot is for the LGlarge

00 configuration and the lower right plot is for the LGsmall
00

configuration.

light from the cavity is detected with a photodetector, and demodulated at the original

modulation frequency. The cavity length was scanned over the resonant peak, and the

resulting error signal plotted, as shown in figure 3.1. From this figure we can see that

the resulting longitudinal control signal was identical for all three of the considered

configurations, except with the opposite sign for the LG33 mode case2. This confirmed

our expectation, providing the evidence that crucially the LG33 is compatible with the

widely used PDH error signal generation method.

3.1.2. Alignment control signals

As well as length sensing and control, angular sensing and control is crucial to maintain-

ing the stable operation and maximum sensitivity of a gravitational wave interferometer.

2The opposite sign of the error signal in the case of the LG33 mode is of no consequence; one could

simply alter the demodulation phase or invert the signal after demodulation to recover the same

sign.
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3.1. Interferometric performance simulation study of the LG33 mode

To investigate how the LG33 mode performs in this respect, an alignment scheme based

on the Ward technique described in [MRWM94a], and subsequently in [Hei99] was de-

signed for the same 3 km cavity configurations as previously described. The optical

layout for this scheme is shown in panel A© of figure 3.2. As in the case of the PDH

signal investigation, the carrier light is phase modulated and passed into the cavity,

although this time via a beam splitter.

A B

∆β{

IMX

L=3000m

EMX

∆φ

∆β

{

{

LASER BS IMX

IMY

EMX

EMYLASER BS

QPD1

IMX

L=3000m

EMX

QPD2

EOM

Figure 3.2.: Two optical layouts used in the alignment analysis simulations. A© shows

the single arm cavity alignment control scheme investigated, and B© shows

the differential misalignment of arm cavities, for which the coupling into

dark port power was analysed.

The reflected beam from the cavity is split in two, and each resulting beam is passed

through a telescope and detected with a quadrant photodetector. These telescopes are

designed such that the Gouy phase (see equation 4.2) difference between the beams

at each quadrant photodetector is 90◦, in order to provide the maximum possible or-

thogonality between alignment signals from the end mirror and the input mirror. The

difference signal from each quadrant photodetector is demodulated by mixing with the

initial modulation frequency. The demodulation phase was chosen so as to maximise

the slope of the error signal corresponding to the mirror for which the photodetector is

required to sense the alignment. We performed the analysis for the case of rotations of

the mirrors about the vertical axis (yaw) only, but the results are equally applicable to

rotations about the horizontal axis (pitch). In order to match as closely as possible the

conditions under which the alignment control system will be developed in practice, we

tuned the parameters rather than using the theoretical optimum parameters.

Figure 3.3 shows the alignment signals sensed by each quadrant photodetector for mis-
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Figure 3.3.: Alignment error signals for a 3 km cavity in the LGsmall
00 configuration, as

sensed by both quadrant photodetectors QPD1 and QPD2 as a function

of misalignment angle β of the cavity end mirror (top) and input mirror

(bottom).

alignments of both the cavity input mirror and the end mirror, for the LGsmall
00 configu-

ration. The top plot shows that at the working point, the error signal slope observed by

QPD1 when the end mirror is misaligned is much steeper than that observed by QPD2.

The lower plot shows the reverse scenario when the input mirror is misaligned; the steep-

est slope is observed by QPD2. This demonstrates a good separation of the two different

alignment sensing degrees of freedom between the two sensors, which would enable the

construction of a functioning alignment control loop for each degree of freedom.

The alignment sensing figure of merit for each configuration can be further summarised
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3.1. Interferometric performance simulation study of the LG33 mode

by its control matrix [MF08]. The elements σmirror
detector of these control matrices are the

slopes of the error signal at the working point as measured at quadrant photodetectors

QPD1 and QPD2, for misalignments of the cavity input mirror IMX, and end mirror

EMX, as shown in equation 3.1.

Cconfiguration =

(
σIMX

QPD1 σEMX
QPD1

σIMX
QPD2 σEMX

QPD2

)
(3.1)

The resulting control matrices for each of the three cavity configurations were as follows:

CLG33 = 7.444

(
1 0.003

0.368 0.641

)

C
LGlarge

00
= 17.77

(
1 0.862

0.645 0.153

)

CLGsmall
00

= 5.615

(
1 0.009

0.385 0.639

)
.

An ideal control matrix would be proportional to the identity matrix, since the off di-

agonal elements correspond to the presence of information from the unwanted mirror in

a given photodetector signal. None of the configurations give an ideal control matrix,

although it is clear that some perform better than others. Comparing the two config-

urations with the same clipping loss at the cavity mirrors, we can see that the LG33

configuration performs much better than the LGlarge

00 configuration. This is evident in the

fact that the off-diagonal elements in the C
LGlarge

00
control matrix are larger with respect

to the on-diagonal elements than in the CLG33 control matrix. In fact, the off diagonal

elements in C
LGlarge

00
are significantly larger even than the σEMX

QPD2 element, demonstrating

that misalignments of the end mirror couple more strongly to QPD1 even than QPD2,

which should mostly sense end mirror misalignments.

A comparison between the CLG33 and the CLGsmall
00

control matrices shows very little dif-

ference between the two. Since these two configurations have the same cavity geometry

and thus the same beam parameters, we can conclude that in this case the beam shape

does not play a significant role in determining the alignment sensing performance of a

configuration. We are left to conclude that the main factor determining the performance

is in fact the cavity geometry, and that the LG33 mode is compatible with the alignment

scheme used in the simulation.
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Chapter 3. Simulation study into LG33 mode interferometry and production

3.1.3. Coupling of cavity mirror tilt to longitudinal phase

As well as investigating the compatibility of the LG33 mode with the commonly used

interferometric sensing and control methods, we also investigated two of the main cou-

plings of alignment degrees of freedom to noise in an interferometer. It is important to

ascertain the impact of changing the beam shape on these couplings, since increased cou-

plings from alignment degrees of freedom to phase noise will necessitate more stringent

requirements on the residual alignment fluctuations.

One such coupling is between cavity mirror misalignment and the longitudinal phase in

one of the arm cavities of an interferometer. As one of the cavity mirrors is misaligned,

the effect on the cavity eigenmode optical axis will be either a tilt or shift, or some

combination of both, with respect to the aligned axis [SS06, Hei99], depending on the

cavity geometry and which mirror is misaligned. In the case of a symmetric cavity,

the eigenmode will both tilt and shift when either of the mirrors are misaligned. A

shifted eigenmode will experience a microscopically longer cavity round trip length than

the perfectly aligned eigenmode. This effect is illustrated in figure 3.4 for the simple

example of a flat-concave cavity, in which a misalignment of the concave mirror produces

purely a shift in the eigenmode optical axis.

In a real interferometer, the longitudinal degree of freedom of the cavity will be con-

trolled using the PDH method to keep it on resonance. Length changes caused by

fluctuations in the alignment will be compensated for by the longitudinal control loops,

and so the alignment fluctuations couple to the longitudinal degree of freedom, and

hence to the gravitational wave strain channel as noise. Since this coupling is geomet-

ric in origin, one would not expect it to differ greatly between the LG33 configuration

and the LGsmall
00 configuration, since the cavity geometry is equal for both. Figure 3.5

shows the intracavity power as a function of cavity end mirror tilt on the x-axis and

longitudinal cavity tuning on the y-axis, for each of the three configurations. These

plots demonstrate the level of coupling between end mirror tilt and longitudinal phase

by showing the change in tuning required to keep the intracavity power at a maximum

for a given tilt. Comparing the LG33 and LGlarge

00 configurations, we can see that the

coupling is much stronger in the LGlarge

00 case (note the different y-axis scales). Over

the 1µrad tilt range the resonant tuning of the LG33 configuration shifts by about 0.4◦,

compared to about 5◦ for the LGlarge

00 configuration3.

3Cavity tuning, expressed in degrees, is a convenient definition of either cavity length change as a
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3.1. Interferometric performance simulation study of the LG33 mode

Figure 3.4.: An illustration of the coupling mechanism between misalignment and longi-

tudinal phase in a plane-concave cavity. As the curved mirror is misaligned,

the cavity eigenmode axis shifts, resulting in a longer round trip path length.

The results for the LG33 and LGsmall
00 configurations are very similar, as expected since

they have the same cavity parameters. This suggests that the coupling from tilt to

longitudinal phase in the cavity is dominated by the geometry of the cavity, and not

by the beam shape. This is a positive result for the LG33 mode, in that it performs

intrinsically no worse than the LG00 mode. In fact, when compared against the LG00

mode with the same clipping loss of 1 ppm in a 3 km cavity, the LG33 mode has a

significantly lower coupling from tilt to longitudinal phase.

3.1.4. Coupling of differential arm cavity misalignment to dark port power

The second alignment to interferometer noise coupling that we investigated was the

coupling of differential arm cavity misalignment to power at the interferometer output

port. If the two arm cavities are differentially misaligned, the overlap of the two beams

at the central beam splitter will be imperfect, leading to a change in the light power

present at the output port of the interferometer, as illustrated in panel B© of figure 3.2. If

this differential misalignment varies with time, the power measured at the dark port will

also vary with time, producing a signal at the photodetector that is indistinguishable

from gravitational wave signals. Static misalignments will also increase the coupling of

common mode noise sources such as laser power fluctuations to the gravitational wave

channel, since the interferometer will no longer be operating on an exactly dark fringe.

A FINESSE model was made to obtain values for the output power enhancement due to

differential misalignment for each of the three previously described cavity configurations,

fraction of wavelength, or frequency change as a function of cavity FSR.
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Chapter 3. Simulation study into LG33 mode interferometry and production

Figure 3.5.: Intra cavity power as a function of cavity end mirror tilt angle β and

longitudinal tuning φ for the three different configurations. The first two

configurations show very similar results, but the LGlarge

00 configuration shows

a much stronger coupling from tilt to tuning (note the larger scale on the

tuning axis in the LGlarge

00 plot).

as shown in figure 3.6. Also plotted in figure 3.6 is a reference limit on the acceptable

dark port power, around 7.1×10−9 W, calculated from a differential arm length require-

ment of 10−15 m [AAB+] and a dark fringe offset of 10−12 m [AdL07]. Comparing the

LG33 and LGlarge

00 configurations, we can see that the LG33 configuration can tolerate

larger differential misalignments before surpassing the reference limit. However, both

LG33 and LGlarge

00 configurations are outperformed by the LGsmall
00 configuration in this in-

vestigation. This demonstrates that the coupling of differential arm cavity misalignment

to dark port power depends both on the beam parameters and the beam shape.

The dependence on beam parameter and shape can be explained by considering the

relative phase difference between the beams from the two arms across the overlapping

region at the beam splitter. If the wavefronts of the two beams are not parallel, sinusoidal
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Figure 3.6.: Dark port power as a function of differential arm cavity misalignment for the

three different configurations. The black line shows the limit calculated for

dark port power based on a differential arm length requirement of 10−15 m

for a dark fringe offset of 10−12 m.

fringes are formed with a spacing determined by the angle between the propagation

vectors of the two beams4. The larger the overlapping region is, the larger the portion

of the fringe that is within the overlapping region will be, and thus the less complete

we should expect the interference to be. This effect depends on the true spatial extent

of the beams at the overlapping region, which in turn depends on both the beam size

parameter and the beam shape.

3.1.5. Coupling to unwanted modes due mode mismatch

Although mode matching is usually considered a technical detail rather than a funda-

mental concern, we found it worthwhile to compare the effects of mode mismatch into a

cavity for the LG33 mode and the LG00 mode. This was partly in light of experimental

observations that showed that the LG33 mode was more sensitive to mode mismatch in

a cavity than the LG00, such as those described in section 5.4.

Figure 3.7 shows the theoretical coupling into a range of mode orders caused by mismatch

of the beam waist to the cavity waist, for both the LG00 mode and the LG33 mode in

4In the misalignment regime we are concerned with (100s of picoradians), the fringe spacing is of the

order of km; far greater than the overlapping region of the beams.
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Figure 3.7.: Theoretical coupling of beam waist size mismatch to power in different mode

orders. The upper plot shows the coupling for a LG33 input mode, and the

lower plot shows the coupling for the LG00 input mode. Plots courtesy of

Charlotte Bond.

a cavity similar to the Glasgow 10 m cavity described in section 5.4. It is clear that

the coupling is much stronger for the LG33 mode; when the injected waist is just 1.2

times the size of the cavity waist, the order 9 will no longer be the dominant mode order

in the cavity. The LG33 mode also shows a stronger coupling into other modes when

the injected waist position is mismatched to the cavity waist position. This increased

susceptibility of the LG33 mode to mode mismatch is not likely to be a direct concern in

terms of phase noise within a gravitational wave interferometer, but it should be borne
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3.1. Interferometric performance simulation study of the LG33 mode

in mind as a practical consideration when determining acceptable tolerances in beam

waist size and position mismatch.

3.1.6. Sensitivity improvements for Advanced Virgo

The final comparison between the performance of the LG00 and LG33 modes was in

terms of the overall detector sensitivity. Several scenarios for using the LG33 mode

in the Advanced Virgo detector were evaluated, and published in [CHF09], but here

we just discuss a scenario which compares the sensitivity of the detector with LGlarge

00

and LG33 modes. In each case the detector sensitivity was calculated using a version

of Gravitational Wave Interferometer Noise Calculator [GWINC], specially adapted for

Advanced Virgo, and the thermal noise scaling factors for the LG33 mode shown in

section 2.7.

Configuration SR det. [Hz] ΓNS/NS [Mpc] ΓBH/BH [Mpc]

LGlarge

00 750 126 900

LG33 750 148 1140

LGlarge

00 300 130 580

LG33 300 163 715

Table 3.2.: Results of the GWINC calculation for detection ranges of two standard grav-

itational wave sources with the Advanced Virgo reference design, for both

the LGlarge

00 and LG33 cavity configurations.

Table 3.2 shows the results of the calculation for the two cases NS/NS, and BH/BH,

where the signal recycling detuning (SR det.)[HF07] was optimised for detection of sig-

nals from binary neutron star inspirals and binary black hole inspirals respectively. The

figures of merit chosen were the effective detection ranges for the two signal sources,

ΓNS/NS and ΓBH/BH. According to these results, the LG33 mode provides a relative im-

provement of the inspiral ranges by around 20 % and 25 % for signal recycling detunings

of 750 Hz and 300 Hz respectively, compared to the LG00 mode. This corresponds to a

potential increase by around a factor of 2 in the observable event rate for binary black

hole and neutron star inspiral sources of the Advanced Virgo detector by using the LG33

mode instead of the LG00 mode. It is worth bearing in mind that while this constitutes a

significant improvement in the detection prospects of Advanced Virgo, one would expect
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the benefits to be even more pronounced in third generation interferometers, in which

the levels of the other limiting noise sources should be significantly lower.

In summary, for all the interferometric performance aspects analysed, the LG33 config-

uration performs significantly better than the LGlarge

00 configuration which has the same

clipping loss of 1 ppm on the Advanced Virgo cavity mirrors. For the longitudinal error

signal generation with the PDH method, the alignment error signal generation using

the Ward technique, and the coupling of cavity mirror tilt to phase, the beam shape

had little or no effect on the result. In each of these cases the cavity geometry was

shown to be the dominant factor in determining the performance, by comparing the

LG33 configuration with the control configuration LGsmall
00 . In the case of differential

arm cavity misalignment coupling to dark port power, both the beam shape and the

beam size parameter were shown to influence the result. However, in this case the LG33

configuration still performed better than the LGlarge

00 configuration. It was also shown

that an increase in the observable inspiral event rate by around a factor of two could

be achieved by using the LG33 mode in place of the LG00 mode in the Advanced Virgo

detector. The results of this study suggest that for the Advanced Virgo case, not only

would using the LG33 mode improve the sensitivity of the detector, but it would also

make the alignment sensing more achievable, as well as leading to less stringent align-

ment requirements than for the LGlarge

00 configuration. This result gave a very positive

outlook for LG mode technology within gravitational wave detectors at this point, and

so we proceeded with plans for a table-top demonstration of LG mode interferometry.

3.2. Numerical investigation into LG33 beam generation by

LG00 phase profile modulation

Before beginning a table-top demonstration of LG mode interferometry, it was neces-

sary to develop our understanding of the various methods of generating higher-order

LG modes. In this section I will briefly describe the work on higher-order LG mode

production methods that had been previously described in the literature, and then de-

scribe a series of numerical investigations that were performed into a particular subset

of these methods; those that achieve higher-order mode production by converting from

the LG00 mode by modulating its phase profile. This study gave us a solid foundation

upon which to begin the table-top experiments with higher-order LG modes that are
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described in chapter 4.

3.2.1. Overview of previous work in Laguerre-Gauss beam production

Although at the time of starting my PhD studies the idea of using LG modes in gravi-

tational wave detectors was relatively new, having been first described in print in 2006

[MTV06], LG modes had already been used in other research areas for at least 16 years.

However, so far the optimization of higher-order LG beam sources has largely been in a

different direction to that which is required by the gravitational wave detector commu-

nity. For example the use of LG beams in the cold atoms and optics fields often requires

high-speed manipulation of the beam parameters and positions, whereas the use of LG

modes in high-precision interferometry depends on mode purity and stability. One of the

leading candidate methods for the latter is the use of diffractive optic elements (DOEs),

or phase plates for conversion from a LG00 mode to a higher-order LG mode, due to

their stability, as well as potentially high conversion efficiency and output mode pu-

rity [BCKW94, TRS+96]. Other conversion methods include using computer generated

holograms [ADAP98], spatial light modulators [MAI+08] and astigmatic mode convert-

ers [ABSW92, CP99]. However, none of these mode conversion methods are perfect,

and some light inevitably remains in unwanted modes. A comparison of the merits and

drawbacks of each method can be found in the paper [KST+02].

We decided that the LG mode production techniques that used phase profile modulation

to convert from the LG00 mode to higher-order LG modes were the most suitable for

our purposes. This is because there are two techniques which work in this way; the spa-

tial light modulator (SLM) technique and the etched diffractive optical element (DOE)

technique. These two techniques are complementary in that while the SLM method is

adaptable but lacks stability and efficiency, the DOE method is stable and efficient, but

lacks adaptability. Our plan was to use the SLM method at first, and then progress

to the DOE method at a later stage once we had a phase profile design and conversion

setup that fulfilled our requirements.

3.2.2. Phase modulation profile design

At the most basic level, the requirement for a phase modulation profile to convert a

LG00 beam into a higher-order LG beam is to replicate the phase cross section of the
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desired LGpl mode. Replicating the amplitude cross section can be achieved to some

extent using a phase modulating surface, as described later on in this section, but for

now we will just discuss the replication of the phase cross section. We will consider the

phase cross sections of arbitrary order LGpl modes, for simplicity at the beam waist. In

polar coordinates, the phase cross distribution P sin(r, φ)pl of the sinusoidal LG modes

at the beam waist (i.e. where z=0) is

P sin
pl (r, φ) = π

[
Θ

(
L|l|p

(
2r2

w2
0

))
+ Θ(coslφ)

]
, (3.2)

and for helical LG modes

P hel
pl (r, φ) = πΘ

(
L|l|p

(
2r2

w2
0

))
+ lφ, (3.3)

where w0 is the beam waist size, and Θ is the Heaviside function. The function of a

phase modulation profile is to imprint this desired phase cross section on the incident

beam, which in our case is a LG00 beam. Two examples of such phase cross sections

are shown in the left and right panels of figure 3.8, for converting to the sinusoidal and

helical LG33 modes respectively.

Figure 3.8.: Two phase modulation profiles of physical dimensions 14.6× 14.6 mm and

768× 768 pixels, created to convert a LG00 mode to a cosine LG33 mode

(left panel) and a helical LG33 mode (right panel), each with a spot size at

the phase modulating surface of w= 2 mm.
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Blazed phase grating profile

When designing phase modulation profiles, it is useful to add a blazed grating phase

pattern to the initially required phase profile, so as to spatially separate the modulated

light from the light which remains unmodulated during the interaction with the phase

modulating device. In the case of a reflective type SLM, this unmodulated component

may be the result of direct reflection from the front surface of the SLM screen. In both

SLMs and DOEs, some unmodulated light also results from the quantization of the

phase levels [Sch]. Without adding a blazed grating, the unmodulated light propagates

along the same axis as the modulated light, and can spoil the desired effects of the phase

modulation profile on the incident beam. The use of blazed phase modulation profiles

is commonplace in beam shaping applications, and was used for LG mode production

with an SLM in the work reported in [MAI+08]. Figure 3.9 shows examples of blazed

Figure 3.9.: Example of blazed phase modulation profiles for generating sinusoidal (left)

and helical (right) LG33 modes.

phase profiles for converting the LG00 mode to both sinusoidal and helical LG33 modes.

The blazed phase profile for the helical LG33 mode shows the ‘forked grating’ pattern

that is often referred to in the literature concerning LG mode generation, as for example

in [ADAP98], [JT08] and [BK08].

The blazing angle should be designed such that the diffraction angle into the first order

is greater than the divergence angle of the beam. Most phase profile modulating devices,
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whether SLMs or DOEs, will have some level of spatial discretisation. This discretisation

will also produce diffraction orders, so one should take care to avoid an overlap of these

orders with the first diffraction order from the blazed grating in order to achieve high

purity in the desired diffraction order.

Contoured blazing for intensity modulation

The use of a blazed phase grating to separate modulated light from unmodulated light

also affords one the opportunity to achieve some amplitude modulation of the modulated

beam, as well as phase modulation. This can be achieved by adjusting the amplitude

of the blazing pattern to be proportional to the desired mode amplitude shape. The

diffraction efficiency into parts of the output beam corresponding to the lower blazing

amplitudes will be lower, hence providing the required amplitude modulation. In fact,

this technique can also be used to correct for the inhomogeneous amplitude profile of the

LG00 beam incident on the phase modulating surface, simply by dividing the amplitude

of the blazing pattern by the LG00 amplitude profile. Figure 3.10 shows examples of

Figure 3.10.: Example of amplitude contoured blazed phase modulation profiles for gen-

erating sinusoidal (left) and helical (right) LG33 modes.

the amplitude contoured blazed phase modulation profiles for converting to both the

sinusoidal and helical LG33 modes. It should be noted that though this technique can

be used to increase the purity of the generated mode, in general it will reduce the overall
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efficiency of conversion into the desired mode. Experimental results comparing the use

of phase profiles with and without amplitude contouring are shown in sections 4.2.1 and

4.3.3.

3.2.3. Simulations of conversion from LG00 beam to a LG33 beam

To test the functionality of the phase modulation profiles it was necessary to simulate the

beam conversion procedure. These simulations were performed in Matlab using a largely

self developed package of scripts, in which the complex electric field amplitudes at every

point in a grid are described with a matrix of complex numbers. The properties of the

input LG00 beam and the phase modulation profile can be adjusted, and the properties of

the resulting beam observed, thus enabling an optimisation of the conversion procedure

to be carried out. The interaction of the input LG00 beam with the phase modulating

is represented in the simulation as an element by element multiplication of the electric

field complex amplitude matrix and the imaginary phase modulation profile matrix. In

the simulation there is no requirement to use a blazed phase profile, since there is no

unmodulated light after the interaction with the phase modulation profile. As a result,

we used phase profiles like those shown in figure 3.8 for the conversion.

Subsequent to the interaction of the input LG00 with the phase modulation profile, the

resulting field was propagated a distance of 3 m using a fast-Fourier transform (FFT)

code developed successively by Vinet, Schilling and Freise. The details of this FFT code

are described in [VVC01]. The final field intensity and phase were then plotted and

compared to the field amplitude of an ideal LG33 mode in figure 3.11. The upper panels

of figure 3.11 show that the intensity profile converted LG33 beam does share some

features with that of the ideal LG33 mode; the 4 concentric rings are clearly visible.

However, it is also clear that the outer rings are not as bright for the converted mode as

in the ideal case. The phase profiles in the lower panel of figure 3.11 also show strong

similarities between the ideal and converted mode; the three phase spirals and three

radial phase dislocations are visible in both. However, the converted mode shows higher

spatial frequency ‘ripple’ like features in the phase profile which are not present in the

ideal mode. Plots of the amplitude and intensity of both LG33 fields for a cross section

through the optic axis can be seen in figure 3.12. The intensity cross section highlights

the fact that the outer rings of the converted mode are less bright than the ideal mode.

This feature is likely to be a result of the inhomogeneous intensity distribution of the
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Figure 3.11.: Intensity (top) and phase (bottom) profiles of an ideal helical LG33 mode

(left) and a helical LG33 mode generated by interaction of a LG00 with the

phase modulation profile shown in figure 3.8 (right).

input LG00 mode over the phase modulation profile, resulting in lower light amplitudes

interacting with the outer regions of the profile. This can be improved by employing

the amplitude contouring technique described in section 3.2.2.

3.2.4. Converted beam parameter estimation

A useful figure of merit for the performance of a phase modulation profile is the purity

of the generated LG mode after interaction with the phase modulation profile. We

calculate the mode purity as the squared inner product of the normalised converted
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Figure 3.12.: The normalised amplitude (top) and intensity (bottom) for cross sections

through the optic axis of the simulated converted LG33 beam and the

ideal LG33 beam. The amplitude plot shows higher spatial frequency noise

present in the simulated converted beam. It can be seen from the intensity

plot that the outer rings of the simulated converted beam contain a lower

proportion of the beam power than in the ideal LG33 beam case.
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LG33 field amplitude and the ideal LG33 field amplitude. This gives a measure of the

fraction of power in the converted field which is in the correct mode. This power fraction

is referred to as the mode purity in [MAI+08] and [CACD98], and so the same definition

is used in this work.

When performing the inner product the beam parameters of the ideal mode used as the

reference will affect the outcome, since even for two ideal modes, different beam sizes or

curvatures will give a lower purity result than 100 %. Choosing the beam parameters

of the ideal LG33 mode in the inner product amounts to choosing a basis for the modal

description (see section 2.5). In order to calculate the true purity of the converted mode,

one is required to choose the basis in which the inner product between the two fields is

maximal.

For this reason it was necessary to investigate the effect of the phase modulation profile

on the waist size and position parameters, w0 and z0 of the beam interacting with

it. Without a proper understanding of the change of these beam parameters upon

conversion, it would not be possible to choose the correct beam parameters for the ideal

LG33 mode in the calculation of mode purity, and the result of the inner product would

give an underestimate for the purity of the converted mode. In this section we extend the

mode conversion procedure analysis to include the possibility that the phase modulating

surface is not located at the input beam waist position. The phase modulation profile

is still designed with no phase curvature term however, as in equations 3.2 and 3.3.

We expected that the dimensions of the phase modulation profile primarily determine

the beam size of the output beam, but that the beam phase front curvature is unchanged

during interaction with the phase modulating surface. The expectation that the phase

modulation profile determines the beam size stems from the fact that it is this profile

that determines where the nodes in intensity of the converted field are positioned. For

a higher-order LG33 mode, it seems clear that the spacing of the radial rings is one of

the main indicators of the beam size parameter. Our expectation that the phase front

radius of curvature remains unchanged simply stems from the fact that we could see no

physical reason for why this curvature should change upon interaction with the phase

modulating surface in the absence of any curvature inherent in the surface itself.

The expected resulting beam waist size w0 and position z after interaction with the

phase modulation profile can be calculated for any set of input beam parameters. We

can rearrange the well known relations for Gaussian beams to give the more fundamental
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beam parameters w0 and z as functions of the known beam radius curvature RC and

beam spot size w parameters. Starting with the equation for beam radius of curvature

as a function of position along the optical axis z and the Rayleigh range of the beam zR

[FS10]

RC(z) = z +

(
zR

2

z

)
, (3.4)

we rearrange to get

zR
2 + z2 = RC(z) z. (3.5)

The equation for the beam spot size w(z) in terms of the beam waist size w0, the

Rayleigh range and the distance to the beam waist is

w(z) = w0

√
1 +

z2

zR2
. (3.6)

The Rayleigh range is related to the beam waist size and the wavelength by the following

equation;

zR =
w0

2π

λ
(3.7)

Rearranging this gives

w0 =

√
zRλ

π
. (3.8)

Substituting this expression for w0 into equation 3.6 gives

w(z) =

√
zRλ

π

(
1 +

z2

zR2

)
=

√
λ

π

(
zR +

z2

zR

)
. (3.9)

Squaring both sides, multiplying through by zR and rearranging gives

z2
R + z2 =

zR w(z)2π

λ
. (3.10)

Now we can substitute the expression for z2
R + z2 from equation 3.5 to obtain

RC(z) z =
zR w(z)2π

λ
. (3.11)

Rearranging for z, squaring both sides and substituting the result for z2
R acquired from

equation 3.5 gives

z2 =
(RC(z) z − z2)(w(z)2π)2

(RC(z)λ)2
. (3.12)
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Collecting z2 terms on one side of the equation gives

z2

(
1 +

(
w(z)2π

RC(z)λ

)2
)

=
z (w(z)2π)2

RC(z)λ2
. (3.13)

Now dividing both sides by z, rearranging for z and tidying a bit gives

z =

(
w(z)2π
λ

)2
RC(z)

RC(z)2 +
(
w(z)2π
λ

)2 . (3.14)

If we define the parameter Υ(z) as follows

Υ(z) =

(
w(z)2π

λ

)2

(3.15)

we can write equation 3.14 in a more visibly intuitive manner;

z =
Υ(z)RC(z)

RC(z)2 + Υ(z)
. (3.16)

The beam waist size can now be found in terms of the radius of curvature and beam

spot size at a given point along the x-axis and the distance to the beam waist, or even

in terms only of the radius of curvature and beam spot size at a given point along the

x-axis. Starting by substituting the result for z from equation 3.14 into equation 3.5 we

get

z2
R =

RC(z)2Υ(z)

RC(z)2 + Υ(z)
− RC(z)2Υ(z)2

(RC(z)2 + Υ(z))2 . (3.17)

Factorising the right hand side gives

z2
R =

RC(z)2Υ(z)

RC(z)2 + Υ(z)

(
1− Υ(z)

RC(z)2 −Υ(z)

)
. (3.18)

Substituting for zR from equation 3.7 dividing both sides by
(
π
λ

)2
and taking the fourth

root of both sides gives

w0 =

[
RC(z)2w(z)4

RC(z)2 + Υ(z)

(
1− Υ(z)

RC(z)2 + Υ(z)

)] 1
4

. (3.19)

The expression for z and w0 can be simplified further, and are given here in their final

form;

z =
Rc(

λRc
w2π

)2
+ 1

(3.20)
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w0 =
w2

1 + w4π2

R2
cλ

2

[
1−

(
R2
c

λ
+ 1

)−1
] 1

4

. (3.21)

The accuracy of predictions based on our expectations about the beam parameter change

upon mode conversion by was tested comparing the calculated beam parameters with

FFT simulation results. In the simulation, the converted beam parameters were esti-

mated by fitting the beam parameters of the ideal LG33 mode such as to maximise the

overlap integral between the converted beam and the ideal LG33 beam. The ideal LG33

parameters which give the best mode purity result for the converted beam, calculated in

the manner previously described, are the best approximation to the beam parameters of

the converted beam itself. This procedure was performed for a range of different input

beam waist sizes and curvatures, and then compared with the calculated theoretical

beam parameters.

Figure 3.13 shows the theoretical results for generated beam waist size and position

compared to the numerical results from the simulation. For each of the 10 different

input beam waist sizes and each of the 10 different beam waist positions investigated

numerically, the theoretical and numerical results agree very well. We therefore conclude

that our aforementioned theory is sound for the purposes of estimating post-conversion

beam parameters.

3.2.5. Optimum conversion beam size ratio

Since the beam waist size w0 appears in the phase cross section equations 3.3 and 3.2,

it is clear that a given phase modulation profile will be optimized to give a particular

output LG33 beam size. However, since the higher-order LG modes are more spatially

extended than the LG00 mode, one expects that the incident LG00 beam should have

a larger beam size in order to actually interact optimally with the phase modulation

profile. We therefore performed a study using FFT simulations to find the optimum

ratio of input LG00 beam size to phase image beam size for a range of different LGpl

modes.

Figure 3.14 shows the results of this investigation for conversion to the helical LG33

mode, where the conversion procedure was simulated for the same input beam size, but

each time with a different phase image size. The phase modulating surface was always
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Figure 3.13.: Plotted in the upper panel are the waist sizes of the best-fit ideal LG33

mode for a simulated phase-plate generated LG33 beam for ten different

input LG00 beam curvatures. For comparison, the theoretical prediction

for the waist size of the generated LG33 mode is also plotted. The best-fit

and theoretical waist positions are similarly plotted in the lower panel. A

clear agreement between the best-fit results and the theoretical trend is

observed in both plots.

located at the beam waist for simplicity. In this case the optimum ratio of input beam

size to converted beam size was found to be around 3. Table 3.3 shows this optimum

ratio for generating all LGpl beams up to and including order 9.
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Figure 3.14.: Simulated converted LG33 mode purity as a function of the ratio between

input LG00 beam size and LG33 phase modulation profile beam size. The

maximum mode purity is achieved when the input beam size is around a

factor of 3 larger than the phase modulation profile beam size.

3.2.6. Theoretical purities of generated LG modes

The squared inner product of the normalised phaseplate generated LG33 field amplitude

and ideal LG33 field amplitude gives a measure of the amount of power in the phaseplate

generated field which is in the correct mode, a figure of merit known as the mode purity

[MAI+08, CACD98]. For the helical LG33 mode conversion simulation, 74.16% of the

power in the converted LG33 field was in the LG33 mode. The same simulation was

performed for the sinusoidal LG33 mode conversion, in which we found that 60.13 % of

the power was in the correct mode.

We believed that some of the power remained in other modes as a result of the limi-

tation of phase only modulation. To test whether or not this was the case we added

an amplitude modulating ‘mask’ to the simulation, at the same position as the phase

modulating surface. The profile of the mask was based on the ideas described in section

3.2.2, in the context of contoured blazing for amplitude modulation. Figure 3.15 shows

the transmission profile mask for both the helical and sinusoidal cases. The amplitude
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4 2.9 3.0

3 2.5 2.7 2.8 3.0

2 2.2 2.4 2.5 2.7 2.9 3.0

1 1.7 2.0 2.2 2.4 2.6 2.8 2.9 3.1

0 1.0 1.4 1.7 2.0 2.2 2.5 2.6 2.8 3.0 3.2

p
l 0 1 2 3 4 5 6 7 8 9

Table 3.3.: Optimum ratio between input LG00 beam size and LGpl phase image beam

size, for LG modes up to the order 9.

Figure 3.15.: Amplitude transmission masks for the sinusoidal (left) and helical (right)

LG33 modes, as used in simulations of the beam conversion procedure.

transmission profiles were calculated simply by dividing the normalised amplitude pro-

file of the LG33 beam to be generated by the normalised amplitude profile of the incident

LG00 beam.

Using these amplitude masks, the converted beam purity was now found to be 100 %

in both helical and sinusoidal cases. This confirmed our belief that the limitation of

phase only modulation was responsible for the beam power not converted into the LG33

mode. It also showed that it should theoretically be possible to achieve 100 % purity

in the converted mode if both phase and amplitude modulation are applied. In reality

however, technical limitations in the equipment mean that such high purities are unlikely
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to be achievable directly from a phase and amplitude modulator, or a phase modulator

used with a contoured blazing profile, in the laboratory.
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Chapter 4.

Tabletop demonstrations of LG mode

production and cleaning

With an improved understanding of the principles of mode conversion using a phase

modulating surface, we proceeded with experimental table-top demonstrations of LG

mode generation and interferometry. For the table-top experiments, we decided to use

a computer-controlled liquid-crystal-on-silicon spatial light modulator (LCoS SLM) for

preparing the LG beams. We found this to be the best choice for our work because

of the availability and adaptability of such devices. We could easily alter the phase

profile imprinted on the beam to be converted, and thus try many different profiles

for conversion. At this relatively early stage in the experimental investigations, this

advantage was deemed to outweigh the disadvantages of the SLM generation method;

namely low mode conversion efficiency and phase front stability. Although, for example

an etched diffractive optic would offer better stability and conversion efficiency, there

is no possibility to alter the design once the optic is manufactured. At this time our

goal was not to find the optimal the conversion method, but rather to investigate the

interferometric performance of LG33 beams.

In this chapter I will first describe the procedure used to determine the phase modulation

characteristics of the SLM for 1064 nm light, and then describe the results we obtained

using the SLM to generate higher-order LG modes. The rest of the chapter describes the

experiments we performed with the helical and sinusoidal modes that were generated,

aimed at verifying some of the results of the simulation study described in section 3.1.

As part of this work, we demonstrated the first feedback control of an optical cavity

pumped with a higher-order LG mode, and showed that the LG33 mode transmitted

through the cavity on resonance had a strongly enhanced mode purity when compared
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with the input mode. These results, along with our demonstration of the incompatibility

of helical LG modes with triangular cavities, were published in [FKCF10].

4.1. Characterising the spatial light modulator

For initial table-top experiments with higher-order LG modes, our method of choice for

generating the modes was to use a SLM. The SLM we used was a Holoeye LCR-2500

liquid-crystal on silicon reflective type [OKS06] model, with a 1024×768 resolution on a

14.6 mm×19.6 mm active area. Figure 4.1 shows the SLM set up on the optical table.

Figure 4.1.: The Holoeye LCR-2500 liquid crystal on silicon spatial light modulator de-

vice. The control box is provided with the desired phase modulation profile

by a PC, via a DVI cable. The modulating surface of the SLM is mounted

in a 3-axis kinematic mount, and connected to the control box by orange

ribbon cable.

Before using the SLM for the generation of higher-order LG modes, it was necessary

to characterise the device. Many of the device’s specifications were provided by the

manufacturer, but the modulation index for 1064 nm light is not given, since the device

was primarily designed for wavelengths in the range from 400-700 nm. The device is

operated remotely by PC via a DVI connection; a very convenient method as the SLM

can be addressed by the PC in exactly the same way as a second monitor. The desired

phase profile is transmitted via DVI cable to the SLM control box as a greyscale image.
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4.1. Characterising the spatial light modulator

The control box converts the greyscale values for each pixel in the image to a specific

voltage value, which is then applied to the corresponding pixel on the phase modulating

optical component of the SLM, referred to as the SLM head or display. The phase

modulation depth of pixels within the SLM display is determined by the voltage, and

thus the SLM displays the phase profile supplied in the original image from the PC.

Figure 4.2.: The optical layout for characterising the SLM. A simple Michelson design is

used with an expanded beam, where the SLM forms one of the end mirrors.

The arms are misaligned in the vertical axis to produce a horizontal fringe

pattern at the anti-symmetric port. The greyscale value applied to one half

of the SLM is then varied, while the other half remains constant. The fringe

pattern is recorded using a CCD camera, and the data are subsequently

processed to recover the phase modulation depth at each greyscale value.

For most uses of SLMs it is necessary to use a look up table to convert accurately from

greyscale values to the driving voltage which it applies to the liquid crystal cells in order

to achieve the desired phase modulation. The data from such a table is often referred

to as a ‘gamma curve’, because of its analogous function to the gamma correction used

in image processing. In the absence of manufacturer data for the gamma curve at

1064 nm, it was necessary to ascertain it by means of measurement in the lab. Several

methods for characterising the phase modulation properties of SLMs have been reported

in the literature previously, such as in [MAI+08], and [MCJV97]. We decided to use a

method similar to that used in [MCJV97], as it seemed the more straight-forward of the
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two methods and we did not expect to require the full pixel-by-pixel characterisation

obtained from the other method.

Figure 4.3.: The measured fringe pattern from the setup shown in figure 4.2, when a

greyscale level of 200 was applied to one half of the SLM. The right hand

side of the fringe pattern is the side which corresponds to light reflected

from the modulated half of the SLM.

The setup for measuring the phase modulation characteristics of the SLM is shown in

figure 4.2. An expanded beam is used as the readout beam for a Michelson interfer-

ometer, where one of the end mirrors is formed by the reflective surface of the SLM.

Horizontal interference fringes were formed at the anti-symmetric port by misaligning

the arms along the vertical axis. The relative position of the bright and dark fringes is

dependent on the phase difference between light from the two arms of the interferom-

eter. By changing the greyscale value applied to one half of the SLM, we can observe

the change in the relative position of the fringe pattern which corresponds to light re-

flected from that half of the SLM, and recover the phase modulation depth that this

light experiences on reflection from the SLM. The fringe pattern corresponding to the

unmodulated half of the SLM serves as a reference, and avoids false interpretation of

drifts of the Michelson as phase changes caused by the SLM.
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4.1. Characterising the spatial light modulator

The fringe pattern at the anti-symmetric port was recorded for 27 different grayscale

levels applied to one half of the SLM only, using a CCD camera. An example of one

such image is shown in figure 4.3. From each such image, one column of pixels was then

selected for each of the modulated and unmodulated side of the beam. The intensity

variation over these columns was then fitted via a sinusoidal function with a Gaussian

envelope:

I(x) = A exp(−x2/σ2)[sin(ωx+ φ) + C]. (4.1)

The difference between the fitted phase φ of the SLM modulated and unmodulated

sides of the fringe pattern was then calculated. Once any initial phase offset between

the two sides of the fringe pattern is subtracted off, this phase difference gives the phase

modulation of the SLM for that particular greyscale value. An example of the fits for

the left and right sides of the CCD data shown in figure 4.3 can be seen in figure 4.4.
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Figure 4.4.: Results of fitting equation 4.1 to the data from columns of pixels from the

left and right sides of the CCD image shown in figure 4.3. This step was

repeated for 27 different grayscale values, and the fitted phase differences

between the left and right sides were used to generate the calibration curve

shown in figure 4.5.

A plot of the recovered phase modulation as a function of applied greyscale level is

shown in figure 4.5. It is clear from this plot that the SLM is not capable of producing a
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2π phase modulation in light reflected from its surface. In fact, the maximum achievable

modulation is around 2.3. This makes the use of the SLM sub-optimal for generating

higher-order LG modes, for two main reasons; Firstly, it is not possible to achieve the

optimal diffraction efficiency into the first order from the blazed phase grating profile

with a phase depth of less than 2π. Secondly, one expects that since the generated phase

profile is required to cycle from 0 to 2π a total of l times over the azimuthal coordinate

to produce a LGpl mode (see section 3.2.2), a modulation depth less than 2π should be

insufficient to generate such modes. In practice, however, we found that the SLM was

capable of producing the helical phase front of higher-order LG modes when used in the

first order blazed grating configuration.
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Figure 4.5.: Measured phase modulation from the LCR-2500 SLM as a function of ap-

plied greyscale value. Aside from the one anomalous point, the plot shows

a similar trend to those of the manufacturer provided ‘gamma curves’ for

shorter wavelengths. The main difference for the 1064 nm case is that the

maximum phase modulation depth is less than π, as opposed to the 2π for

which the device is rated up to 700 nm wavelengths.
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4.2. Higher-order LG modes generated using a spatial light modulator

4.2. Higher-order LG modes generated using a spatial light

modulator

Presented in this section are the method and results of the table-top LG mode generation

procedure. The SLM was used in the configuration shown in figure 4.6 to generate a

range of both helical and sinusoidal LG modes. In this section I will discuss the recorded

intensity profiles of the LGpl beams generated in this way, as well as interferometric

measurements made in order to probe the actual phase profile of the generated beams.

Also discussed in this section is the effect of the blazing angle added to the LG mode

conversion profile, as discussed in section 3.2.2 on the diffraction pattern obtained.

Figure 4.6.: Initial setup for generating and observing LG modes with the SLM.

The estimation of mode purities achieved with this conversion method required the use

of a more complicated setup involving a linear mode cleaner. Since this procedure was

intimately related to the experimental investigation of the interferometric performance

of higher-order LG modes, I present the procedure and the results obtained later in

section 4.3.3.

4.2.1. Mode conversion results

The SLM was used in the experimental setup as shown in figure 4.6 to perform conver-

sions from the LG00 mode to a number of higher-order LG modes. The LG00 beam was

steered onto the SLM under an angle close to the SLM surface normal. It is important

that the incident beam is as close to the SLM surface normal as possible, since under

non-zero incident angles the projection of the LG00 beam onto the SLM surface will
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cause ellipticity in the diffracted beam. A blazing angle of 0.083◦ was added to the

basic phase modulation profiles in order to spatially separate the unmodulated light

from the modulated light. The input LG00 beam size at the SLM display was measured

to be 1.26 mm, and the beam size ratios from table 3.3 obtained from the simulation

study were used to scale the phase modulation profile appropriately for the generation

of different higher-order LG modes.

Figure 4.7 shows the helical modes up to LG33 that were generated in this way. The

lower and upper panels show the modes generated using phase images that respectively

did, and did not include the amplitude modulation described in section 3.2.2. The

intensity profiles shown in figure 4.7 show a good resemblance to the theoretical intensity

profiles for LG modes shown in figure 2.5. Comparing the amplitude modulated and

and unmodulated cases, we can see that diffraction rings are visible outside the last

ring of the LG beam for many of the modes in the amplitude unmodulated case, but

are not visible for the amplitude modulated case. However, we can observe ripple-like

interference fringes on the right side of the beams in the amplitude modulated case.

This is due to the influence of the zero order beam, which was had a greater effect in

the amplitude modulated case because the LG beam powers were significantly lower.

The diffraction efficiencies for both the amplitude modulated and unmodulated cases

were measured by comparing the light power incident on the SLM to the light power

present in the 1st diffraction order. This measurement was made when the SLM was dis-

playing the phase profile for conversion to the LG33 mode. For the sinusoidal LG33, the

non-amplitude contoured diffraction efficiency was 16.4 %, and the amplitude contoured

diffraction efficiency was just 1.83 %. For the helical LG33 case, the non-amplitude

contoured diffraction efficiency was 15.56 %, and the amplitude contoured diffraction

efficiency was 3.81 %.

All of these diffraction efficiencies are very low for a blazed grating profile. The low

efficiency in the non-amplitude modulated case is likely to be mainly a result of the

limited phase modulation depth of less than π, as well as the loss of light from the

first diffraction order due to direct reflection from the front surface of the SLM display.

Diffraction caused by the grating-like structure of the pixels in the SLM display itself

may also account for some of the low efficiency into the desired mode. The amplitude-

contouring also clearly has a strongly negative impact on the diffraction efficiency. This

may again be a result of the limited phase modulation depth. The benefits of amplitude
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4.2. Higher-order LG modes generated using a spatial light modulator

Figure 4.7.: Helical LG modes up to LG33, as generated using the LCR-2500 SLM with-

out (top) and with (bottom) amplitude contouring.
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contouring in terms of generated mode purity and the drawbacks in terms of diffraction

efficiency are shown in table 4.3 and discussed later in section 4.3.3 of this chapter.

It is difficult to determine the purity of the modes just from the intensity profile. In

order to accurately measure the mode purity, it is necessary to have access to the field

amplitude profile, as in the simulation investigation in section 3.2.3. In practice, the

field amplitude is very difficult to measure accurately, as it requires an interferometric

measurement against a reference plane wave.

For this reason our best estimates of the mode purities achieved with our SLM gen-

eration method were obtained using a different method involving a comparison with a

numerical model. This analysis is described in section 4.3.3. We did however find it

informative to observe the phase profiles of the generated LG modes with an interfer-

ometric measurement, in order to get a qualitative picture of the quality of LG modes

that we could produce with the SLM.

Figure 4.8.: The setup for measuring the interference between SLM generated LG modes

and the LG00 mode. The end mirror of one arm of a Michelson interferome-

ter is formed by the SLM, which displays the phase profile for converting to

a given LGpl mode. The beam reflected directly from the SLM is dumped,

and the 1st diffraction order, which contains the generated LGpl beam, is

aligned to interfere with the beam from the other Michelson arm. The

resulting interference pattern is recorded with the CCD camera.

Figure 4.8 shows the experimental setup for measuring the interference between the SLM
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4.2. Higher-order LG modes generated using a spatial light modulator

generated LG modes and a LG00 beam. In a similar way to the setup shown in figure 4.2,

the SLM is used as one end mirror in a Michelson interferometer. In this experiment

however, the SLM displays the LG mode conversion phase profile. The Michelson is

aligned such that beam from the arm with a normal end mirror overlaps with the first

diffraction order from the SLM, into which the desired LG beam is diffracted by the

overlaid blazed grating. The resulting interference pattern is recorded with a CCD

camera at the anti-symmetric port of the Michelson.

The lower-left panel of figure 3.11 shows the phase front of an ideal LG33 mode with

some residual curvature. In this case, contours of constant phase follow a spiral pattern.

We therefore expect the interference pattern between such a mode and a plane wave to

have a similar spiral pattern. The exact pattern will depend on the relative path length

difference between the arms, or ‘Michelson tuning’, but the main features of the pattern

should remain visible at any tuning.

Figure 4.9.: The upper row shows measured interferograms of the SLM generated higher

order LG modes with a LG00 mode. From left to right; LG22, LG33, LG44

and LG55. The spiral structure in the interferogram indicates the presence

of a spiral phase profile in the LG beam. The lower row shows the results of

simulations in which an ideal LGpl mode is interfered with the LG00, with

manually tuned beam parameters.

The top row of images in figure 4.9 shows the measured intensity patterns at the anti-
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symmetric Michelson port when the SLM was displaying the phase profile for converting

to helical LG22, LG33, LG44, and LG55 modes. The striking feature of each of these

images is the spiral pattern, each with a number of spiral arms equal to the azimuthal

l index of the LG mode being observed. This spiral pattern is an expected consequence

of the interference between the helical LG mode, with its spiral phase front, and the

LG00 mode with its spherical phase front, provided that there is some residual curvature

difference between the two phase fronts. The lower row of images in figure 4.9 show the

results of simulations in which ideal LGpl modes were interfered with a LG00 mode,

with some residual curvature present between the two modes in each case. The main

features of the intensity patterns are common between the measured and simulated

interferograms, indicating that to some extent at least the SLM generated LG modes

have the correct phase profiles.

4.2.2. Blazing angle tests

Figure 4.10 shows the results of an investigation into the effects of using different blazing

angles on the SLM phase image. The left column shows the five different phase profiles

used in the investigation. Each phase profile was an amplitude contoured profile for

converting to a helical LG33 beam. However, each phase profile had a different blazing

period overlaid. The right column shows the measured diffraction pattern intensity

corresponding to the phase profile, inverted to show detail more clearly. The images

shown were obtained using a commercial digital camera focused on a white surface, on

which the diffraction pattern from the SLM was incident. This measurement technique

was necessary in order to observe the light intensity over a large horizontal range.

The darkest region of each measured diffraction pattern corresponds to the zeroth diffrac-

tion order, containing the light which is unmodulated by the SLM. The LG33 mode shape

is diffracted into the first diffraction order. Comparing the five different diffraction pat-

terns, we can see that as expected the diffraction angle, and hence separation of the

diffraction orders at the measurement point, increases as the blazing period is reduced.

The multiplicative effect on the effective modulation depth with higher diffraction orders

described in for example [MDP+09] can also be seen in figure 4.10. The faint second

diffraction order appears as a single annular intensity pattern. This would be expected

if the modulation depth was 4π in this order, since the radial phase jumps which corre-

spond to π in the first diffraction order would appear as 2π jumps in the second order,
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a)

b)

c)

d)

e)

Figure 4.10.: Phase modulation profiles and the corresponding diffraction patterns. The

plots a) to e) use the same phase plate to create a helical LG33 mode

but are created with different groove width for the blazing: a) 2.123 px,

b) 3.7302 px, c) 5.302 px, d) 10.302 px and e) 15.302 px. The images are

inverted to show the detail more clearly.

which is equivalent to no jump at all. The 3 helical phase vortices in the first order

should appear as 6 vortices in the second order, hence the dominant mode in the second

diffraction order should be the LG06 if the target beam in the first order is LG33.

4.3. Mode cleaning higher-order LG modes

One of the main goals of the table-top experiments with higher-order LG modes was

to verify the compatibility of the LG33 mode with the PDH longitudinal cavity control

scheme. The simulation study described in section 3.1 had shown that the PDH scheme
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should work in exactly the same way for the LG33 mode as for the LG00 mode, but it

was still a crucial step to verify this experimentally. The task at hand was therefore

to demonstrate the feedback control of an optical cavity pumped with the LG33 mode

using the PDH method. At this point we recognised the opportunity to achieve two

objectives with one experiment, by simultaneously investigating the mode cleaning effect

of an optical cavity on the SLM generated LG33 beams. As well as demonstrating the

compatibility of the LG33 mode with a crucial interferometric technique, we could also

show that the mode cleaner effect can be used to create extremely pure LG33 modes,

even from relatively low purity SLM generated LG33 beams.

In this section I first give an introduction to the mode cleaner effect and its use in current

gravitational wave interferometers. I will then describe the design and characterisation

of two different mode cleaner cavities that were used in our investigation. Finally I will

describe the experiment performed with the LG33 mode in a linear mode cleaner cavity,

demonstrating the feedback control of the cavity and the increase in purity of the LG33

beam upon transmission through the cavity.

4.3.1. The mode cleaner effect

The mode cleaner effect arises from the different round trip Gouy phase accrued by

different mode orders [Boy80] in an optical cavity. The different amounts of Gouy phase

accrued by different mode orders can be seen in the phase factor exp(iΨ(n+m+ 1)) in

equation 2.13, and exp(iΨ(2p+ l+ 1)) in equations 2.15 and 2.14. Any given eigenmode

of a cavity experiences the mode order1 plus one times the fundamental mode round

trip Gouy phase, ΨRT. This round trip phase difference between different mode orders

can be taken advantage of in order to separate unwanted ‘parasitic’ modes from the

desired mode; an optical cavity can be designed such that when resonant for the desired

mode, is it non-resonant for the unwanted modes. In this way, a cavity can ‘clean’ out

unwanted modes from the beam it is pumped with [RSS+81], hence the name mode

cleaner.

The round trip Gouy phase ΨRT is a function of the cavity length and the eigenmode

Rayleigh range given by

ΨRT = 2 arctan

(
L

zR

)
. (4.2)

1n + m for HG modes or 2p + l for LG modes
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For the simple case of a plane-concave cavity, the cavity Rayleigh range zR is given by

zR =
√
L(Rc − L), (4.3)

where L is the cavity length and Rc is the radius of curvature of the concave mirror.

This leads to the simple expression for the round trip Gouy phase for a plane-concave

cavity:

ΨRT = 2 arctan

 1√
Rc
L − 1

 . (4.4)

A well designed mode cleaner should be designed such that the length and mirror cur-

vatures give a large round trip Gouy phase difference between adjacent mode orders.

This ensures that while the desired mode is resonant, parasitic modes which are close

by in terms of mode order will be strongly suppressed in the cavity. Care should also

be taken to ensure that the round trip Gouy phase is not close to being a low integer

fraction of 2π, i.e. that

ΨRT 6=
2π

n
, (n = 1, 2, 3...) (4.5)

to avoid degeneracy with higher FSR resonances of modes different in order by n from

the desired mode.

Figure 4.11 shows the results of a numerical simulation performed using FINESSE

[FHL+04], of a plane-concave linear mode cleaner cavity of length 21 cm, and with

the concave end mirror with radius of curvature 1 m. Putting these values for cavity

length and end mirror curvature into equation 4.4 gives a result for the round trip Gouy

phase of ΨRT = 54.55◦. Comparing with figure 4.11, we can see that the resonances of

successive mode orders are separated in cavity length by half of the round trip Gouy

phase difference; 27.27◦, as expected. The factor of two discrepancy arises from the fact

that the extra optical path length associated with a cavity detuning is experienced twice

during one round trip.

Mode cleaners are used in several locations in gravitational wave interferometers [AAA+04].

So-called pre-mode cleaners are used as stable references in the initial frequency stabil-

isation chain of the laser. These typically employ small, monolithic spacers in air. The

beam then passes through the input mode cleaner 2; a suspended optical cavity in vac-

uum. The main function of the input mode cleaner is to filter out beam geometry

2Or in the case of the GEO600 detector, two input mode cleaners.
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Figure 4.11.: Results of a FINESSE simulation for a mode cleaner cavity, showing trans-

mitted power as a function of cavity length tuning for an input beam of

10 W, distributed evenly between 10 HG modes of different orders. The

round-trip Gouy phase difference between the different mode orders sepa-

rates their resonant peaks.

fluctuations (also called beam-jitter noise). If we recall that alignment fluctuations can

be described by the addition of higher-order HG modes (see section 2.4), it is clear that

by suppressing the amplitude of higher-order HG modes the alignment fluctuations in

the beam transmitted through the input mode cleaner can be suppressed.

Most gravitational wave interferometers also include optical cavities in the main interfer-

ometer, which act as additional mode cleaning cavities. Often a small in-vacuum output

mode cleaner is also used to filter the spatial properties of the light leaving the interfer-

ometer before it reaches the photodetectors. Since mode cleaner cavities are so prevalent

in gravitational interferometers, it is important to investigate their compatibility with

the LG33 mode.
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Mode cleaner Finesse FSR TEM01 Throughput

suppression

GEO MC1 [GCF+03] 2700 37.48 MHz 1325 80 %

GEO MC2 [GCF+03] 1900 37.12 MHz 937 72 %

Virgo IMC [GMSV10] 1181 1.044 MHz NA 86.6 %

aLIGO IMC [AdL07] 500 17.96 MHz NA NA

Linear MC 172 714 MHz 50.1 63 %

Triangular MC 307 714 MHz 87.6 99 %

Table 4.1.: Cavity parameters for some gravitational wave detector input mode cleaners,

as well as for cavities used in this work. TEM01 suppression factors and

throughput percentages are given in terms of light power. The finesse and

TEM01 suppression factors of the mode cleaners used in this work were chosen

to be lower than those of the large-scale mode cleaners.

Currently a triangular arrangement is favoured for the mode cleaners in gravitational

wave detectors as it gives a spatial separation between the injected beam from the

reflected beam, enabling a length control error signal to be measured in reflection without

the need for polarising optics. However, triangular cavities are not ideal for use with

higher-order helical LG modes, for reasons demonstrated in section 4.4. As a result

of these considerations, the main experimental setup described here makes use of a

linear mode cleaner cavity instead of a triangular cavity. The finesse of the linear

cavity was chosen to be low in comparison with some gravitational wave detector input

mode cleaners, as shown in table 4.1. While higher finesse cavities can give a stronger

suppression of misalignment modes, it was interesting for us to see the large improvement

that can already be gained through the use of a low-finesse mode cleaner.

4.3.2. Design and characterisation of the triangular and linear mode

cleaners

For improving the purity of the SLM generated LG modes, we employed a linear mode

cleaner cavity (LMC) consisting of two mirrors; one flat and one concave, as shown in

figure 4.12. We also used a triangular mode cleaner cavity (TMC) consisting of two flat

mirrors and one curved mirror to test the predictions about the interaction of LG modes
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Chapter 4. Tabletop demonstrations of LG mode production and cleaning

with three mirror cavities. The design of the TMC was based on the design described

in [Ueh97], and is summarised along with the linear mode cleaner design in table 4.1.

Figure 4.12.: The linear mode cleaner cavity used in the LG mode cleaning experiment.

The cavity mirrors are clamped to a rigid aluminium spacer.

It was necessary to measure the finesse of the mode cleaner cavities, in order that their

interaction with LG modes could be well understood and compared with simulations.

Here I will only describe the process of measuring the finesse of the triangular cavity,

since the same method was used to measure the finesse of the linear cavity. Our method

for measuring the finesse was to perform scans of the cavity by applying a triangular

wave ‘ramp’ signal to the PZT attached to one of the cavity mirrors, and recording

the transmitted light power through the cavity with a photodiode. With the recorded

cavity response, we could then fit a theoretical model to the data and thus estimate the

finesse. We found, however, that the PZT response was not sufficiently linear over the

range of a full cavity FSR to provide a reliably linear x-axis for the scan. Some extra

steps were therefore required in order to make an accurate estimate of the finesse.

First of all, the cavity was slightly misaligned, in order to induce the presence of higher-

order modes within the cavity. The advantage of this is that the separation between

successive mode orders is a constant, and so the location of each higher-order mode

peak gives an indication of the true x-axis position at that point, unaffected by the PZT
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Figure 4.13.: Measured transmitted light power through the TMC as the cavity length

was scanned with the PZT. The theoretically expected higher-order mode

positions are labelled with the red dashed lines. These positions do not

match up with the higher-order mode resonances in the measured data,

which were induced by misaligning the cavity input beam.

non-linearity. Figure 4.13 shows the data from a scan of the TMC, compared with the

theoretical predictions for the higher-order mode peak locations. It can be seen that the

peak locations do not agree, as a result of the non-linearity of the PZT response over

the scanned range.

The difference in the expected and apparent positions of the higher-order mode peaks

was used to fit a parabolic function for the deviation of the PZT response from linear

across the scanning range. The results of this fit are shown in figure 4.14. With the

non-linearity of the PZT accounted for and the x-axis thereby calibrated, the scan data

and the theoretical peak positions agree much more closely, as shown in figure 4.15. The

calibrated data was then compared with a theoretical cavity response function, and a

non-linear fit was made for cavity finesse. Figure 4.16 shows the results of the fit, over

the whole scanning range (top) and in proximity of the two fundamental mode peaks

(bottom). The result of the fit for the whole data series was 308. The results of the fits

to each individual peak were 305 and 309, each exhibiting less than 1 % deviation from
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Figure 4.14.: Calibration curve for the TMC PZT. The red data points show the residu-

als between the expected and apparent higher-order mode resonance posi-

tions in the plot shown in figure 4.13, and the black curve shows the result

of fitting a parabolic function to the data. The parabolic function was

subsequently subtracted from the PZT ramp data in order to linearise the

x-axis of the scan.

the overall fit. The same process was used to estimate the finesse of the LMC, and gave

a result of 172.

4.3.3. Operation of the linear mode cleaner with higher-order LG modes

Figure 4.17 shows the experimental setup for the investigation into the performance of

the LG33 mode in a linear mode cleaner. The 1064 nm laser light is passed through an

electro-optic modulator (EOM) for the purpose of imprinting 15 MHz phase modulation

sidebands on the light to enable length control of the mode cleaner. The beam is then

passed onto the modulating surface of the SLM, where the phase characteristics of the

desired LG mode are imprinted on the beam. The converted LG beam is then passed

through a telescope to match the beam parameters to the mode cleaner eigenmode. Fig-

ure 4.18 shows a photograph of this experimental setup on the bench in the laboratory.
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Figure 4.15.: The TMC scan after compensation for the non-linearity of the PZT. The

expected higher-order mode positions now match the apparent mode po-

sitions much more closely.

The light transmitted through the mode cleaner passes through a beam splitter, and

is analysed at the two ports with a photodiode and CCD camera simultaneously. The

signal from the photodiode is mixed down with the original 15 MHz local oscillator signal

to generate the length error signal. The error signal across the resonance of the LG33

mode was observed by injecting a ramp signal onto the Piezo-electric transducer (PZT)

attached to the mode cleaner end mirror in order to scan the length of the cavity, and

then recording the mixer output.

The blue solid line in figure 4.19 shows the length error signal recorded for a sinusoidal

LG33 input beam, recorded from the output of the mixer while scanning over the LG33

resonance of the linear mode cleaner. The results of a numerical simulation of the setup

are also shown in figure 4.19 as the red dotted line. It can be seen that the measured error

signal is effectively equivalent to the simulated error signal, which itself was equivalent

to the simulated error signal for a LG00 input beam, as was previously shown for a

similar setup in simulations described in section 3.1.
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Figure 4.16.: The results of a non-linear fit of a model cavity response to the calibrated

scan data. The finesse of the model was adjusted for an optimal match to

the data, giving a best-fit finesse of 308. Separate fits to the two individual

LG00 peaks gave results for the finesse that were within 1 % of the value

for the fit of the whole data series.

In typical gravitational wave interferometer implementations of mode cleaners the error

signal is taken in reflection, following the Pound-Drever-Hall (PDH) method [DHK+83].

For this work, however, the mode cleaner cavity was of a low enough finesse that the

modulation sidebands were partially transmitted through the cavity. This allowed us

to measure the length error signal in transmission. It also allowed us to measure a

length error signal in reflection from a triangular cavity placed after the LMC in the

PDH method, as described in section 4.4, without the need for another phase modulator

placed after the LMC. We have subsequently demonstrated the equivalent operation of

the LMC with the LG33 mode with a length error signal taken in reflection using the

PDH method, for example in the work described in section 5.3. The LG33 error signal in

both of these cases also showed no difference to the LG00 error signal, confirming that

the PDH longitudinal sensing scheme is equivalent for the LG33 mode and the LG00
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4.3. Mode cleaning higher-order LG modes

Figure 4.17.: The experimental setup for mode cleaning a SLM generated higher-order

LG beam. The LG00 input beam is converted to a higher-order LG beam by

the SLM. The resulting beam is passed through a mode-matching telescope

into the linear cavity. The transmitted light is used to generate an error

signal which is fed back to the PZT attached to the curved end mirror to

control the length of the cavity. The transmitted beam is simultaneously

imaged on the CCD camera.

mode.

The DC transmitted light level measured by the photodetector was used to aid in align-

ing and mode matching the beam to the cavity. Misalignments and mode mismatches

cause coupling to modes of other orders than the injected mode, which appear in the

scan as additional peaks alongside the desired mode order peak, as shown in figure 4.25.

The alignment and mode matching lens positions were adjusted to minimise the ampli-

tude of these other mode order peaks. The alignment and mode matching of the cavity

was more sensitive in the case of the LG33 mode than the LG00 mode, in that a given

misalignment or mode mismatch caused a greater amount of power to be coupled into

adjacent mode orders for the LG33 input. While this effect is partly due to the LG33

beam shape itself, in this case it may also be partly due to the relatively low purity

of the input beam. The power present in other modes in the input beam due to the

imperfect nature of the conversion procedure will show up in the cavity scan even when

the alignment and mode matching are optimal.
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Figure 4.18.: The table-top LG mode conversion and cleaning setup. The laser source

is in the upper right hand corner, the SLM is in the lower left hand corner

and the linear mode cleaner is in the top left hand corner.

We subsequently closed the feedback control loop by connecting the error signal channel

to the PZT via a servo and high-voltage amplifier. The length of the mode cleaner cavity

was thereby controlled or ‘locked’ to maintain the resonance condition for the desired

mode order. When controlled for the resonance of the LG33 mode, the cavity remained

stable for many hours. Lock acquisition was easy and repeatable with the setup, and the

lock could even be maintained during a change of input beam from helical to sinusoidal,

and vice versa. The stable locking of a cavity to a higher-order LG mode was a very

significant result, since the use of RF modulation/demodulation control loops are such

a fundamental technique in the operation of gravitational wave interferometers. To our

knowledge this was the first time an optical cavity had been operated with a higher-order

LG mode, and we reported this result in [FKCF10].

The CCD camera was used to record intensity images of the transmitted beams while the

mode cleaner was controlled to be resonant for the LG33 mode. The input and output

beam intensity distributions for both helical and sinusoidal LG33 beams are shown in

figure 4.20. It is clear by inspection that the output modes are more symmetrical, and

have a higher intensity in the innermost bright radial fringe relative to the others; both

features characteristic of LG33 modes. The typical method of analysing the output
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Figure 4.19.: The blue trace shows the length error signal from the linear cavity, set

up as shown in figure 4.17, with a sinusoidal LG33 input beam. The red

dashed trace shows the length error signal for the same optical setup as

simulated in the frequency domain simulation software FINESSE. While

there are small discrepancies between the two traces, the primary features

are identical, as predicted for a similar setup in [CHF09].

mode purity would be to pass the output beam through another cavity and observe the

magnitudes of different mode order resonances [KSWD07]. However, since in this case

the performance of the mode in a cavity is itself being investigated, this method in its

original form is not useful for our purposes. In addition, though this method is suitable

for finding the proportion of the light in different mode orders, it cannot differentiate

between different modes of the same order, and therefore cannot give an estimate for

the actual LG33 mode content of the beam.

Instead, we estimated the mode content based on the intensity pattern alone, with the

aid of numerical simulations. The method we used to estimate the mode content of the

transmitted light relies on the fact that the light transmitted through the cavity can be

described as a sum of the eigenmodes of the cavity 3.

3While in fact any beam can be described by a sum of such eigenmodes, this would not be such an

effective way of analysing less pure beams, such as for example the input LG33 beams, since a very
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Figure 4.20.: The measured intensity patterns of the sinusoidal (left column) and heli-

cal (right column) LG33 beams before (upper row) and after (lower row)

transmission through the linear mode cleaner. The increase in mode purity

upon transmission is already evident in the increased symmetry. The re-

maining asymmetry apparently is a result of the inaccuracy in the manual

alignment of the input beam to the mode cleaner. This effect is the same

for both images but more visually apparent in the case of the helical mode.

The first step was to select the optimal basis system for the modal description of the

measured light. A modal decomposition of a light field depends on the coordinate

system used, as demonstrated for the optic axis definition in relation to the HG modes

in section 2.4, and for the beam spot size parameter definition in relation to LG modes

in section 2.5. In order not to underestimate the mode content in the LG33 mode, it

was therefore necessary to choose a coordinate system in which the LG33 mode content

large number of eigenmodes may be required to describe the higher spatial frequency components.
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4.3. Mode cleaning higher-order LG modes

would be maximal. In practice this process took the form of a non-linear fit of an ideal

LG33 mode intensity distribution to the measured intensity data. The fitted parameters

were the coordinates of the optic axis, and the beam spot size. One can also understand

this step as simply a calibration of the CCD.

The next step was to analyse the residuals after subtracting the ideal LG33 intensity

from the measured intensity. These residuals are shown for the sinusoidal LG33 beam

in the left two panels of figure 4.21. The leftmost panel shows the residual for the input

beam, and the middle panel shows the residual for the transmitted beam. The scale of

the residuals is less for the output LG33 beam than for the input beam, thus already

demonstrating an increase in mode purity upon transmission through the mode cleaner.

For the sinusoidal case, the spatial distribution of the transmitted beam residuals in-

dicates that the remaining mode impurities may be dominated by the effects of a mis-

alignment of the injected beam into the mode cleaner. This indication comes from the

fact that intensity residual closely resembles that of a superposition of the two modes

HG09 and HG18, and the fact that misalignments can be described by the addition of

HG modes (see section 2.4).

Using this information, a model of the mode cleaner setup was developed using FI-

NESSE. In this model, the input beam could be misaligned by varying amounts, and

the transmitted field analysed. We found that it was possible to create a beam resid-

ual intensity which was very similar to the measured pattern when the model included

a misalignment of the input beam of αx = −100µrad in the horizontal plane, and

αy = 60µrad in the vertical plane. The residual pattern between the intensity pattern

calculated with the FINESSE simulation, and the ideal LG33 mode is shown in the right

hand panel of figure 4.21. The result of the simulation shows a very strong agreement

with the experimentally measured data.

With a model that reproduced the measured data so well, we could make some esti-

mates of the mode content of the measured beam by analysing the mode content of

the model. This was done by separately evaluating the overlap integrals between the

complex field amplitude of the model and the field amplitudes of all LG eigenmodes, up

to the maximum mode order of 12. The reason this could not be done directly with the

measured data is because we do not have access to the field amplitude in that case; just

the intensity.

99



Chapter 4. Tabletop demonstrations of LG mode production and cleaning

Figure 4.21.: Residuals from best fits between three intensity patterns and a theoretically

ideal sinusoidal LG33 intensity profile. From left to right: the residual for

the measured input LG33 beam, the residual for the measured output LG33

beam, the residual for an output LG33 intensity profile generated with a

numerical model including a misalignment of the input beam to the cavity.

The results of this eigenmode decomposition for the sinusoidal beam are shown in table

4.2. This table shows that we estimate 99% of the light power to be in LG33 mode,

and most of the remaining light power to be distributed in other modes of order 9.

That most of the light power not in the LG33 mode is in other modes of order 9 is to

be expected, since the mode cleaner is not expected to differentiate between different

modes of the same order. A similar analysis for the helical mode gave effectively the

same results for the mode purity.
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usin
lp mode 3, 3 4, -1 2, -5 4, 1 2, 5 other

power 99% 0.4% 0.3% 0.1% 0.1% < 10 ppm

Table 4.2.: Mode decomposition of the numerical model of the sinusoidal LG33 beam

transmitted through the linear mode cleaner, under an input beam misalign-

ment of -100µrad in the horizontal axis, and 60µrad in the vertical axis. The

majority of the beam power is in the desired sinusoidal LG33 mode, with the

rest almost entirely concentrated in other modes of order 9.

Since 99 % of the transmitted beam was in a single mode, we could make an accurate

estimate of the input mode purity by simply comparing the amount of power trans-

mitted through the mode cleaner to the amount of power injected into it. Once the

intrinsic losses of the mode cleaner are taken into account, all of the light which was is

not transmitted through the mode cleaner may be assumed to be in unwanted modes

other than the LG33 mode. We estimated the intrinsic losses of the mode cleaner by

injecting a pure LG00 beam into the mode cleaner and measuring the transmitted power

as a fraction of the input power, while the mode cleaner was controlled on the LG00

resonance. This measurement gave a throughput power efficiency for the mode cleaner

of 63 %. This relatively low efficiency is likely due to the use of potentially lossy ‘off the

shelf’ mirrors, and the slightly overcoupled cavity design, which reduces the maximum

transmitted intensity.

After taking the intrinsic optical losses of the mode cleaner cavity into account, we

estimated the input mode purity of the sinusoidal LG33 beam to be 51%, and 66 % for

the helical LG33 beam. Examples of higher-order LG modes with mode purities likely

to be well above 70% have been created previously directly with SLMs using a more

thoroughly optimized conversion procedure, for example in [MAI+08], although in this

case the authors refrain from quoting an experimentally measured purity. However, our

work was the first time a purity improvement of a LG mode using an optical resonator

to an estimated 99% has been reported in the scientific literature. From the agreement

with the model, we believe the demonstrated mode purity to be limited in first order

by the manual alignment of the input beam. If this is the case, the mode purity can

very likely be improved by using a standard automatic alignment system, such as the

Ward technique described in [MRWM94b]. Table 4.3 summarises the results for the

generated LG33 mode purities with the amplitude contoured and non-contoured SLM
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LG33 mode Amplitude contouring Mode purity (%) Conversion efficiency (%)

Helical No 56 8.7

Sinusoidal No 40 6.6

Helical Yes 66 2.5

Sinusoidal Yes 51 1.0

Table 4.3.: Purities of the generated modes before mode cleaning, and efficiencies of

the SLM LG33 mode conversion process, for the amplitude contoured and

non-contoured cases.

profiles, as well as the overall conversion efficiencies. We can see that although the

amplitude contouring gives roughly a 20 % increase in the purity of the mode generated,

it comes at the cost of more than a factor of 6 in efficiency for the sinusoidal case, and

a factor of more than 3 for the helical case. It should be noted that these results are

likely to be improved for a SLM which is better optimised for the wavelength used.

It was also possible to lock the mode cleaner to even higher-order LG modes of both

the helical and sinusoidal variety, as shown in figure 4.22.

We also measured the interference pattern between a LG33 mode transmitted through

the linear mode cleaner cavity and a LG00 mode, in a similar way to the measurements

shown in figure 4.9. The measured interference pattern is shown in figure 4.23. The

two superposed beams in the right panel are deliberately misaligned, as this results in

a more intuitively understandable image. The forked interference pattern shows some

similarity to the phase profile used to generate the LG33 mode, as shown in figure 3.8.

The number of fork teeth in the central region indicates the l value of the mode being

observed [JT08], and the number of dark radial bands as ever indicates the p value of

the mode.

In this section we have demonstrated the feedback control of an optical cavity with the

LG33 mode, as well as even higher-order LG modes, and shown a dramatic increase

in the purity of SLM generated LG33 modes upon transmission through an optical

cavity. We have also estimated the efficiency of the mode conversion process. Though

this efficiency was very low in our experiment, we expect that using a custom made

transmissive diffractive optical element will result in much higher conversion efficiencies.
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Figure 4.22.: Higher-order sinusoidal (top row) and helical (bottom row) LG modes

transmitted through the linear mode cleaner. From left to right: LG33,

LG55 and LG88 modes

4.4. Helical LG mode interaction with a 3-mirror cavity

As intimated in section 4.3, we believed that a triangular mode cleaner would not be

compatible with helical LG33 modes. This is primarily due to the fact that after one

full round-trip in a triangular cavity, any beam is reflected 3 times, and is thus mirrored

about the vertical axis. This means that only light fields with symmetry about this

axis can constructively interfere and be fully resonant. While the intensity profiles of

helical LG33 modes display symmetry about the vertical axis, their phase profiles do

not, as shown in the leftmost panel of figure 4.24. Certain sinusoidal modes, on the

other hand, do possess the required symmetry (or anti-symmetry) about the vertical

axis, as shown in the middle and right panels of figure 4.24. We also expect that

the vertically symmetric mode and the vertically anti-symmetric modes should have

different resonance conditions. This is because the anti-symmetric mode will require an

additional λ/2 of round trip path length compared to the vertically symmetric mode

(equivalent to an additional π phase shift), in order to interfere constructively. The
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Figure 4.23.: The LG33 mode transmitted through a linear mode cleaner (left), and the

interference pattern generated when the mode is superposed with a LG00

mode (right) under an angle.

resonant conditions of the two different sinusoidal modes should therefore be separated

by half of the free spectral range of the cavity.

An interesting outcome of this arises when we consider the helical LG modes as a sum of

sinusoidal modes, employing Euler’s formula eix = cos(x) + i sin(x). If the helical modes

can be described as a sum of sinusoidal modes, then one expects that when a helical

mode is injected into a triangular mode cleaner, the mode cleaner can be tuned to be

on resonance for one of the constituent sinusoidal modes, while being anti-resonant for

the other. As a result of this we expected that a triangular mode cleaner can be used

to decompose a helical LG mode into its sinusoidal components.

Another important difference between linear and triangular mode cleaner cavities is that

the latter feature a spherically curved mirror which is probed by the circulating beam

under an angle (not normal incidence). This results in a breaking of the symmetry

about the azimuthal angle for the mode cleaner eigenmodes. This is not usually a

problem for fundamental mode operation, since an astigmatic LG00 mode is still an

eigenmode of the cavity. Higher-order LG modes on the other hand are not eigenmodes of

astigmatic cavities [BFC+11]. The mode shape of even sinusoidal LG beams degenerates

upon transmission through a triangular mode cleaner as a result of the astigmatism.

There are two possible solutions to this problem; to use linear cavities exclusively, or to

design non- astigmatic mode cleaner cavities with four or more mirrors. Some work has
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Figure 4.24.: Transverse phase distributions of the helical (left), vertically symmetric

sinusoidal (center) and vertically anti-symmetric sinusoidal (right) LG33

modes. The colour represents the phase, in a range from 0 (white) to 2π

(black).

already been done to design non-astigmatic mode cleaner cavities for fundamental mode

operation [Ske05], which should be investigated for use with higher-order LG modes.

One possibility may be to implement aspherical mirrors to build a non-astigmatic mode

cleaner for higher-order LG modes. It should be noted that using only linear cavities as

mode cleaners incurs the additional complication of using polarising optics to extract

the control signals in reflection.

In order to experimentally demonstrate these effects, a triangular mode cleaner was

placed after the linear mode cleaner, as depicted in figure 4.26. The length of the

triangular mode cleaner was scanned while using the sinusoidal LG33 beam and the

helical LG33 beam as the input in succession. Figure 4.25 shows the transmitted light

power measured for both scans. The helical input scan shows three separate large

resonances. It follows from the theoretical understanding that these should correspond,

from left to right, to the resonances of the vertically symmetric sinusoidal mode, the

vertically anti-symmetric sinusoidal mode, and then the next free spectral range of the

vertically symmetric mode 4.

When the input beam was changed from the helical to the vertically symmetric sinusoidal

LG33 mode, the second peak disappeared from the trace. This is as would be expected

if the second peak in the helical trace indeed corresponds to the vertically symmetric

4The resonances may equally well have corresponded to the anti-symmetric, symmetric, and the next

free spectral range of the anti-symmetric modes, but the sinusoidal input mode trace demonstrates

otherwise.
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Figure 4.25.: Overlaid scans of the triangular mode cleaner, with helical and vertically

symmetric sinusoidal LG33 input beams. The helical beam trace shows

three large peaks, with a total separation of one free spectral range. The

first of these peaks is also present in the sinusoidal trace, but the second and

third peaks are not. The third peak is absent in the sinusoidal trace due

to the temperature drift of the spacer taking the next free spectral range

out of the scanning range, but the second peak is absent as it corresponds

to the vertically anti-symmetric sinusoidal mode.

mode. The third peak was also not visible in the recorded scan, though this was due to

a thermal drift of the mode cleaner spacer taking the second free spectral range peak

out of the scanning range. In the figure, the sinusoidal trace has been shifted along the

time axis to overlap the first large peak with the corresponding one from the helical case

in order to visually compensate for the drift. This can be seen from the shifting of the

ramp signal trace, since the trigger level on the oscilloscope was constant throughout.

In order to test the assertion that the first and second peaks in the helical trace cor-

responded to the vertically symmetric and anti-symmetric modes respectively, we then

feedback controlled the triangular cavity in similar fashion to the linear mode cleaner.

In this case, however, the length error signal was obtained from the light reflected from

the cavity input mirror, following the PDH method.
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Intensity profiles of the input, transmitted and reflected beams at one of these resonances

are shown in figure 4.26 The beam after the linear cavity was of slightly lower quality

than that shown in figure 4.20 as less time was spent optimising the alignment for this

experiment. It was observed that the beam transmitted through the triangular cavity on

this resonance strongly resembled the vertically symmetric sinusoidal LG33 mode. The

reflected beam is always a superposition of all the modes rejected by the mode cleaner,

and is in general therefore of lower mode purity than the transmitted mode. However,

it can still be seen that the vertically anti-symmetric LG33 mode is clearly the dominant

mode present in the reflected light.

Figure 4.26.: The experimental setup for investigating the interaction of a helical LG33

mode with a triangular mode cleaner. The intensity profiles of the beams

at various locations in the setup are shown, contrast enhanced here to

show the main features more clearly. From left to right the images show:

helical LG33 after the SLM, helical LG33 after transmission through the

linear mode cleaner, beam reflected from the triangular cavity and beam

transmitted through the triangular cavity.

We repeated the measurement for the alternative resonance point, where as expected

we found the dominant types of the transmitted and reflected sinusoidal mode to be

reversed. This confirmed our prediction that the helical input beam is decomposed into

the constituent sinusoidal modes upon interaction with the triangular mode cleaner.
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Chapter 4. Tabletop demonstrations of LG mode production and cleaning

We can therefore conclude that in order for helical LG33 modes to be compatible with

gravitational wave interferometers, the mode cleaners used must be linear, or at least

be comprised of an even number of mirrors.

Looking in more detail at the transmitted mode in figure 4.26, it can be seen that the

vertical band is brighter than the other bands. We expect that this effect is caused by

the astigmatism inherent in the cavity, due to the non-zero angle of incidence of the

beam on the curved mirror. The effects of astigmatism and other mirror surface defects

on LG modes within cavities are discussed in more detail in section 5.1.

These results show that helical LG modes will be incompatible with the current trian-

gular mode cleaner designs in place for Advanced LIGO, Advanced Virgo and GEO600.

In addition, the astigmatism effect is likely to make even the sinusoidal LG modes

incompatible with 3 mirror mode cleaners, as discussed further in section 5.1. The in-

compatibility with triangular mode cleaners constitutes a significant consideration for

the overall optical design of the detectors for which LG mode technology is considered.
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Prototype experiments with the LG33 mode

Following the largely positive results of the table-top LG mode experiments, we were

afforded a fortuitous opportunity to work in collaboration with members of the Glasgow

interferometry group towards testing the LG mode technology on the 10 m suspended

cavity in Glasgow. Progression from table-top experiments to a prototype experiment

with suspended mirrors is a standard feature of the development of new technologies for

gravitational wave detectors, in order to ensure compatibility with realistic interferom-

eter subsystems and requirements.

At this point, we had also become increasingly aware of one of the main difficulties that

was expected to be encountered with the LG mode technology; LG mode degeneracy

and the coupling to degenerate modes caused by mirror surface imperfections. We

believe that we had not encountered this problem up to this point due to our use of

relatively small beam sizes on the cavity mirrors. On small spatial scales, even off the

shelf mirrors such as those used in the linear mode cleaner can be close approximations

to ideal spherical surfaces. However, simulations with the LG33 mode in larger cavities

with larger beam sizes on realistic mirror surfaces showed this to be a potentially fatal

drawback to the use of higher-order LG modes in gravitational wave detectors [BFC+11,

HMY+11].

The most urgently required experiment with LG modes at this point was therefore an

analysis of the extent of the degeneracy problem in a larger cavity with larger beam sizes.

Performing LG mode experiments at the Glasgow 10 m prototype was thus another op-

portunity to achieve two goals with one experiment; we could assess the compatibility of

the LG33 with the prototype interferometer at large, and since the 10 m cavity geometry

is such that the beam sizes at the mirrors are roughly a factor of 5 larger than in our
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table-top experiment, we hoped to be able to simultaneously investigate the effects of

LG mode degeneracy.

5.1. Degeneracy of higher-order Laguerre-Gauss modes

In this section I will give a brief explanation of the LG mode degeneracy problem and its

significance for LG mode technology in gravitational wave interferometers. Most of the

theoretical work on this issue that has been done in Birmingham has been performed

by Charlotte Bond, so a more thorough explanation of this matter is likely to appear in

her thesis later on. Some key results of Bond’s can also be found in [BFC+11].

An important difference between higher-order LG modes and the fundamental LG00

mode is that only the LG00 mode is unique in its mode order. For each higher-order mode

there exists at least one other mode of the same order. Since the mode filtering effect

of optical cavities relies principally on the round trip Gouy phase difference between

different mode orders, as described in section 4.3, they cannot therefore filter out all

other modes than the LG33 when on resonance for order 9. For this reason we call the

other order 9 modes degenerate with the LG33 mode.

This degeneracy of higher-order modes has serious implications for their application in

gravitational wave interferometers. In the initial simulations reported in [CHF09] the

interferometer mirrors were modelled as perfect spherical curved mirrors. In reality

however, the mirrors will have some small deviations from perfect spherical surfaces

which can cause coupling from the LG33 mode into other modes of order 9. If we consider

this process occurring within the arm cavities of a gravitational wave interferometer, the

degeneracy of the modes of order 9 will mean that they can all be resonant at the same

time. The mode content of the circulating beam may therefore have a significantly

reduced proportion of LG33, the remainder being made up principally of other order 9

modes. If the mode content of both arm cavities is different, which is likely to be the

case if the coupling between modes is driven by the randomly oriented mirror surface

distortions, the modal overlap at the beam splitter will be imperfect and the output

port contrast will be reduced.

Further complications can arise if the resonance frequencies of order 9 modes in the

arm cavities are not exactly equal, but are separated by frequencies less than the cavity

linewidth. This can occur because the round trip Gouy phase in a cavity is determined by
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5.1. Degeneracy of higher-order Laguerre-Gauss modes

the average curvature of the mirror surfaces (as well as the mode order), and the average

curvature experienced by different spatial modes even of the same order may differ

slightly for mirror surfaces which are not perfectly spherical. The average curvature

experienced by different spatial modes can differ, since their different intensity profiles

will sense certain portions of a mirror surface to a differing degree. If we consider two

higher-order HG modes of the same order - HG90 and HG09, it is clear that the round

trip Gouy phase of these two modes will be primarily sensitive to the average curvature

along two orthogonal axes of the mirror surface. In the case of an astigmatic mirror

therefore, the two modes will have different round trip Gouy phases and hence different

resonance conditions.

For the case of a LG33 mode in an astigmatic cavity, it is instructive to consider a

decomposition of the mode into HG modes, as described by equation 2.16. In this case,

as previously considered, the different HG modes that constitute the LG33 mode will

experience different round trip Gouy phases. After a round trip, therefore, the HG modes

will no longer have the same phase relations as required by equation 2.16. Performing

the reverse decomposition from HG modes to LG modes, one will find the mode content

in the LG base system changed from a pure LG33 mode to a mix of order 9 modes.

In addition to this, the different constituent HG modes will have different resonance

frequencies, as previously described for HG90 and HG09, leading to the splitting of

even a pure LG33 mode into several ‘pseudo-degenerate’ mode peaks. This effect was

experimentally demonstrated in a 10 m suspended cavity, as described in section 5.4.

The frequency splitting effect between HG10 and HG01 modes has previously been used

to estimate the astigmatism of a 40 m cavity at the Caltech prototype gravitational wave

detector facility in [AAS08].

In the case where several modes of the same order have resonant frequencies in a cavity

which are separated by less than the cavity linewidth, the error signal will have multiple

nearby zero crossings. This can make the arm cavities difficult to control, since the

linear range of the error signal will be reduced, and mode ‘hopping’ between these

pseudo-degenerate modes may occur.

The method and results of a detailed numerical and analytical investigation into the

effect of mirror surface distortions on the purity of LG modes within optical cavities were

presented by Bond at the 2011 Amaldi meeting, and in [BFC+11], and another study

on this topic is presented in [HMY+11]. One of the most important outcomes from the
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work described in [BFC+11] was the derivation of an analytical formula for predicting

the amount of coupling between different LG modes upon reflection from a mirror,

based on the spatial features of mirror surfaces as described by Zernike polynomial

functions. In the limit that the height of the surface distortions is much smaller than

the wavelength of the light, coupling between an incident mode LGpl and a reflected

mode LGp′l′ is only significantly caused by Zernike polynomials Zmn which satisfy the

condition m = |l − l′|. Based on this result, it was possible to propose limits on the

heights of the most important low order Zernike polynomial present on mirror surfaces,

in order to achieve a circulating mode purity of over 99.9 % [BFC+11].

Experiments at the Glasgow prototype give us a way to investigate the LG mode de-

generacy problem heretofore only looked at theoretically and numerically. Though we

did not observe the detrimental effects of the mode degeneracy problem in our table-top

experiment we believe this is most likely due to the relatively small beam sizes used on

the mirrors, and the low cavity finesse in comparison to the advanced detector arm cav-

ities. However, it is clear that LG modes must also work with larger beam sizes in order

to provide the thermal noise benefits that make them attractive in the first place. LG

modes must also be compatible with cavities of similar finesse to the advanced detector

arm cavities. We have therefore carried out experiments with the LG33 mode at the

Glasgow 10 m prototype facility which uses larger beam sizes in a higher finesse cavity.

5.2. Design and manufacture of an etched diffractive optic for

mode conversion

For the 10 m prototype experiment we used a diffractive optic element (DOE) to fa-

cilitate the conversion from LG00 to LG33, rather than the SLM used in the table-top

experiments. While the SLM was very useful for prototyping purposes to investigate

the effects of different phase profiles, a fixed transmissive optic allows for the generation

of a higher mode purity at a higher laser power, with greater efficiency and stability

than the SLM. The design of the phase profile for the DOE was very similar to those

used with the SLM to generate LG33 modes. We opted for a non-amplitude contoured

phase profile, to maximise the amount of light power that would remain in the desired

diffraction order. Some of the main design specifications of the DOE are shown in table

5.1.

112



5.2. Design and manufacture of an etched diffractive optic for mode conversion

Element area 30×30 mm2

Structured area 21×21 mm2

Thickness 3.05 mm

Pixel aspect ratio 3000×3000

Pixel depth quantisation 2π over 8 levels

Pixel size 7µm

Off axis angle 2.51 mrad

Input beam size 3.5 mm

Table 5.1.: Design specifications for the DOE used on the LG mode conversion bench

at the Glasgow 10 m prototype.

Several factors were considered when choosing the angle into which the desired beam is

diffracted, known as the ‘off axis angle’. First of all, a non-zero off axis angle is required

in order to separate the desired mode from the unmodulated light. In the SLM setup,

the unmodulated light was mainly considered to be a result of direct reflection from the

front surface of the SLM. However, in the transmissive configuration used for the DOE,

the dominant source of unmodulated light is from fabrication tolerances in the etching

depth [Sch]. The off axis angle must be large enough so that the beams in 0th and 1st

orders do not overlap after a practical propagation distance. In practice this means that

the off axis angle should be larger than the sum of the divergence angles of the 0th and

1st order beams, each given by Θ = arctan
(

λ
πw0

)
. For the case of a 3.5 mm LG00 beam

interacting with the DOE at the waist position, this gives a minimum off axis angle of

1.22 mrad.

The off axis angle should not be made arbitrarily large, however, as limitations in the

pixel resolution become a larger source of error for larger off axis angles. This is because

for larger off axis angles the grating rulings are closer together, and thus the quantisation

error per ruling is greater in both the transverse and depth axes. We verified this by

analysing the results of FFT simulations performed at Jenoptik for three different off

axis angle designs. We used the same analysis method as described in section 3.2.3 to

decompose the field within the desired diffraction order into the constituent LG modes.

The power content in each of the order 9 modes is shown in table 5.2 for each of three

different off axis angles. The greatest LG33 mode content was found to be generated

by the 2.51 mrad off axis angle design, and the least was found to be generated by
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the 5 mrad design. In addition to this the 2.51 mrad design also generated the least

power in other order 9 modes, about which we were particularly concerned due to their

degeneracy with the LG33 mode in optical cavities. For this reason we chose to use the

2.51 mrad off axis design.

Mode indices Power content (%)

p l 2.51 mrad 3.76 mrad 5.0 mrad

3 3 87.2 86.9 85.1

4 1 1.06×10−5 1.20×10−4 3.40×10−3

2 5 1.05×10−5 9.90×10−5 3.16×10−3

1 7 4.80×10−6 1.05×10−6 2.65×10−5

0 9 4.38×10−6 2.62×10−7 2.54×10−5

0 -9 4.36×10−6 1.39×10−6 3.72×10−5

2 -5 3.60×10−6 9.56×10−7 5.14×10−6

1 -7 3.42×10−6 2.66×10−7 1.10×10−5

4 -1 2.43×10−6 1.77×10−7 5.76×10−6

Table 5.2.: Table showing the power present in LG modes of order 9 in the simulation of

DOE LG33 conversion, for three different off axis designs. The 2.51 mrad off

axis angle design performs the best, with the most power in the LG33 mode

and the least power in other modes of order 9.

5.3. LG33 conversion bench at the Glasgow 10 m prototype

The setup for the LG33 mode conversion bench is shown in figures 5.1 and 5.2. The beam

is picked off from the previously used laser path (shown in purple) after a fibre output

coupler, and directed with a flip mirror into the LG mode conversion area. The red path

shows the LG33 mode conversion path, in which the beam passes through an EOM for

generating the control sidebands, and the DOE. The resulting beam is then transmitted

through a linear mode cleaner, which is feedback controlled using the PDH method to

remain on resonance for mode order 9. This serves to increase the mode purity of the

beam, in a similar method to that described in section 4.3. The transmitted beam is

then passed back into the previously used laser path using another flip mirror, and on

towards the suspended cavity. The green path is a DOE bypass path, which enables us
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5.3. LG33 conversion bench at the Glasgow 10 m prototype

Figure 5.1.: Schematic of the laser mode conversion path on the Glasgow 10 m prototype

input optics bench. The red line shows the LG33 mode path, and the green

line shows the LG00 path that bypasses the phaseplate. The purple line

shows the original LG00 laser path.

to alternatively operate the linear mode cleaner with the LG00 mode. The idea of this

path was to ensure a fair comparison between the performance of the LG00 and LG33

modes in the suspended cavity. Since the light transmitted by the mode cleaner must be

defined by the cavity eigenmodes, the transmitted LG00 and LG33 beams should have

the same alignment and mode matching relative to the suspended cavity. The hope

was that this would enable us to make a valid assessment of the relative performance

of the two modes within the suspended cavity. It transpired later, however, that the

beam parameters of the LG33 mode and the LG00 mode after transmission through

the linear mode cleaner were not exactly the same. This was determined by making a

series of measurements of the beam size at different positions after the mode cleaner for

both modes, and fitting the Gaussian beam divergence function to the measurements to
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extract the beam waist size and position. Figure 5.3 shows the fit results for the LG33

mode.

Figure 5.2.: The laser mode conversion path on the Glasgow 10 m prototype input optics

bench. The red line shows the LG33 mode path, and the green line shows

the LG00 path that bypasses the phaseplate. The purple line shows the

original LG00 laser path.

After passing through the linear mode cleaner, the beam is directed back into the original

LG00 laser path. Before passing into the vacuum system, the beam is passed through

numerous optical components on the laser bench. First of all, the beam is transmitted

through an EOM, which is used to imprint 15 MHz sidebands on the light. The beam

subsequently passes through a Faraday isolator, in place to minimise the amount of

light reflected back to the laser. The original laser path on the bench was designed to

accomodate the LG00 beam, which has a less extended intensity profile than the LG33
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5.3. LG33 conversion bench at the Glasgow 10 m prototype

Figure 5.3.: Data points and fit for the beam waist size and position of the LG33 after

the linear mode cleaner. Plot courtesy of B. Sorazu.

beam. As a result of this, in many places the LG33 beam was close to the point of

clipping at the edges of some of the apertures through which it was required to pass.

This additional design constraint should be taken into account in any future applications

of higher-order LG mode technology; apertures which are sufficient for the LG00 mode

may not be sufficient for the LG33 mode. In addition to this, we found the LG33 beam

to be more sensitive to the imperfections in the transmissive optics along the laser bench

path.

After passing through all the transmissive optics, the intensity profile of the LG33 mode

had significantly deteriorated, as shown in figure 5.4. This had a significant impact

on the experiment, because it introduced another uncontrollable variable; we could no

longer be sure that phenomena observed in the 10 m cavity with the rough LG33 beam

were a consequence of the fundamental interaction of the LG33 mode with the cavity

rather than a consequence of the distortions already present in the beam.
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Cavity length 9.812±0.001 m

Free spectral range 15.277 MHz±1.6 kHz

Input test mass power transmission 1.3 %

End test mass power transmission 6 ppm nominal

Input test mass radius of curvature ∞ nominal

End test mass radius of curvature 15 m nominal

Cavity beam waist size 1.55 mm

Transverse mode spacing 4.58 MHz

Modulation sideband frequency 15 MHz

Cavity Finesse 600 Nominal

Table 5.3.: Relevant parameters of the 10 m suspended cavity in Glasgow.

5.4. 10 m cavity performance with the LG33 mode

One of the main aims of this work was to investigate the LG mode degeneracy effect in

the 10 m suspended cavity. Table 5.3 shows some of the relevant parameters for the 10 m

cavity. After the EOM and the Faraday isolator, the beam is passed through a mode

matching telescope in order to match the beam to the cavity eigenmode. As illustrated

in figure 3.7, the task of accurately mode matching the LG33 mode to a cavity is more

delicate than for the LG00 mode. Such was the difficulty of this task for the LG33 mode

that we found the dominant mode order present when the LG33 beam was injected into

the cavity to be not order 9, but rather orders 7 or 11. The dominant mode orders

were determined by taking high speed video footage of the beam transmitted through

the cavity as the cavity was scanned. It was through these measurements that we also

found that the mode shapes at the resonant tunings in the cavity resembled HG modes

much more closely than LG modes.

Since the purity of the LG33 beam injected into the cavity had been degraded by the

transmissive components, and the mode matching into the cavity was also apparently

not good enough to achieve a dominant order 9 resonance in the cavity, it is difficult to

draw strong conclusions about the performance of the LG33 mode in the 10 m cavity.

Nevertheless, we observed scans of the cavity with the rough LG33 beam as the input

beam. Figure 5.5 shows the transmitted light power through the cavity as the cavity

is scanned, for both the LG00 and LG33 modes. Since both modes were transmitted
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through the same linear mode cleaner cavity, they should have the same beam param-

eters at the point of entry into the cavity. However, comparing the transmitted light

power traces for LG00 and LG33 modes over the scans shown in figure 5.5, we see that

significantly more power is present in mode orders other than the dominant order for

the LG33 case. This is to be expected, since the LG33 is expected to be more sensitive to

mode mismatch than the LG00, as shown in figure 3.7. It should be noted, however, that

the degradation of the beam profile due to the effects of passing through the EOM and

Faraday isolator may also contribute to the increased presence of modes in orders other

than the injected mode for the LG33 case. It is also the case that the beam parameters

were not exactly the same for the LG33 and LG00 modes transmitted through the linear

mode cleaner.

Figure 5.6 shows close-ups of the dominant mode order peak, for both the LG00 case

and the LG33 case. The dominant peak when the cavity was injected with the LG00

mode, shown in the upper part of figure 5.6, follows the expected Lorentzian shape, and

definitely consists of just one peak. On the other hand, the dominant peak when the

cavity was injected with the LG33 mode has a much more exotic structure, as shown

in the lower part of figure 5.6. Figure 5.7 shows 4 of the dominant peaks from a scan

of the cavity with the LG33 mode as the input beam. Each of these peaks is separated

in the scan by one FSR, and yet we see that the main features are common to each

peak. The repetition of this structure across many free spectral ranges of the cavity

demonstrates that the structure is not merely a measurement artefact, but is in fact a

genuine feature of the cavity response when pumped with the LG33 mode. The multiple,

or ‘split’, peak is a feature common to cavities with imperfect mirror surfaces operated

with higher-order modes. Similar peak structures were observed in simulations of the

LG33 mode in cavities which included astigmatism of the mirror surfaces, as described

in section 5.1.

We made high speed recordings of the beam transmitted through the cavity in order to

observe the beam shape across the dominant split resonance. We found that each visible

mode shape across the scan appeared to have more in common with HG modes than LG

modes; little or no circular symmetry was observed, but rectangular symmetries in the

intensity patterns were apparent. Figure 5.8 shows some of the observed mode shapes

as the cavity was swept over the split resonance. The arrows in figure 5.8 indicate

the rough position on the scan to which the different mode images correspond. The

rectangular symmetry in each of the three brightest modes is clear. There is also a clear
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change in the orientation of the modes across the peak; the bright mode on the left side

is more spatially extended along the horizontal axis, similar to a HG70 mode, whereas

the bright mode on the right side is more spatially extended along the vertical axis,

similar to a HG07 mode. This behaviour is exactly what would be expected for a LG

mode in an astigmatic cavity, as decribed in section 5.1; an astigmatic cavity does not

have the required circular symmetry to support higher-order LG eigenmodes.

In order to test whether the cavity truly was astigmatic or not, we decided to make

independent measurements of the cavity mirror surfaces. The input test mass surface

figure was measured using a Wyko optical profiler. This measurement method was

suitable for the input mirror due its small size (1” diameter) and near flat curvature.

The results from the Wyko optical profiler measurement gave the radius of curvature

along the horizontal axis as 7077 m, and the radius of curvature along the vertical axis

as -1997 m. The same method was not suitable for the end test mass, however, due to its

much larger size and stronger curvature. Instead, the astigmatism of the end mirror was

estimated using the Ronchi method, originally developed for measuring the astigmatism

of telescope mirrors [AP29]. The Ronchi test gave the result that the difference between

the end mirror radii of curvature in the vertical and horizontal planes was 5.3 cm±0.5 cm.

We performed FINESSE [FHL+04] simulations of the 10 m cavity with these estimates

of the astigmatism, to check for similarities with the measured scans. Due to the mode

mismatching problem, and our observation that order 7 modes appeared to be dominant

in the cavity, we ran the simulation with a range of different input LG modes to see if

they matched the data better than the LG33 mode. Figure 5.9 shows the results of four

such simulations, with each of the LG33, LG23, LG43 and LG31 modes injected into the

cavity. Only the LG23 result, and to a lesser extent the LG33 result, reproduce the main

features of the measured peak scan shown in figures 5.6 and 5.7.

The analysis of the performance of the LG33 mode in the 10 m cavity is still work in

progress at the current time, but we expect to be able to conclude the work within the

next few months. At this stage however, I don’t believe any strong conclusions can be

drawn from this experiment which either verify or disprove the results of the simulation

studies into the effects of LG mode degeneracy in cavities with larger beam sizes than

those used in our table-top experiments. Unfortunately the degradation of the input

mode and the poor mode matching of the cavity have so far made it very difficult to
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get a precise agreement between observations and the simulations, and there are many

degrees of freedom in the experiment which make it hard to pinpoint the effects due to

the use of the LG33 mode itself. What we can conclude so far, however, is that the LG33

mode was not resonating in the 10 m cavity with any appreciable mode purity. In the

future however, with mirror surface figures improved in line with the requirements stated

in [BFC+11], and a more dedicated input laser path with extra clearances allowing for

the larger spatial extent of the LG33 mode, the picture might look more positive.
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Figure 5.4.: Images of the LG33 beam along the path before entering the 10 m cavity.

Clockwise from top left: The beam directly after the linear mode cleaner;

the beam after the Faraday Isolator; the beam after the first mode matching

lens; the beam just before the 10 m cavity input mirror (after a lens to focus

the beam to within the CCD active area). A degradation of the beam purity

is observed along the path to the 10 m cavity.
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Figure 5.5.: Scans of the 10 m cavity with the LG00 mode (top) and the LG33 mode

(bottom), each over roughly 3 free spectral ranges. The cavity was scanned

by actuating on the temperature of the laser crystal, thus detuning the

frequency of the light passed into the cavity. The top scan shows three

visible peaks per free spectral range; the dominant one corresponds the

LG00 mode. The lower scan shows considerably more visible peaks, and

less contrast between the dominant peak and the other peaks than for the

LG00 input case.
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Figure 5.6.: A closer look at the dominant peaks in the cavity scans shown in figure

5.5. The upper plot shows the LG00 peak, which follows the theoretically

expected Lorentzian function, and is comprised of just a single visible peak.

The lower plot shows the dominant peak when the cavity was scanned with

the LG33 mode. Due to difficulties with accurately mode matching the LG33

input, it is believed that the dominant peak is not the order 9 peak.
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Figure 5.7.: The dominant peaks of four successive FSRs of the 10 m cavity when scanned

with the LG33 mode as the input beam. The main features of the split peak

are common to each FSR, indicating that the structure is a genuine feature

of the cavity response.

Figure 5.8.: Mode shapes in the beam transmitted through the cavity, recorded with the

high-speed camera and overlaid on the split LG mode resonance peak. The

red dots on the cavity scan x-axis indicate the frame rate of the camera.

Image courtesy of B. Sorazu.
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Figure 5.9.: Astigmatic cavity simulations with four different cavity unput modes. The

astigmatism used in the simulation was informed by measurements of both

cavity mirrors. A small misalignment of 20µrad was applied to the end

mirror in order to recreate the measured asymmetry of the dominant peak

in the cavity scan. Clockwise from top left: LG33, LG23, LG43 LG31. The

LG33 and LG23 peaks best approximate the measured data shown in figures

5.7 and 5.6.
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Chapter 6.

Summary and conclusions

6.1. Summary

In this thesis I have described the course of my investigations into the use of higher-

order LG modes for precision interferometry. The motivation for using higher-order LG

modes in place of the currently used LG00 mode comes from their improved test mass

thermal noise performance, as described in sections 2.6 and 2.7.

Throughout the course of my PhD studies I have helped to progress higher-order LG

mode technology in the context of gravitational wave interferometry from the initial

motivation, to a solid foundation based on demonstrated compatibility with some of the

key interferometric techniques of the field.

In the initial simulation study into the interferometric performance of the LG33 mode

reported in 3.1, it was shown that the LG33 mode is compatible with the PDH longitu-

dinal control scheme and the Ward technique for alignment control. For the Advanced

Virgo-like case considered, it was also shown that the LG33 mode performed better in

terms of all investigated noise couplings than the LG00 mode with the equivalent clipping

loss at the cavity mirrors, as published in [CHF09].

In the table-top experiments with the LG33 mode, I demonstrated the generation of

multiple different LGpl modes of both the helical and sinusoidal form. I have also demon-

strated for the first time the locking of an optical cavity to a higher-order LG33 mode

using RF modulation/demodulation techniques, as well as demonstrating the increase

in mode purity of a LG33 beam upon transmission through a linear mode cleaner cavity

to over 99 %. I also demonstrated experimentally for the first time the decomposition of
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a helical LG33 mode into its constituent sinusoidal modes by means of interaction with

a three-mirror optical cavity. These results were published in [FKCF10].

My most recent contributions to LG mode research have been as part of a collaboration

between the Birmingham and Glasgow interferometry groups to test LG mode technol-

ogy on a suspended 10 m cavity. I designed and installed the LG33 mode conversion path

on the JIF laser injection bench, and assisted throughout the ongoing investigations into

the performance of the LG33 mode in the 10 m cavity. These investigations are still un-

derway currently, but the preliminary results have already raised some interesting issues

that should be considered in the future when designing larger scale implementations of

LG mode technology.

6.2. Conclusions and outlook

The conclusions in terms of the compatibility of LG modes with gravitational wave

interferometers are largely positive; one of the most crucial control schemes in the field,

the PDH method, has been proven to work with the LG33 mode in both numerical

investigations and table-top experiments. The Ward technique for alignment sensing

has been shown to work with the LG33 mode in numerical investigations, though it

remains for this to demonstrated experimentally. We have demonstrated a method for

producing extremely pure LG33 modes by using a linear mode cleaner cavity to filter

out the light in unwanted modes left over from the conversion process. Although I did

not report on the work within the main body of the thesis, I have been involved in work

towards developing a high-power LG33 laser source in collaboration with colleagues from

Birmingham and members of the AEI in Hannover, where over 50 W of light has been

produced in the LG33 mode with high purity. This progress suggests that a potential

high-power LG33 mode light source for gravitational wave detectors is not too distant a

prospect.

On the negative side, the helical LG33 mode has been shown to be incompatible with

the triangular mode cleaner design commonly used in gravitational wave interferometers.

We have also seen that the LG33 mode is very sensitive to any astigmatic effects. In

particular, the degeneracy of higher-order LG modes and the inter-coupling between

degenerate modes caused by mirror surface distortions is the biggest problem to be

overcome before the technology looks like a truly viable option for inclusion in future

128



6.2. Conclusions and outlook

detector designs. Having said that, Bond has calculated the mirror requirements that

would be necessary to achieve an acceptable circulating mode purity within the arm

cavities of gravitational wave detectors, and so to some extent for the time being the

fate of higher-order LG mode technology for gravitational wave interferometers lies in

the hands of mirror manufacturers.

In this thesis I have focused on the impact and performance of higher-order LG modes

within the field of gravitational wave interferometry, but the thermal noise improvements

they offer may also be useful in other areas where thermal noise of optical readouts is a

limiting factor, such as for example in the development of ultra-stable optical clocks. In

different fields, the degeneracy of LG modes may be less of a problem. For example if

the beam sizes are by necessity small, a thermal noise advantage could still be provided

over the LG00 mode by exchanging it for a higher-order LG mode.

For future work on LG mode technology, there are still many interferometric performance

tests to be done. A demonstration of automatic alignment of a cavity using the Ward

technique with the LG33 mode would be an interesting experiment, as would be the

operation of a coupled cavity system such as a power recycled Michelson or a Fabry-

Perot Michelson with the LG33 mode. There are plenty of interesting advances to be

made on the table-top with LG modes before the mirror manufacturers catch up to the

requirements for full scale detectors.
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Appendix A.

Thermal noise scaling factors for

higher-order modes

A.1. Laguerre-Gauss mode thermal noise scaling factors

Coating Brownian noise

The coating Brownian noise improvement factors for higher-order LG modes over the

LG00 for a 1 ppm clipping loss are shown in table 2.3. The reduction factors for coating

Brownian thermal noise were given precedence in the main part of this thesis because,

as shown in figure 2.1, this noise is expected to be the largest of the test-mass thermal

noises in Advanced LIGO.

Substrate Brownian noise

The substrate Brownian noise power spectral density scales with the beam spot size as

1/w, and is proportional to the numerical values g0pl which describe the effects of the

different mode shape [Vin09]. Table 15 of [Vin09] shows the g0pl values for modes up to

LG55
1.

From the beam size scaling factors required to give equal clipping losses in table 2.2, and

the substrate Brownian noise power spectral density scaling factors g0pl, we calculate

1In [Vin09], the mode indices of higher-order LG modes are notated as n and m, as opposed to the

notation of p and l used in this work. The p and l notation is preserved here to provide distinction

from the HG mode set.
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the substrate Brownian noise power spectral density improvement of LGpl modes over

the LG00 mode, ΘSubBrown
pl , as

ΘSubBrown
pl =

apl
g0pl

. (A.1)

The results of for ΘSubBrown
pl are summarised in table A.1. From this table it is clear

that higher-order LG modes have a substrate Brownian noise power spectral density

advantage over the LG00 mode.

p 0 1 2 3 4 5

l

0 1.0000 1.3927 1.6102 1.7318 1.8417 1.8944

1 1.3183 1.5704 1.7231 1.8051 1.8940 1.9687

2 1.4906 1.6968 1.8339 1.9034 1.9619 1.9872

3 1.6088 1.7878 1.8706 1.9656 1.9760 2.0152

4 1.6690 1.8618 1.9222 1.9756 2.0714 2.0561

5 1.7143 1.9028 1.9877 2.0632 2.1045 2.1159

Table A.1.: Numerical values of the scaling factors between the substrate Brownian noise

power spectral density for LG00 and LGpl modes, where all modes are scaled

to give 1 ppm clipping loss on a fixed mirror size.

Substrate thermoelastic noise

The substrate thermoelastic noise power spectral density scales with the beam spot size

as 1/w3, and is proportional to the numerical values g2pl which describe the effects of

the different mode shape. Table 18 of [Vin09] shows the g2pl values for modes up to

LG55. From the beam size scaling factors required to give equal clipping losses in table

2.2, and the thermoelastic noise power spectral density scaling factors g2pl, we calculate

the substrate thermoelastic noise power spectral density improvement of LGpl modes

over the LG00 mode, ΘSubTherm
pl , as

ΘSubTherm
pl =

a3
pl

g2pl
. (A.2)

The results of for ΘSubTherm
nm are summarised in table A.2. From this table it is clear

that some higher-order LG modes, including the LG33 mode have a small substrate
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thermoelastic noise power spectral density disadvantage over the LG00 mode. In the

context of second generation gravitational wave detectors this is not likely to be a large

concern, since the substrate thermoelastic noise is already expected to be significantly

lower than the coating Brownian noise.

m 0 1 2 3 4 5

n

0 1.0000 0.7780 0.6350 0.5405 0.4632 0.4133

1 1.7107 1.2412 0.9794 0.8316 0.7182 0.6203

2 1.8588 1.3424 1.0773 0.9178 0.7842 0.6891

3 1.8590 1.4065 1.1225 0.9426 0.8182 0.7322

4 1.8856 1.4212 1.1601 0.9914 0.8330 0.7639

5 1.8209 1.4066 1.1697 0.9640 0.8622 0.7791

Table A.2.: Numerical values of the scaling factors between the substrate thermoelastic

noise power spectral density for LG00 and LGpl modes, where all modes are

scaled to give 1 ppm clipping loss on a fixed mirror size.

Coating thermoelastic noise

According to [Vin10],[FRC+04] and [Lov06], the coating thermoelastic noise power spec-

tral density scales in the exact same manner as the coating Brownian noise, and thus the

coating thermoelastic noise power spectral density improvement factors for higher-order

LG modes are exactly the same as those shown in table 2.3.

A.2. Hermite-Gauss mode thermal noise scaling factors

Coating Brownian noise

The coating Brownian noise improvement factors for higher-order HG modes over the

HG00 for a 1 ppm clipping loss are shown in table 2.5.
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Appendix A. Thermal noise scaling factors for higher-order modes

Substrate Brownian noise

The substrate Brownian noise power spectral density scales with the beam spot size as

1/w, and is proportional to the numerical values g0nm which describe the effects of the

different mode shape. Table I of [Vin10] shows the g0nm values for modes up to HG55.

In the same way as for the LG modes, we calculate the substrate Brownian noise power

spectral density improvement of HGnm modes over the HG00 mode, ΘSubBrown
nm , as

ΘSubBrown
nm =

anm
g0nm

. (A.3)

The results of for ΘSubBrown
nm are summarised in table A.3. From this table we can see

that higher-order HG modes have a substrate Brownian noise power spectral density

advantage over the HG00 mode.

m 0 1 2 3 4 5

n

0 1 1.165 1.232 1.268 1.288 1.300

1 1.165 1.364 1.450 1.496 1.524 1.539

2 1.232 1.450 1.550 1.605 1.638 1.656

3 1.268 1.496 1.605 1.667 1.706 1.729

4 1.288 1.524 1.638 1.706 1.749 1.779

5 1.300 1.539 1.656 1.729 1.779 1.808

Table A.3.: Numerical values of the scaling factors between the substrate Brownian noise

power spectral density for HG00 and HGnm modes, where all modes are

scaled to give 1 ppm clipping loss on a fixed mirror size.

Substrate thermoelastic noise

The substrate thermoelastic noise power spectral density scales with the beam spot size

as 1/w3, and is proportional to the numerical values g2nm which describe the effects

of the different mode shape. Table III of [Vin10] shows the g2nm values for modes

up to HG55. We calculate the substrate thermoelastic noise power spectral density

improvement of HGnm modes over the HG00 mode, ΘSubTherm
nm , as

ΘSubTherm
nm =

a3
nm

g2nm
. (A.4)
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A.2. Hermite-Gauss mode thermal noise scaling factors

The results of for ΘSubTherm
nm are summarised in table A.4. From this table it is clear

that higher-order HG modes actually have a significant substrate thermoelastic noise

power spectral density disadvantage over the HG00 mode.

m 0 1 2 3 4 5

n

0 1 0.831 0.688 0.583 0.503 0.441

1 0.831 0.776 0.685 0.602 0.535 0.478

2 0.688 0.685 0.629 0.570 0.517 0.470

3 0.583 0.602 0.570 0.528 0.487 0.449

4 0.503 0.535 0.517 0.487 0.454 0.425

5 0.441 0.478 0.470 0.449 0.425 0.399

Table A.4.: Numerical values of the scaling factors between the substrate thermoelastic

noise power spectral density for HG00 and HGnm modes, where all modes

are scaled to give 1 ppm clipping loss on a fixed mirror size.

Coating thermoelastic noise scaling factors

As was the case for LG modes, the coating thermoelastic noise power spectral density

scales in the exact same manner as the coating Brownian noise. The coating thermoe-

lastic noise power spectral density scaling factors are therefore exactly the same as those

shown in table 2.5.
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Appendix B.

Simulation code for results presented in

chapter 3

B.1. FINESSE input files for simulation study into the

interferometric performance of the LG33 mode

The FINESSE input file below is the master file for the simulations described in section

3.1. The basic optical layout is first described, including the input mode, phase mod-

ulations, mirror and cavity parameters and photodetectors. Next the numbered blocks

of code can be used to plot the various aspects of the system that were investigated.

By uncommenting each block in turn the plots shown in section 3.1 may be reproduced.

Blocks are commented out using the syntax /* to begin the block comment, and */

to end the comment. Individual lines are commented out using the # key or %. See

the FINESSE web page to download the FINESSE executable, source code, reference

manual and examples.

# Input laser with power 1W at node n1

laser i1 1 0 n1

# Set FINESSE to use higher order modes up to order 13

maxtem 13

# Create LG33 mode using decomposition into Hermite-Gauss modes.

# See matlab script temsLG.m for the decompositions for other LG modes
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Appendix B. Simulation code for results presented in chapter 3

tem i1 0 0 0 0

tem i1 9 0 0.164062 0

tem i1 8 1 0.164062 -90

tem i1 7 2 0 180

tem i1 6 3 0.125 -90

tem i1 5 4 0.046875 180

tem i1 4 5 0.046875 -90

tem i1 3 6 0.125 180

tem i1 2 7 0 0

tem i1 1 8 0.164062 180

tem i1 0 9 0.164062 90

# Add modulation sidebands

mod EOM1 $fEOM1 0.3 2 pm 0 n1 n2

# Define space before REFL beamsplitter

s lx1 $lx1 n2 nIMX1

# IMX - cavity input mirror in the X-arm

bs2 IMXAR $RIMXAR $LIMXAR $IMXARphi 0 nIMX1 nPOX1 nIMXi1 nPOX2

s sIMX $sIMX $nsilica nIMXi1 nIMXi2

m1 IMX $TIMX $LIMX $IMXphi nIMXi2 nIMX2

attr IMX Rc $RCIMX

# Intra-cavity space

s Lx $Lx nIMX2 nEMX1

# EMX cavity end mirror in the X-arm

m1 EMX $TEMX $LEMX $EMXphi nEMX1 nEMXi1

s sEMX $sEMX $nsilica nEMXi1 nEMXi2

m EMXAR $REMXAR $TEMXAR $EMXARphi nEMXi2 nXP1

attr EMX Rc $RCEMX

# Set cavity length to 3km
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const Lx 3000

# Set length of space before REFL beamsplitter

const lx1 6.044

# optical path to quadrant photodetectors

s sPO2 0 $nsilica nPOX2 nPOX3

m mPO2 0 1 0 nPOX3 nPOX4

s sQr1 0 nPOX4 nQr1

bs bsQr .5 .5 0 0 nQr1 nQr2 nQr3 dump

s sQra 0 nQr2 nQra

s sQrb 0 nQr3 nQrb

attr sQr1 g 0

attr sQra g 90

attr sQrb g 0

# Substrates

#---------------------------

const nsilica 1.44963

const sIMX 0.2

const sEMX 0.2

# Corresponding beam sizes

# Mirror Beam size [cm]

# IMX 3.52

# MPR 3.55

# BS 3.53

#---------------------------

const RCEMX 1910

const RCIMX -1910

### RC=1910 results in

#0: node nIMX2(7); IMX(0), Lx(6); n=1 (IMX --> nIMX2)
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# x, y: w0=16.297262mm w=35.17543mm z=-1.5km z_R=784.21936m

# q=(-1500 + 784.219i) gamma=20.78151urad

# g_i-factor = -0.570680628272251309

# g = 0.32567637948521148

# one way Guoy phase = 0.963461860338102914

# mode spacing = 15323.36Hz

# Finesse = 1227

# FSR = 49.9kHz

# FWHM = 40.73Hz

# Transmission, Reflections, etc.

#---------------------------

const TIMX 5m

const LIMX 50u

const TEMX 10u

const LEMX 50u

# AR Coatings

const RIMXAR 100u

const LIMXAR 50u

const REMXAR 0

const TEMXAR 1

# Tunings

#---------------------------

const IMXphi 167.977016839274 # LG55 # pseudo locked with phase 0

const EMXphi 0

const IMXARphi 0

const EMXARphi 0

# Modulation frequencies

#---------------------------
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#const fEOM1 1.5M

const fEOM1 1k

# Demodulation phases

#---------------------------

#const phi_d_EOM1 66.1 # for a modulation frequency of 15M

#const phi_d_EOM1 170.8 # for a modulation frequency of 1.5M

const phi_d_EOM1 182.25 # for 1kHz

# Error signal slope

#---------------------------

const ESS -0.129376831754298956

const FbS 0.129376831754298956

# Arm x

cav armx IMX nIMX2 EMX nEMX1

phase 0

############################################

# 1. Find operating point of the LG33 mode in the cavity

/*

pd cav_power nEMX1

showiterate 10

# pseudo lock for cavity

ad ph_m11 0 nIMXi2*

ad ph_m12 0 nIMX2

noplot ph_m11

noplot ph_m12

set ph1 ph_m11 deg

set ph2 ph_m12 deg

func cphase = $ph2-$ph1-90

noplot cphase

lock clock $cphase -1m .1m
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noplot clock

func fb = $clock

#noplot fb

put EMX phi $clock

xaxis* IMX phi lin 0 90 10

*/

# IMX phi =167.977016839274

# power = 763.900517266

##########################################

############################################

# 2. Plot cavity mode

/*

retrace off

beam ccd nXP1

xaxis ccd x lin -12 12 100

x2axis ccd y lin -12 12 100

#trace 8

*/

##########################################

##########################################

# 3. Plot transmitted power and error signal in reflection

#/*

#const theta-tilt 0.1u

#attr EMX xbeta $theta-tilt

#attr EMXAR xbeta $theta-tilt

pd power nXP1

pd1 error $fEOM1 $phi_d_EOM1 nIMXi2

xaxis IMX phi lin 157.977 177.977 400

#diff IMX phi

#x2axis EMX xbeta lin 0 1u 10
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#put EMXAR xbeta $x1

#*/

# slope -7.691158828

##########################################

##########################################

# 4. Find error signal demodulation phase

/*

pd1 error $fEOM1 $phi_d_EOM1 nIMXi2

diff IMX phi

#xaxis error phi lin 0 180 90 # coarse search

xaxis error phi lin 182 183 4 # fine search

*/

# RESULT

# phi_d_EOM1 = 170.8 for 1.5M

# phi_d_EOM1 = 182.25 for 1k

##########################################

############################################

# 5. lock cavity with error signal

/*

pd cav_power nEMX1

pd1 error $fEOM1 $phi_d_EOM1 nIMXi2

showiterate 10

noplot error

set LES error re

lock clock $LES $FbS .1m

noplot clock

func fb = $clock

put EMX phi $clock

xaxis IMX phi lin 167.977 177.977 10

*/

# Time needed 5m20s
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##########################################

##########################################

# 6. introducing tilt

/*

const theta-tilt 1u

attr EMX xbeta $theta-tilt

attr EMXAR xbeta $theta-tilt

# look at error signal and transmitted power

pd power nXP1

pd1 error $fEOM1 $phi_d_EOM1 nIMXi2

xaxis IMX phi lin 156 180 2

*/

# RESULT

# longitudinal error signal position changes

##########################################

##########################################

# 7. cavity lock with longitudinal error signal while changing the tilt of EMX

/*

pd cav_power nEMX1

pd1 error $fEOM1 $phi_d_EOM1 nIMXi2

showiterate 10

noplot error

set LES error re

lock clock $LES -0.1 .1m

noplot clock

func fb = $clock

put EMX phi $clock

xaxis EMX xbeta lin 0 1u 100

put EMXAR xbeta $x1

#const theta-tilt 0

#attr EMX xbeta $theta-tilt
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#attr EMXAR xbeta $theta-tilt

*/

# RESULT

# longitudinal error signal position changes

##########################################

##########################################

# 8. 2D plot tilt over cavity detuning no FB

/*

pd cav_power nEMX1

pd1 error $fEOM1 $phi_d_EOM1 nIMXi2

noplot error

#showiterate 10

#set LES error re

#lock clock $LES -0.1 .1m

#noplot clock

#func fb = $clock

#put EMX phi $clock

xaxis EMX xbeta lin 0 1u 100

put EMXAR xbeta $x1

#x2axis IMX phi lin 167.807016839274 168.507016839274 100 # 167.977016839274 168.5

x2axis IMX phi lin 167.477016839274 168.477016839274 100 # 167.977016839274 168.5

*/

# RESULT

# longitudinal error signal position changes

##########################################

##########################################

# 9. Plot alignment error signal

/*

# Quadrant diodes

#---------------------------

#

const Qra_pphi1 0
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const Qra_qphi1 90

const Qrb_pphi1 0

const Qrb_qphi1 90

pd1 Qrap $fEOM1 $Qra_pphi1 nQra

pdtype Qrap x-split

#pd1 Qraq $fEOM1 $Qra_qphi1 nQra

#pdtype Qraq x-split

#pd1 Qrbp $fEOM1 $Qrb_pphi1 nQrb

#pdtype Qrbp x-split

#pd1 Qrbq $fEOM1 $Qrb_qphi1 nQrb

#pdtype Qrbq x-split

#xaxis EMX xbeta lin -1u 1u 100

#func to = (-1)*$x1

#noplot to

#put IMX xbeta $to

### optimize demodulation phase of rotation error signal

### optimized phase Qra_pphi1 = 0

diff EMX xbeta

xaxis Qrap phi lin 0 180 100

*/

##########################################

##########################################

/*

yaxis abs

pd trans n5

#xaxis m1 phi lin 0 80 40

xaxis m1 xbeta lin 0 1u 40

*/
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##########################################

# Read out time taken to execute simulation

time

B.2. Matlab scripts for simulation study into LG33 mode

generation

This section includes two top level Matlab scripts for performing some of the simulations

reported in section 3.2. The first script LG33hx_gen_sim_paramfind.m was used to pro-

duce figure 3.13, and the second script optimum_beam_size_ratio_LG_upto_order9.m

was used to produce the values in table 3.3. Also included here are the functions used

within these scripts, including the function LGfield.m and its dependencies, for produc-

ing helical LGpl mode complex amplitude matrices, and LGhelixplate.m for producing

the helical LGpl mode phaseplate profiles.

%--------------------------------------------------------------------------

% LG33hx_gen_sim_paramfind.m

%

% A script to simulate the conversion of a TEM00 beam into a LG33 helical

% beam for 10 different cases. In each case, the phaseplate is the same,

% and the TEM00 spot size at the phsaeplate is the same. In each case the

% radius of curvature of the TEM00 beam at the phaseplate is different.

% This script calculates the theoretical value for beam parameters of the

% LG33 mode that is produced in each case. Using these parameters as

% initial guesses the script then performs a best fit, using the convolution

% between the phaseplate generated LG33 mode and an ideal LG33 mode as the

% figure of merit, to find the LG33 beam parameters which best match the

% phaseplate generated beam. The script writes the fitting results to a

% file called ’LG33hx_gen_fit_res.dat’, and writes the theoretical values

% to a file called ’LG33hx_gen_ther_res.dat’. One would then compare the

% theoretical values to the fitted values and use the overlap as a figure

% of merit for the suitability of the theory.

%
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% Requires the use of the following functions;

%

% LGfield.m

% LGhelixplate.m

% HGfield.m

% fit_LG_field.m

% FT_conv_fields.m

% propagate.m

%

% Paul Fulda, 17/08/09 pfulda@star.sr.bham.ac.uk

%

%--------------------------------------------------------------------------

clear all;

% Define the initial parameters:

% - for the grid representing the phase plate

% - for the initial TEM00 mode

tic

lambda=1064e-9; % Wavelength

%z0=0; % Distance to beam waist

%D=1; % Distance from TEM00 waist position to the phaseplate

L=0.5; % Propagation distance from the phaseplate to ’camera’ position

p=3; % Define the radial mode number

l=3; % Define the azimuthal mode number

plate_beamsize = 6e-4; % Define the image size of the phaseplate

TEM00_wpp=0.0023; % Define the TEM00 spotsize at the phaseplate

% Define the width/height of the simulation space

x_width =14.6e-3;

y_width =x_width;

% Calculate the x and y range
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xrange=x_width/2;

yrange=y_width/2;

% Number of points in the grid, equivalent to number of pixels

xpoints=768;

ypoints=xpoints;

% Pixel sizes in x and y directions

dx=2*xrange/xpoints;

dy=2*yrange/ypoints;

% Vectors to address all x and y values

x=linspace(-xrange+dx/2,xrange-dx/2,xpoints);

y=linspace(-yrange+dy/2,yrange-dy/2,ypoints);

% Generate phaseplate and pixel scale vectors

[plate,x,y]=LGhelixplate(xpoints,ypoints,x_width,y_width,p,l,plate_beamsize);

ffit=fopen(’LG33hx_gen_fit_res.dat’,’w’);

for j=0:10

% Produce the initial TEM00 mode at the phaseplate

if j~=5

% Set radius of curvature of input TEM00 at phaseplate

RCTEM00=j-5;

% Calculate TEM00 waist size

TEM00w0=rcw2w0(RCTEM00,TEM00_wpp,lambda);

% Calculate TEM00 waist position

TEM00z0=rcw2z(RCTEM00,TEM00_wpp,lambda);

% Generate TEM00 mode

TEM00=HGfield(lambda,TEM00w0,TEM00w0,TEM00z0,TEM00z0,0,0,x,y);

% Interact the TEM00 mode with the phase plate

LG33lab=TEM00.*plate;
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% Propagate the LG33lab beam to the camera position

LG33lab=propagate(LG33lab,L,1,lambda,2*xrange,2*yrange);

% Generate the LG33theory beam that theory predicts should

% have the same beam parameters as the LG33lab beam

% Calculate waist size of LGtheory beam

w0xtheory=rcw2w0(RCTEM00,plate_beamsize,lambda);

w0ytheory=w0xtheory;

% Calculate distance to waist of LGtheory beam

ztheory=rcw2z(RCTEM00,plate_beamsize,lambda);

paramsin(1)=w0xtheory;

paramsin(2)=ztheory;

paramsin(3)=1.0;

paramsin(4)=0.0;

[paramsout]=fit_LG_field(paramsin,lambda,L,p,l,x,y,LG33lab);

% Generate LG33 beam at camera position

LG33theory=paramsout(3)*exp(i*paramsout(4))*LGfield(lambda,...

paramsout(1),paramsout(2)+L,p,l,x,y);

% Compute the inner product of LG33lab and LG33theory modes:

% Inner product of the theoretical and phaseplate LG33:

conv6=FT_conv_fields(LG33theory,LG33lab);

% Convert to a percentage:

percentage_2=((abs(conv6))^2)*100;

disp(sprintf(’Fit results:’));

disp(sprintf(’ started with w0=%g, z0=%g, factor=%g, phi=%g’,...

paramsin(1),paramsin(2),paramsin(3),paramsin(4)));

disp(sprintf(’ ended with w0=%g, z0=%g, factor=%g, phi=%g’,...

paramsout(1),paramsout(2),paramsout(3),paramsout(4)));

disp(sprintf(’ overlap %g %%’, percentage_2));
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fprintf(ffit,’%d, %d, %g, %g, %g, %g, %g\n’,j,RCTEM00,paramsout(1),...

paramsout(2),paramsout(3),paramsout(4),percentage_2);

end

end

fclose(ffit);

toc

The script optimum_beam_size_ratio_LG_upto_order9.m, used to find the optimum

beam size ratios for conversion to higher-order LG modes from a LG00 mode. The

results of this script are shown in table 3.3 for LGpl modes up to the order 9.

%--------------------------------------------------------------------------

% optimum_beam_size_ratio_LG_upto_order9.m

%

% Script to find the mode purity upon conversion from LG00 mode to higher-

% order LG modes using a phaseplate, for different beam size ratios at the

% phaseplate. The optimum size ratio is calculated for each LGpl mode, up to

% the maxmimum order specified.

%

% Requires the use of the following functions;

%

% LGfield.m

% LGhelixplate.m

% HGfield.m

% FT_conv_fields.m

% propagate.m

%

%--------------------------------------------------------------------------

clear all

lambda=1064e-9; % wavelength

wTEM00=5e-3; % set beam spot size at phase plate

maxorder=9; %total number of different modes to try

% calculate total number of modes to be investigated from maxorder

for order=0:maxorder
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totalnummodes=totalnummodes+floor(order/2)+1;

end

nmode=0; % initialise integer to count the successive modes

istep=0.2e-3; % difference between the waist sizes of successive input beamshapes

jmax=60; % number of different fudge factors per input beamshape

jstep=0.1; % step size between subsequent fudge factors

fudgevec=zeros(jmax,1); % initialise vector to store fudge factors

xsize=40e-3; % define xrange of simulation space

ysize=40e-3; % define yrange of simulation space

xelements=600; % number of x elements

yelements=600; % number of y elemnts

x=linspace(-xsize/2,xsize/2,xelements); % Define vector of x-positions

y=linspace(-ysize/2,ysize/2,yelements); % Define vector of y-positions

% Define size of phaseplate in pixels and physical lengths

platesize=[300,300,20e-3,20e-3];

nrun=1; % initialise nrun variable for progress update

no_of_runs=jmax*totalnummodes; % set total number of runs

ntime=0; % initialise another variable to 0

nave_time=0; % initialise average time to 0

convresults=zeros(totalnummodes,jmax); % Create empty array for storing results

powerratio=zeros(totalnummodes,jmax);

for s=1:jmax

%pre-allocate fudge values to avoid ’loop growth’ problem

fudgevec(s,1)=3-jmax*jstep/2+(s-1)*jstep;

end

% create the TEM00 field at the phaseplate

TEM00=HGfield(lambda,wTEM00,wTEM00,0,0,0,0,x,y);

for l=0:maxorder

p=0;

while 2*p+l<=maxorder;

nmode=nmode+1;

for j=1:jmax % loop over ’jmax’ different fudge factors

nrun = nrun + 1; % set current number of runs
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tic; % start timer

fudge=fudgevec(j); % set fudge factor for current loop

% calculate size of desired LGlp mode

% (TEM00 spot size divided by fudge factor)

w0LGlp=wTEM00/fudge;

% generate phaseplate array to produce desired LGlp mode

LGplate=LGhelixplate(platesize(1),platesize(2),platesize(3),...

platesize(4),p,l,w0LGlp);

% embed phaseplate in a null grid

LGplate=embedplate(LGplate,xelements,yelements);

LGgen=TEM00.*LGplate; % interact TEM00 field with phaseplate array

% Calculate theoretical Rayleigh range of generated LG mode

zRLGlp=pi*w0LGlp^2/lambda;

% Propagate generated LG mode over 2 Rayleigh lengths

LGgen=propagate(LGgen,2*zRLGlp,1,lambda,xsize,ysize);

%LGgen=LGgen/abs(max(max(LGgen))); % Normalise generated LG mode field

% Create theoretical LG mode with waist position 2 Rayleigh lengths

% further than the phaseplate position

LGideal=LGfield(lambda,w0LGlp,2*zRLGlp,p,l,x,y);

powerratio(nmode,j)=FT_power_in_field(LGgen,x,y)/...

FT_power_in_field(LGideal,x,y);

LGgen=LGgen/powerratio(nmode,j); % Normalise theoretical LG field

% Find convolution between the theoretical and

% phaseplate generated LG fields

convresults(nmode,j)=FT_conv_fields(LGideal,LGgen);

[maxconvresults(nmode),maxfudgeconv(nmode)]=max(convresults(nmode,:));

maxfudgeconv(nmode)=fudgevec(maxfudgeconv(nmode));

[maxpowerratio(nmode),maxfudgepower(nmode)]=max(powerratio(nmode,:));

maxfudgepower(nmode)=fudgevec(maxfudgepower(nmode));

ntime = toc; % readout timer

nave_time = nave_time + ntime;

ave_run_time = nave_time / nrun; % Calculate average loop time

% Calculate estimated remaining time
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estimated_time = (no_of_runs - nrun) * ave_run_time;

display(sprintf(’Run %g/%g’,nrun,no_of_runs)); % display step counter

% display remaining time for calculation

display(sprintf(’%2.0fh:%2.0fmin:%2.0fsec remaining’,...

fix(estimated_time/3600),fix(mod(estimated_time,3600)/60),...

fix(mod(mod(estimated_time,3600),60))));

end

p=p+1;

end

end

The function LGfield.m, used to generate an ideal LG mode amplitude distribution:

%--------------------------------------------------------------

% function field=LGfield(lambda,w0,z,p,l,x,y)

% (requires ulp.m)

%

% Matlab/Octave function to fill a 2D grip with complex field

% amplitudes for a Laguerre-Gauss beam.

%

% lambda (real): wavelength [m]

% w0 (real): beam radius

% z (real): distance to beam waist [m]

% p,l (int): mode indices of LG TEM_p,l mode

% (p is the radial index)

% x,y (real): position vectors defining the grid size [m]

%

% field (complex): 2D grid of field amplitudes

%

% Andreas Freise 25.03.2007

%--------------------------------------------------------------

function [field,signflip]=LGfield(lambda,w0,z,p,l,x,y)
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w=sqrt(w0^2+z*lambda/pi);

xpoints=length(x);

ypoints=length(y);

[X,Y] = meshgrid(x,y);

r = sqrt(X.^2+ Y.^2);

sr = sqrt(2)*r/w;

phi = atan2(Y,X);

for i=1:ypoints

field(i,:)=ulp(lambda,w0,r(i,:),phi(i,:),z,p,l);

signflip(i,:)=sign(LaguerrePol(p,abs(l),sr(i,:).^2));

end

return

The function ulp.m, required for LGfield.m.

% --------------------------------------------------------------------

% function field = ulp (lambda,w0, r, phi, z, p, l)

% (required LaguerrePoly.m)

%

% Octave/Matlab function to compute the field of a 2D Laguerre-Gauss

% function u_lp(x,y,z).

%

% lambda = wavelength

% w0 (real): beam widths [m]

% r (real): distance to optical axis [m]

% phi (real): position around optical axis [rad]

% z (real): distance to waist [m]

% l (int): order of mode (azimuthal index, p>=|l|>=0)

% p (int): order of mode (radial index, p>=0)

%

% field (complex): field amplitude at (x,y,z)
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%

% Andreas Freise 25.03.2007

% --------------------------------------------------------------------

function field = ulp (lambda,w0,r,phi,z,p,l)

sl=l;

l=abs(l);

field=0;

% changed 04/11/09: the limit |l|<=p is not a requirement

%if ((l<0) || (p<l))

% error(’Error: p>=|l|>=0)’);

% return;

%end

k=2*pi/lambda;

zr=pi*w0^2/lambda;

wz=w0*sqrt(1+(z/zr)^2);

sr=sqrt(2)*r/wz;

qz=z+i*zr;

psi=atan(z/zr);

t1=sqrt(2*factorial(p)/(pi*factorial(l+p)))/wz;

t2=exp(i *(2*p+l+1)*psi);

t3=sr.^l.*LaguerrePol(p,l,sr.^2);

t4=exp(-i * k*r.^2./(2*qz)+i*sl*phi);

field=t1*t2*t3.*t4;

return

The function LaguerrePol.m, required for ulp.m.
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% ------------------------------------------------------

% function [L] = LaguerrePol (p,l,x)

%

% Matlab/Octave function to compute the

% associated Laguerre Polynomial L_p^l (x).

%

% p 1 / l+p \

% L_p^l(x)= Sum --- | | (-x)^j

% j=0 j! \ p-j /

%

% p,l (int)

% x (real)

%

% L (real)

%

% Andreas Freise 25.03.2007

%---------------------------------------------------------

function [L] = LaguerrePol (p,l,x)

L=0;

for j=0:p

L=L+bincoeff(l+p,p-j)/factorial(j)*(-x).^j;

end

return

The function LGhelixplate.m, used to generate a phase profile for conversion from a

LG00 mode to a LGpl mode. The thinking behind the method used is described in

section 3.2.2.

%--------------------------------------------------------------------------

% function [plate,x,y]=LGhelixplate(nxpix,nypix,xsize,ysize,p,l,w)

% (requires LaguerrePol.m)

%

% Matlab function to fill a 2D grid with phase values between 0 and 2*pi,
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% thus simulating a spatial light phase modulator. The grid is designed

% such as to provide an optimised phaseplate pattern to convert

% from a non-astigmatic TEM00 beam into any higher order LG beam with the

% azimuthal phase dependence ’exp(il*phi)’ as opposed to ’cos(il*phi)’. The

% function automatically sets the phaseplate pattern to be optimised for

% equal beam sizes in x and y-directions. If you wish to use square pixels

% you should be careful that the ratios xsize:nxpix and ysize:nypix are

% equal.

%

% nxpix,nypix (int): Number of pixels along x and y-axes

% xsize,ysize (float): Physical size of phaseplate along x and y-axes

% p,l (int): Mode indices of LG_pl mode to be generated

% w (real): Spot size of the LG_pl mode to be generated at the

% phaseplate [m]

%

% plate (complex): 2D grid of complex numbers representing the phase

% x,y (real): Vectors containing the x and y-positions of pixels

%

% Paul Fulda 25/05/09

%--------------------------------------------------------------------------

function [plate,x,y]=LGhelixplate(nxpix,nypix,xsize,ysize,p,l,w)

x=linspace(-xsize/2,xsize/2,nxpix); % Generate vector of pixel x positions

y=linspace(-ysize/2,ysize/2,nypix); % Generate vector of pixel y positions

% Generate a blank phaseplate of the required size, and initialise matrices

% that will hold the scaled radial, and azimuthal coordinates for the grid

plate=ones(nypix,nxpix);

sr=zeros(nypix,nxpix)/w;

phi=zeros(nypix,nxpix);

for j=1:nypix

% Calculate radial coordinates and scale to beam size
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sr(j,:)=sqrt(2)*sqrt(x.^2+y(j)^2)/w;

% Calculate azimuthal coordinates of each pixel

phi(j,:)=atan2(y(j),x);

end

% Introduce azimuthal phase dependence

for j=1:nypix

plate(j,:)=plate(j,:).*(l*phi(j,:));

plate(j,:)=exp(i*(plate(j,:)));

end

% Introduce radial phase discontinuities

for j=1:nypix

plate(j,:)=plate(j,:).*sign(LaguerrePol(p,l,sr(j,:).^2));

end

return

The function fit_LG_field.m, used to fit an ideal LG mode amplitude distribution to

any amplitude distribution.

%--------------------------------------------------------------

% fit_LG_field.m

%

% A function to fit a theoretical LG mode amplitude distribution field1 to an

% input amplitude distribution field1.

% Returns the parameters of the best-fit mode.

%

% paramsin - vector containing in this order - beam waist size, waist position,

% amplitude scaling factor, phase offset

% lambda - wavelength

% L - distance from origin on z-axis to the point at which the test is made

% p,l - radial and azimuthal indices of the LG mode

% x,y - position vectors defining the grid size

% field1 - input field whose parameters are to be determined
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% paramsout - best fit beam parameters

%--------------------------------------------------------------

function [paramsout]=fit_LG_field(paramsin,lambda,L,p,l,x,y,field1)

options=optimset(’Display’,’iter’, ’TolX’, 0.01, ’TolFun’, 0.01, ’MaxIter’, 1000);

paramsout=fminsearch(@mytestf,paramsin,options,lambda,L,p,l,x,y,field1);

function [diff] = mytestf(params,lambda,L,p,l,x,y,field1)

field2=params(3)*exp(i*params(4))*LGfield(lambda,params(1),params(2)+L,p,l,x,y);

diff=1-abs(FT_conv_fields(field1,field2))^2;

The function FT_conv_fields.m, used to find the inner product between two amplitude

distributions.

%

%--------------------------------------------------------------------------

% function [c]=FT_conv_fields(field1, field2)

%

% A function for Matlab that computes the scalar product between two

% complex 2D data arrays (similar to a convolution)

%

% field1: 2D data grid of complex numbers

% field2: 2D data grid of complex numbers

%

% c: value computed as c=int(field1*field2)/(|field1|^2*|field2|^2)

%

%

% Andreas Freise 14.08.2009

%--------------------------------------------------------------------------

%

% Description: Computes the scalar product between two complex 2D data arrays

% Keywords: scalar, dot, product, 2D, conv, fields

function [c]=FT_conv_fields(field1, field2)
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c=sum(sum(field1.*conj(field2)));

cn=sum(sum((field1.*conj(field1))));

cn=cn*sum(sum((field2.*conj(field2))));

c=conj(c/sqrt(cn));

The function propagate.m, used to perform the FFT propagation of fields.

%----------------------------------------------------------------

% function [out] = propagate(psi,dist, nr, lambda, sizex, sizey)

%

% Octave/Matlab function, propagates the field ’psi’ over a

% distance ’dist’ using an FFT propagation.

%

% psi (complex): array of field amplitudes

% dist (real): length [m]

% nr (real): index of refraction

% lambda (real): wavelength [m]

% sizex, sizey (real): size of grid in x and y direction [m]

% (e.g. with dx = distance between two grid

% points, and xpoints the number of

% points, xsize=xpoints*dx

%

% This code is based on the Fortran subroutine PROPAGATE by Roland

% Schilling, which again was based on code by Jean-Yves Vinet. You

% can read the theory in Jean-Yves’s very good ’VIRGO book of physics’

% (available online at the VIRGO site as a pdf file).

%

% Andreas Freise 30.12.2006 adf@sr.bham.ac.uk

%--------------------------------------------------------------

% Some additional notes:

%

% One nedds to take care that the field amplitude is sufficiently

% small at the borders of the grid. Everything reaching the
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% end of the grid will be reflected back in (aliasing effects).

%

% The phase change from one grid point to another must be less

% than Pi in order to have a unique solution for the wavefront.

% Curved, e.g. spherical, wavefronts show large phasechanges

% away from the optical axis and thus can require a large number

% of points.

function [psi] = propagate(psi,dist, nr, lambda, sizex, sizey)

% phi can be used to apply an additional phase to the field,

% here set to zero for the time being

phi=0;

[ny,nx]=size(psi);

if(rem(nx,2)|| rem(ny,2))

error(’Grid length must be a multiple of 2’)

return;

end

% compute reduced distance

distr=dist/nr;

% calculate propagator

hx=pi*lambda*distr/sizex^2;

hy=pi*lambda*distr/sizey^2;

for k=1:nx/2+1

ppgx(k)=exp(i*mod(phi/2+hx*(k-1)^2,2*pi));

end

for k=nx/2+2:nx

ppgx(k)=ppgx(nx+2-k);

end

for k=1:ny/2+1
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ppgy(k)=exp(i*mod(phi/2+hy*(k-1)^2,2*pi));

end

for k=ny/2+2:ny

ppgy(k)=ppgy(ny+2-k);

end

% do forward fft transformation

psi=fft2(psi);

% apply propagator

for k=1:nx

psi(:,k)=ppgy(:).*ppgx(k).*psi(:,k);

end

% do backwards fft transformation

psi=ifft2(psi);

return;
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[RSS+81] A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, H. Billing, and K. Mais-

chberger. A mode selector to suppress fluctuations in laser beam geometry.

Optica Acta, 28:641–658, 1981.

[Sau84] P. R. Saulson. Terrestrial gravitational noise on a gravitational wave

antenna. Physical Review D, 30(4):732–736, 1984.

[Sau94] P. R. Saulson. Fundamentals of Interferometric Gravitational Wave De-

tectors. World Scientific, 1994.

[Sch] C. Schild. Private communication.

[SKC11] K. Somiya for the KAGRA Collaboration. Detector configuration of KA-

GRA - the Japanese cryogenic gravitational-wave detector. ArXiv e-prints,

2011.

[Sie86] A.E. Siegman. Lasers. University Science Books, 1986. See also: Errata

List for LASERS, http://www.stanford.edu/~siegman/lasers_book_

errata.pdf.

[Ske05] T. Skettrup. Rectangular laser resonators with astigmatic compensation.

Journal of Optics A: Pure and Applied Optics, 7(11):645–654, 2005.

[SM04] R. Sisto and A. Moleti. On the sensitivity of gravitational wave resonant

bar detectors. International Journal of Modern Physics D, 13:625–639,

2004.

[SS06] J. A. Sidles and D. Sigg. Optical torques in suspended Fabry Perot inter-

ferometers. Physics Letters A, 354:167–172, 2006.

173

http://www.stanford.edu/~siegman/lasers_book_errata.pdf
http://www.stanford.edu/~siegman/lasers_book_errata.pdf


Bibliography

[TRS+96] G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and M. J. Pad-

gett. The generation of free-space Laguerre-Gaussian modes at millimetre-

wave frequencies by use of a spiral phaseplate. Optics Communications,

127:183–188, 1996.

[Ueh97] N. Uehara. Ring mode cleaner for the initial LIGO 10 watt laser - internal

report. See also UeharaSPIE, 1997.

[Vin09] J. Y. Vinet. On special optical modes and thermal issues in advanced

gravitational wave interferometric detectors. Living Reviews in Relativity,

12(5), 2009.

[Vin10] J. Y. Vinet. Thermal noise in advanced gravitational wave interferometric

antennas: A comparison between arbitrary order Hermite and Laguerre-

Gaussian modes. Physical Review D, 82:042003, 2010.

[VVC01] J. Y. Vinet and the Virgo Collaboration. The Virgo Book of Physics:

Optics and Related Topics. Virgo, 2001.

[WAA+04] B. Willke et al. Status of GEO 600. Classical and Quantum Gravity,

21(5):S417–S423, 2004.

[WAA+06] B. Willke, et al. The GEO-HF project. Classical and Quantum Gravity,

23(8):S207–S214, 2006.

[WPK+11] L. Winkelmann et al. Injection-locked single-frequency laser with an out-

put power of 220 W. Applied Physics B: Lasers and Optics, 102:529–538,

2011.

[YUM+08] K. Yamamoto et al. Current status of the CLIO project. Journal of

Physics: Conference Series, 122:012002 (8pp), 2008.

[ZM97] T. Zwerger and E. Mueller. Dynamics and gravitational wave signature

of axisymmetric rotational core collapse. A&A , 320:209–227, 1997.

174



Acknowledgments

First of all I would like extend my gratitude towards my supervisor Andreas Freise for

all his help throughout my PhD, and for always giving good advice and encouragement.

I would also like to thank Andreas for supporting me and finding funds to get me to

conferences and meetings, and for giving me so many good opportunities to present my

work. I wish Andreas and all the Birmingham group the best success in the future, and

I hope they continue to proliferate the good atmosphere and fun attitude that I found

so enjoyable during my time there.

Thanks are of course due to all my colleagues at Birmingham with whom I have had the

pleasure of working. I can’t avoid a special mention to Simon Chelkowski, for giving me

a shining example of how to approach lab work; I wish I had had more time to learn

from him. A special mention of course also goes to Keiko Kokeyama for making the lab

work fun, and for her unwavering support in the latter stages of my PhD even from all

the way across the Atlantic.

Thank you to all the people in the Glasgow interferometry group, for making me feel

welcome there and for letting me bring LG modes to the JIF lab. Special thanks to

Stefan Hild for his kind hospitality in letting me stay at his flat while working on the

experiment, and also for always sparing the time to teach me things while he was still

in Birmingham. Thanks to Bryan for always being up for a whisky and curry, and

for introducing me to the wondrous curiosity that is haggis pakora. Thanks also to

Miles Padgett, John Nelson and the optics group at Glasgow for helping us out with

the LabView software.

My time at Birmingham was made all the more fun by all the great friends there, so

thank you to Mark ‘Burke-Hole’ Burke, Rory ‘Beyond’ Smith, Charlotte ‘Just one Glass’

Bond, Old Ben, New Ben, Daniel ‘Not Dan Brown’ Brown and Billy ‘Hands of Doom’

Clough. Thanks also to Sonic Sam and Lord Thrashbey of Deceptor, and Atom, Squash

and the Klemponaut of Mutant, for providing the perfect foil to my scientific pursuits

throughout my PhD. Many excellent times were had, and are still to be had in the future

no doubt.

175



Finally, a huge thanks to my family for all their support and encouragement over the

years. It goes without saying that I couldn’t have done it without you, but I’ve gone

and said it now anyway. This one is for you.

If you haven’t already done so, try your skill at Space Time Quest and see if you can

make it onto the high-score hall of fame!

I would like to leave those of you who have made it this far with this stirring thought,

paraphrased from the most memorable 2nd year undergraduate physics essay I have ever

marked:

Science is neither good nor bad. It is like a hypodermic needle;

it can be used to inject life saving medicine. Or heroin.

176

http://www.gwoptics.org/processing/space_time_quest/
http://www.gwoptics.org/processing/space_time_quest/highscores.php?v=1.2

	Abstract
	Statement of originality
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Project background
	1.2 Gravitational wave theory
	1.3 History of gravitational wave detection
	1.4 Michelson interferometer type gravitational wave detectors
	1.5 Noise sources in interferometric gravitational wave detectors
	1.6 First generation ground-based gravitational wave detectors
	1.7 Second generation ground-based detectors
	1.8 Future gravitational wave detectors
	1.9 Structure of this thesis

	2 Laguerre-Gauss beams for test mass thermal noise reduction
	2.1 Test mass thermal noise
	2.2 Thermal noise reduction techniques
	2.3 The mode picture for laser beams
	2.4 The Hermite-Gauss mode set
	2.5 The Laguerre-Gauss mode sets
	2.6 Reduction in thermal noise for higher-order LG beams
	2.7 Coating Brownian thermal noise reduction factors for higher-order modes
	2.7.1 Helical Laguerre-Gauss modes
	2.7.2 Hermite-Gauss modes

	2.8 Thermal lensing

	3 Simulation study into LG33 mode interferometry and production
	3.1 Interferometric performance simulation study of the LG33 mode
	3.1.1 Longitudinal control signals
	3.1.2 Alignment control signals
	3.1.3 Coupling of cavity mirror tilt to longitudinal phase
	3.1.4 Coupling of differential arm cavity misalignment to dark port power
	3.1.5 Coupling to unwanted modes due mode mismatch
	3.1.6 Sensitivity improvements for Advanced Virgo

	3.2 Numerical investigation into LG33 beam generation by LG00 phase profile modulation
	3.2.1 Overview of previous work in Laguerre-Gauss beam production
	3.2.2 Phase modulation profile design
	3.2.3 Simulations of conversion from LG00 beam to a LG33 beam
	3.2.4 Converted beam parameter estimation
	3.2.5 Optimum conversion beam size ratio
	3.2.6 Theoretical purities of generated LG modes


	4 Tabletop demonstrations of LG mode production and cleaning
	4.1 Characterising the spatial light modulator
	4.2 Higher-order LG modes generated using a spatial light modulator
	4.2.1 Mode conversion results
	4.2.2 Blazing angle tests

	4.3 Mode cleaning higher-order LG modes
	4.3.1 The mode cleaner effect
	4.3.2 Design and characterisation of the triangular and linear mode cleaners
	4.3.3 Operation of the linear mode cleaner with higher-order LG modes

	4.4 Helical LG mode interaction with a 3-mirror cavity

	5 Prototype experiments with the LG33 mode
	5.1 Degeneracy of higher-order Laguerre-Gauss modes
	5.2 Design and manufacture of an etched diffractive optic for mode conversion
	5.3 LG33 conversion bench at the Glasgow 10m prototype
	5.4 10m cavity performance with the LG33 mode

	6 Summary and conclusions
	6.1 Summary
	6.2 Conclusions and outlook

	A Thermal noise scaling factors for higher-order modes
	A.1 Laguerre-Gauss mode thermal noise scaling factors
	A.2 Hermite-Gauss mode thermal noise scaling factors

	B Simulation code for results presented in chapter 3
	B.1 FINESSE input files
	B.2 Matlab FFT scripts

	Bibliography
	Acknowledgments

