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Prof. Dr. Vilson Tonin Zanchin (UFABC)
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Abstract

Black holes have their proper oscillations, which are called the quasi-normal modes. The proper
oscillations of astrophysical black holes can be observed in the nearest future with the help of
gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of
the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence
and in higher dimensional theories, such as the brane-world scenarios and string theory.

This dissertation reviews a number of works, which provide a thorough study of the quasi-normal
spectrum of a wide class of black holes in four and higher dimensions for fields of various spin
and gravitational perturbations. We have studied numerically the dependance of the quasi-normal
modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet
parameter or the aether in the space-time, the dependance of the spectrum on parameters of the
black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have
studied the stability of higher dimensional Reissner-Nordström-de Sitter black holes, Kaluza-Klein
black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is
paid to the evolution of massive fields in the background of various black holes. We have considered
their quasi-normal ringing and the late-time tails.

In addition, we present two new numerical techniques: a generalisation of the Nollert improve-
ment of the Frobenius method for higher dimensional problems and a qualitatively new method,
which allows to calculate quasi-normal frequencies for black holes, which metrics are not known
analytically. Also we considered a possibility of construction of the acoustic analogue of the Schwar-
zschild black hole.
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Chapter 1

Introduction

The general relativity implies two qualitatively new phenomena, that cannot be described within
Newton’s gravity. First, there exist objects with masses so high, that the escape velocity from them
exceeds the speed of light. These objects were called black holes. Second, the general relativity
predicts gravitational waves, which appear due to finiteness of the gravitational interaction speed.
These waves may be detected in the nearest future with the help of gravitational antennas. During
last years there have been an advance in construction of the gravitational wave detectors, such as
LIGO, GEO, VIRGO, TAMA and the planned space-based detector LISA, and the detection of
gravitational waves is expected very soon [1].

One of the most promising sources of gravitational waves is collisions of black holes and/or of a
star and a black hole. The result of these processes is a black hole with higher mass, which absorbs
the gravitational waves. Therefore, the gravitational waves quickly decay and, at sufficiently late
time, can be considered as small perturbations of the black hole metric. It means that one can
study the linear perturbations, neglecting the higher order corrections. This approximation for the
late-time behavior of the gravitational waves provides a good accuracy, which was checked by full
non-linear simulations of collisions of two black holes [2].

It turns out that the late-time behavior of the gravitational perturbations does not depend on
the way they were induced. At the late-time stage of the evolution of gravitational perturbations we
observe the damping oscillations, which give way to asymptotic tails at very late time. The damping
oscillations are characterised by complex frequencies, which are called quasi-normal modes. The real
part of a complex frequency describes the actual oscillation frequency, while the imaginary part is the
decay rate of the particular oscillation. The set of the quasi-normal frequencies form the spectrum.
Being dependent only on the black hole parameters, the quasi-normal spectrum appears to be an
important characteristic of a black hole, or as it is said its footprint. Therefore, detection of the
quasi-normal modes allows us to determine the black hole parameters and compare them with those
obtained by astronomical expectations [3].

Despite they are well described by linear approximation, the quasi-normal modes, when detected,
can be used to check the general relativity as a full non-linear theory. This allows to study some
aspects of the gravitational theory that cannot be experimentally confirmed without considering
the regime of strong gravity. A good example is a phenomenon of violation of the local Lorentz
symmetry. If we assume that there exist the locally preferred state of rest at each point of the
space-time, we can describe this state by a unit time-like vector field. This vector field is called
“aether” [4]. The parameters of the theory of the aether can be bounded by post-Newton corrections
found from astronomical observations. Nevertheless, these bounds do not answer the question if
the aether exists or not. Thus, one of the possible ways to observe the effect of the aether is the

11



determination of the corresponding shift in the quasi-normal spectrum of black holes.

Another motivation for study of the black hole perturbations is checking of stability of the black
holes. This is a very important property for higher dimensional theories, such as the brane-world
scenarios and string theory [5]. Since in higher than four dimensions there is no uniqueness theorem,
stability may be the criteria which will select physical solutions among a variety of “black objects”:
black holes, black branes, black rings etc. It is easy to understand that the quasi-normal spectrum
of a stable configuration contains only damping modes, while black objects, unstable under small
perturbations, must contain at least one growing mode in their spectrum.

In addition, the quasi-normal spectrum can be interpreted in the context of the anti-de Sit-
ter/Conformal Field Theory (AdS/CFT) correspondence [6]. A black hole in the anti-de Sitter
space-time corresponds to the thermal state in the dual Conformal Field Theory. The tempera-
ture of the thermal state coincides with the Hawking temperature of the black hole. Within the
AdS/CFT duality the quasi-normal spectrum of the black hole in AdS corresponds to the poles
of the retarded Green functions on the CFT side [7]. Due to the AdS/CFT correspondence we
are able to calculate non-perturbative effects of the finite-temperature field theory at strong cou-
pling by studying black holes in the anti-de Sitter space-times. The hydrodynamic parameters of
the quark-gluon plasma were calculated within this approach, showing a good agreement with the
results obtained in the experiments on the Relativistic Heavy Ion Collider (RHIC) [8].

Within the present work we provide the detailed study of the linear perturbations of a wide
class of black holes and find the quasi-normal spectrum for scalar, Dirac, Maxwell fields and the
gravitational perturbations. We have studied quasi-normal spectra of these fields in four and higher
dimensions, within the Einstein, Einstein-Aether theories, brane-world scenarios with and without
the Gauss-Bonnet corrections. We have considered the influence of the cosmological constant on
the quasi-normal frequencies and on the asymptotic behavior of high overtones. We have calculated
quasi-normal modes of charged scalar and Dirac fields in the Kerr-Newman-de Sitter background.

Also we have studied quasi-normal spectrum of the massive scalar field for Schwarzschild,
Tangherlini and scalar hairy anti-de Sitter black holes and the massive vector field in the Schwar-
zschild background. We provided comprehensive discussions about properties of the quasi-normal
spectrum and late-time tails of massive fields. We have considered appearing of the infinitely long-
living oscillations (quasi-resonances) for particular values of the masses of the black hole and of the
field.

We prove the instability of the higher dimensional Reissner-Nordström-de Sitter black holes for
sufficiently large values of the black hole charge and of the cosmological constant. By the numerical
analysis of the quasi-normal spectrum, we support the stability of the Kaluza-Klein black holes with
squashed horizons, the instability region of the Gauss-Bonnet black holes and the long wavelength
instability of black strings. We show the appearance of those instabilities in the time domain. Also
we prove the stability of the massive scalar field in the background of the Kerr black hole.

We review the numerical methods used for our analysis: the time-domain simulation, the ap-
proximation by the Pöschl-Teller potential, the WKB approach and the Frobenius method.

We propose a generalisation of the Nollert improvement of the Frobenius method for higher
dimensional problems. This improvement provides better convergence of the numerical procedure,
which is crucial for the case when the imaginary part of the quasi-normal frequency is much larger
than its real part and for the calculation of the quasi-normal modes of massive fields.

Also we describe a new numerical tool, which we developed for the calculation of the quasi-
normal frequencies of a black hole, which metric is not known analytically, but can be found as a
numerical solution of a set of differential equations. This technique supports the natural expectation
that the dominant quasi-normal frequencies depend mainly on the region nearby the black hole and
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do not depend on the behavior of the metric at large distance. We have also checked this method
by the time-domain integration.

In addition, we discuss an interesting possibility of observation of the acoustic analogue of the
Schwarzschild black hole in laboratories.

This work is aimed to clarify a number of questions about the behavior of perturbations of black
holes. We provide a comprehensive analysis of the black hole perturbations in various theories in
order to give the complete picture of quasi-normal modes, late-time tails and stability of black holes.
The presented results were published in [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26].
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Chapter 2

Black hole perturbations

2.1 Equations of perturbations near a black hole

The dynamics of the general relativity in D space-time dimensions is described by the Einstein-
Hilbert action

S =

∫ √
|g|
(

1

16π
(R− 2Λ) + LM

)
dDx, (2.1)

where we use the geometrized unit system, so that the speed of light, c, and the gravitational
constant, γ, are set equal to one. The metric signature is chosen as (+ − − − . . .). R is the
Ricci scalar, LM describes all matter fields φ(i) appearing in the theory, and Λ is the cosmological
constant.

The variation of the action (2.1) allows to find the Einstein equations

Rab −
1

2
Rgab + Λgab = 8πTab, (2.2)

and the field equations in the curved space-time

δLM
δφ(i)

= 0. (2.3)

The energy-momentum tensor Tab in (2.2) is defined as

Tab = − 2√
−g

∂
√
−gLM
∂gab

.

The general solution of the equations (2.2, 2.3) is some metric and fields in the background this
metric

ds2 = gab(x)dxadxb, φ(i) = φ(i)(x). (2.4)

We study a stationary black hole, for which gab and φ(i) do not depend on time in the appropriate
coordinate system and gauge.

Let us consider perturbations of the metric and fields as a sum of the unperturbed background
g0
ab, φ

0
(i) and the actual perturbations δgab, δφ(i)

gab → g0
ab + δgab;

φ(i) → φ0
(i) + δφ(i).

(2.5)
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The perturbations are assumed to be small, i. e. we neglect the contributions of order O(δgab)
2,

O(δgabδφ(i)), O(δφ(i))
2 and higher.

After substituting (2.5) into (2.2, 2.3) and taking into account that g0
ab and φ0

(i) satisfy the

equations (2.2, 2.3) as well, we are able to find the set of linear equations for the perturbations δgab
and δφ(i).

In this chapter we consider the stationary spherically symmetric solution of the equation (2.2)
in 4 dimensions with Tab = 0, which describes a black hole in vacuum. This solution is given by the
well-known metric

ds2 = f(r)dt2 − dr2

f(r)
− r2(dθ2 + sin θ2dφ2), f(r) = 1− 2M

r
− Λ

r2

3
, (2.6)

where M is the black hole mass and Λ is the cosmological constant.
For Λ = 0 the metric (2.6) describes a Schwarzschild black hole. If the cosmological constant

is positive (Λ > 0), we obtain a Schwarzschild-de Sitter black hole, while for negative values of the
cosmological constant (Λ < 0) the black hole is called Schwarzschild-anti-de Sitter.

Since Tab = 0, the field perturbations in such background are not coupled to the perturbations
of the metric and, therefore, are equivalent to the test fields in the black hole background.

Let us describe the variable separation. As an example we consider the test scalar field which
satisfies the Klein-Gordon equation in the curved space-time

1√
−g

∂

∂xa
gab
√
−g∂Φ(x)

∂xb
=

1

f(r)

∂2Φ

∂t2
− ∂

∂r
f(r)

∂Φ

∂r
− 2f(r)

r

∂Φ

∂r
− ∆θ,φΦ

r2
= 0, (2.7)

where

∆θ,φ =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

is the angular part of the Laplasian.
In order to separate the angular variables we choose the following ansatz:

Φ(t, r, θ, φ) =
∞∑
l=0

l∑
m=−l

Ψl,m(t, r)

r
Yl,m(θ, φ), (2.8)

where Yl,m(θ, φ) are the spherical harmonics, which are eigenfunctions of the operator ∆θ,φ

∆θ,φYl,m(θ, φ) = −l(l + 1)Yl,m(θ, φ). (2.9)

The integers l ≥ 0 and |m| ≤ l are called the multipole number and the azimuthal number respec-
tively.

After substitution (2.8) into (2.7) we find the wave-like equation for the function Ψl,m(t, r):(
∂2

∂t2
− ∂2

∂r2
?

+ Vl(r)

)
Ψl,m(t, r) = 0, (2.10)

where the effective potential has the form

Vl(r) = f(r)

(
l(l + 1)

r2
+
f ′(r)

r

)
, l = 0, 1, 2 . . . (2.11)

The variable r? is called the tortoise coordinate. It is defined up to an arbitrary constant as

dr? =
dr

f(r)
. (2.12)
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If Λ ≥ 0 the tortoise coordinate maps all the region outside the black hole to the interval
(−∞,∞). In the anti-de Sitter space (Λ < 0) the interval becomes (−∞, r?∞), where r?∞ is a finite
value that depends on the integration constant of (2.12).

We can also consider other test fields near the black hole. In the most cases, after separation of
the angular variables, we are able to reduce the equations of motion for such fields (2.3) to the set
of the wave-like equations of the form (2.10).

One could find that the test massless Dirac field is described by the effective potentials [29]

VD± = f(r)
κ2
±

r2
± d

dr?

κ±
√
f(r)

r
, κ± = 1, 2, 3 . . . (2.13)

and the electromagnetic field is described by the potential [30]

VEM = f(r)
l(l + 1)

r2
, l = 1, 2, 3 . . . (2.14)

The equation (2.2) allows us to find the equations of motion for the metric perturbations δgab
(2.5). It is convenient to classify the tensor components δgab with respect to the transformation
law under rotations on the sphere around the black hole. They can be of scalar, vector and tensor
type, denoted by s, v and t respectively

δgab =


s s v v
s s v v
v v t t
v v t t

 . (2.15)

In order to simplify the equations for the metric perturbations we can use the invariance under
infinitesimal coordinate transformations. These transformations act as gauge transformations upon
the metric perturbations

xa → xa + δxa =⇒ δgab → δgab + δxa;b + δxb;a.

The gauge freedom allows to simplify perturbation equations [31]. After the Regge-Wheeler gauge
fixing, the perturbations are described by the potentials [30]

Vs(r) =
2f(r)

r3

9M3 + 3c2Mr2 + c2(1 + c)r3 + 3M2(3cr − Λr3)

(3M + cr)2
, (2.16)

Vv(r) = f(r)

(
l(l + 1)

r2
− 6M

r3

)
, (2.17)

c =
l(l + 1)

2
− 1, l = 2, 3, 4 . . .

for the scalar and vector types respectively. The perturbations of the tensor type in 4 dimensions
are eliminated by this gauge fixing. However, the perturbations of the higher dimensional black
hole metric can be of all the three types [32].

According to the Chandrasekhar [33] classification, the perturbations of vector type are called
axial because they impart the differential rotation to the black hole. Perturbations of scalar type
are called polar. They are related with infinitesimal deformations of the event horizon. Any pertur-
bations of a spherically symmetric black hole in 4 dimensions can be divided to its polar and axial
part in any gauge [34].
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One should note that the multipole numbers l = 0, 1 for gravitational perturbations and l = 0
for the electromagnetic field perturbations are not dynamical. For instance, l = 0 gravitational
perturbations are spherically symmetric and, therefore, obey the Birkhoff theorem. They correspond
to infinitesimal change of the black hole mass. Similarly, l = 0 perturbations of the electromagnetic
field and l = 1 gravitational perturbations correspond, respectively, to the infinitesimal shift of the
charge and the position of the black hole [31].

2.2 Time evolution of perturbations

In order to integrate the equation (2.10) numerically we use the technique developed by Gundlach,
Price and Pullin [35]. We rewrite the wave-like equation (2.10) in terms of the so called light-cone
coordinates du = dt− dr? and dv = dt+ dr?(

4
∂2

∂u∂v
+ V (u, v)

)
Ψ(u, v) = 0. (2.18)

Let us consider the operator of time evolution in these coordinates

exp

(
h
∂

∂t

)
= exp

(
h
∂

∂u
+ h

∂

∂v

)
= exp

(
h
∂

∂u

)
+ exp

(
h
∂

∂v

)
− 1 +

+
h2

2

(
exp

(
h
∂

∂u

)
+ exp

(
h
∂

∂v

))
∂2

∂u∂v
+O(h4).

Acting by this operator on Ψ, and taking into account (2.18), we find

Ψ(N) = Ψ(W ) + Ψ(E)−Ψ(S)− h2

8
V (S) (Ψ(W ) + Ψ(E)) +O(h4), (2.19)

where we introduced letters to mark the points as S = (u, v), W = (u + h, v), E = (u, v + h),
N = (u+ h, v + h).

The equation (2.19) allows us to calculate the values of Ψ inside the rhombus, which is built on
the two null-surfaces u = u0 and v = v0 (see fig. 2.1), starting from the initial data specified on
them.

Let us study, as a qualitative example, the time-domain profile of the vector type gravitational
perturbations of the Schwarzschild black hole Ψ(t, r = R) (fig. 2.2). We can divide the evolution
of the perturbations into three stages. The first stage depends on the initial conditions and on the
point R. At late time (t ∼ R) we see exponential damping of the amplitude of the perturbations,
which is followed by the so-called tails at asymptotically late time (t�M).

One can observe, that, after the initial outburst at the first stage, the behavior of the amplitude
of the perturbations does not depend on the initial conditions. Being independent on the source of
the perturbations, it depends only on the parameters of the field and the black hole. Therefore, the
late-time damping law appears to be an important characteristic of the black hole.

The exponential damping of the perturbations is called quasi-normal ringing. It can be split
to the superposition of exponentially damping oscillations, that can be represented as a set of
complex frequencies, which are called quasi-normal modes. The real part of a quasi-normal frequency
describes the actual frequency of the oscillation, while the imaginary part is its damping rate. In
the next section we will study the basic properties of the quasi-normal spectrum of black holes.

In the case under consideration, the late-time tails decay according to the inverse power law.
The qualitatively similar behavior is observed for the decay of all massless fields in asymptotically
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Figure 2.1: The integration grid. Each cell of the grid represents an integration step. The thick
points illustrate the choice of (S, W , E, N) for the particular step of the integration. The initial
data are specified on the left and bottom sides of the rhombus.

flat backgrounds. Yet, the late-time tails appear to be very sensitive to the asymptotical behavior
of the potential: in the asymptotically anti-de Sitter space-times the quasi-normal ringing governs
the decay of perturbations at all times [7]. The black hole perturbations in the de Sitter space-time
have exponential tails, if the cosmological constant is large, and both power and exponential tails,
if the cosmological constant is small [36, 37].
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Figure 2.2: The three stages of the evolution of the Schwarzschild black hole gravitational pertur-
bations (l = 2 vector type, Λ = 0, R = 22M). Time is measured in units of the horizon radius.

2.3 Properties of the quasi-normal spectrum

2.3.1 Boundary conditions

In order to study quasi-normal spectrum of a black hole it is convenient to make Fourier transform
for the function

Ψ(t, r) =
∞∑
n=0

exp(−iωnt)Qωn(r). (2.20)

Let us note that generally the functions {exp(−iωn)}, where {ωn} is the quasi-normal spectrum,
do not form basis in the vector space of the solutions of the equation (2.10). Therefore, the signal
cannot be expanded in terms of these functions for all time. Indeed, as we see on fig. 2.2, the
exponential decay is replaced by slower power-law decay at asymptotically late time. Yet, the
expansion (2.20) is appropriate to describe the quasi-normal ringing epoch.

Henceforward, we will omit the index n of ω, implying that ω is any frequency from the quasi-
normal spectrum.

The function Qω satisfies the linear equation(
d2

dr2
?

+ ω2 − V (r)

)
Qω(r) = 0. (2.21)

Thus, the searching of the quasi-normal modes is reduced to the problem of finding eigenfre-
quencies of the equation (2.21). Since we are interested in what happens in the R-region outside the
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black hole, we have to impose the boundary conditions at the event horizon and the cosmological
horizon for Λ > 0 (or the spatial infinity for Λ ≤ 0). In order do this we must study the structure
of the singularities of the equation (2.21) at those points.

Let us study the general properties of the singular points of the equation (2.21). First we note
that at any horizon r → h

V ∝ f(r) = o

(
1

r?

)
. (2.22)

To prove (2.22) we consider two types of the horizon:
1. f(r → h) = (r − h)f ′(h) + o(r − h)

then

r? =
1

f ′(h)
ln
∣∣∣ r
h
− 1
∣∣∣ (1 + o(r − h)) .

Thus, we find that the dominant contribution is

f(r → h) ∼ hf ′(h) exp (f ′(h)r?) ∼ hf ′(h) exp
(

ln
∣∣∣ r
h
− 1
∣∣∣) = o

(
1

r?

)
This term decays exponentially with respect to r? because

lim
r→h

ln
∣∣∣ r
h
− 1
∣∣∣ = −∞.

2. f(r → h) = A(r − h)α + o(r − h)α, α > 1 then

r? = − 1

A(α− 1)(r − h)α−1
(1 + o(r − h))

and

f(r → h) =
r − h

(α− 1)r?
+ o(r − h)α = o

(
1

r?

)
.

If Λ = 0, the condition (2.22) at spatial infinity is also satisfied for the potentials (2.11, 2.13,
2.14, 2.16, 2.17). Indeed, r ∼ r? and

V (r) = O
(

1

r2

)
= O

(
1

r2
?

)
= o

(
1

r?

)
.

Since the potential satisfies (2.22), the behavior of the eigenfrequency at the boundaries can be

Qω ∝ exp(±iωr?). (2.23)

The appropriate boundary conditions for the problem under consideration are purely ingoing wave
at the event horizon and outgoing wave at the cosmological horizon (spatial infinity)

r? → −∞ : Qω ∝ exp(−iωr?),
r? → +∞ : Qω ∝ exp(+iωr?).

(2.24)

This choice of the boundary conditions imply that, after the black hole is perturbed, there is no
signal, which comes from the black hole or from any remote source [33]. It means that the source
of the perturbations acts only before the first stage of the evolution. After this, we consider only
the black hole response upon the perturbations.
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For the 4-dimensional Schwarzschild-anti-de Sitter black hole (Λ < 0), one can find that the
linear independent solutions at spatial infinity (r →∞) are

Q1 ∝ r, Q2 ∝ r−2.

Since we do not suppose to have an infinite amplitude of the perturbation at the spatial infinity,
we must choose Q2 as the appropriate boundary condition there, i. e. we impose the Dirichlet
condition at the AdS boundary [7]

Qω(r =∞) = 0. (2.25)

The Dirichlet boundary conditions are usually imposed at the spatial infinity in asymptotically
anti-de Sitter backgrounds (see e. g. [38]).

2.3.2 Quasi-normal spectrum and black hole stability

Black holes do not exist in nature, that is why, the important property of any black hole solution
is its stability against perturbations. Unfortunately, it is possible to prove stability analytically
only of some relatively simple solutions of the Einstein equations. That is why the numerical test
of stability is important for the black hole study. The instability implies the existing of growing
modes in the quasi-normal spectrum. It is clear, that the linear approximation is enough for this
test. Indeed, if the black hole is stable, any perturbations will decay until the linear approximation
is valid. If the quasi-normal spectrum has a growing mode, the amplitude of perturbations will
grow until we are compelled to consider the non-linear back reaction of the perturbations upon the
metric. In this case, we state, at least, that in order to obtain the stable solution we must take into
account this non-linear correction, which could be also non-stationary.

It is important to note that the black hole is unstable if there is only one growing mode in its
spectrum. Therefore, in order to prove the black hole stability we must show that the quasi-normal
spectrum does not contain any growing mode, i. e. frequency with positive imaginary part. It
makes the numerical proof of the black hole stability extremely complicated.

Yet, in some cases we are able to prove the stability analytically. Let us multiply the equation
(2.21) by the complex conjugated Q?

ω and integrate the first term by parts

Q?
ω(r?)

dQω(r?)

dr?

∣∣∣∣∣
∞

−∞

+

∞∫
−∞

(
ω2|Qω(r?)|2 − V |Qω(r?)|2 −

∣∣∣∣dQω(r?)

dr?

∣∣∣∣2
)
dr? = 0.

Taking into account the boundary conditions (2.24) we find

iωA+ ω2B =

∞∫
−∞

(
V (r)|Qω(r?)|2 +

∣∣∣∣dQω(r?)

dr?

∣∣∣∣2
)
dr?, (2.26)

where A = |Qω(r? =∞)|2 + |Qω(r? = −∞)|2 > 0, B =

∞∫
−∞

|Qω(r?)|2dr? > 0.

The imaginary part of (2.26) reads

Re(ω)A+ 2Re(ω)Im(ω)B = 0. (2.27)

We can see that Im(ω) < 0 except for the case Re(ω) = 0. Thus, we conclude that the growing
modes do not oscillate (see sec. 5.2).
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If the potential is positive in the R-region outside the event horizon and Re(ω) = 0, the real
part of (2.26) implies that the imaginary part of the frequency remains negative

−Im(ω)A− Im(ω)2B > 0 ⇒ Im(ω) < 0.

It is clear, that the righthand side of (2.26) can be positive even though V (r) is not positive

everywhere. By introducing the new derivative D =
d

dr?
+ S(r?) we can rewrite the integral as

∞∫
−∞

(
V (r)|Qω(r?)|2 +

∣∣∣∣dQω(r?)

dr?

∣∣∣∣2
)
dr? =

∞∫
−∞

(
Ṽ |Qω(r?)|2 + |DQω|2

)
dr?−

∣∣∣∣∣
r?=∞

r?=−∞

S(r?)|Qω(r?)|2,

where Ṽ = V +
dS

dr?
−S2. Thus, we conclude that if we find the function S(r?) such as S(r? =∞) ≤ 0,

S(r? = −∞) ≥ 0 and Ṽ ≥ 0, the righthand side of (2.26) stays positive and, therefore, Im(ω) < 0.
This technique is called S-deformation and allows us to prove stability for some cases, when the

potential is not positive definite [39]. It is important to note that if we find an appropriate function
S, we prove the black hole stability. Otherwise we do not know if the black hole is stable or not.

The same approach can be used in a similar way for anti-de Sitter black holes. We must just put
r?∞ as the upper bound in the integrals and use (2.25). Then we obtain A = |Qω(r? = −∞)|2 > 0
and the requirement for S at the spatial infinity reads S(r? = r?∞) <∞.

Because we must guess the appropriate function S, the technique of S-deformation allows to
proof stability only for relatively simple potentials. For more complicated cases we are able to prove
the black hole stability only numerically.

2.3.3 Isospectrality

Let us consider two equations (2.21) with the effective potentials, taken as V + and V −, with

V ± = W 2(r?)±
dW (r?)

dr?
+ β, (2.28)

where W (r?) is some finite function and β is a constant. Then, if Q+
ω is an eigenfunction of (2.21)

for the potential V +, the eigenfunction for the potential V − is given (up to an arbitrary factor) by

Q−ω =

(
W − d

dr?

)
Q+
ω , (2.29)

corresponding to the same eigenvalue ω. Thus we conclude that the quasi-normal spectrum is the
same for the potentials V + and V −.

Let us consider the examples of isospectrality for 4-dimensional Schwarzschild((-anti)-de Sitter)
black holes. One can check [33] that the potentials (2.16) and (2.17) can be obtained by taking

W =
2M

r2
− 3 + 2c

3r
+

3c2 + 2c3 − 9ΛM2

3c(3M + cr)
− 1

3M

(
c2 + c− 3ΛM2

c

)
, β = −c

2(c+ 1)2

9M2
.

The potentials for the Dirac field (2.13) are, obviously, isospectral too.
It is clear that if one of the isospectral potentials is positive outside the event horizon, as one

can notice for Vs(r) (c ≥ 2), both do not lead to growing modes, implying stability against the
perturbations. The other possible case of stable potentials is β ≥ 0, as it happens for (2.13). In
order to prove the stability we just use the S-deformation technique with S = ±W . In fact, all the
potentials (2.11, 2.13, 2.14, 2.16, 2.17) are positive for −∞ < r? <∞, thereby, the stability of the
Schwarzschild black hole is evident.
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Chapter 3

Numerical methods of calculation of the
quasi-normal modes

3.1 Fitting time-domain data

The most direct approach to finding quasi-normal modes is the numerical integration of the equation
(2.10) as described in the section 2.2. The result of the time-domain integration is a time profile
data {Ψ(t = 0),Ψ(t = h),Ψ(t = 2h) . . .}, which can be used to calculate the quasi-normal modes.

Let us describe the simplest Prony method of fitting the profile data by superposition of damping
exponents (see e. g. [40] and references therein)

Ψ(t) '
p∑
i=1

Cie
−iωit. (3.1)

We suppose that the quasi-normal ringing epoch starts at t = 0 and ends at t = Nh, where
integer N ≥ 2p− 1. Then the formula (3.1) is valid for each value from the profile data

xn ≡ Ψ(nh) =

p∑
j=1

Cje
−iωjnh =

p∑
j=1

Cjz
n
j . (3.2)

The Prony method allows to find zi in terms of known xn and, since h is also known, to calculate
the quasi-normal frequencies ωi. In order to do this, we define a polynomial function A(z) as

A(z) =

p∏
j=1

(z − zj) =

p∑
m=0

αmz
p−m, α0 = 1. (3.3)

Let us consider the sum

p∑
m=0

αmxn−m =

p∑
m=0

αm

p∑
j=1

Cjz
n−m
j =

p∑
j=1

Cjz
n−p
j

p∑
m=0

αmz
p−m
j =

p∑
j=1

Cjz
n−p
j A(zj) = 0.

Taking into account that α0 = 1, we find

p∑
m=1

αmxn−m = −xn. (3.4)
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Substituting n = p..N into (3.4) we obtain N−p+1 ≥ p linear equations for p unknown coefficients
αm.

Let us rewrite these equations in the matrix form
xp−1 xp−2 . . . x0

xp xp−1 . . . x1
...

...
. . .

...
xN−1 xN−2 . . . xN−p




α1

α2
...
αp

 = −


xp
xp+1

...
xN

 .

Such matrix equation
Xα = −x

can be solved in the least-squares sense

α = −(X+X)−1X+x, (3.5)

where X+ denotes the Hermitian transposition of the matrix X.
After the coefficients αm of the polynomial function A(z) are found, we can calculate numerically

the roots zj of the polynom and the quasi-normal frequencies

ωj =
i

h
ln(zj).

Because the quasi-normal stage is not a precisely defined time interval, in practice, it is difficult
to determine when the quasi-normal ringing begins. In fact, when we observe explicitly damped
oscillations, we usually see only the fundamental mode, while higher overtones, which damp quickly,
are already exponentially suppressed. Being a small corrections to the signal, such higher damped
oscillations are indistinguishable from numerical errors within the described approach. Thus, the
higher overtones are difficult to find. Usually, the Prony method allows to calculate at most six roots
of the polynom A(z), including the complex conjugated ones, which correspond to the symmetry
ω ↔ (−ω∗)∗. This symmetry exists just because the wave-like equation (2.10) is real. Therefore, in
fact, we are able to calculate only two or, sometimes, three dominant frequencies.

In order to determine the beginning of the quasi-normal ringing epoch more precisely, we can use
the following technique [41]. Let us find the dominant quasi-normal mode ω1 and the corresponding
coefficient C1 at some late time interval. Then we can subtract this oscillation from the numerical
data, and obtain the profile data without the contribution of the dominant mode. After this, one
can see ringing for the first overtone. If the lifetime of the quasi-normal ringing is long enough, we
are able to find, step by step, higher overtones, making sure, that the numerical error of the initial
data is less than the signal after removing the contributions of the lower-damping modes.

3.2 Approximation by the Pöschl-Teller potential

The easiest method of calculation of the quasi-normal modes in frequency domain is approximation
of the effective potential by the Pöschl-Teller potential. This method was suggested by Bahram
Mashhoon [42, 43].

Suppose that the potential in the equation (2.21) is invariant under the following transformation

V (r∗, α) = V (−ir∗, α′),

where α is some parameter and α′ depends on α.
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Let us consider the solution of the equation with the invese potential

d2QΩ

dr2
∗

+ (−Ω2 + V )QΩ = 0, (3.6)

with the boundary conditions that are characteristic of bound states if Re(Ω) > 0

QΩ ∝ e∓Ωr∗ , r∗ → ±∞. (3.7)

It is easy to see, that this solution is related with the solution of (2.21) with the quasi-normal
boundary conditions (2.24) in a simple way

Qω(r∗, α) = QΩ(−ir∗, α′), ω(α) = Ω(α′). (3.8)

Thus, the quasi-normal mode problem is reduced now to the bound states problem for an inverse
potential V → −V , which is smooth potential gap, approaching zero at the infinite boundaries. This
gap can be approximated by the Pöschl-Teller potential

VPT =
V0

cosh2 α(r∗ − r0
∗)
, (3.9)

where V0 is the height of the effective potential and −2V0α
2 is the curvature of the potential at its

maximum. The bound states of the Pöschl-Teller potential are known in analytical form [44]

Ω = α

(
−
(
n+

1

2

)
+

(
1

4
+
V0

α2

)1/2
)
, n = 0, 1, 2, . . . (3.10)

The potential (3.9) is obviously invariant under the transformation

VPT (r∗, α) = VPT (−ir∗, iα).

Therefore, the quasi-normal modes for the inverted Pöschl-Teller potential are

ω(α) = Ω(iα) = ±
(
V0 −

α2

4

)1/2

− iα
(
n+

1

2

)
, n = 0, 1, 2, . . . (3.11)

Technically one has to fit a given effective potential to an inverted Pöschl-Teller potential. In
the chapter 7 one shall see that in many cases the behavior of the effective potential only near
the black hole is essential for determining the dominating quasi-normal modes. So that the fit of
the height of the effective potential V0 and of its curvature −2V0α

2 is indeed sufficient to estimate
quasi-normal frequencies.

This method gives quite accurate results for the regime of high multipole numbers l. In par-
ticular, for gravitational perturbations of the D = 4 Schwarzschild black holes, the fundamental
quasi-normal modes obtained by the Mashhoon method gives relative error of not more than 2%
for the lowest multi-pole l = 2, and of about fractions of one percent for higher multipoles.

There are cases when the effective potential of a black hole is exactly the Pöschl-Teller potential.
These are Schwarzschild-de Sitter [45] and Reissner-Nordström-de Sitter black holes with extremal
value of the Λ-term in D ≥ 4 space-time dimensions [46].
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Figure 3.1: The three regions separated by the two turning points Q(x) = 0.

3.3 WKB method

In order to evaluate quasi-normal modes for more complicated effective potentials it is convenient
to use the WKB (Wentzel, Kramers, Brillouin) method, which provides good accuracy. The WKB
technique was applied to finding of the quasi-normal modes of black holes for the first time by
Schutz and Will [47].

In order to simplify our notations, let us re-write the wave-like equation (2.21) in the following
form

d2Ψ

dx2
+Q(x)Ψ(x) = 0, (3.12)

i.e. we identify x ≡ r∗, Q ≡ ω2 − V , and Ψ ≡ Qω.
Let us introduce the WKB parameter ε in order to track orders of the WKB expansion. The

asymptotic WKB approximation at both infinities has the following general form

Ψ(x) ∝ exp

(
∞∑
n=0

Sn(x)εn

ε

)
. (3.13)

Substituting the expansion (3.13) into the wave equation (3.12), and equating the same powers of
ε, we find

S0(x) = ±i
x∫

x0

Q(η)1/2dη , (3.14)

S1(x) = −1

4
lnQ(x) . (3.15)

The two choices of the sign in (3.14) correspond to either incoming or outgoing waves at either of
the infinities x = ±∞.

Thus, at x→ +∞ (region I), Q(x)→ ω2 in the dominant order, so that S0 → +iωx for a wave
outgoing at the infinity and S0 → −iωx for a wave in-coming from infinity. In a similar fashion, at

28



the event horizon x→ −∞ (region III), S0 → +iωx is for wave in-coming from the event horizon,
while S0 → −iωx is for a wave out-going to the event horizon. We shall designate these four
solutions as ΨI

+, ΨI
−, ΨIII

+ and ΨIII
− respectively for plus and minus signs in S0 in I and III regions

(see fig. 3.1). Thus
ΨI

+ ∼ e+iωx, x→ +∞, ΨI
− ∼ e−iωx, x→ +∞ (3.16)

ΨIII
+ ∼ e+iωx, x→ −∞, ΨIII

− ∼ e−iωx, x→ −∞ (3.17)

The general solutions in the regions I and III are

Ψ = ZI
inΨI

− + ZI
outΨ

I
+, (3.18)

Ψ = ZIII
in ΨIII

+ + ZIII
outΨ

III
− , (3.19)

The amplitudes at x → +∞ are connected with the amplitudes at x → −∞ through the linear
matrix relation (

ZIII
out

ZIII
in

)
=

(
S11 S12

S21 S22

)(
ZI
out

ZI
in

)
. (3.20)

Now we need to match both WKB solutions of the form (3.13) in the regions I and III with a
solution in region II, through the two turning points Q(x) = 0.

If the turning points are closely spaced, i.e. if −Q(x)max � Q(±∞), then the solution in the
region II can be well approximated by the Taylor series

Q(x) = Q0 +
1

2
Q′′0(x− x0)2 +O

(
(x− x0)3

)
, (3.21)

where x0 is the point of maximum of the function Q(x), Q0 = Q(x0), and Q′′0 is the second derivative
with respect to x taken at the point x = x0. Region II corresponds to

|x− x0| <

√
−2Q0

Q′′0
≈ ε1/2. (3.22)

The latter relation gives also the region of validity of the WKB approximation: ε must be small.
Let us introduce new functions

t = (2Q′′0)1/4eiπ/4(x− x0), (3.23)

ν +
1

2
= −iQ0/(2Q

′′
0)1/2. (3.24)

Then the wave equation (3.12) takes the form

d2Ψ

dt2
+

(
ν +

1

2
− 1

4
t2
)

Ψ = 0. (3.25)

The general solution of this equation can be expressed in terms of parabolic cylinder functions
Dν(t),

Ψ = ADν(t) +BD−ν−1(it). (3.26)

Large |t| asymptotics of this solution are

Ψ ≈ Be−3iπ(ν+1)/4(4k)−(ν+1)/4(x− x0)−(ν+1)eik
1/2(x−x0)2/2+

(A+B(2π)1/2e−iνπ/2/Γ(ν + 1))eiπν/4(4k)ν/4(x− x0)νe−ik
1/2(x−x0)2/2, x� x2, (3.27)
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Ψ ≈ Ae−3iπν/4(4k)ν/4(x− x0)νe−ik
1/2(x−x0)2/2+

(B − iA(2π)1/2e−iνπ/2/Γ(−ν))eiπ(ν+1)/4(4k)−(ν+1)/4(x− x0)−(ν+1)eik
1/2(x−x0)2/2, x� x1, (3.28)

where k =
1

2
Q′′0.

Equating the corresponding coefficients in (3.27), (3.28) and eliminating A and B, we obtain
the elements of the S matrix,(

ZIII
out

ZIII
in

)
=

(
eiπν iR2eiπν(2π)1/2/Γ(ν + 1)

R−2(2π)1/2/Γ(−ν) −eiπν
)(

ZI
out

ZI
in

)
, (3.29)

where
R = (ν + 1)(ν+1/2)/2e−(ν+1/2)/2. (3.30)

When expanding in higher WKB orders, the S matrix has the same general form with just other
R, still depending only on ν. Let us note that for a black hole there are no waves “reflected by the
horizon”, so that ZIII

in = 0, and due to quasi-normal mode boundary conditions, there are no waves
coming from infinity, i.e. ZI

in = 0. Both these conditions are satisfied by (3.29), only if

Γ(−ν) =∞, (3.31)

and, consequently, ν must be integer. Then, from the relation (3.24) we find

n+
1

2
= −iQ0/(2Q

′′
0)1/2, n = 0, 1, 2, . . . . (3.32)

The latter relation gives us the complex quasi-normal modes labeled by an overtone number n with
the accuracy of the first WKB order [47]. Later this approach was extended to the third WKB
order beyond the eikonal approximation by Iyer and Will [48] and to the sixth order by Konoplya
[49, 50]. In order to make the higher order WKB extension it is sufficient to take higher orders in
ε WKB series (3.13) and to take appropriate number of consequent terms in the Taylor expansion
(3.21). Since the S-matrix (3.20) depends only on ν, its elements Sij can be found simply by solving
the interior problem in region II at higher orders in ε [48], and without explicit matching of the
interior solution with WKB solutions in regions I and III in each order.

Going over from Q to the effective potential V , the sixth order WKB formula has the form

i(ω2 − V0)√
−2V ′′0

− Λ2 − Λ3 − Λ4 − Λ5 − Λ6 = n+
1

2
, n = 0, 1, 2, .. (3.33)

where the correction terms Λi depend on the value of the effective potential and its derivatives (up
to the 2i-th order) in the maximum.

It was shown in [51] that WKB formula, extended to the sixth order, gives the relative error
which is about two orders less than that of the 3rd WKB order. Yet one should remember that
strictly speaking the WKB series converge only asymptotically and the consequent decreasing of the
relative error in each WKB order is not guaranteed. Therefore it is reasonable to develop a modified
WKB technique in the so-called optimal order [52]. The latter gives better results for moderately
higher overtones n and especially when n > l. Yet, in many cases when n ≤ l the 6th order WKB
formula gives better results than the optimal order treatment.

In some cases, the WKB approach needs modifications: for instance when considering a massive
scalar field in a black hole background, the effective potential has a local minimum far from a black
hole. This local minimum induces two changes in the WKB procedure. First, there are three turning
points which separate all space into four regions, so that three matchings are required. Second, an
influent subdominant term in the asymptotic WKB expansion at spatial infinity (3.19) appears (see
sec. 3.4.7).
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3.4 Frobenius method

3.4.1 Frobenius series

The most accurate method of searching of eigenvalues of the equation (2.21) is Frobenius method,
which allows to find quasi-normal modes with arbitrary precision and does not require special form
of the effective potential. This method allows to calculate also higher overtones of black holes. It
was done for the first time by E. W. Leaver for Schwarzschild and Kerr black holes [53].

Let us consider the second order differential equation of more general form than (2.10)(
d2

dr2
+ p(r)

d

dr
+ q(r)

)
R(r) = 0, (3.34)

where the functions p(r) and q(r) depend on the eigenfrequency ω.
Let us start from the analysis of character of singular points of this equation. There are two

points, which are always singular: the event horizon r = r+ and the cosmological horizon (or the
spatial infinity) r = r∞. Usually, there are also other singular points, that depend on p(r) and
q(r). By definition, the quasi-normal modes are eigenvalues of ω with the boundary conditions that
correspond to the outgoing wave at the cosmological horizon (spatial infinity) and the ingoing wave
at the black hole event horizon. So, we are able to define the function R(r) as a multiplication of
some factor and the Frobenius series. The factor is divergent at these singular points. It is chosen in
order to the series be convergent in the region r+ ≤ r ≤ r∞. If p(r) and q(r) are rational functions
of r, we can construct such series in terms of the rational functions,

R(r) =



(
r − r∞
r − r0

)iΩ(
r − r+

r − r0

)−iβ ∞∑
k=0

bk

(
r − r+

r − r0

r∞ − r0

r∞ − r+

)k
, r∞ <∞,

eiΩr(r − r0)σ
(
r − r+

r − r0

)−iβ ∞∑
k=0

bk

(
r − r+

r − r0

)k
, r∞ =∞.

(3.35)

The values Ω, σ and β are defined in order to satisfy (3.34) in the singular points r = r+ and
r = r∞. The quasi-normal boundary conditions fix Re(Ω) and Re(β), which must be chosen of the
same sign as Re(ω).

Let us consider the series

u(z) =
∞∑
k=0

bkz
k. (3.36)

If all the singular points of the equation (3.34) satisfy |z| > 1, the series (3.36) are convergent at
z = 1 (r = r∞), if and only if the value of ω is the eigenfrequency of the equation (3.34). If there
is at least one singular point inside the unit circle, one has to continue the series (3.36) through
some midpoints (see sec. 3.4.4) in order to test the convergence at the cosmological horizon or at
the spatial infinity.

Note, that the definition of z contains an arbitrary parameter r0 < r+. In most cases, it can be
chosen in order to move all the singularities outside the unit circle.

3.4.2 Method of a continued fraction

Substituting (3.35) into (3.34), one can obtain an N -term recurrence relation for the coefficients bi

min(N−1,i)∑
j=0

c
(N)
j,i (ω) bi−j = 0, i > 0 , (3.37)
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where the coefficients c
(N)
j,i (ω) (0 ≤ j ≤ min(N − 1, i)) depend on ω.

We now decrease the number of terms in the recurrence relation

min(k,i)∑
j=0

c
(k+1)
j,i (ω) bi−j = 0 (3.38)

by one, i. e. we find c
(k)
j,i (ω), which satisfy the equation

min(k−1,i)∑
j=0

c
(k)
j,i (ω) bi−j = 0 . (3.39)

For i ≥ k, we can rewrite the above expression as

c
(k+1)
k,i (ω)

c
(k)
k−1,i−1(ω)

k∑
j=1

c
(k)
j−1,i−1(ω) bi−j = 0. (3.40)

Subtracting (3.40) from (3.38) we find the relation (3.39) explicitly. Thus we obtain,

c
(k)
j,i (ω) = c

(k+1)
j,i (ω), j = 0, or i < k,

c
(k)
j,i (ω) = c

(k+1)
j,i (ω)−

c
(k+1)
k,i (ω) c

(k)
j−1,i−1(ω)

c
(k)
k−1,i−1(ω)

.

This procedure is called Gaussian eliminations, and allows us to determine the coefficients in the
three-term recurrence relation numerically for a given ω up to any finite i

c
(3)
0,i bi + c

(3)
1,i bi−1 + c

(3)
2,i bi−2 = 0, i > 1 (3.41a)

c
(3)
0,1 b1 + c

(3)
1,1 b0 = 0. (3.41b)

The complexity of the procedure is linear with respect to i and N .
If the the Frobenius series are convergent, we are able to find b1/b0 from (3.41b) and substitute

it into (3.41a)

b1

b0

= −
c

(3)
1,1

c
(3)
0,1

= −
c

(3)
2,2

c
(3)
1,2−

c
(3)
0,2c

(3)
2,3

c
(3)
1,3−

c
(3)
0,3c

(3)
2,4

c
(3)
1,4−

. . . . (3.42)

Finally we find

0 = c
(3)
1,1 −

c
(3)
0,1c

(3)
2,2

c
(3)
1,2−

c
(3)
0,2c

(3)
2,3

c
(3)
1,3−

. . . , (3.43)

what can be inverted n times

c
(3)
1,n+1 −

c
(3)
2,nc

(3)
0,n−1

c
(3)
1,n−1−

c
(3)
2,n−1c

(3)
0,n−2

c
(3)
1,n−2−

. . .
c

(3)
2,2c

(3)
0,1

c
(3)
1,1

=
c

(3)
0,n+1c

(3)
2,n+2

c
(3)
1,n+2−

c
(3)
0,n+2c

(3)
2,n+3

c
(3)
1,n+3−

. . . . (3.44)

The equation (3.44) with the infinite continued fraction on the right-hand side can be solved
numerically by minimising the absolute value of the difference between the left- and right-hand
sides. The equation has an infinite number of roots (corresponding to the quasi-normal spectrum),
but for each n, the most stable root is different. In general, we have to use the n times inverted
equation to find the n-th quasi-normal mode. The requirement that the continued fraction be itself
convergent allows us to restrict its depth by some large value, always ensuring that an increase in
this value does not change the final results within the desired precision.
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3.4.3 Nollert improvement

It turns out, that the convergence of the infinite continued fraction becomes worse, if the imaginary
part of ω increases with respect to the real part. It means that in order to calculate the higher over-
tones correctly, we must increase the depth of the continued fraction, what dramatically increases
the time of calculation. The convergence is bad also if r0 in (3.35) is not a singular point. Such
fixing of r0 is necessary to move all the singular points outside the unit circle for higher-dimensional
Schwarzschild black holes.

The problem of slow convergence was circumvented in [54] for the three-term recurrence relation
and generalised for higher N in [18]. Let us consider

− bn
bn−1

= Rn =
c

(3)
2,n+1

c
(3)
1,n+1−

c
(3)
0,n+1c

(3)
2,n+2

c
(3)
1,n+2−

. . . , (3.45)

that for large n can be expanded as

Rn(ω) = C0(ω) +
C1(ω)√

n
+
C2(ω)

n
+ . . . . (3.46)

In order to find the coefficients Cj of (3.46), we divide the equation (3.37) by bi−N+1 and use
the definition Rn = −bn/bn−1. We find the equation with respect to Rn

N−1∑
j=0

(−1)j c
(N)
j,i (ω)

N−2−j∏
k=0

Ri−k = 0. (3.47)

For large n, c
(N)
j,n (ω) ∝ n2. Thus, substituting the expansion (3.46) into (3.47), we find

lim
n→∞

1

n2

N−1∑
j=0

(−1)j c
(N)
j,n (ω)CN−1−j

0 (ω) = 0 . (3.48)

In general, the equation (3.48) has N − 1 roots (in fact there are multiple roots). One of the
roots (also multiple) is always C0 = −1, implying the unit radius of convergence of the series (3.35).
Other roots appear due to the existing of additional singular points of the equation (3.34). Thus
we choose C0 = −1.

After fixing C0 = −1 one can find an equation with respect to C2
1 . In order to fix the sign of C1

we can use the convergence of the series (3.35) at z = 1. Therefore,

lim
n→∞

bn = 0, i. e. @N : ∀n > N |bn| > |bn−1|.

Since for large n we have
bn
bn−1

∼ −Rn ∼ −C0 −
C1√
n

= 1− C1√
n
,

we find out that the real part of C1 cannot be negative.
After the sign of C1 is fixed, the other coefficients in (3.46) can be found step by step from (3.47)

without encountering indeterminations.
Since we can calculate the coefficients Cj, the expansion (3.46) could be used as an initial

approximation for the “remaining” infinite continued fraction. In order to ensure the convergence
of (3.46) for a given value of ω, one has to start from the found approximation deeply enough inside
the continued fraction (3.44). The expansion gives a good approximation for Rn. Therefore, the
required depth is less than it would be, if we started from some arbitrary value.
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3.4.4 Continuation of the Frobenius series through midpoints

Let us consider the case when we are unable to fix the parameter r0 in (3.35) in such a way that all
the singularities, except r = r+ and r = r∞, move outside the unit circle. In this case there is at
least one singularity, for which |z| < 1. This singularity implies smaller radius of convergence for
the series (3.36). In order to test that the function u(z) is convergent at z = 1, we must continue
the series analytically, by constructing iteratively the expansions of u(z) at some midpoints [55].

Namely, we equate the series expansion at two points

u(z) =
∞∑
n=0

bnz
n =

∞∑
n=0

b̃n(z − z0)n, (3.49)

where z = z0 is a midpoint inside the radius of convergence of (3.36).
The coefficients b̃n also satisfy the N -term recurrence relation, which could be reduced to the

three-term one
c̃

(3)
0,i b̃i + c̃

(3)
1,i b̃i−1 + c̃

(3)
2,i b̃i−2 = 0, i > 1. (3.50)

In order to find b̃1/b̃2, we must use the condition at the event horizon by taking into account (3.49),

b̃0 =
∞∑
n=0

bnz
n
0 , b̃1 =

∞∑
n=1

nbnz
n−1
0 . (3.51)

From (3.41b) and (3.41a) we find the coefficients bn and substitute them into (3.50). If z = 1 is the
closest singular point to z = z0, we obtain the equation with respect to ω as

b̃1

b̃0

= −
c̃

(3)
2,2

c̃
(3)
1,2−

c̃
(3)
0,2c̃

(3)
2,3

c̃
(3)
1,3−

c̃
(3)
0,3c̃

(3)
2,4

c̃
(3)
1,4−

. . . . (3.52)

Otherwise one has to repeat the procedure, by constructing the series (3.49) for the next midpoints
z1, z2, z3, . . ., until the cosmological horizon (or spatial infinity) appears to be inside the radius of
convergence.

One should note, if the convergence of the continued fraction on the right-hand side of (3.52) is
slow, one can use the Nollert improvement. Since the radius of convergence of the Frobenius series
is now less than one (R < 1), we must choose C0 = −R−1 in (3.46).

3.4.5 Generalisation of the Frobenius series

The series expansion (3.36) is not necessarily to be done in terms of power of a rational function
of r. For some purposes, the more convenient choice is expansion in terms of an other full set of
functions in the appropriate Hilbert space. Here we consider, as an example, a Kerr-Newman-de
Sitter black hole, that is described by the line element

ds2 = −ρ2

(
dr2

∆r

+
dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2
[adt− (r2 + a2)dϕ]2 +

∆r

(1 + α)2ρ2
(dt− a sin2 θdϕ)2, (3.53)

where
∆r = (r2 + a2)

(
1− α

a2
r2
)
− 2Mr +Q2,

∆θ = 1 + α cos2 θ, α =
Λa2

3
,

(3.54)
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M is the black hole mass, Q is the charge, a is the rotation parameter, and Λ is the cosmological
constant.

After separation of the variables, the angular part of the massless (charged) field equation of
motion can be reduced to [56](

d

dx
(1 + αx2)(1− x2)

d

dx
+ λ− s(1− α) +

(1 + α)2

α
ξ2 − 2αx2+

1 + α

1 + αx2

(
2s(αm− (1 + α)ξ)x− (1 + α)2

α
ξ2 − 2m(1 + α)ξ + s2

)
− (3.55)

− (1 + α)2m2

(1 + αx2)(1− x2)
− (1 + α)(s2 + 2smx)

1− x2

)
S(x) = 0,

where λ is the separation constant ξ = aω, x = cos(θ), s is the field spin and m is the projection of
the angular momentum of the field onto the axis of the black hole rotation, 0 ≤ s ≤ 2 and m are
(half)integers.

The appropriate series for the function S are [56]

S(z) = zA1(z − 1)A2(z − zs)A3(z − z∞)
∞∑
n=0

bnun(z), (3.56)

where

z =

√
α− i
2

x+ 1

x
√
α− i

, zs = −i(1 + i
√
α)2

4
√
α

, z∞ = −i(1 + i
√
α)

2
√
α

,

A1 =
|m− s|

2
, A2 =

|m+ s|
2

, A3 = ± i
2

(
1 + α√
α
ξ −
√
αξ − is

)
,

and the expansion is done in terms of the Jacobi polynomials

un(z) = F (−n, n+ ω̄; γ; z) = (−1)n
Γ(2n+ ω̄)n!

Γ(n+ γ)
P (ω̄−γ,γ−1)
n (2z − 1),

where ω̄ = 2A1 + 2A2 + 1 and γ = 2A1 + 1.
The coefficients bn in (3.56) satisfy the three-term recurrence relation (3.41a, 3.41b) with

c
(3)
0,n = ± i√

α
ξ

n(n+ A1 + A2 ∓ s)(n+ 2A2)

2(2n+ 2A1 + 2A2 + 1)(n+ A1 + A2)
, (3.57)

c
(3)
1,n =

i√
α

{
±ξ Jn

2(n+ A1 + A2)(n+ A1 + A2 − 1)

+
(n− 1)(n+ 2A1 + 2A2)

4
(3.58)

−1

4

[
λ− 2A1A2 − A1 − A2 + 2

(
m+ s∓ (2A1 + 1)

)
ξ − m2 − s2

2
− s
]}

,

c
(3)
2,n = ∓ i√

α
ξ

(n− 1 + A1 + A2 ± s)(n− 1 + 2A1)(n− 1 + 2A1 + 2A2)

2(2n+ 2A1 + 2A2 − 3)(n− 1 + A1 + A2)
, (3.59)

where

Jn = (n−1)(n+2A1+2A2)(A1−A2)+(A1+A2±s+1) ((n− 1)(n+ 2A1 + 2A2) + (2A1 + 1)(A1 + A2)) .
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Since the series (3.56) must be convergent at z = 1, we can solve numerically the equation (3.44),
and find, thereby, the separation constant as a function of frequency.

In the Reissner-Nordström-de Sitter limit (a→ 0) the equation (3.44) is reduced to c
(3)
1,n = 0. In

this case the value of λ does not depend on ω

λ = (l − s+ 1)(l + s), l = n+ A1 + A2 ≥ max(|m|, |s|).

3.4.6 Frobenius series for the radial part of the charged field equation
in the Kerr-Newman-de Sitter background

The radial part of the massless (charged) field equation of motion is of the form (3.34) and reads
[56] {

∆−sr
d

dr
∆s+1
r

d

dr
+

1

∆r

(
K2 − isK d∆r

dr

)

+4is(1 + α)ωr − 2α

a2
(s+ 1)(2s+ 1)r2 + 2s(1− α)− 2isqQ− λ

}
R(r) = 0, (3.60)

where K = [ω(r2 + a2)− am](1 + α)− qQr, q is the field charge.
The appropriate Frobenius series are found to be [22]

R(r) =

(
r − r+

r − r−

)−s−2iK(r+)/∆′r(r+)

eiB(r)r−2s−1u

(
r − r+

r − r−
r∞ − r−
r∞ − r+

)
(3.61)

Note, that, in order to obtain the recurrence relation for both types of the boundaries (asymptot-

ically flat and de Sitter), we introduce the exponent eiB(r) such that
dB(r)

dr
=

K

∆r

. This exponent

describes an outgoing wave at the horizons and spatial infinity. Thus we have to compensate the
outgoing wave at the event horizon. That is why the factor 2 appears in the power of the first
multiplier in (3.61). The parameter r0 is fixed to be the inner horizon r−, in order to move all the
singularities outside the unit circle and, at the same time, to provide the best convergence of the
infinite continued fraction (3.44).

Since λ can be calculated numerically as a function of ω (see section 3.4.5), we are able to solve
the equation (3.44) with respect to ω.

In the Reissner-Nordström-de Sitter limit (a = 0) for neutral field (q = 0) we obtain K = ωr2

and

R(r) =

(
r − r+

r − r−

)−s−iω/κ
eiωr?r−2s−1u

(
r − r+

r − r−
r∞ − r−
r∞ − r+

)
. (3.62)

The tortoise coordinate is defined by dr? =
r2dr

∆r

, and κ =
∆′r(r+)

2r2
+

is the surface gravity on the

event horizon.

3.4.7 Frobenius series for the massive scalar field equation in the
higher-dimensional Reissner-Nordström-de Sitter background

A D-dimensional Reissner-Nordström-de Sitter black hole is described by the metric

ds2 = f(r)dt2 − dr2

f(r)
− r2dΩD−2, (3.63)
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where dΩD−2 is the line element of a (D − 2)-dimensional sphere,

f(r) = 1− 2M

rD−3
+

Q2

r2D−6
− 2Λr2

(D − 1)(D − 2)
. (3.64)

After separation of the angular and time variables, the radial part of the massive scalar field
equation of motion (� + µ2)Ψ = 0 is reduced to the wave-like equation(

d2

dr2
?

+ ω2 − f(r)

(
µ2 +

l(l +D − 3)

r2
+
f ′(r)(D − 2)

2r
+
f(r)(D − 2)(D − 4)

4r2

))
r
D−2

2 R(r) = 0,

(3.65)
where integer l = 0, 1, 2 . . . parameterises the angular separation constant.

The Frobenius series for this case are

R(r) =

(
r − r+

r − r0

)− iω
κ

eiA(r)r−
D−2

2 u

(
r − r+

r − r0

r∞ − r0

r∞ − r+

)
, (3.66)

where κ =
1

2
f ′(r+), eiA(r) describes the outgoing wave for the spatial infinity and the horizons

dA(r)

dr
=

√
ω2 − µ2f(r)

f(r)
. The sign in the exponent is fixed by the quasi-normal boundary condition:

the real part of A(r → r∞) must be of the same sign as the real part of the eigenfrequency ω. This
choice of the sign makes the wave outgoing at the cosmological horizon (or spatial infinity).

For massless field (µ = 0) this exponent is eiωr? [20] and the Frobenius series read

R(r) =

(
r − r+

r − r0

)− iω
κ

eiωr?r−
D−2

2 u

(
r − r+

r − r0

r∞ − r0

r∞ − r+

)
. (3.67)

Since for D = 4 we can choose r0 = r−, we come to (3.62) (s = 0).

At the cosmological horizon we can observe the same asymptotical behavior of the exponent

eiA(r) ∼ eiωr? , r → r∞ <∞.

If Λ = 0, D ≥ 5, f(r) = 1 + o(r−1) we can write the Frobenius series as [18]

R(r) =

(
r − r+

r − r0

)− iω
2κ

eir
√
ω2−µ2

r−
D−2

2 u

(
r − r+

r − r0

)
. (3.68)

For D = 4 the term of order ∼ r−1 in f(r) leads to the non-trivial contribution [57]

R(r) =

(
r − r+

r − r0

)− iω
2κ

eir
√
ω2−µ2

(r − r0)ir+
√
ω2−µ2+ir+2µ2/2

√
ω2−µ2

r−
D−2

2 u

(
r − r+

r − r0

)
. (3.69)

The same approach could be applied for the equations of motion for the Maxwell field and the
gravitational perturbations, because their radial part can be reduced to the form (3.34) [58, 59].
Practically, the continued fraction coefficients appear to be so complicated for such cases, that we
are unable to compute quasi-normal modes with this method during reasonable time.
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3.5 Horowitz-Hubeny method

In order to find quasi-normal modes in the asymptotically anti-de Sitter space-times, usually we
need to impose the Dirichlet boundary conditions at the spatial infinity. Thus, we can find the
appropriate expansion for the function R(r) in (3.34) without consideration of the singularity point
at the infinity. This method was proposed by Horowitz and Hubeny [7]. Namely, we define

R = z−iω/(2κ)ψ(z), z =
r − r+

r − r−
, (3.70)

where κ is the surface gravity at the event horizon.
If we substitute (3.70) into (3.34), we find that ψ(z) satisfies the equation

s(z)ψ′′(z) +
t(z)

z
ψ′(z) +

u(z)

z2
ψ(z) = 0, (3.71)

where

s(z) =
Ns∑
n=0

snz
n, t(z) =

Nt∑
n=0

tnz
n, u(z) =

Nu∑
n=1

unz
n,

are polynomial functions of z.
Since the function ψ(z) is regular at the event horizon z = 0, we can expand it as

ψ(z) =
∞∑
n=0

anz
n. (3.72)

The Dirichlet boundary condition at the spatial infinity ψ(1) = 0 reads

∞∑
n=0

an = 0. (3.73)

Substituting (3.72) into (3.71), we can find the recurrence relation for the coefficients an

an = −
n−1∑
k=0

ak
k(k − 1)sn−k + ktn−k + un−k

n(n− 1)s0 + nt0
. (3.74)

The equation (3.74) allows to calculate all an starting from an arbitrary a0, which fixes the
scale of ψ(z). Substituting an into (3.73), we find the equation with respect to the eigenvalue ω.
Practically, since the series (3.73) are convergent, we sum over some finite number of terms and
solve (3.73) with respect to ω. In order to ensure that this truncation does not cause incorrect result
we have to increase the number of terms until the value of ω does not change within the required
precision.

Note, that, for the sum (3.73) to be convergent, r− has to be a singular point of the equation
(3.34), and all the other singularities, except r = r+ and r = r∞, must lay outside the unit circle
|z| > 1. If both of these conditions are impossible to satisfy, we must use the continued fraction
method with the appropriate fixing of the behavior of R at spatial infinity.
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Chapter 4

Perturbations of four-dimensional black
holes

4.1 Quasi-normal modes of Schwarzschild and

Schwarzschild-de Sitter black holes

Perturbations of four-dimensional black holes were studied extensively in the context of possibility
to observe quasi-normal ringing with the help of gravitational wave detectors (see reviews [34, 60]).
Since in our Universe the cosmological constant appears to be positive, its correction to the quasi-
normal spectrum must be taken into account. Gravitational perturbations of spherically symmetric
black holes in the de Sitter background were studied for the first time by the numerical integration
(see sec. 2.2) in [30].

In [9] we study for the first time quasi-normal modes of massless Dirac and electromagnetic
field in the Schwarzschild-de Sitter background. Also we study massless scalar and gravitational
perturbations of Schwarzschild-de Sitter black holes, using the 6-th order WKB approach (see sec.
3.3), which provides more accurate results. Namely, we substitute the effective potentials for the
scalar, electromagnetic, Dirac and gravitational perturbations (2.11, 2.13, 2.14, 2.16, 2.17) into the
WKB formula (3.33) and find, that the presence of the cosmological constant leads to decrease of
the real oscillation frequency and to a slower decay (see fig. 4.1).

For large l the following analytical expressions were found [9]

ω =

√
1− 9M2Λ

3
√

3M

(
l +

1

2
−
(
n+

1

2

)
i

)
+O

(
1

l

)
, (4.1a)

ω =

√
1− 9M2Λ

3
√

3M

(
κ± −

(
n+

1

2

)
i

)
+O

(
1

κ±

)
. (4.1b)

As the black hole mass approaches its extremal value, the effective potentials (2.11, 2.13, 2.14, 2.16,
2.17) look like the Pöshl-Teller potential (see sec. 3.2). Thus, using the Pöshl-Teller approach,
it was found in [45] that in the near-extremal limit of the Schwarzschild-de Sitter black hole the
quasi-normal frequencies are proportional to the surface gravity at the event horizon κ = 1

2
f ′(r+)

ω = κ

(√
(l + 1− s)(l + s)− 1

4
− i
(
n+

1

2

))
+ o(κ), (4.2a)

ω = κ

(√
κ2
± −

1

4
− i
(
n+

1

2

))
+ o(κ). (4.2b)
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Figure 4.1: Real and imaginary parts of the fundamental quasi-normal frequency of the
Schwarzschild-de Sitter black hole for scalar (l = 2), electromagnetic (l = 2), gravitational (l = 2),
and Dirac (κ = 2) perturbations plotted with solid blue, dashed red, dot-dashed green and dotted
black lines respectively.

Despite the dominant contribution of the imaginary part does not depend on the field spin s,
the metric perturbations decay slower among the considered perturbations for all values of Λ.

4.2 High overtones in the quasi-normal spectrum

Though, practically, we can observe only low-damping oscillations, the frequencies with large imag-
inary part attracted some attention in the context of the black hole thermodynamics. Such frequen-
cies are called high overtones. Since their imaginary part is very large, the WKB approach is not
appropriate and one should use the more accurate Frobenius method (see sec. 3.4).

It has been suggested in [61] that the asymptotic value of the real part of the quasi-normal
frequency (i. e. when the imaginary part approaches infinity) coincides with the so-called Barbero-
Immirzi parameter [62, 63]. This parameter must be fixed in order to predict the Bekenstein-
Hawking formula for entropy within the framework of Loop Quantum Gravity. For Schwarzschild
black holes it was found numerically [54] and analytically [64] that the asymptotical behavior of the
quasi-normal frequency is given by

ωnr+ =
ln(3)

4π
− i(n+ 1/2)

2
+O(n−1/2)

for the gravitational perturbations and for the test scalar field, while for the electromagnetic per-
turbations the real part asymptotically approaches zero

ωnr+ = −in
2

+O(n−1/2).

We have shown numerically in [11] that for perturbations of the massless Dirac field, the asymp-
totical value of the real part of the highly damping quasi-normal frequencies is also zero (see fig.
4.2). The correct spacing of the imaginary part was found later in [65], with an alternative form of
the effective potential for the Dirac perturbations. The asymptotical formula for the high overtones
of the massless Dirac field in the Schwarzschild background reads

ωnr+ ∼ −
in

2
.
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Figure 4.2: Real part of the highly damping quasi-normal frequencies as a function of imaginary
part (κ± = 1 perturbations of the massless Dirac field in the Schwarzschild background). The
frequencies are measured in inverse units of the black hole mass.

Using the Frobenius method (see sec. 3.4), for Schwarzschild-de Sitter black holes we have found
for the first time in [10] that again the real part of the quasi-normal frequencies for electromagnetic
perturbations asymptotically approaches zero, satisfying

ωn ∼ iκn
⋃

ωn ∼ iκ∞n,

where κ = 1
2
f ′(r+) and κ∞ = 1

2
f ′(r∞) are the surface gravities at the black hole horizon and the

cosmological horizon respectively (see fig. 4.3). This result was later confirmed analytically in [66].
The real part of the quasi-normal modes for metric perturbations does not approach a constant.

Frequencies with high imaginary part satisfies the non-algebraic equation

cosh

(
πω

κ
− πω

κ∞

)
+ 3 cosh

(
πω

κ
+
πω

κ∞

)
∼ 0,

which implies oscillation of the real part as a function of the imaginary part (see fig. 4.4).

4.3 Decay of charged scalar and Dirac fields in the Kerr-

Newman-de Sitter background

For charged black holes, the scalar field electrodynamics can describe the interaction of a charged
field with the electromagnetic background of the black hole. When the influence of the spin of
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Figure 4.3: Real part of highly damping quasi-normal frequencies as a function of imaginary part
for Schwarzschild-de Sitter black hole (l = 1 electromagnetic perturbations, ΛM2 = 0.02). The
frequencies are measured in inverse units of the black hole mass.

the field is neglected, we can consider the charged scalar field. The late-time tails of the charged
scalar hair were studied for the first time by Hod [67, 68] in the context of the gravitational collapse.
Quasi-normal modes of the charged scalar field for various black holes were studied for the first time
in [69]. Quasi-normal modes of the charged massive scalar field for Reissner-Nordström black holes
were considered in [70]. Decay of the charged Dirac field in the Reissner-Nordström background
was studied in [71]. The decay law for the late-time tails of the charged massive Dirac field also was
found for Reissner Nordström [72] and Kerr-Newman [73] black holes. Yet, the calculations of the
quasi-normal modes in the above papers were limited by the third order WKB accuracy. The WKB
accuracy does not allow to study the quasi-normal modes of the near extremal charged black holes.
Namely, the decay rate of charged fields in the near extremal Reissner-Nordström background is
the same within the WKB accuracy.

The numerical study of quasi-normal frequencies of the charged fields (both scalar and Dirac)
in the Kerr-Newman-de Sitter background was done in [22] within a much more accurate Frobenius
method (see sec. 3.4.5, 3.4.6). We have shown that for not very large value of Q, the charged field
decays quicker than the neutral one. For the near extremal value of Q, the charged field decays
slower than the neutral one (see fig. 4.5).

Let us summarise briefly what happens if a black hole has charge and rotation. We measure all
the quantities in units of the size of the event horizon.

• As we know from previous sections, the presence of the cosmological constant decreases the
absolute values of the real and imaginary parts of ω.

42



10000 20000 30000 40000
Im w

0.038

0.042

0.044

0.046

Re w

Figure 4.4: Real part of highly damping quasi-normal frequencies as a function of imaginary part
(l = 2 metric perturbations of the Schwarzschild-de Sitter black hole, ΛM2 = 0.02). The frequencies
are measured in inverse units of the black hole mass.
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Figure 4.5: Real part and imaginary part of the fundamental quasi-normal frequency of charged (q)
scalar field (l = 0) for the charged (Q) black hole.
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• We already know, that as the multipole number l increases, the real part of ω grows, while
the imaginary part of ω approaches a constant.

• Metric perturbations decay slower than any field perturbations of the same l.

• The dependance of ω on charge of the field q and of the black hole Q is shown on figure 4.5

– If qQ > 0, the real part of ω monotonically grows as the field charge q increases. It grows
also as the black hole charge Q increases, attains some maximum value at a large (close
to extremal) value of Q, and then decreases.

– If qQ < 0, the real part of ω decreases when either the black hole charge or the field
charge increases.

– The imaginary part of ω has more difficult behavior, in most cases decreasing its absolute
value as qQ grows.

• The influence of the rotation parameter depends significantly on the projection of the field
momentum on the axis of the black hole rotation m. We will consider this dependance later
for the massive scalar field in the Kerr background (see sec. 6.3). Qualitatively the same
behavior was observed for Kerr black holes, projected on the brane (see sec. 5.3.1).
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Chapter 5

Perturbations of higher-dimensional
black holes

5.1 Stability and quasi-normal modes of Reissner-

Nordström-de Sitter black holes

Last years higher-dimensional black holes have attracted considerable interest in the context of
the string theory and higher-dimensional brane-world models [74, 75, 76, 77, 78, 79]. Some of
such models allow compactification radius of extra dimensions to be of macroscopic size [80, 81].
That is why the extra dimensions are important if we study small black holes. Such black holes
could be produced at the next-generation particle colliders, probably at energies of order ∼ 1TeV
[82, 83, 84, 85].

Being an important characteristic of a black hole, its quasi-normal spectrum can be used in
future experiments to find number of extra dimensions and other parameters of the theory. That is
why we study quasi-normal spectrum of black holes within different scenarios with various possible
numbers of extra dimensions.

When a black hole is much smaller than the size of extra dimensions, it can be described by
D-dimensional Einstein theory. The D-dimensional generalisation of the Schwarzschild metric was
done by Tangherlini [86].

Let us consider the D-dimensional Reissner-Nordström-de Sitter black hole, which is described
by the line element

ds2 = f(r)dt2 − dr2

f(r)
− r2dΩ2

d, (5.1)

where dΩd is the line element of d-sphere, d = D − 2, f(r) = 1 − X + Z − Y . The dimensionless
quantities X, Y , Z are defined as

X =
dMAd
4πrd−1

, Y =
2Λr2

d(d+ 1)
, Z =

Q2

r2d−2
,

where Ad =
2π(d+1)/2

Γ ((d+ 1)/2)
is the area of a unit d-sphere, M is the black hole mass, Q is the black

hole charge and Λ is the cosmological constant.
Perturbations of the Einstein-Maxwell equations can be reduced to the wave-like form (2.10).

The corresponding effective potential depends on their transformation law under rotations on the
d-sphere (2.15). Thus, there are three types of perturbations described by three effective potentials:
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tensor (VT ), vector (VV ) and scalar (VS) type. The explicit form of the potentials was derived in
[58]

VT (r) =
f(r)

r2

(
λ+ d+

f ′(r)rd

2
+
f(r)d(d− 2)

4

)
, (5.2)

VV (r) =
f(r)

r2

(
λ+ d±

√
X2

(d2 − 1)2

4
+ 2Zλd(d− 1)×

×d(d− 2)(1− Y ) + Zd(5d− 2)−X(d2 + 2)

4

)
, (5.3)

VS(r) = f(r)
U±

64r2H2
±

(5.4)

where

H+ = 1− d(d+ 1)

2
δX,

H− = λ+
d(d+ 1)

2
(1 + λδ)X,

U+ =
[
−4d3(d+ 2)(d+ 1)2δ2X2 − 48d2(d+ 1)(d− 2)δX − 16(d− 2)(d− 4)

]
Y

−δ3d3(3d− 2)(d+ 1)4(1 + λδ)X4 + 4δ2d2(d+ 1)2
{

(d+ 1)(3d− 2)λδ + 4d2 + d− 2
}
X3

+4δ(d+ 1)
{

(d− 2)(d− 4)(d+ 1)(λ+ d2)δ − 7d3 + 7d2 − 14d+ 8
}
X2

+
{

16(d+ 1)
(
−4λ+ 3d2(d− 2)

)
δ − 16(3d− 2)(d− 2)

}
X + 64λ+ 16d(d+ 2),

U− =
[
−4d3(d+ 2)(d+ 1)2(1 + λδ)2X2 + 48d2(d+ 1)(d− 2)λ(1 + λδ)X − 16(d− 2)(d− 4)λ2

]
Y

−d3(3d− 2)(d+ 1)4δ(1 + λδ)3X4 − 4d2(d+ 1)2(1 + λδ)2
{

(d+ 1)(3d− 2)λδ − d2
}
X3

+4(d+ 1)(1 + λδ)
{
λ(d− 2)(d− 4)(d+ 1)(λ+ d2)δ + 4d(2d2 − 3d+ 4)λ

+d2(d− 2)(d− 4)(d+ 1)
}
X2 + 64λ3 + 16d(d+ 2)λ2

−16λ
{

(d+ 1)λ
(
−4λ+ 3d2(d− 2)

)
δ + 3d(d− 4)λ+ 3d2(d+ 1)(d− 2)

}
X .

Here we defined λ = (l + d)(l − 1) through the multipole number l = 2, 3, 4 . . . . The value δ is a
dimensionless constant

2λδ =

√
1 +

16λZ

(d+ 1)2X2
− 1.

Note, that the effective potential for tensor-type perturbations coincides with the potential for
a test scalar field (3.65) for l ≥ 2. Vector-type and scalar-type metric perturbations are coupled to
perturbations of the electromagnetic field. For neutral (Q = 0) black holes the type “+” potentials
are reduced to the effective potential for the test Maxwell field and for the type “-” VV and VS
describe pure vector-type and scalar type metric perturbations respectively.

It was proven analytically that the black hole is stable against tensor-type and vector-type
gravitational perturbations [58]. The effective potential of the scalar type (5.4) is not positive
definite, having a negative gap for small l. Since the effective potential has an extremely complicated
form, the appropriate ansatz for the S-deformation technique (see sec. 2.3.2) was not found. That
is why, the black hole stability against scalar-type perturbations was not proven analytically.

The stability of higher dimensional Schwarzschild-de Sitter black holes was proven numerically
in [20]. We have shown in time domain that the gravitational perturbations of scalar type decay
for arbitrary black hole mass and Λ-term (see figs. 5.1,5.2).
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Figure 5.1: Effective potentials and time-domain profiles for scalar-type gravitational perturbations,
D = 5 (blue). . .D = 11 (red) (l = 2, Q = 0, Λ = 0). For higher D both the peak and the negative
gap of the potential increase. Profile for higher D decays quicker. All quantities are measured in
units of the event horizon r+.
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Figure 5.2: Time-domain profiles for scalar-type gravitational perturbations of 11-dimensional
Schwarzschild-de Sitter black hole (Q = 0, D = 11, ρ = r+/r∞) for ρ = 0.3 (blue), ρ = 0.5
(green), ρ = 0.7 (yellow), ρ = 0.8 (orange), ρ = 0.9 (red). Profile for higher ρ decays slower. All
quantities are measured in units of the event horizon r+.
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Figure 5.3: Time-domain profile for gravitational perturbations of scalar type “-” of the Reissner-
Nordström-de Sitter black hole (D = 11, ρ = r+/r∞ = 0.8, l = 2) for various values of the black
hole charge q = Q/Qext: q=0.4 (brown) q=0.5 (blue) q=0.6 (green) q=0.7 (orange) q=0.8 (red)
q=0.9 (magenta). The smaller q, the slower growth of the profile is.

Also we studied the quasi-normal modes for all types of gravitational perturbations of D-
dimensional spherically symmetric black holes. Since for the observational purposes only the dom-
inant quasi-normal frequency is essential we were limited by the fundamental mode (l = 2) only.
However, using the WKB approximation, we are able to find the large l formula for any given black
hole parameters.

The dependance of the quasi-normal modes on the Λ-term is qualitatively the same as for the
four-dimensional black holes: both real and imaginary parts of the quasi-normal frequency decrease
their absolute values as the cosmological constant grows (see fig. 5.2). We also observe that the
real and imaginary parts of the quasi-normal frequency are non-monotonic functions of the black
hole charge, in most cases decreasing their absolute values as Q grows.

In [27] we have shown for the first time that Reissner-Nordström-de Sitter black holes are
gravitationally unstable for large values of the electric charge and cosmological constant in D ≥ 7
space-time dimensions. On the figure 5.3 we see the time-domain profiles for the linear gravitational
perturbations of scalar type “-” (5.4) of the near extremal Reissner-Nordström-de Sitter black hole
in D = 11 dimensions. For sufficiently small values of the black hole charge we observe usual
picture of the quasi-normal ringing. Then, as the black hole charge increases, a purely imaginary
(non-oscillating) mode becomes dominant, decreasing its decay rate until the threshold point of
instability is reached. After crossing the instability point we observe the growing non-oscillating
mode (see sec. 2.3.2). Its growth rate increases as the black hole charge grows. Therefore, we
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Figure 5.4: The parametric region of instability in the right upper corner of the square (ρ = r+/r∞,
q = Q/Qext) for D = 7 (top, black), D = 8 (blue), D = 9 (green), D = 10 (red), D = 11 (bottom,
magenta).

conclude that exactly at the threshold point of instability there is some static solution (ω = 0) of
the perturbation equation. The static solution at the threshold point of instability was observed
also in time-domain for the black strings (see sec. 6.4).

The parametric region of instability is shown on the figure 5.4. The larger number of space-
time dimensions D is, the bigger region of instability we observe. Though the region of instability
increases with D, the charged black holes in the asymptotically flat space-time are stable at least
for D ≤ 11. The instability occurs if both the black hole charge and the cosmological constant are
large enough.

5.2 (In)stability of D-dimensional black holes in the Gauss-

Bonnet theory

Higher dimensional quantum gravity implies corrections to classical general relativity. The dominant
order correction to the Lagrangian is called the Gauss-Bonnet term [87]. This term is squared in
curvature and vanishes for D = 4. The effective action is given by

S =
1

16πGD

∫
dDx
√
−g
(
R + α(RabcdR

abcd − 4RcdR
cd +R2)

)
, (5.5)

where α is a positive coupling constant, [α] = L2.
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The spherically symmetric black hole solution, which satisfies the corresponding equations of
motion, is described by the line element (5.1) with

f(r) = 1 +
r2

α(D − 3)(D − 4)
(1− q(r)) , q(r) =

√
1 +

α(D − 2)(D − 3)(D − 4)MAD−2

2πrD−1
, (5.6)

which is reduced to the Tangherlini metric [86] in the limit of α→ 0.

Quasi-normal modes and late-time tails of the test scalar field for black holes in the Gauss-Bonnet
theory were studied in [88, 89].

The quantum corrections imply that the effective potential for tensor-type gravitational per-
turbations (VT ) does not coincide with the potential for the test scalar field [90]. The effective
potentials for vector-type (VV ) and scalar-type (VS) gravitational perturbations were found in [91].
They are given by the formulae

VT (r) = f(r)
(D − 2)(c+ 1)

r2

(
3− B(r)

A(r)

)
+

1√
rD−2A(r)q(r)

d2

dr2
?

√
rD−2A(r)q(r), (5.7)

VV (r) = f(r)
(D − 2)c

r2
A(r) +

√
rD−2A(r)q(r)

d2

dr2
?

1√
rD−2A(r)q(r)

, (5.8)

VS(r) =
f(r)U(r)

64r2(D − 3)2A(r)2q(r)8(4cq(r) + (D − 1)R(q(r)2 − 1))2
, (5.9)

where we used the following dimensionless quantities

A(r) =
1

q(r)2

(
1

2
+

1

D − 3

)
+

(
1

2
− 1

D − 3

)
,

B(r) = A(r)2

(
1 +

1

D − 4

)
+

(
1− 1

D − 4

)
,

R =
r2

α(D − 3)(D − 4)
,

c =
l(l +D − 3)

D − 2
− 1, l = 2, 3, 4 . . . ,
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U(r) = 5(D − 1)6R2(1 +R)− 3(D − 1)5R((D − 1)R2 + 24c(1 +R))q(r) +

+2(D − 1)4(24c(D − 1)R2 + 168c2(1 +R)− (D − 1)R2(−3 + 5R + 7D(1 +R)))q(r)2 +

+2(D − 1)4R(−184c2 + (D − 1)(13 +D)R2 + c(−84 + 44R + 84D(1 +R)))q(r)3 +

+(D − 1)3(384c3 − 48c(2 +D(3D − 5))R2 + 192c2(−11 +D + (−15 +D)R) +

+(D − 1)R2(−3(7 + 55R) +D(26 + 106R + 7D(1 +R))))q(r)4 +

+(D − 1)3R(−64c2(D − 38) + (D − 1)(71 +D(7D − 90))R2 +

+16c(303 + 255R + 13D2(1 +R)− 2D(73 + 81R)))q(r)5 +

+4(D − 1)2(96c3(−7 +D)− 8c(D − 1)(145− 74D + 6D2)R2 −
−8c2(9− 175R +D(−58− 34R + 11D(1 +R))) + (D − 1)R2(−5(79 + 23R) +

+D(5(57 + 41R) +D(−81− 89R + 7D(1 +R)))))q(r)6 −
−4(D − 1)2R(8c2(43 + (72− 13D)D) + (D − 1)(−63 +D(99 +D(−49 + 5D)))R2 +

+4c(321 + 465R +D(121− 39R +D(−123− 107R + 17D(1 +R)))))q(r)7 +

+(D − 1)(128c3(−9 +D)(D − 5) + 32c(D − 1)(246 +D(9 +D(−55 + 8D)))R2 +

+64c2(D − 5)(D2 − 3 + (49 + (D − 4)D)R)−
−(D − 1)R2(1173 + 565R +D(−4(997 + 349R) +D(6(393 + 217R) +

+D(−548− 452R + 45D(1 +R))))))q(r)8 +

+(D − 1)R(−64c2(D − 5)(36 +D(−13 + 3D)) +

+(D − 1)(635 +D(−1204 + 3D(294 +D(−92 + 9D))))R2 −
−8c(D − 5)(63 + 31R +D(127 + 191R +D(−47 +D + (−79 +D)R))))q(r)9 +

+2(D − 5)(64c3(D − 5)(D − 3) + 8c(D − 1)(−27 +D(141 + (−43 +D)D))R2 +

+8c2(D − 5)(−3 + 77R +D(D − 2 + (D − 18)R)) + (D − 1)2R2(−33(R− 7) +

+D(59 + 43R +D(−59− 35R + 9D(1 +R)))))q(r)10 −
−2(D − 5)R(24c2(−11 +D)(D − 5)(D − 3) + (D − 1)2(−65 +D(81 +D(7D − 39)))R2 +

+12c(−7 +D)(D − 5)(D − 3)(D − 1)(1 +R))q(r)11 +

+(D − 5)2(−1 +D)R2(16c(26 + (D − 9)D) +

+(D − 1)(77− 3R +D(−18 +D + (D − 2)R)))q(r)12 +

+(D − 5)2(D − 3)2(D − 1)2R3q(r)13.

The quasi-normal modes of gravitational perturbations of Einstein-Gauss-Bonnet black holes
were found in time-domain (see sec. 3.1) for the first time in [23]. Consequently, we confirm the
instability of these black holes in five- and six-dimensional space-times, proven analytically in [92].

Namely, in five dimensional case scalar-type perturbations are unstable for α > 0.207r2
+ while

in six dimensions tensor-type perturbations are unstable for α > 1.006r2
+. We can see on the figure

5.5 that the larger l, at the earlier times instability growth occurs, and the stronger the growth rate
is. In the region near the threshold value of α, one can observe the growth only for large enough l,
while perturbations of lower multipole number are not growing. For each l there is some maximal
value of α for which the perturbations are not growing. In order to find the threshold value of α
numerically we extrapolate this value for l → ∞ (see fig. 5.6). Einstein-Gauss-Bonnet black holes
in D ≥ 7 space-times are stable.

In units of the event horizon radius, the imaginary part of fundamental quasi-normal modes de-
creases, when α increases, for all numbers of D and all types of perturbations. Unlike the imaginary
part, the real oscillation frequency does not behave uniformly: it decreases as α grows for most cases
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Figure 5.5: The picture of instability of tensor-type of gravitational perturbations of Gauss-Bonnet
black holes, developing at large multipole numbers: D = 6, l = 8 (red), l = 12 (green), l = 16
(blue), α = 1.3. All quantities are measured in units of the event horizon r+.

of tensor and vector modes. The behavior of the scalar mode is different: there are two competing
for the domination modes at different stages of the quasi-normal ringing. This superposition of
modes, also with competing excitation coefficients, makes dependence of the fundamental scalar
type quasi-normal modes on α and D non-monotonic. On the figure 5.7 one can see that at the first
stage the actual frequency of the dominant mode is much larger than at the second stage, while
their damping rate stays almost the same.

5.3 Quasi-normal modes of brane-localised Standard

Model fields

The other possible scenario is that the Standard Model particles (scalars, fermions and gauge bosons)
are restricted to live on the 3 + 1-brane, which is embedded in the higher-dimensional bulk, while
the gravitons can propagate also in the bulk. Therefore, if we study propagation of the fields near a
D-dimensional black hole, we must consider the induced-on-the-brane gravitational background. If
the size of extra dimensions is large, comparing to the size of the black hole, the induced background
is given by the projection of the D-dimensional black hole metric onto the brane by fixing the values
of the additional angular coordinates that describe the (D− 4) extra spacelike dimensions [93, 94].
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Figure 5.6: The threshold α as a function of the inverse multipole number l for tensor type of
gravitational perturbations of Gauss-Bonnet black holes D = 6. The points l = 16, 20, 32, 40, 50, 64
were fit by the line α = 2.627l−1 + 1.005. The theoretical result is αt ≈ 1.006 (the value of α is
measured in units of the event horizon r+).

5.3.1 Kerr black holes

The quasi-normal ringing of brane-localised fields propagating in Schwarzschild, Reissner-Nordström
and Schwarzschild-(anti) de Sitter induced gravitational backgrounds was studied in [95]. Yet,
during the high-energy collisions of elementary particles resulting in the creation of black holes, it
is unnatural to expect that only head-on collisions, leading to spherically symmetric black holes,
would take place. Collisions with a non-vanishing impact parameter are most likely to occur, and,
in addition, it is for these collisions that the black-hole production cross-section is maximised [96].
Therefore, microscopic rotating black holes should be the most generic situation, and the effect of
the angular momentum of the black hole on the quasi-normal spectra of brane-localised fields is
essential and cannot be neglected. This effect has been studied in [17].

The line-element, describing a higher-dimensional rotating neutral black hole, is given by the
Myers-Perry solution [97]. After the projection of the Myers-Perry metric onto the brane, the brane
background assumes the form [96]

ds2 =
(

1− µ

Σ rD−5

)
dt2+

2aµ sin2 θ

Σ rD−5
dt dϕ−Σ

∆
dr2−Σ dθ2−

(
r2 + a2 +

a2µ sin2 θ

Σ rD−5

)
sin2 θ dϕ2, (5.10)

where

∆ = r2 + a2 − µ

rD−5
, Σ = r2 + a2 cos2 θ . (5.11)

The parameters µ and a are related to the mass M and the angular momentum J , respectively, of
the black hole through the definitions [97]

M =
(D − 2) π(D−1)/2

κ2
D Γ[(D − 1)/2]

µ , J =
2Ma

D − 2
, (5.12)
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Figure 5.7: The picture of time-domain evolution for scalar-type gravitational perturbations of
Gauss-Bonnet black holes D = 10, l = 2, α = 0.01. One can see that two modes are dominating at
the different stages. All quantities are measured in units of the event horizon r+.

where κ2
D = 8πG = 8π/MD−2

∗ is the D-dimensional Newton’s constant. The radius of the event
horizon r+ parameterises the black hole mass

µ = rD−5
+ (r2

+ + a2).

We should note here that the higher-dimensional black hole is assumed to have only one non-
vanishing component of angular momentum, about an axis in the brane. This is due to the sim-
plifying assumption that the particles that created the black hole were restricted to live on an
infinitely-thin brane, therefore, during collision they had a non-vanishing impact parameter only on
a 2-dimensional plane along our brane.

The equations of motion of the Standard Model fields in the background (5.10) can be reduced
to the following to coupled equations for the angular

1

sin θ

d

dθ

(
sin θ

dSms,`
dθ

)
+ (5.13)

+

[
−2ms cot θ

sin θ
− m2

sin2 θ
− a2ω2 sin2 θ − 2aωs cos θ − s− s2 cot2 θ + 2aωm+ λ

]
S(θ) = 0 ,

and radial parts

∆s d

dr

(
∆1−s dPs

dr

)
+

(
K2 − isK∆′

∆
+ 4is ω r − λ

)
R(r) = 0 , (5.14)
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Figure 5.8: Fundamental quasi-normal modes for the 6-dimensional black hole projected on the
4-brane.

where λ is the separation constant, m is the azimuthal number, s = 0, 1/2, 1 for scalar, fermion and
gauge boson fields respectively and K is defined as

K = (r2 + a2)ω − am.

In order to solve numerically the equations (5.13) and (5.14) we use the Frobenius method. Since
(3.55) coincides with (5.13) in the limit of α → 0, the equation for the angular part can be solved
as described in the section 3.4.5. The analysis of the singular points of the equation (5.14) allows
to find the Frobenius series for the function R(r) [17]

R(r) =
eiωr

r − r0

(
r − r+

r − r0

)−iβ ∞∑
i=0

bi

(
r − r+

r − r0

)i
, (5.15)

where β is fixed (see sec. 3.4.6) as

β =
K(r+)

∆′(r+)
=

ωr+(r2
+ + a2)−mar+

(D − 5)(r2
+ + a2) + 2r2

+

.

From the figure 5.8, one easily observes that, as a increases, the absolute values of both the real
and imaginary parts of the fundamental quasi-normal frequency decrease. This makes the damping
time longer and the field oscillations on the brane longer-lived. For large a one can observe that the
lifetime of a fermion signal is longer for the positive value of the azimuthal number m. The same
behavior was observed also for the scalar field: the field oscillation lifetime grows as m increases.

On the figure 5.9, we display a few of the higher overtones for a brane-localised gauge field (with
l = 3, m = 0). For all higher overtones, it was found that an increase in a leads again to the
decrease of the absolute values of both the real and imaginary parts.
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Figure 5.9: A few higher overtones of the electromagnetic field for the 6-dimensional Kerr black hole
projected on the 4-brane (l = 3, m = 0) for the range (0, r+) of the angular momentum parameter
a with a step of r+/8.

For fixed a we find that, as D increases, the imaginary part of the quasi-normal frequency
decreases while the real part changes insignificantly (see fig. 5.10). This behavior of the real part is
different from the case of D-dimensional black holes, which are not projected on the brane (see sec.
5.1). For those black holes the real part of the quasi-normal frequency also grows as D increases.
Therefore, we conclude that higher dimensional black holes are better oscillators than the black
holes, projected on the 4-brane.

5.3.2 Gauss-Bonnet black holes

Within large extra dimensions scenarios of TeV-scale gravity, the classical space-time, induced by
mini black holes, has large curvature along the transverse collision plane. Thus quantum gravity
effects, and in particular higher curvature corrections to the Einstein gravity, cannot be ignored
[98]. Therefore, the quantum corrections, provided by the Gauss-Bonnet theory (see sec. 5.2), must
be taken into account, when mini black holes are considered.

In this context, the propagation of brane-localised Standard Model fields in the background,
induced by the Gauss-Bonnet black hole, has been studied numerically for the first time in [25].

The metric induced on the brane is given by the following line element

ds2 = f(r)dt2 − f(r)−1dr2 − r2(dθ2 + sin θ2dφ2), (5.16)

with the function f(r) defined in (5.6).
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Figure 5.10: Fundamental quasi-normal modes for the higher-dimensional Kerr black hole (a = r+)
projected on the 4-brane.

The effective potentials for the Standard Model fields can be derived in the same way as in the
Schwarzschild-de Sitter case. Their explicit form can be obtained by substituting the function f(r)
from (5.6) into the effective potentials for the test scalar (2.11), massless Dirac (2.13), and Maxwell
(2.14) fields.

As well as for the Schwarzschild black holes, the oscillations of brane-localised Standard Model
fields decay faster for higher D. On the other hand, the Gauss-Bonnet term causes the perturbations
decay slower. The real part of the quasi-normal frequencies has a more complicated behavior: for
D = 5 it decreases as α grows, but for higher-dimensional cases it starts growing first and then
decreases after some value of α is reached. However, the quality factor Q = Re(ω)

2Im(ω)
increases as α

grows for all fields and all values of D (see fig. 5.11).
As we can see in time-domain (see fig. 5.12), the late-time tails decay according to the inverse

power law, which is found to be [25]
Ψ ∝ t−(2l+D−1). (5.17)

This law depends only on the multipole number l and the number of extra dimensions D.
Using the WKB formula, we are able to find the Gauss-Bonnet corrections to the large multipole

limit

ω = ΩR(1 + αA1 + . . .)

(
l +

1

2

)
− iΩI (1 + αB1 + . . .)

(
n+

1

2

)
+O

(
1

l

)
, n = 0, 1, 2 . . .

ω = ΩR(1 + αA1 + . . .)κ± − iΩI (1 + αB1 + . . .)

(
n+

1

2

)
+O

(
1

κ±

)
, n = 0, 1, 2 . . .

ΩR =
1

R0

√
D − 3

D − 1
, ΩI =

1

R0

D − 3√
D − 1

, (5.18)
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Figure 5.11: The quality factor of the scalar field localised on the 4-brane as a function of the
Gauss-Bonnet parameter α (D = 9, l = 1).

where R0 is the point, where the effective potential reaches its maximum for large l(
R0

r+

)D−3

=
D − 1

2
+O

(
1

l

)
.

We see that for large multipoles the quality factor also decreases as D grows

Q ∼ ΩR

ΩI

=
1√
D − 3

.

The corrections of the first order of α are given by

A1 = − 1

r2
+

D − 4

D − 1

(
D − 1

2
−
r2

+

R2
0

)
< 0,

B1 = − 1

r2
+

D − 4

D − 1

(
D − 1

2
+ (D − 2)

R2
0

r2
+

)
< 0,

implying quicker decreasing of the absolute value of the imaginary part than decreasing of the real
part. It means that the quality factor grows as α increases. Thus we conclude, that the large
multipole limit resembles the main properties of the fundamental quasi-normal modes for small
multipole number.
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Figure 5.12: The time-domain profiles of the brane-localised massless scalar field for the Gauss-
Bonnet black hole (D = 7, α = 5) for l = 0 (blue), l = 1 (green), l = 2 (orange), l = 4 (red). The
bigger l corresponds to the longer life of quasi-normal ringing and the quicker tail decay.

5.4 Perturbations of squashed Kaluza-Klein black holes

If the compactification radius of the extra dimensions is comparable with the size of the black
holes we must take into account the size of extra dimensions. Such higher dimensional model of
black holes has the asymptotic structure of the Kaluza-Klein type. The simplest example of five-
dimensional black objects with the Kaluza-Klein geometry is the black string, the direct product of
four-dimensional black hole and a circle. These objects look different from four-dimensional black
holes only at sufficiently high energies, when Kaluza-Klein modes are excited. Therefore within these
space-times we need high energy regime to see the extra dimensions. At the same time, there exist
exact solutions of Kaluza-Klein black holes with squashed horizons, that look like five-dimensional
squashed black holes near the event horizon, and like a Kaluza-Klein space-time at spatial infinity.
Owing to the non-trivial bundle structure, the size of the extra dimension might be observed even
at low energies by detecting e. g. their Hawking radiation [99].

To the best of my knowledge, quasi-normal frequencies of such black holes have been studied for
the first time in [24].
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5.4.1 Quasi-normal modes of the scalar field for rotating squashed
Kaluza-Klein black holes

The five-dimensional rotating squashed Kaluza-Klein black hole with two equal angular momenta
is described by

ds2 = dt2 − Σ0

∆0

k(r)2dr2 − r2 + a2

4
[k(r)(dσ2

1 + dσ2
2) + dσ2

3]− M

r2 + a2
(dt− a

2
dσ3)2, (5.19)

with

dσ1 = − sinψdθ + cosψ sin θdφ , dσ2 = cosψdθ + sinψ sin θdφ , dσ3 = dψ + cos θdφ , (5.20)

where 0 < θ < π, 0 < φ < 2π and 0 < ψ < 4π. The parameters are given by

Σ0 = r2(r2 + a2),

∆0 = (r2 + a2)2 −Mr2, (5.21)

k(r) =
(r2
∞ − r2

+)(r2
∞ − r2

−)

(r2
∞ − r2)2

.

Here M and a correspond to mass and angular momenta, respectively. Values r = r+ and r = r−
are outer and inner horizons of the black hole. They relate to M and a by a4 = (r+r−)2,M −
2a2 = r2

+ + r2
−. The parameter r∞ corresponds to the spatial infinity. In the parameter space

0 < r− ≤ r+ < r∞, r is restricted within the range 0 < r < r∞. The shape of black hole horizon is
deformed by the parameter k(r+).

The wave equation for the massless scalar field Φ(t, r, θ, φ, ψ) in the background (5.19) is given
by

1√
−g

∂µ
√
−ggµν∂νΦ(t, r, θ, φ, ψ) = 0. (5.22)

Taking the ansatz

Φ(t, r, θ, φ, ψ) = e−iωtR(ρ)eimφ+iλψS(θ),

where S(θ) is the so-called spheroidal harmonics, the radial and time variables can be decoupled
from angular ones, so that the final wave-like equation reads

d

dρ

[
∆
dR(ρ)

dρ

]
+

[
H̃2

∆
+ Λ− l(l + 1) + λ2

]
R(ρ) = 0, (5.23)

where l is the non-negative integer multipole number, |m| < l and |2λ| < 2l are integers,

H̃2 =
Mr2

∞(ρ+ ρ0)4

H4(r2
∞ + a2)2

[
ω − λaH2(r2

∞ + a2)

ρ0r3
∞

]2

, (5.24)

Λ =
4ρ2

0r
6
∞(ρ+ ρ0)2

H2(r2
∞ + a2)4

ω2 − 4λ2(ρ+ ρ0)2

r2
∞ + a2

, (5.25)

H2 =
ρ+ ρ0

ρ+ a2

r2∞+a2ρ0

. (5.26)
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Figure 5.13: Real and imaginary part of the fundamental quasi-normal frequency of the test scalar
field (l = 0) for rotating squashed Kaluza-Klein black holes.

The radial coordinate ρ is given by

ρ = ρ0
r2

r2
∞ − r2

, (5.27)

with

ρ2
0 =

k0

4
(r2
∞ + a2),

k0 = k(r = 0) =
(r2
∞ + a2)2 −Mr2

∞
r4
∞

. (5.28)

Note that the three parameters ρ0 and ρ± = ρ0r
2
±/(r

2
∞ − r2

±) can define the metric (5.19) if
r∞ < ∞. In some papers they are used to parameterise the black hole, instead of the parameters
r∞, r±.

The quasi-normal modes have been found with Frobenius method (see sec. 3.4), using the
following expansion [24]

R =

(
r2 − r2

+

r2 − r2
−

)−iβ
eiρΩρiν−1

∞∑
n=0

an

(
r2 − r2

+

r2 − r2
−

)n
, (5.29)

where β, ν and Ω are chosen in order to eliminate the singularities at r = r+ and r = r∞. The sign
of α and Ω is chosen in order to remain them in the same complex quadrant as ω.

The fundamental quasi-normal modes are presented on the figure 5.13. One can see that the
real oscillation frequency exerts some irregular growth (with local minimums) when r∞ is increasing
until some moderately large values of r∞. At larger r∞ the growth of Re(ω) changes into monotonic
decay. The imaginary part of ω that determines the damping rate also has some initial irregular
growth when r∞ increases, but at larger r∞ the two scenarios are possible: either monotonic decay
(for large values of r−) or monotonic growth (for small and moderate r−). Thus, for a given mass
and angular momentum of the black hole, one can learn the size of extra dimension r∞ from values
of quasi-normal modes of the emitted radiation.

61



5.4.2 Gravitational quasi-normal modes for non-rotating squashed
Kaluza-Klein black holes

In the previous subsection, we have considered the scalar field in the background of squashed Kaluza-
Klein black holes. However, the tensor perturbations are more interesting from the point of view of
the stability and possibility to observe gravitational waves from black holes.

The metric of the uncharged non-rotating squashed Kaluza-Klein black hole is a particular case
of the metric (5.19)

ds2 = F (ρ)dτ 2 − G(ρ)2

F (ρ)
dρ2 − 4ρ2G(ρ)2dσ+dσ− − r2

∞
4G(ρ)2

(dσ3)2, (5.30)

where we have defined τ = 2ρ0t/r∞ and

F (ρ) = 1− ρ+

ρ
, G(ρ)2 = 1 +

ρ0

ρ
, r2

∞ = 4ρ0(ρ+ + ρ0) .

Here, we have used a basis

dσ± =
1

2
(dσ1 ∓ idσ2) .

Since the space-time has the symmetry SU(2)×U(1), the metric perturbations can be classified
by eigenvalues J,M for SU(2) and K for U(1). Here we consider only zero modes J = M = 0. Even
in this case, since dσ± carry eigenvalues K = ±1, each component could have different eigenvalue
K. It is important to recognise that the components with different K are decoupled. That is why we
have the master equations for each K. To obtain master equations, we choose the gauge condition
as

h3+ = h3− = h+− = htt = ht3 = 0 . (5.31)

As is shown in [100], the perturbation equations for the |K| = 2 mode can be reduced to the wave
equation for h++ with the effective potential in the form

V2 =
−(ρ+ − ρ)

16ρ3ρ0(ρ+ + ρ0)(ρ+ ρ0)3

[
64ρ5 + 256ρ4ρ0 − 32ρ3ρ0(ρ+ − 11ρ0) + 9ρ+ρ

3
0(ρ+ + ρ0)

+8ρ2ρ0(2ρ2
+ − 5ρ+ρ0 + 25ρ2

0) + ρρ2
0(20ρ2

+ − 9ρ+ρ0 + 35ρ2
0)
]
. (5.32)

Similarly, the perturbation equations for the |K| = 1 mode can be reduced to the wave equation
for hρ+ with the effective potential

V1 =

(
1− ρ+

ρ

)[
1

ρ+ρ0

+
7(−ρ+ + ρ)

16(ρ+ ρ0)3
+

17ρ+ − 19ρ

8ρ(ρ+ ρ0)2
+

9(−3ρ+ + 7ρ)

16ρ2(ρ+ ρ0)
+

ρ+ − ρ
ρ2

+ρ+ ρ+ρρ0

− 8(ρ+ − ρ)2ρ

(ρ+ − 2ρ)(ρ+ρ0 − ρ(ρ+ 2ρ0))2
− 2(ρ+ + 2ρ)

(ρ+ − 2ρ)(ρ+ρ0 − ρ(ρ+ 2ρ0))

]
. (5.33)

Finally, for the K = 0 mode, we obtain the wave equation for h33 with the effective potential

V0 =
−(ρ+ − ρ)

16ρ3(ρ+ ρ0)3(4ρ+ 3ρ0)2

[
256ρ+ρ

4 + 64ρ3(17ρ+ + 2ρ)ρ0 + 48ρ2(32ρ+ + 11ρ)ρ2
0

+60ρ(13ρ+ + 12ρ)ρ3
0 + 9(9ρ+ + 35ρ)ρ4

0

]
. (5.34)
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Figure 5.14: Real and imaginary parts of the fundamental quasi-normal frequency for metric per-
turbations (M = J = 0) |K| = 0 (blue), |K| = 1 (red), |K| = 2 (yellow) of squashed Kaluza-Klein
black holes. Higher values of K correspond to higher oscillation frequency and slower damping.

The fundamental quasi-normal modes calculated with 6th order WKB method (see sec. 3.3)
are presented on the figure 5.14. The real part of ω decreases for higher values of ρ0. The absolute
value of imaginary part has maximum for K 6= 0. For not large values of ρ0 the quasi-normal modes
of such Kaluza-Klein black hole perturbations are longer lived. Their behavior for small values of
ρ0 in time-domain looks like massive field tails (see chapter 6), which occur at much earlier time.

It is important to note, that if we know the quasi-normal frequency we can find the size of the
extra dimension in the considered black hole model, so that quasi-normal modes give a kind of
opportunity to ”look into” an extra dimension at low energies. In detail, when a dominant quasi-
normal mode is measured, one can compare it with the numerically found one and find out which
is the value of ρ0 and the radius of the event horizon that corresponds to the observed quasinormal
mode. In this way we can determine the parameters of the black hole and the size of the extra
dimension, assuming that there exist no other Kaluza-Klein black holes with similar features. Also,
we do not observe any growing mode, what supports stability of such black holes.
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Chapter 6

Massive fields around black holes

6.1 Evolution of massive fields. Quasi-resonances

In the previous chapters we have considered massless fields propagating in the background of various
black holes. Let us go further and study evolution of massive fields.

One should note, that a scalar field with the mass term can be interpreted as a self-interacting
massless scalar field within regime of small perturbations [101]. A massless scalar field, when
considered in models with extra dimensions of Randall-Sundrum type [77, 78], gains a large effective
mass due to the Kaluza-Klein momentum. Also, the effective mass is acquired by a massless scalar
field in the vicinity of the magnetised black holes [102].

Let us start from the consideration of a test massive scalar field in the D-dimensional Schwarz-
schild background, given by the metric (5.1) with

f(r) = 1−
(r+

r

)D−3

.

The Klein-Gordon equation,

1√
−g

∂

∂xa
gab
√
−g∂Φ(x)

∂xb
= −µ2Φ(x), (6.1)

which governs the massive scalar field evolution in the curved background, can be reduced to the
wave-like equation (2.10) with the effective potential

V (r) = f(r)

(
µ2 +

l(l +D − 3)

r2
+

(D − 4)(D − 2)

4r2
f(r) +

D − 2

2r
f ′(r)

)
, (6.2)

where µ is the field mass and l = 0, 1, 2 . . . is the multipole number.
One can see, that the potential (6.2) does not vanish at the spatial infinity. It changes the

behavior of the eigenfunction Qω (2.10), so that

r? → +∞ : Qω ∝ exp(iχr?) (6.3)

where χ =
√
ω2 − µ2 (see sec. 3.4.7).

Repeating the calculations of the section 2.3.2, instead of (2.27) we find [12]

Re(χ)|Qω(r? =∞)|2 + Re(ω)|Qω(r? = −∞)|2 + 2Re(ω)Im(ω)

∞∫
−∞

|Qω(r?)|2dr? = 0. (6.4)
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Since Re(χ) has the same sign as Re(ω), the unstable modes do not oscillate (see sec. 6.4).
For some values of the black hole mass M and the scalar field mass µ purely real frequencies

were observed. Such oscillations have infinitely long lifetime and were called quasi-resonances [57].
Indeed, for massive fields quasi-normal frequencies are not required to be complex. Let us suppose
that for some parameters we have Im(ω) = 0, so that Re(χ) = 0, implying

Qω(r? = −∞) = 0. (6.5)

It means, that there is no wave at the event horizon and, because Re(χ) = 0, no energy transmission
to the spatial infinity. That is why such oscillations do not decay. The situation is similar to the
standing waves on a fixed string. The requirement for χ to be imaginary, bounds the purely real
frequencies by the field mass, what was pointed out in [12],

ωQRM < µ. (6.6)

The phenomenon of quasi-resonance exists since the effective potential is not zero at the spatial
infinity. If the potential vanishes at r? → ±∞ the condition Im(ω) = 0 does not satisfy (2.27).
Thus, for instance, there is no quasi-resonances in the spectrum of the massive scalar field in the
Schwarzschild-de Sitter background.

6.2 Quasi-normal spectrum of the massive scalar field

around Schwarzschild black holes

The quasi-normal modes of the massive scalar field around 4-dimensional Schwarzschild, Kerr [103]
and Reissner-Nordström black holes [70] and of the massive Dirac field in the 4-dimensional Schwar-
zschild background [104] were calculated within the 3rd order WKB approach. Yet, the WKB for-
mula, used for the calculations, is valid only for small field mass. For large mass of the field the
WKB approach needs modifications (see sec. 3.3), that were not taken into account in the earlier
research [70, 103, 104].

The quasi-normal spectrum of the massive scalar field for Reissner-Nordström black holes were
studied for the first time by the more accurate Frobenius method by Ohashi and Sakagami [57].
They have found the quasi-resonances and supposed that they appear in a limiting situation and
quasi-normal modes can disappear when the field mass exceeds a certain value. We found [12] that
after reaching a quasi-resonance only one quasi-normal frequency disappears. The higher overtones
remain in the spectrum for any finite field mass.

The quasi-normal spectrum of massive scalar fields in D-dimensional Schwarzschild background
was studied for the first time in [18] within Frobenius method.

On the figure 6.1 one can see, that increasing of the field mass gives rise to decreasing of the
imaginary part of the quasi-normal mode until reaching the vanishing damping rate. When some
threshold values of µr+ are exceeded, the particular quasi-normal modes “disappear”. The larger
field mass is, the more first overtones share this destiny. The disappearing of a finite number of
modes implies that for large field mass some higher overtone becomes a fundamental frequency,
having the longest lifetime among the rest of the modes. Nevertheless, the quasi-normal spectrum
remains infinite for any finite field mass.

The behavior of the fundamental mode depends qualitatively on the number D. For D = 4, 5,
the fundamental mode behaves like higher overtones: decreases its imaginary part, reaches quasi-
resonance for some value of µ, and disappears. For D ≥ 6 we observe qualitatively different picture
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Figure 6.1: Three higher quasi-normal modes (l = 0) of the Schwarzschild black hole (D = 6) for
the massive scalar field of various µ. The frequency for µ = 0 has the largest imaginary part. The
points were plotted with the step of ∆µr+ = 1/2. Solid lines mark the same overtone number.

(see fig. 6.2). As µ grows the imaginary part of the fundamental mode tends to zero asymptotically
while the real part approaches µ (see fig. 6.3).

This property of the fundamental frequency behavior for large D leads to another remarkable
fact. Since for high field mass the imaginary part of the fundamental mode tends to zero only
asymptotically (see fig. 6.2), and the imaginary part of higher overtones reaches zero for some
finite value of µr+ (see fig. 6.3), there are some values of µr+ for which the imaginary parts of
two overtones are the same. After one of these values is reached the overtones can be distinguished
only by their real part and the quasi-normal ringing has two dominant frequencies in its spectrum.
Thus one could observe the superposition of that two frequencies at late times of the quasi-normal
ringing.

The dependance on the field mass is qualitatively the same for all multipole numbers (see fig.
6.3). Since the real part of the quasi-normal frequency of higher l is larger, the quasi-resonances
are reached for larger µ in order to satisfy the constraint (6.6).

It was shown both analytically and numerically [12, 18] that asymptotically high overtones do
not depend on the field mass and satisfy the same formula as for the massless case

ωn =
f ′(r+)

4π

(
± ln(3)− 2πi

(
n+

1

2

))
= THawking

(
± ln(3)− 2πi

(
n+

1

2

))
.

It is important to note, that despite in most cases quasi-normal modes of the fields of different
spin show qualitatively the same behavior, when the field is massive, the field spin becomes crucial.

67



2 4 6 8 10
ReHwLr+

0.2

0.4

0.6

0.8

-ImHwLr+

D=4

D=5

D=6

D=7

D=8

D=9

Figure 6.2: Fundamental quasi-normal frequencies for the D-dimensional Schwarzschild black hole
for the massive scalar field (l = 0) of various µ. The frequency for µ = 0 has the largest imaginary
part. The points were plotted with the step of ∆µr+ = 1/10. Solid lines mark the same number of
D.

The quasi-normal modes of the massive vector field for 4-dimensional black holes were studied in
[105]. It was found that the fundamental mode shows correlation with the field mass totally different
from all the remaining higher overtones. For massive scalar and massive vector fields the behavior
of the fundamental frequency is qualitatively similar: the real part grows with µ, while the absolute
value of the imaginary part decreases until reaching zero (quasi-resonance) and then disappears.
The higher overtones have their real part decreasing to tiny values, and, the absolute value of the
imaginary part is growing with µ, leading to existence of almost pure imaginary modes which just
damp without oscillations.

6.3 Stability and quasi-normal modes of the massive scalar

field around Kerr black holes

Analysis of the quasi-normal spectrum allows also to prove stability of massive fields in the Kerr
background numerically [14]. The stability was proved analytically only for high field mass [106]:

µ ≥ |m|a
2Mr+

√
1 +

2M

r+

+
a2

r2
+

. (6.7)
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Figure 6.3: Fundamental quasi-normal frequencies of the Schwarzschild black hole (D = 6) for the
massive scalar field as function of the field mass µ for l = 0, 1, 2 (represented as dots, rhombuses
and triangles respectively). The dashed line corresponds to Re(ω) = µ.

Strictly speaking, because the azimuthal number appears in the righthand side, for any finite field
mass one could find such kind of perturbations, that is not proven to be stable. In practice, the
numerical proof is reduced to checking that there is no growing mode in the quasi-normal spectrum
for small field mass and high enough value of m [14].

The Kerr metric is described by (3.53), if we put Q = 0, Λ = 0. The Klein-Gordon equation for
the massive scalar field (6.1) in this background, after substituting the ansatz

Φ(t, r, θ, φ) = e−iωteimφR(r)S(θ),

allows to separate variables. The radial part satisfies

d

dr

(
∆r

dR(r)

dr

)
+

(
K2

∆r

− λ− µ2r2

)
R(r) = 0, (6.8)

where λ is the separation constant,

∆r = r2 + a2 − 2Mr, K = ω(r2 + a2)− am. (6.9)

The angular part

1

sin θ

d

dθ

(
sin θ

dS(θ)

dθ

)
+

(
− m2

sin2 θ
− a2ω2 sin2 θ − a2µ2 cos2 θ + 2amω + λ

)
S(θ) = 0 (6.10)
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Figure 6.4: High overtones of the Schwarzschild black hole for the massive scalar field (D = 4,
l = 0) for µr+ = 0.6 (dots) and µr+ = 6.0 (boxes).

is equivalent to (5.13) up to the redefinition of variables and can be solved as described in the
section 3.4.5.

The appropriate Frobenius series for (6.8) are given by

R(r) = exp(iχr)

(
r

r+

− a2

r2
+

)iσ−1(rr+ − r2
+

rr+ − a2

)−iα ∞∑
k=0

ak

(
rr+ − r2

+

rr+ − a2

)k
, (6.11)

where χ =
√
ω2 − µ2.

The coefficients ak of (6.11) satisfy the three-term recurrence relation (3.41), which allows to
find the spectrum numerically and prove, that it does not contain unstable modes [14].

We can see that despite the lifetime of the quasi-normal oscillation increases monotonously as
the azimuthal number m grows, its imaginary part remains bounded (see fig. 6.5) and, thereby,
does not show any tendency to instability. Therefore, we conclude that the formula (6.7) implies
stability for the large field mass.

The dependance of the quasi-normal frequency on the field mass µ is qualitatively the same as
for the Schwarzschild case: larger µ leads to considerable decreasing of the damping rate and finally
to the quasi-resonances (see sec. 6.2).

The dependance on the rotation parameter a is more complicated. For m = 0 the imaginary part
of quasi-normal frequencies decreases its absolute value as a grows, while the real part increases,
reaches maximum and then decreases.
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Figure 6.5: The fundamental quasi-normal frequency of Kerr black holes for the massive scalar field
as a function of azimuthal number m for l = 6, a = 0.15r+, µr+ = 0.2.

6.4 Quasi-normal modes of black strings and the Gregory-

Laflamme instability

Unlike four dimensional Einstein gravity, which allows existence of black holes, higher dimensional
theories, such as the brane-world scenarios and string theory, allow existence of a number of “black”
objects: higher dimensional black holes, black strings and branes, black rings and saturns and others.
In higher than four dimensions we lack the uniqueness theorem, so that stability may be the criteria
which will select physical solutions among this variety of solutions.

According to the brane-world scenarios, if the matter localised on the brane undergoes grav-
itational collapse, a black hole with the horizon extended to the transverse extra direction will
form. This object looks like a black hole on the brane, but is, in fact, a black string in the full
D-dimensional theory. Such black strings suffer from the so-called Gregory-Laflamme instability
[107, 108], which is the long-wavelength gravitational instability of the scalar type of the metric
perturbations. The threshold values of the wave vector k at which the instability appears were
found in [109].

The evolution of the spherically symmetric linear perturbations of D-dimensional black strings in
time and frequency domains was studied in [26]. For the first time the quasi-normal modes and time-
domain profiles were studied in the stable sector. Also the appearance of the Gregory-Laflamme
instability was shown in the time domain.
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Let us note, that the equations for gravitational perturbations contain the Kaluza-Klein mo-
mentum. The contribution of this momentum in the corresponding effective potential looks like the
mass term.

For the static black string in D ≥ 5 space-time dimensions, the background metric can be written
as

ds2 = gµνdx
µdxν = f(r)dt2 − dr2

f(r)
− r2dΩ2

D−3 − dz2, (6.12)

where
f(r) = 1−

(r+

r

)n
, n = D − 4.

and dΩ2
D−3 is the line element on a unit (D − 3)-sphere.

The z-direction is periodically identified by the relation z = z+ 2πR. Let us study the (D− 3)-
spherically symmetric perturbations, which we can write in the following form

δgµν = eikzaµν(t, r), k =
m

R
, m ∈ Z.

The perturbed vacuum Einstein equations have the form

δRµν = 0 . (6.13)

The perturbations can be reduced to the form, where the only non-vanishing components of aµν are

att = ht, arr = hr, azz = hz, atr = ḣv, azr = −ikhv.

The linearised Einstein equations give a set of coupled equations determining the four radial
profiles above. However, we may eliminate hv, hr and ht from these equations in order to produce
a single second order equation for hz:

ḧz = f(r)2h′′z + p(r)h′z + q(r)hz, (6.14)

where

p(r) =
f(r)2

r

(
1 +

n

f(r)
− 4(2 + n)k2r2

2k2r2 + n(n+ 1)(r+/r)n

)
,

q(r) = −k2f(r)
2k2r2 − n(n+ 3)(r+/r)

n

2k2r2 + n(n+ 1)(r+/r)n
.

Defining

hz(t, r) =
r−(n−1)/2

2k2r2 + n(n+ 1)(r+/r)n
Ψ(t, r),

we can reduce the equation (6.14) to the wave-like equation(
∂2

∂t2
− ∂2

∂r2
?

+ V (r)

)
Ψ = 0, (6.15)

where dr? =
dr

f(r)
is the tortoise coordinate. Here, the effective potential V (r) is given by

V (r) =
f(r)

4r2

U(r)

(2k2r2 + n(n+ 1)(r+/r)n)2 ,
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Figure 6.6: Time-domain profiles of black string perturbations for kr+ = 2.5: n = 2 (red, top),
n = 3 (orange), n = 4 (green), n = 5 (blue, bottom). Late-time decay of perturbations for n ≥ 3 is
Ψ ∝ t−(n+6)/2 sin(kt).

where

U(r) = 16k6r6 + 4k4r4(n+ 5)(3f(r)− 2n+ 3nf(r))−

−4k2r2n(n+ 1)
(
n(n+ 5) + f(r)(2n2 + 7n+ 9)

) (r+

r

)n
−

−n2(n+ 1)3 (f(r)− 2n+ nf(r))
(r+

r

)2n

.

One can see that k plays the role of the effective mass. At asymptotically late time we observe
power-law damped tails, which have the oscillation frequency equal to k (see fig. 6.6), resembling
asymptotical behavior of massive fields near Schwarzschild black holes (see sec. 6.5). The behavior
of the first overtone is qualitatively similar to that of the fundamental mode for massive fields of
higher-dimensional Schwarzschild black holes (see sec. 6.2).
• For D = 5 (n = 1), as k grows, the imaginary part of the first overtone quickly decreases and

vanishes for some threshold value of k, while its real part stays smaller than the threshold value.
After the threshold value of k is reached, the first overtone “disappears”.
• For D ≥ 6 (n ≥ 2), the imaginary part of the first overtone becomes small for large k, while

the real part asymptotically approaches k.
Even though the first overtone of the spherically symmetric black strings behaves similarly to the

fundamental mode of massive fields near higher-dimensional Schwarzschild black holes, the other
modes have completely different behavior. The fundamental mode of black string perturbations
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Figure 6.7: Time-domain profiles of black string perturbations for n = 1 kr+ = 0.84 (magenta,
top), kr+ = 0.87 (red), kr+ = 0.88 (orange), kr+ = 0.9 (green), kr+ = 1.1 (blue, bottom). We can
see two concurrent modes: for large k the oscillating one dominates, near the critical value of k the
dominant mode does not oscillate, for unstable values of k the dominant mode grows. The plot is
logarithmic, so that straight lines correspond to an exponential growth or decay.

is purely imaginary. It grows for small values of k, leading to instability of the black string (see
fig. 6.7). At moderately large values of k, sufficiently far from instability, the profile has the same
form as that for massive fields, yet, when approaching the instability point, the real oscillation
frequency and the decay rate decrease considerably. After crossing the instability point we observe,
that starting from some tiny values, Im(ω) > 0 are slowly increasing (while Re(ω) = 0). Therefore
we can conclude, that there is some static solution ω = 0 of the wave equation, which shows itself
exactly in the threshold point of instability.

6.5 Late-time tails of massive fields

The late-time behavior of black hole perturbations was studied for the first time by R. Price,
who showed that perturbations of the massless scalar and gravitational fields decay as ∝ t−(2l+3)

at asymptotically late time [110, 111]. In [112] Bičák found that the scalar massless field in the
Reissner-Nordström background decays as ∝ t−(2l+2) for |Q| < M and as ∝ t−(l+2) for the extremal
black hole charge |Q| = M . For Schwarzschild-de Sitter and Reissner-Nordström-de Sitter black
holes, instead of power-law tails, the exponential tails were found [36].

In higher dimensional space-times the late-time behavior depends also on the number of extra
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dimensions. It was found that massless scalar and vector fields, and gravitational perturbations of
higher-dimensional Schwarzschild black holes have the decay law ∝ t−(2l+D−2) for odd D [113] and
∝ t−(2l+3D−8) for even D > 4 [114]. The same late-time behavior was observed for odd-dimensional
Gauss-Bonnet black holes [89]. The late-time tails of the brane localised Standard Model fields were
studied in [25]. Their late-time decay law is ∝ t−(2l+D−1).

One should note that the late-time decay of perturbations within the full non-linear gravity does
not agree with the linearised theory in dimensions higher than four. If we consider a massless scalar
field and take into account the back reaction of the field upon the metric, the late-time decay rate
becomes smaller, coinciding with the linearised theory prediction only in four dimensions [115].

The late-time behavior of massive fields is qualitatively different from massless ones: at late
time the decay profile is oscillatory inverse power law tail. Also, the field mass implies different
behavior at the intermediate late time (1 � t/M < (µM)−3) and at the asymptotically late time
(t/M > (µM)−3).

For a massive scalar field with mass µ in the background of the Schwarzschild black hole, the
perturbations decay as ∝ t−(l+3/2) sin(µt) at intermediate late time [101] and as ∝ t−(5/6) sin(µt) at
asymptotically late time [116, 117]. The same behavior at asymptotically late time was found also
for the massive scalar field perturbations of the dilaton black hole [118] and the Kerr black hole
[119] and for the massive Dirac field in the Schwarzschild background [72].

For higher dimensional Schwarzschild black holes the intermediate late-time behavior of the
massive scalar field is found to be ∝ t−(l+(D−1)/2) sin(µt) [120].

The late-time behavior of the massive vector field was studied both numerically and analytically
for the first time in [15]. At intermediate late time the decay law depends on the polarisation, being
either ∝ t−(l+1/2) sin(µt), or ∝ t−(l+3/2) sin(µt), or ∝ t−(l+5/2) sin(µt). At the asymptotical late time
the behavior is the same, as for other massive fields, ∝ t−(5/6) sin(µt). Therefore, we conclude that
the asymptotically late-time decay law does not depend on the spin of the field.

The late-time decay law for massless perturbations, the intermediate and asymptotically late-
time behavior of massive field perturbations for various spins in asymptotically flat backgrounds
are presented in the following table.

perturbations massless massive (intermediate) massive (asymptot.)

s = 0 (4D Schw.) t−(2l+3) t−(l+3/2) sin(µt) t−(5/6) sin(µt)
s = 1 (4D Schw.) t−(2l+3) {t−(l+1/2), t−(l+3/2), t−(l+5/2)} sin(µt) t−(5/6) sin(µt)
s = 2 (4D Schw.) t−(2l+3)

s = 0 (4D Kerr) t−(2l+3) t−(l+3/2) sin(µt) t−(5/6) sin(µt)
s = 0 (4D R-N) t−(2l+2)

s = 0 (odd D) t−(2l+D−2) t−(l+(D−1)/2) sin(µt)
s = 0 (even D) t−(2l+3D−8) t−(l+(D−1)/2) sin(µt)
on a 4-brane t−(2l+D−1)
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Chapter 7

Quasi-normal modes of black holes,
whose metrics are unknown analytically

7.1 Numerical methods

Black holes are compact objects. Therefore, it is natural to expect that their quasi-normal ringing,
being the property of the black hole, at least in the dominant order, does not depend on what
happens at large distance from the black hole.

It turns out that the dominating frequencies depend mostly on the black hole solution behavior
in some region near the event horizon. Thus one can find them in frequency domain, even if the
behavior of the solution at large distance is not known.

Two qualitatively different examples were considered in this context: the scalar hairy black
hole in the anti-de Sitter background and the Einstein-Aether black hole in the asymptotically flat
background. In both types of the background the behavior of the solution at large distance is not
important [28]:

• For an asymptotically anti-de Sitter background we usually require Dirichlet boundary condi-
tions at spatial infinity. The most significant part of the metric perturbations stays, thereby, near
the black hole. That is why the solution behavior at this region causes dominant influence on the
quasi-normal spectrum [13].

• For the asymptotically flat case the searching of the quasi-normal modes can be reduced to
the scattering problem. Therefore, the quasi-normal frequencies are determined mainly by the form
of the effective potential near its peak [16, 19].

In order to calculate quasi-normal frequencies for the asymptotically anti-de Sitter background
one can use the Horowitz-Hubeny method, described in the section 3.5. It is clear that if s(z), t(z)
and u(z) in (3.71) are series which converge at the spatial infinity (z = 1) quickly enough, then yn
is still possible to calculate because it depends insignificantly on higher terms of the series. In order
to find series expansion for s(z), t(z) and u(z), one can use equations which define the black hole
solution. We can always do this because s(z), t(z) and u(z) can be explicitly expressed in terms of
the metric coefficients and their derivatives.

Thus, the quasi-normal modes could be found without solving the equations for the black hole.
It is enough to find series expansions for the metric coefficients near the horizon. It is important
to note that one can control the precision of the eigenfrequencies ω by requiring the convergence of
the found result with respect to increasing of the number of expansion terms of all the series [13].

For asymptotically flat black hole solutions it is convenient to use the WKB method (see sec.
3.3), where the asymptotic solutions of the wave equation near the event horizon and near spatial
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Figure 7.1: The effective potential for electromagnetic perturbations near the Schwarzschild black
hole (r+ = 1, l = 2) and the same potential interpolated numerically near its maximum.

infinity are matched with Taylor expansion near the peak of the potential. We conclude therefore
that the low-damping quasi-normal modes are determined mainly by the behavior of the effective
potential near its peak.

This statement was checked by considering the potential for the Schwarzschild black hole and
also two other potentials, which lay closely to the Schwarzschild potential near its maximum, but
have very different behavior far from the black hole. These two potentials are chosen in the following
way. We choose some points near the maximum of the effective potential. The first potential is an
interpolation of these points by cubic splines (see fig. 7.1). The second potential is a fit for the
points by a ratio of polynomial functions.

Since the WKB formula contains the value of the effective potential and its derivatives at the
potential peak, we find that the results obtained with the help of all three potentials lay very close
if the interpolation and the fit were made with the appropriate precision [16]. Despite the higher
derivatives of our interpolation potential are not defined, we are able to evaluate them step by
step by interpolating in the same way the first and all the consequent derivatives of the potential.
It turns out that the interpolation potential is very sensitive to numerical errors. Therefore, to
calculate the quasi-normal modes with the appropriate precision, one must calculate the values of
the potential with very high accuracy. In fact, for the practical purposes one can use fitting of the
potential which does not accumulate the numerical error.

To test the accuracy of this approach one can use the fact that the sixth order WKB formula gives
a smaller relative error than the third order one (see sec. 3.3). Since the higher WKB order depends
on the higher derivatives of the effective potential, that are more sensitive to the interpolation or
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fitting accuracy, the higher order WKB formula should give some random values, if the accuracy is
not enough.

The independence of the quasi-normal modes on the behavior of the effective potential at large
distance, being inspired by the WKB formula, is not related with the WKB method. However, since
the WKB formula depends only on the potential near its peak, we unable to prove the statement
within the described approach. That is why, it is important to check the results with a different
method. In order to do this, we have found in time domain the quasi-normal modes of gravitational
perturbations of black holes in the Einstein-Aether theory. The calculated frequencies show an
excellent agreement with the WKB results [19].

7.2 Quasi-normal modes of the scalar hairy black hole

Since the paper of J. Bekenstein [121], it is well-known that black hole can not have scalar hair
within minimal coupling. However, as have been found in [122, 123], there is a possibility of dressing
a four-dimensional black hole in anti-de Sitter space-time with a non-minimally coupled classical
scalar field. In [124] the results were extended for higher dimensional configurations. Despite we live
in the de Sitter universe, black holes in the anti-de Sitter background attracted considerable interest
due to the AdS/CFT correspondence [6]. In this context, the quasi-normal ringing of massive non-
minimally coupled scalar field to the black hole in the anti-de Sitter background was studied for the
first time in [13].

We consider the spherically symmetric solution

ds2 = N(r)e2δ(r)dt2 −N(r)−1dr2 − r2
(
dθ2 + sin θ2 dϕ2

)
(7.1)

of the action, which describes a self-interacting scalar field φ with non-minimal coupling to gravity:

S =

∫
d4x
√
−g
[

1

2
(R− 2Λ)− 1

2
(∇φ)2 − 1

2
ξRφ2 − µ2φ2

2

]
, (7.2)

where R is the Ricci scalar, Λ is the cosmological constant, ξ is the coupling constant, and

(∇φ)2 = ∇aφ∇aφ.

In order to simplify the equations of motion we use the following conformal transformation

ḡab = (1− ξφ2)gab. (7.3)

After the transformation, the action takes the form

S =

∫
d4x̄
√
−ḡ
(

1

2

(
R̄− 2Λ

)
− 1

2

(
∇̄Φ
)2 − U(Φ)

)
, (7.4)

where we define

Φ =

∫
dφ

√
(1− ξφ2) + 6ξ2φ2

(1− ξφ2)2
, U(Φ) =

µ2φ2

2
+ Λξφ2 (2− ξφ2)

(1− ξφ2)2 . (7.5)

The metric takes the following form

ds̄2 = N̄(r̄)e2δ̄(r̄)dt2 − N̄(r̄)−1dr̄2 − r̄2
(
dθ2 + sin θ2 dϕ2

)
, (7.6)
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where

r̄ =
(
1− ξφ2

) 1
2 r,

N̄ = N
(
1− ξφ2 − ξrφφ′

)2 (
1− ξφ2

)−2
,

N̄e2̄δ = Ne2δ
(
1− ξφ2

)
.

Varying the action, one can find the following equations of motion [123]

d(r̄N̄)

dr̄
= 1− Λr̄2 − r̄2

(
N̄

2

(
dΦ

dr̄

)2

+ U(Φ)

)
, (7.7a)

dδ̄

dr̄
=

r̄

2

(
dΦ

dr̄

)2

, (7.7b)

0 = N̄
d2Φ

dr̄2
+

(
N̄
dδ̄

dr̄
+
dN̄

dr̄
+

2N̄

r̄

)
dΦ

dr̄
− dU

dΦ
. (7.7c)

In order to obtain the series expansion for the metric coefficients (7.6), we have to impose
some boundary conditions, which are associated with the black hole parameters. We are using the
following parameters. The event horizon radius r̄+ can be chosen arbitrary in order to fix length
scale. This choice defines the boundary condition for N̄ : N̄(r̄+) = 0. In order to measure all
dimensional values in units of r̄+, we choose r̄+ = 1. The value δ̄(r̄+) is chosen arbitrary in order to
fix time scale. In order to introduce the boundary conditions in the same point we impose δ̄(r̄+) = 0,
what differs from Winstanley’s δ̄(∞) = 0. The last parameter φ(r̄+) = Q can be associated with
the scalar charge of the black hole.

Spherically symmetric perturbation equation for

δΦ = e−iωt
Qω(r)

r

takes the wave-like form (2.21), where the perturbation potential is given by [122]:

V (r̄) =
N̄e2δ̄

r̄2

(
(1− (U + Λ)r̄2)

(
1− r̄2

(
dΦ

dr̄

)2
)
− N̄ + 2r̄3dU

dΦ

dΦ

dr̄
+ r̄2d

2U

dΦ2

)
. (7.8)

The tortoise coordinate is given by
dr̄∗

dr̄
= eδ̄N̄ . (7.9)

It is similar to the ordinary anti-de Sitter case:

r̄ = r̄+ ⇐⇒ r̄∗ =∞,
r̄ =∞ ⇐⇒ r̄∗ = 0.

This perturbation corresponds to infinitesimal changing of the black hole mass and is similar to
the zero-multipole scalar perturbations near a hairless black hole. The crucial difference is that the
perturbation of a scalar field due to the hair gives a first-order correction to the metric.

In order to calculate the quasi-normal modes we find the series expansions near the black hole
event horizon for Φ, δ̄ and N̄ using the equations (7.7). Since N̄ grows at the spatial infinity, it is
convenient to find the series for the function g = N̄/r̄2 instead of N̄ . After the series for the metric
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Figure 7.2: Dependance of the real and imaginary parts of the quasi-normal frequency
on Q for the scalar hairy black hole. The imaginary part quickly decreases as the “scalar
charge” Q increases. The real part reaches its maximum and then quickly falls down to zero. It
vanishes for some non-critical charge Q0 < ξ−1/2. For Q ≥ Q0 the real part remains zero and the
frequency is purely imaginary (within numerical precision).

functions are known one can find the series for the effective potential (7.8) and, finally, for s(z),
t(z) and u(z) in (3.71). Then we use the technique, described in the previous section.

It was found [13] that imaginary part of the quasi-normal modes changes monotonously as a
function of Λ, Q and ξ. Scalar field mass µ cause imaginary part to decrease its absolute value but
not to vanish. It reaches a minimum for some particular mass and then increases very rapidly (see
fig. 7.5). Thus no infinitely long living oscillations appear.

Real part has more complicated behavior and depends significantly on the parameters Q and Λ
(see figures 7.2 and 7.3). Other parameters, ξ and µ, change the real part within the comparable
small bounds (see figures 7.4 and 7.5). For relatively large values of ξ, Λ and Q purely imaginary
frequencies appear.

From the figure 7.6 we see that higher overtones tend to equidistant spacing similar to hairless
black hole spectrum behavior in the anti-de Sitter background [125].

7.3 Perturbations and quasi-normal modes of black holes

in the Einstein-Aether theory

General relativity is based on the local Lorentz invariance. Yet, there appeared a lot of attempts to
go beyond the local Lorentz symmetry. Aether can be considered as locally preferred state of rest at
each point of space-time due-to some unknown physics. Einstein-Aether theory is general relativity
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Figure 7.3: Dependance of the real and imaginary parts of the quasi-normal frequency
on Λ for the scalar hairy black hole. The real part increases for relatively small “scalar charges”
Q, but for large Q = 2.2 it also reaches maximum and then falls down and vanishes for Λ ≈ −0.292.
For larger values of Λ the real part remains zero and purely imaginary frequencies exist. The
imaginary part decreases almost linearly as Λ grows.

coupled to a dynamical time-like vector field, which is called “aether”. This theory is what comes
instead of usual general relativity when local Lorentz symmetry is broken. Namely, the vector field
breaks local boost invariance, while rotational symmetry in the preferred frame is preserved (see [4]
for review).

It is important that the significant difference between Einstein and Einstein-Aether theories
should be seen in the regime of strong field, for instance in observing of the characteristic quasi-
normal spectrum of black holes. Thus, existence of aether could be tested in the forthcoming
experiments with new generation of gravitational antennas. In this context, the quasi-normal spec-
trum for test scalar and electromagnetic fields [16] and for the gravitational perturbations [19] was
studied.

The solution for a black hole metric in the Einstein-Aether theory was found numerically in
[126, 127]. Since the analytical solution is not known, in order to calculate the quasi-normal modes,
one can apply the fitting of the effective potential as described in the section 7.1.

The Lagrangian of the full Einstein-Aether theory that forms the most general diffeomorphism
invariant action of the space-time metric gab and the aether field ua, involving no more than two
derivatives, is given by

L = −R−Kab
mn∇au

m∇bu
n − λ(gabu

aub − 1), (7.10)
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Figure 7.4: Dependance of the real and imaginary parts of the quasi-normal frequency
on ξ < 3

16
for the scalar hairy black hole. The imaginary part decreases as ξ grows. The

quickness of such decreasing depends on Λ and Q. For some Λ and Q (as presented on the bottom
graphic) the real part can fall down to zero and purely imaginary frequencies appear for larger ξ.

where R is the Ricci scalar, λ is a Lagrange multiplier, which provides the unit time-like constraint,

Kab
mn = c1g

abgmn + c2δ
a
mδ

b
n + c3δ

a
nδ

b
m + c4u

aubgmn,

where ci are dimensionless constants.

Spherical symmetry allows to fix c4 = 0. Following [126, 127], we shall consider the so-called
non-reduced Einstein-Aether theory, for which c3 = 0, and we can use the field redefinition that
fixes the coefficient c2:

c2 = − c3
1

2− 4c1 + 3c2
1

,

so that c1 is the free parameter.

The metric for a spherically symmetric static black hole is

ds2 = N(r)dt2 − B2(r)

N(r)
dr2 − r2dΩ2 , (7.11)

where the functions N(r) and B(r) are given by numerical integration near the black hole event
horizon.

The perturbation equations can be reduced to the wave-like form (2.10) with the effective po-
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Figure 7.5: Dependance of the real and imaginary parts of the quasi-normal frequency
on µ for the scalar hairy black hole. We consider only 0 ≤ µ2 ≤ −4ξΛ. The real part changes
within comparatively small range. The imaginary part reaches its maximum remaining negative.
For this value of µ the oscillations have the longest lifetime, but they still damp and we do not
observe quasi-resonances. For larger scalar field masses the imaginary part of frequency decreases
and the damping rate is higher.

tentials

Vs = N(r)
l(l + 1)

r2
+

1

r

d

dr∗

N(r)

B(r)
, l = 0, 1, 2 . . . , (7.12a)

Ve = N(r)
l(l + 1)

r2
, l = 1, 2, 3 . . . , (7.12b)

Vg = N(r)
(l + 2)(l − 1)

r2
+

2N2(r)

B2(r)r2
− 1

r

d

dr∗

N(r)

B(r)
, l = 2, 3, 4 . . . , (7.12c)

for scalar, Maxwell and axial gravitational perturbations respectively.
The tortoise coordinate is defined as

dr? =
B(r)

N(r)
dr.

Note, that since the background value of aether coupling is small in comparison with the back-
ground characteristics of large black hole, the Schwarzschild metric is slightly corrected by the
aether. That is why, when considering perturbations of the metric we neglect small perturbations
of aether, keeping only linear perturbations of the Ricci tensor.

Since N(r) and B(r) are known numerically, we can use the fitting technique [16]. The fit
functions for N(r) and B(r) were chosen as fractions of two polynomials, which are characterised
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Figure 7.6: First five quasi-normal frequencies for the scalar hairy black hole Λ = −0.1,
Q = 1, ξ = 0.1, µ = 0. The high overtones approach equidistant spacing.

by the number of terms in their numerators and denominators. There is some optimal number for
which the convergence of WKB series is best. Practically, in order to find optimal number of terms
for N(r) we search for minimal difference between third and sixth order WKB values, first for the
case B(r) = 1. When we have found the optimal fit for N(r), in a similar fashion, i.e., by looking for
best WKB convergence, we are in position to find the optimal fit for B(r). Quick WKB convergence
shows that higher derivatives of the metric coefficients are calculated with the best accuracy.

We find that as c1 grows, the fundamental quasi-normal frequency increases the absolute value
of its real and imaginary parts. This was checked also in time-domain [19]. On the figure 7.7 we see,
that for higher c1 the oscillation period and the lifetime of the perturbations decrease. We conclude
that aether, if it exists, could be indirectly observed through detection of characteristic spectrum
of black holes.
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zschild case c1 = 0 (blue line). The higher c1 is the quicker decay of the observed perturbations.
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Chapter 8

Perturbations of Schwarzschild black
holes in laboratories

8.1 Acoustic analogue of gravity

In addition to the possibility to observe quasi-normal modes of black holes with the help of a new
generation of gravitational antennas, there is a window for observation of the acoustic analogue of
a black hole in laboratories. This is the well-known Unruh analogue of black holes [128, 129], which
are the apparent horizons appearing in a fluid with a space-dependent velocity, in the presence
of sonic points. The wave, which passed through the sonic point, cannot propagate backward,
mimicking thereby, the effect of the horizon at sonic points.

The dynamic of sound waves in a fluid can be described by the propagation of a scalar field in
some effective background. It turns out, that steady spherically symmetric flow cannot reproduce
the Schwarzschild geometry because of the equation of continuity (see [130] for review). One could
construct either an acoustic analog, which is conformal to the Schwarzschild black hole,

ds2 ∝ r−3/2

((
1− r+

r

)
dt2 −

(
1− r+

r

)−1

dr2 − r2(dθ2 + sin θ2dφ2)

)
, (8.1)

or an exact analog to the 7-dimensional black hole, projected on the 4-brane (see section 5.3)

ds2 =

(
1−

(r+

r

)4
)
dt2 −

(
1−

(r+

r

)4
)−1

dr2 − r2(dθ2 + sin θ2dφ2). (8.2)

If one had a complete analogy with some known solution of the Einstein equations, say, the
Schwarzschild solution, he could see, in the acoustic experiments, not only qualitative, but also, up
to an experimental accuracy, exact numerical coincidence with a prototype characteristics. Namely,
for quasi-normal modes, which are governed by the form of the wave equation, this numerical
correspondence would mean that the effective potential of the perturbations of some hydrodynamic
system coincides with an effective potential of the black hole. Fortunately, the consideration of the
perturbations of a gas in de Laval nozzle [131] gives us such an opportunity of finding a system that
obeys the same effective potential as a Schwarzschild black hole does [21].

8.2 de Laval nozzle

The canonical de Laval nozzle is a convergent-divergent tube, narrow in the middle. It allows
to accelerate the gas until the sonic speed in its throat, reaching supersonic speeds after passing
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the throat. The perturbations of the gas in de Laval nozzle can be considered as one-dimensional
if the section does not change too quickly along the length of the nozzle. Let us show that the
corresponding effective potential for perturbations in a canonical de Laval nozzle can be made equal
to the potential for perturbations of Schwarzschild black holes, when choosing some specific form
of the nozzle.

We assume that a gas in the nozzle can be described by the equations of motion for the perfect
fluid and that the flow is quasi-one-dimensional. The equations of continuity, the momentum and
energy conservation read respectively

∂t(ρA) + ∂x(ρvA) = 0 , (8.3a)

∂t(ρvA) + ∂x[(ρv
2 + p)A] = 0 , (8.3b)

∂t(εA) + ∂x[(ε+ p)vA] = 0 . (8.3c)

Here ρ is the density, v is the fluid velocity, p is the pressure, A is the cross section of the nozzle,
and

ε =
1

2
ρv2 +

p

γ − 1
(8.4)

is the energy density. The heat capacity ratio for di-atomic molecules of air is

γ = 1 + 2/n = 7/5 = 1.4 (n = 5).

We shall assume that the flow has no entropy discontinuity. Then the fluid is isentropic

p ∝ ργ . (8.5)

Instead of (8.3b), we can use the Euler equation

ρ(∂t + v∂x)v = −∂xp . (8.6)

For isentropic fluid, (8.6) is reduced to the Bernoulli equation

∂tΦ +
1

2
(∂xΦ)2 + h(ρ) = 0 , (8.7)

where h(ρ) ≡
∫
ρ−1dp is the specific enthalpy and Φ =

∫
v dx is the velocity potential.

According to [131], the perturbation equations in such a nozzle can be reduced to[
d2

dx∗2
+ κ2 − V (x∗)

]
Hω = 0, (8.8)

κ =
ω

cs0
, (8.9)

V (x∗) =
1

g2

[
g

2

d2g

dx∗2
− 1

4

( dg
dx∗

)2
]
. (8.10)

Here cs0 =
√
γRT/µ is the stagnation sound speed, which is used to measure x∗ in meters. The

variable x∗ is an acoustic analogue of the tortoise coordinate which satisfies

x∗(x = +∞) = +∞, x∗(x = 0) = −∞,

namely,

x∗ = cs0

∫
csdx

c2
s − v2

. (8.11)
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The function Hω represents small perturbations of the gas flow,

Hω(x) = g1/2

∫
dt eiω(t−f(x))φ(t, x), (8.12)

g =
ρA

cs
, (8.13)

f(x) =

∫
|v| dx
c2
s − v2

. (8.14)

The sound speed is given by

c2
s =

dp

dρ
=
γp

ρ
. (8.15)

Since (8.8) is invariant with respect to the re-scaling of g, we can fix the coefficients in (8.13)
arbitrarily:

g =
ρA

2ρ(γ−1)/2
. (8.16)

Up to a coefficient, A can be found in terms of ρ as [21]

A−1 =
(
1− ρ(γ−1)

)1/2
ρ. (8.17)

We find

g =
ρ(1−γ)/2

2 (1− ρ(γ−1))
1/2

=
ρ(1−γ)

2 (ρ(1−γ) − 1)
1/2

. (8.18)

Hence it follows that
ρ1−γ = 2g2

(
1±

√
1− g−2

)
. (8.19)

The sign in (8.19) should be chosen in order that ρ be a monotonous function with respect to the
transverse coordinate. As we will show later, the function g for the Schwarzschild black hole can
be chosen also monotonous in the R region, finite at the horizon and infinite at the spatial infinity.
Therefore, we choose the minus sign,

ρ1−γ = 2g2
(

1−
√

1− g−2
)
, g > 1. (8.20)

Substituting (8.19) into (8.17), we find the cross-section area as a function of g,

A =

√
2
(

2g2
(

1−
√

1− g−2
))1/(γ−1)

√
1−

√
1− g−2

. (8.21)

For the steady isentropic flow, (8.7) can be rewritten as

v2

c2
s

=
2

γ − 1

(
ρ1−γ − 1

)
=

2

γ − 1

(
2g2
(

1−
√

1− g−2
)
− 1
)
. (8.22)

Since v = cs at the event horizon, g must be finite there, and

g

∣∣∣∣∣
e.h.

=
γ + 1

2
√

2
√
γ − 1

=
3√
5
> 1. (8.23)

This requirement fixes both constants of integration.
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8.3 de Laval nozzle for the Schwarzschild black hole

Since g allows to find the cross section A and, thereby, the form of de Laval nozzle, if we find such
g(x) that leads to the same expression for the nozzle potential (8.8), as the effective potential for
the Schwarzschild black hole [21],

V (r) =

(
1− 1

r

)(
l(l + 1)

r2
+

1− s2

r3

)
, (r+ = 1), (8.24)

where l ≥ s is the multipole integer number. The integer s = 0, 1, 2 describes the perturbations of
fields of different spin: s = 0 for the test scalar field, s = 1 for the Maxwell field and s = 2 for the
gravitational perturbations of axial type.

In order to find g that produces the required potential (8.24), we identify the “tortoise” coordi-
nates of the black hole solution and of de Laval nozzle

dr∗ = dx∗ =
ρ(1−γ)/2dx

1− v2/c2
s

=

√
2g2
(

1−
√

1− g−2
)
dx

1− 2
γ−1

(
2g2
(

1−
√

1− g−2
)
− 1
) . (8.25)

The equation (8.25) relates the real coordinate of the nozzle x and the radial coordinate of the
Schwarzschild solution r. It is convenient because we are able to find the equation for g(r) explicitly,

f(r)f ′(r)g′(r) + f(r)2g′′(r)

2g(r)
− f(r)2g′(r)2

4g(r)2
= V (r). (8.26)

This implies that the form of de Laval nozzle is parameterised by r and x∗(r) = r∗(r). Note, that
as we chose the radius of the event horizon to be unity, the nozzle coordinate x is measured in the
units of the radius of the event horizon.

The general solution of the equation (8.26) contains two arbitrary constants. They can be fixed
in a unique way by the condition (8.23). Namely, the requirement that the solution must be finite
at r = 1 fixes one of the constants. Then the other constant re-scales g(r), and must be fixed by
its value at r = 1. Finally, the solution of (8.26), for arbitrary l and s, that satisfies (8.23), is given
by the following formula,

g(r) =
γ + 1

2
√

2
√
γ − 1

l∑
n=s

(
(−1)n+s(l + n)!

(n+ s)!(n− s)!(l − n)!
rn+1

)2

=

=
γ + 1

2
√

2
√
γ − 1

r2s+2

(
Γ(1 + l + s)2F1(s− l, s+ l + 1, 1 + 2s, r)

Γ(1 + l − s)Γ(1 + 2s)

)2

. (8.27)

One can easily check that the above solution indeed satisfies the equation (8.23), for any fixed l and
s.

The equation (8.25) allows to find the dependance of the transversal nozzle coordinate x on the
parameter r,

x =

r∫
1

(
γ + 1− 4g(r)2

(
1−

√
1− g(r)−2

))
dr

f(r)(γ − 1)

√
2g(r)2

(
1−

√
1− g(r)−2

) . (8.28)

The integration constant is chosen so that x vanishes at the sonic point.
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Figure 8.1: The form of de Laval nozzles and the effective potential in the nozzle coordinates.

Now we are in position to find the required form of de Laval nozzle. i.e. to find its cross-
section A(x). We just need to replace g(r) given in (8.27) and go over to the transverse nozzle
coordinate x. The radius of the de Laval nozzle as a function of the transverse coordinate x is
shown in figure 8.1. Note that the canonical de Laval nozzle is diverging at the end of the flow
trajectory, so that Ax=∞ = ∞. Indeed, the formula (8.27) implies divergence at least as ∼ r2.
Nevertheless, the diverging of the nozzle still let us keep the one-dimensional representation of the
motion, because x is measured in units of black hole radius, i.e. one can “pull” the nozzle along
the transverse coordinate x in order to make the area of the nozzle change as slowly as one wishes.
Such a “pulling” simply means that we are getting the correspondence with a larger black hole.

In a similar fashion, one can find the de Laval nozzle form for the gravitational perturbations of
polar type [21]. The form of the nozzles for modeling polar and axial gravitational perturbations
are very slightly different.

It should be recalled also that the precise acoustic analogy is only established for a scalar field.
To be able to reproduce the potential V (r) for fields of different spins, certainly, does not mean that
one can reproduce all the characteristics of those fields in an acoustic model.

The obtained acoustic analogue for the perturbations of the Schwarzschild black holes is not
limited by quasi-normal mode problems only, but allow general investigation of propagation of
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fields, including such processes as scattering and tunneling of waves and particles.
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Chapter 9

Summary

Let us summarise the results of this dissertation.

• We have performed the complete study of the influence of the cosmological constant on the
quasi-normal spectrum of the Schwarzschild black hole for fields of various spins. We have found that
the presence of the cosmological constant decreases the absolute value of the real and imaginary
parts of quasi-normal frequencies. Also we have found analytically the large multipole limit for
quasi-normal frequencies of Schwarzschild-de Sitter black holes (sec. 4.1).

• We have studied the behavior of high overtones for the massless Dirac and massive scalar
fields in the Schwarzschild background and for the test electromagnetic field and gravitational
perturbations of the Schwarzschild-de Sitter black hole. We have shown numerically that the real
part of the quasi-normal frequency asymptotically approaches zero for the Dirac and electromagnetic
fields, but has an oscillatory behavior for the gravitational perturbations of the Schwarzschild-de
Sitter black hole. These results were confirmed later analytically (sec. 4.2). The behavior of high
overtones for the massive scalar field was studied both analytically and numerically. We have shown
that the asymptotical behavior does not depend on the mass of the field, coinciding with the known
analytical formula for the massless scalar field (sec. 6.2).

• We have investigated the quasi-normal spectrum of the electrically charged scalar and Dirac
fields in the background of the Kerr-Newman-de Sitter black hole. Special attention was paid to
the influence of the electromagnetic interaction between the black hole and the test field upon the
quasi-normal spectrum (sec. 4.3).

• We have studied the quasi-normal spectrum of gravitational perturbations of the neutral and
electrically charged black holes in higher dimensions with a positive cosmological constant. We have
considered all kinds of the perturbations and prove that higher dimensional Schwarzschild-de Sitter
black holes are stable. We have shown that the higher dimensional black hole is unstable if both the
black hole charge and the cosmological constant are large enough. We have found the parametrical
region of the instability (sec. 5.1).

• We have considered gravitational perturbations of higher dimensional black holes in the
Einstein-Gauss-Bonnet theory. We have found that the presence of the Gauss-Bonnet parameter de-
creases the imaginary part of quasi-normal frequencies, causing the oscillations be longer-lived. Also
we have studied the developing of instability of Gauss-Bonnet black holes in five and six dimensions
(sec. 5.2).

• We have found quasi-normal modes and late-time tails of the rotating black holes and the
non-rotating Gauss-Bonnet black holes for the Standard Model fields localised on a 4-brane (sec.
5.3).

• We have studied quasi-normal modes of the Kaluza-Klein black holes with squashed hori-
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zons. We have considered the test scalar field near rotating squashed Kaluza-Klein black holes and
gravitational perturbations of non-rotating squashed Kaluza-Klein black holes (sec. 5.4).
• We have calculated the quasi-normal spectra of the massive scalar field in the backgrounds of

the Tangherlini black hole (sec. 6.2), the Kerr black hole (sec. 6.3) and the scalar hairy asymptot-
ically anti-de Sitter black hole (sec. 7.2). We have found that the massive scalar field is stable in
these backgrounds and provided a comprehensive discussions about properties of their quasi-normal
spectrum and quasi-resonances (sec. 6.1). Also we have studied the late-time tails for the massive
vector field in the Schwarzschild background and found that the asymptotically late-time decay law
does not depend on the spin of the massive field (sec. 6.5).
•We have found quasi-normal modes and tails of the gravitational perturbations of black strings.

Also we have considered the developing of the long-wavelength instability of a black string in time
domain (sec. 6.4).
• We have studied the influence of the local Lorentz symmetry breaking within the Einstein-

Aether theory on the quasi-normal spectrum of the Schwarzschild black hole. We have found that
the presence of the aether increases the absolute value of the real and imaginary parts of the
fundamental quasi-normal frequency (sec. 7.3).
• We have proposed a possibility of observation of the acoustic analogue of the Schwarzschild

black hole in a de Laval nozzle. We have found the particular forms of the de Laval nozzles for
which the effective potentials will coincide with the effective potentials for test fields or gravitational
perturbations of the Schwarzschild black hole (chapter 8).
• We have developed two new numerical tools:

1) the generalisation of the Nollert improvement of the Frobenius method for higher dimensional
problems, which provides better convergence of the numerical procedure (sec. 3.4).
2) the method for the calculation of the quasi-normal frequencies of a black hole, which metric is
not known analytically, but can be found as a numerical solution of a set of differential equations
(sec. 7.1).

All the results reported here were obtained by us for the first time, and are, thereby, new.
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[44] G. Pöschl and E. Teller, Z. Phys. 83, 143 (1933).

[45] V. Cardoso and J. P. S. Lemos, Phys. Rev. D67, 084020 (2003), [gr-qc/0301078].

[46] C. Molina, Phys. Rev. D68, 064007 (2003), [gr-qc/0304053].

[47] B. Schutz and C. Will, Astrophys. J. Lett. 291, L33 (1985).

96



[48] S. Iyer and C. M. Will, Phys. Rev. D 35, 3621 (1987).

[49] R. A. Konoplya, Phys. Rev. D68, 024018 (2003), [gr-qc/0303052].

[50] R. A. Konoplya, Phys. Rev. D68, 124017 (2003), [hep-th/0309030].

[51] R. A. Konoplya, J. Phys. Stud. 8, 93 (2004).

[52] N. Froeman, P. O. Froeman, N. Andersson, and A. Hoekback, Phys. Rev. D45, 2609 (1992).

[53] E. W. Leaver, Proc. Roy. Soc. Lond. A402, 285 (1985).

[54] H.-P. Nollert, Phys. Rev. D 47, 5253 (1993).

[55] A. Rostworowski, Acta Phys. Polon. B38, 81 (2007), [gr-qc/0606110].

[56] H. Suzuki, E. Takasugi, and H. Umetsu, Prog. Theor. Phys. 100, 491 (1998), [gr-qc/9805064].

[57] A. Ohashi and M.-a. Sakagami, Class. Quant. Grav. 21, 3973 (2004), [gr-qc/0407009].

[58] H. Kodama and A. Ishibashi, Prog. Theor. Phys. 111, 29 (2004), [hep-th/0308128].

[59] A. Ishibashi and H. Kodama, Prog. Theor. Phys. 110, 901 (2003), [hep-th/0305185].

[60] K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, 2 (1999), [gr-qc/9909058].

[61] S. Hod, Phys. Rev. Lett. 81, 4293 (1998).

[62] J. F. Barbero G., Phys. Rev. D51, 5507 (1995), [gr-qc/9410014].

[63] G. Immirzi, Nucl. Phys. Proc. Suppl. 57, 65 (1997), [gr-qc/9701052].

[64] L. Motl, Adv. Theor. Math. Phys. 6, 1135 (2003), [gr-qc/0212096].

[65] J.-l. Jing, Phys. Rev. D71, 124006 (2005), [gr-qc/0502023].

[66] V. Cardoso, J. Natario, and R. Schiappa, J. Math. Phys. 45, 4698 (2004), [hep-th/0403132].

[67] S. Hod and T. Piran, Phys. Rev. D58, 024017 (1998), [gr-qc/9712041].

[68] S. Hod and T. Piran, Phys. Rev. D58, 024018 (1998), [gr-qc/9801001].

[69] R. A. Konoplya, Phys. Rev. D66, 084007 (2002), [gr-qc/0207028].

[70] R. A. Konoplya, Phys. Lett. B550, 117 (2002), [gr-qc/0210105].

[71] W. Zhou and J.-Y. Zhu, Int. J. Mod. Phys. D13, 1105 (2004), [gr-qc/0309071].

[72] J. Jing, Phys. Rev. D72, 027501 (2005), [gr-qc/0408090].

[73] X. He and J. Jing, Nucl. Phys. B755, 313 (2006), [gr-qc/0611003].

[74] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B429, 263 (1998), [hep-
ph/9803315].

97



[75] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Rev. D59, 086004 (1999), [hep-
ph/9807344].

[76] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Lett. B436, 257
(1998), [hep-ph/9804398].

[77] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999), [hep-ph/9905221].

[78] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999), [hep-th/9906064].

[79] E. Abdalla, B. Cuadros-Melgar, A. B. Pavan, and C. Molina, Nucl. Phys. B752, 40 (2006),
[gr-qc/0604033].

[80] D. Cremades, L. E. Ibanez, and F. Marchesano, Nucl. Phys. B643, 93 (2002), [hep-
th/0205074].

[81] C. Kokorelis, Nucl. Phys. B677, 115 (2004), [hep-th/0207234].

[82] P. C. Argyres, S. Dimopoulos, and J. March-Russell, Phys. Lett. B441, 96 (1998), [hep-
th/9808138].

[83] T. Banks and W. Fischler, (1999), [hep-th/9906038].

[84] S. B. Giddings and S. D. Thomas, Phys. Rev. D65, 056010 (2002), [hep-ph/0106219].

[85] S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett. 87, 161602 (2001), [hep-ph/0106295].

[86] F. R. Tangherlini, Nuovo Cim. 27, 636 (1963).

[87] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985).

[88] R. Konoplya, Phys. Rev. D71, 024038 (2005), [hep-th/0410057].

[89] E. Abdalla, R. A. Konoplya, and C. Molina, Phys. Rev. D72, 084006 (2005), [hep-th/0507100].

[90] G. Dotti and R. J. Gleiser, Phys. Rev. D72, 044018 (2005), [gr-qc/0503117].

[91] R. J. Gleiser and G. Dotti, Phys. Rev. D72, 124002 (2005), [gr-qc/0510069].

[92] M. Beroiz, G. Dotti, and R. J. Gleiser, Phys. Rev. D76, 024012 (2007), [hep-th/0703074].

[93] P. Kanti and J. March-Russell, Phys. Rev. D66, 024023 (2002), [hep-ph/0203223].

[94] P. Kanti and J. March-Russell, Phys. Rev. D67, 104019 (2003), [hep-ph/0212199].

[95] P. Kanti and R. A. Konoplya, Phys. Rev. D73, 044002 (2006), [hep-th/0512257].

[96] P. Kanti, Int. J. Mod. Phys. A19, 4899 (2004), [hep-ph/0402168].

[97] R. C. Myers and M. J. Perry, Ann. Phys. 172, 304 (1986).

[98] V. S. Rychkov, Phys. Rev. D70, 044003 (2004), [hep-ph/0401116].

[99] H. Ishihara and J. Soda, Phys. Rev. D76, 064022 (2007), [hep-th/0702180].

98



[100] M. Kimura, K. Murata, H. Ishihara, and J. Soda, Phys. Rev. D77, 064015 (2008),
[arXiv:0712.4202 [hep-th]].

[101] S. Hod and T. Piran, Phys. Rev. D58, 044018 (1998), [gr-qc/9801059].

[102] R. A. Konoplya and R. D. B. Fontana, Phys. Lett. B659, 375 (2008), [0707.1156].

[103] L. E. Simone and C. M. Will, Class. Quant. Grav. 9, 963 (1992).

[104] H. T. Cho, Phys. Rev. D68, 024003 (2003), [gr-qc/0303078].

[105] R. A. Konoplya, Phys. Rev. D73, 024009 (2006), [gr-qc/0509026].

[106] H. R. Beyer, Commun. Math. Phys. 221, 659 (2001), [astro-ph/0008236].

[107] R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993), [hep-th/9301052].

[108] R. Gregory and R. Laflamme, Nucl. Phys. B428, 399 (1994), [hep-th/9404071].

[109] J. L. Hovdebo and R. C. Myers, Phys. Rev. D73, 084013 (2006), [hep-th/0601079].

[110] R. H. Price, Phys. Rev. D5, 2419 (1972).

[111] R. H. Price, Phys. Rev. D5, 2439 (1972).
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