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tirar endavant la feina amb rigorositat. La teva empenta i la teva gran energia
han estat uns elements claus i imprescindibles d’aquesta experiència. Realment
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Jordi, Pere i Diego per ser els de sempre, per compartir la vida amb mi i per sempre
tenir ganes d’estar junts. Trobar-vos, tenir-vos, anar al gimnàs, anar a córrer, jugar
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de rialles, de converses i de benestar importantissim i essencial. Gràcies a tots.
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i una estimació incondicional. Gràcies per ser qui sou, per estimar-me tant i per
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Chapter 1

Introduction

This thesis is conceived within the definition, design, and execution of LISA Path-
finder, however it focuses on a very specific topic: data analysis of the magnetic
effects in the frequency range of the milli-Herz. These data analysis activities are
necessary as a part of the scientific efforts intended to test key technologies for
gravitational wave detection in space. LISA Pathfinder (LPF) is the mission intended
to test vital technologies for the LISA mission (Laser Interferometer Space Antenna).
The latter will be a space-based gravitational wave detector with the main goal of
detecting and observing gravitational waves within the frequency range between
0.1 mHz to 0.1 Hz. The detection of gravitational waves at low frequency requires
differential measurements of distances of the order of pico-meters between two bodies
separated by 5 million kilometers. Due to the demanding requirements of LISA,
the European Space Agency (ESA) started a precursor mission, LISA Pathfinder.
This mission is mainly developed by ESA, with NASA (National Aeronautics and
Space Administration) contributing with some specific subsystems. In this effort,
several new hardware subsystems never flown before, have been developed for LISA
Pathfinder.

The task of testing new technology in space, combined with the stringent re-
quirements of both LISA and LISA Pathfinder, entails an important data analysis
effort. The activities of data analysis, prior to launch, are devoted to the valida-
tion of the correct behavior of all subsystems and to the design of the experiments
needed to be performed inflight. During mission operations, data analysis activities
will focus mainly on the detailed analysis of the correct operation of the satellite,
on the estimation of its most important characteristics and on the processing of all
telemetry data to achieve mission requirements. The work presented in this thesis
is devoted mainly to the data analysis algorithms related to estimate the contri-
bution of the magnetic perturbations to the measurement of the total differential
acceleration between the two test masses of LISA Pathfinder. Nevertheless, as the
motivation for LISA and LISA Pathfinder is the observations of gravitational waves,
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in this first chapter, we give a brief introduction to gravitational waves, its nature
and the efforts made towards their detection. We also give a brief overview of the
concept and status of the main ground based-detectors, and of the space missions,
LISA and LPF.

1.1 Physics of gravitational waves

In the gravitation theory of Newton, gravitational fields propagate instantly. This
effect is not realistic, because it does not comply with the laws of causality. A
consistent alternative to this theory is the General Theory of Relativity introduced
by Einstein in 1916. In this theory, Einstein presents gravitational waves to describe
the propagation of gravitational fields. These waves are originated in a source of
gravitational field whose structure varies with time. Then, the gravitational field
variation triggered by this source propagates away into the surrounding space at
some finite speed. As a consequence, another body at a certain distance feels such
variation after a finite amount of time. Gravitational perturbations travel as ripples
of the spacetime geometry, meaning that they cause distortion in this geometry. The
aforementioned space-time geometry is determined from the distribution of mass and
energy. Gravitational waves travel through empty space at the speed of light. They
have two polarization modes, the plus-polarization, +, and the cross-polarization,
×. These waves are transverse to the propagation direction (Misner et al., 1973).
As a consequence, the distance metric between freely falling bodies changes in the
perpendicular direction to the traveling gravitational wave in 2 different polarizations
(Fig. 1.1). This particularity constitutes the key characteristic of gravitational waves
and can be used to measure them. Gravitational wave effects were first discovered
by Hulse and Taylor by measuring the decrease of the rotation period of a binary
pulsar (Hulse & Taylor, 1975; Taylor et al., 1979). They attributed this observed
loss of energy to gravitational wave radiation (Taylor & Weisberg, 1982).

The relative change in distance between freely floating bodies due to the dis-
tortion of the space time geometry caused by gravitational waves is very small at
positions close to the Earth, where detectors can be located. The amplitude of a
gravitational wave is usually represented by the strain, h, which represents the rela-
tive change in distance between two test bodies separated initially by a distance L.
Thus, it is defined as:

h =
1

2

∆L

L
. (1.1)

Particularly, for gravitationally bounded systems, we can estimate the value of the
strain as1

1This is an approximation of the order of magnitude of the strain. More specifically, it is pro-
portional to the quadrupole moment acceleration of the source, Q̈ij(t).
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h ∼ l

R

(
GM

lc2

)2

(1.2)

where M is the mass of the source, R is the distance from the source to the test
bodies, l is the linear size of the source, and G = 6.67 × 10−11m3 kg−1s−2 and
c = 3 × 108 m s−1 are, respectively, the gravitational constant and the speed of
light (Schutz, 1984). If we assume that the free floating test bodies are located at a
distance of L = 1 km, the change in distance is around of 5× 10−18 m, 1 000th of a
nucleus

The spectrum of gravitational waves covers a wide range of frequencies, from
10−16 Hz to 104Hz. Part of this spectrum, with the exception of the cosmic mi-
crowave background (located at frequencies around 10−16, as 10−16 ∼ 1/tU, where
tU is the age of the Universe), is shown in Fig. 1.2. The detection of gravitational
waves in the high frequency band is intended to be covered by the on-ground de-
tectors (see section 1.2.1). These instruments are designed to detect emissions by
rotating neutron stars, about 1M� massive objects like binary systems of neutron
stars or black holes (specially, the ones in their last epoch of the inspiral process)
and supernova explosions (Hughes, 2003). The very low frequency band is covered
by Pulsar Timing arrays projects such as the PPTA (Parkes Pulsar Timing Ar-
ray). On the other hand, the low frequency band is planned to be covered by the
first envisioned space-based gravitational wave detector: the Laser Interferometer
Space Antenna (LISA) — section 1.2.2. If the design sensitivity planned for LISA
is achieved, this detector will collect signals from the binary systems known as the
verification binaries (Stroeer & Vecchio, 2006). Moreover, LISA is expected to detect
large amount of white dwarf binaries (Stroeer & Vecchio, 2006), super massive black
holes, SMBHs, (Berti et al., 2005), and extreme mass ratio inspirals, EMRIs (Gair
et al., 2004).

1.2 Gravitational wave detectors

1.2.1 Ground-based detectors

Nowadays, three different detector technologies are used for the detection of gravi-
tational waves. Resonant mass detectors and the interferometric detectors intend to
detect gravitational wave sources in the high frequency band and the Pulsar Timing
Array projects intend to detect gravitational waves in the very low frequency band.

Resonant mass detectors

In 1960, Weber initiated his work to detect gravitational waves by means of resonant
mass detectors (Weber, 1960, 1969). This research interest in developing such detec-
tors has continued until the present date, with an enhancement of their sensitivity by
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Figure 1.1: Gravitational wave polarizations. Representation of the interaction of free falling
macroscopic bodies disposed within a circle with a traversing gravitational wave. The grav-
itational wave travels perpendicularly to the plane of the circles. The space-time geometry
is changed in time depending on the polarization of the wave. The top row shows the plus
polarization and the bottom row shows the cross polarization.

almost three orders of magnitude (in amplitude). Resonant mass detectors consist of
solid bodies (cylinders or spheres) with a very high Q mechanical resonator (Frossati,
2003; Fafone, 2004). This resonator is excited by the gravitational wave crossing the
detector. The most relevant resonant mass detectors are Allegro (Heng et al., 2002)
in North America, Auriga (Zendri et al., 2002) in Italy, Explorer (Astone et al.,
2002) in Switzerland, Nautilus (Astone et al., 1997) in Italy, Niobe (Blair et al.,
1995) in Australia, MiniGRAIL (de Waard A., 2005) in the Netherlands, and Mario
Schenberg (Aguiar et al., 2002) in Brazil. They reach impressive strain sensitivities
of ∼ 10−21 Hz−1/2 (∼ 6× 10−21 m Hz−1/2 in distance, since they are approximately
3 meters long) at the kilo-Hertz frequency range with a bandwidth of tens of Hertz.

Interferometric detectors

Around the late 70s, new investigations started as an alternative method to detect
gravitational waves. At that moment, this method was based on laser interferometry
and, more specifically, in the classical Michelson interferometer. These detectors were
named interferometric detectors, and they represent the base design for the future
gravitational wave detectors. They measure the phase differences between two laser
beams reflected on two bodies. These phase differences are expected to occur by the
change in the distance between the two bodies when the gravitational wave traverses
the detector. The change of phase, δφ, in a Michelson interferometer of arm-length
L is
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δφ = 2
ωl
ωGW

h+ sin
ωGWτ

2
, (1.3)

where ωl is the angular frequency of the laser light, ωGW is the angular frequency of
the gravitational wave, and τ is the round-trip time experienced by the laser beam,
τ = 2L/c, and L the arm-length of the interferometer (Lobo, 1992). The optimum
arm-length is

L =
πc

2ωGW
=
λGW

4
, (1.4)

where λGW, is the wavelength of the gravitational wave. The design of the interfer-
ometric detectors is complicated by the high sensitivity required. Therefore, more
involved interferometric designs have been implemented in current designs. Usually,
the configurations adopted are the power-recycled Michelson interferometer with
Fabry-Perot cavities in the arms (Acernese et al., 2007; Abramovici et al., 1992;
Danzmann, 1992), and the dual recycling technique (Lück et al., 2006; Meers, 1988).
The use of these techniques increases the interaction time between the light and
the gravitational wave and, as a consequence, overcomes the photon shot noise in a
certain band.

The sensitivity of ground-based interferometric detectors is limited by different
sources of noise. Among these sources the most relevant are the seismic noise, the
thermal noise, the photoelectron shot noise, the gravity gradient noise, and quantum
effects. They are relevant in different bands. This is shown in Fig. 1.3. The gravity
gradient and seismic noise prevent the detection of gravitational waves in the low
frequency range. Nevertheless, at high frequency, the dominant noise source is the
shot noise (Lyons et al., 2000). The most important ground based detectors that
are currently operative are listed in Table 1.1, along with their arm-length and best
strain sensitivity. GEO600 is located in Hannover, Germany (Lück et al., 2006) and
it is a German-British collaboration for gravitational wave detection. On the other
hand, the LIGO collaboration (Sigg & the LIGO Scientific Collaboration, 2008),
which is funded by the US, has two detectors, one located in Hanford (Washing-
ton) and another in Livingston (Louisiana). VIRGO is a gravitational wave detector
located in Italy, within the site of EGO (European Gravitational Observatory) at
Cascina (Acernese et al., 2007). Finally, TAMA 300 is a gravitational wave detector
located at the Mitaka campus (Tokyo) of the National Astronomical Observatory of
Japan (Takahashi & the TAMA Collaboration, 2004). The LIGO collaboration has
planned the implementation of the third generation instruments for the LIGO de-
tector (Advanced LIGO team, 2008). These changes promise an order of magnitude
increase in broadband strain sensitivity. This means reducing the sensitivity down
to ∼ 2 × 10−24 Hz

−1/2. This enhancement of performance would imply an increase
of a factor of 1 000 in probability of detection of gravitational waves.
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Figure 1.2: Expected noise curves for LIGO (right curve), LISA (middle curve) and some of
the PTA projects (left curve), and the expected sources of gravitational waves at different
frequencies. LISA or the PTA projects seem to be noisier than LIGO, but what matters is
the signals that each detector can actually sense.

Table 1.1: Sensitivities of the ground based detectors.

Detector Arm-length [km] Strain sensitivity [Hz−1]

GEO600 0.6 7× 10−22

LIGO Hanford 2 4× 10−23

LIGO Hanford 4 2× 10−23

LIGO Livingston 4 2× 10−23

TAMA300 0.3 3× 10−21

VIRGO 3 5× 10−23

Pulsar Timing Arrays

A Pulsar Timing Array uses a set of millisecond pulsars to detect and analyze grav-
itational waves. This detection would originate from a detailed investigation of the
arrival times of pulses emitted by these millisecond pulsars spread over the celestial
sphere and detected using one or more radio telescopes. This millisecond pulsars are
used because they appear not to be prone to the starquakes and accretion events
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Figure 1.3: Best strain sensitivities for the LIGO detectors. This figure shows the require-
ment for the strain sensitivity for the LIGO instrument (black line), the strain sensitivity
curve for the Science Run 6 (S6) for the LIGO instrument located at Hanford (red curve), and
the strain sensitivity for S6 for the LIGO instrument located at Livingston (blue curve) (Sigg
& the LIGO Scientific Collaboration, 2008). The low-frequency branch of these curves is lim-
ited by seismic noise, the central region of the frequency range is limited by thermal noise,
and finally the high-frequency portion is limited by shot noise.

which can affect the period of classical pulsars. A Pulsar Timing Array is sensi-
tive to perturbations on timescales ranging from days to decades, therefore it aims
to detect gravitational waves with a frequency from 10−9 to 10−6 Hz. Thus, the
expected astrophysical sources of such gravitational waves are massive black hole
binaries in the centers of merging galaxies, where tens of millions of solar masses are
in orbit with a period between months and a few years (Hobbs, 2010). Currently,
there exist three active pulsar timing projects: The Parkes Pulsar Timing Array,
PPTA (Yardley et al., 2010), the European Pulsar Timing Array (Janssen et al.,
2008), and the North American Nanohertz Gravitational Wave Observatory (Jenet
et al., 2009). These three projects have begun collaborating under the title of the
International Pulsar Timing Array project (Hobbs et al., 2010).

1.2.2 Space-based detectors: The LISA mission

The high frequency band of the gravitational wave spectrum is being scanned or will
be scanned by the ground-based detectors. The very low frequency band will be cov-
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ered by the PTA projects, and the low frequency range remains still uncovered since
the local noise noise does not allow the ground-based detections at frequencies below
1 Hz. This local noise is produced by moving objects, seismic movements, gravity
gradient noise or meteorological phenomena. Hence, the solution envisioned by the
science community to overcome such limitations is to place an interferometric gravi-
tational wave detector in space. In this environment, the seismic noise does not exist,
and moreover, the gravity noise is strongly reduced. At the same time, the length
of the arm can be orders of magnitude longer than in Earth. The mission that is
planned to be the first space-based interferometric detector is LISA, which stands for
Laser Interferometry Space Antenna. This mission requires the testing and valida-
tion of never-flown key technologies. To this end, the European Space Agency, with
some NASA contributions, have implemented of LISA Pathfinder, LISA’s precursor
mission.

One of the main goals of the LISA mission2 is to detect gravitational waves orig-
inated from massive black holes and galactic binaries in the low frequency range,
that is, from 0.1 mHz to 0.1 Hz (Bender, 1998). More specifically, the main purpose
of the mission is to learn about the formation, growth, density, and surroundings of
massive black holes (from 105M� to 108M�). The observation of these sources would
provide unique new information about these objects, and would test General Rela-
tivity to unprecedented accuracy. The low frequency range is particularly interesting
since it spans the most certain and powerful sources of gravitational wave radiation.
Typically, this is because large scale mass motions imply long time scales. Figure 1.2
shows the detection spectrum for LISA and LIGO and the expected sources for each
of the missions.

The present design for LISA consists in three identical spacecraft separated by
5× 106 km, forming an equilateral triangle. The distances between the satellites are
the arm-length of the detector. This arm-length has to be of the order of λGW/4,
where λGW is the wavelength of the gravitational wave. This triangular constellation
will be placed in an Earth-like orbit 20◦ behind the Earth, and it will therefore orbit
the Sun. In the current design, the plane of this triangle has an inclination of 60◦

with respect to the ecliptic to provide the most stable size of the triangle. This orbit
configuration can be seen in Fig. 1.4. Figure 1.5 shows the triangle formation of the
three spacecraft, with the distances between the vertexes of the equilateral triangle
formed by the three satellites of LISA. Note that these distances are not constant
since the LISA constellation is affected by the gravitational field of the Solar System.
Actually, the arm-lengths of the triangle will have variations of ∼ 60 000 km and
angle variations of 1% per year, respectively. This angle and length variations are
expected to occur in time scales of months, but LISA is conceived to detect length
variations in time scales of hours. Therefore, this will not represent a limitation to
detect gravitational waves within its sensitivity frequency band. Also, Doppler shifts

2http://list.caltech.edu/doku.php?id=start
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Figure 1.4: Left panel: Scheme of the current design of the orbit of the three LISA spacecraft
and their relative position with respect to the Earth’s orbit and to the ecliptic plane. Note
the tilt of the triangle plane relative to the ecliptic (60◦) and the trailing angle behind the
Earth (20◦). Right panel: Evolution of the LISA constellation during one year. Note that
the normal to LISA’s plane describes a cone in the sky once a year, while the three satellites
rotate clockwise around the barycenter of the triangle, also once per year.

will require laser modulations up to a few MHz. Basically, LISA is a giant Michelson
interferometer with an extra arm added to give independent information on the
polarization of the gravitational wave, and also for redundancy. Each of the three
spacecraft contains two optical assemblies. The two assemblies in one spacecraft are
each pointing towards an identical assembly on each of the other two spacecraft to
form a pseudo-Michelson interferometer (see Fig. 1.5). In the milli-Hertz frequency
range, LISA strain sensitivity must be at least of ∼ 10−20 Hz−1/2, therefore the
interferometric system must measure the differences in the round trip path length
between the two arms with a noise below ∼ 40 pm Hz−1/2. Each spacecraft contains
two vacuum enclosures housing a platinum-gold cube of 46 mm in size. These cubes
are known as the test masses and are in nominally perfect free fall. They serve as an
optical reference or mirror for the light beams of the interferometer. A hypothetical
gravitational wave traversing the constellations will vary the length of the optical
path between the test masses of one arm relative to the other arms, and this will
trigger a gravitational wave detection.

The spacecraft cannot maintain its motion along the geodesic because it will be
subject to important perturbations resulting from solar radiation pressure and the
solar wind. Therefore, the main goal of the satellite is to isolate the test masses
from the environment and to maintain them in perfect geodesic motion or free fall.
Thus the spacecraft position does not directly translate into the gravitational wave
signal, however, it is totally necessary to keep the spacecraft well centered on their
respective test masses to reduce spurious local noise forces and, obviously, to avoid
the test mass crashing into the inner walls of the spacecraft. To this end, the relative
motion of the spacecraft with respect to the test masses is precisely measured by
means of a capacitive sensor that measures the change in the electrical capacitance
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Figure 1.5: Triangular constellation formed by the three LISA spacecraft. Each of the
satellite harbors two test masses in nominally geodesic motion. The distance between each
pair of spacecraft is 5 million kilometers, which corresponds to a gravitational wave frequency
of 15 mHz — as L = λGW/4. The relative distance variations in a frequency band around
1 mHz between corresponding test masses in remote spacecraft is measured to picometer
precision by means of laser interferometry.

between the test mass and a set of electrodes that surrounds it. These electrodes are
obviously fixed to the spacecraft. This measurement is then converted into a force-
command which activates a set of micro-thrusters that exert forces on the spacecraft.
This technique is known as drag-free control (Lange, 1964). The required resolution
of the capacitive sensors is ∼ 10 nm Hz−1/2 and the disturbing accelerations induced
by the sensor back-action and by the parasitic forces on the test masses must be
lower than 3 fm s−2 Hz−1/2, in the frequency range of 0.1 mHz to 0.1 Hz (Bender,
1998).

In Michelson interferometers a single light source is split and recombined after
traveling identical path lengths. Therefore, when they are combined and measured
by the photodetector the noise is rejected since it is common to both laser beams. On
the contrary, LISA uses six different light sources: one per test mass (see Fig. 1.5).
In this case, the noise from the light sources is uncorrelated and the time for a
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photon to travel from one spacecraft to another is ∼ 15 s. In this situation, the
uncorrelated noise of the lasers, together with its frequency noise, dominate the
measurement of the distance between the test masses, thus disabling the detection
of gravitational waves. However, time-delay interferometry techniques succeed in
eliminating the laser phase noise. These techniques are based on the formation of
different combinations of different phasemeter outputs from different optical benches
with suitable time delays in order to create correlated signals to cancel the noise.
In order to generate the appropriate time-delayed copies of the phasemeter signals,
these techniques require accurate knowledge of the distance between the spacecraft
(Tinto et al., 2003).

In the current design of LISA, the sensitivity limiting noise effects (Bender, 1998;
Danzmann & Rüdiger, 2003; Schumaker, 2003) are grouped in : (1) shot noise and (2)
acceleration noise. The shot noise is the effect of spurious path difference inversely
proportional to the square root of the received laser power. Due to the low level of
light power received by the interferometer telescopes, the shot noise plays a major
role in the total noise budget of spurious displacements. This noise defines the flat
center band of the LISA sensitivity curve (see Fig. 1.6). The acceleration noise is the
dominating noise source below 1 mHz. This noise is due to the acceleration of the test
masses that cannot be shielded by the drag free control. These accelerations comprise
those caused by temperature and magnetic field fluctuations, charge fluctuations of
the test masses due to cosmic and solar radiation, microgravity effects, and other.
Residual noise accelerations have a rather white spectral distribution, which results
in position errors increasing approximately as ω−2. This is because the position
spectral density relates to the acceleration spectral density as

S
1/2
∆x =

S
1/2
∆F

mTM ω2
, (1.5)

where mTM is the mass of each test mass and ω = 2πf . On the other hand, the LISA
antenna response decreases as (fτ)−1 at frequencies above the inverse of the round-
trip time τ . Thus, above certain frequencies the sensitivity decreases proportionally
to ω−1. Figure 1.6 shows the LISA noise curve, where the aforementioned noise
sources and the frequency dependence of the LISA interferometer response have
been taken into account.

Low frequency stray forces inside the spacecraft tend to move the test masses
away from their geodesics and, therefore, they prevent to put them in perfect free
fall. A residual noisy acceleration can be converted to strain noise as

S
1/2
∆F (ω)

1/m−−→ S
1/2
∆a (ω)

1/ω2

−−−→ S
1/2
∆x (ω)

2/L−−→ S
1/2
h (ω), (1.6)

That is:

S
1/2
h (ω) =

2

mTM Lω2
S

1/2
∆F (ω). (1.7)
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Figure 1.6: Expected noise curve for LISA. Noise related to force perturbations acting on
the test masses such as magnetic field or thermal fluctuations are proportional to ω−2 and
are relevant in the lower LISA band (up to 1 mHz). The shot noise defines the noise plateau
in the center of the band. Finally, the high frequency noise is due to the antenna transfer
function and increases proportionally to ω.

In this case, as the effect decays with ω2, above ∼ 3 mHz the performance of LISA
is expected to be dominated by the shot noise of the laser interferometer, which
is expected to be ∼ 40 pm Hz−1/2. This is true only if stray forces have a power
spectral density

S
1/2
∆a (ω) =

S
1/2
∆F (ω)

mTM
≤ 3× 10−15

√
1 +

(
f

8 mHz

)4
√

1 +
0.1 mHz

f
ms−2Hz−1/2 (1.8)

down to a frequency of 0.1 mHz. This residual noise determines the free fall accuracy
required for LISA.

1.2.3 Technology demonstrator: The LISA Pathfinder mission

The technologies required for the LISA mission are therefore many and challenging.
At the same time, some flight hardware cannot be tested on ground. For instance,
free fall conditions can not be maintained during periods of hours, such as required to
make sub-milliHertz measurements. This led to set up a technology demonstrator to
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test critical LISA technologies in a flight environment. This precursor mission, called
LISA Pathfinder (LPF), is framed within the Scientific Program of the European
Space Agency (ESA). The idea of LISA Pathfinder is to mimic the behavior of one
of the LISA arms, squeezing it from five million kilometers to 35 centimeters. This
enables to place both test masses in a single spacecraft. The key technologies to
be submitted to test in LISA Pathfinder are the drag-free concept and the Optical
Metrology Subsystem (OMS). The first consists of a Gravitational Reference Sensor
(GRS), which uses a set of electrodes to determine by capacitance measurements the
position of the test masses with respect to the spacecraft to nanometer precision.
Then it sends signals to a set of micro-thrusters which are ignited to relocate the
spacecraft so that the test mass remains in its centered position, thereby preserving
the free fall motion of the latter. Secondly, the OMS provides picometer precision
measurements of the relative position/acceleration of the two test masses, using
precise interferometry.

As it has been detailed for LISA, there are some internal forces that can not be
eliminated by the drag free mechanism. Among them, the main contributions are
the temperature and magnetic field fluctuations inside the satellite and the charge
fluctuations of the test masses. Each of these perturbations have an effect on the
acceleration noise of the test masses, thus are detected by the interferometric read-
ings. To achieve maximum efficiency of the instrument, these contributions have to
be identified and subtracted. To this end, LISA Pathfinder is endowed (Cañizares
et al., 2009) with the Data management and Diagnostics Subsystem (DDS). The DDS
is conformed by a set of hardware units intended to measure the relevant physical
magnitudes inside the satellite, and can be split into three subsystems: the magnetic
diagnostics unit, the thermal diagnostics subsystem, and the radiation monitor. The
first of these three subsystems is the unit under analysis in this thesis.

1.3 Thesis objectives and outline

This thesis is focused on the study of the Magnetic Diagnostics Subsystem and its
related data analysis algorithms. The ultimate objective is to determine the contri-
bution of the magnetic effects to the main science reading of the LISA Technology
Package instrument. Moreover, the precision of such estimate must be determined.
To this end, this thesis undertakes two complementary tasks. First, we estimate the
magnetic properties of the test masses, namely, their remanent magnetic moment
and their magnetic susceptibility. Second, we estimate the magnetic field and its
gradient at the position of the test masses from the readings of the four onboard
magnetometers. Concerning the first task, there is a necessity to assess the kine-
matic response of the LTP instrument to the specific magnetic signal injections. For
this reason and for other needs of the mission, the LTP Data Analysis team has a
dedicated research line intended to develop a complete, fast, accurate, and realis-
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tic LISA Pathfinder simulator. As part of this thesis we have contributed to the
modeling of some subsystems and the integration of the whole simulator. Once this
kinematic response is modeled, the response to the test masses to specific magnetic
injection to determine their magnetic properties must be analyzed. On the other
hand, to achieve the second task, since classic methods failed to deliver precise es-
timates, alternative interpolation architectures to estimate the magnetic field at the
positions of the test masses must be developed.

From the list of the primary objectives of the thesis, this study can be split into
three major sections. First, the design and analysis of the magnetic experiments to
determine the magnetic properties of the test masses. In a second step the estima-
tion of the magnetic field and its gradient out of the readings of the triaxial onboard
magnetometers onboard LISA Pathfinder must be done. Finally, a third task con-
sists in the contribution to the collaborative effort of developing a complete LISA
Technology Package simulator within the LTP Data Analysis software. According
to these considerations this work is organized as follows. Chapter 2 introduces the
main goals and characteristics of the LISA Pathfinder mission and it describes the
Diagnostics Subsystem onboard LPF. Among the main important features of the
diagnostics units, we focus on the characteristics of the hardware related to the
magnetic diagnostics unit. These hardware pieces are the most used by the data
analysis algorithms presented throughout this thesis. Chapter 3 is mainly devoted
to the design of the magnetic experiment to be performed in flight in order to es-
timate the magnetic properties of the test masses. Chapter 4 is an extension of
Chapter 3 since it presents specific data analysis processing steps and procedures to
estimate precisely and robustly the magnetic properties of the test masses. Chapter 5
focuses on the estimation of the magnetic field and its gradient at the positions of
the test masses. To this end, we use an alternative to classic interpolation methods
based on neural networks. Chapter 6 analyses the robustness of the neural network
interpolation scheme in various mission circumstances. We present also some of the
limitations of the method and our vision to the LISA scenario. Finally, Chapter 7
presents the LTP Data Analysis simulator. We present an overview of the entire de-
velopment of the Data Analysis tools and, specifically, the complete LTP simulator.
This is the result of the collaborative work of a large group of scientists within the
LTP Data Analysis team, however, it is briefly presented in this manuscript since
the dynamic response of the complete instrument to specific inputs is of relevant
importance to the thesis. The final chapter summarizes the main contributions of
the present work. We also present the future studies needed on this topic and how
we plan to organize the data analysis activities of the magnetic data during science
operations.



Chapter 2

LISA Pathfinder and the
Magnetic Diagnostics
Subsystem

In this chapter we present an overview of the LISA Pathfinder mission, its main
characteristics and its objectives. We also describe the main science measurement to
be performed in flight and the influence of various noise sources to this measurement.
Finally, we present the contribution of the different identified magnetic effects and we
stress the need for the Magnetic Diagnostics module. We also present the hardware
contained within this module and we put forward the necessity of performing two
tasks: estimate the magnetic properties of the test masses and infer the magnetic
field at the test masses. These two tasks are the main objectives of this thesis.

2.1 The LISA Pathfinder mission

LISA raises many new technological challenges and a handful of the most critical
ones can not be tested on ground. For instance, the impossibility of testing accu-
rate free fall trajectories for long periods of time (in the order of hours). Therefore,
ESA decided that a technological precursor mission was needed. This mission was
called LISA Pathfinder. The idea of this mission is to reproduce the behavior of
one only LISA arm, but reducing it from five million kilometers to 37.6 centime-
ters. This enables the possibility of placing both test masses of the LISA-link in
a single spacecraft. Of course, such a reduction of the arm length prevents LPF
from detecting gravitational waves, and converts it into a technological test bench
of the different subsystems to be used by LISA. At the same time, the stringent re-
quirements of LISA are somewhat reduced for LISA Pathfinder, both regarding the
frequency range and the sensitivity of the measurement. Actually, the measurement
bandwidth for LISA Pathfinder is restricted from 1 mHz up to 30 mHz, and the dif-
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Figure 2.1: Artistic view of the LISA Pathfinder spacecraft after the separation from its
propulsion module that will inject it in the Lagrangian point L1, 1.5 million km away from
the Earth.

ferential acceleration noise requirement is set to 3×10−14 m s−2 Hz−1/2. This means
that both requirements have been relaxed one order of magnitude with respect to
those of LISA.

LISA Pathfinder includes two science modules: the LISA Technology Package —
also known as the LTP (Vitale, 2005; Anza et al., 2005) — which is the European
Space Agency (ESA) science module, and the Disturbance Reduction System —
known as DRS (Folkner et al., 2003) — which is the science module contributed by
the National Aeronautics and Space Administration (NASA). Its main components
are the key technologies to be tested for LISA, which are: the Gravitational Reference
Sensors (GRS) — also known as Inertial Sensors (IS) — coupled with the drag free
concept and the interferometric measuring system. The two GRSs are the two large
vertical cylinders — see Fig. 2.2, where the two test masses are hosted. The two
gold-platinum test masses freely float at the center of each of these cylinders. The
center position of these cylinders are separated by the above mentioned 37.6 cm.
The relative position/acceleration between the two test masses is measured by the
onboard interferometer. This interferometer has also a channel that measures the
position of test mass 1 with respect to the spacecraft. On the other hand, the
positions and rotation of the test masses with respect to the Electrode Housing
reference frame are measured by the gravitational reference sensor (see Appendix A
for specific details). These measurements are then fed to the onboard control system.
This control architecture ensures a drag free behavior of one of the test masses by
means of an ultra precise micro-Newton propulsion system, that is, the spacecraft
isolates the test mass from the perturbations coming from outer space. In this case,
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the test mass follows a geodesic motion and the satellite is maintained centered
with respect to this test mass. For this purpose, the mission uses a set of FEEP
thrusters (Field Emission Electric Propulsion). On the other hand, the other test
mass is controlled by a Low Frequency controller and follows the first test mass. This
second control loop uses the electrodes as the main actuation system and prevents
the second test mass to crash with the spacecraft walls. It is important to note that
the Low Frequency Control does not act within the frequency band of interest of
LPF, therefore test mass 2 also follows a quasi-free fall trajectory within this band.
The main science measurement is the differential displacement between both test
masses and it is delivered by the onboard interferometer.

The requirement for the LTP instrument is formulated in terms of spectral density
of differential acceleration noise as:

S
1/2
δa =

S
1/2
δF

mTM
≤ 3× 10−14

[
1 +

(
ω/2π

3 mHz

)2
]

m s−2 Hz−1/2 (2.1)

within the band ranging from 1 mHz up to 30 mHz. The main objective of LISA
Pathfinder is to demonstrate that this residual differential acceleration noise re-
quirement can be achieved. In this case, LPF will verify the ability to place a test
mass in purely gravitational free fall and measure the relative distance to another
free falling object.

2.1.1 Mission rationale

LISA Pathfinder will operate in a Lissajous orbit around the Lagrange point L1 of
the Sun-Earth system, an environment similar to that where the LISA constellation
is expected to operate. Briefly, LISA Pathfinder will demonstrate the possibility of
building an inertial frame within a spacecraft orbiting the Sun on the scale of the
meter in space and on the scale of a few hours in time at the level of Eq. (2.1).

The mission programme in performing this demonstration is scheduled in two
differentiated steps:

1. An expected noise model for the specific orbit and for the specific characteristics
of the spacecraft is derived. Then, the mission is designed to ensure that any
differential residual acceleration noise of the test masses is kept below the
requirements.

2. Once LPF is in orbit, the differential residual acceleration noise between the
two test masses is measured. Then, the noise model for LISA is validated
following these iterative steps:

(a) One noise contribution to the main acceleration measurement is identified.
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Figure 2.2: A schematic view of the payload of LPF, the LISA Technology Package (LTP).
The grey floating boxes represent the four tri-axial fluxgate magnetometers, which are at-
tached to the LCA walls (not seen in the picture). The circular induction coils are observed
in copper color, close to each of the two GRS towers.

(b) We determine whether its effects can be subtracted adjusting the specific
instrument parameters, or we can estimate its contribution.

(c) In the first case, we upload the new instrument parameters and we re-
measure the acceleration noise. We check if this noise contribution has
been eliminated.

(d) In the second case, we estimate this contribution and we suppress its
contribution from the main acceleration data stream (see section 2.4.1).

(e) We schedule this procedure for each identified noise source.

This iterative process is based on the fact that the noise model expects that the
contributions to the total power spectral density fall into three categories:

1. Noise sources whose effect can be identified and suppressed by a proper adjust-
ment of selected instrument parameters. For instance, the force due to residual
coupling of test masses to the spacecraft (Vitale, 2005).
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2. Noise forces related to measurable fluctuations of some physical parameter.
For instance, forces due to thermal gradients or to magnetic fields. The LTP
includes sensors to measure the above physical disturbances (Cañizares et al.,
2009). At the same time, in order to identify the system properties, it also
includes heaters to induce thermal gradients, and magnetic coils to induce
large magnetic fields. With this information, we solve a system identification
problem and we reproduce the expected acceleration noise data stream due to
these effects. Then, we subtract them from the main acceleration measurement.

3. Noise sources that cannot be removed by any of the above methods. In this
group, for instance, we find the charged particle flux due to cosmic rays and
solar radiation. These noise sources will be also measured in order to com-
pare them with the predicted noise models. If the preliminary noise model
is correct, these noise sources must have a contribution below the mission re-
quirements. If not, we will be in front of unforeseen sources of disturbance,
and new procedures will have to be investigated.

If the procedure described above is successful, the noise model for LISA will be
validated and the technological ability to place a test mass in purely gravitational
free fall will be demonstrated.

2.1.2 LTP basic design and mission subsystems

The design of the LTP has its core component in the two free-floating test masses
separated by 376 mm. These two test masses are cubes made of an alloy of Pt (27%)
and Au (73%), have a mass of 1.96 kg and a side size of 46 mm. They are both hosted
within a single spacecraft. The relative motion along the common x- sensitive axis, is
measured by means of a laser interferometer. At the same time, each of the two test
masses are surrounded by their position sensing electrodes. These electrodes provide
positioning information of both test masses relative to the housing frames (Vitale,
2005). The information of the laser and the sensing electrodes is fed to the control
system that commands the position of the spacecraft and of the test masses. The
drag-free control law commands the micro-Newtown thrusters to keep the spacecraft
centered with respect to a reference point (the position of test mass 1). The low
frequency control law commands the electrode actuation system to force test mass 2
to follow test mass 1. This is done out of band and only along the sensitive axis. In
order to accomplish all these tasks, the LTP possesses several subsystems.

1. Gravitational Reference Sensor (GRS): This subsystem is also known as the
Inertial Sensor (IS). There exist two GRSs in LTP, one for each test mass.
In Fig. 2.2, the GRS are the two brown towers at the center of the payload
scheme. Each of these sensors are formed by a set of electrodes that surround
each test mass. The electrodes, hosted by the housing, form a set of variable
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capacitors with the test mass (Dolesi et al., 2003). The variation of capacitance
of these capacitors, due to motion of the test mass, is used to detect it via a
set of parametric-bridge based differential capacimeters. This mechanism al-
lows for the reading of the position of the test mass and their orientation with
respect to the spacecraft. The variable capacitance of electrodes is also used
to apply forces to the test mass, using selected voltages. The front-end elec-
tronics is in charge of providing the readout of the capacitive sensing and also
apply the requested voltages for actuation (Hueller, 2003). The sensitivity of
the measurements of the GRS for the x-axis is on the order of 1.8 nm Hz−1/2

for displacement at 1 mHz and on the order of 200 nrad Hz−1/2 for angular
excursions (Vitale, 2005). Moreover, each of the test masses is held inside
a high-vacuum chamber. This vacuum chamber has a residual pressure re-
quirement of 10−5 Pa and should guarantee the proper vacuum during science
operations and during integrations and testing. At the same time, this chamber
carries the mechanical interfaces between the GRS and the optical bench. The
caging mechanism that should hold the test mass during launch is also mounted
inside the vacuum enclosure (Bortoluzzi et al., 2003). Finally, in the GRS we
have also the CMS (Charge Management System) that forces the discharge of
the test mass by means of ultraviolet light units (ULU). It also contains getter
pumps that provide the requested high vacuum around the test mass (Vitale,
2002). In summary, each of the two GRS is formed by one test mass, a set of
electrodes, a caging mechanism and a charge management system, everything
inside one vacuum enclosure.

2. Optical Metrology System (OMS): This subsystem has as main objective the
measurement of the main science output, i.e. the relative displacement be-
tween both test masses along the main measurement axis, i.e., the x-axis. At
the same time, it will measure the position of test mass 1 with respect to the
spacecraft. This readout will be redundant and it will test the optical readout
technology with respect to the capacitive sensing (which also delivers this exact
measurement). By performing wavefront sensing, the interferometer will also
deliver angular motion readouts of test mass 1 relative to the spacecraft and
those of test mass 2 relative to test mass 1. The sensitivity required for the
interferometric system is 9 pm Hz−1/2 between 3 mHz and 30 mHz, relaxing as
1/f2 towards 1 mHz along the x-axis and of 400 nrad Hz−1/2 for the rotation
axes (Heinzel et al., 2003). The system designed to do this is a heterodyne
Mach-Zehnder interferometer. This design is based on four separate interfer-
ometers: two of them serve as references (phase and frequency reference) and
the other two deliver the two outputs described above (Heinzel et al., 2004;
Garcia-Marin, 2007). The complete interferometer system is based on an op-
tical bench (OB), which is placed between the two GRSs and carry all the
elements to perform the interferometry: the Laser Assembly, which contains
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the laser source and the modulator unit and the Phasemeter Assembly, with
the set of photodiodes and the processing unit. The readings coming from the
phasemeter are processed by the Data Management Unit (DMU).

3. Drag Free and Attitude Control System (DFACS): The control chain onboard
LPF acts on the spacecraft to recreate a drag free environment and it is known
as the DFACS unit. This controller has been designed by Astrium GmbH,
based on the H-infinity technique (Ogata, 2001), to satisfy science requirements
for each of the controlled coordinates (Schleicher, 2008; Brandt & et al., 2004).
These controllers are modeled with sensor and actuation selection matrices,
that allow to select different science/controlling modes. Each of these science
modes use a certain and precise combination of sensors (and sensed variables)
and actuators (and actuation variables). The main science control mode is
Science Mode 1. This mode has two differentiated control loops, the drag-free
loop and the low-frequency suspension loop. The drag free loop receives as
reference signal the position of test mass 1 with respect to the spacecraft. Then,
it commands actuation signals to the thrusters of the satellite to maintain the
spacecraft centered with respect to test mass 1 (Schleicher, 2009). In this case,
it shields the test mass from the multiple perturbations of the outer space
and provides a free fall environment (geodesic motion) for test mass 1. The
thrusters used in LPF are a set of 12 micro-Newton FEEP thrusters grouped in
three different clusters (Bindel, 2008). The low-frequency suspension loop uses
as reference signal the differential displacement between test mass 1 and test
mass 2, and acts on test mass 2, forcing it to follow test mass 1. This actuation
is done out of the measurement bandwidth, therefore in this band it recreates
also a geodesic motion for the second test mass. Strictly speaking, TM2 is
not in geodesic motion, but the deviations thereof are out of the instrument
band. Hence, in this situation we obtain a measurement of a relative distance
between two free falling objects within the band from 1 mHz to 30 mHz. This
actuation is done by means of the electrodes that surround test mass 2. The
appropriate algorithms are stored in the Onboard Computer (OBC), which is
the main mission computer.

4. LTP core assembly (LCA): The central part of the spacecraft is where the
LTP core assembly (LCA) is placed. The LCA is formed by two parts: the two
gravitational reference sensors and the optical bench between them (Garcia-
Marin, 2007). This grouping can be observed in Fig. 2.2. The LCA is fixed
to a satellite cylindric wall located at a centered position in the spacecraft by
means of 8 suspension struts (hyperstatic), see Figs. 2.3 and 2.4 .

5. Data management and diagnostics subsystem (DDS): The DDS consists of
two main parts: the data management unit (DMU) and the diagnostic ele-
ments (Cañizares et al., 2009; Lobo, 2005). The DMU is the computer for
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Figure 2.3: General view of the spacecraft. The cylinder in the central part is thought for
the LCA placement and the rest of the structure will allocate the remaining subsystems,
such as front-end electronics, onboard computers or other units.

the LISA Technology package. It performs two main tasks: (1) drives and
controls the diagnostics items, and (2) acquires and processes the phaseme-
ter data. The other main part of the DDS is the set of diagnostic elements,
sensors and actuators. The sensors are intended to monitor various physical
disturbances happening inside the LTP and the actuators are meant to gener-
ate controlled disturbances to estimate the properties of the instrument. They
are: (a) magnetometers and coils; (b) temperature sensors and heaters; and (c)
the radiation monitor (Llamas, 2006). These diagnostic elements are described
in section 2.3. The contribution of the Spanish LTP group, with researchers
from UPC, ICE/CSIC and IEEC, to the LISA Pathfinder mission is mainly
focused on this subsystem. Specifically, the work presented in this thesis is
mainly devoted to the algorithms needed to process the data delivered by the
magnetic diagnostic elements.

2.2 Noise measurement breakdown in LTP

The science objective of LISA Pathfinder is the verification of differential free-fall
between two test masses. This verification will be done by measuring the differential
displacement between these two test masses along the sensitive axis, which is the
one connecting the centers of the test masses, conventionally the x-axis. In the main
mode of the mission, i.e. Science Mode 1, the dynamics of the differential motion
(coordinate ∆x) are written in the Laplace domain as:
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Figure 2.4: View of the LCA hardware already placed within the spacecraft. Each of the
two GRSs cylinders are placed at the end of the optical bench, and the entire structure is
mounted to the spacecraft walls by the struts.

∆xm =
G(s)

1 +G(s)CLFS(s)
(−CLFS(s)n+

f2 − f1

m
+(ω2

1−ω2
2)x1+ω2

2 (δx2−δx1)) (2.2)

where (f2−f1)/m are differential forces per unit mass along the sensitive axis, ω1 and
ω2 are the stiffness parameters coupling the motion of each test mass to the motion
of the spacecraft, and (ω2

1 − ω2
2)x1 is the acceleration due to differential stiffness.

The transfer functions G(s) and CLFS(s) denote, respectively, the plant dynamics
and the suspension controller transfer function. n is the optical readout noise output
of the interferometer. The plant dynamics for the differential channel is essentially
given by

G(s) ∼ 1

s2 + ω2
2

.

The last term ω2
2 (δx2− δx1) denotes the coupling due to elastic distortion along the

sensitive axis (Schleicher, 2009; Brandt & et al., 2004; Vitale, 2005; Brandt et al.,
2010). s is the Laplace domain variable and the subindex “m” stands for measured.

In order to derive the acceleration data stream, on the ground, the transfer
function

G(s)

1 +G(s)CLFS(s)

must be known and inverted. Then, the measured differential displacement, Eq. (2.2),
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should be multiplied by (
G(s)

1 +G(s)CLFS(s)

)−1

.

Hence, in an ideal case, the acceleration measurement is:

∆am =
f2 − f1

m
+ (ω2

1 − ω2
2)x1 + ω2

2 (δx2 − δx1)− CLFS(s)n (2.3)

Any mismatch in the knowledge of

G(s)

1 +G(s)CLFS(s)

affects the acceleration measurement. However, all acceleration terms are affected
by the same amount. Note also that this mismatch can be frequency dependent
because this operation is performed across the complete measurement bandwidth.

Similar equations can be obtained for other science modes, such as the Drift Mode
or Science Mode 2. In Drift mode, the acceleration between test masses is measured
only between control kicks, where no actuation noise is present in the interferometer
reading (Grynagier, 2009), while in Science Mode 2, the second test mass is controlled
taking the absolute position of test mass 2 instead of the differential reading as the
main reference control variable (Schleicher, 2009). This thesis has been developed
using Science Mode 1, as it is expected to be the main science mode for the majority
of experiments (Vitale, 2005), nevertheless similar studies could be undertaken in
other control modes.

2.2.1 Noise breakdown

The different noise contributions to the total acceleration measurements are classified
into DC and in band contributions. The constant contributions are those type of
effects that constantly disturb the test masses. They have to be counteracted by the
control system to avoid secular drifts and the test masses colliding with the walls of
the spacecraft. On the other hand, the contributions in the measurement bandwidth
must be adequately identified and estimated to perform the noise subtraction process.
These main sources are briefly described in the following sections.

DC differential forces and absolute torques

The test masses will suffer constant forces and torques mainly due to five effects:

• Electric field: The electric field in the surroundings of the test masses produces
a force and a torque in each of the test masses because they behave as charged
bodies. The force is the product of the charge of the test mass by the electric
field at the charge position. Discharge mechanisms are envisioned to reduce
this distortion.
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• Magnetic field: The interaction of the magnetic field surrounding the test mass
with any remanent or induced magnetism in the test mass will result in a force
on the same test mass. The force is the product of the test mass magnetism
(remanent or induced) and the gradient of the magnetic field in which the test
mass rests. On the other side, the torques are mainly due to the vector product
of the test mass remanent magnetic moment and the magnetic field existent at
the location of the test mass.

• Thermal distortions: The thermal effects comprise the radiometer effect, the
differential radiation pressure, and the outgassing. The radiometer effect hap-
pens in rarefield gas atmospheres, where the equilibrium condition is not
reached at uniform pressure, but rather when the ratios of pressure to the
square root of the temperature equal each other. The radiation pressure is the
effect produced by the fact that any body at any absolute temperature emits
thermal radiation. Finally, the outgassing is due to the presence of gas within
the walls of the GRS.

• Laser radiation pressure: The laser beam of the optical metrology system im-
pinges on the test mass and exerts a force proportional to its power. Because
forces are exerted on both test masses, this causes the test masses to move in
opposite directions, and the effect is considered to be correlated. This effect is
proportional to the power of the laser beam.

• Gravitational field: The gravitational field of the spacecraft provides the largest
DC force contribution. Its dominance is such that the DC field will need to be
compensated by the careful placement of balance masses near the test masses.
The gravitational compensation will aim to reduce the differential acceleration
to zero. However, there may exist some errors in the knowledge of this field
caused by alignment and mass distribution errors.

Along the x−axis, and according to Brandt et al. (2010), the apportioning to each
of these DC contributions are listed in Table 2.1. Note that the main contribution is
expected to be due to gravitational effects and that the contribution of the magnetic
effects is, in this case, negligible.

Effects on the measurement bandwidth

The contributions to the total acceleration reading within the measurement band-
width are grouped within five different types:

1. Direct forces: They represent the contribution of (f2−f1)/m in Eq. (2.3). This
contribution can be sub-classified into the following contributions:
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Table 2.1: Apportionment of the contribution of the DC force along the x-axis. In the table
we show the budget prevision for each contribution. We also introduce the margin left up
to the mission requirement.

Contribution ax [m s−2]

Electric field 4× 10−11

Magnetic field 5× 10−14

Thermal distortion 2.78× 10−12

Laser radiation 2.04× 10−11

Gravitational field 3.71× 10−10

Total 4.34× 10−10

Margin 2.16× 10−10

• Internal forces: The internal forces contribution to the total acceleration
noise are:

– Thermal effects: they are due to all thermal fluctuations in the inertial
sensors, such as the ones caused by the radiometer effect, the differ-
ential radiation pressure, the asymmetric outgassing and the thermal
distortion of the IS housing.

– Brownian noise: they are due to dielectric losses of the electrodes,
residual gas damping, magnetic damping due to thermal dissipation
due to eddy currents and, finally, brownian noise due to magnetic
impurities — if the remanent magnetic moment of the test masses is
not uniform (these effects are considered negligible when compared
to the residual gas damping contribution).

– Magnetic field effects: the determination of these effects in flight is
the main purpose of this thesis, they will be examined in more detail
in the following sections. Their total contribution is expected to be
of 2.77 × 10−15 m s−2 Hz−1/2. It represents the largest contributor
among the internal direct forces.

– Random charge fluctuations: charge fluctuations on the test masses
and other voltage fluctuations may represent an acceleration noise
contribution because the fluctuation in charge couples via any DC
voltages into a force noise onto the test masses.

– Laser radiation pressure: the optical metrology laser exerts forces on
both test masses as the beam hits them. Fluctuations in the power
of the beam produce fluctuations in the force on the test mass.

– Self gravity noise: thermal distortions of the LTP and the SC platform
structure are caused by fluctuations in the temperature of the whole
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structure. These deformations will affect the local gravitational field
of the structure at the test mass position, producing acceleration
noise.

– Stray voltage: under random charging effects it is shown that any
charge fluctuation on the test mass couples via the integrated (effec-
tive average) stray DC voltage imbalance for the sensors’ x-direction
faces ∆x into an acceleration noise on the test mass. Note, however,
that not only the charge can fluctuate, but the stray DC voltage im-
balance itself can fluctuate in the measurement bandwidth and thus
create a force noise via the DC test mass charge.

• Sensitive axis Electrostatic Actuation: this contribution covers all effects
on the direct forces due to actuation/sensing electrode voltage noise gen-
erated solely by the electrostatic actuation system. This also includes
any quantization noise introduced due to the front-end electronics of the
Inertial Sensors, the analog to digital converters and other noise sources
not mitigated by the Σ−∆ loop (Dolesi et al., 2003).

• Cross-axes coupling: The cross-axes coupling considers direct acceleration
effects along the sensitive axes due to control deviations or control actions
along/around all cross axes coordinates. These are in particular: stiffness
cross-coupling (contribution of the “off-diagonal terms of the stiffness”)
or electrostatic actuation cross-coupling (contribution of the “off-diagonal
terms of the actuation matrix”1 (Bortoluzzi et al., 2003).

2. Sensitive axis control: It corresponds to the term (ω2
1−ω2

2)x1 in Eq. (2.3). The
sensitive axis control covers the differential acceleration noise contribution due
to DC differential stiffness times the control jitter of test mass 1 along the
sensitive axis in the measurement bandwidth.

3. Thermal distortion along the sensitive axis: It corresponds to the term ω2
2 (δx2−

δx1) in Eq. (2.3). The thermal distortion of the baseline between the two in-
ertial sensor housing centers (actually the distance variation between the two
electrostatic sensing nulls within the measurement bandwidth) has to be con-
strained, because it maps directly into a differential acceleration between the
two test masses.

4. Optical Metrology System noise allocation: It corresponds to the term CLFS(s)n
in Eq. (2.3). This noise can be of two different natures: (1) the Optical Metrol-
ogy System noise and (2) the alignment noise. The first is due to the mea-
surement chain (electronics noise, laser frequency noise, laser power noise,. . . )

1Note that the coupling of the sensing system, i.e. distribution of sensing noise in different axes
by parasitic coupling, has an indirect effect: it leads to control deviations and electrostatic actuation
commands in each axis, depending on the multi-input-multi-output transfer function of the closed
loop control system.
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and external thermo-elastic induced errors. The second is due to the fact that
whenever the x-faces of the test masses are not aligned, the ∆x measurement
may be degraded due to coupling of residual control jitter with other degrees
of freedom.

5. Closed Loop uncertainty: The need of inverting

G(s)

1 +G(s)CLFS(s)

to obtain the acceleration measurement forces us to know this function within
a given uncertainty. The science requirement document (Vitale, 2005) states
that this closed loop transfer function must be known with 5% accuracy within
the entire measurement bandwidth. This requirement is considered to be in-
dependent of all other requirements.

The contribution of each of the aforementioned different effects into the acceler-
ation main reading (along the x-differential axis) are specified in Table 2.2. These
contributions are extracted from the Experimental Performance Budget Document
(Brandt et al., 2010). As can be seen in Table 2.2, the main noise contributor to
the total acceleration reading is expected to be the contribution of the direct forces.
More specifically, within the direct forces, the main contribution is apportioned to
the internal forces. The residual gas damping effect together with the magnetic field
effects are expected to be the most relevant noise sources with a contribution of
around 5 m s−2 Hz−1/2. In order of importance, it follows the contribution of the
random charge fluctuation, the stray voltages, the thermal effects and finally the self
gravity noise. These noises raise the necessity of monitoring each of their sources
throughout the whole mission life time. Specifically, to monitor the magnetic effects,
thermal effects and charging effects into the main science channel, the LISA Tech-
nology package is endowed with the Data Management and Diagnostics Subsystem
(Cañizares et al., 2009).

2.3 The diagnostics subsystem onboard LISA Pathfinder

Among the internal forces acting on the test masses and not shielded by the drag free
control system, there are three that are monitored by the Data Management and Di-
agnostics Subsystem (DDS). These three contributions are temperature fluctuations,
presence of fluctuating magnetic fields within the spacecraft and the effect of random
charging of the test masses due to cosmic and solar radiation. Therefore, the DDS
is separated into three subsystems: Magnetic Diagnostics, Thermal Diagnostics and
the Radiation Monitor.
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Magnetic diagnostics

This subsystem is conformed by four tri-axial magnetometers and two induction
coils. These pieces of hardware are visible in Fig. 2.2. The four magnetometers are
represented as floating boxes, and their actual physical support is the lateral wall of
the larger cylinder which encloses the entire LTP (the LCA cylinder). Each of the
induction coils are positioned next to each of the GRS towers, i.e., next to each of
the test masses. The magnetometers are intended to sense with high precision the
evolution of the magnetic field, acting then as pure passive hardware. The coils are
capable of generating controlled magnetic field within the volume of the test masses,
representing the active hardware of the subsystem. The specific characteristics of
this subsystem are extensively presented in section 2.5, because it represents a key
aspect for the development of this thesis.

Thermal diagnostics

The required temperature stability inside the LTP Core Assembly (LCA) is 10−4 K
Hz−1/2. This will be monitored by a set of 24 high precision thermometers, positioned
at different locations within the LCA (Cañizares et al., 2009; Sanjuán et al., 2008;
Sanjuan, 2009). These thermometers will measure the temperature fluctuations and
any temperature drift. Both have a direct effect on the dynamics of the test masses.
They are the passive hardware of the thermal diagnostics subsystem. Additionally,
this subsystem will be formed of 14 heaters that will allow to change the temperature
dynamics and the temperature gradients at specific locations inside the LCA. These
heaters represent the most critical hardware in terms of acceleration noise injection.
The heaters are the active part of the thermal diagnostics subsystem.

The radiation monitor

LPF will be stationed in a Lissajous orbit around the Lagrange point L1, some
1.5 million km away from the Earth in direction to the Sun. There, the spacecraft will
be exposed to various ionizing radiations coming from the Galaxy and from the Sun.
Some of these charged particles, will hit the spacecraft structure surrounding the
test masses, while others will make its way to them. The latter are particles having
energies above a threshold of about 100 MeV. The excess charge deposited in the
test masses depends on the primary energy of the incoming particle, since secondary
particles are generated all the way of the primary particles across the spacecraft,
most significantly (of course) in the electrode housing walls. Also, indeed, inside
the test masses. The charge deposit is of course a random process which results
in acceleration noise due to interactions with the electric system which monitors
the position of the test masses in their enclosure. This results in fluctuations of
the position of the test masses relative to the electrostatic center of the electrode
housing, and in a Lorentz interaction with the environmental and interplanetary
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magnetic field. The LTP is equipped with a system of ultraviolet lamps which
are intended to purge (by photo-electric effect) the charge accumulated in the test
masses. By accurately matching the discharge rates to the charging rates this noise
can be minimized. However, the GRS can only track charging rates by averaging
over certain periods of time. The Radiation Monitor (RM) is capable of measuring
these charging rates over significantly shorter periods, thereby producing data which
will be used to match the measured charging rates to the discharging rates, or else
to clean LTP data by off-line analysis.

2.4 Magnetic acceleration noise in LTP

Magnetic noise in the LTP is allowed to be a significant fraction of the total mis-
sion acceleration noise requirement: 1.2× 10−14 m s−2 Hz−1/2 can be apportioned to
magnetism, i.e., 40 % of the total noise requirement, 3×10−14 m s−2 Hz−1/2. This
noise occurs because the residual magnetization and susceptibility of the test masses
couple to the surrounding magnetic field and its gradient.

From Ampere’s Law, the elementary force on a current element Idl in the pres-
ence of a magnetic field B is given by dF = I(dl×B). Moreover, the total force on
the current distribution J(x) in an external field B is calculated as (Jackson, 1999):

F =

∫
J(x)×B dV. (2.4)

This expression can be further manipulated to yield to the equation:

F = 〈(M ·∇)B〉V (2.5)

where M is the density of the magnetic moment of the test mass and B is the
magnetic field at the test mass. In this expression, 〈· · · 〉 indicates test mass volume
average of the enclosed quantity, therefore M and B are expressed at each test mass
differential volume (dV ). V is the volume of the test mass.

The magnetic moment comprises two terms: the first is known as the remanent
magnetic moment, Mr, and it represents the natural value depending on the particle
properties. The second is the induced magnetic moment, Mi, and it is originated
when the test mass lies within a magnetic field. For the LTP test mass, the induced
magnetic moment can be expressed linearly with respect to the magnetic field as a
function of the magnetic susceptibility, i.e.:

Mi =
χ

µ0
B.

The magnetic susceptibility, χ, is the degree of induced magnetization of a material in
response to an applied magnetic field, whereas µ0 is the vacuum magnetic constant,
4π × 10−7 m kg s−2 A−2. Therefore, the magnetic force expression is rewritten as:
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F =

〈[(
Mr +

χ

µ0
B

)
·∇
]

B

〉
V. (2.6)

In the above expressions it has been assumed that the derivative of the remanent
magnetic moment is negligible. The magnetic field can be split into two contribu-
tions: the interplanetary magnetic field, BP, and the magnetic field created by the
subsystems of the spacecraft, BSC. That is, we rewrite the magnetic field as:

B = BP + BSC (2.7)

Moreover, in order to assess the contribution of the magnetic effects within the
measurement bandwidth of the LTP, we must consider the time varying components
in each of the terms of Eq. (2.6). The fluctuations of the magnetic moment and
the magnetic susceptibility have been considered negligible. Nevertheless, the effect
of the fluctuations of the magnetic field and its gradient can not be neglected, and
they are the reason for a fluctuating force in the LTP measurement bandwidth due
to magnetic effects. Then, we write the magnetic field expressions as the sum of
a constant DC part, BDC, and a time varying component δB. Note, that both
components have an implied spatial dependence. This is done for the spacecraft and
for the interplanetary field.

BSC = BDC
SC + δBSC and BP = BDC

P + δBP (2.8)

For the spacecraft magnetic field gradient, we also have a DC part ∇BDC
SC and a

fluctuating part, δ∇BSC, like we write in Eq. (2.9). However, the interplanetary field
gradients (both DC and fluctuations) are negligible and therefore they are ignored.
This is a safe assumption taking into account the small dimensions of the spacecraft
in the interplanetary medium.

∇B =∇BSC =∇BDC
SC + δ∇BSC (2.9)

Using this nomenclature, the magnetic force exerted on the test mass is rewritten
as:

F = FDC + δF = (2.10)

=

〈[(
Mr +

χ

µ0
BDC

P

)
·∇
]

BDC
SC

〉
V (2.11)

+

〈[(
Mr +

χ

µ0
BDC

SC

)
·∇
]

BDC
SC

〉
V (2.12)

+ δF (2.13)

where the force fluctuation, δF, is written as:
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δF =

〈[
χ

µ0
δBP ·∇

]
BDC

SC

〉
V (2.14)

+

〈[
χ

µ0
δBSC ·∇

]
BDC

SC

〉
V (2.15)

+

〈[(
Mr +

χ

µ0
BDC

P

)
· δ∇

]
BSC

〉
V (2.16)

+

〈[(
Mr +

χ

µ0
BDC

SC

)
· δ∇

]
BSC

〉
V (2.17)

+

〈[
χ

µ0
δBP · δ∇

]
BSC

〉
V (2.18)

+

〈[
χ

µ0
δBSC · δ∇

]
BSC

〉
V (2.19)

being δB the fluctuation of the magnetic field, and δ∇ stands for the fluctuation
of the gradient. Specifically, the constant terms are the one given by Eq. (2.11),
which represents the constant force term due to the DC term of the interplanetary
magnetic field, and that of Eq. (2.12), which represents the constant force term due
to the DC term of the magnetic field created by the electric systems of the space-
craft. On the other hand, the fluctuating terms can be classified in terms due to
the magnetic field fluctuation, terms due to the magnetic field gradient fluctuation,
and second order terms, which represent the down converted AC contribution in the
measurement bandwith. The first ones are given by Eq. (2.14), which represents the
contribution of the fluctuation of the interplanetary magnetic field when it couples
with the constant spacecraft magnetic field gradient, and that given by Eq. (2.15),
which represents the contribution of the fluctuation of the spacecraft magnetic field
when it couples with the constant spacecraft magnetic field gradient. The terms
due to magnetic field gradient fluctuation are given by Eq. (2.16), representing the
contribution of the fluctuation of the gradient of the magnetic field generated by the
spacecraft when it couples with the constant interplanetary magnetic field, and that
of Eq.(2.17) , representing the contribution of the fluctuation of the gradient of the
magnetic field generated by the spacecraft when it couples with the constant space-
craft magnetic field. Finally, the second order terms are that given by Eq. (2.18),
which represents the contribution of the fluctuation of the interplanetary magnetic
field when it couples with the fluctuation of the gradient of the magnetic field gener-
ated in the spacecraft, and the one of Eq. (2.19), which represents the contribution of
the fluctuation of the spacecraft magnetic field when it couples with the fluctuation
of the gradient of the magnetic field generated in the spacecraft.
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Table 2.3: Necessary test mass properties to proceed with the magnetic contribution calcula-
tion. Test mass conductance, susceptibility and remanent magnetic moment are requirements
of the test masses (Vitale, 2005). On the other hand, the imaginary term of the suscepti-
bility and its frequency break constant have been assessed after measurements performed at
ESTEC (Trougnou, 2007; Fertin & Trougnou, 2007).

Property Value

Mass (m) 1.96 kg
Edge (L) 0.046 m
Face aera (A) L2 = 2.12× 10−4 m2

Volume (V ) L3 = 9.73× 10−5 m3

Electrical conductance (σ0) 3.33× 106 m−1 Ω−1

Magnetic susceptibility (χ0) 2.5× 10−5

Imaginary susceptibility (δχ) 3× 10−7

Remanent magnetic moment (mr) 2× 10−8 A m2

Susceptibility frequency break constant (τe) 1/(2π 630) s
Charge (DC) / electron charge (q0) 1× 107

2.4.1 Magnetic noise quantitative breakdown

In this section we perform a quantitative assessment of each of the aforementioned
magnetic induced force noises within the measurement bandwidth. Prior to this
analysis we need to know the value of the expected magnetic field and magnetic
field gradient in the spacecraft during science operations. This information is listed
in Table 2.5, which is extracted from tests done at Astrium Stevenage (Wealthy
& Trenkel, 2010), assumptions reported in the Experimental Performance Budget
(Brandt et al., 2010), experiments done by the University of Trento (Vitale, 2007),
and documents reporting the magnetic testing campaign at ESTEC (Trougnou, 2007;
Fertin & Trougnou, 2007, 2010). Moreover, we need to know the nominal test mass
characteristics, thus they are listed in Table 2.3, whereas in Table 2.4, we list other
necessary quantities to perform these calculations.

Magnetic field fluctuations

Using the equations presented in previous sections, we know that the acceleration
noise contribution due to magnetic field fluctuations, δB coupled with the constant
field gradient is computed as:

δF =

〈[
χ

µ0
δB ·∇

]
BDC

〉
V (2.20)
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Table 2.4: Other constants needed for the calculation of the magnetic contributions. The
characteristic length is the length used to convert magnetic field values into magnetic field
gradients when the source of field and gradient are correlated. The magnetic frequencies
are used to model the expected magnetic field spectrum and the shielding factor is the
attenuation affecting the electric field that traverses the electrode housing (Vitale, 2005;
Brandt et al., 2010).

Property Value

Magnetic permeability (µ0) 4π10−7 kg m s−2 A−2

Electron charge (qe) 1.602176487 ×10−19

Characteristic length (l0) 3.5 m
Magnetic initial frequency constant (τi) 1/(2π10) s
Magnetic second frequency constant (τ0) 1/(2π104) s
Shielding factor (αS) 1× 10−2

Spacecraft speed in Sun fixed frame (v) 30 ×103 m/s

Table 2.5: Magnetic field figures expected during mission operations. The values of the
spacecraft units are those measured by Wealthy & Trenkel (2010), and the figures of the
interplanetary magnetic field are reported in Brandt et al. (2010), which are confirmed by
the values extracted from the ACE mission reported in Appendix B.

Magnetic Field Figures Value

Spacecraft DC magnetic field component Bx = 144 nT
Interplanetary DC magnetic field component Bx = 10 nT

Spacecraft magnetic field fluctuation SBx = 21 nT Hz−1/2

Interplanetary magnetic field fluctuation SBx = 55 nT Hz−1/2

Spacecraft DC magnetic gradient ∂Bx
∂x = 11 500 nT m−1

Interplanetary DC magnetic gradient 0

Spacecraft magnetic gradient fluctuation S ∂Bx
∂x

= 39 nT m−1 Hz−1/2

Magnetic field fluctuation above MBW SBxaboveMBW
= 0.3 nT Hz−1/2

If we consider that the three components of the magnetic field have the same value
as Bx and we also consider that the gradients of Bx with respect to the three spatial
components are equivalent, we can calculate the contribution to the acceleration
noise along the sensitive axis (x-axis) as:

δaδB =
√

2

√
3

mTM

χV

µ0
δBx

∂Bx
∂x

DC

(2.21)
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where the
√

2 factor accounts for a worst case situation when computing differential
acceleration, assuming that both test masses moved in opposite directions. If we
consider the interplanetary magnetic field and the spacecraft fluctuations separately,
we will obtain two terms, i.e., δaδBSC

and δaδBP

In these equations, the susceptibility χ is calculated as

χ = χ0 +
L2µ0σ0πf

12
, (2.22)

where the nominal value χ0 is modified by the frequency term observed in the torsion
pendulum tests of the University of Trento (Vitale, 2007). In this equation, L is the
side of the test mass, µ0 is the magnetic permeability, σ0 is the electrical conductance
of the test mass, and f is set to 1 mHz.

Magnetic gradient fluctuations

With an analogous rationale to the previous sections, the fluctuations in the magnetic
field gradients will contribute to the overall force according to:

δaδ∇B =
√

2

√
3

mTM
V

(
Mr +

χ

µ0
BDC
x

)
δ
∂Bx
∂x

(2.23)

In this case, as the gradient of the interplanetary magnetic field is negligible, so
we will obtain only one term due to the fluctuations of the gradients created by the
electronics of the spacecraft, i.e., δaδ∇BSC

.

Down converted AC magnetic fields

The final term of the force noise is due to the coupling of the fluctuations of both
the magnetic field and the magnetic gradient, i.e.:

δF =

〈[
χ

µ0
δB · δ∇

]
B

〉
V (2.24)

From this equation it can be seen that if the time dependent component of
the field has a sinusoidal form, it is plausible to generate a low frequency force by
mixing two or more higher frequency AC fields that have frequencies close together.
Assuming that the fluctuations in the spacecraft magnetic field will be caused by
fluctuations in the current flowing through the different equipments, the component
δB may be split into an spatial term (which does not vary with time) multiplied by
an AC signal (a sinusoid in this case). Then the gradient of this field is expected to
be a multiple of the field caused by the geometry of the unit with respect to the test
mass, therefore we can write:
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δ
∂Bi
∂x

= δ
Bi
l0

(2.25)

where l0 is the characteristic length. Out of the results reported in (Trougnou, 2007),
this characteristic length is fixed to 3.5 m. With the above assumption we write:

δFx =

(
χ(t)V

µ0l0
|δB|2

)
(2.26)

where the susceptibility is expressed as a time-dependent function (χ(t)) because
the magnetic fields on the test masses are time-dependent too (and have several
frequencies at each time instant). If we want to perform this computation in the
frequency domain, the time-varying susceptibility term can be modeled as (Vitale,
2007; Trougnou, 2007):

χ(ω) = A0

(
−iωτe

1 + iωτe

)
, (2.27)

and the linear spectral density of the field at high frequencies is modeled as2:

B(ω) = B0

(
1 + iωτi

iωτi(1 + ωτ0)

)
(2.28)

This spectrum has an initial 1/f behavior until a frequency value of 20 Hz (corre-
sponding to the first breakpoint τi, then a plateau at B0 = 0.25 nT Hz−1/2 between
20 Hz up to 250 Hz. Finally, rolls-off as 1/f , representing the high-frequency mag-
netic shielding due to the Vacuum Enclosure and also the Electrode Housing. This
attenuation is quite considerable at high frequencies. For instance, at 10 kHz, this
attenuation is approximately of 103. There is no onboard hardware to measure the
field at high frequencies. Then, we expect to use this same model for data analysis
procedures during mission operations. After some calculations, reported in (Vitale,
2007; Trougnou, 2007; Fertin & Trougnou, 2007), the value of the acceleration noise
at low frequency, and specifically in the measurement bandwidth, due to AC mag-
netic fields is constant and can be shown to be:

δaAC =

(
V

µ0 l0mTM

)
A0B0

√√√√τ0τe(τ2
0 + 3τ0τe + τ2

e ) + τ2
i (2τ0τe + τ2

i )

2τ0

(
1 + τ0

τe

)3
τ4

i

(2.29)

where τi and τ0 are the breakdown points of the magnetic field model. The roll-off
frequency of the gold-platinum test mass is 630 Hz (Trougnou, 2007), therefore we
define τe = 1/(2π 630).

2The AC magnetic field has been measured for different units at Astrium Stevenage (UK). These
tests are reported in Wealthy & Trenkel (2010)
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Lorentz force contribution

A particle with charge q moving through an electro-magnetic field with velocity v
experiences a force given by (Jackson, 1999):

FLorentz = q(E + β ×B) (2.30)

where E and B are, respectively, the electric field and the magnetic field. For
the specific case of LISA Pathfinder, the satellite moves through the interplanetary
magnetic field of the Sun. To do this calculation, we should obtain first the electro-
magnetic field in the rest frame. To this end, we use the Lorentz transformation in
order to translate the interplanetary fields into the spacecraft frame. The general
transformation stands that to transform the fields from a system S to a system S′,
which is moving at a velocity v relative to S, it can be written (Jackson, 1999):

E′ = γ(E + β ×B)− γ2

γ + 1
β(β ·E)

B′ = γ(B− β ×E)− γ2

γ + 1
β(β ·B)

Thus, we have:

E′ ' γ(β ×B) (2.31)

B′ ' γB (2.32)

The speed of LISA Pathfinder in a Sun-fixed frame is about 30 km/s. Thus, the
value of |β|, which is defined as |β| = |v|/c ∼ 10−4, is small. As a consequence,
γ = 1/

√
1− |β|2, is very close to 1. Hence, the Lorentz force is:

FLorentz = q(E′ + β ×B′) ' qγβ ×B (2.33)

In this case, the fluctuation of the interplanetary magnetic field causes a fluc-
tuating force on the test mass. However, the interplanetary magnetic field is now
seen as an electric field, therefore it will be shielded by the electrode housing and
inertial sensor surroundings. This shielding is represented by αS, and is reported
in Table 2.4. The magnetic fluctuation is expected to affect both test masses at
the same time, however there will be a differential acceleration due to the different
charge on each test mass. Assuming that the charge of both test masses will have
the same sign, then the maximum differential force will be obtained assuming that
we have maximum charge on one test mass and zero charge on the other. In this
worst case scenario, the acceleration noise produce by this effect is computed as:

δaLorentz =
γ Qβ S

1/2
BP

mTM αS
(2.34)
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Total magnetic contribution

The total contribution to acceleration noise of the different magnetic effects can be
computed as a quadratic sum of the different terms. Specifically, the contribution
due to fluctuation of the magnetic field and the fluctuation of the gradient of the
magnetic field are considered as correlated sources as they are both originated by the
spacecraft magnetic field. On the other hand, the contribution due to the fluctuation
of the interplanetary magnetic field and the Lorentz effect are also correlated, since
they are caused by the fluctuations of the interplanetary magnetic field. Thus, the
final result is:

δaTotal =
√

(δaδBSC
+ δaδ∇BSC

)2 + δa2
AC + (δaδBP

+ δaLorentz)2 (2.35)

Considering the nominal mission values listed in Table 2.5, we compute the con-
tribution of each term of the magnetic effects to the total budget. These results are
listed in Table 2.6. The most relevant effect is the contribution of the fluctuations of
the interplanetary magnetic field, followed by the contribution of the down-converted
effects and the fluctuations of the gradient of the spacecraft magnetic fields. Note
that all these calculations depend on the actual knowledge of the magnetic fields,
the magnetic field gradients and their fluctuations at the test mass positions during
mission operations. In this chapter we have assessed all contributions using expected
values for each of these magnitudes, but for mission data analysis procedures we need
to know the actual value of these fields. To this end, the spacecraft is equipped with
four triaxial magnetometers. From these measurements, we should infer the mag-
netic field and its gradient at the test masses. This task is covered in chapters 5 and 6
of this thesis. On the other hand, note also that the other essential quantities are the
magnetic characteristics of the test mass, such as their remanent magnetic moment
and their susceptibility. These properties also need to be measured in flight. They
will be measured by processing the response of the test masses to specific magnetic
field injections created by the LTP induction coils. This task is covered in chapters
3 and 4. With all these ingredients, we expect to be able to subtract the magnetic
effects from the main science data stream.

2.5 The LTP Magnetic diagnostic subsystem

The LTP Magnetic diagnostic subsystem is the hardware subsystem intended to
deliver the necessary measurements to estimate the magnetic acceleration noise con-
tribution to the total acceleration noise. It has 2 main goals: creating controlled
magnetic field and gradients at the positions of the test masses, and measuring the
DC magnetic field values and its fluctuations within the measurement bandwidth
at different locations at the LCA. To this end, the Magnetic Diagnostic is endowed
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Table 2.6: Contribution of the magnetic field effects to the total acceleration noise.

Contribution Differential acceleration noise

[m s−2 Hz−1/2]

Spacecraft magnetic field fluctuation δaδBSC
= 0.680 ×10−15

Spacecraft magnetic field gradient fluctuation δaδ∇BSC
= 1.097 ×10−15

Down converted AC magnetic fields δaAC = 1.265 ×10−15

Interplanetary magnetic field fluctuation δaδBP
= 1.701 ×10−15

Lorentz force δaLorentz = 0.013 ×10−15

Total of magnetic effects δatotal = 2.775 ×10−15

Requirement of magnetic effects δarequirement = 12 000 ×10−15

Bx

B

θ

−y

I

x

z

ρ

ρCoil

Test Mass

Figure 2.5: Coordinate reference frame centered at the position of the coils (see Appendix A).
This reference frame is used for the magnetic field calculation, see text.

with two specific hardware: (1) the onboard magnetic coils, and (2) the onboard
magnetometers.

2.5.1 Magnetic coils description

The two circular induction coils are made of a titanium alloy, specifically (Ti6Al4V),
and have N = 2 400 windings of mean radius a = 56.5 mm. They are placed
85.5 mm away from the center of their respective test mass. Their location within
the complete LCA is shown in Fig. 2.2. The onboard coils are aligned with the x-
axis of the test masses, thus, the magnetic field within the volume of the test masses
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Table 2.7: Positions of the test masses referred to a coordinate system fixed to the space-
craft. This reference frame is the Magnetic Experiment Reference Frame and it is defined in
Appendix A.

Test Mass x [m] y [m] z [m]

1 −0.1880 0 0.6093
2 0.1880 0 0.6093

Table 2.8: Positions of the coils. They are referred to a coordinate system fixed to the
spacecraft (Magnetic Experiment Reference Frame).

Coils x [m] y [m] z [m]

1 −0.2735 0 0.6093
2 0.2735 0 0.6093

has axial symmetry. This geometric configuration is displayed in Fig. 2.5. For the
sake of completeness, the positions of the test masses are listed in Table 2.7 and the
positions of the center of the coils are listed in Table 2.8.

The magnetic field created by an induction coil is easily obtained from classical
expressions. In particular, for slowly varying coil currents and short distances from
them, radiative effects can be safely neglected (Jackson, 1999). Due to the symmetry,
only the parallel (Bx) and transverse (Bρ) components of the field B are different
from zero. The definition of these field components are also shown in Fig. 2.5. The
magnetic field is calculated by means of Ampère’s induction law. Assuming a coil
of negligible thickness, radius a, current I and a wire winding of N turns, we know
that,

Bρ(x, ρ) =
µ0

4π

Nπa2 I

(aρ)3/2

k

π

x

a

[
−K(k) +

1− k2/2

1− k2
E(k)

]
(2.36a)

Bx(x, ρ) =
µ0

4π

Nπa2 I

(aρ)3/2

k

π

[
1

2

k2

1− k2
E(k)

]
− ρ

x
Bρ(x, ρ) (2.36b)

where

k =

√
4aρ

x2 + (a+ ρ)2
, ρ2 = y2 + z2 (2.37)
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In these expressions, as shown in Fig. 2.5, x, y and z are the coordinate triplet
of the field point with respect to the center of the coils, and ρ is the distance to the
x-axis. The result involves elliptic integrals of the first and second kind (K(k) and
E(k), respectively),

K(k) =

∫ π/2

0
(1−k2 sin2 φ)−1/2 dφ and E(k) =

∫ π/2

0
(1−k2 sin2 φ)1/2 dφ (2.38)

Once the transverse field Bρ is known, it takes two multiplications to resolve it
into its Cartesian components By and Bz, as shown in Eqs. (2.39).

By =
y

ρ
Bρ =

y√
y2 + z2

Bρ and Bz =
z

ρ
Bρ =

z√
y2 + z2

Bρ (2.39)

In order to evaluate the force and torque contribution we also need to know the
value of the gradient of the magnetic field created by the coils, i.e. the matrix

∇B =



∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bz
∂x

∂Bz
∂y

∂Bz
∂z


(2.40)

Note that this matrix is symmetric and traceless. This is because of the prop-
erties of the induction field, i.e., ∇ × B = ∇·B = 0. All these computations are
cumbersome, thus they are detailed in Appendix C and in (Dı́az–Aguiló et al., 2010).
However, in order to partly verify the correctness of the field calculations, a specific
and simple configuration can be used. For example, one can compute the on-axis
field with the well known textbook expression:

Bx(x, ρ = 0) =
µ0

4π

2πa2N I

(a2 + x2)3/2
and Bρ(x, ρ = 0) = 0 (2.41)

and this should reproduce the results obtained with Eqs. (2.36a) and (2.36b), in the
appropriate limit. An additional check is the x-gradient of the longitudinal field Bx:

∂Bx
∂x

(x, ρ = 0) = −µ0

4π

6πa2N I x

(a2 + x2)5/2
(2.42)

As an example, the values of the magnetic field and its longitudinal gradients
produced by the LTP hardware and the LTP geometry are shown in Table 2.9 for
three different points on the closest test mass. These values are computed for a DC
current of 1 mA.
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Table 2.9: On-axis magnetic field and longitudinal gradient values at three points on the
closest test mass for a 1 mA DC current fed to the 2 400 turn LTP coil. They are the closest
point to the test mass, the test mass center and the farthest point along the x-axis.

x= 62.5 mm x= 85.5 mm x= 108.5 mm

Bx [µT] 8.05 4.47 2.63

∂Bx/∂x [µT/m] −212.6 −109.2 −57.2

If the current fed to the coils is I(t) = I0 sinωt, the resulting magnetic field (and
its gradient) will preserve the spatial dependence inferred from the previous formulae
and will oscillate at the same frequency. Therefore, we can write,

B = B0 sinωt and ∇B =∇B0 sinωt (2.43)

where B0 and ∇B0 are the field vector and gradient matrix for a constant I0. We
will use these oscillating signals to estimate the magnetic properties, i.e. remanent
magnetic moment and susceptibility — see chapters 3 and 4.

In the science requirement document (Vitale, 2005), the coils are required to
produce a field at the test mass locations with no field noise in excess of 5 nT Hz−1/2

and the x-derivative of each field component in excess of 12 nT m−1 Hz−1/2. These
values must be achievable at any frequency between DC and 30 mHz (Kahl, 2007;
Lobo & Mateos, 2008). These requirements turn into an equivalent requirement in
current stability of 110 nA Hz−1/2 at 1 mHz. These tests have been performed at
IEEC and it has been demonstrated that the current satisfies these requirements for
current amplitudes below 2 mA (Lobo & Mateos, 2008).

2.5.2 Magnetometers description

Measuring the magnetic field and gradient fluctuations at the location of the test
masses is not possible. These must be estimated from the measurement at different
selected locations. Previous studies (Vitale, 2005), led to place only 4 magnetome-
ters within the LCA volume. Their specific positions are listed in Table 2.10. The
onboard LTP magnetometers are fluxgate tri-axial magnetometers built by Billings-
ley. The specific model is TFM100G4-S (Billinglsey, Aerospace and Defense, 2007).
By construction, these magnetometers consist of three different magnetic sensors,
along the x-, y- and z-directions. For each of these axes, the fluxgate magnetome-
ter consists of a sensing (secondary) coil surrounding an inner drive (primary) coil
around high permeability magnetic core material.

The measurements delivered by these 4 magnetometers are not sufficient to infer
accurate magnetic field values at the test mass locations with classical interpolation
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Figure 2.6: Onboard magnetometers. Left panel: technical drawing of the inner position
of the sensing heads. Right panel: view of the caging of the engineering model of the
magnetometer.

methods (see chapter 5). Nevertheless, we present alternative interpolation methods
based on neural networks that, assuming that sufficient testing is performed, lead to
promising results (see chapter 6).

Table 2.10: Positions of the magnetometers. They are referred to a coordinate system fixed
to the spacecraft, consistent with Tables 2.7 and 2.8.

Magnetometers x [m] y [m] z [m]

1 0.0758 −0.3694 0.6093
2 0.3765 0 0.6093
3 −0.0758 0.3694 0.6093
4 −0.3765 0 0.6093

Due to the large size of the sensing heads of these low-noise magnetometers, the
spatial resolution in each of the directions is ∼ 4.0 mm. On the other hand, the coils
of the magnetometers have an orthogonality better than 1◦. This angular error may
be transformed to a linear uncertainty by multiplying by the longest distance inside
the magnetometer caging, l ' 82.5 mm, resulting in an uncertainty of ∼ 1.5 mm.
The overall spatial uncertainty of the sensing position of the magnetometers can be
computed by adding in quadrature the different contributions, and turns out to be
∆ ∼ 4.3 mm. These magnetometers present a field measurement accuracy of 0.5% of
its full scale, and have a linearity of 0.0035%. Their sensitivity is of 60 µV/nT. They
have a temperature operating range from -55◦ to 80◦ and present a flat frequency
response from DC up to 3.5 kHz. Other specifications are reported in its specification
sheet (Billinglsey, Aerospace and Defense, 2007). The magnetometers are shown in
Fig. 2.6.

As required in Vitale (2005); Kahl (2007), the magnetometers should have a
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resolution of 10 nT Hz−1/2 within the measurement bandwidth, their measurement
range should lie between −60µT and 60µT, and they should have a field measure-
ment better that the 1% level. The tri-axial flight model magnetometers were tested
at IEEC and satisfied all requirements (Lobo & Mateos, 2008).





Chapter 3

Magnetic experiments onboard
LISA Pathfinder

In this chapter we describe the magnetic experiments that will be performed onboard
the LISA Pathfinder spacecraft. These experiments are intended to estimate the
remanent magnetic moment and susceptibility of the test masses. To this end, we
present the magnetic forces and torques which will be injected in the onboard coils, we
study their effects on the test masses, and we assess the magnitude of the kinematic
excursions. Finally, we present preliminary results for the estimation of the magnetic
characteristics of the test mass, that will be further expanded in chapter 4.

3.1 Introduction

The LTP is designed to measure relative accelerations between two test masses in
nominal free fall (geodesic motion) with a differential acceleration noise budget

S
1/2
δa,LPF (ω) ≤ 3× 10−14

[
1 +

(
ω/2π

3 mHz

)2
]

m s−2

√
Hz

(3.1)

in the frequency band between 1 mHz and 30 mHz Vitale (2005); Antonucci et al.
(2011b).

Magnetic noise in the LTP is allowed to be a significant fraction of the total
mission acceleration noise: up to 1.2×10−14 m s−2 Hz−1/2 is apportioned to magnetic
effects, i.e., 40 % of the total noise, 3×10−14 m s−2 Hz−1/2, see Eq. (3.1). This noise
occurs because the residual magnetization and susceptibility of the test masses couple
to the surrounding magnetic field, giving rise to a fluctuating force which is given
by:

δF =

〈[(
M +

χ

µ0
B

)
·δ∇

]
B +

χ

µ0
[δB·∇] B

〉
V (3.2)
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Figure 3.1: Artistic view of the LISA Technology Package. The two towers are the Grav-
itational Reference Sensors. They are connected by the optical bench (grey), where the
interferometer is located. The induction coils are located next to the two towers.

in each of the test masses. In this expression B is the magnetic field in the test mass, χ
and M are its magnetic susceptibility and residual density of magnetic moment,
respectively, and V is the volume of the test mass, µ0 is the vacuum magnetic
constant, 4π × 10−7 m kg s−2 A−2, and 〈· · · 〉 indicates test mass volume average of
the enclosed quantity. Finally, δB represents the fluctuation of the magnetic field,
and δ∇ stands for the fluctuation of the gradient (Sanjuán et al., 2008).

This force noise stems from the fact that a magnetized body lying within a
magnetic field suffers a force and torque expressed as (Jackson, 1999):

F =

〈[(
M +

χ

µ0
B

)
·∇
]

B

〉
V , (3.3)

and a torque:

N = 〈M×B + r× [(M·∇) B]〉V (3.4)

In these expressions r denotes the distance to the center of the test mass. Thus, as
can be readily seen in Eq. (3.2), to estimate and ultimately subtract the acceleration
noise due to the magnetic interactions, the magnetic properties of the test masses
must be determined.

In this chapter we describe the experimental setup and the data analysis needed
to infer the values of the magnetic properties of the test masses on board the LTP,
and we assess the feasibility of obtaining the magnetic characteristics of the test
masses with good accuracy. Specifically, we present a set of simulations aimed at
evaluating the response of the LTP hardware (coils and test masses) and control
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Figure 3.2: Coordinate reference frame of the experiment. This reference frame is centered
at the position of the coils (see Appendix A).

architecture (drag free controllers and low frequency suspension controllers) when
a controlled magnetic field is applied. We will show that using this procedure,
both the magnetization and the magnetic susceptibility of the proof masses can be
determined to the desired accuracy. The chapter is organized as follows: in section
3.2, we describe the main elements of the experimental setup. Section 3.3 is devoted
to compute the forces and torques acting on the test masses. It follows section 3.4,
where the different noise sources perturbing the experiment are presented. Finally,
in section 3.5 we present our results, whereas in section 3.6 we summarize our main
findings and we present our conclusions.

3.2 Experiment description

As mentioned, the basic approach to determine the magnetic properties of the test
masses is to inject a controlled signal with the onboard coils and to study the dynam-
ics of the proof masses. The two test masses are located at the center of each inertial
sensor, and are the end mirrors of the OMS. In fact, one of the test masses will be
the reference free floating body to perform the translation and rotation control of
the spacecraft. The test masses are made of an alloy of Pt (27%) and Au (73%),
their dimensions are 46 × 46 × 46 mm and their weight is 1.95 kg. To comply with
the top science requirements, the test masses must have certain properties. For the
purpose of the present chapter the two most important ones are the magnetic mo-
ment and the susceptibility, which must be, respectively, |m| < 2.0×10−8 A m2 and
|χ| < 2.5 × 10−5 (Vitale, 2005). The volume of the test masses is V = 0.00463 m3.
The density of magnetic moment has to be then |M| < 9.451× 10−4 A/m, assuming
homogeneity.
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The controlled magnetic field will be produced by the onboard coils, which are
placed next to each of the GRS towers — see Fig. 3.1. The two circular induction
coils are made of a titanium alloy (Ti6Al4V), have N = 2 400 windings of radius
r = 56.5 mm. They are placed 85.5 mm away from the center of the respective test
mass. The onboard coils are aligned with the x-axis of the test masses, thus, the
magnetic field within the volume of the test masses has axial symmetry, see Fig. 3.2.
If the current fed to the coils is I(t) = I0 sinωt, the resulting magnetic field (and its
gradient) will oscillate at the same frequency. Thus, when the coils are switched on
the test masses rotate and are displaced from their equilibrium positions. Typical
values of I0 and ω/2π are, respectively, 1 mA and 1 mHz.

Compared to other missions, LPF is very flexible in terms of the possible oper-
ation scenarios. Nevertheless, we characterize the magnetic experiment for a fixed
operating mode, the main science mode (Schleicher, 2009). This mode is schemat-
ically shown in Fig. 3.3. D is a dynamical matrix which represents the dynamic
response of the spacecraft and the test masses when they are affected by specific
forces (f). This block consists of an 18 degree-of-freedom representation of the mo-
tion of these 3 bodies. The differential position of the test masses and their distance
to the spacecraft are represented by x in this block-diagram.

The LTP is endowed with two different mechanisms to detect the motion and
the actual position of the test masses. The first one is the interferometer, while the
second is the electrode housing of each of the two gravitational reference sensors.
The OMS in LTP is in charge of measuring the distance between one of the test
masses and the optical bench, thus giving an absolute reference, and also the distance
between both test masses, providing a differential reading. Due to its ability to
perform wavefront sensing, the rotation angles of the test mass around the y- (η)
and z-axis (φ) can also be measured (the y- and z-axis in the test mass coordinate
frame are the same axis represented in Fig. 3.2 but centered at the test mass). The
displacements are expected to be measured with a picometer accuracy while the
rotation angles can be measured with an accuracy of ∼ 400 nrad (Heinzel et al.,
2003, 2004). The electrode housing can also be used to determine the position of the
test masses. However, this mechanism only offers readings with nanometer precision.
It is, however, useful to determine the degrees of freedom the IFO cannot provide:
y, z and θ (rotation about the x-axis). For our application only the readings of
the interferometer will be used. The physical model of these sensing mechanisms is
included in S, the sensing matrix (Fig. 3.3). on is the readout noise of the different
sensors, and o is the actual measure delivered to the controller.

These kinematic measurements are processed by the controller block (C) and a
feedback action is produced on the LTP dynamics by the actuators (A): the mi-
cropropulsion thrusters and the electrostatic actuators. They produce an additional
set of forces (fa) with the following objectives. The drag-free controller acts on the
spacecraft using the micropropulsion thrusters and forces it to follow test mass 1.
The electrostatic actuators act on test mass 2 using the low frequency suspension,
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Figure 3.3: Control system architecture of LISA Pathfinder. D stands for the dynamical
matrix, S represents the sensing matrix of the interferometer, i.e. the matrix translating the
position of the test mass, x, into the interferometer readout, o (on stands for the readout
noise) . A represents the physics of the FEEP and the electrostatic actuators, and finally
C, is the controller matrix, implementing the drag free and low-frequency control loops.
oi represents the displacement guidance signals. an are the actuators noise and fa are the
output forces of the actuators. fmag are the magnetic forces induced by the coils and fn are
the environment force noises disturbing the spacecraft.

a specific control loop of very low gain in the LTP measurement bandwidth, that
allows to control in band the differential acceleration between both test masses at
the same time, avoiding secular drifts or stray motions of the second test mass.

Finally, fn represents the force noise on the test masses, and fmag represents the
forces acting on the test masses due to the magnetic field created by the coils. The
complete control architecture can be expressed by the following system of equations:

o = D−1 · S · f + on (3.5)

f = fmag + fn −A ·C · (o + oi)− an

where all the symbols have been already defined with the only exception of oi which
represents the displacement guidance signals of the experiment and an which are the
actuators noise. Using Eqs. (3.5), we can calculate the transfer function from the
magnetic forces (fmag) to the interferometer readings (o), which turns out to be:

o =
D−1 · S

1 + D−1 · S ·A ·C
· fmag (3.6)

This transfer function characterizes the projection of the magnetic forces/torques
into kinematic motion of the test masses. The controllers have been designed to
deliver very sensitive readings of the differential motion of both test masses between
1 mHz and 30 mHz, the measurement bandwidth of the LTP mission. We would like
to mention, however, that the system is better and more extensively described in
chapters 4 and 7.
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Figure 3.4: The three components of the force on test mass 1 when coil 1 is on. These forces
depend on the values of χ and Mx, My and Mz. For this specific example we have adopted
Mx = 16.4×10−5 A/m, My = 9.1×10−5 A/m, Mz = −6.8×10−5 A/m (a random orientation
of the maximum M) and χ = 2.5×10−5. I0 is 1 mA and ω is 1 mHz. The x-component of the
force is shown as a solid black line, whereas the y-component is displayed as a dashed-dotted
red line and the z-component is displayed as dashed green line.

3.3 Forces and torques

Using Eq. (3.3) and neglecting the environmental field (10 nT which is much smaller
than the applied field, 500 nT), the x-component of the force acting on the test mass
is

Fx = 〈M·∇B0,x〉V sinωt+
χV

µ0
〈B0·∇B0,x〉 sin2 ωt (3.7)

where B0 is the field pattern produced by the coils. Thus, since sin2 ωt = (1 −
cos 2ωt)/2, the linear acceleration of the test masses has two separate frequencies,
one at ω and the other one at 2ω, and also a DC component. The force on test mass 1
is plotted in Fig. 3.4. The torque acting on the test mass also has a similar behavior.
However, it must be noted that the torque only has one frequency component1:

N = 〈M×B0 + r× [(M·∇) B0]〉V sinωt (3.8)

The resulting torques are displayed in Fig. 3.5. It is important to realize that
only the y- and z-components of the torque can be measured with the interferom-
eter, as Nx produces a rotation around the direction of the laser beam. Moreover,

1See chapter 4 for a specific explanation about the 2ω0 component of the torque.
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Figure 3.5: Torques on test mass 1 when coil 1 is on. The magnetic properties of the test
mass are the same adopted in Fig. 3.4. The x-, y- and z-components of the torque are shown
using black solid, red dashed-dotted and green dashed lines, respectively.

decomposing Eqs. (3.7) and (3.8), it is easy to show that the x-component of the
force on the test mass (which can be obtained from its displacement) and the y- and
z-components of the torque (which can be obtained from the rotation angles) can be
cast in the form:

Fx = χ · fxDC +Mx · fx1ω + χ · fx2ω
Ny = Mz · fy1ω (3.9)

Nz = My · fz1ω

where fxDC is a constant function, fx1ω , fy1ω and fz1ω oscillate at ω and fx2ω oscillates
at 2ω. Hence, Ny and Nz will be used to estimate Mz and My, respectively, while
the differential displacement of the test masses will be used to measure Mx and χ.

3.4 Modeling of the noise sources

The forces and torques shown in Figs. 3.4 and 3.5 correspond to an ideal case.
However, the real forces and torques acting on the test masses will not be noise-
free. Additionally, the outputs detected by the interferometer will also be affected
by several noise sources. Thus, to assess the feasibility of the experiment we need to
model the noise sources. This section analyzes in detail the noise produced by the
magnetic hardware of LTP. Other noise sources are detailed in chapter 7.
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Figure 3.6: Block diagram of the current source of the coils.

3.4.1 Magnetic hardware noise

The stability of the magnetic field (S
1/2
B ) produced by the coils at the position of the

test masses and its gradient (S
1/2
∂Bx/∂x

) must be, respectively, better than 5 nT Hz−1/2

and 12 nT m−1 Hz −1/2 (Vitale, 2005) within the measurement bandwidth (1 mHz
< f < 30 mHz). This can be translated into a requirement on the stability of the
injected current. It turns out that the requirement on the magnetic field gradient is
the more demanding one, and using Ampere’s law it is straightforward to show that

it is equivalent to a current fluctuation (S
1/2
I ) requirement of 110 nA Hz−1/2 within

the measurement bandwidth.

In Fig. 3.6, we show a block diagram of the different hardware stages used to
produce the current that feeds the coils. This block diagram has two parts: a digital-
to-analog processing stage and an analog processing stage. The first block contains
two digital-to-analog converters (DAC), followed by transresistance amplifiers (I/V)
delivering low impedance output voltages. The first DAC sets the reference voltage of
the second DAC and thus the peak amplitude of the sinusoidal current applied to the
coil. The second one is configured with bipolar operation to generate the quantized
signal with the previously selected amplitude. In the analog processing block the
signal is low-pass-filtered and amplified with a Howland current source (Franco, 2002,
3rd edition). Finally, a switch is used to select one of the three possible states: short-
circuit, open-circuit or connected. The noise of the current source chain for a DC

signal, S
1/2
IDC

, can be written as:

S
1/2
IDC

(I, ω) ' [G2G3SSTAGE1 +G3SSTAGE2 + SSTAGE3 ]1/2 (3.10)

where SSTAGE1 is the noise density of the voltage reference and the first DAC,
SSTAGE2 is the noise density of the transimpedance amplifier and the second DAC,
SSTAGE3 is the noise density of the transimpedance amplifier, low-pass filter and
Howland current source, and G2 and G3 are, respectively, the gains in the the sec-
ond and third stages. The noise density of the first stage can be obtained as a
contribution of the first DAC, SDAC1 , and of the reference voltage, SVref . However,
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Figure 3.7: Noise density for a 1 mA sinusoidal current of 1 mHz nominal frequency. The
dotted blue line shows the measured noise density, whereas the solid black line is our the-
oretical estimate (see text for details). The green dashed line represents the DC current
fluctuations requirement.

the noise contribution of the first DAC is negligible with respect to that of the
reference source, Vref . Thus, if the DAC works at its full scale, SSTAGE1 ∼ SVref .
Likewise, SSTAGE2 can be computed as a combination of two different sources SDAC2

and SI/V, being SDAC2 the noise density of the second DAC and SI/V that of the
transresistance amplifiers, and finally SSTAGE3 = SLPF + SHCS, where SLPF and
SHCS are, respectively, the noise densities of the low-pass filter and of the Howland
current source. These noise sources have been measured for a DC current of 1 mA.
The values obtained are SSTAGE1 = 9.6 nA Hz−1/2, SSTAGE2 = 0.03 nA Hz−1/2, and
SSTAGE3 = 26.4 nA Hz−1/2, respectively. The details of how these measurements
were done are out of the scope of this thesis and will be provided elsewhere. How-
ever, we mention that although the previous analysis has been performed for DC
currents, when we operate at 1 mHz the dominant noise source is the quantization
noise of the second DAC. This means that the total current noise can be modeled
as:

S
1/2
IAC
' [G3SDAC2 ]1/2 (3.11)

where the sole contributor is the quantization noise of the second stage, and thus the
total noise assuming an uniform quantization and a signal amplitude greater than a
quantization step is given by:

S
1/2
IAC
' 2I0

2Nb

1√
12 · fs

(3.12)
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Figure 3.8: Top panel: relative displacement of the test masses measured using the differen-
tial channel of the interferometer (solid black line). The dashed red line shows the absolute
displacement with respect to the optical bench. Bottom panel: rotation about the y-axis —
black solid line — and the z-axis — red line. Both panels show the response of test mass 1
when only coil 1 is fed with a current of 1 mA and 1 mHz.

where fs is the sampling frequency, Nb = 8 is the number of bits of the onboard
hardware, and the rest of the symbols have been already defined.

The DMU delivers the output at a rate of 1 024 samples per cycle. Thus, the
1 mHz sinusoidal signal will be sampled at a frequency fs = 1.024 Hz. Since the
highest sinusoidal current used in the experiment will be 1 mA, the highest noise
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will be 2.22 µA Hz−1/2. This noise is 2 orders of magnitude larger than all other
contributions and therefore will be the dominant noise. Fig. 3.7 shows the current
noise for coil 1 for a signal of 1 mHz and 1 mA (which are the nominal values of
the experiment). As can be seen, the quantization noise level is above the DC
current stability requirement for the mission (dashed green line) but, as it will be
shown below, it is still sufficiently small to allow a reliable estimation of the magnetic
properties of the test masses. It is also interesting to note that the quantization noise
(thus the total noise) can be reduced when a 16-bit DAC is used — see Eq. (3.12).
Finally, note that our theoretical results nicely match the experimental results.

So far we have discussed the noise density of the onboard coils. However, the
different electronic subsystems of the satellite produce magnetic fields, which are also
noisy. The magnetic noise produced by these subsystems (∼ 50) has been modeled
considering the fluctuating values of their magnetic moments (Dı́az-Aguiló et al.,
2010). Other noise sources that affect the measurements are the readout noise of the
Optical Metrology System, the noise induced by the Gravitational Reference Sensor
and the noise from the Star Tracker. Moreover, the actuators noise (FEEP noise
and the noise of the capacitive actuator) and external sources such as solar noise or
infrared noise have also relevant impact in the total readout. These noise sources
are described in section 7.3.6. Their effect in the parameter estimation quality is
assessed in the following section.

3.5 Results

We have estimated the magnetic properties of the test masses using the readings
provided by the mission telemetry. The telemetry corresponding to the magnetic
experiments will consist of the commands sent to the coils, the displacement read-
ings of the interferometer (namely, the absolute and differential readings) and the
wavefront rotation readings about the y- (η) and z- axes (φ). For simplicity, we have
assumed that the stiffness of the test masses, the actuators gains and the interfer-
ometer crosscoupling factors have already been determined (Monsky et al., 2009).

The simulated displacements and rotations measured by the onboard interferom-
eter are displayed in Fig. 3.8. These displacements and rotations have been obtained
by integrating numerically the equations of motion of a rigid solid, and including the
drag free and low frequency controllers — see section 3.2. Note that the problem
has 18 degrees of freedom. In particular, each of the two test masses has 6 degrees
of freedom, and the spacecraft also has 6 degrees of freedom. The closed loop sim-
ulation is performed with appropriate simulation tools that will be used for mission
operations2. As can be seen, the displacements of the test masses are below 8 nm,
while in permanent regime the corresponding rotations have amplitudes of ∼ 4µrad.
The very long transient of about 3 000 s of the rotation excursions — see the bot-

2http://www.lisa.aei-hannover.de/ltpda/
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Figure 3.9: Noise breakdown of each of the noise sources to the differential displacement
signal received when a 1 mA and 1 mHz current is circulating in coil 1. The black solid line
shows the result of considering only the magnetic hardware noise. The red dashed line shows
the result of considering only the environmental magnetic noise. The cyan dashed-dotted
line only takes into account the solar and infrared emission noise. The green dotted green,
the sensors contribution. The solid blue line the actuators noise, whereas the black dashed
line shows the result of considering the test mass noise. Finally, in magenta solid line the
result of considering all the noise sources together.

tom panel of Fig. 3.8 — is due to the effect of the low-frequency controller. This
controller is designed to avoid drift excursions of the test masses with frequencies
smaller than 1 mHz. Consequently, the transient is very long. A similar transient,
although less evident, is present in the differential reading — see the top panel of
Fig. 3.8. The reading of the displacement channel has two frequency components, ω
and 2ω, however, these components are difficult to see in the time series shown in
Fig. 3.8. Additionally, these two components are not in phase with the forces shown
in Fig. 3.4 because the LPF dynamics and the controllers introduce a phase delay
in each of the two components. Finally, it is worth mentioning that these displace-
ments and rotations are within acceptable margins because they do not exceed the
authority limits of the drag free and low-frequency controllers.

To further illustrate the feasibility of the experiment, in Fig. 3.9 we show the
noise breakdown of the differential displacement reading of the interferometer. This
figure has been obtained simulating the output of the entire instrument for each
of the identified noise sources of the mission. We simulated 100 000 seconds for
each source of noise. Then, we performed the spectral estimation with a smoothed
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power spectral estimator based on the Welch estimator using a Blackman-Harris
window (Welch, 1967). The time domain simulation and the spectral analysis have
been performed using the LTPDA toolbox (Hewitson, 2011). This is the data analysis
tool that will be used for mission operations — see chapter 7. As can be seen, in the
frequency domain the signals at ω and 2ω are clearly visible. Note that the most
important contribution is that of the sensors noise, which is mainly characterized by
the high-frequency noise of the interferometer, the low-frequency contribution of the
FEEP thrusters and the disturbance noise of the test masses. The environment noise,
the magnetic hardware noise, and the solar and infrared emission contributions are
totally negligible in the interferometer readings and do not represent any restriction
in terms of parameter estimation quality.

We have already shown that the displacements and rotations of the test masses
can be detected even in the case in which all the noise sources are considered. Now
the question to be answered is to which accuracy the magnetic properties of the test
masses can be estimated. To this end we have used a classical linear least squares
procedure (Wolberg, 2005). The magnetic parameters are estimated in the following
way. Let Dx be the differential displacement signals from the interferometer, and Ry
and Rz the rotation excursions around the y- and the z-axis, respectively, we write
then:

Dx =
(
dx1ω dx2ω

)
·
(
Mx

χ

)
+ ndx

Ry = Mz · ry1ω + nry (3.13)

Rz = My · rz1ω + nrz

where we have used Eq. (3.9), d and r are the signals in displacement and rotation
matched to the expected waveforms in ω and 2ω, as obtained from Eq. (3.9), and ndx ,
nry and nrz are the errors of the estimation model, namely, the displacement error,
the η- and the φ- error, respectively. Then the estimated magnetic properties of the
test masses (M̂x, M̂y, M̂z and χ̂) applying least square techniques are computed as:

(
M̂x

χ̂

)
=

[(
dx1ω

T

dx2ω
T

)
· ( dx1ω dx2ω )

]−1(
dx1ω
dx2ω

)
Dx

M̂z =
[
ry1ω

T · ry1ω
]−1

ry1ω
T ·Ry (3.14)

M̂y =
[
rz1ω

T · rz1ω
]−1

rz1ω
T ·Rz

As can be seen, the values of Mx and χ can be disentangled from Dx because the
dynamics of the test masses show two frequencies, while Ry and Rz can be directly
used to estimate the values of Mz and My.
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Table 3.1: Preliminary assessment of the errors in the estimates of the magnetic properties
for each individual noise source and for all sources combined together.

∆M̂x ∆M̂y ∆M̂z ∆χ̂

No noise 10−13% 10−13% 10−13% 10−13%
Hardware noise 0.13% 0.08% 0.09% 0.12%
Environmental noise 0.12% 0.26% 0.24% 0.10%
Sensors noise 0.87% 0.97% 1.05% 1.01%
Actuators noise 0.96% 0.99% 1.25% 1.17%
Solar and infrared noise 0.03% 0.02% 0.05% 0.06%
Test mass disturbance noise 0.82% 0.73% 0.75% 0.99%
All sources 1.15% 1.53% 1.72% 1.25%

We have examined the contribution of each of the noise sources in our estima-
tion accuracy. The accuracy of the measurements of the magnetic properties of the
test masses is mainly affected by the specific contribution of the noise source within
the measurement bandwidth. For instance, if some noise source has a relevant con-
tribution around 1 mHz in the rotation signals, the estimating algorithm can not
disentangle this contribution from that of the injected torque. In Table 3.1 we list
the accuracies of the estimated magnetic parameters obtained for each of the individ-
ual noise sources and that obtained when all the noise sources are present (last row).
Rather naturally, the results for Mx and χ shown in this table are closely related
to the noise contributions shown in Fig. 3.9 — note that Fig. 3.9, only shows the
noise breakdown for the differential displacement channel. The largest contributions
to the error budget are, as expected, the actuators noise, the interferometer noise
and the test mass disturbances. Nevertheless, the overall quality of the estimate
is fairly good, 1.43% (mean square error of the relative errors of all the estimated
parameters). It is interesting to note as well that even if the rotations signals present
signal to noise ratios around a factor of 3 smaller, we obtain errors of the same order
of magnitude for the estimates of My and Mz. This follows from the fact that the
signals from which they are obtained must not be disentangled.

3.6 Conclusions

In this chapter we have confirmed the feasibility of deriving the magnetic proper-
ties of the test masses of LISA Pathfinder. The magnetic experiment is based on
injecting controlled sinusoidal currents through the on-board coils and studying the
dynamics of the test masses, as measured with the optical metrology subsystem. In
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our study we have performed numerical calculations that incorporate a full model of
the dynamics of the test masses, realistic noise sources and up-to-date simulations
of the interferometer and inertial sensors. In particular, all the degrees of free-
dom of the test masses have been appropriately analyzed and we have fully taken
into account the control architecture of LISA Pathfinder. We have obtained that
the displacements of the test masses along the x-direction are ∼ 8 nm, while the
rotation excursions are approximately 4µrad. These findings confirm that the mag-
netic experiment is within the authority margins of the drag free and low frequency
suspension controllers. Consequently, any damage to the entire experiment when
the coils are excited can be safely discarded. Moreover, we have shown that the
displacement and rotation signals can be processed and pipelined to an adequate
estimation algorithm that allows to estimate both the magnetic moment and the
magnetic susceptibility of the test masses to a good accuracy. Specifically, assuming
that the remnant magnetic moment is homogenous within the entire volume of the
test masses, the estimates have errors below the 2% level. We would like to em-
phasize that although in this chapter we have presented the basic setup and main
characteristics of the experiment designed to determine the magnetic properties of
the test masses, a simplified model was used. In subsequent chapters we introduce
a more realistic approach to model and analyze the same experiment.





Chapter 4

Optimization of inflight
magnetic estimations

In this chapter we present an expanded study of the magnetic experiments previously
described in chapter 3. Particularly, we explain in detail the behavior of the force
and torque signals. Moreover, we put forward the fact that the estimation quality of
the remanent magnetic moment and susceptibility is frequency dependent. We also
show how the best frequency for the estimation of these quantities can be obtained,
and how the combined estimate using multiple frequencies should be calculated.

4.1 Introduction

The determination of the magnetic characteristics of the test masses (remanent mag-
netic moment and susceptibility) must be done in flight because their magnetic prop-
erties may change due to launch stresses and other circumstances. This will be done
injecting controlled sinusoidal magnetic fields at the positions of the test masses and
appropriately processing the resulting kinematics, which will be obtained from the
readings delivered by the onboard interferometer. Although the basic design of the
magnetic experiment is well settled — see Dı́az-Aguiló et al. (2011a) and chapter 3
— due to the high complexity of the LTP experiment, more in-depth analyses based
on a more realistic modeling are necessary to assess its feasibility and performance.
The purpose of this chapter is, precisely, to fill this gap. In particular, we model in a
realistic way the kinematics of the test masses and we evaluate the expected quality
of the estimates of the magnetic moment and susceptibility. Specifically, we take into
account several effects — like the cross-talks between some of the channels of the
instrument, or the frequency behavior of the control loops governing the dynamics
of the test masses — that previous analyses disregarded. All these effects depend on
the frequency used to excite the test masses. Hence, the quality of the estimates of
the magnetic data depends sensitively on the excitation frequency, since the satellite
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does not behave equally across the complete measurement bandwidth. Therefore, it
is important to determine the quality of the estimates across the complete measure-
ment bandwidth, and the frequencies that deliver the best estimates of the magnetic
parameters.

The chapter is organized as follows. In section 4.2 we give a brief description
of the magnetic experiment intended to estimate the magnetic properties of the
test masses. Then, in section 4.3 we present the dynamical model of the satellite.
It follows section 4.4, where we discuss the estimation model and the estimation
procedures used in this work. In this section we also present the whitening algorithms
used in this estimation, and we show how the biases introduced by the cross-talk
terms of the instrument can be corrected. In section 4.5 we present the sensitivity of
this model to different hardware systems of the satellite and in section 4.6 we evaluate
the frequency dependence of the experiment, and we optimize its performance with
respect to the excitation frequency. Section 4.7 is devoted to analyze the robustness
of our results. Finally, in section 4.8 we summarize our main findings, we discuss
the significance of our results, and we draw our conclusions.

4.2 Experiment overview

The two test masses are located at the center of each inertial sensor — the two towers
in Fig. 4.1 — and are the end mirrors of the Optical Metrology System, that senses
the positions and attitudes of the test masses. The optical bench of the interferometer
can be seen in Fig. 4.1 as well. In fact, one of the test masses is the reference free
floating body to perform the translation and attitude control of the spacecraft. The
x-axis of the experiment is the axis connecting the two test masses centers, and it
goes from test mass 1 to test mass 2. The z-axis point towards the solar panel
(parallel to the two inertial sensor towers and upwards in Fig. 4.1) and, finally, the
y-axis closes the right-handed Cartesian coordinate system. The test masses are
made of an alloy of Pt (27%) and Au (73%), their dimensions are 46× 46× 46 mm
and their weight is 1.95 kg. To comply with the top science requirements, the test
masses must have certain properties. For the purpose of the present work the two
most important properties are the remanent magnetic moment and the susceptibility.
The remanent magnetic moment must be |m| < 2.0× 10−8 A m2. Since the volume
of the test masses is V = 0.0463 m3, the density of magnetic moment must be
then |M| < 9.451 × 10−4 A/m. The susceptibility of the test mass can be suitably
represented by a complex number, χ = χo + iχe, where χo is its real component and
χe(ω) is a frequency-dependent imaginary term which is due to the eddy currents on
the test mass (Vitale, 2005; Antonucci et al., 2011b). The value of the real component
must be χo < 2.5× 10−5.

As mentioned, to measure the remanent magnetic moment and the susceptibility
of the test masses a controlled magnetic field will be injected at the position of
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Figure 4.1: A schematic view of the payload of LISA Pathfinder, the LTP. The Inertial
Sensors (two vertical towers) host the two test masses. The four floating boxes correspond
to the tri-axial fluxgate magnetometers, and the two induction coils are placed next to each
of the test masses. The optical bench of the interferometer is located on the horizontal plane
between the Inertial Sensors.

the test masses. This magnetic field produces forces and torques which excite the
kinematics of the test masses. Studying the motion of the test masses, namely their
displacement and rotation, allows to estimate the three components of the magnetic
moment and the susceptibilities of the test masses.

4.2.1 The injected magnetic fields

The magnetic field at the position of the test masses will be generated by the injection
of sinusoidal currents to the onboard coils. These onboard coils are placed next to
each of the inertial sensors towers, see again Fig. 4.1. The two circular induction
coils are made of a titanium alloy (Ti6Al4V), and have N = 2 400 windings of radius
r = 56.5 mm (Antonucci et al., 2011b). They are placed 85.5 mm away from the
center of the respective test mass. The onboard coils are aligned with the x-axis
of the test masses, thus, the magnetic field within the volume of the test masses
has axial symmetry. Given a current fed to the coils I(t) = I0 sinω0t, the resulting
magnetic field (and its gradient) will oscillate at the same frequency. Therefore we
write,
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Bapp = Re
{
B0 ie

−iω0t
}

= B0 sinω0t (4.1)

∇Bapp = Re
{
∇B0 ie

−iω0t
}

=∇B0 sinω0t (4.2)

The field produced by the coils at the center of the test mass is 4.47 µT, whereas
the maximum environmental magnetic field expected during science operation is
less than 100 nT. On the other hand, the magnetic field gradient along the x-axis
produced by the coils is 109.2 µT/m, while the maximum magnetic field gradient
required by the mission science specification is −5 µT/m. Therefore, it is a safe
assumption to neglect the effects of the environmental magnetic field with respect
to the applied field by the coils. Thus, the forces and torques exerted on the test
masses are computed as (Jackson, 1999):

F =

〈[(
M + Re

{
χo + iχe

µ0
B0 ie

−iω0t

})
·∇
]

Bapp

〉
V (4.3)

and

N =
〈
M×Bapp + r×

(
[M ·∇]Bapp

+

[
Re

{
χo + iχe

µ0
B0 ie

−iω0t

}
·∇
]

Bapp

)〉
V (4.4)

where Bapp is the field produced by the coils, and r is the position vector that has
the test mass center as origin. Note that the forces and torques depend on M, χo

and χe.

Considering Eqs. (4.1), (4.2) and (4.3), the x-component of the force acting on
the test mass is

Fx =
χoV

2µ0
〈B0·∇B0,x〉

+ 〈M·∇B0,x〉V sinω0t

− χoV

2µ0
〈B0·∇B0,x〉 cos 2ω0t

− χeV

2µ0
〈B0·∇B0,x〉 cos(2ω0t− π/2) (4.5)

where we have used that sin2 ω0t = (1 − cos 2ω0t)/2 and the π/2 rad phase due to
the complex component of the susceptibility has been added as an argument in the
corresponding cos term. As can be seen from this equation, the linear acceleration
of the test masses along the x-axis has two separate frequencies, one at ω0 and
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the other at 2ω0, and also a DC component. The 2ω0 component presents an in-
phase component proportional to χo and a quadrature component proportional to
χe. Particularly, the ω0 component can be more explicitly written as:

〈M·∇B0,x〉 =

〈
Mx

∂B0,x

∂x
+My

∂B0,x

∂y
+Mz

∂B0,x

∂z

〉
(4.6)

where Mx, My, Mz are the components of the density of the remanent magnetic
moment. If the test mass is homogeneous we have the simplified expression

〈M·∇B0,x〉 =

〈
Mx

∂B0,x

∂x

〉
(4.7)

since the y and z components of ∇B0,x average to zero due to symmetry of the field
of the coil. This leads to a force component along the x-axis that only depends on
Mx, χo and χe.

On the other hand, the torque acting on the test mass also has a similar behavior:

N = 〈M×B0 + r× [(M·∇) B0]〉V sinω0t

+

〈
r× χo

µ0
[B0 ·∇]B0]

〉
V sin2 ω0t

−
〈

r× χe

µ0
[B0 ·∇]B0]

〉
V sinω0t cosω0t (4.8)

In this case, it must be noted that, because of the symmetry of the applied magnetic
field, the terms multiplying sin2 ω0t and sinω0t cosω0t in Eq. (4.8) vanish. The two
rotation excursions detected by the interferometer using wavefront sensing are the
rotations about the y-axis and z-axis. The magnitude of the rotation about the
x-axis is smaller, and cannot be detected by the interferometer because the axis of
rotation is aligned with the laser beam. Taking this into account, the two relevant
torques for the experiment are:

Ny =
〈
MzB0,x −MxB0,z

+ z (M·∇B0,x)

− x (M·∇B0,z)
〉
V sinω0t (4.9)

Nz =
〈
MxB0,y −MyB0,x

+ x (M·∇B0,y)

− y (M·∇B0,x)
〉
V sinω0t (4.10)

These equations can be further simplified in the case of a homogeneous test mass.
In this case, due to the axial symmetry of the magnetic field, the terms 〈B0,z〉 in
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Eq. (4.9) and 〈B0,y〉 in Eq. (4.10) vanish. Moreover, for the same reason the terms〈
z
∂B0,x

∂x

〉
,

〈
z
∂B0,x

∂y

〉
,

and 〈
x
∂B0,z

∂x

〉
,

〈
x
∂B0,z

∂y

〉
in Eq. (4.9) also vanish, as do the terms〈

x
∂B0,y

∂x

〉
,

〈
x
∂B0,y

∂z

〉
,

〈
y
∂B0,x

∂x

〉
,

〈
y
∂B0,x

∂z

〉
in Eq. (4.10). In these terms x, y and z are the three components of r. Hence, the
torque about the y-axis only depends on Mz and the torque about the z-axis only
depends on My:

Ny = Mz

〈
B0,x + z

∂B0,x

∂z
− x ∂B0,z

∂z

〉
V sinω0t (4.11)

Nz = My

〈
−B0,x + x

∂B0,y

∂y
− y ∂B0,x

∂y

〉
V sinω0t (4.12)

Finally, we can cast Eqs. (4.5), (4.11) and (4.12) in the form:

Fx = χo fxDC +Mx fx1ω0
+ χo fx2ω + χe f

′′
x2ω0

Ny = Mz ny1ω0
(4.13)

Nz = My nz1ω0

where fxDC is a constant function, fx1ω0
, ny1ω0

and nz1ω0
oscillate at ω0 and fx2ω0

and f
′′
x2ω0

oscillate at 2ω0.

4.3 Dynamic model

The LTP instrument will react to the injection of the aforementioned forces and
torques inflicted upon the test masses. This will result in specific kinematic excur-
sions in both test masses. These kinematic excursions will depend on the instrument
dynamics and will be sensed by the onboard interferometer. The LTP is a very
complex instrument but its full three-dimensional dynamical modeling can be split
into 4 main parts (Schleicher, 2009; Brandt & et al., 2004):



4.3 Dynamic model 69

1. The dynamical model (D) represents the evolution of the kinematic excursions
of the two test masses placed inside the LTP and the kinematics of the space-
craft. This model takes into account the coupling of the motion of each of the
test masses with the motion of the spacecraft and outputs the evolution of the
15 degrees of freedom of the instrument, i.e. 6 degrees of freedom for each of
the test masses and 3 degrees of freedom for the spacecraft (only the attitude
of the spacecraft is observable and not its linear displacement).

2. The sensing mechanisms (S) onboard LPF are the star tracker, the inertial
sensors, and the interferometer. The star tracker measures the attitude of the
spacecraft. The inertial sensors give accurate measurements of the position
and attitude of the test masses with respect to the spacecraft by detecting
differences in the capacitive sensors that surround the test masses (Vitale, 2005,
2002). Finally, the interferometer measures the differential distance between
test mass 1 and the spacecraft and the differential distance between the two
test masses (Heinzel et al., 2003, 2004).

3. The controller blocks (C) are in charge of calculating the appropriate com-
mands to correct the positions of the test masses and the attitude of the
spacecraft. In science mode, there are two main control loops applied by the
instrument. The first one — the drag free loop — takes the absolute measure-
ment of the distance between test mass 1 and the spacecraft as a reference.
It then calculates which forces should be applied to the spacecraft in order
to counteract all disturbances and recreate a drag free environment for test
mass 1. The second loop — the low frequency loop — takes as a reference
the differential measurement between both test masses and acts on the sec-
ond test mass to avoid its collision with the spacecraft walls (Schleicher, 2008,
2009). The controllers have been designed to deliver very sensitive readings
of the differential motion of both test masses between 1 mHz and 30 mHz, the
measurement bandwidth of the LPF mission (Vitale, 2005). These two control
loops are implemented inside the onboard computer of the LPF.

4. The actuators (A) are the physical systems that apply these commands to
the test masses and to the spacecraft. The two actuator mechanisms existing
in LPF are the satellite micropropulsion system, which is composed by 12
micro-newton FEEP thrusters (Field Emission Electric Propulsion), and the
capacitive actuators which consist of a set of electrodes that surround the test
masses and exert controlled forces on them.

This subsystem division is schematically shown in the block diagram of Fig. 4.2.
For more detailed information of the system, the reader is referred to Dı́az-Aguiló
et al. (2011a), Schleicher (2009) and Nofrarias et al. (2010). This block diagram of
the dynamical behavior allows to express for the interferometric readings as follows:
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o = D−1 · S · f + on (4.14)

where

f = fmag + fn −A ·C · (o + oi)− an (4.15)

In these expressions the symbols are:

o : the readings of the sensing devices,
f : the forces or torques acting on the test masses,
on : the readout noises of the sensing devices,
fmag : the forces or torques due to magnetic effects,
fn : the force or torque noises,
oi : the displacement guidance signals of the experiments,
an : the actuators noises.

For illustrative purposes, if we consider only the one-dimensional model, the
different sub-blocks of Eq. (4.14) are:

D =

(
s2 + ω2

1 0
ω2

2 − ω2
1 s2 + ω2

2

)
, (4.16)

S =

(
1 0
δ12 1

)
, (4.17)

C =

(
CDF(s) 0

0 CLFS(s)

)
, (4.18)

A =

(
AFEEP(s) 0

0 ACA(s)

)
(4.19)

where ω1 and ω2 are the stiffness parameters coupling the motion of each test mass
to the motion of the spacecraft, δ12 is the cross-coupling factor between the two
interferometer channels, CDF(s) and CLFS(s) are, respectively, the drag-free and the
low-frequency suspension controller transfer functions and, finally, AFEEP(s) and
ACA(s) are the physical models for the FEEP thrusters and the capacitive actuators,
respectively. We normalize the transfer functions of the controllers and the actuators
as a functions of their static gain (G):

CDF(s) = GDF · C
′
DF(s) (4.20)

CLFS(s) = GLFS · C
′
LFS(s) (4.21)

AFEEP(s) = GFEEP ·A
′
FEEP(s) (4.22)

ACA(s) = GCA ·A
′
CA(s) (4.23)
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Figure 4.2: Control system architecture of LISA Pathfinder. D stands for the dynamical
matrix, S represents the sensing matrix of the interferometer, i.e. the matrix translating the
position of the test mass, x, into the interferometer readout, o (on stands for the readout
noise). A represents the physics of the FEEP and the electrostatic actuators, and finally
C, is the controller matrix, implementing the drag free and low-frequency control loops.
oi represents the displacement guidance signals. an are the actuators noise and fa are the
output forces and torques of the actuators. fmag are the magnetic forces and torques induced
by the coils and fn are the environment force and torque noises disturbing the spacecraft.

where the GDF, GLFS, GFEEP, and GCA are constants and stand, respectively, for
the static gain of the transfer functions of the drag free controller, the low frequency
controller, the FEEP actuator, and the capacitive actuator. On the other hand,
C
′
DF(s), C

′
LFS(s), A

′
FEEP(s), and A

′
CA(s) hold the frequency dependence of these

transfer functions and have unit static gain.

In the magnetic experiment the input signals are the magnetic forces and torques
(fmag), and the outputs are the readings of the interferometer (o). Therefore, using
Eqs. (4.14) and (4.15), we calculate the input/output transfer function, which results
in:

o = H · fmag (4.24)

where

H =
D−1 · S

1 + D−1 · S ·A ·C
(4.25)

This transfer function depends on all the above described subsystems and represents
the dynamical response of the instrument to the specific injected signals.

4.4 Estimation model

The estimation of the magnetic characteristics is performed processing the inter-
ferometer readings. To do so, we use the displacement of the differential channel
(ox12), the rotation about the y-axis (oη1) and the rotation about the z-axis (oφ1).
If cross talks are disregarded, the reading of the displacement channel stems only by
the effect of the magnetic force acting along the x-axis, Fx. Analogously, something
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similar occurs for the two torques in each of their respective axis. Thus, we can
write:

ox12 = Mx dx1ω0
+ χo dx2ω0

+ χe d
′′
x2ω0

oη1 = Mz ry1ω0
(4.26)

oφ1 = My rz1ω0

where dx1ω0
, dx2ω0

and d
′′
x2ω0

are the respective transformations from force to dis-

placement of the signals fx1ω0
, fx2ω0

and f
′′
x2ω0

in Eq. (4.13), and analogously for
ry1ω0

and rz1ω0
for the case of ny1ω0

and nz1ω0
. This is the model used in chap-

ter 3. Nevertheless, because of the high complexity of the LTP instrument, this
model is not sufficiently realistic. In particular, it turns out that the cross-talks
cause important biases in the parameter estimates. This is because the effect of the
x-force in the rotation readings and the effect of the torques in the x-axis readings
are not negligible. As a consequence, we used the full three-dimensional model of
the experiment:

 ox12
oη1
oφ1

 =

 HFx→x12 HNy→x12 HNz→x12
HFx→η1 HNy→η1 HNz→η1
HFx→φ1 HNy→φ1 HNz→φ1

 ·
 Mx χo χe 0 0

0 0 0 Mz 0
0 0 0 0 My




fx1ω0

fx2ω0

f
′′
x2ω0

ny1ω0

nz1ω0

 (4.27)

where the 3 × 3 matrix H is the transformation matrix from force/torque to dis-
placement/rotation that represents the closed loop dynamics of the instrument —
see Eq. (4.25). This matrix is not diagonal, as it is assumed in the model in which
the cross-talks are neglected — namely, Eq. (4.26). For instance, the effect of the
torque about the y-axis and the z-axis on the ox12 displacement channel is relevant,
and thus non-zero transfer functions HNy→x12 and HNz→x12 need to be considered.
Hence, to estimate Mx, My, Mz, χo and χe, these transfer functions have to be
known. This model is still a simplification, because we do not include all the degrees
of freedom, but it is certainly more realistic than that of Eq. (4.26), which is strictly
one-dimensional.

4.4.1 Estimation procedure and bias correction

The estimation procedure has been already described in Dı́az-Aguiló et al. (2011a)
and in chapter 3. However, in this chapter we present an important modification to
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correct for the biases introduced by cross-talks. The full three-dimensional estima-
tion model given by Eq. (4.27) may be regrouped as:

ox12 = (Mx + α12Mz + α13My) dx1ω0
+

+ χo dx2ω + χe d
′′
x2ω0

oη = (α21Mx +Mz + α23My) ry1ω0
(4.28)

oφ = (α31Mx + α32Mz +My) rz1ω0

where α are the cross-talks of the system (the matrix elements of H evaluated at
the excitation frequency). If we introduce the quantities M

′
x, M

′
y, and M

′
z, then

Eq. (4.28) can be equivalently written as:

ox12 = M
′
x dx1ω0

+ χo dx2ω0
+ χe d

′′
x2ω0

oη = M
′
z ry1ω0

(4.29)

oφ = M
′
y rz1ω0

and we estimate the values of M̂
′
x, M̂

′
y, M̂

′
z, χ̂o and χ̂e applying standard single

output least square techniques (Dı́az-Aguiló et al., 2011a; Wolberg, 2005) — see
chapter 3. These values of M̂

′
x, M̂

′
y and M̂

′
z are biased, and do not correspond to

the true magnetic moment components, Mx, My and Mz. Nevertheless, these biases
can be corrected because we know the relation between them: M̂x

M̂z

M̂y

 =

 1 α12 α13

α21 1 α23

α31 α32 1

−1 M̂
′
x

M̂
′
z

M̂
′
y

 (4.30)

Note that Eq. (4.27) provides the values of the elements of this matrix, and that
the matrix is invertible. Additionally, it is worth emphasizing that we only correct
the components of the magnetic moment and no correction is considered for the
susceptibility (χo and χe). This is because the magnetic susceptibility is not affected
by any cross-talk at the 2ω0 component. It turns out that the previously outlined
procedure corrects biases of around 1% in each of the magnetic parameters, which
are sizable. Finally, we also mention that during the lifetime of the mission some
of the telemetry channels may fail. Thus, it is important to know beforehand that
single channel estimation is still possible and that it introduces biases of ∼ 1% —
see section 3.5.

4.4.2 Whitening and splitting

Due to the low-frequency control architecture, the evolution of the reading of the
differential channel and the absolute attitude variables of both test masses are con-
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Figure 4.3: Amplitude of the differential displacement channel of the interferometer as a
function of time, when a sinusoidal current of 1 mA and 2 mHz is injected to coil 1. The
black curve is the raw output of the channel, while the gray curve shows the result after
the whitening process that is performed before pipelining the telemetry readings to the
estimation procedure.

trolled with a very low gain controller at low frequency. This avoids the collision of
the test masses with the spacecraft walls at long time scales. Nevertheless, being a
very slow controller, these kinematic excursions may suffer important low-frequency
drifts between 1 000 and 10 000 s. This is because some low-frequency noise due to
solar, infrared or other environmental factors is not filtered by the LTP controllers.
This leads to a secular drift, like the one illustrated by the black curve in Fig. 4.3,
where the differential displacement output shows a varying offset of approximately
5 nm. To avoid an undesirable impact on the estimation method, we whiten the
interferometer output data. The whitening filter is obtained by fitting the noise
spectra of each of the channels with a parallel filter bank. The tool used to obtain
these filters is included in LTPDA toolbox (Antonucci et al., 2011a; Hewitson, 2011;
Welch, 1967), the data analysis toolbox of the mission. After whitening the signal,
the time series still presents a transient response at around 2 000 s, due to the re-
sponse of the instrument to the initial conditions of the experiment. This can be
observed in the gray curve of Fig. 4.3. Therefore, before pipelining the response to
the estimation algorithms, we eliminate the first 5 000 s. This is the same to say that
we only consider the permanent regime of the kinematic response.
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4.5 An analysis of the uncertainties

The Experiment Master Plan of the mission is aimed at determining the physical
parameters of the instrument, characterizing in this way the matrix elements of H.
These transfer functions depend on several physical parameters. Amongst them we
mention the stiffnesses of the test masses, the actuator gains, the interferometer
cross-couplings, and the transfer function delays. In the end, this will result in
a complete characterization of the main four blocks of the instrument. Detailed
information on the Experiment Master Plan and on the accuracy of the estimates
can be found in Nofrarias et al. (2010).

Nevertheless, for the calculations presented here it is important to realize that
some of the parameters of the model may be poorly determined or have sizable
uncertainties. Therefore, in our analysis we introduce uncertainties in each of the
most relevant parameters of the mission. These uncertainties are represented as b,
and the subscript “NOM” stands for the nominal value of the parameter:

ω1 = ω1NOM(1± bω1) (4.31)

ω2 = ω2NOM(1± bω2) (4.32)

δ12 = δ12NOM(1± bδ12) (4.33)

GFEEP = GFEEPNOM
(1± bGFEEP

) (4.34)

GCA = GCANOM
(1± bGCA

) (4.35)

Clearly, the effects of these uncertainties on the estimation of the magnetic pa-
rameters need to be assessed. To this end, for each of the nine transfer functions of
H, we have computed the effect of the uncertainties on each of the parameters of the
system. We have done this analysis for values of b ranging from −0.2 to 0.2, and we
have studied their effect on the modulus and on the phase of the transfer functions.
We have found that the uncertainty on the capacitive actuator gain (bGCA

) is the
only one that has a relevant impact, whilst the uncertainties on the other parameters
have a negligible effect.

4.5.1 The capacitive actuator gain

In this section, we analyze the effect of the uncertainty of the capacitive actuator
gain (bGCA

). To this end, for a specific value of bGCA
, we compute the absolute error

of the modulus (He
b) of the system transfer functions and the phase differences

(Hψ
b) across the measurement bandwidth (1 mHz to 30 mHz):

He
b = |Hb| − |H| (4.36)

Hψ
b = ]Hb − ]H (4.37)
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where ] stands for the matrix operator that calculates the phase of each of the
elements of the matrix. In these expressions, the superscript “b” indicates that the
specific transfer function has been calculated with a non-zero value of the parameter
uncertainty. On the contrary, functions without superscript have been calculated
with the nominal values of all the system parameters. Therefore, Hb

e calculates the
absolute error of the modulus of each of the nine functions with respect to its nominal
value for one specific value of uncertainty (b), and Hψ

b gives account for their phase
differences. These two matrices give a quantitative assessment of the error of the
model due to the uncertainties across the entire measurement bandwidth. Moreover,
the most relevant contribution in the error of the model will be due to the error
in the diagonal terms of the matrix. Therefore, we analyze mainly the effects on
HFx→x12 , HNy→η1 and HNz→φ1 .

Figure. 4.4 displays the results of this sensitivity analysis for HFx→x12 , i.e the
first element of matrices He

b and Hψ
b for several values of the uncertainty in the

capacitive actuator gains, ranging from −0.2 to 0.2. The behavior as a function of
the frequency of the other two elements of the diagonal are very similar. In the
top panel of this figure it can be seen that the error of the modulus is especially
relevant below 1 mHz, where the differences in amplitude increase up to 48% for
0.6 mHz, when the capacitive gain is 0.8 (instead of 1). The changes in modulus
are also relevant between 1 mHz and 7 mHz. In the bottom panel, we examine
the differences in the phase of the same transfer functions. It can be seen that
there exist phase shifts of 15◦ for a capacitive actuator gain of 1.2 at a frequency of
1 mHz. These phase shifts are relevant between 0.4 mHz and 4 mHz. Such differences
produce important biases in the estimates of the magnetic parameters. Moreover, the
effect depends on the excitation frequency. Thus, the choice of the right excitation
frequency (ω0) is a crucial aspect in the experiment design. We postpone this analysis
to section 4.6, where we will study which is the optimal excitation frequency. Finally,
we also mention that similar analyses for the rest of the uncertainties on the nominal
parameters have been performed, but are not shown here for the sake of conciseness.

4.6 The optimal frequency

Finding the optimal frequency of the sinusoidal currents injected in the coils to obtain
the magnetic parameters is a crucial issue of the experiment. Actually, as it will be
shown below, the optimal frequency can be obtained from a trade-off between the
frequency range where the instrument presents a maximum of the signal-to-noise
ratio (SNR) and the frequency range where the instrument is less sensitive to the
uncertainties of the capacitive actuator gain — see section 4.5.1.

The SNR across the instrument measurement bandwidth for each of the channels
— ox12 , oη1 , and oφ1 — is shown in Fig. 4.5. The SNR reaches its maximum between
0.5 to 1.5 mHz for the displacement reading, and from 1 to 2 mHz for the rotation
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Figure 4.4: Top panel: error of the modulus of the transfer function Hb
Fx→x12

with respect to
its nominal behavior. This frequency-dependent relative error is plotted for different capac-
itive actuator gain uncertainties ranging from −0.2 to 0.2. Bottom panel: phase differences
in the Hb

Fx→x12
transfer function for different uncertainties of the gain of the capacitive

actuator. The phase differences are also calculated for different relative gain uncertainties
ranging from −0.2 to 0.2.

channels. This is the most sensitive band of the instrument. This is confirmed by
inspecting Fig. 4.6, where we show the response of the system to the excitation by 4
different sinusoidal currents. All these sinusoidal currents have the same amplitude,
1 mA, but they oscillate respectively at 0.5 mHz, 2 mHz, 5 mHz and 9 mHz. In the
left panel, we show the readings of the differential displacement channel to this set
of four sinusoids. When exciting at 0.5 mHz the amplitude is ∼ 40 nm, whereas at
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Figure 4.5: Signal-to-noise ratio as a function of frequency for each of the relevant signals
of the magnetic experiment, the differential channel, x12 — solid line — the rotation about
the y-axis, η1 — dashed-dotted line — and the rotation about the z-axis, φ1 — dotted line.

2 mHz drops to ∼ 5 nm. Finally, when the frequency is 5 mHz the amplitude of the
excursion is only ∼ 1 nm. This same effect is observed in the right panel, where we
show the Fourier analysis of these time series. As can be seen, each of the readings
has a frequency component at ω0 and a second one at 2ω0, as expected. Note as well
that the 2ω0 components are highly attenuated with respect to the main component
because they are located at higher frequencies. This simple analysis seems to indicate
that the excitation frequency should be chosen around 1 mHz. However, this range of
frequencies is where the uncertainty of the capacitive actuator has the largest impact
on the estimates of the magnetic parameters — see Fig. 4.4 and section 4.5.1. Thus,
the determination of the optimal excitation frequency should be the result of a joint
optimization procedure, taking into account both the frequency dependence of the
SNR and the uncertainties in the gain of the capacitive actuator.

To find the optimum excitation frequency we compute the estimation error of
each of the magnetic parameters for different uncertainties of the gain of the capaci-
tive actuator ranging from −0.2 to 0.2. We do this for different excitation frequencies
across the entire measurement bandwidth. Thus, for each magnetic parameter, we
compute an error function for each gain uncertainty, eb(ω0). Then we add quadrati-
cally each of these functions with their appropriate weight factor:

E(ω0) =
∑
b

(
1

b
eb(ω0)

)2

(4.38)

where b is the uncertainty in the capacitive actuator gain, in percentage. In this way
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Figure 4.6: Top panel: time series of the responses detected at the differential channel of the
interferometer when we inject 4 different sinusoidal signals in the onboard coils. The ampli-
tude of these sinusoids in all the cases are 1 mA and the frequencies are respectively 0.5 mHz,
2 mHz, 5 mHz and 9 mHz. Bottom panel: Fourier analysis of the time series displayed in the
left panel of this figure.

we compute a global error function for each of the magnetic parameters, EMx(ω0),
EMy(ω0), EMz(ω0), Eχo(ω0), and Eχe(ω0). The absolute minima of these functions
correspond to the best excitation frequencies for each of the parameters.

The global error functions computed in this way are shown in Fig. 4.7 for fre-
quencies from 0.1 mHz to 12 mHz. For the case of remanent magnetic moment the
error function presents a very broad minimum between ∼ 5 mHz and ∼ 11 mHz,
being the absolute minimum at ∼ 10 mHz. Note that at lower frequencies the global
error function grows very abruptly. This occurs because, although the SNR of the
experiment is larger at these frequencies, they are also very sensitive to the biases
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(f0).
Finally, the solid gray line corresponds to Eχo

(f0) and the dashed gray line to Eχe
(f0).

introduced by the actuator uncertainty. Note as well that the error functions have lo-
cal minima at around 1 mHz, and also a local maximum between ∼ 1.2 and ∼ 2 mHz,
following the sensitivity curve of the capacitive actuator — see Fig. 4.4. On the other
hand, the optimal frequency needed to estimate χo and χe lies between 5 and 7 mHz.
This is because these last two parameters are estimated with the 2ω0 component
of the x12 output, and higher frequencies are penalized by the larger attenuation
on this frequency component. Finally, it is worth mentioning that the phase shift
shown in Fig. 4.4 around 1 mHz penalizes the estimation at low frequencies, because
the components at 2ω0 suffer a different and unknown shift with respect to the ω0

component. In summary, the best choice of excitation frequency is 5 mHz to estimate
χo and χe and 10 mHz to estimate the three components of the magnetic moment.
Nevertheless, if only one inflight experiment could be performed due to planning re-
strictions of the mission, the best frequency would be 5 mHz. This value is the result
of minimizing the quadratic sum of the five error functions of the five parameters.

4.7 Robustness of the estimates

Finally, to conclude with our analysis we have studied the robustness of our findings.
Specifically, we have tested the performance of our estimation algorithm under sev-
eral circumstances. In order to model statistically its performance, we have estimated
the magnetic parameters for 50 different simulated experiments and calculated the
statistical distribution of the relative errors of each parameter. For example, for the
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Figure 4.8: Statistical distributions of the estimates for the 5 magnetic parameters of the
test masses for 3 different simulations. The left column shows the statistical distribution
of these parameters when the capacitive actuator gain has no uncertainty. This simulation
is done for an excitation frequency of 5 mHz. The second column shows the results when
the uncertainties of the capacitive actuator gains of the principal axes are modeled with a
normal distribution of zero mean and 0.01 standard deviation. This simulation is done for an
excitation frequency of 5 mHz, too. Finally, the third column, shows the resulting parameter
estimation for the same experiment as in the second column, but for 1 mHz. The x-axis of
each subplot shows the relative error in the parameter (in percentage).

case of Mx the relative error is computed as:

eMx =
(M̂x −Mx)

Mx
(4.39)

where M̂x is the estimated parameter and Mx represents its true value.

Here we present the results of three different simulations. In the first simulation
we excite the coils with a 5 mHz sinusoid and we consider that the gain of the
capacitive actuator is the nominal one. In the second simulation we maintain the
5 mHz excitation frequency, but in this case the gains of the capacitive actuators of
the three main axis are modeled with a normal random distribution of zero mean
and of 0.01 standard deviation. Finally, the third simulation is only performed for
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illustrative purposes. We maintain a random distribution of the uncertainty of the
gain of the capacitive actuator, but we excite the coils at 1 mHz. Note that the
analysis previously explained in section 4.4 concluded that this frequency should not
be used. Consequently, this case clearly illustrates the effect of choosing a wrong
excitation frequency.

The error distributions for each of the simulations previously described and for
each of the magnetic parameters are displayed in Fig. 4.8, and their respective stan-
dard deviations are listed in Table 4.1. For consistency, these results are checked
against the Cramér-Rao lower bound, which gives a lower limit for the variance of
the estimated parameters (Wolberg, 2005). The Cramér-Rao bounds for each of the
estimates of the magnetic parameters are listed the first row of Table 4.1. Moreover,
for each of the simulations presented here we also compute the ratio of the standard
deviation to the Cramér Rao lower bound. For the first simulation we obtain vari-
ances close to the Cramér-Rao lower bound, as expected due to the large SNR. In
the second numerical experiment we obtain standard deviations smaller than 0.18%
for all the magnetic parameters, except for χe, which is the one with the lowest SNR.
In this experiment, we are still close to the optimal Cramér Rao bound because by
acting at 5 mHz we minimize the effect of the capacitive actuator uncertainty. Fi-
nally for the third simulation we obtain an important degradation of the performance
of the parameter estimation procedure. In particular, the standard deviations are
increased by more than 1 order of magnitude. The ratio with respect to the Cramér-
Rao lower bound is also clearly much larger. Particularly, the performance of the
estimate of χe is totally unacceptable for this experiment, obtaining an estimation
performance 25 times worse than the optimal one. Finally, comparing the second
and third columns of Fig. 4.8 — and the second and third sections of Table 4.1 —
we confirm that our estimation procedure delivers better results (and close to opti-
mal) for an excitation frequency of 5 mHz than for 1 mHz, which was the frequency
adopted in the preliminary design of the experiment. This clearly demonstrates the
importance of choosing the appropriate excitation frequency.

However, this is not the most robust estimate that can be obtained. In particular,
we suggest to use a multi-frequency estimation technique, where the properties of the
test masses are computed using the results obtained at different frequencies. In this
way the effects of spurious or non-modeled effects at a given specific frequency can be
minimized. This can be done weighting the results obtained for each of the magnetic
parameters at each frequency by the inverse of the corresponding total error function
given by Eq. (4.38). For instance, for the x-component of the remanent magnetic
moment we may write:

M̂x =
N∑
i=1

1

EMx(ωi)
M̂xωi

(4.40)

where N is the total number of frequencies used, ωi is the corresponding excitation
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Table 4.1: Standard deviations of the estimated parameters for different estimation scenarios.
For each of the different scenarios we calculate the ratio between the actual performance and
the optimal Cramér Rao lower bound.

Run ∆M̂x ∆M̂y ∆M̂z ∆χ̂o ∆χ̂e

CR bound 0.019% 0.046% 0.139% 0.083% 0.263%

1
σ 0.028% 0.067% 0.156% 0.084% 0.557%

CR ratio 1.47 1.45 1.12 1.01 2.11

2
σ 0.123% 0.132% 0.162% 0.176% 0.632%

CR ratio 6.47 2.86 1.17 2.12 2.40

3
σ 0.331% 0.215% 0.445% 0.553% 6.557%

CR ratio 17.42 4.67 3.20 6.66 24.93

frequency, M̂xωi
is the estimate of Mx at ωi and M̂x is the final combined estimate. In

this equation EMx(ωi) are the weighting factors of Eq. (4.38) adequately normalized:

N∑
1=1

1

EMx(ωi)
= 1. (4.41)

This estimation procedure provides an estimate of the magnetic characteristics of
the test masses that takes into account all the limiting factors of the LTP instrument,
and also delivers estimations which are robust to other unexpected (and not modeled)
frequency dependent effects.

4.8 Summary and conclusions

In this chapter we have studied how the magnetic characteristics of the test masses
onboard LISA Pathfinder can be determined. This is essential to estimate the mag-
netic noise contribution to the entire noise budget and, most importantly, to subtract
this noise from the displacement reading. The estimation of Mx, My, Mz, χo and
χe is done by injecting a controlled magnetic field at the position of the test masses.
The field is generated by a sinusoidal current circulating through the two onboard
induction coils placed at each side of both test masses. The induced magnetic field
results in magnetic forces and torques on the test masses that excite their dynam-
ics. We have shown that the force acting on the test masses has two frequencies,
while the torques oscillate at single frequency, allowing to estimate the properties of
the test masses by an adequate processing of three of the readings delivered by the
interferometer. These readings are the differential displacement of both test masses
(ox12), the rotation of test mass 1 about the y-axis (oη1) and that about the z-axis
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(oφ1). We have also shown that the time series received from the satellite’s telemetry
need to be whitened and split to minimize the low-frequency effects inherent in the
operation of the instrument. This way, the magnetic parameters can be estimated by
a classical single-channel least-square technique once the effects produced by cross-
talks are determined and corrected. Additionally, we have assessed the sensitivity
of the estimation procedure to the uncertainty in the gain of the capacitive actuator
of the instrument. This effect showed to be very relevant and, most importantly, it
has been found to depend on the excitation frequency. Moreover, the SNR of the
received signals also depends on the frequency of the injected signal. Accordingly,
we have also presented a joint optimization analysis that takes into account these
two factors, leading to the conclusion that the optimal excitation frequency for a
joint experiment is 5 mHz. Performing the experiment at this frequency allows to es-
timate the magnetic characteristics without being affected by the likely uncertainty
in the capacitive actuator gain. In this case we obtain parameter variances smaller
than ∼ 0.18% when the deviations of the gain of the capacitive actuator are ∼ 1%.
Using all the previously explained steps and adopting this excitation frequency, the
estimation turns out to be more accurate than that obtained using the preliminary
design of the experiment, for which a frequency of 1 mHz was adopted. Moreover,
we have suggested that a multi-frequency estimation technique could deliver esti-
mates of the highest quality, enhancing the robustness of the experiment in front of
non-modeled frequency-dependent effects. To conclude, we remark that our results
provide useful insight on the design and analysis of the magnetic experiment onboard
LISA Pathfinder.



Chapter 5

Interpolation of the magnetic
field

In this chapter we present the studies developed to estimate the magnetic field and
the magnetic field gradient inside the LTP Core Assembly (LCA) of LISA Pathfinder.
In particular, we describe the characteristics of the problem, namely, we show how
to infer the magnetic field at the test mass positions with measurements provided
by the 4 magnetometers placed at the LCA walls. We argue that classical methods
fail to perform this task and we present a new alternative based on neural networks
(Dı́az–Aguiló et al., 2009; Dı́az-Aguiló et al., 2010)

Noise in the LTP arises as a consequence of various disturbances, mainly gen-
erated within the spacecraft itself, which limit the performance of the instrument.
A number of these disturbances are monitored and dealt with by means of suitable
devices, which form the so-called Diagnostics Subsystem (Araújo et al., 2007). In
LPF, this includes thermal and magnetic diagnostics, plus the radiation monitor,
which provides counting and spectral information on ionizing particles hitting the
spacecraft. The magnetic diagnostics system will be the subject of our attention
here.

One of the most important functions of the LTP magnetic diagnostics is the
determination of the magnetic field and its gradient at the positions of the test
masses. For this, it includes a set of four tri-axial fluxgate magnetometers, intended
to measure with high precision the magnetic field at the positions they occupy in
the spacecraft — see Fig. 5.1. Their readouts do not however provide a direct mea-
surement of the magnetic field at the positions where the test masses are, and an
interpolation method must therefore be implemented to calculate it. In the circum-
stances we face, this is a difficult problem, mostly because the magnetometers layout
is such that they are too distant from the locations of the test masses compared with
the typical scales of the distribution of magnetic sources in the satellite. Its solu-
tion is however imperative since magnetic noise can be as high as 40% of the total
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Figure 5.1: Artist view of the LPF science-craft. The LCA is in the center, surrounded by
a double cylindrical shield. Outside it, a number of electronic boxes are represented, most
of which are sources of magnetic field. The four magnetometers are the white little boxes
indicated by the arrows (magnetometer #3 is however not visible), and are mounted on the
outer cylindrical shell.

budget (Vitale, 2005) given by Eq. (2.1), and hence it must be properly quantified.

In order to design a suitable interpolation scheme, information on the actual
distribution of magnetic sources is necessary. That is, we need to model the mag-
netic activity of each of the electronic boxes in the spacecraft and other magnetic
sources such as FEEP, solar panels, batteries,. . . Data from the spacecraft manufac-
turer (EADS Astrium Stevenage, UK) have kindly been handed to us (Wealthy, 2006)
for this purpose — see Appendix E. According to these data, magnetic sources can
be characterized as magnetic dipoles, whose positions are known and whose magnetic
moments are only known in modulus — not in orientation. Most of these dipoles
are associated to electronic boxes, with a few genuinely magnetic elements, and to
other spacecraft systems like the FEEP thrusters. An exception to this rule is the
magnetic field of the solar panels, which cover the entire spacecraft and can hardly
be considered as a dipole as seen by the magnetometers. They are however designed
so that their cells are arranged to minimize magnetic effects by having their rim
wires wound contiguous and in opposite senses.
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Astrium data are based on system design, so validation with the real spacecraft
must be done by means of experiment, which is of course included in the planned
activities before launch. Actually, though, the structure of the magnetic source dis-
tribution and their properties will not be directly visible either to the magnetometers
or to the interpolation algorithms, which will just work with magnetic field values
no matter how they are generated. Nevertheless, we think that the information
available so far, though not final, qualifies very well as a guide to the elaboration
of a magnetic model which will be needed to define and verify the performance of
the analysis algorithms which will eventually be applied to the data delivered by the
satellite in flight.

In this chapter we will use a dipole model of the sources to assess the performance
of two different types of interpolation methods: multipole interpolation and neural
network algorithms. The first is the more immediate one to try, but as we will show
below it is not as efficient as one might expect a priori. To overcome this problem we
propose a novel method, based on neural networks. Based on the results obtained
with the same dipole source model, our solution looks promising since the errors of
the interpolated fields and gradients are significantly smaller than those obtained
with the multipole approach. The chapter is structured as follows. In section 5.1 we
provide a general description of the problem. It follows section 5.2, where we discuss
the multipole interpolation, whereas in section 5.3 we explain our neural network
approach. The results of applying these algorithms are presented in section 5.4,
while in section 5.5 we summarize our major findings and we draw our conclusions.

5.1 General description of the problem

Magnetic noise in the LTP is allowed to be a significant fraction of the total mission
acceleration noise: 1.2 × 10−14 m s−2 Hz−1/2 can be apportioned to magnetism, i.e.,
40 % of the total noise, 3×10−14 m s−2 Hz−1/2, see Eq. (2.1). This noise occurs be-
cause the residual magnetization and susceptibility of the test masses couple to the
surrounding magnetic field, giving rise to a force

F =

〈[(
M +

χ

µ0
B

)
·∇
]

B

〉
V (5.1)

in each of the test masses. In this expression B is the magnetic field in the test
mass, χ and M are its magnetic susceptibility and density of magnetic moment
(magnetization), respectively, and V is the volume of the test mass; µ0 is the vacuum
magnetic constant, 4π×10−7 m kg s−2 A−2), and 〈· · · 〉 indicates the test mass volume
average of the enclosed quantity. Moreover, the magnetic field and its gradient
randomly fluctuate in the regions occupied by the test masses, thus resulting in a
randomly fluctuating force:

δF =

〈[(
M +

χ

µ0
B

)
·δ∇

]
B +

χ

µ0
[δB·∇] B

〉
V (5.2)
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Figure 5.2: Conceptual diagram: magnetic sources (green dots, size proportional to the
modulus of the magnetic moment of the source), test masses (red dots), and the four mag-
netometers (black triangles). Also represented (in dark blue) is the wall of the LCA.

where δB represents the fluctuation of the magnetic field, and δ∇ stands for the
fluctuation of the gradient (Sanjuán et al., 2008).

Quantitative assessment of magnetic noise in the LTP clearly requires real-time
monitoring of the magnetic field, which in LPF is done by means of a set of four
tri-axial fluxgate magnetometers (Cañizares et al., 2009). These devices have a high-
permeability magnetic core, which drives a design constraint to keep them somewhat
far from the test masses (Lobo & Mateos, 2008). The price to be paid for this is
that the measured field is not directly useful (we need to know it at the positions of
the test masses). Hence, a procedure to estimate it at these positions, based on the
data delivered by the magnetometers, must be set up.

As previously mentioned, the sources of magnetic field are essentially electronics
boxes plus a few genuinely magnetic components inside the spacecraft. The inter-
planetary DC magnetic field is expected to be one order of magnitude weaker and
spatially constant (see Appendix B). Their fluctuations are expected to be of similar
magnitude — see Table 2.5. There are no sources of magnetic field inside the LCA,
all being placed outside its walls. The number of Astrium identified sources is around
50, and can be modeled as point magnetic dipoles (Wealthy, 2006). Figure 5.2 gives
an overview of the geometry, see caption for details.
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5.2 Multipole interpolation

Perhaps the most immediate (and obvious) procedure to interpolate the magnetic
field is to resort to its multipole structure. This is known to be the best option in
some mathematical sense (Jackson, 1999). Consequently, we first describe the details
of its implementation, and then we assess its practical merit.

We will treat the LCA region as a vacuum. This is a reasonable hypothesis, as
the materials inside it are essentially non-magnetic. Accordingly, the magnetic field
has zero divergence and rotational1:

∇·B(x, t) = 0 ∇×B(x, t) = 0 (5.3)

Since ∇×B(x, t) = 0, we thus have

B(x, t) =∇Ψ(x, t) (5.4)

where Ψ(x, t) is a scalar function. Additionally, since ∇·B(x, t) = 0, too, it immedi-
ately follows that Ψ(x, t) is a harmonic function, or

∇2Ψ(x, t) = 0 (5.5)

The solution to this equation can be expressed as an orthogonal series of the form

Ψ(x, t) =

∞∑
l=0

l∑
m=−l

Mlm(t) rl Ylm(n) (5.6)

where
r ≡ |x| , n ≡ x/r (5.7)

are the spherical coordinates of the field point x, whose origin is by (arbitrary)
convention assumed in the geometric center of the LCA. Eq. (5.6) could also contain
terms proportional to r−l−1, but these have been dropped because the field cannot
diverge at the center of the LCA. Actually, the expansion of Eq. (5.6) is only valid
in a region interior to the closest field source. Finally, the coefficients Mlm(t), which
will be called multipole coefficients in the sequel, depend on the sources of magnetic
field.

To obtain the field components we take the derivative of Eq. (5.6) following
Eq. (5.4):

B(x, t) =∇Ψ(x, t) =

∞∑
l=1

l∑
m=−l

Mlm(t)∇[rl Ylm(n)] (5.8)

1Given the distances in the spacecraft, in the order of 1 m, propagation effects will be neglected.
Time dependence will therefore be purely parametric, i.e., the time variable will just label the value
the field takes on at that time.
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According to standard mathematics, the coefficients Mlm(t) can be fully deter-
mined if the magnetic field is known at the boundary of the volume where the field
equations are considered, in this case the LCA. This data is of course not available to
us, since we only know B in four points of the boundary, where the magnetometers
are. Therefore the question we need to address is: how many terms of the series can
we possibly determine on the basis of the limited information available? Or, equiv-
alently, how many multipole coefficients can we estimate, given the magnetometers
readout data? Then, also, to which accuracy can we estimate the actual magnetic
field after the maximum number of multipole coefficients have been calculated?

The answer to the first question above is actually not difficult: let us assume that
the series in Eq. (5.8) is truncated after a maximum multipole index value l=L. The
estimated field, Be, is then given by:

Be(x, t) =

L∑
l=1

l∑
m=−l

Mlm(t)∇[rl Ylm(n)] (5.9)

The number of terms in this sum is

N(L) =

L∑
l=1

(2l + 1) = L(L+ 2) (5.10)

which obviously equals the number of multipole coefficients needed to evaluate the
sum. For example, we have N(2) = 8 and N(3) = 15. On the other hand, the number
of magnetometer data channels is 12 — three channels per magnetometer, as the
devices are tri-axial. This means we cannot push the series beyond the quadrupole
(l= 2) terms. This means that since we only have 12 data channels we have some
redundancy to determine the first eight Mlm(t) coefficients up to l= 2, though we
also lack information to evaluate the next seven octupole terms2.

In order to make a best estimate of the Mlm(t), a least-square method is set up
as follows. Firstly, we define a quadratic error:

ε2(Mlm) =
4∑
s=1

|Br(xs, t)−Be(xs, t)|2 (5.11)

where Br is the real magnetic field and the sum extends over the number of mag-
netometers, situated at positions xs (s= 1,. . . ,4). We then find those values of Mlm

which minimize the error:
∂ε2

∂Mlm
= 0 (5.12)

2A clarification is in order here. The multipole coefficients Mlm(t) are actually complex numbers,
which may mislead one into inferring that actually fewer can be calculated. This is however not
so because of the symmetry Mlm(t) = (−1)mM∗l,−m(t), which ensures that B(x, t) is actually a real
number.
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Once this system of equations is solved, the estimated coefficients Mlm(t) are
replaced back into Eq. (5.9) and then the spatial arguments x substituted by the
positions of each test mass to finally obtain the interpolated field values. This process
needs to be repeated for each instant t of time at which measurements are taken,
thereby generating the magnetic field time series. The gradient is estimated by
taking the derivatives of Eq. (5.9):

∂Bi
∂xj

∣∣∣∣
e

(x, t) =

L∑
l=0

l∑
m=−l

Mlm(t)
∂2

∂xi∂xj

[
rl Ylm(n)

]
(5.13)

It is to be noted that Eq. (5.9) is a polynomial of degree L−1 in the space co-
ordinates (x, y, z), hence its degree equals 1 when L= 2. Since this is the most we
can get of the magnetometer readout channels, the multipole expansion is actually
equivalent to a linear interpolation of the field between its values at the boundary
of the LCA and its interior. We may therefore not expect this method to produce
excellent results, simply because the magnetic field inside the LCA is weaker than
at its boundaries, the reason being that the magnetic field sources are outside the
LCA. This valley structure of the magnetic field needs at least octupole (quadratic)
terms to be approximated, but this would require at least one more vector magne-
tometer, which is not available. By the same argument, the field gradient can only
be approximated by a constant value throughout the LCA — see Eq. (5.13).

5.2.1 Numerical simulations

In order to have a quantitative idea of the actual performance of the above interpola-
tion scheme, we make use of the source dipole model. It has the following ingredients
and assumptions:

1. The sources of magnetic field are point dipoles outside the LCA.

2. The sources are those identified by Astrium Stevenage, as already mentioned,
whose positions in the spacecraft are known. The set itself, as well as the source
magnetic parameters need to be updated, but the data used (which date back
to November 2006) qualifies to verify the performance of the interpolation
methods. The listing of these sources is shown in Appendix E.

3. The magnetic field created by the dipole distribution at a generic point x and
time t is therefore given by

B(x, t) =
µ0

4π

n∑
a=1

3 [ma(t)·na] na −ma(t)

|x− xa|3
(5.14)

where na = (x− xa)/|x− xa| are unit vectors connecting the a-th dipole ma

with the field point x, and n is the number of dipoles.
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4. Fluctuations of the dipoles, both in modulus and direction, are unknown, but
this is not essential to assess the numerical performance of the algorithm.

We aim to compare interpolated magnetic field results with exact ones within the
context and scope of the above model. To artificially simulate several possible sce-
narios, we will take advantage of the uncertainties in the source dipole orientations to
randomly generate different magnetic field patterns, which we intend to reconstruct
based on the multipole expansion. More specifically, the procedure is the following
one:

1. Each dipole has a known fixed position in the spacecraft, and a fixed modulus,
also known. The number of magnetic dipoles is also fixed to 46, which is the
number in Astrium’s list.

2. The orientations of the dipoles are instead unknown. An example scenario is
characterized by a specific selection of the 46 dipole orientations.

3. In order to explore the behavior of the algorithm, a batch of examples are ex-
amined, each corresponding to a randomly generated set of dipole orientations.

4. In each case, Eq. (5.12) is solved for Mlm, and the field estimate at each test
mass is then calculated with Eq. (5.9). In the last step, the result is compared
with the theoretical one given in Eq. (5.14), and the differences annotated.

5. Finally, a statistical analysis of the differences (errors) is done.

The random character of the procedure may seem unrealistic, since the actual
satellite configuration is not random. In this context, however, randomness is an
efficient way of mimicking lack of knowledge. As we will see in the next section,
numerical analysis based on this methodology sheds much light on the merits of
the interpolation procedure — as it will also be the case when we come to neural
networks performance in section 5.4.

Simulation results

In this section we summarize the most relevant results of the analysis of the multipole
interpolation method. We use a batch of 1 000 example scenarios such as described
above. Magnetic moment orientations were chosen by randomly picking values of
the two defining spherical angles (θ, ϕ) from two independent uniform distributions.

Fig. 5.3 graphically represents a magnetic field map in the LCA region corre-
sponding to an arbitrarily chosen example out of the 1 000 considered. The valley
structure is very clear in the |B| plot, while the Bx component shows a saddle shape
— see figure caption. By and Bz show qualitatively similar forms, and thus we do
not show them. The elliptical forms in the estimate of |B| are due to the quadratic
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Figure 5.3: Magnetic field contour plots in the LCA region for a given source dipole config-
uration. x is the direction between the two test masses, and y is in the “horizontal” plane,
which in the plot is at the test masses centers of mass altitude. Left panels: moduli of the
magnetic field. The top panel displays the exact one, and the bottom one shows its multi-
pole estimate. Right panels: same as in the left panels, but for one of the field components
(Bx). The modulus of the magnetic field shows a complex structure in the central area,
while Bx has a saddle structure there — see along the diagonals of the graph frame. The
white dots mark the centers of the test masses, and the green triangles the positions of the
magnetometers.

combination of the field components. The estimate of Bx shows instead a linear
structure, with constant gradient in all directions. Naked eye inspection immedi-
ately reveals a poor resemblance between estimated and exact quantities, but let us
elaborate some numerical data.

Fig. 5.4 displays the binned distribution of estimation errors, defined by

ε(|B|) =
|Be| − |Br|
|Br|

, ε(Bx) =
Bx,e −Bx,r
|Br|

(5.15)

where we have used a denominator |Br| in ε(Bx) to avoid meaningless infinities
when Bx is close to zero. By and Bz show similar trends and are not displayed.
As can be seen, errors average to zero, but have rms deviations well above 100%.
Even worse, outliers are significant, as can be seen in Table 5.1, where averaged
absolute values over the 1 000 simulated cases are displayed. Except, obviously, for
the modulus error, we are around 500%, but detailed examination of individual data
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Figure 5.4: Binned errors of the estimated modulus of the magnetic field and of its x com-
ponent. They are reported in percentage. Colors correspond to each of the LTP test masses,
respectively. Inset values of σ indicate the r.m.s. half-width of the distributions. Solid lines
are Gaussian fits to the histograms.

Table 5.1: Averaged absolute value of the estimation errors in the components of the mag-
netic field and of its modulus. They are reported in relative percent.

TM1 TM2

ε(Bx) 493.7 640.4
ε(By) 330.5 543.1
ε(Bz) 359.5 368.2
ε(|B|) 88.6 75.7

further shows that errors as high as 2 000% eventually happen.

The most salient features of the numerical analysis can be briefly summarized.
Firstly we find that magnetic field estimation errors are very variable, ranging from
very few percent to over 1 000 % and, secondly, these huge uncertainties happen in
an utterly random and fully unpredictable way. The a posteriori conclusion is quite
simple: the intrinsic linear character of the interpolation scheme is not capable of
reproducing the field structure inside the LCA — hence at the positions of the test
masses — and, therefore, can produce very good or very bad results just by accident.
In addition to not being predictable, the average error is any case too large. The ulti-
mate reason for such poor performance is the small number of magnetometers as well
as their positioning: four magnetometers only allow for a field multipole expansion
up to quadrupole terms, which means that the field values at the test masses are just
linearly interpolated between magnetometer readouts at the boundary of the LCA.
On the other hand, the magnetometers are closer to the magnetic field sources than
they are to the test masses, which prevents resolution of the spatial field structure
details inside the LCA with only linear terms in the space coordinates.
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Figure 5.5: Feed-forward neural network architecture. Magnetometers readings are the
system inputs, and estimates of the field and gradient at the positions of the test masses
are the outputs of the system. In this architecture, only one intermediate, or hidden layer
is assumed. Each of the circles represents one neuron and corresponds to the model of
Eqs. (5.16) and (5.17).

5.3 A novel alternative approach: neural networks

Search for an alternative approach to the above interpolation schemes is imperative,
otherwise the information provided by the magnetometers will hardly be useful for
the main goal of the LTP magnetic diagnostics system, i.e., to quantify the contri-
bution of the magnetic noise to the total system noise. Here some promising results
are presented on the implementation of a completely different methodology: neural
networks (Kecman, 2001).

Artificial neural networks are made up of interconnecting artificial neurons (pro-
gramming constructs that mimic the properties of biological neurons) that have the
capacity to learn from processing data. Neural networks are often used in solving
nonlinear classification and regression tasks by learning from data, hence are worth
trying with the present problem (Serpico & Visone, 1998).

There are four sets of tasks which need to be implemented when solving a problem
with artificial neural networks:

1. Neuron model selection

2. Model and architecture selection

3. Learning paradigm and learning algorithm selection
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4. Performance assessment

We next go through them, one by one.

5.3.1 Neuron model

The neuron is the basic unit of any neural network. It performs the following two
operations:

• It collects the inputs from all other neurons connected to it and computes a
weighted sum of the signals the latter inject into it, generally adding a bias as
well. If we represent the inputs by a vector x≡ (x1, . . . , xn), and the weights
by a w≡ (x1, . . . , wn) then this operation consists in calculating the sum

Σ = w0 +

n∑
k=1

wkxk ≡ w0 + wTx (5.16)

where the superindex T stands for transpose matrix; in this case, wT is a row
vector while x is a column vector, so that wTx is the scalar product of w and
x. A term w0 is added to form the most general linear function of the vector
argument x; it is called the bias.

• The above sum is used as the argument to the so-called activation function,
ϕ(Σ). The neuron’s output, also known as its activation, is thus

o = ϕ(Σ) (5.17)

In general, ϕ(Σ) can be selected in many different ways. Here, differentiable
activation functions will be used, which suit well the gradient descent back-
propagation learning algorithm — see sections below.

5.3.2 Neural network architecture

Artificial neural networks are software or hardware models inspired by the structure
and behavior of biological systems, and they are created by a set of neurons dis-
tributed in layers. There are many different types of neural networks in use today,
but the architecture of a so-called feed-forward network, where each layer of neurons
is linked with the next by means of a set of weights, is the most commonly used,
and will also be used here. The specific architecture adopted in this study is shown
in Fig. 5.5. The data streams coming from the magnetometers will be considered
the system inputs, while magnetic field results and their gradients at the positions
of the test masses will be the system outputs.
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5.3.3 Learning paradigms and learning/training algorithms

The investigation of learning algorithms is currently an active field of research. The
design and implementation of an adequate training scheme is the essential ingredient
for obtaining a good-quality estimate of the magnetic field and its gradient at the
LTP test masses.

Learning paradigms

There are two major learning paradigms, each corresponding to a particular abstract
learning task. These are supervised learning and unsupervised learning.

1. Supervised learning. The idea of this paradigm is quite clearly suggested by its
very name. A set of examples is filed, each set consisting in a number of vector
of inputs (the magnetometers’ readouts in this case) and the corresponding
values of the magnetic field and its gradient at the test masses for a given
distribution of dipoles in the spacecraft. Let x represent a generic input vector,
and y the associated vector output. These two vectors constitute an example.
The set of filed examples for supervised learning is thus a set of pairs (x,y),
where x∈X and y∈Y , X and Y being some suitable sample spaces. The
network is then fed the inputs x of one example and let it work out an output,
o, say. This output is then compared with the correct one, y, and an error
is calculated if o 6= y. Iterations are then triggered to adjust the weighting
factors such that the error is minimized. These will however vary as different
examples are run, so a cost function is defined which enables the network to
optimize the set of weights which works best for the set of examples analyzed,
based on some suitable criterion.

2. Unsupervised learning. In unsupervised learning a cost function is to be min-
imized as well, but this function can be any relationship between x and the
network output, o, but never taking into account the real expected target. The
cost function is determined by the task formulation. Unsupervised learning is
thus a form of self-adaptive system, whose guide is not an a priori knowledge
of the final result but knowledge gained from experience.

In either case, the learning process is based on the architecture of the network,
i.e., number of neurons and layers and their interconnections, as well as on the
activation functions. These are parameters which, at least in the simplest cases,
are tuned ab initio by the user based on observed performance of the network. In
this study, supervised learning has been the implemented learning paradigm for the
magnetic field interpolation, whereas unsupervised learning will be used in chapter 6
to discern between different operational modes.
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Learning algorithms

There are many algorithms for training neural networks. When training feed-forward
neural networks with supervised learning, a back-propagation algorithm is usually
implemented. The error of the mapping at the output is propagated backwards in
order to readjust the weights and improve the output error for the next iteration.
The propagation can be implemented with different methods, the Ideal Gradient
Descent being a classic which will also be used here, with slight modifications that
make the algorithm convergence faster (see Appendix F for further details).

Iterations on the weights of the different neurons at the different layers proceed
according to the following algorithm:

wn+1 = wn − η
∂E

∂w

∣∣∣∣
n

(5.18)

where n labels the current iteration step, and η is the learning rate, adjustable by
the user. E is the sum over the set of training examples of the square errors of the
outputs:

E =
∑
s

(o− y)T (o− y) (5.19)

where s stands for the number of examples, o is the (vector) output from the network,
while y is the target, or correct output in the corresponding example. The quantity
E can only be defined in supervised learning, of course, and the idea of the above
procedure is to find that point in weight space where E is an absolute minimum.
E can therefore be considered the cost function to be minimized in this particular
supervised training scheme, also known as batch mode as the analysis is done across
the entire set of training patterns in a single block.

There are a number of technical issues in pursuing the iterations in Eq. (5.18),
such as the choice of the initial set of weights, the identification of local minima of E,
the boundary effects, etc, which need to be addressed for each specific application.
For further details, the reader is referred to Kecman (2001), Reed (1993) and Dreyfus
(2005).

5.3.4 Performance assessment

In this last step, the trained network must be tested with examples which differ
from those used in the learning process. This is needed to assess whether or not
the trained neural network is able to generate the expected results when fed with
previously unseen inputs, hence determine its usability for the specific purpose it is
intended.
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Figure 5.6: Error distributions for each field component at the position of test mass 1 (black
line) and test mass 2 (red line). The top left panel displays the results for Bx, the top right
panel shows the error distribution for By, while the bottom left panel depicts the distribution
obtained for Bz and the bottom right panel that for |B|.

5.4 Results

Training and testing have been done based on different field realizations, using the
same model of sources and magnetic field described in section 5.2.1, i.e., each example
will consist in the magnetic field at the magnetometers’ positions, plus the magnetic
field and gradient at the positions of the test masses, all of them corresponding to a
given configuration of the 46 Astrium dipoles.

Two different batches of examples, each including 1 000 realizations of a possible
magnetic environment, have been generated following the directives explained in
section 5.2.1. The first batch has been used as the training set for a neural network
with 12 inputs (3 inputs for each of the 4 vector magnetometers) and 16 outputs
representing the field information at the position of the two test masses (3 field values
plus 5 gradient components per test mass3). The second batch has been used for
validation to assess the performance of the network in front of unseen magnetometers
readings.

3Note that only 5 of the 9 gradient components ∂Bi/∂xj are independent. This is because the
conditions of Eq. (5.3) imply that ∂Bi/∂xj is a traceless and symmetric matrix.
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5.4.1 Field estimation

Fig. 5.6 shows the distribution of relative errors (in percentage) of the estimated
components of the magnetic field at the positions of each test mass. The plot is
based on the results of the 1 000 validation runs described in the previous section.
As can be observed, the order of magnitude of the errors of the estimated fields
are now within much more acceptable margins (below ∼ 10%). This represents a
reduction of estimation errors of more than one order of magnitude in comparison
with the multipole expansion method.

During the training process, the neural network eventually learns that the mag-
netic field at the test masses is generally smaller than the magnetometers read —
with occasional exceptions due to the rich and complex structure of the field in-
side the LCA, see e.g. Fig. 5.3. The neural network is able to derive an inference
procedure which is actually quite efficient, and it does so by proper adjustment of
its weight matrix coefficients w as explained in section 5.3.3. In order to better
understand the reaction of the trained neural network to the magnetometers’ data,
we found instructive and expedient to look into relationships between the data read
by the magnetometers and the magnetic field estimates generated at the output of
the neural network. We chose to calculate correlation coefficients between input and
output data, and the results are displayed in Fig. 5.7. The following major features
are identified:

• Each component of the field is basically estimated from the magnetometers
reading of the same component. For example, the interpolation of the Bx
component in test mass 1 is mostly dependent on the Bx readings of the mag-
netometers.

• The measurements of the magnetometers closer to the interpolation points have
larger weights. For instance, when the field is estimated at the position of test
mass 1, to which M4 is the closest magnetometer, the value it measures is the
largest contributor to the interpolated field in test mass 1. At the same time,
M1 and M3 being nearly equidistant from both test masses, their weights are
almost identical.

5.4.2 Gradient interpolation

The magnetic field gradient can also be estimated. The 9 components ∂Bi/∂Bj of
the gradient are not independent, since they must verify Eqs. (5.3), which reduce
their number to 5. The remaining 4 components can be easily calculated thereafter.
Another option is to estimate the 9 gradient components regardless of the previously
mentioned constraint, in which case they are actually found not to satisfy them.
Discrepancies are however within the estimation error range, so we do not adopt this
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Figure 5.7: Correlation coefficient between the information entering the network (each mag-
netometer input) and the outputs provided by the trained network for the field estimates.
Dark green bars correspond to the weights multiplying each of the x-component of the cor-
responding magnetometer reading, whereas light green bars and yellow bars correspond to
the weights multiplying the y- and z- components respectively.

option here as it is slightly more cumbersome due to the correspondingly increased
complexity of the network.

Results on gradient estimation are shown in Fig. 5.8 for ∇Bx at the positions of
both test masses. As can be observed, they are also within much more acceptable
margins than the earlier interpolation approach could possibly produce. It is to be
noted that no apparent or easily deductible physical relationship is found between
the estimated gradient at the test mass positions and the magnetometer inputs, in
contrast with what we have found for the field estimation.

5.4.3 Statistical analysis

In Table 5.2 we present a statistical comparison of the properties of the distribu-
tion of interpolated magnetic fields. For the sake of conciseness we only list the
statistical properties of the interpolated modulus and x-component of the magnetic
field. In particular, we show the standard deviation (σ) of the interpolating errors
for both the multipole interpolation and the neural network estimate, the skewness
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Figure 5.8: Probability density function of the errors distribution for the three components
of ∇Bx. From top to bottom: ∂Bx/∂x, ∂Bx/∂y and ∂Bx/∂z at the positions of the test
masses. Errors are given in percentages, the black lines corresponding to test mass 1, and
the red ones to test mass 2.

of the distribution (γ1) and the corresponding kurtosis (γ2). Clearly, and as already
mentioned, the interpolating errors are very large for the case in which a multipole
interpolating scheme is used, as clearly shown by the very large standard deviation
obtained when using this method. Also interesting to note is that for the case of the
x-component of the magnetic field both methods yield distributions which are almost
symmetrical (low values of skewness). However, this is not the case for the modulus
of the magnetic field when the multipole interpolating method is used. Finally, the
kurtosis of the multipole interpolation is very large, revealing a large number of out-
liers. All in all, a look at Table 5.2 reveals that the neural network method presents
much better statistical properties than the multipole interpolation.

5.5 Conclusions

The magnetic diagnostics sensor set in the LTP is such that to infer the magnetic
field and gradient at the positions of the test masses based on the readouts of the
magnetometers is far from simple. The more standard interpolation scheme, based
on a multipole expansion of the magnetic field inside the LCA volume, cannot go
beyond quadrupole order which, in practice, means that just a linear approximation
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Table 5.2: Statistical properties of the distribution of errors of the interpolated magnetic
field.

σ γ1 γ2

Multipole interpolation
Bx(TM1) 130.7583 -0.2782 19.3869
Bx(TM2) 128.3601 -0.1009 21.4974
|B|(TM1) 105.5386 -3.6770 29.7343
|B|(TM2) 102.1037 -4.4770 38.0686

Neural network interpolation
Bx(TM1) 1.5204 -0.0028 2.7746
Bx(TM2) 1.6260 -0.0008 2.8626
|B|(TM1) 1.4464 -0.1014 2.9440
|B|(TM2) 1.3682 -0.0969 2.9905

can be done, due to the reduced number of magnetometers available. This grossly
fails to produce reliable results, with errors exceedingly large. This has motivated
our search for better alternatives. Artificial neural networks have been presented as
a more elaborate procedure to estimate the required field values at the positions of
the test masses. In this chapter we have presented results which very significantly
improve the performance of the multipole expansion technique by almost two orders
of magnitude. This a very encouraging outcome which points to the use of the neural
networks as the baseline tool to analyze LTP magnetic data.

One of the main problems of using the neural network to assess the magnetic
field at the positions of the test masses is to find a training process adequate to the
set of data that the magnetometers will deliver in flight. This underlines the need
to characterize on ground to our best ability the magnetic field distribution across
the LCA for as many as possible foreseeable working conditions, both regarding DC
and fluctuating values. Reliable information on this is essential for a meaningful
assessment of magnetic noise in the LTP. However, the neural network analyses pre-
sented in this chapter only apply to static fields. What they actually show is that
neural networks work very well (always below ∼ 10% accuracies and with standard
deviations at the 2% level) no matter which the source dipole configuration is. We
have performed a study of the underlying structures of the neural network and we
have found that the ability of our interpolating scheme to recover the correct values
of the magnetic field and gradients at the positions of the test masses is due to the
fact that the neural network is able to learn from the readings of the magnetome-
ters which are closest to the corresponding test mass, and that the most important
contribution for each component field comes from the corresponding magnetome-
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ter reading. Although very intuitive, this underlying relationship is not resolved by
classical interpolation methods. A different issue is how to deal with time series of
magnetometer readouts, which is of course the kind of data the satellite will transmit
to ground. Features such as varying environmental conditions, field fluctuations, etc
will likely happen during mission operations, and the neural network algorithm must
be trained to properly deal with them. These results and a more in depth analysis
of the robustness of the system are presented in the following chapter.



Chapter 6

The robustness of the magnetic
field interpolation method

In this chapter we elaborate on the studies presented in chapter 5. Specifically, we
analyze the accuracy, the precision and the robustness of the neural network used
to interpolate the magnetic field and its gradient. In particular, we study if the
architecture of the neural network is optimal. Moreover, we also assess its behavior
under several circumstances of interest. Among other, we explicitly mention possible
offsets in the magnetometer readings, small deviations from the nominal positions
of the magnetometer heads, or varying environmental conditions (Dı́az-Aguiló et al.,
2011b). This is done in sections 6.1 to 6.6. Additionally, we also introduce a method
to detect changes in the operational mode of the LTP. This method is thoroughly
explained in section 6.7, where we present a hybrid architecture that allows the
Magnetic Diagnostics Subsystem to act autonomously to choose the appropriate
interpolation model and deliver accurate outputs for each operational scenario.

6.1 Introduction

We have already shown (Dı́az-Aguiló et al., 2010) — see also chapter 5 — that
the standard interpolation scheme, which is based in multipole expansion of the
magnetic field inside the LCA volume, does not go beyond quadrupole order. Thus,
its performance in estimating the magnetic field and its gradients is very poor. On
the contrary, artificial neural networks have been shown to be a reliable alternative
to estimate the required field and gradient values at the positions of the test masses.
The reasons for this are multiple. Firstly, the multipole expansion only takes into
account the readings of the magnetometers, whereas the artificial neural network
also uses the actual value of the magnetic field at the position of the test masses
to train the network. This is a crucial issue since the interpolation algorithm is fed
with additional information. Secondly, the classical interpolation method seeks for
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Figure 6.1: A schematic view of the payload of LISA Pathfinder, the LTP. The relative
position of the 4 tri-axial magnetometers (the four grey floating boxes) with respect to the
position of the test masses (located at the center of the two inertial sensors towers) is shown.
Their exact positions are reported in Table 6.1.

a global solution of the magnetic field. That is, the multipole expansion models
the magnetic field inside the entire volume of the LCA. Clearly, since the available
information for the multipole expansion is rather limited, the quality of the global
solution is very poor. In sharp contrast, the artificial neural network first finds
and then uses the correlation between the magnetic field at the positions of the
magnetometers and the test masses to obtain reliable values of the magnetic field
for any magnetic configuration. As a matter of fact, the artificial neural network
performs a point-to-point interpolation and it is not aimed at reproducing the highly
non-linear magnetic field well at any arbitrary position within the volume of the
LCA. Finally, artificial neural networks are trained using a large number of magnetic
field realizations, thus the interpolating algorithm uses a statistically elaborated
information. In this sense, it is important to realize that artificial neural networks
have been shown to be a robust and easily implementable technique among numerous
statistical modeling tools (Kecman, 2001). On the contrary, the multipole expansion
does not use statistical information. Once the readings of the magnetometers are
known, the theoretical solution for the magnetic field within the entire volume of the
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LCA is determined in a straightforward way.

Nevertheless, an in depth study of how the results of the interpolation procedure
depend on the specific characteristics of the neural network remains to be done. It
also remains to further investigate why the neural network obtains such good results
interpolating the value of the magnetic field at the positions of the test masses,
which are well inside a deep well of magnetic field. Finally, an assessment of the
robustness of the neural network interpolating scheme in front of the unavoidable
errors in the positions of the magnetometers, or in front of low-frequency variations
of the magnetic environment and, more importantly, in front of offsets in the readings
of the magnetometers still is needed. These are precisely the goals of this chapter.

The chapter is organized as follows. In section 6.2 we discuss the appropriateness
of our neural network approach to measure the magnetic field and its gradients at the
positions of the test masses, and we discuss which are the accuracies obtained when
different architectures of the neural network are adopted. It follows section 6.3,
where we discuss how the unavoidable errors in the on-ground measurements of
the magnetic dipoles of each electronic box affect the performance of the adopted
neural network. In section 6.4 we evaluate the expected errors in the estimate of
the magnetic field and its gradients due to a possible offset in the readings of the
magnetometers due to launch stresses, whereas in section 6.5 we study how the
mechanical precision of the positions of the tri-axial magnetometers and their spatial
resolution affect the determination of the magnetic field and its gradients. Section 6.6
is devoted to assess the reliability of our neural network approach in front of a slowly
varying magnetic environment, whereas section 6.7 presents the hybrid interpolation
system thought for this application. Finally, in section 6.8 we summarize our main
findings, we discuss the significance of our results and we draw our conclusions.

6.2 The neural network architecture

Although neural networks have been used in different space applications (Bullen
et al., 2003; Loyola, 2006), to the best of our knowledge this is the first application
of neural networks to analyze inflight outputs in space missions. Hence, studying
the robustness of the neural network architecture proposed to estimate the magnetic
field inside the LCA is a mandatory task.

6.2.1 The fiducial neural network architecture

Figure 6.2 shows a simplified version of the fiducial architecture of our neural net-
work. As can be seen, the number of inputs is twelve — one for each magnetometer
readout — corresponding to the four tri-axial magnetometers placed in the space-
craft. These readings are the only valuable information which can be used to estimate
the magnetic field at the positions of the test masses, and constitute the input layer
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Figure 6.2: The fiducial feed-forward neural network architecture. The readings of the
magnetometers are the system inputs (4 magnetometers, each one with 3 data channels).
The outputs of the system are the magnetic field (3 field components per test mass) and
gradient components (5 components per test mass) at the positions of the test masses. For
the sake of simplicity, all the field and gradient channels have been grouped into a single
neuron. Moreover, not all the neurons in the hidden layer are shown in this figure.

of the neural network. On the other hand, to estimate the magnetic field three out-
puts will be required — corresponding to the three field components per test mass
— whereas to estimate the gradient only five additional outputs are needed. This is
because the magnetic field has zero divergence and zero rotational. Thus, the gradi-
ent matrix ∂Bi/∂xj is a traceless symmetric matrix, and therefore only 5 out of its 9
components are independent (Jackson, 1999). These outputs are the output layer of
the neural network. In addition to the two previously described layers, there is only
one intermediate layer, which constitutes the hidden layer. This layer, in our case,
is made of 15 neurons. Using this architecture for the neural network the magnetic
field estimates typically have standard deviations on the order of ∼ 5% (Dı́az-Aguiló
et al., 2010), a value with which we compare the results of our analysis.
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Table 6.1: Positions of the test masses and positions of the magnetometers referred to a
coordinate system fixed to the spacecraft — see Appendix A. Their relative position can be
seen in Fig. 6.1

Test masses x [m] y [m] z [m]

1 −0.1880 0 0.6093
2 0.1880 0 0.6093

Magnetometers x [m] y [m] z [m]

1 0.0758 −0.3694 0.6093
2 0.3765 0 0.6093
3 −0.0758 0.3694 0.6093
4 −0.3765 0 0.6093

6.2.2 Training and testing

Training and testing data sets were simulated using the most complete and up-
to-date information about the magnetic configuration within the spacecraft. The
complete magnetic configuration of the satellite has not been measured yet, because
some units have not been delivered yet to the prime contractor. Nevertheless, the
exact position of each unit in the spacecraft reference frame are already determined.
On the other hand, the magnetic moments used in our simulations are those reported
by the constructors of each subsystem — see Appendix E. Unfortunately, this data
is not available yet for all units, and moreover although the moduli of the dipoles are
known for all the subsystems their directions are not known yet for most of the units.
The three-dimensional values of the magnetic dipoles of each unit will be accurately
measured in the final testing campaign to be performed on each subsystem before
assembling. This campaign is expected to be performed on the complete assembled
spacecraft. The training and validation of the neural network using the measured
values of the magnetic dipoles will be done after the campaign but the specific
details of the processing algorithm are expected to remain unchanged. Moreover, the
magnetic field inside the LCA is expected to vary substantially between the different
operational modes. Accordingly, since the magnetic configuration of the spacecraft
may have different characteristics for different operational modes, it is foreseen that
a different neural network will be trained for each of these configurations.

Given the unknown orientations of the magnetic dipoles we generate several
magnetic configurations assigning randomly the orientations of the 46 dipoles. An
example scenario is thus characterized by a selection of the 46 dipoles with random
orientations. It is worth mentioning that the produced sets are consistent with our
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Figure 6.3: Quality of the estimate of the magnetic field as a function of the number of
neurons in the hidden layer. The maximum interpolation error remains almost constant for
neural networks larger than ∼ 15 neurons in the hidden layer. The solid line corresponds to
the standard deviation of the error obtained for the Bx-component, the dotted line for the
By-component and, the dashed line for the Bz-component.

expectations and the mission requirements (LIST, 2008; Cañizares et al., 2009) since
at the positions of the test masses we obtain magnetic fields ∼ 200 nT, while the
readings at the magnetometers are of the order of 4 to 10 µT. With this approach
the magnetic field generated by the dipole distribution is given by Eq. (5.14). In
order to simulate realistic magnetic environments, we compute the magnetic field
at the positions of the magnetometers and at the positions of the test masses using
Eq. (5.14) and the list of sources in Appendix E. The positions of the test masses
and of the magnetometers are shown in Table 6.1. We recall that in order to train
the network, we generate two different batches of 103 samples. The first batch was
used as the training set for a neural network with the architecture of Fig. 6.2. This
batch consists in 12 inputs (3 inputs for each of the 4 vector magnetometers) and
16 outputs representing the field information at the position of the two test masses
(3 field plus 5 gradient components per test mass). The second batch has been used
for validation to assess the performance of the neural network.
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6.2.3 Varying the number of neurons

Assessing the correct choice of the number of neurons of a neural network is not a
simple task. When the neural network is composed by only one hidden layer, the
input layer contains as many input-neurons as the information we provide to the
network and as many output-neurons as the target information we want to obtain.
Nevertheless, as far as the number of neurons of the hidden layer is concerned, it
is not guaranteed that the architecture of the selected neural network is optimal
nor that there is an algorithm in the current literature to determine the optimal
number of neurons (Reed, 1993; Dreyfus, 2005). Normally, to obtain good results,
the smallest system obtained after pruning which is capable to fit the data should
be used. Unfortunately, it is not obvious what size is best. A system with a small
number of neurons will not be able to learn from the data, while one with a large
number of neurons may learn very slowly and, moreover, it will be very sensitive to
the initial conditions and learning parameters. Additionally, it should be taken into
account that one of the biggest problems of large networks for some specific problems
is the fact that in the early stages of training, the error on both the training and
tests tends to decrease with time as the network generalizes for the examples to the
underlying function. However, at some point, the error on the testing set reaches a
minimum and begins to increase again as the network starts to adapt to artifacts and
specific details in the training data, while the training error asymptotically decreases.
This problem, known as overfitting, occurs more frequently in large networks due
to the excessive number of degrees of freedom in comparison to the training set
(Schittenkopf et al., 1997). To avoid this, we have used the early stopping technique,
which overcomes this shortcoming.

In the early stopping technique the available data is divided into two subsets
(Kecman, 2001). The first subset is the training set, which is used for computing
the gradient and updating the network weights and biases. The second subset is
the validation set. The error on the validation set is monitored during the training
process. The validation error normally decreases during the initial phase of training,
as does the training set error. However, when the network begins to overfit the
data, the error on the validation set typically begins to rise. When the validation
error increases for a specified number of iterations, the training is stopped, and
the weights and biases at the minimum of the validation error are returned to the
values obtained at the minimum. All these precautionary measures avoid overfitting.
Therefore, the analysis of the number of neurons needed for the hidden layer can be
made analyzing the evolution of the estimation error on the testing set as the number
of neurons increases. The results of such an analysis are depicted in Fig. 6.3, which
shows the standard deviation of the estimate for both test mass1, σ1, and test mass 2,
σ2 as a function of the number of neurons in the hidden layer, N .

As can be seen in this figure, when a reduced number of neurons is used the
model cannot accurately estimate the underlying function due to the lack of tunable
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Table 6.2: Quality of the estimate for the most common neuron activation functions.

TM1 TM2

Function σx σy σz σx σy σz

Tangent sigmoid 4.1 3.8 2.5 5.9 5.2 4.5

Linear 3.8 3.5 2.3 5.7 5.4 4.2

Logarithmic sigmoid 4.2 3.8 2.5 6.2 5.1 4.5

Radial base 4.2 4.3 3.9 6.3 6.0 4.8

Step 7.5 7.6 4.9 12.3 8.2 7.9

parameters. As the number of neurons in the hidden layer is increased, the neural
network performs better and for a number of neurons larger than 15 the error is
not further reduced. Consequently, we conclude that for this specific application
the adequate number of neurons for the hidden layer lies between 10 and 15. This
choice ensures a network large enough to be capable of estimating the underlying
relationship and not excessively large to consume excessive training time, learn slowly
and be dependent on the learning algorithm and learning data. We have also checked
that increasing the number of hidden layers of the neural network does not result in
a better performance of the interpolating algorithm.

6.2.4 Changing the type of neuron

Most of the feed-forward networks are trained with the back-propagation algorithm
and gradient descent techniques are used to minimize some specific cost function,
and this has been the case for the training algorithm used here. This means that all
activation functions within the network must be differentiable to be able to compute
the network gradient for each learning step. Normally, the most commonly used
type of functions are the tangent sigmoid or the logarithmic sigmoid (Kecman, 2001),
which can model any non-linear function if properly trained (Dreyfus, 2005), whereas
linear functions are usually employed for linear models with high dimensionality.

We have studied several possibilities and the results are listed in Table 6.2, where
we show for the different types of neurons the standard deviations of the probabil-
ity density functions of the estimates of the magnetic field for both test mass 1
and 2 (TM1 and TM2, respectively). In our case, and as borne out from Table 6.2,
the linear function together with the tangent sigmoid and the logarithmic sigmoid
are the most efficient choices, while the performance of the radial base function is
slightly worse. Finally, the step function (the popular perceptron) does not yield
good results because it is specifically designed to be used for classification problems.
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Specifically, the linear neuron is the one for which we obtain the best results. This
could be surprising given that our problem is highly non-linear. The reason is that
for every magnetic configuration there exists a large and fairly stable difference be-
tween the value of the magnetic field at the location of the magnetometers (all of
the components of the magnetic field are ∼ 10 µT) and the field at the position of
the test masses (all the components are on the 100 nT level). For this reason, the
weights of the network happen to be the most relevant modeling factors. That is, the
point-to-point interpolation can be understood in the linear case as a simple weighted
sum of the magnetometers measurements. Accordingly, because of its simplicity and
good results, we use the linear function as the basic unit in our regression study.
It is worth noting at this point that similar results could be obtained using a high-
dimensionality least squares analysis, but in our specific case we have found matrix
inversion problems because some magnetometer channels present highly correlated
signals.

6.2.5 Underlying structures

We have already shown that our neural network is highly reliable. Thus, it is per-
tinent to ask ourselves which is the ultimate reason of this behavior. The answer
to this question is that during the training process, the neural network eventually
learns that the magnetic field at the positions of the test masses is generally smaller
than the magnetometers readouts — with occasional exceptions due to the rich and
complex profile structure of the field inside the LCA. Moreover, the neural network
is able to learn an inference procedure which is actually quite efficient. To better
understand this, we found instructive to look into relationships between the data
read by the magnetometers and the estimates of the magnetic field generated by
the neural network. We chose to calculate correlation coefficients between input
and output data, and the results are displayed in Table 6.3. The test masses are
labeled as TM1 and TM2, respectively, whilst the four magnetometers are listed as
Mi, i = 1, . . . , 4.

The following major features can be easily identified. Firstly, each component of
the field is basically estimated from the magnetometers reading of the same compo-
nent. For example, the interpolation of the Bx-component in test mass 1 is mostly
dependent on the Bx-readings of the magnetometers. Secondly, the measurements
of the magnetometers closer to the interpolation points have larger weights. For in-
stance, when the field is estimated at the position of TM1, to which the magnetometer
M4 is the closest magnetometer, the value it measures is the largest contributor to
the interpolated field in TM1. At the same time, magnetometers M1 and M3 be-
ing nearly equidistant from both test masses, their weights are almost identical (see
Table 6.1 for more details). Finally, no apparent or easily deductible physical rela-
tionship is found between the estimated gradient at the positions of the test masses
and the magnetometer inputs.



114 6 The robustness of the magnetic field interpolation method

Table 6.3: Input-output relationship learned by the network.

Output Bx By Bz

Bx TM1

M1 0.2177 −0.1060 0.0134
M2 0.2581 −0.0185 0.1564
M3 0.3754 0.0985 0.0054
M4 0.9340 0.1528 −0.0501

By TM1

M1 −0.0197 0.3556 −0.0682
M2 0.0031 0.2240 0.0601
M3 −0.0782 0.4249 0.1217
M4 0.0668 0.9035 0.0102

Bz TM1

M1 −0.0772 −0.0635 0.3090
M2 −0.1343 0.0083 0.3377
M3 −0.0180 −0.1027 0.5002
M4 0.0493 0.0615 0.9041

Bx TM2

M1 0.3506 0.1862 0.0840
M2 0.9081 −0.2830 0.3782
M3 0.1230 −0.2398 −0.0613
M4 0.2502 0.0184 −0.0480

By TM2

M1 −0.3662 0.3877 −0.0211
M2 0.0184 0.8398 −0.1200
M3 0.3722 0.2400 0.0927
M4 −0.0040 0.2379 −0.0026

Bz TM2

M1 0.1217 0.0267 0.4111
M2 0.0144 −0.1222 0.8740
M3 0.0333 0.0233 0.5054
M4 0.0310 0.0141 0.2685

6.3 Variations in the magnetic dipoles

The numerical experiments done so far indicate that the neural network interpolating
scheme offers good performances when properly trained, irrespective of its specific
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Figure 6.4: Quality of the estimate (standard deviation of the estimation) as a function of the
difference between the real magnetic inflight measurements with respect to the on-ground
measurements (in percentage). σS represents the standard deviation used to variate the
components of the magnetic dipole moment of the sources. Again, the solid line corresponds
to the Bx-component, the dotted line to the By-component and, the dashed line to the
Bz-component.

architecture. However, we emphasize that the neural network has been trained
using simulated data, while for the real spacecraft the neural network will be trained
using on-ground measured data. This data, as already mentioned in section 6.2.2, is
planned to be obtained in Spacecraft Magnetic Test Campaign. To assess how this
could be done we have determined how many batches of samples need to be fed in
the neural network to obtain the desired accuracies. We have found that for a proper
training of the network, at least 10 batches of samples must be recorded from the
real spacecraft with all the sources of magnetic field onboard. Only in this way can
we be sufficiently confident on the trained neural network. Each of these batches
will be constituted by 103 vectors of 28 values each, corresponding to 12 readings
of the magnetometers (3 components for each of the 4 magnetometers), 6 magnetic
field readings (3 components of the magnetic field measured at the positions of each
test mass) and 10 readings of the gradients of the magnetic field (5 values for each
test mass). This will allow us to choose a specific neural network model in a realistic
case.
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It is expected that the magnetic characteristics of each of the spacecraft units will
not change due to launch stresses. However, the measurements taken on-ground may
not be accurate enough to represent the real magnetic inflight characteristics of these
units. For instance, some units would be missing during the on-ground measurement
campaign or some others can change their magnetic characteristics during the lifetime
of the mission or, finally, it could be as well that the system operation cannot be
measured on-ground accurately. For all these reasons the predictions of the neural
network may be biased. Hence, it is important to assess the robustness of the
predictions of the neural network in front of changes in the magnetic dipoles of the
electronic boxes. To do so we have adopted the following procedure. We varied
randomly each of the components of the magnetic dipole moment of all the sources
of magnetic field according to Gaussian distributions. The width of such Gaussians,
σS, is our free parameter and corresponds to a given percentage of deviation of
the specific component with respect to that of the training set. In this way we can
simulate a difference between flight and ground data in a simple and realistic manner.

The results obtained using this procedure are shown in Fig. 6.4, where we show
the standard deviation of the probability density function of the estimation of the
three components of the magnetic field interpolated using the trained neural network
as a function of the width of the Gaussians. As can be seen in this figure, the error of
the estimate increases linearly for increasing widths of the Gaussian. Nevertheless,
our simulations show that offsets of ∼ 15% per component in each of the magnetic
sources result in a global error of the estimate of ∼ 15% for the magnetic field and
of only ∼ 5% for the gradient at the positions of the test masses, a very interesting
result. Thus, we conclude that our interpolation scheme is fairly robust in front of
small differences in the flight-ground data configuration.

6.4 Offsets in the magnetometers

It has been shown recently that the magnetometers readings may suffer from un-
predictable offsets (Primdahl et al., 2006) due to launch stresses. In particular, this
offset is most probably due to temperature changes during launch, and varies from
∆B ∼ 1 nT to several nT. This, of course, may have important consequences on the
estimate of the magnetic field at the positions of the test masses, as the interpolating
algorithm presented here largely depends on the reading of the magnetometers.

To assess the robustness of the interpolation scheme to the offsets in the readings
of the magnetometers we have simulated a random vector of offsets (a 12 valued-
vector, 1 offset for each of the 12 magnetic channels), according to a Gaussian distri-
bution of width ∆B. This offset vector has been added to the inflight readings when
performing the assessment of the results output by the interpolation network. Sev-
eral simulations have been performed varying ∆B from 1 nT to 200 nT. The results
are shown in Fig. 6.5. As can be observed, the errors in magnetic field estimation are
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Figure 6.5: Quality of the estimate (mean error) as a function of the magnitude of the offset
in all 4 magnetometers. The solid line corresponds to the Bx-component, the dotted line to
the By-component and, the dashed line to the Bz-component.

below 10% up to an offset level at the magnetometers of 80 nT — which is one order
of magnitude larger than the offset observed in other space missions (Primdahl et al.,
2006). Consequently, we conclude that the magnetic data analysis of the mission will
not be appreciably affected by the possible offset of the magnetometers readings.

6.5 Precision of the position of the magnetometers

Another aspect which may also be relevant for the determination of the magnetic field
and gradients at the positions of the test masses is the uncertainty in the location
of the heads of the magnetometers. Actually, the neural network is trained with the
nominal position of the magnetometers, and the inflight training will be done with
these nominal values. The uncertainty in these values may represent an important
source of error because the neural network learns from the correlation between the
field at the positions of the magnetometers positions and the field at the positions of
the test masses. Therefore, if distances between those two locations are not accurate
enough, they may affect the interpolation quality — see Fig. 5.7 and Table 6.3.

The onboard tri-axial magnetometers will be four TFM100G4-S. These are flux-
gate magnetometers built by Billingsley. By construction, these magnetometers
consist of three different magnetic sensors, along the x-, y- and z-directions. For
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Figure 6.6: Quality of the estimate (mean error) due to the mechanical uncertainty in the
precise position of the magnetometers.

each of these axes, the fluxgate magnetometer consists of a sensing (secondary) coil
surrounding an inner drive (primary) coil around high magnetic permeability core
material. Due to the large size of the heads of these low-noise magnetometers, the
spatial resolution in each of the directions is ∼ 4.0 mm. On the other hand, the coils
of the magnetometers have an orthogonality better than 1◦. This angular error may
be transformed to a linear uncertainty by multiplying by the longest distance inside
the magnetometer caging, l ' 82.5 mm, resulting in an uncertainty of ∼ 1.5 mm.
Finally, the exact placement of the satellite units onto the satellite walls may be
imprecise. It is estimated that the mechanical precision will be on the order of the
µm, and therefore it will be considered negligible in this analysis. The overall spa-
tial uncertainty of the sensing position of the magnetometers can be computed by
adding in quadrature the different contributions, and turns out to be ∆ ∼ 4.3 mm.
In view of these conundrums we performed an additional set of simulations in which
the positions of the magnetometers where randomly changed within 5 mm. We then
computed the error in the estimate of the interpolating neural network. The results
are shown in Fig. 6.6. Clearly, the neural network outputs a mean error in interpo-
lation below 6% if the mechanical uncertainty lies below 4.3 mm, which is the worst
case expected in the mission. Therefore, the neural network is expected also to be
very robust to this kind of uncontrollable situations.
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Figure 6.7: Spectrum of fluctuations of the magnetic field at the position of the test masses.
The black line corresponds to the spectrum at the position of test mass 1 and the cyan one
that at the position of test mass 2.

6.6 Varying environmental conditions

As can be seen in Eqs. (5.1) and (5.2), there is a non-linear dependence of the force
on the magnetic field. This means that the acceleration depends on the temporal
variations of the magnetic field and its gradient. Specifically, a coupling of the value
of the magnetic field with the variations of its gradient (and vice versa) exists. In
the previous sections we have shown that our neural network interpolating algorithm
correctly retrieves the values of the magnetic field and its gradient at the positions
of the test masses when they are assumed not to vary with time. However, these
quantities are expected to be subject to small low-frequency fluctuations. Thus, we
need to assess if our method is able to correctly follow a slow drift of the magnetic
field and its gradient.

As previously mentioned, the magnetic field inside the LCA is a consequence
of the electronic subsystems present inside the spacecraft. Almost all operational
amplifiers (the most important source of noise of the electronics processing chain of
each unit) are subject to a 1/f noise around 0.1 Hz or higher frequencies. Magnetic
tests of every unit have not yet been performed, but it is foreseen that the spectrum of
fluctuations of the magnetic field at the position of the test masses will be very similar



120 6 The robustness of the magnetic field interpolation method

0 200 400 600 800 1000
200

300

400

500

600

700

t [s]

B
 [

n
T

]

0 200 400 600 800 1000
200

300

400

500

600

700

t [s]

B
 [

n
T

]

Figure 6.8: Top panel: temporal realization of the magnetic field at test mass 1 (black line)
and interpolated magnetic field given by the trained network (cyan line). Bottom panel:
same as the top panel, but filtered at 10 mHz with a first order low-pass filter (unitary gain).

to the noise spectrum of the amplifiers. In particular, it is expected that the spectrum
will have a 1/f branch below a roll-off frequency of 0.1 Hz, and a white noise branch
extending up to 10 Hz. The predicted spectrum, which has been obtained assuming
a worst-case scenario — i. e., assuming an amplitude 5µAm2/

√
Hz at 0.1Hz in the

moduli of the magnetic moments of the source dipoles — is shown in Fig. 6.7. As will
be shown below, one of the direct consequences of including the fluctuations given
by the noise spectrum of Fig. 6.7 is the presence of low-frequency variations of up
to 300 nT for each of the three magnetic components. These fluctuations may cause
important errors in the magnetic field estimation if not considered in the training
process. The magnetic field spectrum modeled in this section is expected to be one or
two orders of magnitude larger than the real one, but testing our algorithms against
such worst-case scenario gives valuable insights to an upper bound of the expected
error of the interpolation algorithm.

Neural networks can be classified into dynamic and static categories. Static net-
works have no feedback elements and, consequently, contain no delays. Thus, the
output is calculated directly from the input (and only the current input) through
feedforward connections (Kecman, 2001). The training of static networks is per-
formed with the well known and efficient backpropagation algorithm, as described in
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Figure 6.9: Spectral density of the magnetic field at the position of test mass 1 (black line)
compared to the spectral density of the magnetic field retrieved by the neural network (cyan
line).

section 5.3.3. In dynamic networks, the output depends not only on the current input
to the network, but also on its previous inputs and outputs (Dreyfus, 2005; Kecman,
2001). Thus, for our case one might quite naturally think that we should be forced
to choose a dynamic neural network. Nevertheless, as shown in Fig. 5.7, the most
important feature of our interpolation scheme is the ability of the neural network to
learn the underlying structures of the magnetic field inside the LCA. Since training
a dynamic network is a hard task and, moreover, the learning rate is usually very
slow it is worth exploring the possibility of using instead a static network with an
adequate training procedure adapted to this new scenario. In other words, we have
to let the network know during the training process that drifts may occur. To do
this we use a simple and effective training procedure. We first generate 10 different
time series using uncorrelated realizations. We then compute the dynamic range of
the magnetic field for each of these realizations. Of these time series we select those
five which have the widest dynamical range, and we concatenate them. These 5 time
series are then used to train the network.

With this new training technique the interpolation results are remarkably good.
To illustrate the goodness of our interpolation procedure in the top panel of Fig. 6.8
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Table 6.4: Standard deviation of the error output by the network for both the case of a
constant magnetic field and a fluctuating one.

Constant B Fluctuating B

σ1 σ2 σ1 σ2

Bx 2.68 3.28 8.75 14.75
By 2.71 3.27 4.86 8.46
Bz 3.15 3.82 2.92 13.16
|B| 2.13 3.15 5.85 16.30

we show the temporal evolution of the fluctuating magnetic field for test mass 1 (black
line) and the interpolated result obtained using the neural network trained with the
fluctuating examples (cyan line). As can be seen, although there are some differences,
the result of the interpolation closely resembles the actual magnetic field. This can
be better appreciated when both signals are filtered at 10 mHz using a low-pass
filter (bottom panel of this figure). Clearly, the interpolated magnetic field follows
very closely the real magnetic field. Moreover, the spectrum of the interpolated
magnetic field is very similar to that of Fig. 6.7. This is borne out from Fig. 6.9,
in which we compare both spectra. Clearly, the interpolated spectrum (cyan line)
follows very closely the real one (black line), indicating that the neural network
correctly describes the physical properties of the varying magnetic field. The only
noticeable difference when a fluctuating magnetic field is analyzed is that in this case
the neural network performs slightly worse. This can be seen in Table 6.4, where
we show the standard deviations of the estimates for both a constant magnetic field
and a fluctuating one, for all the field components and its modulus and for both
test mass 1 (σ1) and test mass 2 (σ2). As can be seen, the estimation errors are
larger for a fluctuating magnetic field, as it should be expected, but do not increase
dramatically.

6.7 Hybrid interpolation system

As discussed in previous sections, the feed forward neural network yields very sat-
isfactory results. However, this performance can only be achieved if sufficient and
reliable training data exist. In other words, real measurements of the magnetic
field produced by the onboard electronic systems at the positions of the test masses
are needed. Moreover, we need such measurements for each of the different oper-
ation modes of the spacecraft. Here we define an “operation mode” as the status
of the satellite when a specific list of hardware is switched on or is active at cer-
tain moment during the mission. These different operation modes lead to different
magnetic configurations, and will produce a different magnetic imprint within the



6.7 Hybrid interpolation system 123

LCA. However, as already mentioned, the neural network is only able to interpolate
the magnetic field within the learned input space, but cannot infer values beyond
this space. This means that the neural network can infer the magnetic field at the
positions of the test masses if it has been trained with magnetic data corresponding
to the adequate operation mode. If this is not the case, and the magnetic model used
to interpolate does not coincide with the spacecraft magnetic configuration of the
new magnetometers inputs, the performance of the interpolation algorithm will be
worse — see section 6.3. This shortcoming can be overcome using a model database
corresponding to each of the expected magnetic configurations of the spacecraft and
adding a decision layer in the interpolator architecture. These blocks conform the
hybrid interpolation system presented in this section.

The hybrid algorithm described here takes full advantage of the interpolation
power of the feed-forward network discussed in previous sections. In addition, a
higher level decision level using a self-organizing map (Kohonen, 2001) to decide
which trained magnetic model should be used at any given moment, is incorporated.
As can be seen in Fig. 6.10, the self-organizing map processes the magnetometer
inputs and determines the best suitable magnetic model from the database by means
of clustering techniques (Dreyfus, 2005). Then, it pipelines this decision to the neural
network interpolation algorithm and the algorithm updates the weights of the neural
network model with those selected from the database. Finally, the interpolation
algorithm behaves as described in previous sections and delivers the estimates of
magnetic field and gradient at locations of the test masses.

6.7.1 Architecture of the hybrid interpolation system

The architecture of the hybrid interpolation system presented in this section is shown
in Fig. 6.10. It consists of three main blocks:

• Magnetic model database. This database collects different magnetic models
and also the input vectors used for training them. Currently, the database
is only composed by simulated data sets. However, real magnetic data will
be available after the magnetic test campaign, which will be done at Astrium
Stevenage (England, UK).

• SOM network. A self-organizing map (SOM) compares the different input vec-
tors and classifies them into groups or clusters — see Appendix F for additional
details about self-organizing maps.

When a new input vector is fed to the network for training, its Euclidean
distance to all weight vectors is computed. The Euclidean distance from vector
p to vector q is defined as in Cartesian coordinates:

d(p,q) =

√√√√ N∑
i=1

(pi − qi)2, (6.1)
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Figure 6.10: Hybrid interpolation system consisting in a magnetic model data base, a self-
organizing map for autonomous classification and decision and a feed-forward network for
interpolation.

where N are the number of components of each vector. The neuron with weight
vector most similar to the input is called the best matching unit (BMU). The
weights of the BMU and neurons close to it in the SOM lattice are adjusted
with the input vector. The magnitude of the change decreases with time and
with distance from the BMU. A neuron with weight vector γ(t) is updated
using the expression:

γ(t+ 1) = γ(t) + Θ(n, t)∆(t) (I(t)− γ(t)) , (6.2)

where ∆(t) is a monotonically decreasing learning coefficient and I(t) is the
input vector. The neighborhood function — typically, a Gaussian is a common
choice — Θ(v, t) depends on the lattice distance between the BMU and neu-
ron n. This neighborhood function shrinks with time. That is, during the first
iterations this function is broad, and self-organization takes place on a global
scale, and after a sufficient number of iterations the neighborhood shrinks to
just a couple of neurons, and the weights converge to local estimates. With this
iterative process, the network ends up associating output nodes with groups
or patterns in the input data set (Dreyfus, 2005).

In our application we have used this ability of SOMs to split the magnetic
readings time series in subsets where the same satellite magnetic configuration
was present. By comparison with the existent database models, we are able
to discern which magnetic configuration is onboard and which magnetic model
from the trained magnetic model database should be used. If no configuration
is sufficiently correlated, an alarm in the diagnostics subsystem is raised. This
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Figure 6.11: SOM output, showing that the classification algorithm is able to discern three
different magnetic configurations. The intermediate set of points corresponds to the nominal
configuration, whilst the upper set of points corresponds to a reduced FEEP thrusters activity
and, finally, the bottom set of points is obtained when there is both a reduced FEEP and
cold gas thrusters activity.

alarm informs that a not catalogued magnetic configuration is present on the
spacecraft, and no interpolated field will be output.

• Feed-forward neural network. The feed forward network adopts the weights
from the trained model pointed out by the SOM layer, and interpolates the
magnetic field and its gradient at the positions of the test masses.

6.7.2 Results of the hybrid interpolation architecture

To show the ability of SOMs to classify the input data we have done a simulation in
which different operation modes were introduced. Specifically, we have generated a
time series of 7 000 s with the 12 readings of the magnetometers. From time 0 until
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time 4 000 s, the nominal magnetic configuration was present. From time 4 000s to
5 500s, the magnetic activity of the three FEEP thrusters clusters were reduced to
50% (that is, the corresponding modulus of the magnetic moment was reduced to
50% of its value). Finally, from 5 500s to 7 000s, the activity of the cold gas thrusters
was also reduced to 50%. These 12 simulated time series have been fed to the SOM.
As can be seen in Fig. 6.11, with an appropriately tuned SOM network of 8 and
10 neurons in the inner hidden layers and trained for 1 000 epochs, the algorithm
is able to discern three different clusters of neurons, which correspond to the three
different magnetic configurations. This identification enables the decision layer to
decide which magnetic model should be used at each time. For this simulation, this
method reduces the interpolation error from 15% — when the decision layer is not
activated and only one magnetic model is used — to 5% — when the decision layer is
activated and the model data base is integrated. We consider that this global hybrid
system delivers reliable and robust inflight magnetic field and gradient interpolations,
and provides a large degree of autonomy to the interpolation procedure.

6.8 Summary and conclusions

The diagnostic system of LISA Pathfinder will monitor with unprecedented accuracy
the disturbances of the motion of the test masses. An essential part of this subsystem
is the magnetic diagnostics subsystem, which will be in charge of measuring the
magnetic noise. To this end, this subsystem has four tri-axial magnetometers, which
due to design constraints are placed far from the positions of the test masses. Thus,
measuring the magnetic field at these positions is not an easy task. To overcome this
problem a novel approach in which neural networks are used was recently proposed
(Dı́az-Aguiló et al., 2010) and it is described in chapter 5. The initial results obtained
using this technique were encouraging but a full assessment of its reliability was still
lacking.

Accordingly, we have studied how different alternatives for the architecture of
the neural network affect the precision of the interpolation of the magnetic field and
its gradients at the position of the test masses. We have performed a study of the
underlying structures of the neural network and we have found that the ability of
our interpolating scheme to recover the correct values of the magnetic field and gra-
dients at the positions of the test masses is due to the fact that the neural network
is able to learn from the readings of the magnetometers which are closest to the cor-
responding test mass, and that the most important contribution for each component
field comes from the corresponding magnetometer reading. We have also found that
the number of neurons in the hidden layer originally proposed is the optimal one,
and that a larger number of neurons in this layer does not improve the quality of
the interpolation. Also, the results are not sensitive to the choice of the transfer
function, and consequently the simplest choice, a linear transfer function, is the best
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option. Finally, we have also found that the optimal number of hidden layers is just
one.

We have also discussed how the neural network must be trained with real data.
In particular, we stress the importance of finding a training process adequate to
the set of data the magnetometers will deliver in flight. This underlines the need
to characterize on ground to our best ability the magnetic field distribution across
the LCA for as many as possible foreseeable working conditions. This information
will be obtained from the Magnetic Test Campaign, to be performed during 2011.
Reliable information on the magnetic characteristics is essential for a meaningful as-
sessment of magnetic noise in the LTP, and may lead to model various networks for
different magnetic configurations. Our results indicate that when typical variations
in the magnitudes of the magnetic dipoles of the electronic units are fed into our
neural network algorithm the quality of the estimates of the magnetic field and its
gradients degrade linearly with increasing departures from the on-ground measure-
ment, although the measurements of the magnetic field degrade faster than those of
the gradient components. However, the quality of the estimates does not degrade
dramatically.

We have also studied which would be the effect in the in-flight measurements of
an offset in the readings of magnetometers caused by temperature changes during
launch, and we have found that, for typical offsets, the interpolating algorithm works
reasonably well. The same can be said about the uncertainty in the position of the
heads of the magnetometers.

Finally, we have also assessed the accuracy of the magnetic field interpolation
when a low-frequency drift of the magnetic characteristics is present, concluding
that with an appropriate training procedure, good results are obtained. Addition-
ally, we have presented a hybrid interpolation system, that is able to discriminate
between different magnetic configurations and deliver the most accurate result. We
want to stress once more that the methods presented in these sections highly depend
on the on-ground measurements as they represent the sole mechanism to calibrate
our interpolation system. Nevertheless, we conclude that the neural network inter-
polating algorithm is robust enough to obtain a good estimate of the magnetic field
at the positions of the test masses under most foreseeable circumstances.





Chapter 7

LISA Pathfinder simulator

This chapter describes the effort done by the LTPDA science team to develop a
complete, accurate and fast simulator of the LISA Technology Package dynamics.
This is not an easy task as it requires the modeling, validation, and simulation of
multiple subsystems that exist in the instrument and influence its behavior. Thus,
the simulator and each of its submodels presented in this chapter is the result of
an important collaborative effort within the LTPDA science team. It is important
to realize that this piece of work it is framed in a large collaborative effort and
it is presented here because it is of relevance for the simulation of the instrument
dynamics when magnetic signals are injected. However, by no means it is attempted
to present this work as an individual achievement, although we have contributed to
its development.

As made clear in the previous chapters, the LTP features many new technologies
that have never been tested on-orbit. Besides, the mission is constrained to 90 days
of operations for each partner (ESA and NASA). This poses a challenge in terms
of mission data-analysis, investigation and diagnosis during the in-orbit operations.
With this perspective, the science team developed the LTP Data Analysis tool-
box (Hewitson, 2011), also known as LTPDA, which shall allow to use a repository,
process the datasets in different ways, keeping track of all manipulations, conduct
parameter estimation procedures, or even produce simulated datasets. Data analysis
procedures and the definition of specific investigations strongly depend on the models
of the system. Therefore each subsystem must be modeled and characterized within
the LTPDA toolbox. To this end, a complete set of the LTP subsystems ready for
data analysis are included as instances of the ssm class (State Space Model class) in
the toolbox. They provide with error-proof, modular, multidimensional and scalable
models for the user to conduct various operations. The content is separated from
the usage so the same model may be used for various operations: retrieve a trans-
fer function, estimate a state, estimate the covariance, or even serve as a template
generator for a parameter fitting algorithm.
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This chapter will focus on the presentation of the architecture of this important
modeling effort for the LISA Pathfinder mission. It is organized as follows: in section
7.1, we introduce the LTPDA toolbox, its main goal and characteristics, whereas in
section 7.2, we present the architecture of the State Space Model class. It follows
section 7.3, where we briefly describe all subsystems on-board the LPF and how
they have been modeled. In section 7.4, we present one example of analysis that
can be performed with the toolbox built-in functionalities and finally we conclude in
section 7.5.

7.1 LTPDA toolbox: Data Analysis toolbox for LISA
Pathfinder

The LISA Technology Package Data Analysis toolbox is a MATLAB c© free toolbox for
accountable and reproducible data analysis. It uses an object-oriented approach to
data analysis. LTPDA objects are processed through a data analysis pipeline that
outputs analysis objects. This is done in order to give traceability and reproducibility
to all the analyses performed within the mission. This means that any user, when
receiving an analysis object, will be able to find out all steps that were involved in
the production of the final result. This is important because the result of any data
analysis procedure should encapsulate not only the numerical result, but also which
raw data was involved (date, channel, time segment, time of retrieval, units,. . . )
Also, a complete history of which algorithms were used in producing the result,
and all details of how each algorithm was configured (its input parameters), as well
as the details of the software version used in the processing, should be available.
Additionally, details of when the processing took place and on which machine, should
also be given. Finally, this is needed for all channels of a multi-channel result. As a
consequence, any user will be perfectly able to re-do all operations, provided access
to the raw data is granted, and will also be able to re-plot the results with different
plot properties or highlighting specific parts of the plots.

This is achieved by a specific recording of all the operations performed on a
specific data stream. At each analysis step, we record exactly what algorithm was
applied to which object and with which parameters. In this way, the result of
a particular data analysis is one or more objects, each containing the final result
as numerical data together with a full processing history of how the result was
achieved (Antonucci et al., 2011a).

In order to build up a complete data analysis toolbox, in addition to the afore-
mentioned analysis object, the LTPDA toolbox contains the following objects:

1. pzmodel objects, that represent physical systems out of its pole-zero represen-
tation,
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2. rational objects, that represent systems defined as a ratio between two Laplace
polynomials,

3. parfrac objects, which correspond to the representation of a system as a com-
bination of partial fractions,

4. miir objects, that correspond to Infinite Impulse Response (IIR) filters (Op-
penheim & Schafer, 1975)),

5. mfir objects, that correspond to FIR (Finite Impulse Response) filters (Op-
penheim & Schafer, 1975)).

Finally, to model high dimensionality multi-input, multi-output (MIMO) sys-
tems, the LTPDA toolbox includes the State Space Model objects (ssm objects).
These objects are well suited for modeling the high dimensionality of the LTP in-
strument and allow to perform fast and precise simulations, template generation
or implement parameter estimation algorithms with a complete model of the LISA
Pathfinder mission. The state space model architecture and its built-in model library
are the subject of the following sections of this chapter.

7.2 State Space Model class

7.2.1 State space representation

Linear, time invariant, dynamic systems can be expressed in state-space form with
time-independent coefficient matrices. In this case, a set of first order of differential
equations are expressed in matrix form. The classical state space representation
is (Kirk, 1970):

ẋ(t) = A · x(t) + B · u(t)

y(t) = C · x(t) + D · u(t)

where x are the states, u represents the inputs, and y are the outputs of the sys-
tem. A is the state matrix of the system, B is the input matrix, C is the output
matrix and D is the feedthrough matrix. State-space modeling is well suited to
high-dimensionality MIMO systems due to its matrix architecture. Moreover, ma-
trix algebra eases the interconnection of multiple systems.

7.2.2 Requirements on the state space architecture

The LTP instrument is very complex and has several subsystems. Each of these
subsystems has different models, however each of them has to be indistinguishably
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used within the entire architecture. Therefore, the main feature of the modeling of
the ssm objects is its modularity. This characteristic makes easier to understand the
building of high-dimensionality systems, and simplifies the process of validating the
model, which in turn becomes modular too. Moreover, the models should be scalable.
This means that the most simplified models should be obtained by building a reduced
version of a 3-dimensional model on which we select the inputs/outputs or states of
interest. In this way code maintenance is reduced, because parallel versions of each
of the models are avoided. On the other hand, the models should be parametrized,
that is, they are built using symbolic matrices, where symbolic parameters can be
introduced. This allows the definition and simulation of dynamical systems that are
not constant and depend on one parameter (or on several parameters) that we want
to estimate, or for which we want to study their sensitivity dependance. Dealing with
symbolic objects reduces the computational speed. Thus, specific tools to numerize
these models are also required. Finally, these parameters have to be stored with all
relevant information including units, physical meaning and their default values.

To enhance physical representation and meaning of the system, all inputs, out-
puts and state variables are associated to a name and to a physical description and
have the appropriate units. Moreover, the input, state and output variables are
grouped into blocks with high level descriptions and global names. In this respect,
the matrices and vectors involved in the definition of the ssm class are block-defined.
These blocks regroup together variables which are of similar nature. Examples of
these groups are the group of output signals from the interferometer or the com-
mands output by the controller. Matrices are then split according to the grouping
of variables into the so-called blocks. As an illustrative example, for a specific case
the input matrix B may look like:

B =

 B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3


=

 (5× 3) · (5× 7)
(2× 3) (2× 1) ·
· (4× 1) (4× 7)

 (7.1)

In this example, our system has 3 blocks of inputs, and each of these blocks has
3, 1 and 7 input ports respectively. At the same time, we can figure out that the
system is characterized by 3 states and each of the states has a dimension of 5, 2
and 4 respectively. Note that the size of the outputs can not be extracted from this
example because they are defined by the C and D matrices.

Using the naming infrastructure combined with this block-structured architec-
ture, two subsystems should be able to be easily interconnected when the output
block names coincide with the input block names. The appropriate matrix reorder-
ing should be performed when doing this assembling of subsystems. To visualize
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these interconnections, various display functions are available to the user, providing
with Matlab c© console display or dot-generated graphs. The operation and manip-
ulation of ssm models should be programmed to deliver a high-level language to
the user. As a consequence of a higher level programming, error messages should
be very explicit. Finally, during the building process of the model library and the
characteristics of the class, important emphasis should be placed on documentation.
This documentation, references and origin of the model should also be stored in the
ssm object.

7.2.3 Model library and class methods

The ssm class represents each system storing its state matrix (A), the input matrix
(B), the output matrix (C) and the feed-through matrix (D). Additionally, it stores
the sampling time (timestep) of the model, the information concerning the inputs,
the states and the outputs), and the information concerning the symbolic and
substituted parameters.

The ssm class was conceived with 3 different ingredients: (1) a basic class con-
structor, (2) a library of models, and (3) a series of class methods to operate on
these models. The class constructor builds up the models. The library model con-
tains already hard-coded models available to the user, such as text-book models as
the harmonic oscillator. On the other hand, as the LTPDA toolbox is the data anal-
ysis toolbox for data analysis of the LISA Pathfinder mission, there exists a library
of only LPF-related models. The science team of the mission is developing and test-
ing one model (and some times several versions of the same model) for each of the
subsystems that exist in the LISA Technology Package. This modeling effort is nec-
essary to understand the behavior of the complete system. Moreover, during science
operations several parameter estimation experiments will be performed in orbit. In
these experiments, specific signals will be injected and the corresponding telemetry
will be recorded. To this end, and in order to determine the specific characteristics
or parameters of the experiment, a complete symbolic model of the satellite is needed
(see section 7.3).

The ultimate goal of building a data analysis toolbox leads to the need of building
a set of high level functions to operate and investigate the properties of the systems.
These functions range from the obtention of the input or output names of the system
to the possibility of running complete time domain simulations. These sets of high
level functions that can operate on ssm objects are organized by functionality in
Table 7.1. Their usage and specific functionality may be extracted from the doc-
umentation in Hewitson (2011). From the list in Table 7.1, we highlight functions
that enable conversion to various LTI representations (e.g. ssm2pzmodel), provide
a time-response of the system (resp), a frequency response (bode), state estimates
(kalman), run simulations (simulate), generate a random state (initialize) or
power spectral estimates (cpsd, psd), differentiates the states and outputs with re-
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Functionality Method

Constructor/Conversion ssm

ssm2ss

double

ssm2pzmodel

ssm2miir

ssm2rational

ssm2dot

Transformation operator sMinReal

simplify

reorganize

modifyTimeStep

assemble

System analysis isStable

settlingTime

steadyState

bode

cpsd

psd

simulate

resp

kalman

parameterDiff

Parameter management getParameters

addParameters

setParameters

subsParameters

findParameters

Setters and plotters setName

setDescription

setParams

setBlock-Properties

setPort-Properties

Dotview

displayProperties

display

report

viewHistory

setPlotinfo

Repository management csvexport

submit

save

retrieve

Table 7.1: Principal ssm methods grouped by functionality.
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spect to a parameter (parameterDiff). Many other functions complete the class to
provide with a thorough data analysis environment. Emphasis was placed on the
velocity of the routines, and profiling sessions helped to reach a speed that allows for
parameter estimation in few minutes. This feature will be very useful for live mission
data analysis tasks, where fast analysis should be performed on the telemetered data
in order to assure the good behavior of the instrument.

7.3 LISA Technology Package subblock modeling

The LTP dynamical closed loop is schemed in Fig. 7.1. Its dynamical equations can
be written in the following form:

o = D−1 · S · f + on (7.2)

f = fext + fn −A ·C ·T · (o + oi)− an

where:

x : are the kinematic variables of the experiment,
i.e., position and velocities of the test masses and spacecraft,

o : are the readings of the sensing mechanisms,
on : are the readout noises of the sensing mechanisms,
oi : are the displacement guidance signals of the experiments,
an : are the actuators noises,
fa : are the force/torques commands from the actuators,
f : are the forces or torques acting on the test masses,
fext : are the forces or torques due to external effects, and
fn : are the force/torque noises.

In this same figure, the main subsystems are:

D : the Equations of Motion,
S : the Sensing mechanisms,
T : the Delay models,
C : the Controllers,
A : the Actuators,
Force Noise : the different force/torque noise sources,
Sensing Noise : the different sensing noise sources, and
Actuators Noise : the different actuators noise sources,
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7.3.1 Equations of motion

LISA Pathfinder is a three-body system composed of one spacecraft (SC) and two
test masses (TM1 and TM2). Thus, 15 degrees of freedom need to be considered.
The state vector is composed of the spacecraft attitude and rotation rate, followed
by the position, velocity, attitude and rotation rate for both test masses. The co-
ordinates are defined using many reference frames with tunable linear and angular
offsets — inertial frame, body frames, instrument frames. . . — see Appendix A. The
equations of motion were derived using the Euler-Lagrange and d’Alembert equa-
tions (Grynagier & Weyrich, 2008). Once the equations of motion are written, the
variables corresponding to the spacecraft inertial motion can be removed as they are
not observable, yielding 30 states. A basis change is then operated to express the
state coordinates of TM2 relatively to TM1.

The equations of motion also model the linear stiffness caused by self-gravity
and electrostatic forces, and by the linear drag. The input variables of this model
are the actuation forces and torques from the actuators as well as the disturbance
forces (or torques) from the space environment. This model returns the attitude and
position of the test masses and spacecraft. The simplified equations of motion for a
1 dimensional system, only along the x-axis, where we only represent the position
of TM1 with respect to the spacecraft and the differential position between the two
test masses are expressed in the Laplace domain as

D =

(
s2 + ω2

1 + m1
mSC

ω2
1 + m2

mSC
ω2

2
m2
mSC

ω2
2 + Γx

ω2
2 − ω2

1 s2 + ω2
2 − Γx

)
(7.3)

where ω1 and ω2 are the stiffness parameters coupling the motion of each test mass
to the motion of the spacecraft, Γx represents the gravitational coupling between
the two test masses, and s is the Laplace domain variable. m1, m2, and mSC are,
respectively, the masses of TM1, TM2 and the spacecraft. Since the equation of
motion involves a second derivative we need up to 30 states for the 3-dimensional
case where we want to represent 15 degrees of freedom and only 4 states for the
example shown above with only 2 degrees of freedom. In this particular case, the
states of the system would be the position and speed of TM1 with respect to the
spacecraft and the position and speed of the differential channel.

7.3.2 Sensing mechanisms

The sensors chains model how the real displacements and rotations are sensed or
detected by the onboard instruments. The existing sensing mechanisms in LPF are
the star tracker (Vitale, 2005), the inertial sensor (Dolesi et al., 2003; Hueller, 2003)
and the interferometer (Heinzel et al., 2003). The star tracker delivers a measure-
ment of the attitude of the satellite. The inertial sensors measure the position and
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Figure 7.1: Control system architecture of LISA Pathfinder. D stands for the dynamical
matrix, S represents the sensing matrix of the interferometer, i.e. the matrix translating the
position of the test mass, x, into the interferometer readout, o, and on stands for the readout
noise. T represents the processing delay transfer functions. A represents the physics of the
FEEP and the electrostatic actuators, and finally C, is the controller matrix, implementing
the drag free and low-frequency control loops. oi represents the displacement guidance
signals. an are the actuators noise and fa are the output forces of the actuators. fext are the
magnetic forces induced by the coils and fn are the environment force noises disturbing the
spacecraft.

attitude of the test masses with respect to the electrode housing reference frame (see
Appendix A) by measuring the change in capacity of the electrodes surrounding the
test masses. Finally, the interferometer provides picometer precision measurements
of the relative position between the two test masses and also delivers a redundant
measurement of the absolute position of test mass 1. At the same time, it delivers
differential attitude angles of the test masses by means of the measurements result-
ing from differential wavefront sensing (Heinzel et al., 2004). The interferometer is
based on a non-polarizing heterodyne Mach-Zehnder design using a Nd:YAG laser
(1064 nm) with a power of approximately 25 mW. The interferometer system has
its own power and frequency stabilization loop (Heinzel et al., 2003). The LTP in-
terferometer design contains four separate interferometer signals: (1) x1 – x2, this
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interferometer provides the main measurement, namely the distance between the two
test masses and their alignment, (2) x1, this signal provides the distance between
one test mass and the optical bench and the alignment of that test mass, (3) refer-
ence, this signal provides the reference phase for the above two measurements, and
(4) frequency, this signal uses basically the same interfering beams as the reference
signal, but with intentionally unequal path lengths so as to measure laser frequency
fluctuations (Heinzel et al., 2004). This system is located between the two inertial
reference sensors within the optical bench.

The outputs delivered by the differential channel of the interferometer are three
orders of magnitude less noisy than the inertial sensor readings. As these systems
have a much faster dynamics than the 10 Hz simulation we aim for, they were modeled
with only a gain matrix D. That is, we did not include dynamics in the model. In this
case the input to the sensing mechanisms are the real position and attitude variables
of the test masses and the spacecraft, and their outputs are their actual readings
(including errors and readout noise). To carry on with the one-dimensional example
introduced in the previous section, the implementation of the sensing mechanisms
and in particular of the interferometer is:

S =

(
1 0
δ12 1

)
(7.4)

where δ12 is the interferometer channel cross-coupling. Thus, according to Eq. (7.4),
the interferometer reading equations are:

o1 = x1 + on1 (7.5)

o12 = δ12 · x1 + x12 + on12 (7.6)

where o1 and o12 are the actual readings of the absolute and the differential chan-
nels delivered by the interferometer, respectively. x1 and x12 are the real physical
variables and on1 and on12 are the readout noises. These readout noises and their
models are detailed in section 7.3.6

7.3.3 Delays

The readings delivered by the interferometer or the inertial sensors are processed
by the Data Management Unit (DMU) (Anza et al., 2005; Cañizares et al., 2009),
and by the Onboard Computer (OBC). This processing introduces delays in the
readings before they reach the controller unit (see Fig. 7.1). These delays affect the
stability of the control loop dynamics, therefore their modeling is essential to mimic
the real behavior of the instrument. These delay systems take as input the readings
of the three sensing mechanisms and deliver their delayed version as output. The
theoretical functions modeling these delays for the one-dimensional example are:
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T =

(
e−τ1s 0

0 e−τ12s

)
(7.7)

where τ1 and τ12 are the processing delays affecting each of the channels under
examination. The exponential function e−τs is how a pure delay is modeled in
Laplace domain. Actually, it is the Laplace domain transform of δ(t− τ), where δ(t)
is the Dirac function. The modeling of these delays within the ssm framework are
introduced as Padé-approximants of order 2 or 3 (to be chosen by the user) (Kirk,
1970). Specifically, the transfer functions used to model these delays are:

e−τs ' 12− 6sτ + (sτ)2

12 + 6sτ + (sτ)2
(7.8)

for order 2 and

e−τs ' 120− 60sτ + 12(sτ)2 − (sτ)3

120 + 60sτ + 12(sτ)2 + (sτ)3
(7.9)

for order 3. These models imply 2 or 3 states, respectively, for each delayed signal.
For instance, in the one-dimensional case, the usage of the second order approxima-
tion would imply 4 states for delay modeling (2 per degree of freedom).

7.3.4 Controllers

The control chain acts on the spacecraft to create a drag free environment. The
Drag-Free and Attitude Control System (DFACS) is modeled using the transfer
functions provided by Astrium GmbH. This model is the block C in Fig. 7.1. These
controllers were derived based on the H-infinity technique (Ogata, 2001) and to
satisfy the science requirements on all axis (Schleicher, 2009, 2008). These controllers
are modeled along with sensor and actuation selection matrices, that allow to select
different science/controlling modes. Each of these science modes uses a certain and
precise combination of sensors (and sensed variables) and actuators (and actuation
variables). The input variables to this model are the delayed readings of the three
onboard sensing mechanisms. The outputs are the commands to the two onboard
actuators. For the specific case of Science Mode 1, and particularly for the one-
dimensional example, the reference variable to control the x-axis of the spacecraft
is the reading of the first channel of the interferometer. This reading is processed
by the Drag Free controller and sends the appropriate commands to the satellite
thrusters in order to isolate TM1 from the outer space perturbations and place the
test mass in geodesic free fall. On the other hand, the differential reading of the
interferometer is used by the low frequency suspension to control the position of
test mass 2. This second control chain avoids the collision of TM2 with the satellite
walls. Moreover, it has very low gain within the measurement bandwidth in order
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Figure 7.2: Transfer functions of the Low Frequency Suspension controller (red) and the
Drag Free controller (black).

to minimize the interference of the controllers in the differential channel. The one
dimensional model is written as:

C =

(
CDF(s) 0

0 CLFS(s)

)
(7.10)

where CDF(s) and CLFS(s) are the drag free and the low frequency suspension con-
troller transfer functions respectively. Their frequency responses are shown in Fig. 7.2
These transfer functions are 5 order polynomials in the Laplace domain, therefore
for their state space representation we use 10 states for the entire one-dimensional
controller. At the same time, it is interesting to note that this model incorporates
various types of inputs such as guidance inputs, guidance acceleration signals, or
force commands that enable the user to analyze the behavior of the system in spe-
cific circumstances.

7.3.5 Actuators

The actuators are the transfer function between the commanded forces/torques out-
put by the controller blocks and the real forces/torques applied to the spacecraft or
to the test masses. The two onboard actuation systems are the capacitive actuators
(Vitale, 2005), which act on the test masses by applying specific electric currents
to the electrodes that surround the test masses, and the FEEP thrusters (Bindel,
2008), which act on the spacecraft to create the drag free environment for TM1. The
capacitive actuator has faster dynamics than 10 Hz. Therefore, it is modeled with
a simple gain matrix D. Nevertheless the microthrusters have been modeled with a
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first order actuation response with a characteristic time of 0.06 s. This implies that
their time response is delayed approximately 0.2 s, approximately 3τ (Kirk, 1970).
The inputs of these models are the commands coming from the controllers and their
outputs are forces/torques signals applied onto the test mass and spacecraft. These
actuators, in the one-dimensional example, can be expressed as a diagonal matrix of
Laplace functions:

A =

(
AFEEP(s) 0

0 AEA(s)

)
(7.11)

where

AFEEP(s) =
1/τ

s+ 1/τ
and τ = 0.06s (7.12)

AEA(s) is constant (no states required), are the physical models for the FEEP
thrusters and the electrostatic actuators, respectively. Therefore, for the 1 dimen-
sional model we only need 1 state to characterize the actuators.

7.3.6 Noise sources

The LPF mission goal is to demonstrate that the noise environment and the noise
reduction techniques are compatible with the detection of gravitational waves (Vitale,
2005). Therefore, the science team and the industry have invested relevant efforts on
characterizing and modeling different expected noise sources (Monsky et al., 2009;
Brandt et al., 2010; Armano et al., 2009). The noise sources modeled in the ssm

class can be classified into three categories: the actuators noise, the sensors noise
and the external noise.

The actuators noise is expressed as an in Fig. 7.1 and it is composed of the
thruster noise and the capacitive actuator noise. The micro-propulsion system of
LISA Pathfinder is composed of 12 FEEP thrusters. The force noise of each individ-
ual thruster is modeled as (Schleicher, 2008):

|Nthrusters(f)| =
(
f + 10−2

f + 10−3

)2

(7.13)

where f is the frequency in Hz. Their contribution in the differential readout channel
is not relevant but they represent the main disturbance source on the channel x1 —
the reading of the distance of test mass 1 to the spacecraft (Vitale, 2005). Specifically,
in terms of acceleration noise, after including the dynamics and the control loops of
the instrument, their contribution at 1 mHz in channel x1 is 2× 10−8 m s−2 Hz−1/2

(see Fig. 7.3). The capacitive actuator noises are the most relevant instrument noise
source in the differential channel at low frequency. Their modeling results from the
hardware characterization of the electrode housing (Dolesi et al., 2003). System
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identification techniques led to a fifth order degree transfer function used as noise
shaping filter in our model. They contribute with up to 2 × 10−14 m s−2 Hz−1/2

at 1 mHz. Due to their important contribution at low frequency in the differential
channel in nominal science mode, alternative control modes are being developed
within the mission, such as the Drift Mode (Grynagier, 2009), where the actuators
noise is not existent.

The sensor noises are due to the readout noises of the three onboard mechanisms,
namely the interferometer, the inertial sensors and the star tracker. They act on the
LTP dynamics as additive noise to the reading outputs and are specified by on in
Fig. 7.1. The most relevant noise source among these three in the differential axis
is the contribution of the interferometer noise, as it is the most relevant disturbance
at high frequency. Its noise shape filter is modeled as:

|NIFM(f)| =
(
f + 2× 10−2/(2π)

f + 2× 10−4/(2π)

)2

(7.14)

where f is expressed in Hz. Taking into account the dynamics and the control loops
of the instrument, this represents a contribution of 2 × 10−13 m s−2 Hz−1/2 on the
differential channel at 30 mHz but below requirement at 1 mHz (see Fig. 7.3). The
contribution of the Inertial Sensor and the Star Tracker in the differential reading
are negligible.

Finally, the third category of noise comprises the noise produced by external
sources. These are force/torque noises that act on the test masses due to spacecraft
sources or that act differentially between the spacecraft and the test masses due
to exogenous sources, such as infrared noise or solar noise. These forces are repre-
sented as fn in Fig. 7.1. Solar disturbances are due to the solar flux fluctuations
impacting on the surfaces of the spacecraft. Infrared disturbances are due to the
infrared emission from the spacecraft external surfaces. These two noise sources are
the most important disturbance contributions on the spacecraft coordinates but they
are highly attenuated by the control architecture and they turn out to be completely
negligible in the interferometer readings. Finally, the test mass spacecraft distur-
bance noises are expected to be the most relevant sources at low frequency on the
differential interferometer channel: their detection would imply the success of the
mission. Their contribution has been estimated to be ∼ 3× 10−14 m s−2 Hz−1/2 at
1 mHz.

These models characterize the noise filters that shape the white noise entering
the simulator. These noise shaping filters are assembled as well with the entire
system automatically, and reside in the model library with different options and
parameters allowing the user to customize the noise model during mission science
activities. To finish with the one-dimensional model, the complete model contains 23
states (4 from the equation of motions, 4 from the delay of the interferometer output
model, 4 from the delay of the inertial sensors, 1 from the FEEPS actuators and 10
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Figure 7.3: Top panel: acceleration noise breakdown for channel 1 (observed along the
sensitive axis of the spacecraft to TM1). Bottom panel: acceleration noise breakdown for
the differential channel (from TM1 to TM2 along the sensitive axis). Values were derived
using the psd function on one side, and using simulate and spsd on the other side.

from the DFACS controllers. The modeling of the noise shape filters represent 27
extra states. Thus, in total we obtain a complete one-dimensional model (dynamical
model and noise sources) with 50 states. To give an order of magnitude, the full three-
dimensional LISA Pathfinder model (with noise shape filters) is composed of 532
tunable parameters, 27 input blocks, 20 state blocks (containing 615 state variables)
and 32 output blocks.
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7.4 Simulations

The characterization of each of the submodels of LISA Pathfinder individually, and
their codification within the ssm framework, enables the possibility of using all these
subblocks to build a complete LPF simulator. The result yields a high-dimensionality
state space object where the user can perform several data analysis operations, as if
the science team was simulating mission operations. This complete ssm object con-
tains the physics of all its subsystems. The user can perform 10 000 s time domain
simulations of the three-dimensional dynamics of the spacecraft in less than 1 minute
computation time in a standard 1 GHz computer. Previously developed techniques
within the mission, based on Laplace transfer function did not allow to easily imple-
ment a complete system with more than one dimension (Monsky et al., 2009). On
the other hand, the only available three-dimensional simulation is the one delivered
by Astrium (Brandt & et al., 2004). Their simulator is based on Simulink and runs
only 2 times faster than real time, thus excessively slow for data analysis purposes.
Moreover, parametric or symbolic systems are not accepted in this simulator.

We have done a noise breakdown simulation of the mission to test the agreement
of the model with theoretical results. In this simulation we have used a complete 3
dimensional LISA Pathfinder model including all its sub-models and noise sources.
We have then obtained the time domain simulations of the kinematic readings and the
accelerations of the absolute and differential channel. Fig. 7.3 shows the theoretical
and simulated power spectral densities of each noise contribution in each of these
channels. This figure illustrates that the noise projection output by the simulator
agrees with the results expected in the science requirement document of the mission
(Vitale, 2005). In the differential channel (main scientific channel of the mission), the
overall acceleration noise projection is below the 3×10−14 m s−2 Hz−1/2 requirement
at 1 mHz — see Fig. 7.3, bottom plot. At the same time, it can be seen that the
most prominent source in the absolute channel is the FEEP thrusters, as expected.
In the differential channel the most relevant noise sources are the test-mass noises at
low frequency (Vitale, 2005) and the interferometer noise at high frequency (Vitale,
2005; Armano et al., 2009).

7.5 Conclusions

We have presented the state space model class for LISA Pathfinder within the LTP
Data Analysis toolbox (LTPDA). This class will play a major role in data analysis
procedures as it represents a fast and accurate methodology to model the complete
instrument. The ssm class takes advantage of the mathematical characteristics of the
state space representation to model MIMO systems preserving the physical informa-
tion of the system, i.e., its input names, units of its parameters, physical description
of its internal states,. . . All subsystems identified in the LTP instrument have been
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modeled and validated independently, making this tool highly flexible and modular,
therefore suitable for mission operations. We have described the main characteris-
tics of each of the main sub-models in the mission library. We have shown that the
LTPDA tool allows the user to build a complete LISA Pathfinder three-dimensional
system in a single ssm object by automatic assembling of the relevant submodels.
The user can perform fast, accurate and realistic data analysis procedures with this
complete model. The modeling approach adopted here and presented in this chap-
ter has been shown to be successful and can be applied to other space missions or
other modeling frameworks. Moreover, it has been extensively used in the design
and preparation of all the magnetic experiments studied throughout this thesis.





Chapter 8

Summary and Conclusions

In this last chapter we summarize the most important results reported in this thesis
and we draw the main conclusions. We also suggest some plausible future investiga-
tion lines to be undertaken in the future.

8.1 Summary of the thesis

This thesis has been structured in four different blocks:

• Introductory chapters to Gravitational Waves, LISA and LISA Pathfinder
(LPF) (Chapters 1 & 2): We describe the physics of gravitational waves, their
origin and their main characteristics. We introduce as well the present status
of the most relevant gravitational wave ground detectors, such as LIGO and
VIRGO. We introduce LISA as the mission expected to be the first space grav-
itational wave detector, thus we present here its characteristics and objectives.
The need for a technological demonstrator leads us to LISA Pathfinder, LISA’s
precursor mission. We describe its status, its characteristics and its main goals.
Finally, we put forward the role of the Data management and Diagnostics Sub-
system in LPF, and we highlight the importance of the Magnetic Diagnostics
Subsystem. In this respect we present the different magnetic contributions
to the total differential acceleration reading of the LISA Technology Package
(LTP).

• Design of the inflight magnetic experiment and its data analysis procedures for
the estimation of the magnetic properties of the test masses of LPF (Chapters
3 & 4): We present the magnetic experiment that will be performed in orbit
to determine the value of the three components of the remanent magnetic
moment of the test masses and their susceptibility. To this end, we present
the hardware and the characteristics of the signals involved in the experiments,
and we report its expected results.
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• Data analysis algorithms to infer the magnetic field and its gradient at the
locations of the test masses (Chapters 5 & 6): We introduce the magnetic
field interpolation problem, which implies the estimation of the magnetic field
and its gradient at the location of the test masses using the measurements
delivered by the onboard magnetometers. We present several interpolation
methods, we assess their performance, and we choose neural networks as our
preferred method.

• Description of the LTP simulator built-in within the LTPDA toolbox (Chap-
ter 7): We describe the LTP Data Analysis tool that is being developed for
data analysis operations. Specifically, we focus on the LTP dynamics simulator
developed within the State Space Model framework of the LTPDA tool.

8.2 Conclusions

This thesis has focused on the estimation of the contribution of the magnetic effects to
the total differential acceleration measurement between the two onboard test masses.
The main objective of the thesis has been the determination of an upper bound for
the uncertainty of this estimate. To do this we used specific data analysis to address
two different problems: (1) the design and analysis of the magnetic experiments to
estimate the remanent magnetic moment and susceptibility of the test masses of LTP,
and (2) the analysis and processing of the data streams delivered by the onboard
magnetometers to estimate the magnetic field and its gradient at the locations of
the test masses.

With respect to the estimation of the magnetic remanent magnetic moment and
susceptibility of the test masses we have contributed to:

• The design of the inflight experiment that will estimate the magnetic proper-
ties of the test masses. This experiment will consist in the processing of the
kinematic excursions of the test masses when they are excited by the magnetic
forces and torques produced by the onboard coils.

• Studying the magnetic force along the x-direction (the sensitive axis connecting
both test masses). We have found that the force presents a double-frequency
behavior when a sinusoidal current circulating through the onboard coils is
injected. On the other hand, the torques acting on the test masses present a
single frequency response.

• Characterizing the estimation of the magnetic parameters of the test masses
(the remanent magnetic moment and the susceptibility). We found that they
can be estimated with three single measurements obtained from the onboard
interferometer, i.e. the x-axis displacement, and the rotations about the y-
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and z-axes (the z-axis points to the solar panel). The kinematic excursion
detected along the sensitive axis (x-axis) between the two test masses is below
8 nm while the corresponding rotations have amplitudes of ∼ 4 µrad. These
displacements and rotations do not exceed the authority limits of the drag-free
and low-frequency controllers. Therefore, we confirmed that the usage of the
coils will not produce harmful effects on the LTP instrument and will provide
sufficient signal-to-noise ratio (SNR) for parameter estimation.

• Determining the cross-couplings between rotations and displacement axes. We
found that they are not negligible in the LTP instrument. Therefore, in order
to estimate the susceptibility and magnetic moment of the test masses we
needed a three-dimensional analysis model. We discarded the one-dimensional
approach because it induces constant biases of more than 1% in the estimates.

• Quantifying the effect of the uncertainty in the capacitive actuator gain in the
force-to-displacement LTP transfer function. We concluded that this uncer-
tainty is critical for the accuracy of the estimates and that it depends on the
excitation frequency of the coils.

• Computing the SNR of the readings of the interferometer, x-, y-, and z-
readings, which we found to be also frequency dependent.

• Conducting a joint optimization of these two frequency-dependent effects. We
showed that excitation currents through the coils at 5 mHz, instead of 1 mHz,
deliver more robust and accurate results. We also found that the estimates of
the magnetic characteristics of the test masses have a zero bias and a stan-
dard deviation of ∼1% of relative error. Moreover, we also demonstrated
that a robust estimation can be achieved combining the estimations at dif-
ferent frequencies. This approach ensures robustness in front of non-modeled
frequency-dependent effects.

Concerning the estimation of the magnetic field at the location of the test masses
we found that:

• Classical interpolation methods with only 4 tri-axial magnetometers (12 inde-
pendent measurements) allow us to perform only a linear interpolation. For
this particular application these methods are not sufficient since they deliver
averaged estimation errors on the order of up to 400% for each of the field
components.

• These limitations can be overcome with a novel approach based on neural
networks. We showed that extensive ground testing data will allow to perform
an appropriate training of the network model, and that the magnetic field at
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the locations of the test masses can be inferred with a standard deviation of
only 5%.

• The statistical outputs delivered by the neural network model are better than
those delivered by the classical method, as the classical methods leads to high
skewness and kurtosis values. This shows that these estimates are not symmet-
rical and have an important number of outliers. This behavior is not observed
with the neural network interpolation model.

• The interpolation model is robust at the 10% error level, with respect to the
error in the training vectors (on ground measured data). Moreover, the inter-
polation model is robust with respect to plausible offsets in the magnetometers
readings.

• The uncertainty in the mechanical precision of the heads of the magnetometers
propagates into the magnetic field estimates below the 5% error level.

• Appropriate training enables to estimate low-frequency drifts in the magnetic
field time evolutions.

• A hybrid interpolation algorithm presents a quasi-autonomous magnetic field
interpolation framework for LPF. Nevertheless, we stress the need for having
extensive ground test data to build the magnetic model data base.

• In summary, neural network interpolation algorithms are a valid alternative to
process the magnetic readings delivered by the magnetometers onboard LISA
Pathfinder, since they are expected to deliver estimates with uncertainties be-
low the 10% level in any mission scenario.

Finally, once these two separate tasks are performed, a remaining goal consists
in assessing how their uncertainties project into the precision of our estimate of the
magnetic contribution to the total differential acceleration reading in LPF. To do
this, we propagated the errors of the determination of the magnetic characteristics
and the magnetic field and gradient into the calculation of the magnetic acceleration
noise. The error propagation is computed as:

σtotal =

√√√√ N∑
i=1

(
∂f

∂si
σsi

)2

,

where f is the total function of the magnetic effects and si are the several sources
of error. In our case, these sources of error are (1) the uncertainty on the magnetic
field and gradient determination and (2) the uncertainty on the estimation of the
remanent magnetic moment and susceptibility of the test masses. The results of this
error propagation are shown in Table 8.1.
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To put it in short, the data analysis algorithms presented in this dissertation
determine the total magnetic contribution with an standard deviation of 0.425 ×
10−15 m −2 Hz−1/2. Thus, using neural networks and optimized magnetic experi-
ments, the magnetic contribution is determined within the 15% relative error level.
In comparison, using the formerly disregarded data analysis methods, i.e. the mul-
tipole interpolation scheme and the non-optimized magnetic experiments, this con-
tribution could only be determined with errors at the 130% level. Therefore, using
the techniques presented in this thesis, the overall performance of the estimate has
been enhanced by one order of magnitude.

8.3 Future work

Following the investigations described in this dissertation, a number of studies can
be undertaken, and most of them could be of interest for LISA. Specifically, the
experience gained from the design, definition and implementation of the data analysis
algorithms for the Magnetic Diagnostics Subsystem of LISA Pathfinder will be of
great value for LISA or other gravitational waves missions. For instance, the need for
placing the magnetometers closer to the test mass and changing its technology from
fluxgate to AMR is already under investigation now. Moreover, useful insights can
be provided to define the position of the future LISA coils or other active magnetic
hardware used to infer the properties of the LISA test masses.

Concerning the estimation of the magnetic characteristics of the test masses in
LPF, the effect of non-homogeneities of the magnetic moment in the overall esti-
mation can also be assessed. The magnetic moment of the test mass is due to the
specific distribution of its inner dipoles throughout the entire volume, which are
normally grouped in so-called magnetic domains (Jackson, 1999). This distribution
is not expected to be homogenous. Thus, new studies are needed to assess this cir-
cumstance in the estimation of the properties of the test masses. Also, excitations
at higher frequencies or differential excitations with both coils could be the subject
of further investigations.

Last but not least, a straightforward future line of work to be performed con-
cerns the inference of the magnetic field using a calibrated interpolation model with
the available measured data. Particularly, all data recorded in the magnetic test
campaign performed at Astrium Stevenage should be used and a complete magnetic
model database should be built. This calibration is essential to deliver good quality
data out of our neural network interpolation algorithm. Furthermore, even if the
neural network approach has been presented as one valid alternative, several other
supervised techniques, such as bayesian approaches or clustering techniques, could
also be investigated.



Appendix A

Reference frames and
coordinate definitions for LTP

This appendix describes briefly the main reference coordinate frames defined for
LISA Pathfinder. These conventions have been used throughout the entire volume.

A.1 Reference Frames

Geodesic Reference Frame (J)

The Earth centered geodesic J2000 (true date) reference frame is defined as follows:

• JO: The origin is defined as the center of the Earth.

• JX: Is defined in the direction of the vernal equinox on January 1, 2000 at 12
noon.

• JY: Completes the right hand system.

• JZ: Is defined in the direction of the Earth’s North Pole on January 1, 2000 at
12 noon.

Mechanical Reference Frame (M)

The mechanical reference frame is the Science Spacecraft principal reference frame.
It is defined as follows:

• MO: The origin is at the separation plane between the Science Spacecraft and
the Propulsion Module, on the centerline of the cylinders.

• MX: Is defined parallel to the LTP centerline with the positive direction to-
wards test mass 1.
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• MY: Completes the right hand system.

• MZ: Is pointing up towards the solar array.

Body Reference Frame (B)

The body reference frame is defined as the science spacecraft AOCS control frame.
It is defined as follows:

• BO: The origin is at the predicted nominal (or real, measured) center of mass
of the Science Spacecraft.

• BX: Is defined parallel to the LTP centerline with the positive direction towards
test mass 1.

• BY: Completes the right hand system.

• BZ: Is pointing up towards the solar array.

Optical Bench Reference Frame (O)

The optical bench frame is defined as follows:

• OO: The geometrically derived center of the optical bench.

• OX: Along the geometrically derived x-axis, pointing from origin towards test
mass 1.

• OY: Completes the right hand system.

• OZ: Perpendicular to OX, pointing away from (and with no intersection with)
the optical bench plane.

Magnetic Experiments Reference Frame (MEF)

The magnetic experiments described in this thesis have been referenced to the Mag-
netic Experiments Reference Frame. This frame is defined as follows:

• OO: The center point of the line connecting the two test mass centers translated
0.6093 m away from the solar array along the OZ axis of O frame.

• OX: Along the geometrically derived x-axis (axis connecting test mass 1 and
test mass 2), pointing from origin towards test mass 2.

• OY: Completes the right hand system.

• OZ: Perpendicular to OX, pointing towards the solar array (parallel to the OZ
axis of the O frame).
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Figure A.1: The coils reference frame (CF) is a coordinate reference frame centered at the
center of the induction coils. This reference frame is used for magnetic field calculation,
therefore we represent I as the current circulating through the coil, Bρ is the perpendicular
component of the field and Bx is the longitudinal component.

Coils Reference Frame (CF)

The calculation of the magnetic field generated by the onboard coils is done with
respect to a reference frame centered at each of the coils (see Fig. A.1):

• OO: The center point of the induction coil.

• OX: Along the geometrically derived x-axis (axis connecting the coil with the
test mass), pointing from origin towards the test mass.

• OY: Completes the right hand system.

• OZ: Perpendicular to OX, pointing towards the solar array (parallel to the OZ
axis of the O frame).

Electrode Housing Frames (H1, H2)

The two test masses are numbered in such a way that the test mass that is closer
to the fiber injectors is called test mass 1. This is the test mass whose distance is
measured with respect to the optical bench. The other test mass is denoted test
mass 2. The housing frame test mass 1 or H1-frame is defined as follows:

• H1O: Center of electrode housing of test mass 1. The center is defined as the
nominal position of test mass 1 during science measurements.
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• H1X: Along the geometrically derived x-axis of the electrode housing, pointing
away from the optical window.

• H1Y: Completes the right hand system.

• H1Z: Along the geometrically derived x-axis of the electrode housing pointing
up.

The housing frame of test mass 2 or H2-frame is defined as follows:

• H2O: Center of electrode housing of test mass 2. The center is defined as the
nominal position of test mass 2 during science measurements.

• H2X: Along the geometrically derived x-axis of the electrode housing, pointing
towards the optical window.

• H2Y: Completes the right hand system.

• H2Z: Along the geometrically derived x-axis of the electrode housing pointing
up.

Test Mass Frames (T1,T2)

The body reference frame of test mass 1 or T1-frame is defined as follows:

• T1O: Center of mass of test mass 1.

• T1X: Principal axis of test mass 1, nominally aligned with H1X.

• T1Y: Principal axis of test mass 1, nominally aligned with H1Y.

• T1Z: Principal axis of test mass 1, nominally aligned with H1Z.

The body reference frame of test mass 2 or T2-frame is defined as follows:

• T2O: Center of mass of test mass 2.

• T2X: Principal axis of test mass 2, nominally aligned with H2X.

• T2Y: Principal axis of test mass 2, nominally aligned with H2Y.

• T2Z: Principal axis of test mass 2, nominally aligned with H2Z.
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Figure A.2: Attitude parametrization.

A.2 Coordinate Definitions

Attitude parametrization

Whenever attitude is parameterized as a rotation sequence, the following convention
of a 1-2-3 rotation sequence is used.

1. First rotation around the x-axis, angle θ.

2. Second rotation around the new y-axis, angle η.

3. Third rotation around the new z-axis, angle φ.

For the test mass attitude with respect to the housing frames, lower case Greek
letters are used, whereas upper case Greek letters are used for the spacecraft attitude
with respect to the inertial frame.

Test Mass coordinates

For each test mass, the relative coordinate is defined as the relative displacement
and relative attitude of the test mass fixed frames (T1 and T2) with respect to the
respective housing frames (H1 and H2). The relative coordinates are:

q1 = (x1, y1, z1, θ1, η1, φ1)

q2 = (x2, y2, z2, θ2, η2, φ2) (A.1)

Inertial attitude

The inertial attitude is defined as the attitude of the B-frame with respect to the
J-frame. The attitude is denoted by the angles Θ, H and Φ.





Appendix B

Magnetic data from the ACE
mission

This appendix briefly describes the main results obtained by the magnetometer op-
erated in the Advanced Composition Explorer (ACE) mission. This instrument
delivers magnetic field measurements at the first lagrangian point (L1) of the Earth-
Sun system, exactly where LISA Pathfinder is planned to be located. Thus, the
ACE Magnetic Field Experiment will establish the time-varying, large-scale struc-
ture of the interplanetary magnetic field at this point as derived from continuous
measurement of the local field at the spacecraft.

B.1 ACE magnetic experiment description

The magnetic field experiment on ACE provides continuous measurements of the
local magnetic field in the interplanetary medium (Smith et al., 1998). The exper-
iment consists of a pair of twin, boom-mounted, triaxial fluxgate sensors which are
located 4.19 m from the center of the spacecraft on the opposite solar panels. The
electronics and Digital Processing Unit is mounted on the top deck of the spacecraft.
The two triaxial sensors provide a balanced, fully redundant vector instrument and
allow an enhanced assessment of the properties of the magnetic field at L1 (the first
Lagrangian point of the Earth-Sun system). Data recorded by this instrument is
available online1. Moreover, real-time observations with a resolution of 1 second are
provided continuously to the Space Environmental Center (SEC) of the National
Oceanic and Atmospheric Administration (NOAA) for near-instantaneous, world-
wide dissemination as a free service to pursue space weather studies. The ACE
experiment uses fully redundant systems and extremely conservative designs. Data
processing for the instrument is led by the University of New Hampshire.

1http://www.ssg.sr.unh.edu/mag/ACE.html
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Figure B.1: a) Magnetic field time series of day 67 in year 2000 (March 2000, month of
the last solar maximum up to the date of writing.) b) Amplitude spectral density of the
magnetic field components for the same data series.

As mentioned, the results of the ACE experiment are particularly interesting for
LISA Pathfinder, as its orbit is also designed to be around the same Lagrangian
point. In the present study we have adopted that the interplanetary DC magnetic
field was 10 nT, whereas its fluctuation was 55 nT Hz−1/2. These are reasonable
values, but we can use the ACE magnetic data to validate them. To this end, we
processed two sets of data. The first one corresponds to data from October 2010,
while for the second one we picked up data from the last solar maximum, which
took place in March, 2000. In Fig. B.1 we plot the time evolution of the three
components and the modulus of the magnetic field for the second set of data along
with their amplitude spectral density. In this way we can obtain the maximum DC
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field values and the maximum fluctuations at 1 mHz. For the Bx component, the
maximum magnetic field value is of 12 nT (day 296, year 2010) and the maximum
fluctuations are of 31 nT Hz−1/2 (day 67, year 2000), somewhat lower than assumed.
However, this study, even if not exhaustive, shows that the order of magnitude of
the interplanetary magnetic field at L1 adopted here is correct.





Appendix C

Calculation of the magnetic field
produced by the LTP coils

This appendix details the calculations of the magnetic field and the gradient of the
magnetic field produced by the coils onboard the LISA Technology Package.

C.1 Magnetic field calculation

Consider a circular coil of radius a and of N loops of metallic wire through which an
electric current I flows. Reference coordinates are shown in Fig. C.1. Specifically,
they can be made explicit:

x = x , y = ρ cos θ , z = ρ sin θ (C.1)

so that ρ= (x2 +y2)1/2. The angle θ is an azimuthal angle around x, which increases
in the direction of I — see Fig. C.1.

From geometrical considerations it is obvious that the magnetic field B has axial
symmetry, i.e., only the x- and ρ- components are different from zero, and do not
depend on θ. They are given by

Bρ(x, ρ) =
µ0

4π

Nπa2 I

(aρ)3/2

k

π

x

a

[
−K(k) +

1− k2/2

1− k2
E(k)

]
(C.2a)

Bx(x, ρ) =
µ0

4π

Nπa2 I

(aρ)3/2

k

π

[
1

2

k2

1− k2
E(k)

]
− ρ

x
Bρ(x, ρ) (C.2b)

where

k2 =
4aρ

x2 + (a+ ρ)2
(C.3)
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Figure C.1: Coordinate reference frame for the magnetic field calculation.

and

K(k) ≡
∫ π/2

0
(1− k2 sin2 φ)−1/2 dφ , E(k) ≡

∫ π/2

0
(1− k2 sin2 φ)1/2 dφ (C.4)

are elliptic integrals of the first and second kind, respectively (Abramowitz, 1972).
The Cartesian components of the field are given by:

Bx(x, ρ) = Bx(x, ρ) , By(x, ρ) =
y

ρ
Bρ(x, ρ) , Bz(x, ρ) =

z

ρ
Bρ(x, ρ) (C.5)

C.2 Gradient calculation

We are now interested in the gradient components of the field. To the effect, we
recall that

∇×B =∇·B = 0 (C.6)

i.e., the derivatives matrix ∂Bi/∂xj is symmetric and traceless. Hence, only 5 of its
9 components are independent. We can choose them arbitrarily, and the choice we
make is the following:

∂Bx
∂x

,
∂By
∂x

,
∂Bz
∂x

,
∂By
∂y

,
∂By
∂z

(C.7)

Because of the symmetry of the field, all of these components are expressible as
linear combinations of the four derivatives
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∂Bx
∂x

,
∂Bx
∂ρ

,
∂Bρ
∂x

,
∂Bρ
∂ρ

(C.8)

In fact, the relationships between Eqs. (C.7) and (C.8) can be easily established,
and is the following:

∂Bx
∂x

=
∂Bx
∂x

(C.9a)

∂By
∂x

=
y

ρ

∂Bρ
∂x

(C.9b)

∂Bz
∂x

=
z

ρ

∂Bρ
∂x

(C.9c)

∂By
∂y

=
y2

ρ2

∂Bρ
∂ρ

+
z2

ρ2

1

ρ
Bρ (C.9d)

∂By
∂z

=
yz

ρ2

(
∂Bρ
∂ρ
− 1

ρ
Bρ

)
(C.9e)

We now recast Eqs. (C.2) in the handier form

Bρ(x, ρ) = Aρ
x

ρ3/2
F (k) (C.10a)

Bx(x, ρ) = Ax ρ
−3/2G(k)− ρ

x
Bρ(x, ρ) (C.10b)

where

Aρ ≡
µ0

4π

Nπa2I

πa5/2
, Ax ≡

µ0

4π

Nπa2I

2πa3/2
=
a

2
Aρ (C.11)

are quantities not depending on either x or ρ, and where abbreviations are defined
by

F (k) = k

[
1− k2/2

1− k2
E(k)−K(k)

]
(C.12a)

G(k) =
k3

1− k2
E(k) (C.12b)

We can now proceed to evaluate the four quantities given in Eq. (C.8). For that
we note that

∂F

∂x
=
∂k

∂x

dF

dk
,

∂F

∂ρ
=
∂k

∂ρ

dF

dk
(C.13)

and likewise with G(k). The following is easily found:

∂k

∂x
= − x

4aρ
k3 ,

∂k

∂ρ
=
x2 + a2 − ρ2

8aρ2
k3 (C.14)
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To calculate the derivatives F ′(k) and G′(k) requires expressions for the deriva-
tives of the elliptic functions. It can be proved that

dE

dk
=

E(k)−K(k)

k
(C.15a)

dK

dk
=

1

k

[
E(k)

1− k2
−K(k)

]
(C.15b)

A bit of algebra shows that

F ′(k) ≡ dF

dk
=

1− k2 + k4

(1− k2)2 E(k)− 1− k2/2

1− k2
K(k) (C.16a)

G′(k) ≡ dG

dk
=

k2

1− k2

[
4− 2k2

1− k2
E(k)−K(k)

]
(C.16b)

We can now finally express the four derivatives in Eq. (C.8):

∂Bρ
∂x

= Aρ ρ
−3/2

[
F (k)− x2

4aρ
k3F ′(k)

]
(C.17a)

∂Bρ
∂ρ

= Aρ
x

ρ5/2

[
−3

2
F (k) +

x2 + a2 − ρ2

8aρ
k3F ′(k)

]
(C.17b)

∂Bx
∂x

= −Ax
x

4aρ5/2
k3G′(k)− ρ

x

[
∂Bρ
∂x
− 1

x
Bρ

]
(C.17c)

∂Bx
∂ρ

=
Ax

ρ5/2

[
−3

2
G(k) +

x2 + a2 − ρ2

8aρ
k3G′(k)

]
− ρ

x

[
∂Bρ
∂ρ

+
1

ρ
Bρ

]
(C.17d)

These expressions suffice to determine (analytically) all five gradient components
in Eq. (C.7), thanks to the equalities provided by Eqs. (C.9). The final expressions
are, however, a bit cumbersome.



Appendix D

Estimation of parameters using
linear least squares

This appendix reviews the basic procedures needed to estimate parameters using a
least squares technique. It also gives the resulting expression to estimate one and
two amplitude parameters from a single channel measurement.

D.1 Least square theory

In linear regression using least squares (Wolberg, 2005), we fit the data to a linear
model. For the sake of clarity, in this appendix we use upper case bold letters to
represent matrices and lower case bold letter to represent vectors. Thus, a regression
equation can be written as:

y = X · β + e (D.1)

where y are the measurements, which are assumed to be a T × 1 vector (it can be
considered a single channel output with T samples), X are our regressors, which are
assumed to be a T ×K matrix, β is the parameter vector, which is assumed to be
a K × 1 vector, e are the errors, which are considered vector of T × 1. We want to
minimize the sum of the squared errors:

S(β) = e′ · e = (y −X · β)′ (y −X · β) . (D.2)

Thus, we take derivatives and equal them to 0, or

∂S(β)

∂β
= X′Xβ −X′y = 0 (D.3)

and we obtain the estimator for our parameters as:

β̂ = (X′X)−1X′y (D.4)
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if X′X has full rank, or

β̂ = (X′X)−X′y + [I − (X′X)−X′X]w (D.5)

if X′X has not full rank. In this case (X′X)− is the generalized inverse (Wolberg,
2005) and w is an arbitrary vector. Therefore, in the first case, our model is estimated
as follows:

ŷ = Xβ̂ = X(X′X)−1X′y = Py (D.6)

The errors are assumed to be originated by a random variable (ε) with the following
statistical properties:

E(ε) = 0 E(εε′) = σ2I (D.7)

Under these assumptions, the estimator of Eq. (D.4) is the minimum variance
unbiased estimator. This means that if β0 is the true value for the parameter vector,
E(β̂) = β0. Moreover, the variance of the parameter vector is minimal. That is, the
uncertainty of the estimated parameters is the minimum that can be obtained with
the existent data. This variance can be computed as:

D(β̂) = E[(β̂ − β0)(β̂ − β0)′]

=

 var(β̂1) . . . cov(β̂1β̂k−1) cov(β̂1β̂k)
... . . . · · · cov(β̂2β̂k)

cov(β̂kβ̂1) . . . . . . var(β̂k)

 (D.8)

which in our specific case turns out to be:

D(β̂) = E
[
(β̂ − β0)(β̂ − β0)′

]
= E(β̂

2
)− β0β0

′I =

= E
[(

(X′X)−1X′y
) (

(X′X)−1X′y
)′]− β0β

′
0I =

= (X′X)−1X′E[yy′]X(X′X)−1 − β0β
′
0I =

= (X′X)−1X′E
[
(Xβ0 + e)(Xβ0 + e)′

]
X(X′X)−1 − β0β

′
0I =

= (X′X)−1X′
[
(Xβ0β

′
0X
′ + σ2I

]
X(X′X)−1 − β0β

′
0I =

= (X′X)−1σ2 (D.9)

In this equation, σ2 is the variance of errors. The unbiased estimator for this variance
is:

s2 =
1

T −K
e′ · e (D.10)

where K is the number of parameters and T is the number of samples in the single
channel.
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D.2 One amplitude parameter and one single channel
reception

We assume that the signal is received merged with additive Gaussian noise. Then,
at the receiver output we have:

r[n] = α · x[n] + w[n] (D.11)

where r[n] is the detected signal, α is the unknown amplitude parameter, x[n] is the
known part of the signal, and w[n] is the additive noise. In this case, the estimator
for α is obtained as:

α̂ =

∑N
i,j=1 µijrixj∑N
i,j=1 µijxixj

(D.12)

where µ is the covariance matrix of the noise, which is defined as:

µij = E[(wi −m)(wj −m)], (D.13)

where m is the mean of the noise. In the case of additive white Gaussian noise,
where the covariance matrix is diagonal this calculation can be further simplified to
obtain:

α̂ =

∑N
i=1 rixi∑N
i=1 xixi

(D.14)

and its minimum variance is calculated as D(α̂) = (ρ2)−1, where ρ is:

ρ2 =

N∑
i,j=1

µi,jxixj (D.15)

D.3 Two amplitude parameters and one single channel
reception

In this case, the received signal is:

r[n] = α · x[n] + β · y[n] + w[n] (D.16)

and the estimator for α and β, in its matrix form is:

(
α̂

β̂

)
=

( ∑N
i,j=1 µi,jxixj

∑N
i,j=1 µi,jxiyj∑N

i,j=1 µi,jxiyj
∑N

i,j=1 µi,jyiyj

)−1( ∑N
i,j=1 µi,jrixj∑N
i,j=1 µi,jriyj

)
(D.17)
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The covariance matrix of the parameters is the inverse of the Fisher matrix , i.e.
D(α̂, β̂) = (F)−1, and the Fisher matrix is obtained as:

F =

( ∑N
i,j=1 µi,jxixj

∑N
i,j=1 µi,jxiyj∑N

i,j=1 µi,jxiyj
∑N

i,j=1 µi,jyiyj

)
(D.18)



Appendix E

Magnetic moments of satellite
subsystems

In this appendix we list the subsystems of the LISA Technology Package that have
been considered for the simulation of the magnetic field of the spacecraft. We report
the positions of these units and their respective magnetic moments.

Table E.1: List of the positions of the subsystems that have been considered for this study.
Their magnetic dipole moment is also listed. These values of magnetic field are not the only
spacecraft units that have to be considered in a realistic simulation, but it can be considered
as a representative set. These sources were communicated by David Wealthy, to whom we
thank for his help (Wealthy, 2006).

Subsystem Moment [mA m2] x [m] y [m] z [m]

On-board computer 50 0.2891 −0.5258 0.4454
PCDU 100 −0.2826 0.5637 0.4812
Solar Array 3 0.0000 0.0000 0.8497
Battery 100 −0.1094 0.6040 0.7071
Transponder 1 100 −0.6415 0.0615 0.6104
Transponder 2 100 −0.6790 0.2923 0.6004
Solid State Power Amplifier 1 + Isolator 75 −0.9166 0.0700 0.3044
Solid State Power Amplifier 2 + Isolator 75 −0.9166 0.0700 0.5900
Filter 1 25 −0.6820 0.1330 0.3219
Filter 2 25 −0.6570 0.2259 0.3019
SPDT 1 (RF switch) 25 −0.8399 0.2026 0.5296
SPDT 2 (RF switch) 25 −0.8754 0.2571 0.6328
DPDT 1 (RF switch) 25 −0.6198 0.1942 0.6803
DPDT 2 (RF switch) 25 −0.5319 0.1707 0.6810
Continued on next page. . .
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Table E.1 — Continued

Coupler 75 −0.5305 0.1580 0.4807
Medium Gain Antenna (MGA) 50 −0.9243 0.3793 0.4642
Omni directional antenna 1 50 −0.2231 1.0370 0.4755
Omni directional antenna 2 50 0.2227 −1.0373 0.4755
Digital Sun sensor 1 50 −1.0122 0.0462 0.8672
Digital Sun sensor 2 50 0.6143 0.8076 0.8672
Digital Sun sensor 3 50 0.4233 −0.8580 0.8672
Gyro Pack 1 25 0.4159 0.3770 0.6614
Gyro Pack 2 25 −0.4127 −0.3657 0.6384
Star Tracker head 1 50 0.0549 −0.8550 0.3275
Star Tracker head 2 50 0.0545 −0.8565 0.6275
Star Tracker Electronics 1 50 −0.5671 −0.2495 0.2905
Star Tracker Electronics 2 50 −0.5671 −0.2495 0.6500
FEEP Cluster 1 100 −0.9365 −0.2512 0.4781
FEEP Cluster 2 100 0.2507 0.9367 0.4787
FEEP Cluster 3 100 0.6853 −0.6851 0.4786
FEEP PCU 1 300 −0.8044 −0.1540 0.4779
FEEP PCU 2 300 −0.0149 0.8496 0.4779
FEEP PCU 3 300 0.5972 −0.5579 0.4779
Neutralizer 1 0 −0.9956 −0.2670 0.4782
Neutralizer 2 0 0.2666 0.9957 0.4786
Neutralizer 3 0 0.6424 −0.6426 0.4784
Micropropulsion electronics 300 −0.7752 −0.3460 0.3128
Cold Gas PCU 1 300 −0.6685 0.4654 0.3420
Cold Gas PCU 2 300 0.8006 0.1101 0.6217
Cold Gas PCU 3 300 −0.1565 −0.7893 0.5550
Cold Gas Cluster 1 100 −0.6456 0.6456 0.4784
Cold Gas Cluster 2 100 0.8819 0.2363 0.4784
Cold Gas Cluster 3 100 −0.2363 −0.8819 0.4784
Cold Gas Tank 20 −0.2470 −0.5540 0.3265
Cold Gas PEPRE 50 −0.2066 −0.5646 0.6606
Cold Gas FEED Assembly 100 −0.2707 −0.5005 0.6606



Appendix F

Neural network principles:
theory and application

In this appendix we briefly describe the principles of neural networks as a statistical
modeling tool. We explain the concept of neural networks, and we also review the
architecture used in this work. Additionally, we also provide a brief overview of the
back-propagation algorithm to find the optimal weights of the neural network, and
we show as well how to estimate the variances of these weights. Nevertheless, we
emphasize that our aim is only to give a brief introduction to the basic concepts used
in this manuscript and not to be complete whatsoever. Consequently, the reader is
referred for further details to the excellent works of Kecman (2001), Dreyfus (2005),
and Rumelhart et al. (1985).

F.1 Introduction to feedforward neural networks

Artificial neural networks are made up of interconnecting artificial neurons (pro-
gramming constructs that mimic the properties of biological neurons) that have the
property of learning from processing data. Neural networks are often used in solving
nonlinear classification and regression tasks. The Parsimonius approximation states
(Dreyfus, 2005) that any bounded, sufficiently regular function can be approximated
uniformly with arbitrary accuracy in a finite region of variable space, by a neural
network with a single layer of hidden neurons having the same activation function
and a linear output neuron. In order to model the function correctly, we ought to
choose the model with the smallest number of parameters.

The utility of artificial neural network models lies in the fact that they can be
used to infer a function from observations. This is particularly useful in applications
where the complexity of the data or task makes analytical approximations imprac-
tical. The neural network can predict values of the quantity of interest for points
that lie between the measured points. This ability is termed statistical inference or
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Figure F.1: Schematics of the operations performed by an artificial neuron.

generalization in neural network parlance. However, it has to be understood that
this generalization is limited and cannot be extended beyond the boundaries of the
region of the input space. This is a key aspect when using these models. In order to
infer a model based on neural networks we need a set of examples that sample the
input space (for unsupervised training) and also the output space (for supervised
training). Moreover, for this approach to be robust, we need a number of examples
larger than the number of parameters and they ought to be representative of the
process we want to model. Generally speaking, if the dimension of the input space
is larger than 3, neural networks are advantageous to polynomials or other classical
methods. When solving a problem with artificial neural networks we need to define
the neuron type, the neural network architecture, select the appropriate inputs to the
model and choose the learning process. Finally, in order to validate the model, its
performance should also be assessed. These concepts are developed in the following
sections.

F.2 Neuron model

The neuron is the basic unit of any neural network. It performs two operations —
see Fig. F.1. Firstly, it collects the inputs from all other neurons connected to it and
computes a weighted sum of the signals the latter inject into it, generally adding a
bias as well. If we represent the inputs by a vector x≡ (x1, . . . , xn), and the weights
by a w≡ (w1, . . . , wn), this operation consists in calculating the sum

Σ = w0 +

n∑
k=1

wkxk = w0 + wTx (F.1)

where the superindex T stands for the transpose matrix. In this case, wT is a row
vector while x is a column vector, and thus wTx is the scalar product of w and x.
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Finally, w0 is the bias. In second term, this sum is used as the argument to the so
called activation function, ϕ(Σ). The output of the neuron is thus

o = ϕ(Σ) (F.2)

In general, ϕ(Σ) can be selected in many different ways. Here, differentiable acti-
vation functions will be used, which suit well the gradient descent back-propagation
learning algorithm — see section F.5 below.

F.3 Neural network architecture

Artificial neural networks are software or hardware models inspired by the structure
and behavior of biological systems, and they are built using a set of neurons dis-
tributed in layers. There are many different types of neural networks in use today,
but the architecture of a so-called feed-forward network, where each layer of neurons
is linked with the next by means of a set of weights, is the most commonly used, and
will also be used here. A feed-forward network with Ni inputs, Nc hidden neurons,
and No output neurons computes No nonlinear functions of its Ni inputs variables
as composition of the Nc functions computed by the hidden neurons.

In this study we adopt the architecture shown in Fig. F.2, where i1, i2, i3 and
i4 are the inputs of the system and o1 and o2 are its outputs. This figure has been
restricted to 4 inputs and 2 outputs because for the application under study in

Figure F.2: Feed-forward neural network architecture. For the application presented in this
thesis, the readings of the magnetometers are the system inputs and the estimates of the
field and gradient at the positions of the test masses are the outputs of the system. Note
that in this architecture, one only intermediate, or hidden layer is assumed. Each of the
circles represents one neuron and corresponds to the model shown in Fig. F.1.
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this thesis, the information coming from the 4 magnetometers will be considered the
system inputs, while the magnetic field results at both test masses will be considered
the outputs.

F.3.1 What is the best network architecture?

Finding the optimal neural network architecture for an specific regression problem is
not a a trivial task, and has not been solved yet, since there is no systematic solution
to the general problem (Kecman, 2001; Dreyfus, 2005). This is because the problem
of generalization is an ill-posed problem. Specifically, if the network has too many
parameters (that is, too many neurons), the model is over-parametrized and, nor-
mally, has a tendency to learn from noise. This behavior is known as “overfitting”
(Schittenkopf et al., 1997). On the other hand, if it has too few parameters, the net-
work is not flexible enough to learn the hidden function between inputs and outputs.
Moreover, when choosing the best architecture the so-called bias-variance dilemma
is faced (Dreyfus, 2005). In practice this means that if a high number of neurons
in the network is adopted, the solution has less bias but more variance, whereas if
an insufficient number of neurons is adopted, interpolation errors with more bias
and less variance are obtained. Consequently, there is a trade-off between learning
and generalization capacity. Additionally, note that increasing the complexity of the
system leads to an important number of parameters. If the problem is non-linear,
several minima of the cost function are often found. Thus, to find the global min-
imum, all them should be carefully analyzed. This task is normally difficult as it
depends highly on initialization. On the other hand, if the problem is linear, only
one unique solution exists, but these problems are usually quite rare.

F.4 Selection of input data

In order to find a proper regression model with neural networks, input data has to
be carefully selected. This is so because not relevant inputs may increase complexity
and add uncertainty to the determination of the weights of the network, and thus
increase model error. This reduction of the input-space size can be performed with
classical methods such as Principal Component Analysis (PCA) for linear systems
or Curvilinear Component Analysis (CCA) for non-linear systems (Dreyfus, 2005).
However, the scientific community has developed other interesting techniques to solve
this problem such as those based on the Akaike’s criterion (Akaike, 1973, 1974).
These techniques try to minimize both the number of inputs and the obtained mean
square error of the model. Other techniques can be found in McQuarrie & Tsai
(1997), and Guyon et al. (2005). On the other hand, input data should be normalized
and centered in order to compact the input space. In our application, this is done
by application of simple mapminmax functions (Kecman, 2001).
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F.5 Learning paradigms and learning-training algorithms

In neural network parlance, learning algorithms are understood as the iterative pro-
cesses to find the best weights for each of the neurons of the model. The investigation
of learning algorithms is currently an active field of research. The design and im-
plementation of an adequate training scheme is the essential ingredient for a good
quality estimation of the model.

F.5.1 Learning paradigms

There are two major learning paradigms, each corresponding to a particular abstract
learning task. These are supervised learning and unsupervised learning (Rumelhart
et al., 1985). Training is the algorithmic procedure whereby the parameters of such
a model are sought, for a family given of functions. In statistical modeling, the
best model is the model whose parameters are estimated with the best accuracy. In
machine learning, the best model is the one that generalizes best, and the statistical
properties of the network parameters are of less interest.

1. Supervised learning. The idea of this is quite clearly suggested by its very
name: a set of examples is filed, which consists in a number of vector of inputs
and a number of outputs, and the network learns from these specific examples.

Let x represent a generic input vector, and y the associated vector output.
These two vectors constitute an example. The set of filed examples for super-
vised learning is thus a set of pairs (x, y), where x ∈ X and y ∈ Y , X and Y
being some suitable sample spaces. The network is then fed the inputs x of
one example and let it work out an output, o, say. This output is then com-
pared with the correct one, y, and an error is calculated if o 6= y. Iterations are
then triggered to adjust the weighting factors such that this error is minimized.
These will however vary as different examples are run, so a cost function is de-
fined which enables the network to optimize the set of weights which works best
for the set of examples analyzed, based on some given criterion. See section
F.5.2 for specific details on the learning algorithms.

2. Unsupervised learning. In unsupervised learning a cost function is to be
minimized as well, but generally this function is a relationship between the
inputs of the system (and normally not the output — which is some times not
available). These schemes are often used to perform inputs space classification
and discrimination (Kohonen, 2001). In this work they are used to discriminate
different groups of inputs, namely magnetometer readings corresponding to
different operating modes of the satellite.

In either case, the learning process is based on the architecture of the network.
That is, with the adopted number of neurons, layers and their interconnections, as
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well as on the chosen activation functions.

F.5.2 Learning algorithms

There are many algorithms for training neural networks. When training feed-forward
neural networks with supervised learning, a back-propagation algorithm is usually
implemented. The error of the mapping at the output is propagated backwards in
order to readjust the weights and improve the output error for the next iteration. The
weight computation can be implemented with different methods, the Ideal Gradient
Descent being a classic, which will also be used here. The method is widely used
in the field of soft computing, and is a variant of the method of steepest descent
(Rumelhart et al., 1985; Press et al., 1992).

Iterations on the weights of the different neurons at the different layers proceed
according to the following algorithm:

wn+1 = wn − η
∂E

∂w

∣∣∣∣
n

(F.3)

where n labels the current iteration step, and η is the learning rate, adjustable by
the user. E is the sum over the set of training examples of the square errors of the
outputs:

E =
∑

(o− y)T (o− y) (F.4)

where o is the (vector) output from the network, while y is the target, or correct
output in the corresponding example. This E can only be defined in supervised
learning, of course, and the idea of the above procedure is to find that point in
weight space where E is the minimum possible. E can therefore be considered the
cost function to be minimized in this particular supervised training scheme.

This has to be done for all layers in the network, therefore, the algorithm to
update the weights across the entire network is:

1. Initialization of the weights. This can be done randomly or using other tech-
niques.

2. Computation of the outputs of the network with the initial weights (forward
phase).

3. Computation of the error in the last layer.

4. Computation of the weight update of the last layer of neurons.

5. Computation of the error in the penultimate layer.

6. Compute the weight update of the penultimate layer.

7. Iterate successively until the first layer.
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8. Repeat the forward phase.

9. If the goal has not been achieved, iterate the backward process from point 3
for a new epoch.

This is why this technique is known as the back-propagation error technique.
To implement the Gradient Descent algorithm several mathematical tools can be
chosen. Levenberg-Marquardt (Marquardt, 1963) is a second order gradient descent
method which performs very good for small networks because it is very demanding
in memory size. The BFGS technique is also a second order method, however it is
less memory demanding. Thus, it is suitable for large networks (Press et al., 1992).
There are a number of technical issues in pursuing the aforementioned steps, such as
the choice of the initial set of weights, identification of local minima of E, boundary
effects,. . . which need to be addressed in each specific application.

F.5.3 Learning rate

True gradient descent requires infinitesimal steps to be taken. A learning rate factor
may increase the evolution of the algorithm. but nevertheless it may cause compu-
tational problems too. The larger the learning rate, the larger the changes of the
weights. Therefore, the learning rate should be as large as possible without leading
to oscillations (Rumelhart et al., 1985).

F.5.4 The early stopping technique

Frequently, to avoid overfitting, namely, to do not let the neural network learn the
noise artifacts present in the data, training software implement techniques such as
the early stopping technique. In this technique, the data provided to the training
algorithm is divided into two sets: the training data and the validation data. For
each of these two sets we define the training mean square error (TMSE):

TMSE =

√√√√ 1

Nt

Nt∑
k=1

[yk − g(xk, w)]2 (F.5)

and the validation mean square error (VMSE):

VMSE =

√√√√ 1

Nv

Nv∑
k=1

[yk − g(xk, w)]2 (F.6)

In these equations k is the index of each of the examples fed to the algorithm, y
are the outputs of our data, x are the inputs, w the neural network weights, and
g(x,w) is the network model. The training set is composed of Nt examples, and the
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validations set of Nv examples, thus the total data provided to the early stopping
technique is conformed by Nt + Nv examples. The learning algorithm described
in the previous sections is performed on the training data, in order to minimize
the TMSE. At the same time, during the learning process the value of the VMSE

is monitored. Both values start decreasing when the training starts. Nevertheless,
there is a moment when the TMSE keeps decreasing with respect to previous epochs
while the VMSE starts increasing. This is when the early stopping technique stops
the learning procedure and sets the weights of the network to the set of weights
existing when the VMSE started to increase. This avoids the network to learn from
the existing noise particularities in the training data. In order to obtain a good
generalization and avoid overfitting, we want that TMSE and VMSE to be of the same
order of magnitude of the noise expected for the specific application.

F.5.5 Estimating variances of the weights of neural networks

To estimate the variance of the neural network weights, the same approach used
in Appendix D can be used. There, the variance of the parameters for a linear
model was defined as D(β̂) = (X′X)−1σ2. For a non-linear model, the variance of
the estimated parameters is calculated using the linearized model. If the non-linear
model is o = g(x,w), the linearized model is then:

o =
∂g(x,w)

∂w
·w + e = L ·w + e (F.7)

where L is a matrix of T ×K, being T the number of samples and K the number of
parameters of the model. Specifically, L is given by:

L =

[
∂g(x,w)

∂w1

∂g(x,w)

∂w2
. . .

∂g(x,w)

∂wK

]
(F.8)

Hence, the variances of the weights estimated by the learning algorithms may be
approximated by D(ŵ) = (L′L)−1σ2. In this equation, σ2 stands for the variance of
the errors obtained by the trained model.
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Danzmann, K. & Rüdiger, A., 2003. LISA technology - concept, status, prospects.
Class. & Quantum Grav., 20, 1–22.

de Waard A., 2005. Mini Grail progress report. Tech. rep., Universiteit Leiden.
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D́ıaz-Aguiló, M., Lobo, A. & Garćıa-Berro, E., 2011a. Design of the mag-
netic diagnostics unit onboard LISA Pathfinder. Aerospace Science Technology ,
accepted.
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