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SEARCHING FOR GRAVITATIONAL-WAVES FROM COMPACT BINARY

COALESCENCES WHILE DEALING WITH CHALLENGES

OF REAL DATA AND SIMULATED WAVEFORMS

Abstract

by Waduthanthree Thilina Dayanga, Ph.D.
Washington State University

December 2013

Chair: Sukanta Bose

Albert Einstein’s general theory of relativity predicts the existence of gravita-

tional waves (GWs). Direct detection of GWs will provide new information about

physics, astronomy and cosmology. In this thesis we focus on the quest for detect-

ing GWs from compact binary coalescence (CBC) systems. Since CBC waveforms

are accurately modelled and because CBCs result from the motion of large com-

pact masses and, thus, can be seen to great distances, they are the most promising

source for the first direct detection of GWs.

In this thesis we address several challenges associated with detecting CBC

signals buried in ground-based GW detector data that were experienced in past

searches and are anticipated for future searches. The data analysis techniques

we employ to detect GW signals assume that detector noise is Gaussian and sta-

tionary. However, in reality, it is neither Gaussian nor stationary. To estimate the

performance loss due to these deviations from ideal conditions, we compare the

efficiencies of detecting CBC signals in simulated Gaussian data with that in real
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data.

As we move towards the advanced detector era, to begin in 2015, it is im-

portant to be prepared for future CBC searches. In this thesis we investigate the

performances of non-spinning binary black hole searches in simulated Gaussian

data using advanced detector noise curves predicted for 2015-2016. In the same

study, we analyze the GW detection probabilities of the latest post-Newtonian-

Numerical-Relativity hybrid waveforms submitted to the second edition of the Nu-

merical Injection Analysis project.

Many authors suggested and demonstrated that coherent searches are the most

optimal in detecting GW signals when using a network of detectors. Owing to

computational expenses in recent searches of LIGO and Virgo we did not employ

coherent search methods. In this thesis we demonstrate how to employ coherent

searches for current CBC searches in a computationally feasible way. Addition-

ally, we thoroughly investigate many aspects of coherent searches using an all-sky,

all-time hierarchical coherent search pipeline. Most importantly we present some

powerful insights extracted from running the this pipeline on LIGO-Virgo data.

This also includes the challenges we need to address before moving to fully coher-

ent searches.
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PREFACE

The thesis focuses on the efforts to detect gravitational waves from compact binary
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by the collaboration.

The mathematical form of the blind hierarchical coherent search pipeline pre-

sented in chapter 2 is based on:

Bose, S., Dayanga, T., Ghosh, S., and Talukder, D., “A blind hierarchical coher-

ent search for gravitational-wave signals from coalescing compact binaries in a

network of interferometric detectors,” Class. Quantum Grav., 28, 134009 (2011)

Chapter 3 is based on results presented in:

Dayanga, T., and Bose, S., “Preparations for detecting and characterizing gravitational-

wave signals from binary black hole coalescences,” arXiv:1311.4986 (2013)

Chapter 4 is based on results presented in:

The LIGO Scientific Collaboration, The Virgo Scientific Collaboration and The

NINJA-2 Collaboration, “The NINJA-2 project: Detecting and characterizing gravi-

tational wave signals from numerical binary black hole simulation,” LIGO-P1300199

(2013)

Chapter 5 is based on results presented in:

Abadie, J. et al., “Search for Gravitational Waves from Low Mass Compact Binary

Coalescence in LIGO’s Sixth Science Run and Virgo’s Science Runs 2 and 3,” Phys.

Rev., D85, 082002 (2012)
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and

Aasi, J. et al., “Search for Gravitational Waves from Binary Black Hole Inspiral,

Merger and Ringdown in LIGO-Virgo Data from 2009-2010,” Phys. Rev., D87,

022002 (2013)

The results related to blind injection recovery presented in chapter 5 is a col-

laborative work between the author and Sukanta Bose.

The author was one of the data analyst on multiple fortnights of this data, and

contributed to data quality studies and the results presented therein.
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Chapter 1

Introduction

1.1 Gravitational-waves

Albert Einstein’s general theory of relativity (GR) predicts the existence of gravita-

tional waves (GWs)[12, 13]. Gravitational waves are fluctuations in the curvature

of space-time that propagate with the speed of light. Einstein’s theory predicts

that two massive objects revolving around each other in bound orbits, such as bi-

nary neutron stars (BNSs), binary black holes (BBHs) or neutron star black hole

(NSBH), emit gravitational radiation. Gravitational waves carry away energy, mo-

mentum, and angular momentum at the expense of the orbital decay of the binary,

thereby causing the stars to gradually spiral towards each other and giving rise to

increasingly shorter wave periods. This anticipated decrease of the orbital period

of a binary pulsar was first observed in PSR 1913+16 by Hulse and Taylor [14].

The observation matched the predictions of general theory of relativity to within

2%. As a result the Nobel Prize for Physics in 1993 was awarded to Hulse and
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Taylor. This and subsequent discoveries of double neutron star systems remain the

strongest indirect evidence for the existence of GWs.

The direct detection of GWs is yet to happen and will open a new window on

to the universe. The GW spectrum of observations will unravel an entirely new

set of phenomena that will complement those discovered via the electromagnetic

(EM) spectrum.

Gravitational wave amplitude is inversely proportional to the distance from the

source. The very weak interaction of GW with matter allows to travel very large

distances with little any absorption or distortion. While this feature is helful in

extracting information from GWs that are coming from cosmological distances,

nevertheless at the same time this will make the direct detection very challeng-

ing for the current GW detectors. The direct detection of GWs will allow us to

explore regions of the universe that are not accessible to optical telescopes, radio

antennas and other electromagnetic detectors or particle detectors. Furthermore

it will also open avenues to study properties of black holes, equation of state of

neutron starts, strong gravity regions of the universe etc. Joint detection of GW

with EM radiation can also play critical role by providing enough information to

understand the progenitors of short-hard gamma-ray bursts (GRBs) [15].

1.2 Gravitational-wave Detectors

The main challenge in the direct detection of GWs is the extraordinarily small ef-

fect that GWs produce in a detector. First attempts to detect GWs used bar detec-

tors introduced by Joseph Weber [16]. The most sensitive detectors today are in-
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terferometric detectors. There are two such detectors located in the United States

of America, which belong to what is known as the Laser Interferometer Gravita-

tional Wave Observatory (LIGO), in Richland, WA and Livingston, LA [17]. In

addition to these there is a French-Italian detector called Virgo located at Cascina,

Italy [18]. Both LIGO detectors have arm lengths of 4 km and Virgo has arm

length of 3 km. To-date LIGO has completed six science runs and Virgo partici-

pated in three science runs. The fifth Science run of LIGO had design sensitivity

of what is known, as initial LIGO and the latest (sixth) run S6 reached sensitivity

termed as enhanced LIGO. The fifth Science run (S5) lasted from November 2005

to September 2007. While Virgo’s first science run (VSR1) overlapped with LIGO

S5, latest two runs VSR2 and VSR3 overlapped with LIGO’s S6 run. Both LIGO and

Virgo detectors are expected to come back on-line in the near future (2015-2016)

with advanced detector technologies in place [19]. Additionally, there is a 600 m

interferometer located near Hannover, in Germany called GEO600. The Japanese

detector KAGRA and the LIGO-India detector are also expected to operate as ad-

vanced detectors in the next few to several years.

1.3 Sources of Gravitational Waves

Depending on their nature GW signals can be divided into four main categories.

Our ability to model the waveform from compact binary coalescence (CBC) makes

them the most promising source for direct detection of GWs. Sources such as

core-collapse supernovae and long duration Gamma-Ray Bursts (GRBs) that pro-

duce transient GW signals are not modelled well enough to enable us to predict
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their GW waveforms with the desired accuracy. This category of signals is known

as Burst signals. Additionally it is possible to detect GWs from sources such as Pul-

sars or spinning non-asymmetric neutron stars that make Continuous GW signals.

Final category comprises Stochastic the signals coming from early universe. Based

on this categorization data analysis sub-groups of LIGO-Virgo Collaboration (LVC)

also search for four different type of sources in their data analysis efforts. The

work presented in this thesis focuses on GW signals from CBCs. The author partic-

ipated in both highmass and lowmass searches of latest LIGO-Virgo signal searches.

The lowmass analysis searches for GW signals from BNS, BBH and NS-BH sources

with total mass between 2M⊙ and 25M⊙. The highmass analysis searches for GW

signals from total mass of 25M⊙ to 100M⊙ [9, 7].

1.4 Searching for Gravitational Waves

Owing to very small amplitudes of GWs, detecting such a signal in the presence

of interferometer noise is challenging. Although we use signal detection tech-

niques based on Gaussian and stationary data models, real detector noise is far

from that. With every science run, over the last several years, search methods

for CBC detection algorithms have significantly improved. This thesis presents

some results from the latest science runs of LIGO and Virgo detectors. These runs

used LIGO, Virgo CBC ihope search pipeline [20] as the primary search algorithm

and software. The ihope pipeline first analyses data from GW detectors individ-

ually, followed by identification of coincidences of triggers from the different de-

tectors in end-time, mass and amplitude of the GW signal using a method that
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checks for overlapping ellipsoids in the 3D parameter space for the two masses

and the end-time [21]. Due to nature of this algorithm it is also known as a

coincident search. Theoretically, a coherent search is expected to be the most sen-

sitive analysis technique for GW signals. The coherent search method and re-

sults have been presented by many authors in searching for variety of GW sources

[22, 23, 24, 25, 26, 27, 8, 28, 29, 30, 31, 32, 33]. Unlike in coincident searches, a

coherent search combines data streams from all detectors before searching for GW

signals. Owing to the demand of a larger computational power by the latter, many

data analysis groups have employed a coincident search method in past searches

especially when no prior information about the source is available.

To achieve higher detection efficiency in advanced detector era (ADE) searches

it is important to run all-sky all-time fully coherent searches. Although coincident

searches can achieve sensitivity of such “blind” coherent searches for some cases,

in general this will not be the case. To study the effect of coherent searches with

available computational resources, we introduced a hierarchical version of a co-

herent search that runs as an addition to the ihope coincident search pipeline [8].

This way the coherent part of the search pipeline analyses only the GW triggers

passed by the coincident test and, therefore, is computationally feasible.

Recent efforts of coherent searches for GRBs showed promising results moti-

vating us to continue developing all-sky all-time hierarchical coherent searches

for CBC GW signals [24, 33]. This thesis reports results from the first large scale

GW simulation study conducted employing the blind hierarchical coherent search

pipeline. In the same study we identify the main challenges of all-sky all-time

coherent searches with GW simulation studies. Previous studies focused more on
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developing methods than studying large scale simulations [8]. Additionally we

present how much of a performance improvement can be gained with fully coher-

ent searches in the early advanced detector era. Another advantage of coherent

searches is that they allow us to combine data streams of different detectors such

way that GW signal cancel in the combination. This is also known as the null-

stream [34]. In this work we study the use of null-stream as a multi-detector

signal consistency test. Our results show promise for the possibility of using null-

stream in other related areas such as GW trigger clustering algorithms and data

quality studies.

One important feature to note is that, we used public GW waveforms submitted

in the second version of the Numerical Injection Analysis (NINJA-2) project for our

simulation studies of the coherent search pipeline. This allowed us to study the

systematics between NINJA-2 waveforms and waveforms available in current LIGO

Algorithm Library (LAL) such as Effective One Body-Numerical Relativity (EOBNR)

and Phenomenological waveforms [35]. In addition to studies related to the co-

herent searches this thesis also presents overview of the results of LIGO’s S6 and

Virgo’s VSR2/3 low and highmass searches [9, 7]. We also present some results

from parameter estimation studies conducted in Gaussian and stationary data.

Moving towards the next phase of ground-based GW searches, parameter esti-

mation will play an important role for joint GW detection plans such as GW-EM

searches. Fast and accurate parameter estimation will help to localize the source

and make a joint GW detection possible.

Although some of the results presented in the next few chapters are based on

simulated Gaussian and stationary data, they played a critical role in identifying
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important issues and challenges confronting future all-sky all-time fully coherent

searches. One key feature of the hierarchical coherent search is that it uses data

from all detectors even if it is a subset of them that produces an event in the

coincident pipeline and regardless of the Signal Noise Ratios (SNRs) of the triggers

in the individual detectors. This allows one to include information about even

those GW triggers that did not pass the matched filtering step in the coincident

search owing to the presence of SNR thresholds.

1.5 Thesis layout

The layout of this thesis is as follows. In Chapter 2 we introduce basic data anal-

ysis techniques used for CBC searches. Here we present the main data analysis

pipeline, namely, ihope, employed for examining recent LIGO Virgo Science data.

Additionally, we present the fundamentals of multi-detector coherent searches and

details of that algorithm. In most of our studies presented here we use both of the

above ideas to build the blind hierarchical coherent data analysis pipeline.

In chapter 3 we present main results of running the blind hierarchical coher-

ent pipeline and original ihope pipeline together on Gaussian and stationary data

with GW simulation signals submitted to the NINJA-2 public waveform catalog.

One main feature of this analysis is the use of early advanced LIGO and early

advanced Virgo noise curves, as predicted, to generate Gaussian data sets. In

addition for direct comparison of coincident and coherent pipelines we compare

the performance of different waveform families such as the EOBNR and latest

post Newtonian-Numerical Relativity (pN-NR) hybrid waveforms submitted to the
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NINJA-2 project. Parameter estimation of the GW sources is as important as de-

tecting them. Therefore this chapter also presents parameter estimation results for

pN-NR hybrid waveforms based on maximum likelihood method [22, 23].

Chapter 4 focuses on one of the main exercises of the NINJA-2 binary black

hole project, namely, the NINJA-2 mock data challenge [6, 36]. The author was

one of the lead analysts of this work and focused on the highmass ihope search

part of the project. This chapter presents details of the analysis starting from

NINJA-2 waveforms. The data analysis pipeline used here was very similar to the

version used in recent highmass search of LIGO Virgo data. The parameters of the

simulated blind injections signals used in these data sets are presented here and

compared with the results obtained by running the highmass version of the ihope

pipeline. As the last part of the analysis we present the background estimation

method used for this analysis.

In chapter 5 we summarize the results of LIGO S6 and Virgo VSR2/3 lowmass

and highmass results. Two different searches focused on making direct detection

of GWs of lower and higher masses, respectively, are determined by the total mass

of the binary system. Despite not making direct detection in either analyses there

were important developments in the data analysis software and techniques. Also

this analysis was very important in identifying potential issues moving towards

ADE.

Finally in chapter 6 we discuss main hurdles we needed to overcome in build-

ing the blind hierarchical coherent analysis. However, the studies presented in

this thesis will be very helpful in building all-sky all-time fully coherent searches.

Also we discuss other future improvements that can be made to CBC searches to
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enhance the detection probabilities.
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Chapter 2

Searching for Gravitational Waves

from Compact Binary Coalescences

2.1 Introduction

Interferometric GW detectors such as, LIGO and Virgo are capable of recording

the GWs emitted by different sources such as BNSs and BBHs. In this chapter, we

describe the algorithms we use to extract GW signals buried in noisy detector data.

The main data analysis technique we employ to detect GW signals is known as

Matched Filtering. Matched filtering is a well studied technique in the area of signal

processing [2]. The LIGO, Virgo CBC data analysis search pipeline is a hierarchical

pipeline that employs matched filtering to identify GW triggers based on a match

between detector data and GW signal templates. In addition to the standard data

analysis search pipeline (ihope) that was employed in recent science runs, we also

discuss features of a coherent search algorithm in this chapter. Although coherent
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searches are expected to perform better than current standard search method,

which is also known as a coincident search, due to computational expenses, we

only relatively recently searched for GW signals in LIGO, Virgo science data with

the coherent search pipeline.

2.2 The Optimal Filter

Matched filtering is an effective way to search for signals with known patterns

buried in noisy data. Let us denote detector noise as n(t) and the GW signal we

are searching for as h(t). Then the output of a GW detector can be represented as

[37, 38]

x(t) = n(t) + h(t), (2.1)

which is a function of time, t.

We assume interferometric GW detector noise to be Gaussian and stationarywith

the mean of n(t) equal to zero. The noise is characterized by two-sided power

spectral density (PSD) Sn(f) as

〈ñ(f)ñ(f ′)〉 ≡ δ(f − f ′)Sn(f), (2.2)

where 〈...〉 denotes the expectation value.

The inner product

(h|x) =

∫ ∞

−∞

h̃∗(f)x̃(f)

Sn(f)
df (2.3)

is used to define the matched-filter (h|x). Above, h̃(f) denotes the Fourier trans-

form of h(t).
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By factorizing the denominator of Eq. (2.3) noise PSD Sn(f) in to two Ampli-

tude Spectral Density (ASD) [1] factors,
√
Sn(f), and associating them with data

and template separately, we can re-express the integrand as,
eh∗(f)√
Sn(f)

ex(f)√
Sn(f)

[37]. In

this form effectively the ASD factors are weighting the data and template inversely

in the before mentioned inner product.

2.3 Searching for gravitational wave signals in noisy

data

As noted above the detector output x(t) may or may not have a GW signal present.

These two cases constitute the two hypotheses used to calculate the probability of

detecting a GW signal in a noisy data stream:

x(t) =





n(t) + h(t), signal present,

n(t), signal absent.

(2.4)

Starting with Baye’s law of conditional probabilities, we can compute a poste-

riori probability P (h|x) that the signal is present, given the output of the detector,

namely,

P (h|x) =
P (h)P (x|h)

P (x)
, (2.5)

where P (x|h) is the probability of obtaining the detector output assuming the

signal is present in data and P (x) is the a priori probability of obtaining detector

output. P (x|h) is also know as the likelihood function. P (x) can be expressed in

terms of two possibilities, with signal that present and that it is absent in the data

12



[39, 40],

P (h|x) = P (0)P (x|0) + P (h)P (x|h). (2.6)

Equation (2.6) can be substituted in Eq. (2.5) to obtain

P (h|x) =
P (h)P (x|h)

P (0)P (x|0) + P (h)P (x|h) . (2.7)

We divide the right hand side (RHS) of Eq. (2.7) by P (h)P (x|0) to get

P (h|x) =
P (x|h)/P (x|0)

[P (0)/P (h) + P (x|h)/P (x|0)]
. (2.8)

We define the likelihood ratio as,

Λ =
P (x|h)
P (x|0)

. (2.9)

Now we can combine likelihood ratio and Eq. (2.8) to get [39, 40, 41],

.P (h|x) =
Λ

[P (0)/P (h) + Λ]
(2.10)

It is shown in Refs. [39, 40, 41] that the likelihood ratio can be expressed as

Λ = exp[(x|h) − 1

2
(h|h)]. (2.11)

By taking the logarithm of Eqn. (2.11) we can find log-likelihood ratio (LLR),

ln Λ = (x|h) − 1

2
(h|h) (2.12)

the above calculation demonstrates how to compute LLR for a single interferomet-

ric GW detector. In recent LIGO and Virgo runs we always analyzed data streams

from at least two detectors at a time. For such cases we needed to calculate LLR

for a detector network. Following the discussion in Ref. [23] the LLR ratio for a

detector network can be written as
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ln ΛNW =

M∑

I=1

ln ΛI =

M∑

I=1

(xI |hI) −
M∑

I=1

1

2
(hI |hI), (2.13)

which can be simplified to [23]

ln ΛNW = (x|h)NW − 1

2
(h|h)NW (2.14)

where M is the number of detectors in the network. We will later use the network

LLR to derive detection statistic of a multi-detector coherent search.

2.4 The “ihope” data analysis pipeline

The ihope data analysis pipeline was developed over many years by many LIGO-

VIrgo collaborators for detecting GW signals from CBCs [20]. The pipeline runs

in a hierarchical mode and contains many steps starting from collecting data to

extracting search results. Although it is capable of estimating certain GW source

parameters with limited accuracy, mainly it is this is considered as a GW signal

detection pipeline for CBC sources.

The results presented in this thesis are mostly based on two different searches

known as coincident and coherent searches. The coincident search is performed

by running the standard ihope search pipeline on GW detector data. This is also

the CBC default search method for LIGO and Virgo science data [25]. In the coin-

cident analysis we are searching for known CBC signal patterns in all the detectors

and, to claim a GW detection, signal has to be present in at least two detectors with

consistent source parameters. Some of the results presented in this thesis were ob-

tained by running coincident search on recent LIGO/Virgo science data. Despite
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coincident searches perform very efficiently, only coherent searches can reach the

maximum possible sensitivity for CBC searches. However, performing an all-sky,

all-time fully coherent search demands a large amount of computational power.

Therefore, we developed a hierarchical coherent search pipeline that runs on the

output of the coincident or ihope pipeline. Since coherent search runs follow-

ing the coincident analysis, these two analysis techniques can also be considered

as two stages of a single data analysis pipeline. Section 2.6 gives details of the

hierarchical coherent search pipeline.

This section provides an overview of the ihope pipeline to help understand the

Science data searches presented in later chapters. More details about that pipeline

and its features can be found in Refs. [20, 40, 37, 38, 41]. The first step of the data

analysis pipeline is to collect data from multiple detectors of a detector network

and prepare for the analysis. The LIGO and Virgo GW detector data are sampled

at 16384 Hz and 20000 Hz respectively. However data of both LIGO and Virgo are

down sampled to 4096 Hz for the analysis [20]. Although all the derivations in

previous section for the optimal filter assume continuous-in-time data, in practice

data is discretely sampled. Next step is to divide data in to 2048 second blocks

for the analysis. This serves two purposes, namely analysing 2048 second blocks

is computationally efficient and the noise power spectral density (PSD) of the

detectors are nearly stationary on that time-scale. These 2048 second chunks are

further divided into 256 seconds segments. The noise PSDs for the blocks are

calculated by taking the median of separate segments. More details about how

PSD is estimated for CBC searches can be found in Ref. [40, 20]. Data blocks

that are smaller than 2048 seconds are not analyzed, since they can not provide
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accurate estimate for the PSD.

For CBC data analysis, we are interested in searching in a large parameter

space. The range of masses we search for varies depending on the search type. In

the next step, which is to generate the template bank, one ensures that the bank is

dense enough in the parameter space to ensure minimal loss of matched-filtering

SNR for any CBC signal. Templates are placed in parameter space so that the

match between any GW signal and the best-fitting template is better than a pre-

determined minimum match (typically 97%)[20, 42]. The matched filtering of GW

detector data with a bank of templates is considered as the most important step

of the ihope pipeline. Equation (2.3) gives the mathematical form of matched

filtering. The outcome of the matched filtering step is a set of GW triggers for

each GW detector. In order to minimize the computational requirements for the

next steps of the pipeline from this point onward we only consider triggers that

crosses 5.5 in signal-to-noise ratio(SNR). This specific value was chosen based on

simulation and past experience. After selecting triggers that cross that threshold,

the search algorithm seeks for coincident events in time, binary mass, and GW

amplitude across different GW detectors. If at least two detectors have triggers

with consistent masses and amplitudes occurring at times separated only by the

light travel time across the distance between the detectors, we call them coincident

triggers.

The loudness of a GW signal (SNR) and coincident test alone are not sufficient

to claim a GW detection. Most of the noise artifacts present in interferometric

detectors can have same features as real GW signals. In order to avoid such false

triggers, matched filtering step is repeated again, this time to perform signal-based
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vetoes. Additionally, in this second matched filtering step, only the templates that

matched with data in the previous step are selected for constituting the bank of

templates a second time. The χ2 signal-consistency test [43] is performed on

selected triggers in the second matched filtering step.

In reality, one may find a similar significance for a GW signal and a glitch. In

χ2 signal-consistency test a template is divided into a number of sub-templates in

frequency space to see what contribution each sub-template brings to total SNR.

This test can separate glitches and GW signals of equal strength as contribution to

total SNR for a GW signal comes equally from all sub-templates and glitches will

not have this feature. Reference [43] presents the details of this signal-based dis-

criminator and how to employ it efficiently to improve signal detection efficiency.

Finally the triggers that pass the χ2 test are considered as GW candidates. Remain-

ing triggers are not considered for further analysis. If the individual detector SNR

is ρI in the I th detector, for a coincident GW candidate, then the combined SNR

can be written as,

ρ2
combined =

M∑

I=1

(ρI)
2

(2.15)

where M is the number of detectors in the network.

2.5 Multi-detector Coherent Compact-Binary Coales-

cences searches

In this section we present the basic mathematical formalism and derive detection

17



statistic of the multi-detector coherent hierarchical search for non-spinning

CBC signals based on Ref. [8]. Combining data from multiple GW detectors in a

coherent manner gives the maximum sensitivity in Gaussian and stationary noise.

Therefore, coherent analysis plays an important role in multi-detector searches.

However, coherent searches for detector networks with two or less detectors re-

duces to coincident searches.

Consider a non-spinning coalescing compact binary with component masses

m1,2, such that its total mass isM = m1+m2 and its reduced mass is µ = m1m2/M .

In the restricted post-Newtonian approximation, the two polarizations determin-

ing the GW strain are defined in equations (2.1) and (2.2) of reference [8]. The

two polarizations h+ and h× depend onM , µ, the luminosity distance to the source

r, the inclination angle of the source’s orbital-momentum vector to the line of sight

ι, the time of coalescence of the signal tc, and the coalescence phase of the signal

ϕc. Above, ϕ(t; tc,M, µ) is the orbital phase of the binary [44, 45], M = µ3/5M2/5

is the chirp mass, G is the gravitational constant and c is the speed of light in

vacuum. The GW strain in a detector can then be modeled as,

h(t) = F+h+(t) + F×h×(t) , (2.16)

where F+,× are antenna-pattern functions that quantify the sensitivity of the de-

tector to the sky-position and polarization of the source,



F+

F×


 =




cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ







u

v


 , (2.17)
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with ψ being the wave-polarization angle and u(α, δ) and v(α, δ) being detector-

orientation dependent functions of the source sky-position angles (α, δ) [46, 23].

Following Ref. [47], let us map the CBC signal parameters (r, ψ, ι, ϕc), into new

parameters, a(k), with k =1,...,4, such that the strain in any given detector has a

linear dependence on them:

h(t) =

4∑

k=1

a(k)
hk(t) , (2.18)

where the hk(t)’s are completely independent of those four parameters. By com-

paring the expression for the GW strain h+ and h×, and (2.16), we find

h1(t) ∝ u(α, δ) cos[ϕ(t;M,µ, α, δ, tc)] ,

h2(t) ∝ v(α, δ) cos[ϕ(t;M,µ, α, δ, tc)] ,

h3(t) ∝ u(α, δ) sin[ϕ(t;M,µ, α, δ, tc)] ,

h4(t) ∝ v(α, δ) sin[ϕ(t;M,µ, α, δ, tc)] , (2.19)

where the proportionality factor is [GM/c2][(tc − t)/(5GM/c3)]−1/4. This method

of resolving the GW strain signal in a basis of four time-varying functions was first

found in Ref. [48] for pulsar signals.

The new parameters, a(k), with the index k taking four values, are defined in

terms of (r, ψ, ι, ϕc) as,
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a(1) =
1

r

(
cos 2ψ cosϕc

1 + cos2 ι

2
− sin 2ψ sinϕc cos ι

)
,

a(2) =
1

r

(
sin 2ψ cosϕc

1 + cos2 ι

2
+ cos 2ψ sinϕc cos ι

)
,

a(3) = −1

r

(
cos 2ψ sinϕc

1 + cos2 ι

2
+ sin 2ψ cosϕc cos ι

)
,

a(4) = −1

r

(
sin 2ψ sinϕc

1 + cos2 ι

2
− cos 2ψ cosϕc cos ι

)
. (2.20)

These constitute an alternative set of parameters that define the likelihood ratio.

We used parenthetic indices above to avoid confusing them with numerical expo-

nents.

To explore the properties of the LLR, it will be useful to define the (complex)

unit-norm template SI(t) associated with the circular-polarization component of

a GW, namely, h+(t) + ih×(t). It can be shown [23] that

SI(t) = g−1
(I)

[
ξI (tc − t)

]−1/4
eiϕ(t) , (2.21)

where g(I) (with units of
√

Hz) is a normalization factor, such that 〈SI , SI〉 = 1,

and

ξI =
5

256f I
s

[
GMf I

s

c3

]−5/3

(2.22)

is the time spent by the signal in the detector band, in the Newtonian approxima-

tion. Above, f I
s is the seismic cut-off frequency of the Ith detector below which

it has little sensitivity for GW signals. The single detector matched-filter output

against SI(t) can then be defined as

CI = (SI , xI) ≡
(
cI+ + icI−

)
= ρIeiφI

, (2.23)
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where cI±, ρI and φI are all real; ρI = |CI | is often termed as the signal-to-noise

ratio (SNR) in the Ith detector. Since the detector strain due to a GW signal is

expected to be tiny, one has g(I) ≫ 1. Therefore, for computational efficiency, we

define a new factor that is closer to unity,

σ(I) ≡
(
GM/c2

1 Mpc

)(
5GMξ

c3

)1/4

g(I) , (2.24)

with ξ computed for a reference detector selected from one of those in the net-

work. This is convenient since, as explained below, the detection statistics and the

parameters {ψ, ι, ϕc} are all independent of the above parenthetic scale factors;

only the source distance depends on them, and is computed after accounting for

them.

Using the strain expression in Eq. (2.18), the LLR for a network of multiple

detectors can be recast in terms of a(k), provided one knows how the strain from

the same CBC signal varies from one detector to the other. This was explained

in Refs. [22, 23]. Here, it suffices to note that this dependence arises owing to:

(a) The spatial separation of the detectors, which can cause relative delays in the

arrival of the signal. These delays are determined by the source’s sky-position and

can be accounted for in Eqs. for h+ and h× by adding those delays to tc. (b) The

different orientations of the detectors, which change u and v. Assuming that the

noise in the different detectors are statistically independent, the joint LLR for a

network of M detectors is

(lnΛNW )M =

M∑

I=1

log ΛI

= Nka
(k) − 1

2
Mija

(i)a(j) , (2.25)
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where, in the last expression, the sum over detectors has been absorbed in Nk

and Mij , as defined below:



N1

N2

N3

N4




= χ




∑M
I=1 σ(I)uIc

I
+

∑M
I=1 σ(I)vIc

I
+

∑M
I=1 σ(I)uIc

I
−

∑M
I=1 σ(I)vIc

I
−




= χ




uσ · c+

vσ · c+

uσ · c−

vσ · c−




. (2.26)

Above, uσ and vσ are network vectors with components σ(I)uI and σ(I)vI , respec-

tively, c± are network vectors with components cI±, and

χ ≡ π2/3

[
GM⊙/c

2

1Mpc

]3/4

Mpc (2.27)

is a normalization factor with dimensions of length. Also,

M =




A B 0 0

B C 0 0

0 0 A B

0 0 B C




(2.28)

with 


A

B

C




= χ2




‖uσ‖2

uσ · vσ

‖vσ‖2



, (2.29)

which define the network template-norm, namely, twice the second term on the

right-hand side of Eq. (2.25); the first term there can be interpreted as the

matched-filter output of the network data-vector, x ≡ {x1, x2, ..., xM} [23].

Maximizing 2 log (M)Λ with respect to a = {a(1), a(2), a(3), a(4)} yields
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2 log (M)Λ
∣∣∣
ā

= N
T · M−1 · N , (2.30)

which is still a function of {M,µ, α, δ, tc}. (Note that the above statistic is in-

dependent of χ.) The concomitant maximum likelihood estimates (MLEs) of the

complementary set of four parameters are denoted with an overline:

ā = M
−1 · N . (2.31)

These estimates are also functions of {M,µ, α, δ, tc}, and are determined by the

data through cI± as follows:




ā(1)

ā(2)

ā(3)

ā(4)




=
χ

∆




‖vσ‖2 (uσ · c+) − (uσ · vσ) (vσ · c+)

− (uσ · vσ) (uσ · c+) + ‖uσ‖2 (vσ · c+)

‖vσ‖2 (uσ · c−) − (uσ · vσ) (vσ · c−)

− (uσ · vσ) (uσ · c−) + ‖uσ‖2 (vσ · c−)




, (2.32)

where ∆ ≡ AC − B2. The MLE of a parameter will be denoted by placing an

overline on its symbol.

It is important to note that the maximization in Eq. (2.30) assumes that the

network matrix M is invertible. This is not true, in general. Indeed, M is singular

when uσ is aligned with vσ. These two vectors are determined by how the interfer-

ometers in the network are oriented with respect to the wave propagation vector,

but are not affected by the polarization angle ψ. In addition to this singularity,

M can be rank deficient, thus, making the problem of inverting it ill-posed [49].

Physically, this implies that the network does not have enough linearly indepen-

dent basis detectors to be able to resolve the source parameters a.
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Note that these maladies of M are dependent on the sky-position angles. This

means that a network that is able to resolve the signal parameters for certain

source sky-positions may not be able to do so for others. These problems can

be tackled by regularizing M in a variety of ways that have been explored in

the context of searches of transient signals from unmodeled sources, also called

“burst” searches [49, 50, 51]. These methods obviate the rank-deficiency problem

at the cost of making the search statistic sub-optimal. Thus, any deficiencies aris-

ing from potential singularities in M or its regularization method adopted by a

search pipeline will affect its performance. Since M is independent of the detector

strain data, such effects will arise in searches in simulated Gaussian data sets as

well, such as the ones studied here. Since our results below are devoid of these

maladies, we are confident that they will not arise in real data searches as well.

The maximum-likelihood estimates for the four physical parameters (r, ψ, ι, ϕc)

can now be expressed in terms of the above estimates by inverting Eq. (2.20) and

replacing a with ā. Specifically, for the luminosity distance we get:

r̄ =

√
1 + 6 cos2 ῑ+ cos4 ῑ

2‖ā‖ , (2.33)

where ‖ā‖ ≡
√∑4

i=1

(
ā(i)
)2

is the norm of the four-parameter vector MLE, and

ῑ is defined below along with the other MLEs. Since those angular parameter

estimates should not depend on an overall scaling of ā, it helps to define the

dimensionless unit-norm components ˆ̄a(k) ≡ ā(k)/‖ā‖. In terms of the ˆ̄a(k), the
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maximum-likelihood estimates for the three angular parameters are,

ψ̄ =
1

4
sin−1

(
2
(
ˆ̄a(1)ˆ̄a(2) + ˆ̄a(3)ˆ̄a(4)

)
√

1 − ζ2

)
,

φ̄c = −1

2
sin−1

(
2
(
ˆ̄a(1)ˆ̄a(3) + ˆ̄a(2)ˆ̄a(4)

)
√

1 − ζ2

)
,

ῑ = cos−1

(
1 −

√
1 − κ2

κ

)
, (2.34)

where ζ ≡ 2
(
ˆ̄a(1)ˆ̄a(4) − ˆ̄a(2)ˆ̄a(3)

)
and

κ =
ζ

1 +
√

1 − ζ2
. (2.35)

Note that the expression for ψ̄ goes over to that of φ̄c under the transformation

ψ̄ −→ (−φ̄c)/2 and ˆ̄a(2) ↔ ˆ̄a(3). This relation arises from a similar symmetry

exhibited by the a(k) defined in Eq. (2.20). Expressions for the CBC MLEs and the

coherent statistic were first obtained in Refs. [22, 23]. Above, we reexpress them

in terms of the four parameters a(k) since the search code in LAL uses them [35].

Substituting for M and N, the MLR can be expanded as,

2 log Λ
∣∣∣
ā

= (w+ · c+)2 + (w− · c+)2 + (w+ · c−)2 + (w− · c−)2 , (2.36)

where w± are network vectors with components wI
±,




wI+

wI−


 =




O11 O12

O21 O22







σ(I)uI

σ(I)vI


 , (2.37)

and



O11 O12

O21 O22


 =

1√
2∆




√
C + A+D/G1

√
C + A+D(C − A−D)/(2BG1)

√
C + A−D/G2

√
C + A−D(C −A+D)/(2BG2)


 ,

(2.38)
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with D ≡
√

(A− C)2 + 4B2 and G1,2 ≡
√

(C − A∓D)2 + 4B2 /(2B). The above

matrix diagonalizes M and, in so doing, identifies the dominant polarization basis,

first identified in [22] and named as such in [50].

The coherent search statistic is just 2 log Λ
∣∣∣
ā

maximized over {M,µ, α, δ, tc},

namely,

ρ2
coh = 2 log Λ

∣∣∣
ϑ̄

, (2.39)

where ϑ = {a(1), a(2), a(3), a(4),M, µ, α, δ, tc} is a set of nine parameters for the

non-spinning CBC signal. The last five parameters are searched for numerically,

by using a grid for the masses and the sky-position and by using the fast Fourier

transform [52] to search for the coalescence time. ϑ̄ denotes the MLE values of

these parameters. Searching over (α, δ) requires the flexibility to delay cI± relative

to cJ± by an interval that can be anywhere between zero and the light-travel-time

between the locations of the Ith and Jth detectors or the negative of it. This is

why we construct small snippets of CI(t) called C-data around the end-time of

every trigger that is found to be coincident in multiple detectors in a network.

The statistic defined above will be termed as the coherent network SNR and is the

detection statistic optimal in stationary, Gaussian noise [23].

Equation 2.39 of coherent network SNR can be compared to network SNR of

coincident search given by 2.15.

2.6 The blind hierarchical coherent pipeline

Owing to requirement of large computational expenses, the coincident search was
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selected as the default search method for recent LIGO-Virgo official CBC searches

[25]. However, coherent search is expected to perform with better sensitivity. As a

computationally feasible solution, we developed the hierarchical coherent search

algorithm, which does not demand large computational resources required to a

all-sky, all-time fully coherent search. The hierarchical coherent search runs as a

part of the ihope pipeline and it takes GW candidates produced by the coincident

search as input. In the coherent search, these candidates/triggers are coherently

combined to derive coherent detection statistics. The fact that the hierarchical co-

herent search only analyzes triggers found by a different search reduces significant

amount of computational expenses. However, at the same time this method is not

capable of finding new GW triggers. Recent studies with the blind hierarchical

coherent analysis showed very promising results with both Gaussian and real de-

tector data. The next few chapters will demonstrate the capabilities and findings

of the all-sky, att-time blind hierarchical search. This section will give an overview

of the hierarchical coherent pipeline.

The first step of this algorithm generates a bank of templates, which is also

known as the coherent bank, for coherent searches. These templates are created

based on the known trigger times and mass pairs coming from the coincident

analysis. In coincident search, owing to differences in noise PSD of individual

detectors, template banks can be different from one another [33, 20]. Therefore

for a coincident trigger coming from ihope pipeline it is possible for coincident

triggers to have different templates in individual detectors for the same GW signal.

However, in an ideal coherent analysis the template bank should be the same for

all detectors in a network [28].
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Additionally, template placement should be done according to a coherent tem-

plate metric. Since hierarchical coherent search runs following the coincident

search, for all the triggers instead of computing network templates afresh we

choose one template from available detectors as the network template to save

computational power. The template we choose is from the detector that found

loudest GW trigger in coincident analysis. Reference [8] describes this process in

detail. That common template is next used to compute the matched-filter output,

which is in the form of an amplitude and phase time-series, for every detector in

the coincidence. That step also computes the template normalization factors and

implements signal-based vetoes.

Unlike in coincident search it is optional to have an individual detector thresh-

old for matched filter outcome in coherent searches. In the early stages of de-

velopment of hierarchical coherent analysis, thresholding was used similarly to

coincident analysis. Subsequent investigation showed removing matched filter-

ing threshold improves detection efficiency. 1 This means coincident triggers

that receive contribution from two different detectors (double-coincident events)

while all the detectors are in science mode can become triple-coincident (for

three detector networks) events with the removal of the thresholding criteria.

According to this set up, theoretically for the analysis of triple-coincident time,

all double-coincident events should become triple-coincidences in the coherent

analysis. However, there are rare cases this will not happen owing to some com-

plications and those will be explained in the next chapters.

1The coincident pipeline uses pre-set threshold of SNR 5.5 to choose loud enough triggers for

the further analysis.
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2.7 Multi-detector signal based vetoes

In section 2.5 we derived network coherent SNR for a multi-detector search. An-

other statistic that is helpful in discriminating signals from noise glitches in multi-

detector data is the null-stream [34]. If C̃I(f) is the Fourier transform of CI(t)

obtained in 2.5, then one can show that for GW signals in the data, the mean of

Y ≡
M∑

I=1

KIσ
(I)
invSh(I)(f)C̃I(f) (2.40)

is zero. Above, KI = ǫIJKF
J
+F

K
× , with ǫIJK being the Levi-Civita symbol, and

σ
(I)
inv ≡ (σ(I))

−1. For non-stationary artifacts, however, this need not be true,

thereby, motivating the following discriminator:

η =
〈|Y |〉√

Var (|Y |)
, (2.41)

where 〈x〉 and Var(x) denote the statistical average and variance of x, respectively.

The above construct is called the null-stream statistic. Just like we combine all the

data streams coherently to obtain the coherent SNR, we can combine all the data

streams such way that combination cancels the GW signal present in data. We

can use null-stream as a multi-detector signal based consistency test. For real GW

signals signal will cancel out in the detector combination and outcome will be a

very small value. However, for glitches, combination will not cancel out the feature

in data since all the detectors are not capable of having same type of glitches at

the same time.
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Chapter 3

Preparations for detecting and

characterizing gravitational-wave

signals from binary black hole

coalescences

3.1 Introduction

Inspiraling BBHs are one of the most promising gravitational-wave sources that

the second generation ground-based detectors, such as the Advanced Laser In-

terferometer Gravitational-wave Observatory (aLIGO) [53] and Advanced Virgo

(AdV) [54] detectors, are likely to detect. Currently these laser interferometric

detectors are being upgraded and will start collecting data in a few years’ time

with a sensitivity improvement of about an order of magnitude. The new detector

30



KAGRA [55] is also expected to take data with a similar design sensitivity later

this decade. These detectors will define what is being termed as the Advanced De-

tector Era (ADE). Second generation instruments will have sensitivity in a broader

frequency band compared to the initial detectors and will observe gravitational

waves (GWs) from compact binary coalescence (CBC) signals starting at a lower

frequency. Observations of X-ray binaries IC10 X-1 [56] and NGC 300 X-1 [57]

indicate that the masses of the stellar-mass components of a BBH can be as high

as 20−30M⊙. The discovery of HLX-1 in ESO 243-49 that has a lower mass limit of

approximately 500 M⊙ presents strong evidence for the existence of intermediate-

mass black holes [58]. As described in Refs. [59] and [7], binary black holes with

component masses that high or higher will be detectable in the ADE detectors

only through the merger and ringdown signals. This chapter presents a search

for BBH systems with total mass 25M⊙ ≤ M ≤ 100M⊙ and component masses

3M⊙ ≤ m1, m2 ≤ 97M⊙. Searches in real LIGO-Virgo data for BBHs in the same

mass range were conducted with Inspiral-Merger-Ringdown (IMR) templates in

Refs. [59, 7].

The ability to detect GW signals arising from BBH coalescences crucially de-

pends on the accuracy of the waveform models used in designing search templates

for detection pipelines. Estimation of parameters of BBH signals also demands ac-

curate knowledge of the inspiral, merger and ringdown phases of the waveforms

[60]. In 2008, the Numerical Injection Analysis (NINJA) collaboration was formed

to facilitate the interaction of the Numerical Relativity and the GW Data Analysis

communities with the objective of modelling CBC signals and using them
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Figure 3.1: Comparison of early and final Advanced LIGO (aLIGO) and Advanced

Virgo (Adv. Virgo) design amplitude spectral densities (ASDs) [1]. The ASD is

the square-root of the power spectral density (PSD) [2]. The red dotted and solid

lines represent early and zero-detuned high-power (ZDHP) aLIGO design ASDs,

respectively [3]. The solid blue curve shows the Adv. Virgo design ASD [4]. The

blue dotted curve is obtained by rescaling it so that its horizon distance [5] is

similar to that corresponding to the early aLIGO ASD.

to perfect GW search pipelines and parameter estimation algorithms. The main

purpose of the first NINJA project (NINJA-1) [61] was to foster the exchange of

numerical-relativity waveforms to evaluate the performance of a variety of data

analysis pipelines in detecting them in simulated initial LIGO and Virgo detector

noise. The NINJA-2 exercise, on the other hand, creates the opportunity to test

and compare detection pipelines more meaningfully than in NINJA-1 owing
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Figure 3.2: Comparison of horizon distances in Mpc for different early advanced

detector noise curves as a function of total mass of the binary system in M⊙. This

figure is taken from Ref. [6].

to the strict requirements imposed on the accuracy and length of the NR-based

waveforms employed by it. The NINJA-2 project required each BBH waveform to

include at least five orbits of usable data before merger, i.e. neglecting the initial

burst of junk radiation. Additionally, NR waveform amplitude had to be accurate

to within 5%, and the phase (as a function of gravitational-wave frequency) should

have an accumulated uncertainty over the entire inspiral, merger and ringdown

(of the numerical simulation) of no more than 0.5 rad. Following these restrictions

eight NR groups have contributed 56 waveforms to NINJA-2 project [62]. Since

the typical signal will have more cycles in band than what NR alone can produce

at the desired accuracy with the computational resources at hand, post-Newtonian
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theory is used to model the remaining cycles to produce long hybrid signals,

which we will refer to here as pN-NR hybrid signals or simply NR or NR-based sig-

nals. The NINJA-2 waveform-catalog paper [62] describes in detail the waveform

requirements and method used to construct the pN-NR hybrid waveforms.

In this chapter, we quantify how well “EOBNR” waveforms, obtained from the

effective one-body formalism [63] by calibrating against a specific family of NR

waveforms, namely, the ones obtained by the NASA-Goddard group [63], perform

in detecting pN-NR BBH signals modelled for NINJA-2. In NINJA-2, a variety of

NR-based signals were injected in simulated Gaussian, stationary data from three

LIGO-Virgo detectors with early ADE sensitivities (see Fig. 3.1). These signals

were constructed with contributions from various numerical relativity groups (see

Table 1 in Ref. [62]), and are available in the public domain [64]. For the study

reported here we focus on non-spinning BBH signals. A total of 2000 such signals

from 20 pN-NR signal families were injected in a two-month long data set [64].

The coincident all-sky, all-time compact binary coalescence (CBC) search pipeline

[20] was run along with an added coherent stage [8] to search for those signals.

We also compare these observations with the results of a study where EOBNR

templates were used to find EOBNR signal injections to account for any biases

that might arise from the data analysis pipeline itself. We find that the EOBNR

templates are slightly less efficient, by about a percent, in detecting non-spinning

NR-based signals than in detecting EOBNR injections. Also, the magnitude and na-

ture of the systematic error in the measurement of signal parameters show some

interesting but limited variations. In particular, a very small fraction of signals are

systematically detected with more massive templates and, therefore, have a mea-
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sured end-time that is earlier than the true one. The same signals have a worse

match than other signals with EOBNR templates of the same parameters [62].

We show how a coherent all-sky, all-time search can improve CBC detection effi-

ciencies over a coincident analysis by improving the detection probability for any

given false-alarm probability. The coherent method requires coincidence of the sig-

nal arrival times and other signal parameters, just like a coincident search method

[20] does. But the former also checks for the consistency of the signal phases

and amplitudes in the various detectors in a network with a physical value for the

signal time-delays across the detector baselines. It also provides multi-baseline

signal-based tests like the null-stream test that are effective in discriminating real

signals from noise artifacts, especially, when the sensitivities of the detectors are

comparable [34, 8, 24, 65].

Owing to the high computational cost of employing a fully coherent all-sky,

all-time CBC search [23], here we use the hierarchical coherent algorithm [8] to

search for BBH signals. This algorithm and the detection statistic are described in

Sec. 3.2. Coherent data analysis methods have been formulated for searching GW

signals from a variety of modelled and unmodelled sources [23, 66, 25, 67, 8, 24].

It is the optimal method in stationary, Gaussian noise under the Neyman-Pearson

criterion [2]. In CBC searches, it has been used recently in targeted searches

[24] where the time of occurrence of the signal and the sky-position of the source

are known, e.g., from the observation of an electromagnetic (EM) counterpart,

such as a gamma-ray burst (GRB). It was demonstrated to perform better than the

targeted all-sky, all-time coincident search.

In Sec. 3.3, we compare the performances of the coincident and the hierarchi-
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cal coherent searches. We find the latter to be somewhat better than the former

and explain what factors contribute to this improvement. We argue that the level

of improvement is as per expectations for a hierarchical method and that a fully

coherent method should be able to yield a much better detection efficiency. We

present results from multiple sanity tests that check if the signal injection recov-

ery is consistent with our expectations of a BBH search. Moreover, the effect of

signal-based discriminatory tests, such as the chi-square and the null-stream tests,

on the performance of that search is also analyzed.

In Sec. 3.4, the accuracy with which various signal parameters are recovered is

described. Those results are found to be mostly devoid of systematic errors when

compared with measurements of EOBNR injection parameters by using EOBNR

templates. The very few cases where a bias was found, the explanation lies in the

mismatch of the pN-NR hybrid signal in those cases with the EOBNR templates, as

was seen in Ref. [62].

3.2 Coincident and coherent searches for binary black

hole systems

3.2.1 Search algorithm

The all-sky, all-time coincident search pipeline that was used to detect injected

pN-NR hybrid signals is described in detail in Ref. [20]. On the other hand, the

hierarchical coherent search pipeline used here was introduced in Ref. [8]. The

latter pipeline consists of the former with an additional stage that computes the
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coherent SNR of all coincident triggers found by the former.1 We will variously

refer to these two stages as the coincident (or the first) and the coherent (or the

second) stage, respectively. Both these stages comprise multiple steps. The coinci-

dent stage first splits the strain data time-series from every detector in the network

into 2048 sec chunks. The noise power spectral density (PSD) [2] is estimated for

each chunk and is used to construct a template bank for matched filtering. When-

ever the signal-to-noise (SNR) of the filtered output crosses a preset threshold,

which was chosen to be 5.5 in Refs. [59, 7] and in this work, the template pa-

rameters and the time of the trigger are saved for each detector. Next the triggers

from individual detectors are compared for coincidences in mass and end-time in

two or more detectors to identify multi-detector coincident GW candidate events.

Triggers in a detector that do not find any coincidence with a trigger in another de-

tector are dropped from further analysis since currently we do not have a method

for assessing the noise background for single detector events. A candidate event is

termed as double-coincident (triple-coincident) if the masses and end-times of the

triggers in two (three) detectors are found to be very similar [21], as stipulated in

advance of the searches. Since the maximum number of detectors available to this

search is three, these are the only two types of coincident candidate events possi-

ble here. In a real search, a candidate event is subjected to further checks before it

is announced as a GW event to ensure that it was not caused by an environmental

or instrumental artifact.

The coherent stage requires coincident trigger times in order to begin the co-

herent analysis. This analysis includes multiple steps, which are similar to the

1That stage also computes the null stream [34, 24], which will be described in Sec. 3.3.2.
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coincident counterpart but include some important modifications. First, a tem-

plate bank, termed as the coherent bank, is constructed for the coherent analysis

using the parameters of the coincident triggers. The triggers identified by the co-

incident stage can have different mass parameters in different individual detectors

due to the different noise in each detector. By definition, however, the same tem-

plate must be used in every detector for computing the coherent SNR. Here, we

choose the mass-template in the loudest detector for that computation. Reference

[8] explains this process in detail. That common template is next used to compute

the matched-filter output, which is in the form of an amplitude and phase time-

series, for every detector in the coincidence. That step also computes the template

normalization factors and implements signal-based vetoes.

Similar to the matched-filtering step in the coincident stage, the coherent

matched-filtering step used a thresholding criterion in previous studies [8] to re-

duce the computational cost. This threshold value is set for the individual de-

tectors as in the coincident stage but the value is lowered to allow more triple

coincident triggers compared to the coincident counterpart. Typically, the values

of previous studies used to be 5.5 for the coincident matched filtering step and

5.0 for the coherent one. One of the main goals of the coherent analysis is to con-

vert all double-coincident triggers in the coincident stage to triples, whenever data

are available from all three detectors, to improve the significance of real signals.

Although a lower threshold in the coherent stage on individual detector SNRs

helps to convert more double coincident events into triples many more remain

as doubles when that threshold is non-zero. To improve upon earlier studies, we

devised a method to handle these additional background triggers more efficiently,
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essentially, by reducing the maximum coincidence duration analyzed at a time.

Lowering that threshold to zero allows converting all triggers that were double-

coincident in the first stage to triple-coincident ones 2. This provides additional

information about every single trigger due to the phase consistency check we can

impose on the signal in every participating detector. The matched-filtering step

in the coherent stage is followed by the computation of the coherent SNR and

the null stream for every trigger. Since we use large number of templates in our

template bank, same feature in detector data can be picked by different template

waveforms. This leads to have multiple GW triggers at same end-time. Addition-

ally, for coherent searches multiple sky positions can give triggers for same feature

in data. These set of triggers is also know as clusters. The last step of this pipeline

clusters the gravitational-wave triggers in time and sky position so that only the

most significant of them is retained per cluster.

3.2.2 Detection Statistics

The BBH search algorithms exploit the knowledge of their GW signals to define the

templates used for matched filtering. Nine parameters describe the GW signal from

nonspinning BBH sources studied here. These are the two component masses m1

andm2, the luminosity distance to the source d, the right ascension and declination

angles (α, δ) specifying its sky position, its orbital inclination angle ι to the line-

2Results from the new pipeline show that a few signals that show up as doubles in the coincident

stage are still not converted into triples in the coherent stage. This is because those (simulated)

signals are very weak in the third detector, thereby, resulting in unphysical time-delays between

that and the other two detectors.
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Figure 3.3: The injected decisive distance of found and missed pN-NR simulated

signals plotted as a function of total mass of the binary black hole system. The

colorbar shows the coherent SNR. A total of 1033 injections were found out of

2000 injections by the search pipeline. Red crosses represent missed simulated

signals.

of-sight, the angle ψ describing the orientation of its signal polarization ellipse,

the signal coalescence time tc, and the signal coalescence phase φc. Alternative

mass parameters, in the form of the total mass M , the symmetrized mass-ratio

η ≡ m1m2/M
2, and the chirp mass Mchirp ≡ η3/5M are also often used to describe

BBH signal parameters.

For the coincident analysis, the detection statistic used here is the one that was

introduced in Ref. [7] for the high-mass search in LIGO-Virgo data from the sixth

LIGO Science Run (S6) and the second and third Virgo Science Runs (VSR2/3).

40



That search targeted GW signals from BBH sources with each component mass

between 3 − 97M⊙ and total binary mass between 25 − 100M⊙. If the matched-

filter output of a unit-norm mass template from a stretch of single-detector data is

denoted by ρ, then the detection statistic used for long-duration templates, with a

duration tdur ≥ 0.2 sec, is the new SNR defined as follows:

ρnew =





ρ

[(1 + (χ2
r)

3)/2]1/6
for χ2

r > 1,

ρ for χ2
r ≤ 1,

(3.1)

where χ2
r ≡ χ2/(2p − 2), and χ2 is the signal-based time-frequency discriminator

studied in Ref. [43] with a chi-squared distribution of p degrees of freedom. On

the other hand, for short-duration templates, with a duration smaller than 0.2 sec,

the detection statistic used is

ρeff =
ρ

[χ2
r(1 + ρ2/50)]1/4

, (3.2)

which is termed as the effective SNR. These choices were arrived at after comparing

their detection efficiencies with those of ρ and other alternative statistics. In a

network with M detectors, the coincident detection statistic employed here is

ρcoinc =






[
M∑

I=1

(
ρI

eff

)2
]1/2

if tIdur < 0.2sec, for any I ,

[
M∑

I=1

(
ρI

new

)2
]1/2

for all other cases ,

(3.3)

where xI denotes the value of x for the Ith detector. Employing χ2 in the detection

statistic was found to improve the performance of a search, especially, in real data,

which is neither Gaussian nor stationary.
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Contrastingly, a network detection statistic formed from only the ρI is the com-

bined SNR, which is just
[∑M

I=1

(
ρI
)2]1/2

.

The coherent statistic used here is the same as the one defined in Eq. (2.30) in

Ref. [8].

When describing how effective a search is in finding signals, one of the param-

eters used is how distant their sources are. However, from the measured strength

of a signal, it is not always possible to deduce the source luminosity distance. This

is because the strength of a signal in a detector is determined not only by the

proximity of a source but also its location, its orbital inclination angle to the line-

of-sight, and the angle ψ describing the orientation of its polarization ellipse. In

fact, a source at a luminosity distance d appears to be at an effective distance of

deff =
d√

F 2
+(α, δ, ψ) (1 + cos2 ι)2 /4 + F 2

×(α, δ, ψ) cos2 ι
, (3.4)

where F+,× are the detector antenna-pattern functions. Due to the different orien-

tations and, therefore, F+,×, the effective distance of a source can vary from one

detector to another. Since for a detection we require coincidence in at least two

detectors, it is essential that the larger of the two corresponding effective distances

not be too large for the signal to fall below the detection threshold of the weaker

detector. This is why it is useful to define the injected decisive distance as the in-

jected effective distance in the second loudest detector in a coincidence. Indeed,

in Fig. 3.3 we show how this quantity and the coherent SNR vary as a function

of the total-mass of the injected sources. It is manifest that the closer sources are

found with a higher coherent SNR whereas many of the very distant sources are

missed.
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Figure 3.4: The coherent and coincident detection statistic values of found simu-

lated signals (colored squares) and background events (black crosses). The color-

bars show the injected decisive distance in Mpc. The coherent SNR is used as the

coherent detection statistic. The coincident detection statistic is ρcoinc, as defined

in Eq. (3.3), which is the one that was used in the high-mass search of LIGO’s S6

and Virgo’s VSR 2/3 data [7].

3.3 Detecting pN-NR hybrid signals with EOBNR tem-

plates

In this study we analyzed the performance of the hierarchical coherent pipeline in

simulated Gaussian noise. Strain noise time-series were produced for two LIGO

detectors, H1 and L1, and the Virgo detector, V1, using the design noise curves of

early advanced LIGO and advanced Virgo detectors [19], respectively. Each time-
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Figure 3.5: Zoomed version Fig. 3.4 shows better the distribution of the weak

injections in the two statistics.

series is continuous and is of two months’ duration. Performance of the search

pipelines was evaluated by injecting pN-NR waveforms in the simulated data and

recovering them with EOBNR templates [68]. As with the LIGO-Virgo highmass

search in S6-VSR2/3 data, here too the template bank used for matched-filtering

spans 3−97M⊙ for each of the two component masses and 25−100M⊙ for the total

mass. The noise curves used to simulate noise in this study is the same as the one

used for NINJA-2 blind injection challenge [69]. Unlike in blind injection studies,

it is Gaussian and stationary and has early aLIGO noise amplitude spectral density

(ASD) for H1 and L1 and rescaled early advanced Virgo ASD for V1, as depicted in

Fig. 3.1. As the name suggests, the latter is obtained by rescaling early AdV ASD

to match the noise expected in V1 when H1 and L1 will be taking early aLIGO data

in the future.
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Figure 3.6: Distribution of pN-NR simulated injections can be mostly separated

into two groups characterized by the duration, long or short, of the template they

triggered in the coherent search. This plot shows that a small subset of the triggers

with a long-duration template fall in the same cluster as the ones with a short-

duration template, and vice versa. This is because a signal can trigger multiple

templates; the loudest trigger in coherent statistic can correspond to a different

template than that of the loudest trigger in a coincident statistic, which penalizes

short-duration ones more than the long-duration ones.

Rescaling Virgo noise curve creates the opportunity to have three equally sen-

sitive detectors and it benefits parameter estimation studies and multi-detector

signal based vetoes in coherent analysis. It is important to note that these curves

are not the 2015-predicted curves, but a best guess at them from over a year ago

when NINJA-2 data sets were created. In the past, real data from the LIGO and

Virgo detectors had more dissimilar ASDs than the one used in NINJA-2. This
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aspect of our search assumes special significance since we later study the perfor-

mance of the null stream, which is more powerful for detectors in a network with

similar rather than disparate sensitivities.

Since the hierarchical coherent pipeline is not a fully coherent all-sky search,

it depends on some other search method to identify the GW event times. In our

study we analyze GW events identified by the coincident CBC pipeline. The co-

herent pipeline takes GW event times found by the latter as its input and does a

coherent analysis of the individual detector data from around those trigger times.

Compared to a fully coherent all-sky search, which combines complete time se-

ries coherently to identify GW events, the hierarchical coherent search requires

less computational power. One of the main goals of this paper is to draw lessons

from the hierarchical coherent search that can benefit the development of a fully

coherent search for the ADE.

One major difference between the hierarchical coherent analysis used in this

paper and those employed in the past [8] is that after the coincidence stage iden-

tifies a part of the data that offers an interesting trigger, its coherent SNR is com-

puted by involving every detector that was active at the time, even if it did not con-

tribute to the coincidence in that stage (e.g., because the SNR in the third detector

was below threshold around that event time). Previous searches used thresholds

for individual matched-filter outputs to reduce the computational cost. Typical

value for this SNR threshold was 5.0, which was chosen to be somewhat below the

threshold in the first stage, of 5.5, chosen for the matched filtering step. By plac-

ing an SNR threshold of 5.0 the coherent pipeline allowed the conversion of some

double coincident triggers (namely, H1L1, L1V1 and H1V1) to triple-coincident
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H1L1V1 triggers at times when all three detectors had science data, often termed

as triple time. In this study we lower the individual detector thresholds in the co-

herent stage to zero. This allows all double and triple coincident triggers, in tripe

time, in the coincident stage to be analyzed as triple-coincident triggers in the co-

herent stage. By doing so for double coincident triggers, the coherent stage uses

new information available from the third detector data for constructing the coher-

ent statistic that was not used in constructing the coincident statistic in the first

stage (apart from the fact that the third detector is weaker than the other two).

This is an important change vis-a-vis the previous hierarchical coherent searches.

We analyzed the performance of the hierarchical coherent pipeline by injecting

and recovering the different NR wave-forms submitted to the NINJA-2 project by

various NR groups. For this study we considered only non-spinning waveforms

with different mass ratios. Two sets of simulated GW signals were injected with

distances between 20 Mpc to 2900 Mpc, distributed uniformly in linear or logarith-

mic distance. Just as for the template bank, for the injections as well the total mass

was chosen to be in the range 25 − 100M⊙ and the component masses between

3 − 97M⊙, All the injections recovered by the coincident algorithm were found by

the hierarchical coherent pipeline as well, which is expected. On the other hand,

although one might expect to find only triple-coincident events after the coher-

ent stage, owing to the removal of the individual detector thresholds there, some

events were found to be double-coincident. This is because these injections have

very large effective distance in one of the detectors compared to the other two; the

event time registered in the detector with the large effective distance (and, there-

fore, low SNR) typically had a large error and often did not fall within the light
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Figure 3.7: The coherent and coincident detection statistic values of found simu-

lated signals (colored squares) and background events (black crosses). The col-

orbar shows injected decisive distance in Mpc. The coincident detection statistic

used here is the combined SNR. This plot confirms that the maximum value the

coherent SNR of a trigger can assume is the combined SNR.

travel-time window corresponding to the two baselines formed with the other two

detectors. This is why the hierarchical coherent pipeline did not promote them to

be triple coincidences but retained them as double coincidences.

Figure 3.3 presents the injected decisive distance of found and missed injected

BBH signals as a function of their total mass. As introduced earlier, the injected

decisive distance is defined as the effective distance of a source in the detector

where it was the second loudest, and is termed so because at least two detectors

are required to hear the signal louder than the threshold to produce a coincident

event.
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The closest missed injection had an injected decisive distance of 907.34 Mpc.

Figure 3.6 compares the distribution of injected signals and background triggers

using both coincident and coherent detection statistics. The coherent analysis

used the coherent network SNR as the detection statistic whereas the coincident

analysis employed the same detection statistic as the one used for LIGO-Virgo BBH

search of the S6-VSR2/3 data [7], namely, the one defined in Eq. (3.3). Due to the

relatively poor performance of the χ2 test for short-duration templates compared

to long-duration ones, this statistic utilizes that information differently for GW

triggers associated with those two categories of templates. This is reflected in its

definition in Eq. (3.3), and the phenomenological case for it is explained in Ref.

[7].

Figure 3.7 plots the coherent SNR of every found injection trigger and back-

ground trigger versus the coincident statistic, which in this case is the combined

SNR. The color-filled squares denote found simulated signals and the black crosses

represent background triggers. While the loudest background trigger in the coin-

cident analysis has a coincident detection statistic value of 10.3, its counterpart in

the coherent analysis has a coherent SNR of 10.0. The right plot in Fig. 3.7 is the

zoomed version of the left plot, focusing on the most interesting region of the plot

where the simulated signals and background events start mixing. The two plots

show two red dashed lines, intersecting at right angles, that divide each plot into

four quadrants. These lines cut across the loudest background triggers for each

analysis, respectively. For instance, colored squares in the region ρcoinc > 10.25 are

simulated signals found louder than the loudest background event, or simulated

signals found with zero False Alarm Rate (FAR), in the coincident analysis. Sim-
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ilarly, the colored squares in the region ρcoh > 10.0 are simulated signals found

with zero FAR in the coherent analysis. All the background triggers are confined

to the bottom-left quadrant. The top-right quadrant has only injection triggers;

these signals are found with a zero FAR in both coincident and coherent searches.

The bottom-right quadrant has only injection triggers that have a zero FAR in the

coincident search; note that these injection triggers have a non-zero FAR in the co-

herent search because the loudest background in the coherent search has an SNR

(shown by the horizontal red line that is) greater than that of any of these inection

triggers. On the other hand, the top-left quadrant has only injection triggers that

have a zero FAR in the coherent search. When one counts the injection triggers

in these quadrants, one finds that there are more of them in the top-left quadrant

than in the bottom-right quadrant. This leads to the inference that in this study

the coherent statistic performed better than the coincident one, at zero FAR.

It is also interesting to find that in Fig. 3.6 most of the simulated signals

lie above the diagonal; this is due to the re-weighting of coincident SNR based

on their χ2 values. One also finds that the injection triggers in these plots are

distributed in two branches. To investigate the reason behind this feature, we

plotted the same set of simulated signals after binning them into two different sets

based on the duration of the templates that detected them. Events are termed to be

of a short duration if at least one of the detectors finding it has a template duration

less than 0.2 sec. To be categorized as a long duration event all the participating

detectors should have their template durations greater than or equal to 0.2 sec for

that event. The bottom plot in that figure indeed shows that these two branches

of simulated signals were formed mostly from long and short duration events.
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Figure 3.8: Receiver Operating Characteristic (ROC) curves from the injection and

(partial) recovery of 2000 numerical relativity simulated signals. The two curves

here compare the performances of the coherent and coincident searches.

That plot also shows that a few triggers of each kind are picked by templates

of the opposite kind. This is because a signal can trigger multiple templates; the

loudest coherent SNR trigger in the second stage can correspond to a different

template than the loudest coincident SNR trigger in the first stage. Note that

the coincident statistic penalizes short-duration templates more than the long-

duration ones.

The maximum value that the coherent SNR can take for any trigger, from back-

ground or injection, is the combined SNR. The combined SNR is the square root

of the quadrature sum of the individual detector SNRs. Figure 3.7 confirms this

statement for both simulated signals and background events. It is clear that most
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Figure 3.9: The ROC curves for two different simulated signal families, namely,

EOBNR and pN-NR, recovered with the same EOBNR template bank.

of the simulated signals fall on diagonal. A relative few, especially of the weak

kind, fall below the diagonal. This is because the contribution from their cross

detector terms to the coherent SNR is less than maximal. As expected most of

background events can be found below the diagonal due to the incoherence of

their individual detector triggers. However, these is a small fraction of background

triggers that lie on the diagonal. A majority of these are triggers were associated

with sky positions that created issues for polarisation matrix inversion. Due to

ill-posed polarisation matrix, detection statistic of these triggers had un-physical

values larger than the combined SNR. Therefore we assigned combined SNR for

detection statistic of such triggers allowing them to be on diagonal.
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3.3.1 Comparing ROC curves

In this section we address the following two issues. First, we enquire if the coher-

ent stage improves the detectability of a CBC signal, which in NINJA-2 is limited

to the pN-NR hybrid kind. If an improvement is found then it will make the case

for developing computationally viable fully coherent CBC searches. Second, we

ask how much worse does an EOBNR template-bank perform in detecting pN-

NR signals than those modelled by the EOBNR formalism itself. This exercise

probes, in a limited way, if the differences in the deduction of the pN-NR wave-

forms, on the one hand, and the EOBNR waveforms, on the other hand, are con-

sequential enough to affect the ability of our search pipelines to make a detection.

The limitation of this exercise is that it does not address how different EOBNR

and pN-NR hybrid waveforms are from a fully accurate waveform solution from

General Relativity. For readers interested in that subject, we refer them to Refs.

[70, 71, 72, 73, 74], and the references therein. We make both types of com-

parisons by computing the Receiver Operating Characteristic (ROC) curves [2] for

each case.

The ROC curves in the Fig. 3.8 compare the performances of the hierarchical

coherent and coincident searches for the same set of simulated pN-NR hybrid sig-

nals. The detection probability of the former is higher than the latter for all values

of the false alarm probability (FAP) that could be computed in this exercise. But

the region in this figure where this observation matters the most is the low FAP

region around 10−5−10−4, where the first GW detections are expected to be made.

Note, however, that the improvement obtained by running the additional coherent
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Figure 3.10: The detection efficiency is plotted as a function of the injected de-

cisive distance (Mpc), for the hierarchical coherent and coincident searches, at

false-alarm rates (FAPs) of 0.000 and 0.001.

step in this coincident pipeline is limited by its hierarchical nature and, there-

fore, the utility of this study is that it suggests that a fully-coherent, all-sky, all-time

pipeline should perform even better.

The FAP at a given value of the detection statistic, ρthreshold, is obtained as

follows

FAP(ρthreshold) =
Nbackground(ρ > ρthreshold)

Ntotal background

, (3.5)

where Nbackground(ρ > ρthreshold) is the number of background triggers that have the

value of their chosen detection statistic ρ greater than ρthreshold, and Ntotal background

is the total number of background triggers, with any value of ρ, found by the
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Figure 3.11: Detection efficiency comparison of two different sets of simulated

signals, namely, EOBNR and pN-NR.

search. On the other hand, the detection probability is given by

Pdetection(ρ > ρthreshold) =
Nrecovered(ρ > ρthreshold)

Nrecovered(ρ > ρthreshold) +Nmissed

, (3.6)

where Nrecovered(ρ > ρthreshold) is the number of recovered simulated signals with

the detection statistic value greater than the value corresponding to a given false

alarm probability, and Nmissed denotes the number of simulated signals either with

ρ < ρthreshold or totally missed by the detection pipeline.

To get some insight into the relative behavior of the ROC curves in Fig. 3.8 note

that the rate of change of FAP with respect to the detection statistic is faster in the

case of the coincident statistic than in the case of the coherent statistic. However,

the value of the detection statistic for an injection trigger scales inversely with its

distance.
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Also, the detection probability decreases with increasing source distance. Thus,

it follows that the rate of change of FAP with respect to the detection probability

is faster in the case of the coincident statistic than the coherent statistic. This

is exactly what is found in the left plot in Fig. 3.8. The fact that the two ROC

curves there should meet at a high enough FAP, where the detection threshold

is very small, then implies that the ROC curve of the coherent search should be

above that of the coincident search. The detection probability does not go to unity

in that figure because a hard cut-off of ρ = 5.5 was placed in each detector in

the first stage, thereby, causing a fraction of the triggers to be missed. In this

experiment that fraction happened to be about 51%. Figure 3.14 and 3.15 shows

how the loudness of the background triggers is distributed for the two searches.

Figure 3.8 shows that at a FAP of 6 × 10−5 the difference between the de-

tection probabilities of the coherent and coincident searches is approximately

(47.4 − 45.8)% = 1.6%. This implies that for a total of 2000 injections the former

search found 32 more than the latter, at that FAP.3 One must bear care, however, in

drawing conclusions for astrophysical searches from this simulation study because

the source rate for aLIGO is estimated to be in the several tens and not thousands

[75], and the aforementioned improvement will affect the detection of very few

sources. Instead, the main conclusion is that while hierarchical coherent searches

may not be worth investing resources into, they demonstrate the (small) improve-

ment we expect of them and, in turn, suggest that it may be worthwhile to explore

how much more gain in detection rate one can achieve with fully coherent all-sky,

3Note that these two searches are correlated in the sense that a strong (weak) signal in one is

highly likely to produce a strong (weak) signal in the other.
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all-time algorithms in realistic search pipelines.

We next enquire how much the detectability of a signal suffers owing to the

fact the pN-NR hybrid waveforms that are used to model the signals are not quite

the same as the EOBNR waveforms used to model the templates [62]. Fig. 3.9

compares the performance of two sets, with the same number of simulated signals

injected at the same sky locations, but with two different signal families: The green

curve corresponds to signals modelled with the EOBNR family and the red curve

represents simulated signals made using the NINJA-2 pN-NR hybrid waveforms.

Both sets of simulated signals were searched with EOBNR templates. As expected,

simulated signals from the same family as the templates, namely EOBNR, register

a better performance, at all FAP values. That figure also shows that the mismatch

between the template and the signal families result in a small effect on the detec-

tion probability, which is of the order of a few percent at the most.

The variation of detection efficiency with distance also shows the expected be-

havior. We define it to have the same expression as Pdetection in Eq. (3.6), but now

Pdetection, Nrecovered(ρ > ρthreshold), and Nmissed are all computed in multiple distance

bins. Figure 3.10 shows the detection efficiencies of the hierarchical coherent and

coincident searches at ρthreshold corresponding to FAP=0 and 10−3. The detection

efficiencies for all of the searches are very similar; they begin at 100% for nearby

sources and fall off to zero near 2 Gpc, which is the greatest horizon distance [25]

of the set of BBH sources simulated here.
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3.3.2 The null-stream

Real data is neither Gaussian nor stationary and a statistic that is optimal in Gaus-

sian and stationary noise may not remain so in real data. This makes the case for

seeking a more effective detection statistic and signal-based vetoes for LIGO/Virgo

science data. An advantage of multi-detector coherent searches is that a detector

network with three or more baselines can (over-)determine the two waveform

polarizations, in addition to identifying the source location with time-delay tri-

angulation [25]. In such cases, one can form a linear combination of detector

time-series outputs that contains no GW signal [34]. Such a combination is called

the “null stream". The null stream is consistent with the noise in a detector net-

work, and a noise artifact or a glitch in a detector that is uncorrelated with noise in

the other detectors is expected to leave a residue in the null stream. Therefore, its

presence can be used to veto a candidate event. The simplest example of the null-

stream is the one for a network consisting two co-located, co-aligned detectors. In

the simple case where both detectors in such a pair have the same sensitivity, the

null stream corresponding to any search template is proportional to the difference

of its matched-filter outputs from the data of the two individual detectors. When

the two detectors in the pair have different sensitivities, the matched-filter outputs

are inversely weighted with their respective template-norms before calculating the

difference [8]. The value of the null-stream time-series at the trigger time is called

the null statistic.

Figure 3.12 presents the null-statistic distribution for simulations and back-

ground events as a function of their coherent SNR.
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For very strong signals the null statistic is large since even a slightly imperfect

subtraction of two large SNR values can leave a moderately large residue. This

is not a major concern since the distribution of loud injections on this plot is well

separated from that of the background triggers. However, the null statistic can

play a critical role in the detection of weak signals. Those occur in the region

where their distribution on this plot mixes with that of the background triggers.

Figure 3.12 shows that nearly all the background triggers fall on a relatively tight

band and only a couple lie outside it. Those two outliers are also the loudest

background triggers in coherent SNR. Interestingly, these are triggers for which

the sky positions were such that the LIGO-Virgo network could not resolve the

putative signal polarizations. Just as for the injections, for these two triggers too

the search pipeline used the coincident statistic as the detection statistic, the values

of which were found to be well below 10.0. Therefore, Fig. 3.12 demonstrates that

the null statistic is helpful in mitigating the impact of loud background triggers on

a search pipeline’s detection efficiency.

Although we will not be employing hierarchical search pipelines in ADE it is

important to understand its issues in order to improve the efforts on developing

fully coherent searches. As shown above, the thresholding criteria used in current

coincident and hierarchical coherent pipelines can limit the detection efficiency

of the search. In the current pipeline we only analyze triggers that cross the first

matched-filtering stage with an SNR greater than 5.5. Additionally, we also require

at least two such triggers in two different detectors within the window of light

travel time between two sites to claim a gravitational-wave detection. It is pos-

sible to have gravitational-wave signals that only have threshold crossing trigger
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in one detector with significant coherent SNR. To investigate this in the same NR

simulations, we searched for such events. Numerical relativity simulations plotted

in Fig. 3.16 have only one threshold-crossing detector, yet their coherent SNRs

are relatively strong: Out of a total of 2000 simulated pN-NR signal injections,

we found that 52 had coherent SNR above 9.5. For each of these found injections

only one of the three detectors in coincidence produced a single-detector SNR of

above 5.5.4 Furthermore, 35 of them had a coherent SNR higher than the loud-

est background trigger. Figure 3.16 reveals that some of these simulations had

larger single-detector SNRs in Virgo compared to those in the two LIGO detectors.

Due to their similar orientation and sky coverage, both LIGO detectors had very

similar sensitivities in a large fraction of the sky. Additionally, their similar noise

PSDs means that signals from the same source will have very similar SNRs in those

detectors most of the time. But Virgo’s orientation is quite different from that of

the LIGO detectors. Therefore, in Fig. 3.16 some of the events have larger SNR

contributions from Virgo than from any of the LIGO detectors.

3.4 Parameter recovery

Parameter estimation will play an important role in making astrophysical state-

ments about the origin of the GW signals we detect (see, e.g., Ref. [47]). For in-

stance, by measuring the masses of BBH components through GW observations we

will be able to constrain stellar population synthesis models. This section presents

4For a three-detector network with single-detector thresholds of 5.5 each, the minimum com-

bined SNR for an event is
√

3 × 5.5 = 9.52.
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results from our EOBNR template searches of pN-NR simulated injections to ed-

ucate us on how accurately one might be able to measure the parameters of real

BBH signals. In this study, parameters of those signals were estimated using the

maximum likelihood method [2]. Figure 3.17 shows that the measured coherent

SNR is within a few percent of the expected value when for signals the latter ex-

ceeds 20. Moreover, this observation holds across the whole range of total-mass

values of the injected non-spinning BBH systems.

A useful construct for describing the error in the measurement of the value of

a dimensional parameter is:

fractional error =
measured value - injected value

injected value
, (3.7)

which we will use especially for studying the error in the measured or recov-

ered chirp-mass values. Comparing the injected and recovered parameter values

helps us in determining if any systematics can develop in searching for pN-NR

signals with a specific waveform family. Consider, e.g., the chirp-mass recovered

by EOBNR templates in Fig. 3.18. There, in most cases, the injected chirp mass

is greater than the recovered one. This can happen owing to the following possi-

bilities: (a) For some cases of pN-NR waveforms EOBNR templates with a smaller

mass have the same or similar number of cycles. If this is true, then this is informa-

tion that the hybridization schemes of those pN-NR waveforms can use to correct

for this bias. (b) Templates that are longer in time and have more cycles than

these pN-NR injections perform better at finding them. Longer templates would

accrue noise from the cycles that do not overlap with any part of the signal and

would, therefore, lose SNR. However a mismatch between an injection and
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the template, in amplitude or phase, can cause the projection of the signal on

the template manifold to select a longer template as the best fit. Indeed, the chirp-

mass recovery and end-time recovery plots reveal that pN-NR injections tend to

be found often with relatively higher chirp-mass EOBNR templates. Since higher

chirp-mass templates will have a smaller duration than lower chirp-mass ones, all

else being the same, one would expect that this bias should be accompanied by

a systematic error whereby the template (or recovered) end-time occurs earlier

than the injected (pN-NR) end-time. This expectation is confirmed in Fig. 3.21.

The end-time difference of recovered simulated signals in Fig. 3.21 is computed

by subtracting the injected end time from the measured end time. A negative

end-time difference implies that the pN-NR signal is found at a later time than its

injected value. A majority of the signals were recovered within 10 msec of the

injected end time. A few outliers with a greater positive (smaller negative) end-

time difference arise from systems with a large (small) total mass and relatively

low coherent SNR.

The results for the measurement of the symmetrized mass-ratio η are presented

in Fig. 3.23. The end-time difference is computed by subtracting the injected

value from the measured one. As shown in Ref. [62], only six mass-ratio values

were used to model and inject non-spinning pN-NR signals. For EOBNR signals,

we produced a greater variety of mass ratios and, therefore, η, as can be seen in

the top-right plot in that figure. The measured values of η are always between

0.00 and 0.25 because those are the boundaries of the template bank that was

employed, and correspond to mass ratios of infinity and 1, respectively. It is in-

teresting to note that in a large fraction of cases small (large) η, or low (high)
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mass ratio, templates detect large (small) η signals. This bias is, in fact, correlated

with low (high) chirp-mass templates detecting high (low) chirp-mass signals, as

confirmed by Fig. 3.26 for injections of pN-NR as well as EOBNR signals. This

covariance of errors occurs because templates with low (high) η and low (high)

Mchirp can have similar number of wave cycles and bandwidths as signals with high

(low) η and high (low) Mchirp.5 In the same figure, also note how the degree of

covariance changes somewhat as one goes from low total-mass systems (shown in

blue) to high total-mass systems (shown in red). A similar behavior was observed

in the Monte Carlo studies in Ref. [47] of statistical errors in measuring BBH mass

parameters with phenomenological waveforms [76].

3.5 Gaussian vs real detector noise

Although we test performance of data analysis pipelines on Gaussian and station-

ary data, our ultimate goal is to improve the performance of real data searches. In

past searches we employed different techniques such as data quality and signal-

based vetoes to avoid of non-Gaussian features of real detector data. However,

even with the most efficient vetoes we have today, in most searches non-Gaussianity

and non-stationary of real detector data hurt the performance of GW searches. To

study this situation in ADE searches, we compared performance of the CBC ihope

search pipeline in Gaussian and real detector data. The simulated Gaussian data

set was created using early aLIGO and Advanced Virgo predicted curves for 2015.

5A similar correlation of errors in η and the total-mass M was found in Ref. [60] where the

effect of using inspiral-only templates for searching inspiral-merger-ringdown signals on detection

and parameter estimation was studied.
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As we did in the studies presented in earlier sections of this chapter, we rescaled

Virgo noise curve get similar horizon distance in both LIGO and Virgo detectors.

The real data set was created by recoloring LIGO S6 and Virgo VSR2/3 data to

match above motioned noise curves. Data selected from S6 and VSR2/3 were

collected from different times so that no real GW coincident will not appear in

recolored data. This was the same method use for NINJA-2 mock data challenge

presented in Ref. [6].

Figure 3.27 presents the comparison of Gaussian and real data search. In this

study we used publicly available NINJA-2 GW waveforms [62] as simulations.

Same set of simulations were used in both Gaussian and real data sets. This

set consist approximately 1500 pN-NR hybrid simulations to make the compari-

son fair. While Gaussian search recovered approximately 860 simulations real data

search only found approximately 580 injections. For both searches we used EOBNR

waveforms as templates. Ultimately these numbers reveal the detection efficiency

at highest FAP. The gap between detection efficiency of Gaussian and real search

is consistent for all FAP values. This comparison is very important as it analysis

performance of two cases under exact same conditions such as number of simula-

tions and sensitivity of detectors. Only difference in two searches is the real data

features appear in one data set compared to Gaussian and stationary features in

the other. Most probably detection efficiency deficit was created by this difference.

Our goal is to reduce this gaps as much as possible for future searches. More effec-

tive data quality vetoes and signal-based vetoes can paly an important role in ADE

searches. Since this was a highmass search it is also possible signal-based vetoes

do not operate with best efficiency. Therefore, one important data point will be to
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do the same comparison for lowmass simulations. Two curves in Fig. 3.27 suggest

real data curve reach low FAP values than Gaussian counterpart. This is due to

the number of background events in two different searches. Compared to approx-

imately 18, 000 background events real data search had 54, 000 events due to its

nature. This allows to go for less FAP values similar to a extended background

estimation explained in blind injection recovery and NINJA-2 mock data challenge

of next two chapters. Also it is important to note this study used approximately

1500 non-spinning BBH simulations and in future efforts it will be useful to have

much larger set of simulations of all kinds such as spinning and high mass ratio

simulations.

3.6 Comparison of different mass ratio waveforms

Among the public waveforms submitted to NINJA-2 project, there were number

of waveforms with different mass ratios. We studied the detection efficiency of

different mass ratio waveforms using EOBNR templates. In this study we injected

approximately 1500 non-spinning waveforms in simulated Gaussian noise. We did

four different analyses with simulated GW signals, with the values of mass ratios

1, 2, 3 and 4. Figure 3.28 presents the results. Interestingly, with the increase of

mass ratio of the simulations, detection efficiency decreased. Although the drop of

detection efficiency was relatively small this feature was consistent for all the FAP

values. Overall this shows the equal mass ratio simulations had the best match to

the templates we used. However, it is important to note among same mass ratio

signals, it is possible to have differences in waveforms submitted based on the
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group that produced the waveforms. Reference [62] shows some plots for overlap

of different waveforms submitted by different groups. Therefore, a complete study

will have detailed analysis about all these different waveforms. In our study we

only used waveforms up to mass ratio 4 due to limited number of waveforms

available for higher mass ratios than 4.

3.7 Discussion

Testing the preparedness of search pipelines to detect real signals in the ADE is

one of the primary goals of NINJA. This study helped to quantify the sensitivity of

one of the existing CBC search pipelines to numerical-relativity based BBH wave-

forms in early advanced detectors albeit in simulated Gaussian, stationary data.

As we found here, the EOBNR waveforms, which employed only NASA-Goddard

NR waveforms for calibration, were able to detect pN-NR signals produced by a

number of NR collaborations. This is borne out by the fact that the ROC curve

of EOBNR injections tracks that of the NR injections very closely. Additionally, we

studied some aspects of a coherent CBC search. Since a coherent search explores a

larger dimensional parameter space than a coincident search it is more expensive,

which makes the estimation of the background for the former type of search espe-

cially difficult. Therefore, we used the hierarchical coherent CBC search pipeline

described in Ref. [8] on the same NR based injections. Such an exercise is also

useful to teach us about a subset of the potential issues we may face in a fully

coherent search in the future. Here we demonstrated that the performance of that

search conforms to expectations. Specifically, the characteristics of its background
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are consistent with theoretical predictions. Moreover, the coherent stage provides

the null-stream statistic, which is a powerful multi-baseline signal consistency test,

and can be employed to improve the performance of the search. This test is espe-

cially useful for high-mass CBC searches where the chi-square test is less effective

than low-mass ones, owing to fewer waveform cycles of high-mass signals in the

detector band.

Finally, NINJA provided an important opportunity to test how well we might

be able to measure the signal parameters. To address this question, we compared

the maximum-likelihood estimates obtained by using the EOBNR family of tem-

plates. We focused our attention on only non-spinning injections. Here again the

parameter accuracies of EOBNR injections are very similar to those of the pN-

NR ones. The only small disagreement occurs for a few injections, mainly in the

small total-mass region. For most of them, its cause was traced to the fact that

compared to other injected waveforms these ones were a priori known to have a

somewhat poorer match (by a few percent) [62] with the waveforms produced

by the Spectral Einstein Code (SpEC). (See Ref. [77] for details about SpEC.) To

study systematic errors stemming from signal-template mismatch in more detail,

studies are ongoing with NR waveforms with spin and a variety of different mass

ratios. Additionally, to study the impact of real data, which can be non-Gaussian

and non-stationary, we plan to study the NINJA-2 waveforms injected in a recol-

ored data set, where real data from past science runs will be scaled to have early

aLIGO or aLIGO ASDs [69].
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Figure 3.12: We plot the null-statistic for background and pN-NR simulated sig-

nals as a function of their coherent SNR. Most of the background triggers form a

“band”, which helps to separate signals from them. Notice that two of the loud

background triggers prominently fall outside the band. These correspond to sky

positions where the network does not resolve the GW polarizations very well [8].

In such a case, the trigger is vetoed. A better way to handle such triggers would

be to not veto them but construct a more effective detection statistic by using a

network’s polarization resolving power at the trigger’s sky position. This aspect

will be explored elsewhere.
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Figure 3.13: Here we show the injection triggers above the background triggers

to highlight that for very weak injections, the null-statistic worsens and loses its

discriminatory power.
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Figure 3.14: Distribution of background events in the coincident detection statistic

used for the LIGO S6 - Virgo VSR2/3 high-mass search.
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Figure 3.15: Distribution of background events in the coherent detection statistic.

70



0
5

10
0

5
10

0

10

20

30

40

50

60
 

H1 SNRL1 SNR

 

V
1 

S
N

R

10

15

20

25

30

35

40

45

50

Figure 3.16: The coincident pipeline uses thresholds on matched-filter outputs

from all detectors in a network to keep the number of background trigger coinci-

dences at a manageable level so that the search remains computationally viable.

An event has to be coincident in at least two detectors before it can be treated as

a detection candidate. While this requirement improves confidence in a detection,

it also hurts detection efficiency by rejecting signals with marginally sub-threshold

triggers in two of three detectors that would otherwise produce a candidate event

with comparable detection confidence. This plot shows the distribution of such

events, with the colorbar displaying their coherent SNR. Out of 2000 simulated

pN-NR signals, 48 were found with a zero false-alarm rate that have the SNR

crossing the standard 5.5 threshold in only one of the three detectors. Also 54

events were found that had SNR crossing the standard 5.5 threshold in all three

detectors.
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Figure 3.17: Recovered coherent SNR versus its injected value for NR simulated

signals. The colorbar shows the total mass of the BBH systems whose pN-NR

hybrid waveforms were injected.

72



0 10 20 30 40 50
0

10

20

30

40

50

Injected chirp mass

R
ec

ov
er

ed
 c

hi
rp

 m
as

s

 

 

100

200

300

400

500

600

0 10 20 30 40 50
0

10

20

30

40

50

Injected chirp mass

R
ec

ov
er

ed
 c

hi
rp

 m
as

s

 

 

200

400

600

800

1000

Figure 3.18: Recovered chirp mass as a function of injected chirp mass for pN-NR

simulations (top) and EOBNR simulations (bottom), with the colorbar showing

the coherent SNR.
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Figure 3.19: Fractional chirp-mass difference as a function of coherent SNR with

the colorbar displaying the total mass of the BBH system. Top and bottom figures

are for pN-NR and EOBNR respectively.
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Figure 3.20: Fractional chirp-mass difference as a function of the total mass of the

BBH system, with the colorbar showing the coherent SNR. According to the bottom

panel the overall chirp mass recovery is slightly better for EOBNR simulations than

the pN-NR ones, due to better match with the templates in the former case.
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Figure 3.21: Difference between the measured and injected end time of detected

simulated signals (in seconds). The Left figure is the end-time difference is plotted

as a function of the coherent SNR for pN-NR simulations. The colorbar represents

the total mass of the binary system (in M⊙). The bottom plot shows same quantity

is plotted for EOBNR simulations.
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Figure 3.22: Difference between the measured and injected end time of detected

simulated signals (in seconds). The end-time difference is plotted as a function

of the total mass of the system. For pN-NR simulated signals (top) a few were

recovered with relatively high negative end-time difference, i.e., ≥ 0.01 sec, in the

total-mass range 40M⊙ to 62M⊙, at both high and low coherent SNRs.
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Figure 3.23: This figure shows the η difference as a function of injected η values.

Since pN-NR simulations are only available for a discrete set of η values the top

plot only has a few different values of injected η compared to EOBNR counterpart,

which is plotted in the bottom. Since η ∈ (0, 0.25], the maximum (minimum) η

difference is 0.25 (-0.25).
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Figure 3.24: This panel shows that the η difference of pN-NR hybrids is slightly

worse compared to that of EOBNR simulations due to template mismatch. This is

most apparent above at large coherent SNR values. The colorbar denotes the total

mass of the binary system.
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Figure 3.25: Eta difference of two simulation categories is shown as a function of

the total mass of the system.
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Figure 3.26: Covariance of chirp-mass error with η error. The top figure shows

this covariance for pN-NR injections and the bottom figure shows it for EOBNR

injections. In both cases EOBNR templates were used to conduct the search. The

colorbar shows the total mass of the BBH systems (in M⊙).
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Figure 3.27: This ROC curve compares the performance of CBC coincidence

pipeline in Gaussian and real detector data. We injected same set of injections

in Gaussian and real detector data and recovered the injections running the CBC

ihope pipeline.
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Figure 3.28: This ROC curve compares the performance of CBC coincidence

pipeline in recovering different mass ratio NINJA-2 waveforms in real detector

data. We injected same set of injections and recovery shows better performance

for low mass ration waveforms.
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Chapter 4

The Ninja-2 project: Mock data

challenge

4.1 Introduction

As described in chapter 3 the NINJA project is a collaboration between members

of the numerical relativity and GW data analysis communities. The main pur-

pose of NINJA is to study the sensitivity of existing gravitational-wave search

and parameter-estimation algorithms in detecting numerically simulated wave-

forms, and to foster closer collaboration between the numerical relativity and

gravitational-wave astrophysics communities. Chapter 3 and Ref. [62, 64] give

more details about differences between the first version of NINJA (i.e. NINJA-1)

and the NINJA-2 projects. They also present studies conducted using NINJA-2

waveforms in Gaussian data. This chapter focuses on studies that used recolored

real detector noise [6]. The NINJA-2 mock data challenge is a NINJA collaboration
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wide exercise that allowed us to compare performances of different GW search and

parameter estimation pipelines to pN-NR waveforms in early ADE. In this study we

inject selected NINJA-2 waveforms in to recolored simulated early advanced de-

tector data and try to recover them with different search pipelines. Additionally

we also discuss about NINJA-2 waveforms in this chapter and the results of the

mock data challenge using CBC search pipelines. In a mock data challenge we

compare the performances of different data analysis pipelines by recovering same

injected signals in a common data set.

4.2 NINJA-2 binary black hole waveforms

The first edition of NINJA project considered 23 waveforms submitted by various

NR groups [62]. These waveforms were injected into simulated Gaussian noise

colored with the frequency sensitivity of initial LIGO and Virgo. These data sets,

with added numerically-modelled, physically-realistic GW signals, were analyzed

by nine data-analysis groups using both detection and parameter-estimation algo-

rithms. Although NINJA-1 was a successful effort, there were two major limita-

tions that demanded next edition of more sophisticated projects. First, to attract

more NR groups, no length or accuracy requirements were placed on the con-

tributed numerical waveforms. Consequently, many of the waveforms were too

short to inject over an astrophysically interesting mass range without introducing

artifacts into the data. Second the data set used for injection of NR waveforms was

Gaussian and stationary. Lack of non-Gaussian and non-stationary features did not

allow full exploration of the performances of detection and parameter estimation
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pipeline in a realistic setting.

The main purpose of the NINJA-2 project is to overcome these limitations. As a

result 60 pN-NR hybrid waveforms submitted by eight numerical relativity groups

to build the waveform catalog. The catalog of the waveforms and procedures used

to validate these waveforms are presented in Ref. [62]. This section presents a

brief summary of the NINJA-2 waveform catalog.

All the waveforms in the NINJA-2 catalog include all three inspiral-merger-

ringdown phases of binary coalescence. Each waveform consists of a post-Newtonian

portion modelling the early inspiral phase stitched to a numerical portion mod-

elling the late inspiral, merger and ringdown phases. For every waveform it was

required that for its NR portion, the amplitude be accurate to within 5% and the

phase (as a function of gravitational-wave frequency) have an accumulated uncer-

tainty of no more than 0.5 radian. NINJA-2 also required that the NR portion have

at least five orbits in order to ensure robust blending with the post-Newtonian

portion. Additionally, It was decided to limit NINJA-2 to systems without eccen-

tricity, and with the black-hole component angular momenta (spins) parallel or

anti-parallel to the orbital angular momentum. This last condition avoids pre-

cession and was imposed for two reasons. First, precession greatly complicates

waveform phenomenology and, the collaboration preferred to first tackle a sim-

pler subset that still retains the main features of binary evolution and merger.

Second, at the start of NINJA-2 the precessing-binary parameter space had been

sampled by only a handful of numerical simulations [62].

Tables 4.1 and 4.2 present the details of the waveforms submitted to the NINJA-

2 project. To refer to these waveforms in later sections, we follow the notation
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used in Ref. [6]. As discussed there, a sample waveform “G2+20+20_T4” is con-

structed as follows: The first letter represents the group submitting the numerical

simulation, namely:

F: The numerical relativity group at Florida Atlantic University [78, 79, 80, 81].

G: The Georgia-Tech group [82, 83, 84, 85, 86, 87, 88].

J: The BAM (Jena) code, as used by the Cardiff-Jena-Palma-Vienna collabora-

tion [89, 90, 91, 92, 93, 94].

L: The Lean Code, developed by Ulrich Sperhake [95, 96].

Ll: The Llama code, used by the AEI group and the Palma-Caltech groups [97,

98, 99].

R: The group from Rochester Institute of Technology [100, 101, 102, 103].

S: The SXS collaboration using the SpEC code [104, 105, 106, 107, 108, 109,

110, 77, 111, 112].

U: The group from The University of Illinois [113].

Right next to first letter of the label, follows the value of the mass-ratio q =

m1/m2, where the masses are assigned such that q ≥ 1. The next two numbers

are the components of the initial dimensionless spins along the orbital angular

momentum, multiplied by 100 (e.g. ‘+20’ corresponds to L̂ · ~S1/m
2
1 = 0.2), of the

more massive and the less massive black hole respectively. The last two characters

of the above label denote the Taylor-approximant being used for the PN portion
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Figure 4.1: Mass ratio q and dimensionless binary component spins χi of the

NINJA-2 hybrid waveforms.

of the waveform, with “T1” and “T4” representing TaylorT1 and TaylorT4, respec-

tively. However, the Georgia-Tech group submitted four pairs of simulations where

within each pair the same system was simulated with identical physical parame-

ters, stitched to the same post-Newtonian approximant. The two waveforms in a

pair, however, are not identical since each one has a different number of NR cycles

and was generated at a different resolution. Such waveforms are distinguished by

appending “_1” and “_2” to the label.
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Label q χ1 χ2 1000e 100Mω # NR pN

hyb.range cycles Approx

S1-95-95_T1 1.0 -0.95 -0.95 1.00 3.3 – 4.1 18.42 T1

J1-85-85_T1 1.0 -0.85 -0.85 2.50 4.1 – 4.7 12.09 T1

J1-85-85_T4 T4

J1-75-75_T1 1.0 -0.75 -0.75 1.60 4.1 – 4.7 13.42 T1

J1-75-75_T4 T4

J1-50-50_T1 1.0 -0.50 -0.50 2.90 4.3 – 4.7 15.12 T1

J1-50-50_T4 T4

S1-44-44_T4 1.0 -0.44 -0.44 0.04 4.3 – 5.3 13.47 T4

Ll1-40-40_T1 1.0 -0.40 -0.40 6.1 – 8.0 6.42 T1

Ll1-40-40_T4 T4

J1-25-25_T1 1.0 -0.25 -0.25 2.50 4.5 – 5.0 15.15 T1

J1-25-25_T4 T4

Ll1-20-20_T1 1.0 -0.20 -0.20 5.7 – 7.8 8.16 T1

Ll1-20-20_T4 T4

J1+00+00_T1 1.0 0.00 0.00 1.80 4.6 – 5.1 15.72 T1

J1+00+00_T4 T4
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Label q χ1 χ2 1000e 100Mω # NR pN

hyb.range cycles Approx

G1+00+00_T4 3.00 5.5 – 7.5 9.77 T4

Ll1+00+00_F2 5.7 – 9.4 8.30 F2

S1+00+00_T4 0.05 3.6 – 4.5 22.98 T4

G1+20+20_T4_1 1.0 0.20 0.20 10.00 6.0 – 7.5 6.77 T4

G1+20+20_T4_2 6.00 5.5 – 7.5 10.96 T4

J1+25+25_T1 1.0 0.25 0.25 6.10 4.6 – 5.0 18.00 T1

J1+25+25_T4 T4

G1+40+40_T4_1 1.0 0.40 0.40 10.00 5.9 – 7.5 7.70 T4

G1+40+40_T4_2 6.00 5.5 – 7.5 12.02 T4

Ll1+40+40_T1 7.8 – 8.6 6.54 T1

Ll1+40+40_T4 T4

S1+44+44_T4 1.0 0.44 0.44 0.02 4.1 – 5.0 22.39 T4

J1+50+50_T1 1.0 0.50 0.50 6.10 5.2 – 5.9 15.71 T1

J1+50+50_T4 T4

G1+60+60_T4_1 1.0 0.60 0.60 12.00 6.0 – 7.5 8.56 T4

G1+60+60_T4_2 5.00 5.5 – 7.5 13.21 T4
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Label q χ1 χ2 1000e 100Mω # NR pN

hyb.range cycles Approx

J1+75+75_T1 1.0 0.75 0.75 6.00 6.0 – 7.0 14.03 T1

J1+75+75_T4 T4

G1+80+00_T4 1.0 0.80 0.00 13.00 5.5 – 7.5 12.26 T4

G1+80+80_T4_1 1.0 0.80 0.80 14.00 5.9 – 7.5 9.57 T4

G1+80+80_T4_2 6.70 5.5 – 7.5 14.25 T4

J1+85+85_T1 1.0 0.85 0.85 5.00 5.9 – 6.9 15.36 T1

J1+85+85_T4 T4

U1+85+85_T1 20.00 5.9 – 7.0 15.02 T1

G1+90+90_T4 1.0 0.90 0.90 3.00 5.8 – 7.5 15.05 T4

S1+97+97_T4 1.0 0.97 0.97 0.60 3.2 – 4.3 38.40 T4

Table 4.1: Summary of the contributions to the NINJA-2 waveform catalog with

m1 = m2. Given are an identifying label, mass-ratio q = m1/m2 which is always

1 for these simulations, magnitude of the dimensionless spins χi = Si/m
2
i , orbital

eccentricity e, frequency range of hybridization in Mω, the number of numerical

cycles from the middle of the hybridization region through the peak amplitude,

and the post-Newtonian Taylor-approximant(s) used for hybridization.

91



Label q χ1 χ2 1000e 100Mω # NR pN

hyb.range cycles Approx

J2+00+00_T1 2.0 0.00 0.00 2.30 6.3 – 7.8 8.31 T1

J2+00+00_T4 T4

G2+00+00_T4 2.50 5.5 – 7.5 10.42 T4

Ll2+00+00_F2 6.3 – 9.4 7.47 F2

S2+00+00_T2 0.03 3.8 – 4.7 22.34 T2

G2+20+20_T4 2.0 0.20 0.20 10.00 5.6 – 7.5 11.50 T4

J2+25+00_T1 2.0 0.25 0.00 2.00 5.0 – 5.6 15.93 T1

J2+25+00_T4 T4

J3+00+00_T1 3.0 0.00 0.00 1.60 6.0 – 7.1 10.61 T1

J3+00+00_T4 T4

S3+00+00_T2 0.02 4.1 – 5.2 21.80 T2

F3+60+40_T4 3.0 0.60 0.40 1.00 5.0 – 5.6 18.89 T4
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Label q χ1 χ2 1000e 100Mω # NR pN

hyb.range cycles Approx

J4+00+00_T1 4.0 0.00 0.00 2.60 5.9 – 6.8 12.38 T1

J4+00+00_T4 T4

L4+00+00_T1 5.00 5.1 – 5.5 17.33 T1

S4+00+00_T2 0.03 4.4 – 5.5 21.67 T2

S6+00+00_T1 6.0 0.00 0.00 0.04 4.1 – 4.6 33.77 T1

R10+00+00_T4 10.0 0.00 0.00 0.40 7.3 – 7.4 14.44 T4

Table 4.2: Summary of the contributions to the NINJA-2 waveform catalog, with

m1 > m2. Given are a waveform identifying label, mass-ratio q = m1/m2 mag-

nitude of the dimensionless spins χi = Si/m
2
i , orbital eccentricity e, frequency

range of hybridization in Mω, the number of numerical cycles from the middle

of the hybridization region through the peak amplitude, and the post-Newtonian

Taylor-approximant(s) used for hybridization.
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Figure 4.2: A waveform submitted to NINJA-2 waveform catalog. This plot shows

the waveform in time domain. The same waveform in frequency domain is shown

in Fig. 4.3.

4.3 The blind injection challenge

One major goal of NINJA-2 is to evaluate the performance of search pipelines and

parameter estimation methods for LIGO, Virgo GW searches using noise curves

predicted for 2015-2016. In order to create data sets with predicted 2015-2016

sensitivities, two-month long stretches of initial detector data were recolored.

However, it was clear that projected sensitivity of the early advanced Virgo de-

tector is significantly greater than that of the early Advanced LIGO detectors. To

simplify the analysis we rescaled down the early advanced Virgo noise curve by a
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Figure 4.3: The frequency domain representation of the waveform shown in Fig.

4.2.

factor of 1.61. With this rescaling the sensitivities of the two different simulated

detector data sets match. A detailed description of the recoloring process can be

found in Ref. [6].

To measure the recovering accuracy of NINJA-2 BBH signals, 7 waveforms were

added to the recolored data sets. The analysts were aware that “blind injections”

had been added; however, the number and parameters of these simulated signals

were not disclosed until the analyses were completed. This was similar to blind

injection tests conducted by the LIGO and Virgo collaborations in their latest sci-

ence runs [9]. These injections (simulated signals) are self-blinded to ensure that

no bias from knowing the parameters of the signal, or indeed whether a candidate
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Waveform M RA Dec. Dist. Detectors Hybrid

label q (M⊙) χ (rad) (rad) (Mpc) Online Range (Hz)

J4+00+00_T4 4 124 0.00 1.26 -0.76 569 H1L1V1 15 – 18

Ll1-20-20_T4 1 35.5 -0.20 1.70 -0.03 244 H1L1V1 52 – 71

Ll1+40+40_T4 1 14.4 0.40 4.18 0.07 170 H1L1V1 175 – 193

G2+20+20_T4 2 26.8 0.20 2.19 -0.36 247 L1V1 68 – 90

L4+00+00_T1 4 19.1 0.00 1.68 0.14 83 H1V1 86 – 93

J1+25+25_T4 1 75.7 0.25 4.68 0.49 854 H1V1 20 – 21

J1-75-75_T1 1 19.3 -0.75 0.81 -0.07 292 H1L1V1 69 – 79

Table 4.3: The details of the blind injections that were added to the NINJA-2

datasets prior to analysis. M denotes the total mass and q the mass ratio. χ

denotes the spin on each black hole: in all 7 cases both black holes in a binary

had the same spin. The RA and dec give the right ascension and declination of

the signals, respectively. Dist. denotes the distance to the source. Detectors online

lists the detectors for which data is present at the time of signal. Hybridization

range gives the range of frequencies in which the signal is hybridized between

the post-Newtonian and numerical components. Waveform label indicates which

numerical waveform was used, as shown in Tables 4.1 and 4.2.

event is a signal or a noise artifact, affects the analysis process.

The 7 waveforms that were added to data sets were taken from NINJA-2 pN-

NR submissions. The parameters of the blind injections were selected to cover a

wide section of the parameter space. However, the physical parameter values of

these injections was not meant to represent any physical distribution. Table 4.3

presents the values of the parameters used to construct each blind injection.
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4.4 Binary Black hole search

The main goal of the NINJA-2 blind injection challenge was to assess the sensitiv-

ities of data analysis search pipelines to modelled signals from BBH systems using

latest NR developments. This analysis used two search pipelines. Namely, the CBC

ihope search pipeline [20] and the unmodelled burst pipeline Coherent WaveBurst

(cWB). Similar to latest the LIGO Virgo science runs the ihope search was divided

into two separate searches based on the total mass of the system. The lowmass

ihope pipeline is designed to search for BBH systems with total mass from 1M⊙

to 25M⊙ while its highmass counterpart searches for systems with total mass from

25M⊙ to 100M⊙. The author was the lead analyst for highmass BBH search and

some of the results shown in this chapter are taken from NINJA-2 blind injection

analysis.

The ihope pipeline begins by matched-filtering the detector data with a dense

bank of templates. These templates are effective-one-body inspiral-merger-ringdown

model calibrated to numerical relativity waveforms described in Ref. [63]. It is

important to note that these templates used are modeled GW signals from non-

spinning compact binaries. The filtering stage of the pipeline produces a sequence

of triggers, which are plausible events with a high signal-to-noise ratio (SNR).

The coincidence algorithm of Ref. [21] is used to keep only those triggers that

are coincident across the network of detectors, in order to reduce the false alarm

rate. Knowledge of the instruments and its environment is used to further exclude

events that are likely due to non-Gaussian noise transients, or glitches, as they are

referred to in Ref. [6]. The time periods where the rate of glitches is elevated are
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divided into three Veto categories. Veto-categories 1, 2 and 3 contain time segments

when the instrument is known, with respectively decreasing certainty, to cause

glitches in the data. These vetoes are applied to exclude especially noisy chunks

of time from the analysis, in a cumulative manner; e.g., Category-3 periods are

vetoed only after vetoing Category-1, 2 times. Signal-based consistency measures

further help distinguish real signals from background noise triggers for those that

are not vetoed and pass the coincidence test. The χ2 statistic proposed in Ref. [43]

quantifies the disagreement in the frequency evolution of the GW trigger and the

waveform template that accumulated the highest SNR for it, c.f. Eq. (4.14) of

Ref. [43]. We weight the SNR with this statistic to obtain the re-weighted SNRs of

all coincident triggers. The exact weighting depends on the mass range the search

is focused on, c.f. Eqs.(17) and (18) of Ref. [20]. Higher values of re-weighted

SNR indicate a higher likelihood of the trigger being a real signal, and it is used

as the ranking statistic to evaluate the significance, or the false alarm rate (FAR),

of all triggers.

4.5 Results

The data set used for the blind injection challenge was selected from LIGO S6 and

Virgo VSR 2/3 data and recolored to match early advanced detector sensitivities

as discussed in this chapter. Therefore, we applied the same vetoes that were

used in Ref. [9, 7]. After category 1-3 vetoes were applied, the total analyzed

time consisted of 0.6 days of coincident H1L1 data, 5.4 days of coincident L1V1

data, 6.5 days of coincident H1V1 data and 8.9 days of coincident H1L1V1 data.
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Figure 4.4: Inspiral horizon distance in Mpc for two LIGO detectors and the Virgo

detector in NINJA-2 highmass search.
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False alarm rates (FARs) were calculated in each bin using the time-shift method

described in Ref. [20].

Initially we used 100 time shifts to identify candidate events. This means in

addition to original analysis we conduct 100 more analyses by time shifting detec-

tor data by different time intervals. For each time shifted analysis we ensure the

shifted time larger than the time travel time between different detectors. In this

results all of the coincident events later associated with the blind injections were

louder than all background in the 100 time shifts. These were also the only events

to be louder than all background triggers. Using 100 time shifts we could only

bound the FAR of the events to . 10 yr−1, which is not small enough to claim a

detection. To improve our estimate, we performed as many 5 s time shifts as pos-

sible in the two calendar weeks surrounding each event. This is the same method

that was used for the blind injection described in Ref. [9]. Using the FAR esti-

mate from the extended background we estimated the false alarm probability as

1−exp[−FT ], where F is the FAR and T is the foreground analysis time. The false

alarm probability is given in Table 4.4 for each candidate.

Four blind injections were recovered by the ihope highmass search. Two of

them were found when all three detectors were taking data. Among them one

event was a triple coincident event and the other one was a double coincident

event. The remaining two event were also recovered as double coincident events

in double coincident time.

Event one was found as an H1L1 event in triple coincident time. The individual

detector SNRs for this event were 18.64 and 14.0 for H1 and L1, respectively. The

most recent highmass search for LIGO and Virgo science data runs divided events
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Event (FAR)−1 ∆M ∆q Analyzed Found Network

ID (yr) (%) (%) Detectors Detectors SNR

1 ≥ 6174 -20 380 H1L1V1 H1L1 16.34

2 ≥ 10204 32 440 H1L1V1 H1L1V1 14.12

3 ≥ 30612 -7 -30 L1V1 L1V1 14.94

4 ≥ 36963 -9 220 H1V1 H1V1 15.32

Table 4.4: This table reports the results of ihope highmass search for NINJA-2

mock data challenge. ∆M and ∆q are the percent difference in total mass and

mass ratio, respectively, between the blind injections and the candidates reported

by ihope. These values are calculated by finding (Rec - Inj)/Inj, where Rec is the

recovered parameter and Inj is the injected parameter. The recovered parame-

ters are calculated from the average value of the parameters recovered in each

detector.

into two different bins based on their template durations. For this specific event

template durations in H1 and L1 are 0.284 and 0.236 seconds. As described in

Ref. [7] and earlier chapters, events with template duration larger than 0.2 s in all

detectors are considered to be long duration events. Following the same criteria

we consider this event to be a long duration event. The re-weighted SNRs for this

events are 12.33 and 10.72. This event was found louder than all the background

events in the long duration bin.

The second event was found as an H1L1V1 event in triple coincident time.

Although there were three different events corresponding to the same event time

(i.e., H1L1, H1L1V1 and L1V1), the triple coincident event was found as the most

significant of them. The re-weighted network SNR of this event is 14.12. Despite
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Figure 4.5: Combined Inverse False Alarm Rate(IFAR) plot for H1L1V1 coincident

time after category 3 vetoes were applied. Events one and two in table 4.4 are the

triggers above all the background events.

being a triple coincident event most contribution to its SNR arises from L1 and

V1 detectors. Individual detector SNRs of H1, L1 and V1 are 6.57, 9.57 and 9.17,

respectively. The extended background estimation computed in previous studies

was only limited to double coincident events. Therefore, we considered this event

as an L1V1 event for 5 s time-slide calculations. The same procedure was used for

studying the NINJA-2 lowmass candidates [6].

The candidates of highmass search can belong to either long or short duration
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Figure 4.6: Combined IFAR plot for H1V1 coincident time before category 3 vetoes

were applied. Event four in table 4.4 is the trigger above all the background

events.
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Figure 4.7: Combined IFAR plot for L1V1 coincident time after category 3 vetoes

were applied. Event three in table 4.4 is the trigger above all the background

events.
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template bins depending on their template lengths. Therefore, there is no clear

way to understand which candidate is the strongest if loudest candidates fall into

two different bins. The third event is an L1V1 double coincident event in double

coincident time. Similar to earlier events this is also found louder than all the

background events. The re-weighted network SNR for this event is 15.94. The

individual detector SNRs are 8.97 and 12.18 in L1 and V1 detectors, respectively.

The total mass of the system found in L1 and V1 are 24.8M⊙ and 25.7M⊙, respec-

tively. This suggests the possibility that this binary system has an actual mass that

is lower than what is recovered in the highmass search owing to its template bank

range.

The fourth event is the only event that did not survive category 3 veto level.

Therefore significance of this event was calculated using triggers survived after

category 2 vetoes. The re-weighted network SNR of this event is 16.03. According

to template duration reported by ihope search, this event is also considered as a

long duration event. Although the total mass of the system found in two differ-

ent detectors are similar namely, (72.5M⊙ and 65.9M⊙), the recovered values of

individual component masses were very different in them.

4.6 Discussion

Table 4.4 also gives the percent differences in the total mass and mass ratio be-

tween the values reported by ihope and the values used to construct the blind

injections. We see that the values reported by the ihope pipeline can vary substan-

tially from the injected ones. This is not surprising since it is primarily a detection
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Figure 4.8: Omega scan for LIGO Livingston detector for the triple coincident

event 2 in table 4.4. For this event L and V were the dominant detectors compared

to LIGO Hanford.
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Figure 4.9: Omega scan for Virgo detector for the triple coincident event 2 in table

4.4. This event was louder in L1 and V1 detectors than in H1 detector. Therefore,

for the extended time-shifted analyses we only used L1 and V1 triggers.
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pipeline: many of the injections had spin, and one injection (Event 1) was outside

of the mass range searched. We also see that the high-mass search deviates from

the actual mass parameters more than the low-mass search. This, too, is expected

since the template bank in the high-mass search is more sparsely populated. In

general, templates are placed in the ihope so as to maximize detection probabil-

ity across the parameter space while minimizing computational cost. The ihope

therefore only provides a rough estimate of candidate parameters. For more pre-

cise estimates we use the parameter estimation techniques and results described

in Ref. [6]. That reference also reports the results thus obtained.

The greatest concern for a detection pipeline like ihope is whether mismatch

between templates and signals is small enough so as not to lose a substantial

amount of re-weighted SNR. Remarkably, the templates used in this search were

able to recover enough SNR of the blind injections to make them stand signifi-

cantly above background.
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Chapter 5

Results of recent LIGO, Virgo science

data searches for Compact Binary

Coalescences

5.1 Introduction

Chapters 2 and 3 of this thesis present studies of what we did with simulated

GW signals in simulated Gaussian data to test our search pipelines and improve

their detection probabilities. The main impetus behind these studies however is to

ultimately prepare for searches in real detector data with non-stationary and non-

Gaussian noise. This chapter presents a few such applications with real detector

noise. The most recent science run of LIGO, namely, the sixth Science run (S6),

started on 7 July 2009 and ended on 20 October 2010. During this time period

Virgo also finished two Science runs, the first one from from 7 July 2009 to 11
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January 2010 (VSR2), and the second one from 11 August 2010 to 20 October

2010 (VSR3). There were two all-sky, all-time searches conducted in the CBC sub

group during these Science runs, namely, the CBC low mass search and the CBC

high mass search. Both these searches employed the ihope data analysis pipeline

to search for GW signals in LIGO/Virgo data with different features specific to

each search. There was significant improvement of the data analysis software in

between two LIGO Science runs S5 and S6. This chapter presents details of such

improvements of the search pipeline, search techniques and results of the LIGO S6

and Virgo VSR2/3 low and highmass searches.

5.2 LIGO S6, Virgo VSR 2/3 search for lowmass Com-

pact Binary Coalescences

5.2.1 Overview

The lowmass search is developed to detect GW signals emitted by compact bi-

naries with total mass in the range from 2M⊙ to 25M⊙. Binary Neutron Stars

(BNSs), Binary Black Holes (BBHs) and, Neutron Star-Black Hole (NS-BH) bina-

ries are among the promising sources for this search. For such binary coalescences,

the inspiral and merger phases of the system occur in the most sensitive band of

LIGO and Virgo detectors (between 40 and 1000 Hz). Similar to earlier search

for S5 data, ihope data analysis pipeline was employed to search for GW signals.

However, compared to their S5 versions, the data analysis pipeline and techniques

were modified to make the search more efficient in detectability and latency.
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The main component of the ihope data analysis search pipeline is to matched-

filter individual detector data against the bank of templates. For this search tem-

plate wave-forms were generated at 3.5 post-Newtonian order in the frequency

domain and placed across the mass range such that no more than 3% SNR was

lost due to the discreteness of the bank. The analysis was carried only for non-

spinning GW signals. The upper limit used for the total mass in the initial stages

of the search was chosen to be 35M⊙. However, subsequant studies indicated that

waveforms of systems with total mass between 25M⊙ and 35M⊙ are more suscep-

tible to non-stationary noise in the data. Therefore, the upper mass limit used in

the later stages of the analysis was reduced to 25M⊙.

Similar to the earlier version of lowmass ihope analysis, we required GW trig-

gers to have greater than 5.5 matched-filter SNR in at least two detectors and

consistent values for masses and arrival times across different detectors to claim

that the triggers correspond to a GW candidate. However, changing the rank-

ing statistic for the lowmass search in S6-VSR2/3 can be identified as the most

significant change from its last edition. During LIGO S5 and Virgo VSR1/2 low-

mass search, effective SNR was considered as the ranking statistic. To improve the

detectability of GW signals, the new event ranking statistic re-weighted the SNR

with the reduced chi-squared statistic χ2
r [41]. To avoid effective SNR becoming

larger than SNR for χ2
r < 1, the new ranking statistic, known as new SNR, was

introduced.
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ρ̂ =






ρ

[(1 + (χ2
r)

3)/2]1/6
for χ2

r > 1,

ρ for χ2
r ≤ 1,

(5.1)

where, as before, ρ is the SNR of individual detectors.

The background rates of coincident GW events were estimated by perform-

ing time-shifted analysis to create non-physical events. For this specific search

there were 100 time-shifted analyses performed. All the background and fore-

ground events were sorted in to three different bins depending on their chirp

mass M ≡ (m1m2)
3/5(m1 + m2)

−1/5 values. In the following step, the search al-

gorithm compares the value of the ranking statistic of every GW candidate with

that of every background event to assign FAR values to every candidate. This was

computed separately for each chirp mass bin. Eventually all the FAR values for the

different bins are combined to obtain the combined FAR of each event [41]. This

value is considered as the detection statistic.

5.2.2 Search Results

Based on Science run durations and hardware upgrades LIGO S6 and Virgo VSR

2/3 low mass and high mass analyses were broken in to 4 epochs. These are

S6A from 7 July 2009 to 1 September 2009, S6B from 24 September 2009 to 11

January 2010, S6C from 6 February 2010to 25 June 2010, and S6D from 26 June

2010 to 20 October 2010 [41]. Coincident times of network of detectors with

LIGO and Virgo are categorized as H1L1, H1L1V1, H1V1 and L1V1. Here H1, L1

and V1 represent LIGO Hanford, LIGO Livingston and Virgo detectors, respectively
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Figure 5.1: Distribution of χ2 values of simulated signal injection and background

events as a function of SNR. Data was taken from a sample of S6 lowmass search.

and H1L1 denotes times when H1 ans L1 have Science run data in coincidence.

Total live times by coincident type are given in Ref. [41]. It is 70.2 days for H1L1,

37.4 days for H1L1V1, 39.1 days for H1V1 and 27.7 days for L1V1. Owing to the

fact that Virgo was not operating during the S6C epoch, the live times of coincident

types involving Virgo are less compared to those involiving LIGO detectors.

Search results reveal no GW candidates observed in data. Indeed, the strength

of the loudest events was consistent with that of the background events, obtained

from time-shifted analysis [20]. The most significant event was an L1V1 coinci-

dence in L1V1 time with combined FAR 1.2yr−1. The second and third loudest
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Figure 5.2: This plot was taken from the S6D epoch of the low-mass analysis.

FAR was calculated for every candidate to understand their significance. Most

significant events are the ones with the lowest FARs for a given search. This figure

shows the inverse of FAR or IFAR of candidates before applying the CAT 3 veto,

which removes the hardware injections from the list of candidates.

events had combined FAR of 2.2yr−1 and 5.6yr−1 respectively. Although no GW

candidates were detected, observations from the search were used to set upper

limits on coalescence rates of BNS, BBH, and NSBH systems.

The author performed the initial analysis and detector characterization of data

from multiple fortnights of the chunk 2 period of the S6D epoch. Some of the

figures here show results from those analyses (Fig. 5.2 and Fig. 5.4). No GW

candidates were observed in the data.
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Figure 5.3: The same triggers as 5.2 with CAT 3 veto applied. Once CAT 3 is

applied all triggers due to hardware injections will be removed from the figure.

All Coincs denotes all the coincident events for a given coincident time (in this

case H1L1V1).

Moreover, the search result was consistent with background estimation per-

formed with time-shifted data.

5.2.3 Blind Injection Recovery

A simulated CBC signal injection was injected into the data of the LIGO and Virgo

detectors by hardware actuation of their end test masses during S6D/VSR3 with-

out the search groups’ knowledge.
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System BNS NSBH BBH

Component masses

(M⊙)

1.35 / 1.35 1.35 / 5.0 5.0 / 5.0

Dhorizon (Mpc) 40 80 90

Non-spinning upper

limit (Mpc−3yr−1)

1.3 × 10−4 3.1 × 10−5 6.4 × 10−6

Spinning upper

limit (Mpc−3yr−1)

· · · 3.6 × 10−5 7.4 × 10−6

Table 5.1: Summary of the upper limits calculation published as a part of S6, VSR

2/3 lowmass search results Ref. [9]. Table shows rate upper limits of BNS, BBH

and NSBH coalescences, assuming canonical mass distributions. Dhorizon is the

horizon distance averaged over the time of the search [9]. The sensitive distance

averaged over all sky locations and binary orientations is Davg ≃ Dhorizon/2.26 [10,

11]. The first set of upper limits are those obtained for binaries with non-spinning

components. The second set of upper limits are produced using black holes with

a spin uniformly distributed between zero and the maximal value of Gm2/c. A

spinning BNS search was not done.
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Figure 5.4: Uncombined FAR values for the same data shown in Fig. 5.2. As ex-

plained in the search overview lowmass search divides events in three bins based

on their chirp mass (mchirp in legend) values. Note that this figure shows uncom-

bined FAR values with hardware injections.

The idea behind this blind-injection challenge was to test the data analysis

groups’ abilities to detect signals and to exercise the LIGO and Virgo Collabora-

tions’ candidate vetting procedures in the event that a real GW candidate is de-

tected. In this case, the signal was detected, without the knowledge of this blind

injection. We treated this event as a real GW signal and completed the required

analysis before the collaboration reveal the list of such injected signals.
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Figure 5.5: Uncombined FAR values for the same data shown in 5.3. As explained

in the search overview lowmass search divides events in three bins based on their

chirp mass values. Note that this figure shows uncombined FAR values without

hardware injections.

The search pipeline described above (lowmass ihope) identified a GW candi-

date corresponding to the blind injection occurring on September 16, 2010, at

06:42:23 UTC, (GPS time 968654558.0 seconds) with combined new-SNR 12.5 in

coincidence between the two LIGO detectors. The individual matched-filter SNR

obtained for this event was 15 in H1 with total mass 4.7M⊙ and 10 in L1 with total

mass 4.4M⊙. This difference in SNRs was consistent with typical differences in

antenna response factors for these differently oriented detectors [9]. Although
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Virgo was also operating at the time of the event, its smaller sensitivity, by

a factor of approximately 4, compared to the LIGO detectors, caused the Virgo

trigger to be below the SNR threshold and not pass the matched filtering step. As

a double-coincident event, it was louder than all the background events obtained

by the standard time-shifted analysis. However, with only standard 100 time shifts,

we could only bound the FAR to less than 1 in 23 years, even after folding in all

data from the entire analysis [9]. To seek a higher significance we performed all

possible multiples of 5 sec time-shifts on four calender months of data around

the event. With the extended background estimation we found five events that

had a value of detection statistic that was equal or larger than that of the original

candidate. However, these five events were coincidences of signal candidates in

H1 and noise events in L1. Background estimation with candidate removed found

no events louder than the original candidate. After considering all possible mass

bins and possible coincidences, and taking trials factors into account [41], FAR for

the event was found to be 1 in 7000 yr [41, 9]. See Fig. 3 of Ref. [9] for more

information about background estimation of the blind injection recovery.

Estimating background of a GW search in the presence of one or multiple sig-

nals is a very challenging problem. In this exercise it was relatively easy since the

event was a double-coincident event. For a triple coincident event this procedure

can be computationally very expensive. In chapter 4 we presented results from

NINJA-2 blind injection analysis. Similar to the blind injection recovery explained

in the above paragraph, in NINJA-2 we recovered multiple blind injections in our

analysis [6]. As expected, the estimated background for these candidates was

not significant enough to claim a detection. Therefore, we employed the same
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techniques described above to estimate their background. However, there were

some differences: Namely, instead of event we had to deal with multiple events

and one of them was triple-coincident event. Not having an algorithm to estimate

background for a triple-coincident event led us to treat the event as double coin-

cident, by choosing two dominant detectors out of the three that participated in

contributing the event.

Results presented in Refs. [41, 9] were taken from the standard ihope pipeline.

We also employed the blind hierarchical coherent pipeline to learn more about

the blind injection. The main motivation for running the coherent pipeline was to

confirm the findings of the standard ihope pipeline and add Virgo’s trigger to make

the event a triple-coincident event. Chapter 3 describes how the blind hierarchical

coherent search pipeline combines all available detector data streams to extract

as much information as possible. The coherent pipeline recovered blind injection

with a weighted coherent SNR [8] of 17.54. Individual component masses found

by the coherent search were 5.64M⊙ and 4.96M⊙. Although the coherent search

was able to convert ihope’s double-coincident event to a triple-coincident one in

H1L1V1 time, Virgo’s contribution was relatively weak. Therefore, the significance

of the GW event assessed by the coherent search was only slightly better compared

to the ihope results.

Figures 5.6 and 5.7 show the individual detector SNR time series and coherent

SNR time series around the event time. Figure 5.7 reveals Virgo’s signal is very

weak compared to other detectors’. Additionally, it is clear that the two peaks of

H1 and L1 time series are occurring at different times due to the time the GW takes

to travel across the distance between the detectors. However, peak of the coherent
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Figure 5.6: The SNR-squared time series computed on data from H1,L1 and V1

detectors around the time of the blind injection. This figure also shows the coher-

ently combined data stream.

SNR time series is consistent with the peak of the H1 SNR time series as the latter

had the strongest signal among all the detectors. As explained in chapter 2 the

coherent pipeline is capable of computing the null-stream for a GW event. In this

case we calculated it and compared it to the weakest detector SNR time series. The

null-stream combines individual detector data in such a way that this combination

will cancel a GW signal present in the data. Therefore, for real signals we will

see a very small null-stream but for noise artifacts may find a relatively large null-

stream. Figure 5.8 confirms that the null-stream of this event is very small and,

therefore, it is a GW event. Comparison with the weakest detector SNR time series
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Figure 5.7: Zoomed version of Fig. 5.6 for all the individual detectors and coherent

SNR-squared time series.

shows that at the time of the event the null-stream has a minimum while the SNR

time series has a maximum.

Figures 5.9 and 5.10 present some scatter plots from two weeks of data that

had the blind injection. Figure 5.10 is the zoomed version of Fig. 5.9. In these

plots the y-axis represent χ2 weighted coherent SNR (see Eqn. 2.39) and x-axis

represents a detection statistic used for earlier searches, namely, the effective SNR.

The red pluses in the figure denote foreground triggers and the black crosses repre-

sent background events. Since coherent searches do not give any extra information

for searches with two detector with different orientations, double-coincident trig-

gers have same the detection statistic for both coherent and coincident analyses.
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Figure 5.8: Comparison of the multi-detector null-stream-squared time series to

the SNR-squared time series data of the weakest detector. In this case, Virgo had

the weakest signal among all three detectors.

Therefore , the diagonal of both figures represent double coincident events. The

loudest foreground event in both figure indeed is the blind injection recovered by

the pipeline. In Fig. 5.10 it is clear that this events is slightly above the diagonal.

Although the original ihope search found the blind injection as a double-coincident

event, the coherent search converted it to a triple-coincident event with the con-

tribution of the third detector, which is Virgo in this case. However, the signal in

Virgo is too weak to give a significant contribution.
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5.3 Search for Binary Black Holes in 2009-2010 LIGO,

Virgo data

5.3.1 Overview

Similar to the low mass search presented in the previous section, the LIGO-Virgo

collaboration also searched for GW signals from BBHs in LIGO S6 and Virgo VSR

2/3 Science data. Due to the nature of the search this is also known as high-

mass search as it looks for GW signals from relatively higher mass binary compact

objects. Most promising sources for such GW signals are BBHs. As discussed in

earlier chapters, recent development in numerical relativity allows for GW signal

modeling with more accurate, full Inspiral-Merger-Ringdown (IMR) waveforms.

The highmass search in LIGO S6 and Virgo VSR 2/3 data shares some common

search strategies with its lowmass counterpart.

When we search for GW signals in detector data, it is important to simulate

some known waveforms and inject in to detector noise to analyse the performance

of the data analysis pipeline in recovering them. Also it helps to compute upper

limits for the source populations in case we fail to detect any GW signals. In this

search we used two recently developed IMR waveform families. These families

are know as EOBNRv2 (second version of Effective One Body-Numerical Relativ-

ity) and IMRPhenomB [114, 115]. The main difference of EOBNRv2 waveforms

compared to the EOBNR waveforms used for Gauusian studies presented in chap-

ter 3 is that type of numerical relativity waveforms used to calibrate two different

families of waveforms. However, banks of templates for matched-filtering were
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generated using EOBNRv1 family. The total mass in that bank ranges from 25M⊙

to 100M⊙, with individual component masses ranging from 1M⊙ to 99M⊙.

One notable change in this search is the reduced low frequency cutoff of Virgo.

This was implemented due to improved low-frequency sensitivity of Virgo. It was

reduced to 30 Hz compared to 40 Hz for LIGO. The background estimation pro-

cedure is exactly similar in this search to its low mass counterpart. To obtain

background events 100 time-shifted analyses were performed by shifting L1 and

V1 triggers relative to H1 triggers by multiples of 5 and 10 seconds, respectively.

5.3.2 Ranking Statistic

A ranking statistic helps to quantify the significance of GW and background events

found by the matched-filtering algorithm. We optimize the ranking statistic so that

it separates GW events from background events and improves the efficiency of the

search. This is where simulated signal injections become useful. From the time of

previous versions of highmass searches it is well known that signal-based vetoes

such as the χ2 test will not perform effectively for highmass signals. The higher

the mass of the binary system the shorter the GW signal from its coalescence. For

short signals with less number of cycles the χ2 test can not discriminate them from

noise artifacts well.

In the S6, VSR 2/3 the highmass data analysis team came up with a strategy

to separate GW events found by ihope pipeline into two different bins based on

the template duration of the events. Detailed studies showed that the template

durations of both foreground and background triggers vary from 0.05 to several

seconds.
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Template with short durations are occurring from higher mass systems while

low mass systems have relatively longer templates. Moreover, performance of χ2

is worse for events with template duration shorter than 0.2 seconds. This was the

main motivation behind binning triggers based on their template durations. The

bin with long duration events contains all participating triggers from H1 or L1 (or

V1, in VSR3 data) with template durations above 0.2s. If at least one trigger from

H1 or L1 (or V1, in VSR3) had a template duration below 0.2 seconds, such events

were classified as short duration events. Due to two different distributions of

background events, different choice of ranking statistic were introduced as below.

For long duration events,

ρ̂ =





ρ

[(1 + (χ2
r)

3)/2]1/6
for χ2

r > 1,

ρ for χ2
r ≤ 1,

(5.2)

was used as the ranking statistic and for short duration events. Above, χ2
r is re-

duced χ2 [7].

ρeff =
ρ

[χ2
r(1 + ρ2/50)]1/4

. (5.3)

was used as the ranking statistic.

The multi-detector detection statistic, combined SNR ρc, is then the square-

root of the quadrature sum of single-detector SNRs, of the coincident triggers

contributing to an event.
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5.3.3 Search Results

The GW strain data recorded by detectors contains large number of various tran-

sient noise events that can have features very similar to GW signals. Data quality

studies were conducted to recognize such events and remove potentially corrupted

parts of data. After careful investigation of data quality studies, we removed (“ i.e.,

vetoed”) portions of GW detector data that were corrupted. Approximately 0.47yr

of coincident data remained after applying all the vetoes. Additionally 10% of

data, known as “playground”, was preserved for tuning studies. All the vetoes

were applied and after excluding playground, there was 0.09yr of H1L1V1 coin-

cident time, 0.17yr of H1L1 time, 0.10yr of H1V1 time and 0.07yr of L1V1 time

contributing to total analysis time of 0.42yr.

There were no significant events above the background to claim a detection.

All the loudest events were consistent with the background. The event found at

GPS time 939789782 can be considered as the most significant event for the overall

search. This is a H1V1 coincident event in H1V1 time with lowest estimated FAR

of 0.41yr−1. The next few loudest events had estimated FAR of a few per year

and hence were consistent with the background. The null result of the search led

us to calculate observational upper limits for the event rates. Section V of Ref.

[7] presents details about upper limit calculations and the results, which are also

compared with the finding of the S5 highmass search.
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5.4 Discussion

Although there were no GW candidates detected in the lowmass search its up-

per limit has been improved by a factor 1.4 compared to the S5 lowmass search.

Additionally, this exercise was useful in identifying some of the factors that can

be improved in time for the ADE searches. Clearly, background estimation will

require a lot of attention due to its complex nature. Here we applied different

methods to estimate the background accurately. In many occasions we did not get

enough background events to assign a meaningful FAR value to a loud candidate.

For highmass searches there are a few issues that need to be addressed before

moving to ADE searches. One main piece of work is to develop the template place-

ment metric used by the ihope pipeline. The current version of the metric uses

only the inspiral portion of the waveform to calculate the metric. Implementing

a metric that is based on IMR waveforms will improve the detection efficiency of

future searches. Another way to improve the detection efficiency is to use spinning

waveforms for our templates. That, however, is computationally very expensive.

Moreover, it can incur a worse background. For reasons like this, less ambitious

template banks that use spin-aligned waveforms are being experimented with cur-

rently [116, 117].
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Figure 5.9: Scatter plot of foreground and background triggers for two weeks

of data that had the blind injection. The plot was produced with the results of

the coherent pipeline. The x-axis represents a detection statistic used for earlier

searches, namely, effective SNR. The effective SNR is given in Eqn. 5.3. The y-

axis represent χ2 weighted coherent SNR. The red pluses and the black crosses

represent foreground and background triggers respectively. These triggers can

be triple coincident or double coincident events. For double coincident triggers

coherent SNR and effective SNR are the same in this plot. Therefore, triggers

along the diagonal are the double coincident triggers found by the pipeline for

these two weeks of data. The loudest foreground event is the blind injection.
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Figure 5.10: Zoomed version of Fig. 5.9. All the triggers on diagonal are double

coincident events. No clear separation of foreground and background triggers

suggests all the foreground triggers are consistent with the background of the

search. Only exception is the blind injection event.
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Chapter 6

Future developments

In earlier chapters we gave details of GW searches for CBC sources. Following

the discussion of data analysis pipelines, we presented results from those studies.

In this chapter we briefly summarize how some of our findings can benefit future

searches. Powerful insights from past searches always help the next step of the

process to improve the quality of the data analysis efforts towards the first direct

detection of a GW signal.

The version of the ihope pipeline that was used for the studies presented in

previous chapters contains two matched filtering steps. Therefore, this version

of the pipeline is also known as two-stage ihope pipeline. The main idea behind

running two steps of the matched filtering process is to save computational power

by doing the more expensive signal-based veto calculation only for a selected set

of GW triggers found by the first stage of matched the filtering process. However,

with currently available computational resources it is possible to combine both

these steps of matched filtering into a single step, thereby, saving time required
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for data analysis. Different data analysis groups have already started experiment-

ing with the single stage ihope pipeline [41]. In addition to saving time, a single

stage pipeline makes it easier to track GW triggers for follow-up analysis. While

the current version of the ihope pipeline is not an on-line search, for ADE searches

it will be critical to detect GWs with low latency. The version of the ihope pipeline

employed for the most recent science run data analysis determines GW trigger

coincidences based on an ellipsoidal parameter consistency check algorithm pre-

sented in Ref. [21]. Some of the current efforts try to recover GW signals based

on exact match methods, in which GW triggers that are coincident in different

detectors are found by the same template. One disadvantage of the ellipsoidal

method is that it requires higher dimensional ellipsoids for spinning GW searches.

In ADE searches due to improvement of the sensitivity of the low frequency region

of the detector band, GW signals will spend several minutes in sensitive region

compared to seconds in initial ground-based detectors. This demands capability

of data analysis algorithms to handle significantly long waveforms.

The blind hierarchical all-sky all-time coherent analysis demonstrated expected

results for the searches presented in this thesis. However, there is still room for im-

provements for future searches, two of the main ones (a) removing the coincident

step and (b) finding a computationally efficient method for assessing the back-

ground. With these improvements ADE searches with three or more participating

detectors would gain in detection efficiency. By performing the analyses presented

in this thesis we identified limitations of blind hierarchical coherent searches and

how to improve them for an implementation of fully coherent searches. One major

drawback of current version of the coherent pipelines comes from its own struc-
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ture. Running in a hierarchical manner following the traditional ihope pipeline

does not create an opportunity to recover new GW signals. Owing to the pipeline’s

current setup, the coherent stage analyses only those GW triggers that are selected

by the ihope search as candidates. Therefore, the only way it performs better com-

pared to a coincident search is by reducing the strength of the background triggers

compared to that of GW signals. A fully coherent search will not have this limi-

tation. In chapter 3 with pN-NR simulations we compute how many signals were

not recovered owing to single detector threshold criterion in the matched filtering

step. It is clear that a GW signal with individual detector SNRs of 6.0, 5.3 and

5.4, the hierarchical search pipeline will not utilize triggers from two of the three

detectors due to their lower SNR compared to the threshold of 5.5. However, a

fully coherent search will recover such a signal, with a relatively large network

SNR.

In recent analyses the template bank placement metric of CBC searches was

calculated by using only the inspiral portion of the waveform. To obtain more

accurate results we can calculate a new metric based on the full inspiral-merger-

ringdown waveforms. Since the blind hierarchical coherent search runs as a part

of ihope pipeline it also uses the same template placement metric. Reference [28]

presents a new metric calculated based on the multi-detector F-statistics for coher-

ent searches. Employing such a metric for future searches will increase detection

efficiencies of GW searches. In ihope searches we use different template banks in

every detector. Therefore, triggers that survive till the start of the coherent analy-

sis can possibly have three different mass pairs in the three different detectors for

a given GW coincidence. Currently we use the mass pair that has highest single-
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detector SNR in all participating detectors. However, theoretically, for coherent

searches, it is possible to compute a network signal template using the metric

presented in Ref. [28] to achive a better sensitivity.

Most of the ground-based GW detectors will start collecting data as advanced

detectors in a few years. At least two LIGO detectors will start their initial Science

runs in 2015. It is important to notice that with two detectors in different sites

coherent SNR is the same as the combined SNR. Therefore, the time when at

least three detectors start collecting data will be the perfect time to introduce fully

coherent searches of the all-sky, all-time type.

Another advantage of coherent searches is that they provide for signal con-

sistency tests such as the null-stream. In a multi-detector search it is possible to

combine individual detector data streams in such way that the combination will

have the GW signal absent. In earlier chapters we described how to compute null-

stream in a multi-detector search and presented results from NINJA-2 simulations

in Gaussian and stationary data, which prove that we can use it effectively as a

multi-detector consistency test [118]. Reference [24] demonstrates how to use

null-stream in targeted coherent searches. For all-sky all-time (blind) searches we

have to verify the performance improvement in real detector data before it can

be effectively used in future searches. Joint searches for GWs with EM telescopes

will play an important role in ADE searches. To understand the nature of events

such as GRBs, joint searches can reveal more information compared to just GW

detections alone. Data analysis pipelines employed for detector characterization

in the past, such as the daily ihope pipeline [38], can do relatively quicker analysis

to search for odd behaviors of detectors. If effectively used, the null-stream can be
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a very handy tool for detector characterization in the ADE.

The coming few years will be a very exciting time for GW community. A

few ground-based interferometers will start collecting data as advanced detectors.

With improved sensitivity advanced detectors will be able to make the first direct

detection of GWs. Those observations will allow scientist to usher in the era of

gravitational-wave astronomy in the near future.
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