
The Pennsylvania State University

The Graduate School

Department of Physics

AT THE INTERFACE:

GRAVITATIONAL WAVES AS TOOLS TO TEST QUANTUM

GRAVITY AND PROBE THE ASTROPHYSICAL UNIVERSE

A Dissertation in

Physics

by

Nicolás Yunes

c© 2008 Nicolás Yunes

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2008



The dissertation of Nicolás Yunes was read and approved
∗

by the following:

Benjamin J. Owen
Assistant Professor of Physics
Dissertation Adviser
Chair of Committee

Stephon H. S. Alexander
Assistant Professor of Physics

Pablo Laguna
Professor of Astronomy and Astrophysics
Professor of Physics

Steinn Sigurdsson
Associate Professor of Astronomy and Astrophysics

Jayanth Banavar
Professor of Physics
Head of the Department of Physics

∗

Signatures on file in the Graduate School.



iii

Abstract

This thesis discusses gravitational waves from binary systems of compact objects
and their role as probes of quantum gravity and the astrophysical universe.

Part A deals with the modeling of the merger phase of binary systems through
numerical relativity, concentrating on the initial data problem. In particular, Chapters 2
and 3 present an improved method to construct such data for non-spinning black hole
binaries by combining post-Newtonian and black hole perturbation theory via matched
asymptotic expansions. Chapter 4 studies a class of transition functions that allow such
gluing of asymptotically-matched approximate 4-metrics. Chapter 5 discusses how to
extend the analysis of the previous chapters to spinning black holes, by studying vacuum
perturbations of the Kerr metric via the modified Chrzanowski procedure.

Part B focuses on astrophysical applications of gravitational waves from binary
black hole inspirals and mergers. Chapters 6 and 7 construct estimates of the recoil
velocity a merger remnant acquires for circular and eccentric inspirals of non-spinning
black holes. These estimates are calculated by combining techniques from black hole per-
turbation theory in the close-limit approximation and post-Newtonian theory. Chapter 8
studies relativistic burst signals, namely relativistic sling-shot orbits of massive compact
objects around supermassive black holes. In particular, this chapter deals with the pos-
sibility of extracting the spin parameter of the central object through a gravitational
wave detection of such gravitational wave bursts.

Part C concentrates on tests of string theory and loop quantum gravity with
gravitational experiments. Chapters 9 considers the possibility of using solar-system
experiments to test Chern-Simons gravity – an ubiquitous correction to general relativity
that emerges as the low-energy limit of string theory and possibly loop quantum gravity.
Chapter 10 studies spinning black holes in Chern-Simons gravity, while Chapter 11 is
concerned with perturbations of non-spinning black holes in this theory. These chapters
suggest that a gravitational wave detection could be used to test the Chern-Simons
correction, which is discussed in Chapter 12.
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Part B is rooted in research published in the Astrophysical Journal (Chapters 6
and 8) and the Astrophysical Journal Letters (Chapter 7). This research was carried
out in collaboration with Pablo Laguna (Chapters 6 and 7), Louis Rubbo and Kelly
Holley-Bockelmann (Chapter 8) and Carlos Sopuerta (Chapters 6, 7 and 8).

Part C consists of work either accepted for publication or submitted to the Phys-
ical Review D . These papers where written in collaboration with Stephon Alexander
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Emanuele Berti, José González, Frank Herrmann, Ian Hinder, Kelly Holley-Bockelmann,
Louis Rubbo, Hanno Sahlmann, Carlos Sopuerta, Uli Sperhake and Wolfgang Tichy,
have taught me the real research and computational techniques that cannot be found in
textbooks.

During my doctoral studies I have also been extremely fortunate to interact with
several professors that in one way or another have also served as advisors. First, I
would like to thank Clifford Will, who has not only taught me about all that is post-
Newtonian and PPN, but has also continued to give me advice and shown me how to
become a successful and ethical physicist and human being. I am also indebted to Bernd
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Chapter 1

Introduction

The main body of this thesis consists of an introduction and three distinct parts,
each of which contains several chapters. Each chapter is based on a paper that has either
been published or submitted to a refereed journal, and thus, it is written for experts in
the field. This introduction is then essential to present some background information and
explain how different parts of this thesis are interconnected. In view of this, this chapter
is written for a general audience of physicists, who may or may not be experts in the
fields of numerical relativity, post-Newtonian theory or gravitational-wave analysis. Due
to the long and complicated history of these fields, the background information presented
here shall be minimal instead of comprehensive, i.e. I shall only describe some aspects
of the history and background that I believe are necessary for the understanding of the
remaining chapters.

The principal topic of this thesis is the study of gravitational waves from in-
spiraling and merging compact binaries to probe the quantum gravitational regime of
spacetime and to obtain a better understanding of the astrophysical universe. Part A of
this thesis focuses on the numerical modeling of the merger phase of black hole binaries,
and in particular, on the initial data problem. Chapters 2 and 3 introduce an improved
method to build initial data for numerical simulations of non-spinning black hole binaries
by “gluing” information from post-Newtonian and black hole perturbation theory. The
gluing procedure is rooted in the theory of matched asymptotic expansions and the use
of well-behaved transition functions, which are discussed in Chapter 4. This method can
be extended to spinning black hole binaries, by considering the modified Chrzanowski
procedure in black hole perturbation theory, developed in Chapter 5.

Part B discusses some examples of the interplay between gravitational-wave physics
and astronomy. On the one hand, Chapters 6 and 7 estimate the recoil velocity a merger
remnant obtains after the circular and eccentric inspiral and merger of non-spinning black
holes binaries respectively. On the other hand, Chapter 8 focuses on sling-shot orbits of
small black holes around a supermassive one and the possibility of extracting relativistic
astrophysical parameters from gravitational wave observations of such systems.

Part C proposes the use of gravitational waves to test a generic low-energy correc-
tion to general relativity derived from string theory and loop quantum gravity: Chern-
Simons gravity. Chapter 9 performs a parametrized post-Newtonian expansion of the
theory and concentrates on solar-system experiments. Chapter 10 and 11 study spin-
ning black holes in the modified theory and black hole perturbation theory about a
non-spinning black hole background respectively. These two chapters suggest that grav-
itational wave emission and propagation are modified in Chern-Simons gravity. Chap-
ter 12 pushes this idea further and proposes a gravitational wave test of Chern-Simons
gravity with LISA.
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1.1 Modeling black hole binaries

1.1.1 Background

According to Einstein’s theory of general relativity, all spatial dimensions and
time form a “spacetime continuum” that is dynamically determined by matter/energy
distributions. Gravitational waves are generated when these distributions possess a non-
vanishing quadrupole moment – that is, when matter undergoes acceleration. The term
“gravitational waves” then can be thought of as the oscillatory features of spacetime
that arise when matter/energy distributions accelerate.

One of the staple sources of gravitational radiation is binary systems of compact
objects or simply “compact binaries.” These sources are important to the gravitational
wave community for several reasons. First, such systems are expected to be ubiquitous
in nature, with detection event rates that could go up to thousands of events per year

out to z = 1 with advanced LIGO
1
. Moreover, such systems produce strong gravitational

waves because these scale with the mass of the system, and black holes can have a total
mass that is a million times that of the Sun. Finally, gravitational waves from compact
binaries can be modeled extremely well and they lead to a large accumulation of gravita-
tional wave cycles [3]. A strong, well-modeled signal with many cycles renders compact
binaries ideal for gravitational wave detection through matched filtering techniques [4]
at interferometers, such as LIGO [5], VIRGO [6], GEO [7] and TAMA [8].

The evolution of black hole binaries have been traditionally thought of as having
three distinct phases [2]: the inspiral phase; the plunge and merger phase; and the
ringdown phase. During the inspiral phase, the binary components are well-separated,
such that gravity is weak and the orbital velocities and tidal effects are small. In this
phase, the system can be modeled extremely well by post-Newtonian theory [3], where
one assumes the orbit is quasicircular and its radius shrinks adiabatically on a much
longer timescale than the orbital one. Therefore, all binaries spend most of their lifetimes
in this phase, possibly producing tens of thousands of gravitational wave cycles.

The plunge and merger phase was thought to begin when the binary components
break circular orbit and plunge toward each other. The precise radius where this happens
is fuzzy, but it was traditionally believed to be near the innermost stable circular orbit.
Therefore, during this phase, gravity is not weak and non-linear gravitational radiation
is expected to be produced. Numerical relativity [9] was expected to be the only avenue
to model this phase, due to the breakage of all other approximation schemes.

The ringdown phase begins roughly when a common apparent horizon forms and
the system rings down all excess energy and momentum to return to equilibrium in
an isolated, spinning black hole configuration. During this phase, the binary can be
approximated as a single, perturbed black hole and modeled via perturbation theory [10],
where one finds that it vibrates at certain quasi-normal frequencies, like a ringing bell.
Eventually, the black hole settles down to a spinning configuration with constant angular
velocity, where it ceases to emit gravitational waves.

1
These event rate estimates are quite uncertain, depending on the details of black hole pop-

ulation synthesis. The quoted rate corresponds to that presented in [2].
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When I entered the graduate doctoral program at Penn State, one of the remaining
standing problems in gravitational wave physics concerned the plunge and merger phase
of black hole binaries. The inspiral could be modeled extremely well with post-Newtonian
techniques, since soon after I arrived Blanchet, Damour, Esposito-Farese and Iyer [11, 12]
finished the so-called 3 PN expansion of the equations of motion. Such an expansion

entails the calculation of iterative corrections to Newton’s law to O(v/c)
6
, where v is

the orbital velocity and c is the speed of light. Similarly, Price and Pullin [13] had
recently developed the close-limit approximation, which used black hole perturbation
theory to model the ringdown phase and yielded results that matched certain numerical
simulations incredibly well [14, 15]. The plunge and merger phase, however, remained a
mystery because approximation schemes could not be used consistently and numerical
relativity was still struggling with the black hole head-on collision problem.

Numerical relativity deals essentially with the evolution of the Einstein equations
on supercomputers. This task of course appears quixotic due to the complexity of the
Einstein equations – a system of ten coupled, non-linear, partial differential equations.
This system can be classified into two subsystems: a set of four constraint equations and
a set of six evolution equations. In order to evolve the equations numerically, one of the

standard procedures
2

is to “foliate” spacetime with spatial hypersurface. Then, once
initial data is prescribed on one such hypersurface (that is, a spatial metric and its first
derivative or extrinsic curvature at one instant of time), the evolution equations describe
how that data evolves to other hypersurfaces. The constraint equations, analogous to the
divergence-free condition of the electric field in Maxwell’s equations, determine which
initial data is acceptable on each hypersurface.

The choice of initial data characterizes the system that one evolves, but finding
data that represents a closely-separated, binary black hole system is quite difficult. This
is because no exact solution is known for the two-body problem in general relativity and
approximation schemes break down when the system is closely-separated. One could,
in principle, begin with a system that is widely separated, such that data could be
prescribed via post-Newtonian theory. This approach, however, is and will remain to be

too numerically expensive in the near future
3
.

Several techniques have been proposed to prescribe initial data for closely-separated
black hole binaries. One of the most popular methods was developed by Brandt and
Brügmann [17] and goes by the name of “puncture data” (c.f., e.g. [18] for a review
of initial data in numerical relativity). Puncture data begins by assuming the spatial
metric is conformally flat and the initial spatial hypersurface is maximally sliced (vanish-
ing trace of the extrinsic curvature), such that the momentum constraint can be solved
exactly to yield the Bowen-York solution [19, 20, 21]. The conformal factor is then de-
termined by approximately solving the Hamiltonian constraint in the small-momentum
limit, yielding the so-called Brill-Lindquist solution [22]. The uncontrolled remainder

2
There are other formulations, such as those that use a characteristic approach, but I shall

not discuss those here [9].
3
Other complications also plague the use of post-Newtonian theory as initial data, which are

discussed further in [16]
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in the conformal factor can then be obtained by numerically solving the Hamiltonian
constraint again.

Puncture data, like all other data currently in use in numerical relativity, does
represent approximately a binary black hole system. However, certain assumptions are
always made that limit both the accuracy of this data and our ability to improve on

it
4
. In the case of puncture data, the assumption of conformal flatness is greatly lim-

iting, since binary black hole systems are known to break conformal flatness at second
post-Newtonian order. Moreover, the use of a hybrid analytical-numerical or a purely
numerical approach to solve the constraint equations forces us to surrender analytic con-
trol. That is, the data produced numerically contains unknown errors, for example due
to the conformal flatness assumption, that cannot be a priori modeled analytically and
whose accuracy cannot be improved straightforwardly in an iterative way.

For these reasons, in 2003-2004 Bernd Brügmann and Ben Owen suggested that
I look at the initial data problem for binary black hole system, through the combination
of post-Newtonian and black hole perturbation theory, which I shall discuss next.

1.1.2 Initial data via matched asymptotic expansions

Our attempts to construct more “astrophysically realistic
5
” initial data were not

new at that time. That is, initial data built from approximate solutions to the Ein-
stein equations already existed. For example, Hu, Matzner and Shoemaker [23, 24, 25]
proposed combining the spatial metric and extrinsic curvature of two isolated spinning
black holes in a certain way, such that the Newtonian limit could be recovered. This
data, however, is known to deviate from post-Newtonian theory at second order in the
far field. Another approach was simply to push post-Newtonian theory to close separa-
tions and construct initial data with it [16, 26, 27]. This data had the advantage that it
identically reproduced post-Newtonian theory by construction and its uncontrolled re-
mainders were analytically fully under control. However, post-Newtonian theory breaks
down not only dynamically for closely separated black holes, but also near singularities
on every hypersurface. A consequence of these problems is that this data possesses the
incorrect tidal horizon deformations relative to black hole perturbation theory.

A procedure to incorporate both post-Newtonian and black hole perturbation
theory had already been proposed by Alvi [28, 29], following the theory of matched
asymptotic expansions [30, 31]. Essentially, the idea was to construct three approximate
spacetime metrics: one with post-Newtonian theory that represented a non-spinning
black hole binary; and two others with black hole perturbation theory that represented
two non-spinning perturbed black holes. The post-Newtonian metric was formally valid

4
In the past four years, several different numerical relativity groups have succeeded in evolv-

ing binary black hole systems with puncture data. These groups have observed that this data
produces an undesired burst of initial radiation, which is believed to arise due to some of the
incorrect assumptions discussed here.

5
The term “astrophysical realism” is a very controversial one, which is why I present it here

between quotation marks. By realistic data I here mean that which incorporates deviations
from conformal flatness and maximal slicing that match both: the deviations predicted by post-
Newtonian theory far away from the black holes; and the deviations predicted by black hole
perturbation theory close to the horizons of the black holes.
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for sufficiently separated binaries and sufficiently far from the singularities, while the
perturbed black hole metrics were valid sufficiently close to the singularities. One could
then asymptotically expand each approximate metric near the edge of their regions of
validity, thus forcing these regions to overlap. Inside the overlap regions, one could then
asymptotically match asymptotically-expanded, approximate metrics – that is, one could
relate the coordinate systems and the parameters used by each approximation by com-
paring their invariant intervals. A global metric thus arises as a piecewise function, where
each piece corresponds to different approximate metrics that have undergone asymptotic
matching.

This problem was ideal for me since I had studied asymptotic analysis extensively
under Carl Bender (one of the world experts on the subject) during my undergraduate
days at Washington University. As I began to read Alvi’s papers I found a major incon-
sistency relative to the standard way one carries out asymptotic matching. Essentially,
the inconsistency was rooted in the difference between matching and patching . In asymp-
totic matching, one obtains a parameter and coordinate map in a region of spacetime,
while in patching one chooses only one point in this region. This is a subtle difference
but an important one, because patching could in principle lead to solutions with large
discontinuities in its derivatives. My suspicion was that Alvi had carried out patching
instead of matching, which explained why Brügmann and Jansenn [32] had found large
discontinuities in spatial derivatives of his data.

Another problem with Alvi’s analysis was rooted in the ordering of the terms
computed. In order to prescribe initial data with post-Newtonian theory to some order
in v/c, one requires that the spatial metric and its time derivative be accurate to that
same order or higher. However, in post-Newtonian theory time derivatives are smaller
by a factor of v/c relative to spatial derivatives. Wolfgang Tichy thus realized that
the extrinsic curvature had to be calculated to a slightly higher order (one factor of
v/c higher) relative to the spatial metric. This implied that certain components of the
spacetime metrics (i.e., the shifts) had to be matched to higher order than all other
components. Alvi performed matching to the same order in v/c for all components of
the spacetime metric, thus making his result useless for the construction of initial data
to a consistent order.

Chapter 2 (written with Tichy, Brügmann and Owen) repeats and corrects Alvi’s
analysis. First, asymptotic matching is performed in a region of space, never restricting
attention to a single point – that is, we perform matching instead of patching. Moreover,

the calculation is carried out to O(v/c)
2

in the spatial and temporal-temporal compo-

nents of the metric and to O(v/c)
3

in the shift, thus allowing for the construction of
initial data to a consistent order. Chapter 3 (written with Tichy) improves on this data
by repeating the calculation in a coordinate system much better adapted to asymptotic
matching and to numerical relativity. Furthermore, the constraint violations of the data
are computed and shown to be indeed of the expected order.

The results of asymptotic matching is a global metric, composed of several dif-
ferent approximate solutions, but its piece-wise nature renders the data formally dis-
continuous in the overlap regions. This behavior can be removed by joining the pieces
together with transition functions, thus leading to smooth global data. Such a proce-
dure is carried out in Chapters 2 and 3, but it is not until Chapter 4 that I study in
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detail these transition functions. In this chapter, I calculate a set of sufficient conditions
for this transition functions that guarantee that the smooth global data, produced via
asymptotic matching, remains accurate to the desired order, i.e., to the same order as
the approximate solutions.

The problem of prescribing initial data using approximation schemes that cor-
rectly prescribe both the far field behavior of the gravitational field, as well as its behavior
near the black hole horizons, has then been formally solved. The use of post-Newtonian
theory guarantees that the data has the expected far field behavior, while the use of
black hole perturbation theory guarantees that the black hole horizons possess the ex-
pected tides. Moreover, the errors in the data can be modeled analytically because they
are directly related to the uncontrolled remainders in each approximation. Last but not
least, this method of prescribing initial data can formally be extended to higher orders
and to other physical systems straightforwardly, which I shall discuss next.

1.1.3 Beyond the first-order matching for non-spinning binaries

The method described above to construct initial data from approximate solutions
to the Einstein equations can in principle be extended to other physical systems, provided
the corresponding approximate solutions exist. After tackling the non-spinning black
hole binary problem, I decided to look into spinning black holes. The post-Newtonian
metric for a spinning black hole binary already existed [33] in 2004, but a perturbed
spinning black hole solution did not.

I was ideal for tackling the problem of constructing a perturbed spinning black
hole metric because I had already used perturbed black hole solutions and I was very fa-
miliar with perturbation theory as applied in post-Newtonian expansions and asymptotic
analysis. As I began to work on this problem, I realized that new techniques would have
to be employed, since a simple generalization of non-spinning black hole perturbation
theory would not work. The main problem is that in the non-spinning case, the metric
can be expanded in tensor spherical harmonics, which automatically satisfy the angular
sector of the Einstein equations. One is then left only with the radial and temporal
sectors of these equations, which can then be solved analytically in the framework of
black hole perturbation theory. In the spinning case, however, a tensor harmonic decom-
position does not solve the angular sector of the Einstein equations and a spin-weighted
generalization of these harmonics does not exist.

Since I was stuck, I decided to ask Eric Poisson for advice, since he is an expert
in the construction of perturbed black hole metrics and we had already discussed how
to tackle this problem at GR 17. He pointed me to the work of Chrzanowski, Cohen
and Kegeles, and Wald, who had worked on similar problems in the 1970s. After going
through the literature, I arrived at the modified Chrzanowski procedure, which I realized
one could use to construct an approximate metric for a perturbed spinning black hole.
The general idea is to express the perturbed metric in terms of derivatives of a certain
potential. This potential satisfies a certain differential equation, where the source is given
by one of the Newman-Penrose scalars, which itself satisfies the Teukolsky equation –
a certain version of the linearized Einstein equations. Thus, if one could obtain an
approximate form of the Newman-Penrose scalars for a perturbed spinning black hole,
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one could then turn the crank and compute the potential and from that the perturbed
metric.

I came to the problem with the missing ingredient: Poisson’s 2004 work [34],
where he perturbatively computes precisely the Newman-Penrose scalar that I needed in
terms of tidal tensors. In 2005, then, I used Poisson’s results to compute the perturbed
metric of a spinning black hole. Chapter 5 (written with Jose González) deals with
this calculation, which was in fact finished at the University of Jena, where Brügmann
invited me to spend one semester. With these results, one can now in principle perform
asymptotic matching between the post-Newtonian metric of a spinning black hole binary
and the perturbed spinning black hole metric discussed here.

After these papers were written, however, numerical relativity went through a
scientific revolution, where essentially three methods were developed to fully solve the
Einstein equations numerically. The first method was developed by Frans Pretorius [35],
while the second one was proposed by the then University of Brownsville numerical
relativity group [36] and the NASA Goddard group [37]. Recently, a third method
has also been successful, proposed by the Caltech group. I shall not describe each of
these methods here, but instead I would like to concentrate on the results they obtained
regarding the initial data problem. All of these groups have used different initial data
(i.e., a collapsing scalar field, puncture data and effective potential data), but the general
result is the same: initially there is a burst of “unphysical” radiation, which propagates

out of the numerical domain
6
. Little work has been carried out to fully understand this

initial data burst, but it is believed to be due to the incorrect assumptions discussed
earlier in the initial data construction.

Initial data via matched asymptotic expansions is probably just as accurate as
puncture data, which means that if evolved it would probably contain approximately the
same burst of unphysical radiation. Thus, it is worthwhile to complete the analysis to
next order in the matching scheme to investigate whether the initial burst of radiation
is diminished. Currently, Nathan Johnson-McDaniel, together with Owen, Tichy and
myself, are carrying out the second order matching calculation [39], with results expected
soon.

1.2 Astrophysical applications of gravitational-wave theory

1.2.1 Background

After the numerical relativity revolution, there was a push to connect gravitational
wave theory to astrophysics. In the past, the gravitational wave community had already
pointed out that astrophysical intrinsic and orbital parameters, such as the intrinsic spin
of black holes or the period of binary systems, could be extracted from gravitational wave
detections. But now that the merger phase was under numerical control, the community

6
There are some claims that this unphysical radiation does not really disappear, but it bounces

off the edge of the numerical grid and continues to contaminate the simulations. This statement,
however, depends on the boundary conditions used and one seems to require a very large resolu-
tion to observe it [38]



8

wanted to determine whether this new knowledge would play a role in astrophysics and
if so how.

One of the most dramatic consequences of binary black hole mergers is the recoil
of the system’s center of mass. Essentially, as the black holes orbit, the system radiates
energy, angular and linear momentum through gravitational waves. For a system with a
certain degree of asymmetry, the linear momentum radiated does not completely cancel
out, and after merger, the center of mass of the system acquires a certain velocity due
to momentum conservation. This simple picture was put forth by Alan Wiseman [40] in
1992, and although it is not formally correct (e.g. there is no formal, exact definition
of the “center of mass” of a binary system in full general relativity), it does provide the
correct physical picture.

The recoil problem is of great interest to astrophysics because, if this “kick” is
large enough, the remnant could be expelled from its host galaxy. Of course, for this to
happen the recoil velocity has to exceed the escape velocity of the host, or otherwise the
remnant is displaced but it eventually returns to the host’s center via dynamical friction
(for more details on this see [41]). These kicks also have a strong effect on black hole
merger scenarios, specially in globular clusters. In these systems, the escape velocities are

not very high (i.e., on the order of tens of km s
−1

), and recoil velocities can easily exceed
them. Traditionally, black hole formation scenarios have either neglected recoil velocities
or modeled them via quasi-Newtonian estimates, which are now known to be inaccurate.
The inclusion of the correct recoil estimates put in jeopardy many of these formation
scenarios, especially for intermediate-mass black holes [42], unless a mechanism is found
to suppress such kicks. The recoil velocity is then an example where gravitational wave
theory has forced astrophysics to rethink parts of its standard model.

The recoil velocity calculation has a long history that is worth recapitulating.
The first analytical studies of this effect were carried out in the 1980s by Fitchett [43],
followed quickly by several others [44, 45, 46, 47, 40]. The general consensus in the 1990s
was that Fitchett’s quasi-Newtonian estimates were sufficient, because its first post-

Newtonian corrections only altered his estimates by a few km s
−1

. However, in the 2000s
Favata, et. al. [48] performed a black hole perturbation theory calculation in the extreme-
mass ratio limit and found results in disagreement with Fitchett’s calculation. A few
years later, Blanchet, et. al. [49] performed a second-order post-Newtonian calculation
and found that Fitchett’s estimates overestimated the kick for non-spinning binaries by
roughly a factor of ten.

In 2004, Pablo Laguna realized that Blanchet’s estimates were dominated by the
last few orbits of the binary system, which also coincided with the regime where their
approximations were least accurate. He then suggested to Carlos Sopuerta and myself
that we estimate the recoil with black hole perturbation theory, since this approximation
scheme is extremely well-suited to model the final stage of the merger and the ringdown
phase. This calculation is described in Chapters 6 and 7 (written with Sopuerta and
Laguna) and I shall describe it further in the next subsection.

The merger phase, however, is not the only phase in a binary’s lifetime that can
be of use to the astrophysics community. As already pointed out, gravitational wave
detection could in the future provide information on the distribution of spins, masses
and velocities in our and other galaxies. Given a gravitational wave detection, this
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can be achieved by extracting the orbital and intrinsic parameters that are used to
model the gravitational wave via matched filtering. This technique, however, assumes
the accumulation of a large number of cycles, which thus renders the inspiral phase
of roughly equal mass binaries ideal for such studies. With the advent of space-borne
gravitational wave detectors, such as LISA [50, 51], soon attention shifted to a different
kind of inspiraling binary: extreme-mass ratio systems.

Extreme-mass ratio inspirals consist of a small compact object orbiting a super-
massive black hole, which can be modeled with black hole perturbation theory techniques.
The beauty of such systems is that their orbital period is assumed to be very small, which
implies the small object spends a large amount of time (and gravitational wave cycles)
near the supermassive black hole. Since the period is short, the small object’s orbital
radius must be reasonable small as well, thus allowing this object to sample and map
the spacetime curvature produced by the supermassive black hole. A large amount of
literature exists on the estimation of orbital parameters from such systems [52, 53, 54],
but we shall not discuss this here.

In 2006, Louis Rubbo, et. al. [55] proposed a new possible source of gravitational
waves that could be detected with LISA. This source consisted of a small black hole sling-

shooting around a supermassive black hole
7
, thus reaching rather high orbital velocities

but possessing long period. As the small black hole swings by the supermassive one, the
system emits a strong burst of gravitational wave radiation that could potentially be
observed by LISA, which is why these systems were labeled “extreme-mass ratio burst
signals.”

An interesting debate arose as to whether these new sources would be interesting
for LISA. Although highly uncertain, the calculated event rate is expected to be rather
high, roughly 1 − 15 events per year, for events with signal-to-noise ratio greater than
five out to the Virgo cluster [55, 56]. Each event, however, probably bursts only once in
the LISA lifetime, thus limiting the power of matched-filtering techniques. This is why
I suggested to Rubbo, Holley-Bockelmann and Sopuerta to revisit the problem, and this
time, to include relativistic corrections. The idea was to determine whether such rela-
tivistic corrections could be extracted given a hypothetical gravitational wave detection.
I had recently finished studying geodesic motion in an advanced general relativity class
taught by Owen, so I had the necessary tools to carry out this analysis. Chapter 8 (writ-
ten with Rubbo, Holley-Bockelmann and Sopuerta) describes this calculation in detail
and I shall summarize its results in Subsection 1.2.3.

1.2.2 Recoil via the close-limit approximation

Laguna’s suggestion to compute the recoil velocity with black hole perturbation
theory techniques was a good one, but also a challenging one. The main idea was to
consider the merger phase, right after a common apparent horizon had formed, and treat
the system as a perturbed or deformed single black hole spacetime. This is in essence
the spirit of black hole perturbation theory, which I knew little about. The calculation

7
In fact, the proposed systems are similar to those observed at the center of the Milky Way,

where several stars are seen to orbit Sgr*A.
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of the perturbed metric of a spinning black hole discussed earlier is intrinsically different
from the modeling of the merger phase with black hole perturbation theory. The main
difference is that in the former one assumes the perturbations are slowly varying in time,
such that we can essentially ignore the time evolution of the metric perturbations. In
the latter case, one is precisely after this time evolution, which has to be solved for
numerically. Sopuerta, however, is an expert on the subject and we thus tackled the
project together.

The calculation begins by assuming the spacetime can be modeled by a back-
ground metric (in this case, a non-spinning black hole) plus an arbitrary perturbation.
One then expands the perturbations in tensor spherical harmonics of axial and polar
parity, such that the angular sector of the linearized Einstein equations is automatically
satisfied. The temporal-radial sector of the field equations can be further decoupled
harmonically to obtain two master equations (one for polar and one for axial modes)
in terms of a master function, composed of the metric perturbation and its derivatives.
These master equations, also known as the Regge-Wheeler and Zerilli-Moncrief equa-
tions, are wave-like partial differential equations on a non-flat background with a certain
potential that is also background dependent.

Once the master equations are posed one must solve them numerically, provided
some initial data is given. The numerical solution to these equations was carried out with
a finite-element code that Sopuerta had previously developed. The numerical solution
to the master equations can then be used to reconstruct the emitted waveforms, as well
as the energy, angular and linear momentum radiated. The recoil velocity is then simply
computed by integrating the momentum flux.

The most challenging part of this calculation was the prescription of initial data.
We chose to prescribe this data in the so-called close-limit approximation, where the
3-metric is given by the Brill-Lindquist solution and the extrinsic curvature is of Bowen-
York form (see Sec. 1.1.1). In the close-limit, however, one re-expands this data for small
separations, so as to enforce the concept that the system can be described by a single
perturbed black hole with a perturbed, common apparent horizon. Once one obtains
close-limit expanded initial data, one must map this to initial conditions for the master
equations, which among other steps involves a harmonic decomposition. With this initial
data, one can then evolve the master equations numerically.

The method described above is appropriate to model the merger phase of a black
hole binary, but it cannot model the inspiral phase. In order to remedy this, we used post-
Newtonian theory to model the inspiral and its associated accumulated recoil, which was
then added to the close-limit estimate. Unfortunately, the results were rather sensitive
to where the merger phase was assumed to begin, which forced us to present only upper
and lower limits on the possible value of the recoil. These limits, however, improved all
of the then current bounds on the recoil velocity and narrowed the answer to a maximum

between 80−225 km s
−1

. Our results also suggested that Blanchet, et. al. overestimated
the recoil, while Damour and Gopakumar [57] severely underestimated it. The suggested
reason for this was that during the ringdown phase an anti-kick was present that damped
down the final recoil velocity.

Numerical relativity followed shortly after, with several groups presenting accu-
rate results of the kick velocity for several different systems, including non-spinning
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black hole binaries [58]. Their results verified that our estimates were indeed correct:

the maximum kick velocity was on the order of 160 km s
−1

. Moreover, they verified that
an anti-kick was indeed present in the ringdown phase.

The next step after modeling non-spinning mergers could have been to either
model spinning black hole binaries or eccentric mergers. We decided to concentrate on
the latter since the generalization to eccentric systems was much simpler than including
spin in the merger phase. This generalization consists essentially of a rescaling of the
initial momentum parameters to include eccentricity, which then simply rescales the
final recoil velocity by a similar factor. We showed that the general effect of including
eccentricity in the merger is to increase the recoil velocity by roughly a factor of order
1+e, where e is the eccentricity of the system before merger. This is because the inclusion
of eccentricity essentially increases the plunge velocity, forcing the binary components
to merge more rapidly.

The next step could have been to model spinning binary black hole mergers, but
this step proved dramatically more difficult. One of the main complications was the
need to consider perturbations about a spinning black hole background. Such a study
would then have required the use of the Teukolsky formalism, which has not been as de-
veloped in the close-limit approximation as the Regge-Wheeler/Zerilli-Moncrief scheme.
Unfortunately, as we were beginning to think about this problem, the numerical relativ-
ity community produced several papers where the recoil velocity for spinning black hole
binaries was presented for several different spin arrangements and mass ratios. Work on
this topic then ceased and we concentrated on other astrophysical applications, one of
which I shall discuss next.

1.2.3 Relativistic gravitational wave bursts

After our adventures in the calculation of the recoil velocity in the merger of binary
black hole systems, I decided to investigate the prospect of other relativistic signatures
in binary inspirals. By then Rubbo, Holley-Bockelmann and Finn had already proposed
the existence of a new source of gravitational waves that could be detected by LISA:
gravitational wave bursts. I then suggested to Rubbo and Holley-Bockelmann to revisit
the problem but this time to include relativistic effects both in the orbital description as
well as in the gravitational wave generation formalism, the results of which are presented
in Chapter 10. The goal of this project was to investigate whether relativistic corrections
could be observable if LISA detected a series of such gravitational wave bursts.

The first relativistic effect that we wished to include was that induced by the
black hole nature of the central potential. In their first paper, Rubbo, et. al. modeled
the central potential with purely Newtonian theory. Such a description, of course, not
only neglects the steeper relativistic potential but also any possible spin effects. I thus
proposed using the geodesic equations of motion to model the trajectories of the small
particles around the central potential. These equations neglect radiation-reaction effects
– that is, the effect of the small object’s self gravity on its own trajectory – but they
do allow for the modeling of rotating and non-rotating black hole central potentials.
We thus assumed that the geometry could be well-approximated by the metric of the
supermassive black hole and pretended the smaller object was moving on this fixed
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geometry. The result were trajectories that significantly deviated from that considered
by Rubbo, et. al. , particularly when the central potential was allowed to spin. In all
cases we found that orbital precession seemed to be the dominant difference relative to
Newtonian orbits, and this precession effects depended strongly on the mass and spin
parameter of the supermassive black hole.

The second relativistic effect we considered was the inclusion of higher multi-
pole moments in the gravitational wave generation formalism. Rubbo, et. al. used the
quadrupole formula to model gravitational waves, but in general relativity, these waves
are given by an infinite sum over mass and current multipole moments [59]. We thus
included the next order terms in the series, namely the current quadrupole and the mass
octopole moments. We found that the inclusion of these corrections made a small dif-
ference in the waveforms for most orbits, except for those with very small pericenter
distance (on the order of microparsecs).

Both the modeling of the orbital motion and the gravitational waves were carried
out numerically. We used Sopuerta’s geodesic integrator, which we modified to include
the mass octopole and the current quadrupole in the wave generation. I then carried out
a back of the envelope data analysis calculation investigating the Fourier transform of the
waveforms and their cross-correlation assuming a nominal LISA spectral noise density.
We found a significant dephasing between the Newtonian and relativistic models, related
to precession. We thus, concluded that those astrophysical parameters that determine
this precession and dephasing might be extractable from LISA data given a sufficiently
high signal-to-noise ratio.

The analysis we presented, however, contains a large number of uncertainties
that are difficult to model. The main problem was the fact that other parameters could
mimic the dephasing effect that we observed. If this were the case, then it might not
be possible to disentangle the spin from the effect of these other parameters, especially
if only a few bursts are observed. A more formal and complete Fisher analysis would
be required to determine whether relativistic astrophysical parameters can be extracted,
given a gravitational wave burst observation with LISA.

1.3 Testing quantum gravity with gravitational waves

1.3.1 Background

Perhaps the most interesting application of gravitational wave theory to other
areas of physics is that of testing alternative theories of gravity. This area has a long
history, which I shall only summarize briefly (for a more complete review see [60]).

The first gravitational-wave tests concerned metric theories of gravity and were
proposed by Eardley, et. al. [61, 62]. Roughly a decade later, this topic was revisited
by Finn [63], and more recently by Cutler and Lindblom [64], who suggested a way
to perform these measurements with observations of solar oscillations via space-borne
detectors. Another decade went by until Ryan [65] proposed using the phase information
from compact binary inspirals to test alternative theories of gravity in the strong field
regime. Since then, there have been several proposals to place bounds on the graviton
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Compton wavelength [66, 67, 68, 69, 70, 71] and the Brans-Dicke coupling parameter [72,
69, 70, 71], given a gravitational wave observation from inspiraling compact binaries.

Until now, however, no gravitational wave test of string theory or loop quantum
gravity had been suggested. The main reason for this is that these theories are not
formally complete, in the sense that their full action has not yet been calculated and
agreed upon. Another reason is perhaps that the corrections these theories pose on
the Einstein equations are expected to be Planck-suppressed, and thus, unobservable
through weak-field manifestations of gravity. Gravitational waves, however, can be used
to map the strong field regime of gravitational interactions, such as in binary black
hole mergers. Thus, although in principle quantum gravitational corrections could be
suppressed, there is an enhancement effect due to the non-linearity of spacetime that
could push these corrections to the observable.

In 2006 Stephon Alexander joined the Penn State Physics faculty, bringing with
him knowledge about string theory and anomalies in quantum field theories. In partic-
ular, he was excited about a new effective gravity theory: Chern-Simons gravity. This
theory was proposed by Jackiw and Pi and it corrects the Einstein equations in a parity-
violating way. Much of Alexander’s excitement came from the fact that this theory had
already been used to propose an explanation to the leptogenesis problem in the early uni-
verse [73, 74], as well as the polarization of the cosmic microwave background [75, 76, 77].

Due to my undergraduate background, it seemed I was the perfect candidate to
work on tests of Chern-Simons gravity. During my undergraduate days, I had studied
under Clifford Will, one of the world experts in tests of alternative theories of gravity.
In fact, as part of my undergraduate studies I had worked with Will on tests of massive
graviton theories and Brans-Dicke theory through gravitational wave observations with
LISA. I decided then to collaborate with Alexander, a collaboration that eventually led
to the publication of four different papers, which are discussed in the last four chapters
of this thesis.

1.3.2 Chern-Simons gravity

One of the problems with tests of string theory is that there is not just one string
theory but actually several different flavors, each of which advocates a slightly different
form for the action. In recent years, however, Alexander and Gates [74] have shown that
all flavors of string theory require a certain correction to the Einstein-Hilbert action in
the low-energy limit. This correction consists of the addition of the product of a scalar
field with a Pontryagin term, which is essentially the wedge product of Riemann tensors.
The sum of the Einstein-Hilbert action and this product of scalar field and Pontryagin
term define Chern-Simons gravity.

The Chern-Simons term arises naturally in quantum gravity. In the string theo-
retical framework, this correction is required as an anomaly-canceling term through the
Green-Schwarz mechanism. Without it, string theory loses unitarity, and thus, would
be mathematically ill-defined (in the sense that probabilities associated with observables
would not necessarily be positive definite). In loop quantum gravity, the Chern-Simons
correction encodes information about the so-called Immirzi parameter, which is related to
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area quantization. Within this framework, the Chern-Simons correction is also required
to guarantee invariance under large gauge transformations [78].

The main physical effect of this correction is to introduce parity-violation in the
solutions to the modified field equations. This violation arises due to the appearance
of the Levi-Civita tensor through the wedge product operator in the action. It is then
not too surprising that Chern-Simons gravity leads to a polarization of the cosmic mi-
crowave background and to an asymmetry in the propagation of left- and right-polarized
gravitational waves (an asymmetry that was in fact used to propose an explanation to
the leptogenesis problem in the early universe).

Chern-Simons gravity has a long and complicated history as well. The modern
formulation of this effective gravity theory was proposed by Jackiw and Pi [79]. Not
only did they propose this generalization of general relativity (without actually knowing
that it represented the low-energy limit of quantum gravity), but they also investigated
some of its consequences, such as the persistence of certain black hole solutions and the
propagation of gravitational waves. Jackiw and Pi found that indeed left- and right-
polarized waves obey different wave equations in the modified theory that forces them

to have different amplitudes, although their velocities remain that of light
8
.

Until 2006 nobody had investigated whether this extension of general relativity
could be detected with gravitational experiments. When I first looked at the action,
the Levi-Civita tensor and the Riemann squared term immediately told me that strong
amplitude birefringence would plague gravitational wave generation and propagation in
the modified theory. Moreover, due to my recent experience with the merger of binary
black hole systems, it seemed natural that such systems would be excellent probes. I
thus embarked on a journey across everything that was Chern-Simons, as I shall describe
in the next subsection.

1.3.3 Can we probe quantum gravity?

The first obvious step toward investigating the testability of Chern-Simons grav-
ity was the use of current gravitational experiments: solar system tests. Although these
tests sample the weak gravitational regime of the theory, I had hopes that certain grav-
itomagnetic experiments would be able to bound, at least weakly, the modified theory.

Solar system tests were familiar to me from my experience at Washington Univer-
sity, where Will lectured us on several occasions about the parameterized post-Newtonian
framework. This framework was developed in the 1970s, when several alternative the-
ories of gravity had been proposed, including scalar-tensor theories and vector-tensor
theories. Will and Nordtvedt [80, 81] developed this framework in such a way so as to
facilitate the testing of all available alternative theories simultaneously with solar system
experiments (for a complete review of parameterized post-Newtonian theory see [82]).

The parameterized post-Newtonian scheme consists of two parts, which can be
briefly described as follows. Given a certain alternative theory of gravity, the first part

8
In fact, the term “birefringence” is technically incorrect in this context since it implies that

different polarizations possess different group velocities. In Chern-Simons gravity, however, it
is the imaginary part of the dispersion relation that is modified, thus leading to a different
amplitude for left- and right-polarized modes.
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consists of expanding the modified field equations in the weak field and in the slow-
motion approximation (thus, the name post-Newtonian). One then solves the linearized,
modified field equations in terms of certain potentials, that consist of Green function-like
integrals. The second part consists of constructing a family of metrics in terms of these
potentials, but parameterized by certain constants. These parameters modify the tradi-
tional predictions of general relativity, such as the bending of light and the precession
of the perihelium of Mercury, and thus, they can be used to distinguish between general
relativity and other alternative theories. One then compares this family of metrics to
the weak-field solution found and determines the parameters of the theory under con-
sideration. Experiments can then simply measure these parameters, thus testing several
theories simultaneously.

Chapter 9 (written with Alexander) applies this procedure to Chern-Simons grav-
ity and finds that the modified theory introduces a correction to precession in the weak
field. This correction requires a new parameterized post-Newtonian parameter that had
not been previously considered. The immediate consequence of such a correction is the
modification of Lense-Thirring precession. Thus, experiments, that measure the angular
velocity of precession of gyroscopes in Earth’s orbit, such as Gravity Probe B, would
be able to test Chern-Simons gravity. Our work constitutes the first proposal to exper-
imentally test Chern-Simons gravity through solar system experiments. In fact, shortly
after the publication of our work, Smith, et. al. [83] extended our analysis and compared
their results to experimental data, indeed placing the first bounds on the Chern-Simons
coupling parameter.

Solar system experiments, however, cannot be the best probes of Chern-Simons
gravity, since they only sample the weak field. My interests then shifted to strong field
tests of the theory, through gravitational wave observations. Before carrying out this
analysis, however, I wished to study two missing components of the modified theory: the
absence of a spinning black hole solution and the issue of perturbations of non-spinning
black holes.

From the work of Jackiw and Pi, it was known that the Kerr metric, which
represents the exterior gravitational field of spinning black holes in general relativity,
is not a solution to the modified field equations in Chern-Simons gravity. Chapter 10
(written with Daniel Grumiller) studies this issue further, finding that stationary and
axisymmetric line elements cannot generally solve the modified field equations. Such a
result is consistent with the previous weak-field analysis, where we found that Chern-
Simons gravity naturally induces a gravitomagnetic metric component that modifies
Lense-Thirring precession. Our results suggest that Chern-Simons gravity requires a non-
vanishing gravitomagnetic component, which would then imply that the spinning black
hole does not rotate about a fixed axis, but precesses about some other axis probably
defined by some combination of the black hole’s spin angular momentum and a Chern-
Simons contribution.

While carrying out this analysis of exact solutions in Chern-Simons gravity, I also
studied perturbed black hole in the modified theory. This problem was suggested to
me by Poisson and later by Pullin, while visiting Sopuerta at the University of Guelph.
In particular, Pullin seemed interested in what the Chern-Simons correction would do
to the merger and ringdown of black hole binaries in the close-limit approximation.
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Clearly, during the merger phase the Chern-Simons correction should dominate over the
Einstein-Hilbert term, since it is quadratic in the Riemann tensor. Chapter 11 (written
with Sopuerta) describes black hole perturbation theory on a non-spinning black hole
background for Chern-Simons gravity. We found that perturbation theory in canonical
Chern-Simons gravity (when the scalar field is treated as a background field) is not
mathematically consistent. In other words, perturbation theory demands that Chern-
Simons gravity accounts for the dynamical behavior of the scalar field coupling. In that
case, we find that certain parity modes are greatly suppressed, possibly leading to a
signature in the gravitational waves produced during the ringdown phase of a binary
merger.

Once this projects were completed, I focused all my attention in gravitational
wave tests of Chern-Simons gravity, discussed in Chapter 11 (written with Alexander
and Finn). As expected, gravitational waves are corrected in the modified theory, leading
to left- and right-polarized waves with different amplitudes. This amplitude difference
is proportional to the frequency of the wave and to some power of the redshift, thus
possibly rendering it detectable with LISA for binary black hole inspirals. We performed
a back-of-the-envelope calculation to determine the level to which the modified theory
could be tested through gravitational wave observations. Our conservative estimates
suggest that such tests could lead to at least an order of magnitude enhancement on the
bound on the Chern-Simons coupling parameter relative to solar systems bounds.

The analysis presented here, however, completely neglects the merger phase of
the binary, where the Chern-Simons correction should be the largest. Such a phase can
only be accurately modeled through numerical simulations. I plan to continue studying
these systems in the merger regime, in the hopes of determining whether gravitational
wave tests could lead to even stronger tests. Another avenue of possible future research
concerns tests of Chern-Simons gravity with earth-based detectors. Until now, such
tests have been neglected, because the data analysis problem for neutron star-black hole
inspirals could possibly be more difficult. Earth-based detectors, however, operate in a
higher frequency band, thus leading to a stronger correction during gravitational wave
propagation. Hopefully, the efforts presented here to test quantum gravity, and those
which will follow, will aid in the construction of full quantum gravitational framework.
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PART A:

MODELING OF COMPACT BINARIES
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Chapter 2

Binary black hole initial data

from matched asymptotic expansions

We present an approximate metric for a binary black hole spacetime to
construct initial data for numerical relativity. This metric is obtained by
asymptotically matching a post-Newtonian metric for a binary system to a
perturbed Schwarzschild metric for each hole. In the inner zone near each
hole, the metric is given by the Schwarzschild solution plus a quadrupolar
perturbation corresponding to an external tidal gravitational field. In the
near zone, well outside each black hole but less than a reduced wavelength
from the center of mass of the binary, the metric is given by a post-Newtonian
expansion including the lowest-order deviations from flat spacetime. When
the near zone overlaps each inner zone in a buffer zone, the post-Newtonian
and perturbed Schwarzschild metrics can be asymptotically matched to each
other. By demanding matching (over a 4-volume in the buffer zone) rather
than patching (choosing a particular 2-surface in the buffer zone), we guar-
antee that the errors are small in all zones. The resulting piecewise metric
is made formally C

∞
with smooth transition functions so as to obtain the

finite extrinsic curvature of a 3-slice. In addition to the metric and extrin-
sic curvature, we present explicit results for the lapse and the shift, which
can be used as initial data for numerical simulations. This initial data is
not accurate all the way to the asymptotically flat ends inside each hole,
and therefore must be used with evolution codes which employ black hole
excision rather than puncture methods. This paper lays the foundations of
a method that can be straightforwardly iterated to obtain initial data to
higher perturbative order.

2.1 Introduction

The simulation of binary black-hole systems is of fundamental physical interest

as the purely general relativistic two-body problem
1
. It is also of astrophysical interest,

since accurate simulations of the late inspiral and merger phases of such binaries will
considerably help the effort to detect the gravitational-wave signals and extract informa-
tion from them [9]. Simulation reduces to the numerical solution of the Cauchy problem:
take some initial data and evolve it. The evolution is difficult for many reasons, although

1
This chapter is based on the following paper: N. Yunes, W. Tichy, B. J. Owen and B. Brueg-

mann, Phys. Rev. D 74, 104011 (2006)
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in recent years there has been much progress. Still, any evolution is only as good as its
initial data.

A key issue of initial data is astrophysical realism. The goal is to compute data
on a hypersurface that represents one moment in time of an astrophysical inspiral of
two black holes. If such an inspiral is defined by initial conditions in the distant past
for widely separated black holes, then the only way to obtain the exact data at a later
time would be to perform the actual evolution using the full Einstein equations. This
procedure, however, is computationally expensive and thus impractical. On the other
hand, several schemes have been developed to pose initial data that approximates the
astrophysical situation at a given time. These schemes are typically either based on
post-Newtonian (PN) methods or on the numerical solution of the constraint equations
of relativity.

For example, the literature provides many types of initial data for black holes in
approximately circular orbits [84, 23, 85, 24, 18, 86, 87, 88, 16, 89, 90, 91, 92] that satisfy
the constraints of the Einstein equations. To obtain such data, certain assumptions are
made, such as conformal flatness and quasi-circularity. These assumptions are expected
to be good approximations within a certain error, although the astrophysical metric after
a long inspiral is known to be not exactly conformally flat and the orbit not perfectly
circular.

In this paper we consider a post-Newtonian method combined with black hole
perturbation theory to construct approximate inspiral initial data. For large to inter-
mediate separations of compact objects, an astrophysically relevant approximate space-
time can be obtained far from the black holes by analytical post-Newtonian and post-
Minkowskian methods [3]. One advantage of such methods is that they allow systematic
improvements through higher order expansions (compared to numerical constraint solv-
ing schemes which typically include only the correct lowest order PN behavior). In their
regime of validity, PN methods do result in appropriate deviations from conformal flat-
ness and in non-circular inspiral orbits. The main disadvantage of PN methods is that,
by construction, they are generally believed to fail in the final phase of the inspiral for
fast moving objects, and also close to non-pointlike objects with horizons. On the other
hand, black hole perturbation theory provides an accurate spacetime in a region of the
manifold sufficiently close to the background black hole. The main disadvantage of this
theory is that it fails sufficiently far from the background hole and, thus, cannot provide
information about the dynamics of the entire spacetime.

In what follows, we take a concrete step toward combining PN theory with black
hole perturbation theory using the mathematical machinery of asymptotic matching.
The method maintains the potential for systematic improvement through higher order
expansions, although we only work at low order here [93, 39]. From the PN approach the
method inherits its astrophysical justification, i.e. that for sufficient separation between
the holes the method will yield metric components that are correct up to uncontrolled
remainders of certain orders. The uncontrolled remainders in the metric components have
different effects on different quantities, and it is of interest to see how other quantities
such as the binding energy compare to those of other initial data sets in the literature.
This question is beyond the scope of this article, but should be addressed in the future.
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Concretely, we have to discuss how black holes are incorporated in our approach.
While formally PN methods assume slow motion and weak internal gravity of the sources,
it has been shown that the results hold as well for objects such as black holes with
strong internal gravity [94] as long as one is not too close to these objects. Near each
black hole, a tidally perturbed Schwarzschild or Kerr spacetime provides another an-
alytical approximation. Given that different approximate metrics can be constructed
from different scale expansions, it is natural to try the method of matched asymptotic
expansions [30]. If there is an overlap region (also known as a buffer zone) where both
approximations (post-Newtonian and tidal perturbation) are valid, a diffeomorphism can
be constructed between charts used in different regions of the manifold by different ap-
proximation schemes. Matching—demanding that both approximation schemes have the
same asymptotic form in the overlap region—relates physical observables in the different
regions, i.e. ensures that both expansions represent the same physical system.

The first attempt to construct initial data in such a way was by Alvi [28]. By
construction, there are discontinuities in the data, which were found to be too large for
numerical experiments [32]. Alvi’s fundamental problem was that, in the terminology
of textbooks such as Bender’s [30], he did not match (construct expansions asymptotic
to each other everywhere in the overlap region) but rather patched (set approximate
solutions to the Einstein equations equal to each other on specified 2-surfaces) so that
large errors in the extrinsic curvature were possible. Alvi’s Table I shows that his spatial
metric near the black holes is discontinuous apart from the Minkowski terms (indepen-
dent of G) in either region. Such discontinuities are problematic for numerical relativity,
since part of the initial data is the extrinsic curvature which includes derivatives of the
spacetime metric. Smoothing can be attempted, for example with transition functions
as in Alvi’s next paper [29], but it is not trivial to implement—especially with such large
discontinuities—without adding unphysical content to the initial data. There is also the
issue of making sure that the initial data slicing is treated consistently in the various
expansions, which Alvi addressed to some extent but did not always make explicit his
assumptions. Finally, there was a problem with the accuracy to which Alvi calculated
metric components. Construction of the extrinsic curvature requires terms in the expan-
sions that Alvi did not calculate because he assumed (incorrectly) that the counting of
orders follows the standard pattern used in deriving post-Newtonian equations of motion.

The main point of this paper is that we are able to correct the mathematical
problems with Alvi’s approach, and that we provide initial data for actual numerical
evolutions. We use true asymptotic matching to construct a piecewise metric for two
black holes in circular orbit, including terms of order the gravitational constant G on

the diagonal of the metric and O(G)
3/2

off the diagonal. We then remove the piecewise
nature of the approximate metric by “merging” or “smoothing” the solutions in the
buffer zones, thus generating a uniform approximate metric. We do this by constructing
smooth transition functions so that the uniform approximate solution is in principle C

∞
,

although in practice higher-order derivatives will be less accurate than lower-order ones.
These transition functions are carefully constructed to avoid introducing errors in the
smoothed global metric larger than those already contained in the approximate solutions.

This metric allows for the calculation of the lapse to O(G), the shift to O(G)
3/2

, and

the extrinsic curvature to O(G)
3/2

. Although this data contains only the first order
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deviations from flat spacetime, our approach does include the tidal perturbations near
the black holes. Strictly speaking, these tidal perturbations are valid only near the
horizons—our approach cannot model the asymptotically flat ends inside the holes and
therefore must be used in numerical evolutions with excision rather than punctures. Our
formalism can be extended to higher order by including more precise post-Newtonian [12]
and black hole perturbation theory results [95] already in the literature.

By construction, our initial data satisfies the constraints only up to uncontrolled
remainders of a certain order. Therefore, this data may still need to be projected to
the constraint hypersurface via a conformal decomposition. One avenue worth exploring

is that since the constraint violations are O(G)
3/2

or smaller, it may be possible to
find a constraint projection algorithm that changes the physical content of our initial
data only at a comparably small order. In this manner, the formalism presented here
can potentially be used to construct extremely accurate background data for constraint
solving. This hybrid combination of an accurate background 4-metric plus constraint
solving might potentially lead to very astrophysically realistic initial data, which then
could be compared and tested against other sets already in the literature.

This paper is organized as follows: Sec. 2.2 describes the method of asymptotic
matching as applicable to this problem. Sec. 2.3 discusses the near zone expansion
of the metric and determines its asymptotic expansion in the overlap region. Sec. 2.4
concentrates on the inner zone expansion of the metric and expands it asymptotically
in the overlap region. Sec. 2.5 applies asymptotic matching to the metrics to obtain
matching relations between expansion coefficients and a map that relates the charts used
in the different regions. Sec. 2.6 constructs the global metric, discusses its properties,
and builds transition functions to eliminate discontinuities between local approximations.
Sec. 2.7 computes the extrinsic curvature, lapse and shift. Sec. 2.8 concludes and points
toward future research.

Throughout this paper we use geometrized units (G = c = 1) and we have relied
heavily on symbolic manipulation software, such as MAPLE and MATHEMATICA. We
use the tilde as a relational symbol such that a ∼ b means “a is asymptotic to b” [30].
When we refer to our results as “global,” we mean that they cover the region of most
interest to numerical relativity. Strictly speaking, our results do not cover the radiation
zone (further from the binary than a reduced wavelength) or the asymptotically flat ends
inside the holes. However, obtaining the radiation-zone solution and matching it to the
near-zone solution is a solved problem [3] and the asymptotic ends inside the holes can
be removed with excision before numerically evolving the initial data.

2.2 Approximation regions and precision

Let us now consider a binary black hole spacetime, with holes of mass m1 and m2,
total mass m = m1+m2 and spatial coordinate separation b. The manifold (Fig. 2.1) can
be divided into 4 submanifolds, the boundaries of which cannot be determined precisely
due to the presence of uncontrolled remainders in black hole perturbation theory (BHPT)
and post-Newtonian (PN) asymptotic series. Nonetheless, an approximate subdivision
is possible and we make one as follows:
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1. The inner zone of Black Hole 1, (submanifold C1): R1 ≪ b, where RA is the
distance from the Ath black hole in isotropic coordinates. In this region, the metric
is obtained via black hole perturbation theory as an expansion in ǫ(1) = R1/b.

[28, 94].

2. The inner zone of Black hole 2, (submanifold C2): R2 ≪ b, where the metric
is obtained in the same manner as in region C1 but with labels 1 and 2 swapped.

3. The near zone, (submanifold C3): rA ≫ mA and r ≤ λ/2π, where λ is the wave-
length of gravitational radiation, r is the distance from the binary center of mass
in harmonic coordinates, and rA −mA is the separation in harmonic coordinates
from the horizon of the Ath black hole. In this region, a post-Newtonian approxi-
mation is used for the metric with an expansion parameter ǫ(3) = mA/rA [3] which

is formally treated as the same order for both values of A.

4. The far zone, (submanifold C4): r ≥ λ/2π, where the metric is obtained from a
post-Minkowski calculation [96].

These zones are shown schematically in Fig. 2.1, projected onto the orbital plane. In
these figures, the near zone is shown in dark gray, the inner zones in light gray and the
buffer zones in a checkered pattern. The holes’ horizons are denoted by black solid lines,
while the dashed black lines are the excision boundaries.
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13
BH 1
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Fig. 2.1. Schematic diagram of the near zone (dark gray), inner zones (light gray) and
buffer zones (checkered) projected onto the orbital plane. The black holes’ horizons are
shown by solid black lines, while the excision boundaries are shown by dashed black lines.
The near zone overlaps the inner zone of each black hole, and these overlap regions are the
buffer zones (checkered patterns.) The boundaries of all zones are somewhat imprecise
since they are based on power series approximations, but the buffer zones are roughly
spherical shells shown in this Figure as annuli.
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The manifold is subdivided in such a way so that approximate solutions to the
Einstein equations can be found in each region. These approximate solutions will depend
on certain coordinates and parameters local only to that region. The near zone metric,

g
(3)

µν
, is an expansion in ǫ(3) ≡ m/r ≪ 1, which depends on harmonic coordinates x

µ

and parameters, such as the masses mA of the holes and the angular velocity ω of the

system. Similarly, the metric in inner zone 1 (or 2), h
(1)

µ̄ν̄
(or h

(2)

µ̄ν̄
), is an expansion in

ǫ(1) ≡ r1/b ≪ 1 (or ǫ(2) ≡ r2/b ≪ 1), which depends on isotropic coordinates x
µ̄

and

certain parameters, such as the mass of the background hole M and the angular velocity
Ω of the tidal perturbation. The parameters and the coordinates used in different regions
are not identical and are valid only inside their respective regions, although those regions
overlap.

A global metric can be obtained by relating the different approximate solutions
through asymptotic matching. The theory of matched asymptotic expansions was first
developed to perform multiple scale analysis on non-linear partial differential equations
and to obtain global approximate solutions [30]. In general relativity, this method was
first applied by Burke and Thorne [97], Burke [98], and D’Eath [99, 100] in the 1970s
to derive corrections to the laws of motion due to coupling of the body’s motion to the
geometry of the surrounding spacetime. Based on these ideas, in this paper we will
develop a version of the theory of matched asymptotics that is useful to obtain initial
data for numerical relativity simulations.

Asymptotic matching consists of relating different approximate solutions inside a
common region of validity. This region is usually called the buffer zone by relativists,
but is called the overlap region by others. For a binary there exists three such regions,
which are 4-volumes: Two buffer zones (O13 and O23) are defined by the intersection of
the near zone and the inner zones of black hole 1 and 2; the third one is defined by the
intersection of the near zone and the radiation zone (O34). The former two, shown in
Fig. 2.1 in a checkered pattern, are defined by the asymptotic condition mA ≪ rA ≪ b.
The latter has been analyzed in Ref. [3] and will not be discussed here. In this paper we
perform asymptotic matching in the former two buffer zones O13 and O23. In order for
our tidal perturbations in the inner zones to be valid, the inner zones C1 and C2 cannot
overlap.

Once a buffer zone has been found, asymptotic matching can be used to relate
adjacent approximate solutions. The first step is to find the asymptotic expansions of
the approximate solutions inside the buffer zones. These approximate solutions depend
on the expansion parameters, ǫ(1), ǫ(2) and ǫ(3), which are small only in their respective

regions of validity C1, C2, and C3. By definition, in each overlap region both expansion
parameters are small, specifically ǫ(1) ≪ 1 and ǫ(3) ≪ 1 in O13, while ǫ(2) ≪ 1 and

ǫ(3) ≪ 1 in O23. Inside buffer zone 1, for example, we can then asymptotically expand

the near zone solution in ǫ(1) ≪ 1 to obtain g̃
(3)

µν
and the inner zone solution in ǫ(3) ≪ 1

to obtain h̃
(1)

µ̄ν̄
. These asymptotic expansions of approximate solutions are naturally

bivariate since they depend on two independent expansion parameters. When working
with these bivariate expansions, we use the symbol O(p, q) both to denote terms of
order (m/b)

p
(rA/b)

q
and uncontrolled remainders of order (m/b)

p
or (rA/b)

q
. Relating



24

adjacent approximations then reduces to imposing the asymptotic matching condition

g̃
(3)

µν
∼ h̃µ̄ν̄

∂x
µ̄

∂xµ

∂x
ν̄

∂xν . (2.1)

This expression means not that the two approximate solutions are equated, which is
correctly called “patching,” but rather that all coefficients of all controlled terms in the
bivariate expansions are equated.

After imposing the asymptotic matching condition, one obtains a coordinate and
parameter transformation between the near zone and the inner zone 1 in O13 (and sim-
ilarly in O23.) These transformations allow for the construction of a global piecewise
metric, which is guaranteed to be asymptotically smooth in the buffer zone up to un-
controlled remainders in the matching scheme. Asymptotic smoothness here means that
adjacent pieces of the piecewise global metric and all of their derivatives are asymptotic
to each other inside the buffer zones. This asymptotic smoothness, however, does not
rule out small discontinuities on the order of the uncontrolled remainders in the approx-
imations, when we pass from one approximation to the other. The global metric can
be made formally C

∞
by smoothing over these discontinuities, which introduces a new

error into the solution. Asymptotic smoothness, however, guarantees that this error will
be smaller than or equal to that already contained in the uncontrolled remainders of the
approximations, provided the smoothing functions are sufficiently well-behaved.

Finally, we enumerate the orders of approximation used in the near zone. The
Einstein equations are guaranteed to generate a well-posed initial value problem for
globally hyperbolic spacetimes [9], where the initial data could consist of the extrinsic
curvature Kij and the spatial 3-metric γij = gij. We can write the extrinsic curvature

in the form

Kij =
1

2α

(
2D(iβj) − ∂tγij

)
, (2.2)

where βi = g0i is the shift vector and α is the lapse. Time derivatives are smaller than

spatial derivatives by a characteristic velocity, which by the virial theorem is O(m/b)
1/2

.
Therefore to compute Kij consistently to a given order in m/b, the 4-metric components

g0i are needed to O(m/b)
1/2

beyond the highest order in gij (and g00, which appears in α).

In this paper we compute the first two nonzero contributions to the 3-metric and extrinsic
curvature, i.e. the leading order terms and the lowest-order corrections. This means that

we need the 4-metric components g00 and gij to O(m/b), but we need g0i to O(m/b)
3/2

.

Note that this does not correspond to any standard post-Newtonian order counting or
nomenclature, which is why we quote precisions and remainders precisely in terms of
expansion parameters rather than in ambiguous terms such as “nth PN”. The standard
post-Newtonian order counting corresponds to the calculation of the equations of motion
for spinless bodies, but the counting must be altered when studying other problems, such
as the bending of light or the equations of motion for bodies with spin [33].
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2.3 Near zone metric

In this section, we present the post-Newtonian (PN) metric in the near zone C3
and expand it in the overlap region O13, the buffer zone where the inner zone C1 of BH1
and the near zone overlap. When performing the matching in Sec. 2.5, we will obtain
the corresponding expansion in the other overlap region O23 by a simple symmetry
transformation.

We use harmonic corotating coordinates (t, x, y, z) rotating around the center of
mass such that

t
′

= t,

x
′

= x cosωt− y sinωt,

y
′

= x sinωt+ y cosωt,

z
′

= z, (2.3)

where primed coordinates are nonrotating. The near-zone metric takes the form [101]

g
(3)

00
≈ −1 +

2m1

r1
+

2m2

r2
+ ω

2
(x

2
+ y

2
),

g
(3)

01
≈ −y ω

(
1 +

2m1

r1

)
,

g
(3)

02
≈ x ω

(
1 +

2m1

r1

)
− 4µbω

(
1

r1
− 1

r2

)
,

g
(3)

ij
≈ δij

(
1 +

2m1

r1
+

2m2

r2

)
, (2.4)

where all remainders are at least O(m/r)
2

and the superscript reminds us we are working
on submanifold C3. Here

r1 =
√
x2

1
+ y2 + z2 =

√
(x−m2b/m)2 + y2 + z2,

r2 =
√
x2

2
+ y2 + z2 =

√
(x+m1b/m)2 + y2 + z2 (2.5)

are the usual harmonic radial coordinates centered on black holes 1 and 2 and b is the
separation between holes. Implicit in this metric is the assumption that rA (for A = 1, 2)
is of order b, or in other words that the field point is not too close to one of the holes.
(Recall that, in harmonic coordinates, the horizons are at rA = mA if we neglect tidal

deformations.) We do not include the O(m/r)
2

terms in g00 in what is commonly called

the first post-Newtonian (1PN) metric and we do include O(m/r)
3/2

terms in g0i for
reasons discussed at the end of Sec. 2.2. In Eq. (2.4) it is sufficient to use the first
post-Newtonian approximation

ω =

√
m

b3

[
1 − 1

2

(
3 − µ

m

) m
b

+O
(m
b

)
2
]
, (2.6)
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y
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BH 1

ωr2

r1

b

CM

Field Point

Fig. 2.2. Diagram of the near zone coordinate system used for the post-Newtonian
metric in harmonic coordinates. The z axis is chosen parallel to the orbital angular mo-
mentum of the binary, so that the black holes orbit counter-clockwise here with angular
velocity ω. The origin is chosen to be the center of mass, while r1 and r2 denote the
coordinate separations of the field point from hole 1 and 2 respectively. The coordinate
separation between the holes is b.

to the angular velocity, where µ = m1m2/(m1 +m2) is the reduced mass of the binary.
Our choice of sign corresponds to coordinates in which the orbital angular momentum
is in the positive z direction, as shown in Fig. 2.2.

We now concentrate on the overlap region (buffer zone) O13. Inside O13 we expand
1/r2 as a power series in r1 as

1

r2
=

1

b

∞∑

n=0

(−1)
n
(r1
b

)n
Pn

(
x1

r1

)
, (2.7)
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where the Pn are Legendre polynomials. Substituting into Eq. (2.4), we obtain

g̃
(3)

00
∼ −1 +

2m1

r1
+

2m2

b

[
1 − r1

b
P1

(
x1

r1

)
+
(r1
b

)2
P2

(
x1

r1

)]
+ ω

2
(
x

2
+ y

2
)
,

g̃
(3)

01
∼ −y ω

{
1 +

2m1

r1
+

2m2

b

[
1 − r1

b
P1

(
x1

r1

)]}
,

g̃
(3)

02
∼ x ω

{
1 +

2m1

r1
+

2m2

b

[
1 − r1

b
P1

(
x1

r1

)]}
− 4µbω

{
1

r1
− 1

b

[
1 − r1

b
P1

(
x1

r1

)

+
(r1
b

)
2
P2

(
x1

r1

)]}
,

g̃
(3)

03
∼ O(2, 3),

g̃
(3)

ij
∼ δij

{
1 +

2m1

r1
+

2m2

b

[
1 − r1

b
P1

(
x1

r1

)
+
(r1
b

)2
P2

(
x1

r1

)]}
, (2.8)

where all errors are of order O(2, 3) and where m1 ≪ r1 ≪ b. The metric (2.8), denoted
with a tilde, is the asymptotic expansion in the inner zone of BH1 of the PN metric,
which is already an asymptotic expansion in the near zone.

Observe that these expansions constitute a series within a series (bivariate series).
In order to see this more clearly, we can rearrange the spatial metric to get

g̃
(3)

ij
∼ δij

(
1 +

2m1

r1

{
1 +

m2

m1

r1
b

[
1 − r1

b
P1

(
x1

r1

)
+
(r1
b

)
2
P2

(
x1

r1

)]})
. (2.9)

Equation (2.9) is a generalized Frobenius series [102], where the expansion is about
the regular singular points r1 = 0 and r1 = ∞. There are clearly two independent
perturbation parameters, namely ǫ(3) = m1/r1 (the usual PN expansion parameter used

in C3) and ǫ(1) = r1/b (a tidal perturbation parameter used in C∞). In the overlap region

O13 we can expand in both.

2.4 Inner zone metric

In this section we discuss the metric in the inner zone C1 of BH1 and its asymptotic
expansion in the overlap region O13.

Physically, we expect the spacetime in the inner zone of BH1 to be Schwarzschild
with mass M1 plus a tidal perturbation due to BH2. Thorne and Hartle [94] argue
that, in the local asymptotic rest frame (LARF) of BH1, the metric can be expanded
in powers of M1 outside the horizon of BH1. The first term, independent of M1, can
be taken to represent the external universe and thus can be computed by placing a test
particle in the spacetime of BH2 as done by Alvi [28]. This is the tidal perturbation
due to BH2. Terms of higher order in M1 describe BH1 itself (the Schwarzschild metric)
and interactions between BH1 and BH2 (tidally-induced quadrupole, etc). At the level
of approximation of this paper, we can neglect the interaction terms because they are
O(2, 1) or higher.
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Alvi identifies LARF coordinates, in terms of which the tidal perturbation is
obtained, with isotropic coordinates (Fig. 2.3). Observe that this coordinate system is

Fig. 2.3. ]
Coordinate system used in inner zone 1. The isotropic coordinates are centered on black
hole 1 and the other hole orbits with angular velocity Ω. The matching parameters M1

and Ω and the coordinates X
µ

need not be equal to those used in the near zone.

centered on BH1 and is inertial. The asymptotic form of the inner-zone tidally perturbed
metric valid in the buffer zone is given by Eq. (3.14) of Alvi [28], who derives it by
extending Thorne-Hartle type arguments. But to serve as initial data the perturbation
is needed throughout all the inner zone including the strong-field region, not just in
the buffer zone where the field is weak. Alvi derives a form of the perturbation valid
everywhere in the inner zone and presents it in Eq. (3.23) of Ref. [28]. The result depends
on parameters M1 and Ω which will be related to the near-zone parameters m1 and ω
when we perform the matching.
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We write Eq. (3.23) of Ref. [28] as

h
IC,(1)

00
≈ −

[
1 −M1/(2R1)

1 +M1/(2R1)

]2

+
m2

b3

(
1 − M1

2R1

)
4 [

3 (X cos ΩT + Y sin ΩT )
2 −R

2

1

]
,

h
IC,(1)

01
≈ 2m2

b3

√
m

b

(
1 − M1

2R1

)
2
(

1 +
M1

2R1

)
4 [(

Z
2 − Y

2
)

sinΩT −XY cos ΩT
]
,

h
IC,(1)

02
≈ 2m2

b3

√
m

b

(
1 − M1

2R1

)
2
(

1 +
M1

2R1

)
4 [(

X
2 − Z

2
)

cos ΩT +XY sin ΩT
]
,

h
IC,(1)

03
≈ 2m2

b3

√
m

b

(
1 − M1

2R1

)
2
(

1 +
M1

2R1

)
4

(Y cos ΩT −X sin ΩT )Z,

h
IC,(1)

ij
≈

(
1 +

M1

2R1

)
4
(
δij +

m2

b3

[
3 (X cos ΩT + Y sin ΩT )

2 −R
2

1

]

×







(

1 +
M1

2R1

)
4

−
2M

2

1

R2

1


 δij −

2M1

R1


1 +

M
2

1

4R2

1


 X

i
X

j

R2

1






 , (2.10)

where once more the superscript (1) is to remind us that this metric is valid in sub-
manifold C1, while the IC superscript refers to isotropic coordinates. The uncontrolled

remainders in all components of Eq. (2.10) are O(R1/b)
3
.

Inspection of Eq. (2.10) shows that the perturbed metric diverges as R1 → 0

faster than (1/R1)
4
, which prevents the use of puncture methods [16]. Physically, this is

because the tidal perturbation tacitly assumes a small spacelike separation from the event
horizon. Of course this assumption is violated as R1 → ∞, the asymptotically flat spatial
infinity we call the “outside” of hole 1; but it is also violated as R1 → 0 since, in isotropic
coordinates, that is the other asymptotically flat spatial infinity “inside” hole 1. Outside
the hole we match to the near zone metric which is well behaved, but inside we have
nothing to match to. Thus numerical evolutions using our initial data will need to excise
the black holes. Excision in practice still requires a slice that extends somewhat inside
each horizon, which raises the question of how far inside our data can be considered valid.
Outside hole A the tidal perturbation is valid for RA ≪ (mA/m)b. The corresponding

limit inside the hole is approximated by the transformation RA → (mA/2)
2
/RA, which

is an isometry for an unperturbed Schwarzschild hole, where we have used mA ≈ MA.
Thus the tidal perturbation is good roughly for

mA

2

m

2b
≪ RA ≪ mA

m
b, (2.11)

and the excision radius can be chosen anywhere between the lower limit of this expression
and the horizon.

Since matching will be simpler if performed between two coordinate systems that
live in charts that are similar to each other, we choose to corotate first. We define inner
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isotropic corotating coordinates (ICC)

X̄ = X cos ΩT + Y sinΩT ,

Ȳ = −X sin ΩT + Y cos ΩT ,

Z̄ = Z,

T̄ = T. (2.12)

Using these equations, we can obtain the inner metric in isotropic corotating coordinates,
given by

h
(1)

00
≈ Ht +Hs1Ω

2
(
X̄

2
+ Ȳ

2
)

+ 2HstX̄
Ω

b2

(
X̄

2
+ Ȳ

2 − Z̄
2
)
,

h
(1)

11
≈ Hs1 −Hs2

X̄
2

b2
,

h
(1)

01
≈ −Hs1Ȳ Ω −Hst

Ȳ X̄

b2
,

h
(1)

22
≈ Hs1 −Hs2

Ȳ
2

b2
,

h
(1)

02
≈ Hs1X̄Ω +

Hst

b2

(
X̄

2 − Z̄
2
)
,

h
(1)

33
≈ Hs1 −Hs2

Z̄
2

b2
,

h
(1)

03
≈ Hst

Ȳ Z̄

b2
,

h
(1)

12
≈ −Hs2

Ȳ X̄

b2
,

h
(1)

23
≈ −Hs2

Z̄Ȳ

b2
,

h
(1)

13
≈ −Hs2

Z̄X̄

b2
, (2.13)
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where we use the shorthand

Hst = 2m2

√
m

b3

(
1 − M1

2R1

)
2
(

1 +
M1

2R1

)
4

,

Hs1 =

(
1 +

M1

2R1

)
4



1 + 2

m2

b3
R

2

1
P2

(
X̄

R1

)

(

1 +
M1

2R1

)
4

− 2
M

2

1

R2

1






 ,

Hs2 =

(
1 +

M1

2R1

)
4


1 +

M
2

1

4R2

1


 4m2M1

bR1

P2

(
X̄

R1

)
,

Ht = −
(

1 −M1/2R1

1 +M1/2R1

)2

+ 2

(
1 − M1

2R1

)
4

m2

b3
R

2

1
P2

(
X̄

R1

)
, (2.14)

and the errors are still O(R1/b)
3
. In Eq. (2.13) we have dropped the superscript ICC in

favor of (1), which refers to submanifold C1.
By expanding Eq. (2.13) in powers of M1/R1, which is permissible in overlap

region O13, we obtain

h̃
(1)

00
∼ −1 +

2M1

R1

+
2m2

b3
R

2

1
P2

(
X̄

R1

)
+ Ω

2
(
X̄

2
+ Ȳ

2
)
,

h̃
(1)

01
∼ −2m2

b3

√
m

b
Ȳ X̄ − Ȳ Ω

(
1 +

2M1

R1

)
,

h̃
(1)

02
∼ 2m2

b3

√
m

b

(
X̄

2 − Z̄
2
)

+ X̄Ω

(
1 +

2M1

R1

)
,

h̃
(1)

03
∼ 2m2

b3

√
m

b
Z̄Ȳ ,

h̃
(1)

ij
∼ δij

[
1 +

2M1

R1

+
2m2

b3
R

2

1
P2

(
X̄

R1

)]
(2.15)

where the errors are O(2, 3). Like Eq. (2.8), h̃
(1)

µν
is a bivariate expansion in both ǫ(1) =

R1/b (valid in the inner zone C1) and ǫ(3) = M1/R1 (valid in the buffer zone O13). In

other words, it is the asymptotic expansion in the buffer zone to the asymptotic expansion
in the inner zone.

2.5 Asymptotic matching

In this section, we concentrate on finding a matching condition (ψ13) and a co-
ordinate transformation (φ13) that maps points in C1 labeled with isotropic corotating

coordinates (ICC) X̄
µ

to points in C3 labeled with harmonic corotating coordinates

(HCC) x
µ
. As already discussed, we concentrate on buffer zone O13, while the matching
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condition ψ23 and the coordinate transformation φ23 in O23 will be given later by a
symmetry transformation.

We assume that the coordinates are asymptotic to each other and that they can be
expanded in an implicit bivariate series. That is, we assume that the map φ13 : X̄

µ → x
µ

has the form

X̄ ≈
(
x− m2b

m

)
+ x

[(m2

b

)1/2
χ1(x

µ
) +

(m2

b

)
χ2(x

µ
) +

(m2

b

)3/2
χ3(x

µ
)

]
,

Ȳ ≈ y

[
1 +

(m2

b

)
1/2

γ1(x
µ
) +

(m2

b

)
γ2(x

µ
) +

(m2

b

)
3/2

γ3(x
µ
)

]
,

Z̄ ≈ z

[
1 +

(m2

b

)1/2
ζ1(x

µ
) +

(m2

b

)
ζ2(x

µ
) +

(m2

b

)3/2
ζ3(x

µ
)

]
,

T̄ ≈ t

[
1 +

(m2

b

)
1/2

τ1(x
µ
) +

(m2

b

)
τ2(x

µ
) +

(m2

b

)
3/2

τ3(x
µ
)

]
, (2.16)

where χ, γ, ζ and τ are functions of the harmonic corotating coordinates which do not
depend on m/b (or equivalently ω), but are power series in r1/b. We continue these

power series only to O(r1/b)
2

so that the errors here in φ13 are O(2, 3) as in Eqs. (2.8)

and (2.15) which are linked by φ13. The first term in the X̄ equation above is chosen so
that both coordinate systems have their origins at the center of mass of the binary.

Like the coordinates, the matching parameters in the two coordinate systems must
be identical to lowest order in m2/b. (They must also be independent of coordinates.)
Then ψ13 is given by

M1 ≈ m1

[
1 +

(m2

b

)1/2
η1 +

m2

b
η2 +

(m2

b

)3/2
η3

]
,

Ω ≈ ω

[
1 +

(m2

b

)
1/2

κ1 +
m2

b
κ2 +

(m2

b

)
3/2

κ3

]
,

(2.17)

where the errors are O(m/b)
2
.

Before moving on with the calculation, let us discuss the physical meaning of the
assumptions we have just made. Equation (2.16) implies that inner and near zone metrics
are identical in the buffer zone up to a change in coordinates. For a single black hole, in
the buffer zone (which is outside the horizon), the only difference between isotropic and
harmonic coordinates is the radial transformation

r = R

(
1 +

M
2

4R2

)
, (2.18)

where r is in harmonic coordinates and R is in isotropic coordinates. This has the
asymptotic form posited in Eq. (2.16). Thus the assumption of Eq. (2.16) is only needed
in the buffer zone for the matching in this section. However, we will want to write our
final results in a global coordinate system which goes inside the horizons (though not all
the way to the asymptotically flat ends). For this purpose we assume that the form of
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Eq. (2.16) holds for all values of r1 > 0. This has the effect of defining a new coordinate
system which is asymptotic to harmonic coordinates in the near zone and to isotropic
coordinates in the inner zone.

Now let us return to the asymptotic matching. Using Eq. (2.17) we can transform
Eq. (2.15) to harmonic corotating coordinates and impose the matching condition of
Eq. (2.1),

g̃
(3)

µν
(x

γ
) ∼ h̃

(1)

αβ

(
X̄

γ (
x

γ)) ∂X̄α

∂xµ

∂X̄
β

∂xν . (2.19)

Equation (2.19) provides 10 independent asymptotic relations per order, all of which
must be satisfied simultaneously. Each asymptotic relation results in a first-order partial
differential equation for the coordinate transformation, leading to 10 integration con-
stants per order. As we shall see, these constants correspond to boosts, rotations, and
translations of the origin.

Equation (2.19) must be solved iteratively in orders of (m/b)
1/2

. Evaluating the
nonzero components (the diagonals) of Eq. (2.19) at zeroth order in m/b, i.e. comparing
Eqs. (2.8) and (2.15), provides no information, since it only asserts that at lowest order
both metrics represent Minkowski spacetime. This is true for any matching formulation
involving metrics of objects that would have asymptotically flat spacetimes in isolation.

The asymptotic relations given by evaluating Eqs. (2.8), (2.15), and (2.19) at

O(m/b)
1/2

are

χ1 ∼ −xχ1,x, ζ1 ∼ −zζ1,z

γ1 ∼ −yγ1,y, τ1 ∼ −tτ1,t,

tτ1,x ∼ xχ1,t, yγ1,t − tτ1,y ∼
(m2

m

)
1/2

,

tτ1,z ∼ zζ1,t, xχ1,y ∼ −yγ1,x,

zζ1,x ∼ −xχ1,z, yγ1,z ∼ −zζ1,y, (2.20)

where commas stand for partial differentiation. The solution in terms of integration
constants Ci is

tτ1(x, y, z, t) = C4x+ C5y −
√
m2/my + C8z + C9,

xχ1(x, y, z, t) = −C1y + C2z + C4t+ C3,

yγ1(x, y, z, t) = −C1x+ C7z + C5t+ C6,

zζ1(x, y, z, t) = −C2x− C7y + C8t+ C10. (2.21)
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For simplicity, we choose all Ci = 0 except C5 =
√
m2/m. Thus the coordinate systems

are identical at O(m/b)
1/2

. The coordinate transformation then becomes

X̄ ≈
(
x− m2b

m

)
+ x

[(m2

b

)
χ2(x

µ
) +

(m2

b

)
3/2

χ3(x
µ
)

]
,

Ȳ ≈ y

[
1 +

(m2

b

)
γ2(x

µ
) +

(m2

b

)3/2
γ3(x

µ
)

]
+

√
m2

b

√
m2

m
t,

Z̄ ≈ z

[
1 +

(m2

b

)
ζ2(x

µ
) +

(m2

b

)3/2
ζ3(x

µ
)

]
,

T̄ ≈ t

[
1 +

(m2

b

)
τ2(x

µ
) +

(m2

b

)
3/2

τ3(x
µ
)

]
, (2.22)

where the errors are still O(2, 3).
Applying asymptotic matching to O(m/b), we obtain

−
(
τ2 + tτ2,t

)
∼ 1 − (x−m2b/m)

b
= 1 − x1

b
,

χ2 + xχ2,x ∼ 1 − (x−m2b/m)

b
= 1 − x1

b
,

γ2 + yγ2,y ∼ 1 − (x−m2b/m)

b
= 1 − x1

b
,

ζ2 + zζ2,z ∼ 1 − (x−m2b/m)

b
= 1 − x1

b
,

xχ2,t − tτ2,x ∼ t

b
+

(
m

m2

)
1/2 y

b
κ1,

yγ2,t − tτ2,y ∼ −
(
m

m2

)
1/2 x−m2b/m

b
κ1,

zζ2,t ∼ tτ2,z,

xχ2,y ∼ −yγ2,x,

xχ2,z ∼ −zζ2,x,

γ2,z ∼ −zζ2,y. (2.23)

Once more we have a system of 10 coupled partial differential equations that now depends
on κ1, which is a parameter that relates Ω and ω. For simplicity, we choose κ1 = 0, so
that the Ω = ω to this order. The solution to this system is then given by
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τ2 = −
[
1 − x

b
+
m2

m

]
+D5

y

t
+D4

x

t
+D8

z

t
+
D9

t
,

χ2 = 1 − x

2b
+
m2

m
+

1

2xb

(
2t

2
+ y

2
+ z

2
)

+D1

y

x
+D4

t

x
+D2

z

x
+
D3

x
,

γ2 = 1 − x

b
+
m2

m
−D1

x

y
+D7

z

y
+D5

t

y
+
D6

y
,

ζ2 = 1 − x

b
+
m2

m
+D8

t

z
−D7

y

z
−D2

x

z
+
D10

z
, (2.24)

where the Di are 10 more integration constants. For simplicity we set them to zero, and
the coordinate transformation becomes

X̄ ≈
(
x− m2b

m

)
+ x

{(m2

b

) [
1 − (x− 2m2b/m)

2b

]
+
(m2

b

)3/2
χ3(x

µ
)

}

+
m2

2b2

(
2t

2
+ y

2
+ z

2
)
,

Ȳ ≈ y

{
1 +

(m2

b

) [
1 − (x−m2b)/m

b

]
+
(m2

b

)
3/2

γ3(x
µ
)

}
+

√
m2

b

√
m2

m
t,

Z̄ ≈ z

{
1 +

(m2

b

)[
1 − (x−m2b)/m

b

]
+
(m2

b

)
3/2

ζ3(x
µ
)

}
,

T̄ ≈ t

{
1 −

(m2

b

) [
1 − (x−m2b/m)

b

]
+
(m2

b

)3/2
τ3(x

µ
)

}
, (2.25)

with errors of O(2, 3).

Now that matching has been completed to O(m/b)
0
, O(m/b)

1/2
and O(m/b), we

can proceed with matching at O(m/b)
3/2

. However, keeping in mind our discussion in
Sec. 2.2 of the orders needed, we will only use the spatial-temporal part of the asymptotic
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relations matrix (2.19),

xχ3,t − tτ3,x ∼ −
(
m

m2

)
1/2
[
y

b

(
1 − κ2 −

4x

b
+ 3

m2

m

)]
,

tτ3,y − yγ3,t ∼
(
m

m2

)
1/2
(
x

b

[
κ2 − 1 +

4m1 − 6m2

m
− 4

(m2

m

)
2
+ 8

µ

m

]
+
(x
b

)
2

×
(

7

2
− 4m1

m
+

2m2

m

)
+
(y
b

)
2
(
−1

2
− m2

m
+

2m1

m

)
+
(z
b

)
2

×
(
−3

2
− m2

m
+

2m1

m

)
+

(
t

b

)
2

+
4µb

m2r1
+
{m2

m

[
1 − κ2 + 2

(m2

m

)
2

+
3m2 − 4µ

m

]
− 9µ+ 8m1

2m
+

3

2

})
,

tτ3,z − zζ3,t ∼
(
m

m2

)
1/2 zy

b2
. (2.26)

For simplicity, we choose κ2 = 1+3m2/m. This completes the derivation of the matching
parameters, since ηi and κ3 did not appear in the differential equations at all, and hence,
we can neglect them to this order. Note that this choice of parameter matching is
different from Alvi’s choice, and thus our coordinate transformation is also different. Up

to O(m/b)
2
, the corresponding parameter matching condition ψ13 is

Ω ≈ ω
[
1 +

m2

b

(
1 + 3

m2

m

)]
, M1 ≈ m1. (2.27)

This choice of ψ13 simplifies Eq. (2.26), which now becomes

tτ3,x − xχ3,t ∼ −
(
m

m2

)
1/2 4yx

b2
,

tτ3,z − zζ3,t ∼
(
m

m2

)
1/2 zy

b2
,

tτ3,y − yγ3,t ∼
(
m

m2

)
1/2
(
x

b

[
4m1 − 3m2

m
− 4

(m2

m

)2
+ 8

µ

m

]
+
(x
b

)
2
(

7

2
− 4m1

m

+
2m2

m

)
+
(y
b

)
2
(
−1

2
− m2

m
+

2m1

m

)
+
(z
b

)
2
(
−3

2
− m2

m
+

2m1

m

)

+

(
t

b

)
2

+
4µb

m2r1
+

{
m2

m

[
2
(m2

m

)2 − 4µ

m

]
− 9µ+ 8m1

2m
+

3

2

})
. (2.28)
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As before, we choose the integration constants for simplicity (and to keep the slicings
close to each other), resulting in the following solution:

τ3(x, y, z, t) = 0,

χ3(x, y, z, t) =

(
m

m2

)
1/2 4yt

b2
,

ζ3(x, y, z, t) = −
(
m

m2

)
1/2 yt

b2
,

γ3(x, y, z, t) = −
(
m

m2

)
1/2 t

y

(
x

b

[
4m1 − 3m2

m
− 4

(m2

m

)2
+ 8

µ

m

]
+
(x
b

)
2
(

7

2
− 4m1

m

+
2m2

m

)
+
(y
b

)
2
(
−1

2
− m2

m
+

2m1

m

)
+
(z
b

)
2
(
−3

2
− m2

m
+

2m1

m

)

+
1

3

(
t

b

)
2

+
4µb

m2r1
+

{
m2

m

[
2
(m2

m

)2 − 4µ

m

]
− 9µ+ 8m1

2m
+

3

2

})
. (2.29)

To summarize, we have found a coordinate transformation φ13 and a set of parameter
relations ψ13 that produce asymptotic matching to O(3/2, 3) in the 00 and ij components
of the 4-metric and to O(2, 3) in the 0i components.

Note however that the γ3 piece of the coordinate transformation becomes singular
at r1 = 0. Also recall that the point r1 = 0 is not identical to the point R1 = 0, where
the inner zone metric perturbation diverges. Hence if we excise the inner zone metric
close to R1 = 0, the point r1 = 0 might be outside the excised region, in which case our
coordinate transformation would introduce a coordinate singularity outside the excised
region. To get rid of this singularity we will replace r1 by

r̃1 =
√
r2
1

+ 6m2. (2.30)

This change amounts to adding a higher order term to the coordinate transformation,
which has no effect in the buffer zone at the current order of approximation, but it has
the advantage that the resulting coordinate transformation is now regular at r1 = 0.
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With this replacement the coordinate transformation is given by

X̄ ≈
(
x− m2b

m

)
+ x

{(m2

b

) [
1 − (x− 2m2b/m)

2b

]
+
m2

b

√
m

b

4yt

b2

}

+
m2

2b2

(
2t

2
+ y

2
+ z

2
)
,

Ȳ ≈ y

{
1 +

(m2

b

) [
1 − x−m2b/m

b

]}
− m2

b

√
m

b
t

(
x

b

[
4m1 − 3m2

m
− 4

(m2

m

)
2

+ 8
µ

m

]
+
(x
b

)
2
(

7

2
− 4m1

m
+

2m2

m

)
+
(y
b

)
2
(
−1

2
− m2

m
+

2m1

m

)

+
(z
b

)
2
(
−3

2
− m2

m
+

2m1

m

)
+

1

3

(
t

b

)
2

+
4µb

m2r̃1
+

{
m2

m

[
2
(m2

m

)
2 − 4µ

m

]

− 9µ+ 8m1

2m
+

3

2

})
+

√
m2

m

√
m2

b
t,

Z̄ ≈ z

{
1 +

(m2

b

)[
1 − x−m2b/m

b

]
− m2

b

√
m

b

yt

b2

}
,

T̄ ≈ t

{
1 −

(m2

b

) [
1 − x−m2b/m

b

]}
,

Ω ≈ ω
[
1 +

m2

b

(
1 + 3

m2

m

)]
,

M1 ≈ m1. (2.31)

The coordinate transformation for matching in the other overlap region O23 is obtained
by the following symmetry transformation:

1 ↔ 2, x→ −x, y → −y, z → z. (2.32)

In Eq. (2.31), t should be considered small just as x, y, and z are. Recall that
fundamentally the overlap regions are 4-volumes, although when we choose a time slicing
we have to deal with their projections on a spatial hypersurface (mA ≪ rA ≪ b). Just
as the overlap regions span a limited range of rA, so they span a limited range of t. The
post-Newtonian metric and the perturbed Schwarzschild metric are formally stationary,
but the true physical system includes gravitational waves (not modeled here) which
for example change the orbital frequency on a radiation reaction timescale. While this
timescale is longer than an orbital period, which must be of order b, rotation and boosts
mix space and time terms and to be consistent with rA ≪ b we must keep t ≪ b.
Therefore we choose the t = 0 = T slice when discussing the approximate metric in the
next section, which restricts our overlap region to the intersection of this 3-surface with
the overlap 4-volume.
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2.6 An approximate metric for binary black holes

In this section we transform the inner zone metric in isotropic corotating coordi-
nates to harmonic corotating coordinates via Eq. (2.31). The metric in the inner zone
of black hole 1 is given by

g
(1)

µν
= h

(1)

δ̄ρ̄
J

δ̄

µJ
ρ̄

ν , (2.33)

where in the buffer zone the g00 and gij components have errors of O(2, 3) and g0i has

errors of O(5/2, 3). In the above equation the Jacobian J
µ̄

ν = ∂νX̄
µ̄

can be expanded
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as

J
T̄

t = 1 − m2

b

(
1 − x−m2b/m

b

)
,

J
T̄

x =
m2t

b2
,

J
X̄

t =
m2

b

(
2t

b
+ 4

xyω

b

)
,

J
X̄

x = 1 +
m2

b

(
1 − x−m2b/m

b
+

4ωyt

b

)
,

J
X̄

y =
m2

b

(
y

b
+ 4

xωt

b

)
,

J
X̄

z =
m2z

b2
,

J
Ȳ

t =

√
m2

m

√
m2

b
− m2

b

√
m

b

{
x

b

[
4m1 − 3m2

m
− 4

(m2

m

)
2
+ 8

µ

m

]
+
(x
b

)
2
(

7

2

− 4m1

m
+

2m2

m

)
+
(y
b

)
2
(
−1

2
− m2

m
+

2m1

m

)(z
b

)
2
(
−3

2
− m2

m
+

2m1

m

)
+

(
t

b

)
2

+
4µb

m2r̃1
+
m2

m

[
2
(m2

m

)
2 − 4

µ

m

]
− 9µ+ 8m1

2m
− 3

2

}
,

J
Ȳ

x =
−m2

b

y

b
− m2

b

√
m

b

t

b

{[
4m1 − 3m2

m
− 4

(m2

m

)2
+ 8

µ

m

]
+

2x

b

(
7

2
− 4m1

m
+

2m2

m

)

− 4
µb

2

m2

x−m2b/m

r̃3
1

}
,

J
Ȳ

y = 1 +
m2

b

(
1 − x−m2b/m

b

)
− m2

b

√
m

b
t

[
2y

b2

(
−1

2
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m
+

2m1

m

)
− 4

µb

m2

y

r̃3
1

]
,

J
Ȳ

z = −m2

b

√
m

b
t

[
2z

b2

(
−3

2
− m2

m
+ 2

m1

m

)
− 4

µb

m2

z

r̃3
1

]
,

J
Z̄

t = −m2

b

√
m

b

zy

b2
,

J
Z̄

x = −m2

z

b2
,

J
Z̄

y = −m2

b

√
m

b

zt

b2
,

J
Z̄

z = 1 +
m2

b

(
1 − x−m2b/m

b

)
− m2

b

√
m

b

yt

b2
. (2.34)
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Furthermore, h
(1)

µν
refers to the inner metric presented in Eq. (2.13), where we substitute

the coordinate transformation given by Eq. (2.31) and

R1 =
(
X̄

2
+ Ȳ

2
+ Z̄

2
)

1/2
. (2.35)

The metric in the inner zone of black hole 2 (C2) is given by the symmetry transforma-
tion (2.32) applied to Eq. (2.33).

We now have all the ingredients to construct an approximate piecewise metric,
for example

g
piece

µν
≈





g
(1)

µν
, r1 < r

T

1

g
(2)

µν
, r2 < r

T

2

g
(3)

µν
, r1 > r

T

1
, r2 > r

T

2
, r < λ/2π

(2.36)

for some transition radii r
T

A
which are chosen to be inside OA3 for A = {1, 2}. In

Eq. (2.36), g
(3)

µν
is given in Eq. (2.4), g

(1)

µν
is given in Eq. (2.33) and g

(2)

µν
is the symmetry

transformed version of Eq. (2.33). The inner zone pieces of this metric are accurate to

O(R1/b)
2
, while the post-Newtonian near zone pieces are accurate to O(m/r)

3/2
. In

the overlap region, the inner and near zone 0i components asymptotically match up to
O(3/2, 2) as required for the extrinsic curvature, while all other components asymptoti-
cally match only up to O(1, 2).

Note that when we applied the coordinate transformation of Eq. (2.31) to the

inner zone metric we kept terms up to O(m/b)
5
, which at first glance seems too high.

These terms are needed because the inner zone metric represents a tidally perturbed

black hole with errors in the physics of O[(m/b)(R1/b)
3
]. Close to BH1 (R1 ∼ m), the

error in the physics is only of order O(m/b)
4

and hence we should keep terms to at

least order O(m/b)
3
. However, recall that the perturbed black hole metric satisfies the

Einstein equations up to errors of only O[(m/b)
5/2

(R1/b)
2
] even though its astrophysical

resemblance to a binary black hole has errors already at O[(m/b)(R1/b)
3
]. If we want

to obtain a metric which is close to the constraint hypersurface, we should keep terms

larger than O[(m/b)(R1/b)
3
], but not larger than O[(m/b)

5/2
(R1/b)

2
]. In particular,

close to the black hole we have constraint violations of O(m/b)
9/2

. For example, if we

had dropped terms of order O(m/b)
4

in the inner zone metric we would have introduced
additional constraint violations at this order.

2.6.1 Global character of the asymptotic metric

In this subsection we plot Eq. (2.36) to describe some features of the approximate
piecewise metric. We choose a system of equal-mass black holes m1 = m2 = m/2
separated by b = 10m, so that both holes are located on the x axis with BH1 at x ≈ 5m
and BH2 at x ≈ −5m. Figures 2.4 and 2.5 show the xx and 00 components of the
metric along the x axis for this system. (Other components of the piecewise 4-metric
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exhibit similar behavior.) In all plots we use a dashed line to denote the near zone

metric (g
(3)

µν
) and dotted lines to denote the inner zone metrics (g

(1,2)

µν
) We choose the

separation b = 10m because it is near the minimum for which our formalism makes
sense, and we plot on the x-axis because it is where the worst behavior occurs. The
idea is to (i) show some practical features of matching which have not been presented in
the literature and (ii) demonstrate the limits of the method, particularly regarding the
minimum separation.

In these plots, we also include error bars that estimate the uncontrolled remainders
in the approximations. These remainders can be approximated by

2[(m1/r1)
2
+ (m2/r2)

2
] (2.37)

in the near zone,

2(m2/b)(R1/b)
3

(2.38)

in inner zone 1, and the same with 1 ↔ 2 for inner zone 2. The error in the near zone
metric was estimated by looking at the next order (2PN) term in the metric compo-
nents [101]. [That term is much more complicated than Eq. (2.37), but is numerically
about equal to it in the region plotted.] The error in the inner zone metric comes about
because the next tidal correction for a single black hole of mass m in perturbation the-
ory will be roughly proportional to 1

3Ri0j0,k. The error bars of the approximations are

position-dependent, and thus provide a useful sign of where each approximation is break-
ing down. The PN error bars are larger near the holes than far away, and the BHPT error
bars exhibit the opposite behavior. The error bars also provide an indicator of where
both approximations are comparably good: Neglecting angular factors (as is typical in
the literature), the error bars for the near zone and inner zone A are comparable at

r
T

A
≈
(
b
4
m

2

A
/m
)

1/5
, (2.39)

which takes a value of about 4.8m for the system plotted here. This radius is a good
candidate for the “transition radius” of Eq. (2.36), but note that, in principle, there
is an infinite number of possible candidates, as long as they are in the buffer zone.
Furthermore, note that this is not a “matching radius,” since there is no such thing.
Matching asymptotic expansions, as opposed to patching them as done by Alvi [28], does
not happen at any particular place in the buffer zone. Rather, it makes two expansions
comparable throughout the buffer zone up to the uncontrolled remainders.

In Figs. 2.4 and 2.5 we plot the xx and 00 metric components along the x-axis for
the PN approximation as well as for the two perturbed black hole approximations. In
Fig. 2.1 the buffer zones around each black hole were sketched as spherical shells around
the holes, formally defined by m1 ≪ r1 ≪ b and m2 ≪ r2 ≪ b. It is important to recall
that this definition, which is ubiquitous in the literature, is imprecise because of the ≪
symbols and one cannot simply substitute < symbols. (For one thing, there is angular
dependence of the uncontrolled remainders.) Inserting the parameters of our system into
these definitions, in Fig. 2.4 the intersection of buffer zone 1 with the x-axis is given by
5.5 ≪ x/m ≪ 15 (to the right of BH1) and −5 ≪ x/m ≪ 4.5 (to the left, between
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the holes). In the part of the buffer zone to the right, away from BH2, we see a clean
example of the behavior expected of matched asymptotic expansions: The near-zone
curve and the BH1 inner-zone curve do not intersect, but the difference between them is
comparable to the estimated error bars everywhere within this part of the buffer zone,
even if we replace the ≪ operator in the definition of the buffer zone by the precise <
operator.

Between the holes, to the left in Fig. 2.4, the interpretation of the curves is not so
simple. We cannot replace ≪ by < in the definition of buffer zone 1 because to the left
of x/m ≈ 0 (r1 ≈ b/2) the near-zone metric component resembles that of BH2 rather
than BH1. This is because m1 ≪ r1 ≪ b is a rough criterion obtained by ignoring
(among other things) the angular dependence of the expansion coefficients in Eq. (2.8),
inspection of which shows about a factor of two variation as the angle is changed. This
angular dependence means that if one tries to redefine the buffer zone heuristically as
“the region where the error bars on two curves overlap and are not too large,” it is
significantly aspherical and can be squeezed out entirely. Even at the origin (where they
are smallest), the error bars from the PN approximation in the near zone are visibly
larger than they are for most of the right-hand part of buffer zone 1. These error bars,
however, are what is expected: At the origin in Fig. 2.4 the O(m/r) term which is kept

in the PN metric has a value of 0.4, for a total metric component of g
(3)

xx
= 1.4. The

uncontrolled O(m/r)
2

term we use for the error bar is 0.04, which is precisely 10% of
the m/b correction and about twice the value at x/m = ±10, a comparable distance
on the other side of each hole. The fact that the error bars are worst in between the
holes does not depend on m/b or the mass ratio, but rather is a reflection of the physical
assumptions on which matching is based. The near-zone metric is matched in buffer
zone 1 to the metric of inner zone 1, and in buffer zone 2 it is matched to the metric of
inner zone 2, but inner zone 1 is never matched to inner zone 2. It is the intervening
near zone that ensures that each black hole’s tidal perturbation is the appropriate one
(up to uncontrolled remainders) for the other black hole, because each tidal perturbation
is derived for a black hole without a nearby body. (See, for example, the discussion in
Sec. II.B of Thorne and Hartle [94].)

Since the inner-zone and near-zone metric components diverge as rA → 0, Fig. 2.4
might seem to imply that the solutions approach each other near the horizons. This

misconception can be rectified by scaling the solutions to the Brill-Lindquist factor ψ
4
,

where
ψ = 1 +

m1

2r1
+
m2

2r2
. (2.40)

This removes most of the divergent behavior of the solutions, as shown in Fig. 2.6. In
this figure, we only plot the region near BH 1 to show the difference in divergence better,
but the region near BH 2 is very similar. To the right, away from the other black hole,
we see that the near-zone and inner-zone solutions are indeed quite similar near BH1 and
that there is a wide region where both sets of error bars are comparable and overlap.

The transition radius r
T

1
≈ 4.8m (x/m ≈ 10) discussed above is seen to be a good

approximation of where the error bars are equal. To the left, between the holes, there is
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Fig. 2.4. This figure shows the xx component of the near zone metric (PN), denoted
by a dashed line, and the inner zone metrics (BHPT), denoted by dotted lines, along
the (harmonic) x axis for a perturbative parameter m/b = 1/10, with the black holes
located at x/m = ±5. The buffer zones cannot be precisely defined, but most of the
region plotted is within one or the other (see text). Matching does not guarantee that
two curves which are asymptotically matched intersect anywhere in the buffer zone, but
rather that they are comparable at the level of the uncontrolled remainders. The error
bars estimate these remainders as described in the text.
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Fig. 2.5. This figure is similar to Fig. 2.4, but it shows the 00 component of the metric.
Observe that in this component the differences between the different approximations
are more pronounced, although the general features of asymptotic matching are still
discernible.
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g
xx

 /ψ4 
 along the x-axis

(m
 i
/m =0.5, b = 10 m)

Fig. 2.6. In this figure we plot the xx component of the near zone (PN - dashed line)

and inner zone 1 (BHPT -dotted line) metrics divided by the Brill-Lindquist factor ψ
4
.

The behavior of the solutions is clearly different as we approach the event horizon from
the left (the direction of the other hole).
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only a small region (about |x|/m < 1) where the error bars overlap, and they are never
equal.

The smallness of the region where the error bars overlap is an indication that
b = 10m is approaching the minimum separation for which our approximation method
makes sense. The disappearance of such a region could be used as a criterion for the
failure of matching, although this is not a standard test and several different approximate
criteria could be used (and this region is not the formal definition of a buffer zone
anyway.) In Fig. 2.5 the error bars never do quite overlap at x/m ≈ 0, but they do
overlap at x/m ≈ ±1, although we must keep in mind that they are rough estimates.
As discussed above, the error bars cannot be made equal at the origin by changing
m/b, although the overlap can be made better by increasing the separation. The fact
that the rescaled metric components in Fig. 2.6 take off in different directions as they
approach BH1 from between the holes is partly because the two metrics blow up at
different coordinate locations. This small relative translation is due to the coordinate
system used in the matching.

2.6.2 Transition Functions

The fact that matched curves do not strictly overlap even in the buffer zone means
that a piecewise metric such as Eq. (2.36) possesses discontinuities at the transition

radii r
T

A
, wherever they are chosen to be. These discontinuities can be problematic for

numerical evolutions of the spacetime and thus it is desirable to smooth them. We now
construct transition functions that smooth these discontinuities out, by letting

g
(1,3)

µν
=
[
1 − F1(R1)

]
g
(1)

µν
+ F1(R1)g

(3)

µν
, (2.41)

where F1 has the properties that F1(R1 & b) = 1, F1(R1 . m1) = 0, F1(R1 ≈ r
T

1
) ≈ 1/2.

This ansatz yields a metric that is equal to the inner zone metric near black hole 1,
while it is equal to the near zone metric far away from black hole 1. In between (i.e. in
the buffer zone) we obtain a weighted average of these two solutions. Since the Einstein
equations are nonlinear, the sum of two solutions is in general not another solution. But
since both solutions are valid in the buffer zone, and since both have been matched, these
two solutions are equal to each other in the buffer zone up to uncontrolled remainders
of O(2, 3), corresponding to higher order post-Newtonian and tidal perturbation terms.
Hence any weighted average of these two solutions in the buffer zone will yield the
same correct solution up to uncontrolled remainders of O(2, 3). This justifies the use
of smoothing to merge the two solutions in the buffer zone. A similar solution can be
obtained for the other black hole by replacing 1 → 2.

We choose transition functions of the form

f(r) =





0, r ≤ r0
1
2

{
1 + tanh

[
s
π

(
tan( π

2w (r − r0))

− q2

tan( π
2w

(r−r0))

)]}
, r0 < r < r0 + w

1, r ≥ r0 + w.

(2.42)
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This function transitions from zero to one in a transition window which starts at r0 and
has a width w. The parameter q controls the location at which f reaches 1/2, and s
controls the slope at that location. Note that this transition function is C

∞
, a property

which is useful for numerics. In Eq. (2.41) we set

FA(RA) = f(RA), (2.43)

with parameters

r0 = 1.5m, w = 5r
T

A
, q = 1/4, s = 10, (2.44)

where r
T

A
is given by Eq. (2.39). With these parameters the transition functions reach the

value 1/2 at RA ≈ 1.5m + 0.16w ≈ 5.2m, very close to r
T

A
≈ 4.8m. We could have used

something more sophisticated such as a transition with the same anisotropic behavior
as the buffer zones, but several trials show that such details do not matter as long as
the transition function has the right asymptotic properties. (Trials also showed that the
results were not too sensitive to the precise parameter values.)
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Smoothed metric
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xx

 with transition function along the x-axis
(m

1
/m=0.5, b=10m)

Fig. 2.7. In this figure we show the xx component of the global metric compared to the
near-zone PN metric and the inner-zone BHPT metric around BH1. Observe that the
transition function takes the global metric smoothly from one to the other. Error bars
in the global metric are the same as the error bars of whichever local approximation is
better at that point.

We can see the effect of this transition function in Fig. 2.7 and 2.8. In these
figures we only show the region near BH 1, but similar behavior is observed near the
other hole. The transition function effectively takes one solution into the other smoothly
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in the buffer zone. The size of the transition window can be modified by changing the
“thickness” w, but if w is made too small the derivatives of the metric (which include
1/w terms) develop artificial peaks inside the transition window.
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 with transition function along the x-axis
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1
/m=0.5, b=10m)

Fig. 2.8. Same as the previous Figure, but for the 00 metric component.

If the separation of the black holes is large enough so that the two transition
windows of width w do not intersect, the transition functions given in Eq. (2.42) will
suffice to generate a global metric of the form

g
(global)

µν
= F2(R2)F1(R1)g

(3)

µν
+
[
1 − F1(R1)

]
g
(1)

µν
+
[
1 − F2(R2)

]
g
(2)

µν
, (2.45)

However, if the separation is small enough that the two transition windows of width w
start to overlap, we must construct a third function G(x) to allow for a smooth transition
between the two black holes while not contaminating the global solution near BH1 with
a piece of the solution from inner zone 2 and vice versa. (In essence, this is an after the
fact way of handling the fact that the buffer zones are not really spherically symmetric as
often implied in the literature. When the holes are too close, a good transition function
should not be spherically symmetric either.) For the system considered here, b = 10m
is a sufficiently small separation that such a third transition function is necessary. The
global metric then becomes

g
(global)

µν
= G(x)

{
F1(R1)g

(3)

µν
+
[
1 − F1(R1)

]
g
(1)

µν

}
+ [1 −G(x)]

{
F2(R2)g

(3)

µν
+ [1

−F2(R2)
]
g
(2)

µν

}
. (2.46)
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(Recall that x is the distance along the axis between the holes with the origin at the
center of mass.) The function G(x) will be chosen such that it is equal to unity near
black hole 1 and zero near black hole 2. In between the two black holes, G(x) will range
from zero to one, so that non-trivial averaging will occur only in this region. Again, this
averaging is allowed because the two solutions in the curly brackets are both valid (and
equal up to uncontrolled remainders) in between the two black holes. Near each black
hole we obtain the appropriate inner zone solution, while far away F1(R1) = F2(R2) = 1,

so that we obtain the near zone solution g
(3)

µν
. We choose the transition function G(x)

between C1 ∪ C3 and C2 ∪ C3 to be of the same form as the function in Eq. (2.42), i.e.

G(x) = f(x), (2.47)

but with different parameter values

r0 =
b(m2 −m1)

2m
− b−m

2
, w = b−m, q = 1, s = 5/2. (2.48)

(The more complicated form of r0 is to account for the origin of the x coordinate being
at the binary center of mass rather than on either hole.)

The reader might worry that the use of transition functions could introduce large
artificial gradients. However, with a reasonable choice of transition functions this is not
the case. In order to understand why, let us look at the derivatives of the smoothed
metric in more detail. Consider for example the overlap region O13 in which F2 = 1 and

the smoothed metric is thus F1g
(3)

µν
+
[
1 − F1

]
g
(1)

µν
. A derivative of this smoothed metric

takes the form

F1g
(3)′

µν
+
[
1 − F1

]
g
(1)′

µν
+ F

′
1

[
g
(3)

µν
− g

(1)

µν

]
. (2.49)

The last term is the worrying one since it involves a derivative of the transition function.
But note that the coefficient multiplying this term is the difference between the inner-
zone and near-zone metrics in the buffer zone, and therefore is by definition of the order
of the uncontrolled remainders in the expansions of the first two terms. Therefore the
third (unphysical) term will be safely absorbed into the small uncontrolled remainders
unless we make a pathological choice of transition function—for example, one that has
an inverse power of a small expansion parameter built into it. Our transition functions

are chosen to avoid this. Their maximum slope is roughly 1/r
T

A
, comparable to the slopes

of g
(1)

µν
and g

(3)

µν
in the vicinity of r

T

A
where the maximum occurs. Thus the unphysical

third term in Eq. (2.49) is always formally small. (We demonstrate that it is also small
in practice in Sec. 2.7.) The errors introduced into the constraint equations are found by
differentiating (2.49). Again, all terms involving derivatives of the transition functions
are multiplied by the differences between expanded metrics in the buffer zone, which are
of the same order as the uncontrolled remainders and therefore can be neglected.

In Figs. 2.9 and 2.10, we demonstrate the good behavior of the smoothed solution.
Observe that as x increases, the global metric with the transition function becomes

identical to the near zone metric, while as rA approaches zero (near each hole, x/m →
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Fig. 2.9. This figure shows the xx component of the global approximation of the metric
across both holes.

-15 -10 -5 0 5 10 15
x/m

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

g 00

Global g
00

 along the x-axis
(m

1
/m=0.5, b=10m)

Fig. 2.10. Same as the previous Figure, but for the 00 metric component.
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±5) it becomes equal to the inner zone metric. Since the holes are close to each other,
in the region between the holes the global metric never becomes identical to the near
zone metric but rather always contains a contribution from the inner zone metrics. This
linear combination is valid in that region because there the asymptotic expansions of
both approximate metrics are comparable to each other. In Figs. 2.7 and 2.8, the error
bars of the global metric with the transition function overlap the error bars of the inner
and near zone metrics in the regions where the former are valid. This criterion would not
be satisfied if the near zone and inner zone curves were farther from each other, which
would occur if the holes were closer, and thus could be taken as another indicator that
the holes are still (barely) far enough apart for matching.

2.7 Initial data for numerical relativity

The approximate metric (2.46) could be used as initial data for binary black hole
simulations. To facilitate this task we now present this metric in the 3+1 decomposition,
by providing explicit analytic expressions for the extrinsic curvature, lapse and shift on
the T̄ = t = 0 slice. If the normal vector to this slice is denoted by n

a
, then the intrinsic

metric in the slice is given by
qab = gab + nanb, (2.50)

and the extrinsic curvature is

Kab = −1

2
£nqab, (2.51)

where £n is the Lie derivative in the direction normal to the t = 0-slice. Below we
compute Kab using the explicit expression

Kab = −1

2
n

c (
∂cqab − ∂aqcb − ∂bqac

)
, (2.52)

which has been obtained using the ordinary derivative operator and the fact that qabn
b
=

0. The evolution vector
(∂t)

a
= αn

a
+ β

a
(2.53)

is split into pieces perpendicular and parallel to the t = 0 slice, where α denotes the
lapse and β

a
the shift. Note that n

a
na = −1 and β

a
na = 0.

The near zone extrinsic curvature computed from the PN metric [101] in corotat-
ing harmonic coordinates on the t = 0 slice is given by

K
(3)

ij
=

2∑

A=1

mA

4v
(i

A
n

j)

A
− v

k

A
n

A

k
δij

r2
A

, (2.54)

where the error is of O(m/b)
5/2

, the superscript 3 is to remind us that this expression is
only valid in C3, and where the parentheses on the indices stand for symmetrization. In

the previous equation, v
i

A
and n

i

A
denotes the particle velocities and directional vectors

given by

v
2

1
= ω

m2

m
b, v

2

2
= −ωm1

m
b, v

1

A
= v

3

A
= 0 (2.55)
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and

n
k

A
=
x

k − x
k

A

rA
, x

1

1
=
m2

m
b, x

1

2
= −m1

m
b, x

2

A
= x

3

A
= 0. (2.56)

The corresponding near zone lapse and shift on the t = 0 slice are

α(3) = 1 −
2∑

A=1

mA

rA
(2.57)

and

β
i

(3)
= −

2∑

A=1

4mAv
i

A

rA
− ǫij3ωx

j
, (2.58)

where once more this is valid on C3.

The extrinsic curvature of the T̄ = 0 slice valid in the inner zone of black hole 1
(C1) and computed from the metric given in the previous section in isotropic corotating
coordinates is

K
(1),ICC

00
= −m2

b3
Ω

2
Ȳ
(
X̄

2
+ Ȳ

2
) Ψ

5

Ψ − M1
R1


2

(
Ψ − M1

R1

)
2

bω + 3ΩX̄


Ψ

4 −
2M

2

1

R2

1




 ,

K
(1),ICC

01
=

m2

b
Ω

Ψ
5

Ψ − M1
R1


3ΩX̄

Ȳ
2

b2


Ψ

4 −
2M

2

1

R2

1


+

(
Ψ − M1

R1

)
2 ω

b
(X̄

2
+ 2Ȳ

2
)

+

(
Ψ − M1

R1

)
M1ω

X̄
2

R3b

(
X̄

2
+ Ȳ

2 − Z̄
2
)]

,

K
(1),ICC

02
= −m2X̄Ȳ

b3
Ω

Ψ
5

Ψ − M1
R1



(

Ψ − M1

R1

)
2

bω + 3ΩX̄


Ψ

4 −
2M

2

1

R2

1




−
(

Ψ − M1

R1

)
bM1

R3

1

ω
(
X̄

2
+ Ȳ

2 − Z̄
2
)]

,

K
(1),ICC

03
=

m2

b2
ωΩX̄Z̄Ψ

5

[
M1

R3

1

(
X̄

2
+ Ȳ

2 − Z̄
2
)
− Ψ +

M1

R1

]
, (2.59)
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K
(1),ICC
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2b3
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where the error is of O(R1/b)
3
, and where the superscript ICC is to remind that that

this is calculated in isotropic corotating coordinates. Later on, we will transform this
metric to harmonic corotating coordinates with the map φ13 found in Eq. (2.31), and
we will drop this superscript. In the above equations, Ψ is the Brill-Lindquist factor for
black hole 1 in isotropic coordinates, i.e.

Ψ = 1 +
M1

2R1

. (2.62)
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The K
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0µ
components will be needed later in the coordinate transformation

and are obtained from the purely spatial components K
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using
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where the projection tensor q
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is given by
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Here, the normal vector to the slice computed with
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where P2 stands for the second Legendre polynomial.
The upper components are then
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This means that the lapse and shift of the T̄ = 0 slice in the inner zone (C1) and in inner
corotating coordinates are given by

α(1),ICC = −n(1),ICC
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i
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. (2.68)

Observe that the lapse of Eq. (2.68) goes through zero at R1 = M/2. Apart from
a small perturbation it closely resembles the standard Schwarzschild lapse in isotropic
coordinates.

Note that the extrinsic curvature, lapse and shift given up to this point are ex-
pressed in two different coordinate systems. The post-Newtonian quantities valid in the
near zone (C3) are given in harmonic corotating coordinates, while the black hole per-
turbation theory results valid in the inner zones (C1,2) are given in isotropic corotating

coordinates. We will now apply the coordinate transformation found in Sec. 2.5, namely
Eq. (2.31), to transform the inner zone expressions to harmonic corotating coordinates,
thus dropping the label ICC in favor of the superscript (1). The result for the inner
extrinsic curvature of black hole 1 is given by

K
(1)

ij
= K

(1)

l̄m̄
J

l̄

iJ
m̄

j , (2.69)

where all components still have errors of O(5/2, 3). The extrinsic curvature in harmonic
corotating coordinates in submanifold C2 can be obtained from the above equation by
the symmetry transformation discussed in Eq. (2.32). In Fig. 2.11 we have plotted the
xy component of the extrinsic curvature along the x-axis. Observe that the behavior
of the post-Newtonian solution (dashed line) is different from that of the black hole
perturbation solution close to the black hole, where the latter diverges more abruptly.
In Figs. 2.11–2.15, the error bars have been estimated by inserting Eqs. (2.37) and (2.38)
into the definition of the quantity plotted and using ∂trA ≈ bω and ∂tRA ≈ bΩ.

Similarly, the lapse and shift in harmonic corotating coordinates corresponding
to the inner zone of black hole 1 are given by
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1
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= −n(1)
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where again the lapse and shift for the inner zone around black hole 2 (C2) can be
obtained by the symmetry transformation (2.32). In these equations, the normal vector
is given by

n
µ

(1)
= J

ν̄

νn
ν

(1),ICC
, (2.71)

where the matrix J
µ̄

ν has been defined in Eq. (2.34). Note that α(1) in Eq. (2.70) has

the same zeros as α(1),ICC and, thus, α(1) also changes sign at R1 = M/2. Furthermore,
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Fig. 2.11. This figure shows the xy component of the near zone (PN - dashed line)
extrinsic curvature, as well as the inner zone curvatures (BHPT - dotted lines) obtained
via black hole perturbation theory. This figure uses the same test case as previous figures,
with equal mass black holes and m/b = 1/10.

since J
T̄

t = 1 + O(m/b) the inner zone lapse α(1) equals α(1),ICC up to a perturbation

of O(m/b) and thus α(1) is equal to the standard lapse of Schwarzschild in isotropic

coordinates plus a perturbation of O(m/b). These features are borne out by the plot
in Fig. 2.12 which shows the global lapse along the x-axis. We can also see from the
figure that while the inner zone lapse goes to −1 as r1 → 0, the near zone one diverges
to negative infinity.

With these equations, we can construct an approximate piecewise global extrinsic
curvature, lapse and shift by substituting the metric for these quantities in Eq. (2.36).
By the theorems of asymptotic matching, the derivatives of adjacent pieces of the piece-
wise metric will be asymptotic to each other inside their respective buffer zones. This
asymptotic similarity is, thus, also observed in the extrinsic curvature, as well as the
lapse and the shift. Due to the piecewise nature of these solutions, there will be dis-
continuities on a 2-sphere located at some transition radius inside of the buffer zone. In
order to eliminate these discontinuities, we use the same transition functions used for
the metric in Eq. (2.42) with the same parameters. In this manner, we obtain a smooth



57

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
x/m

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

α

Inner zone 1
Near zone

α  near black hole 1
(m

1
/m=0.5, b=10m)

α  = 0

Fig. 2.12. This figure shows the near zone (PN - dashed line) and the inner zone lapse
(BHPT - dotted line) along the x-axis. Observe that the near zone lapse crosses zero
at x/m = 5.5 and x/m = 4.5, which is the location of the event horizon in harmonic
coordinates.

global extrinsic curvature, lapse and shift given by
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Figs. 2.13, 2.14 and 2.15 show the global lapse, shift and extrinsic curvature with the
transition functions.

We also could have computed the extrinsic curvature directly from Eq. (2.46).
This would add terms involving derivatives of the transition functions. The parameters
of the transition functions were chosen so that these derivatives are of the same order
as the uncontrolled remainders in the buffer zone, and thus formally do not affect the
accuracy of the extrinsic curvature. Since the two methods are equivalent, we took the
one which was simpler to compute (had fewer terms).

The initial data constructed by the methods above [Eqs. (2.46) and (2.72)] is
only an approximate solution to the Einstein equations. Therefore, this data leads to
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Fig. 2.13. This figure shows the global lapse along the x-axis with the transition
function.
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Fig. 2.14. This figure shows the global shift vector along the x-axis with the transition
function.
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Fig. 2.15. This figure shows the global xy component of the extrinsic curvature along
the x-axis with the transition function. Note that the bumps due to the transition
function are comparable to the error bars which estimate uncontrolled remainders in the
expansions.

an error in the constraints of the full theory of order O(m/b)
9/2

near the horizons and

O(m/r)
2

in the near zone. This error can be sufficiently small compared to other sources
of numerical error such that solving the constraints more accurately is not required.
However, perhaps the optimal approach would be to use this solution as input to York’s
conformal method [18] and compute a numerical solution to the full constraints. Since
this data is already significantly close to the constraint hypersurface, there might be
some hope that appropriate projection methods will not alter much the astrophysical
content of the initial data. Somewhat surprisingly, standard PN data (without matching)
has not yet been used for the generation of numerical black hole initial data except in
Ref. [16], which is based on the PN data of Ref. [103]. We leave it to future work to
explore similar techniques for the data set presented here.

If this data is to be evolved, it is necessary to choose a lapse and a shift. The choice
presented in this section is natural in the sense that it is close to quasi-equilibrium. In
other words, with the lapse and shift presented in this section, the 3-metric and extrinsic
curvature should evolve slowly. However, since our lapse is not everywhere positive,
some evolution codes may have trouble evolving with it. If this is the case, one can
simply replace the above lapse with a positive function at the cost of losing manifest
quasi-equilibrium, but without changing the physical content of the initial data or the
results of the evolution.
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2.8 Conclusions

We have constructed initial data for binary black hole evolutions by calculating
a uniform global approximation to the spacetime via asymptotic matching of locally
good approximations. The manifold was first divided into three submanifolds: two inner
zones (one for each hole), C1 and C2 (rA ≪ b) equipped with isotropic coordinates; and
one near zone, C3 (rA ≫ mA and r ≪ λ/2π), equipped with harmonic coordinates. In
the near zone, the metric was approximated with a post-Newtonian expansion, while
in each inner zone the metric was approximated with a perturbative tidal expansion
of Schwarzschild geometry. Each approximate solution depends on small parameters
locally defined on each submanifold. These submanifolds overlap in two buffer zones,
O13 and O23 (4−volumes), given by the intersection of the inner zones with the near
zone, i.e. on an initial spatial hypersurface the buffer zones becomes 3-volumes given by
mA ≪ rA ≪ b. Inside each buffer zone, two different approximations for the metric were
simultaneously valid and hence we were allowed to asymptotically match them inside
this zone.

The matching procedure consisted of first expanding both adjacent approximate
metrics asymptotically inside the buffer zones. After transforming to the same gauge,
these asymptotic expansions were then set asymptotic to each other—equating their
expansion coefficients, which does not in general set the functions equal to each other
anywhere in the buffer zone. After solving the differential systems given by equating ex-
pansion coefficients, asymptotic matching returned a coordinate transformation (φ13 and
φ23) between submanifolds and matching conditions (ψ13 and ψ23) that relate parameters
native to different charts. A piecewise global metric was then obtained by transforming
all metrics with the set

{
φnm;ψnm

}
, resulting in coordinates which resemble harmonic

coordinates in the near zone but isotropic coordinates in each inner zone.
Once a piecewise global metric was found, the spatial metric and extrinsic curva-

ture were calculated in each zone by choosing a spatial hypersurface, with the standard
3 + 1 decomposition. This initial data was then transformed in the same manner as
the 4 metric. Due to the inherent piecewise nature of asymptotic matching, this data
was found to have discontinuities of order O(3/2, 3) or smaller inside the buffer zone.
We constructed transition functions to remove the remaining discontinuities in metric
components and spikes in derivatives. These transition functions were carefully built to
avoid introducing errors larger than the uncontrolled remainders of the approximations
in the buffer zones. With these functions, we constructed a global uniform approxima-

tion to the metric valid everywhere in the manifold with errors O(m/b)
9/2

near the black

holes and O(m/r)
2

far away from either of them.
This uniform global approximation of the metric can be used as long as the black

holes are sufficiently far apart. When the two black holes are too close, there is no
intervening post-Newtonian near zone in which to match. However, since there is no
precise knowledge of the region of convergence of the PN series, it is unknown precisely
at what separation the near zone vanishes. We have experimented with separations
b ≥ 10m and we have found that, in these cases, a region does exist between the holes
where the post-Newtonian metric is reasonably close to the perturbed black hole metrics
and thus matching is still possible. For separations of b < 10m, this region shrinks
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rapidly and matching is not guaranteed to be successful. Also, the “global” metric is
not valid all the way to the asymptotically flat ends inside the holes, implying that our
initial data must be evolved with excision techniques rather than punctures.

We then constructed a lapse, shift, and extrinsic curvature, all of which are needed
for numerical evolutions. The lapse was found to possess the expected feature that it
becomes negative inside the horizon of either black hole. Some numerical codes might
find this feature undesirable, in which case the lapse can be replaced by some positive
function at the cost of losing approximate quasi-stationarity. These 3+1 quantities were
then smoothed with transition functions of the same type as those used in the 4-metric.

In conclusion, we have constructed initial data for an inspiraling black hole binary

that satisfies the constraints to order O[(m/b)
5/2

(R1/b)
2
] in the inner zone, and to order

O(m/r)
2

in the near zone. This data is a concrete step toward using PN and perturbation
methods to construct such initial data, and it should be compared to other numerical
methods with respect to its ability to approximate the astrophysical situation. We
should note that the data presented here makes use of perturbative expansions of low
order (e.g., the near zone metric is built from a 1 PN expansion), but this paper firms
up a method introduced by Alvi [28] that could be repeated to higher order at the cost
of more algebra [93, 39]. The post-Newtonian metric needed for the next order in m/r

(and beyond) is available [101], as is the octopole perturbation (r/b)
3

of a Schwarzschild
black hole [95]. Our method might also be extended to spinning black holes, which are
more astrophysically realistic, with the available post-Newtonian near-zone metric [33]
and tidal perturbation [104].

Acknowledgments

We thank Thomas Baumgarte, Carl Bender, Lee Lindblom, Eric Poisson, Kip
Thorne, Qinghai Wang, and Clifford Will for useful discussions and insightful comments.

We acknowledge the support of the Institute for Gravitational Physics and Ge-
ometry and the Center for Gravitational Wave Physics, funded by the National Science
Foundation under Cooperative Agreement PHY-01-14375. This work was also supported
by NSF grants PHY-02-18750, PHY-02-44788, PHY-02-45649, PHY-05-55628, PHY-05-
55644, and by DFG grant “SFB Transregio 7: Gravitational Wave Astronomy”.



62

Chapter 3

Improved initial data for black hole binaries

by asymptotic matching of post-Newtonian

and perturbed black hole solutions

We construct approximate initial data for non-spinning black hole bi-
nary systems by asymptotically matching the 4-metrics of two tidally per-
turbed Schwarzschild solutions in isotropic coordinates to a resummed post-
Newtonian 4-metric in ADMTT coordinates. The specific matching pro-
cedure used here closely follows the calculation in [105], and is performed
in the so-called buffer zone where both the post-Newtonian and the per-
turbed Schwarzschild approximations hold. The result is that both metrics
agree in the buffer zone, up to the errors in the approximations. How-
ever, since isotropic coordinates are very similar to ADMTT coordinates,
matching yields better results than in the previous calculation [105], where
harmonic coordinates were used for the post-Newtonian 4-metric. In par-
ticular, not only does matching improve in the buffer zone, but due to the
similarity between ADMTT and isotropic coordinates the two metrics are
also close to each other near the black hole horizons. With the help of a
transition function we also obtain a global smooth 4-metric which has er-
rors on the order of the error introduced by the more accurate of the two
approximations we match. This global smoothed out 4-metric is obtained
in ADMTT coordinates which are not horizon penetrating. In addition, we
construct a further coordinate transformation that takes the 4-metric from
global ADMTT coordinates to new coordinates which are similar to Kerr-
Schild coordinates near each black hole, but which remain ADMTT further
away from the black holes. These new coordinates are horizon penetrating
and lead, for example, to a lapse which is everywhere positive on the t = 0
slice. Such coordinates may be more useful in numerical simulations.

3.1 Introduction

The modeling of binary black hole systems is essential for the detection of grav-

itational waves both by space and earth-based interferometers
1

[106, 5, 7, 6, 8]. Often

1
This chapter is based on the following paper: N. Yunes and W. Tichy, Phys. Rev. D 74,

064013 (2006)
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this detection relies on matched filtering, which consists of comparing accurate wave-
form templates to the signal. In the strong field regime, these templates can be modeled
accurately enough only by numerical simulations [107], where one solves the Einstein
equations subject to initial conditions that determine the physical character of the sys-
tem. The astrophysical accuracy of the template generated via a numerical evolution
will depend on two main factors: the numerical error introduced by the evolution and
gravitational wave extraction codes; and the astrophysical accuracy of the initial data
set. In this paper we study one particular approach to solve the initial data problem.
This approach was developed in Ref. [105] (henceforth paper 1) and is based on matching
several approximate solutions of the Einstein equations.

There have been numerous efforts to find astrophysically accurate initial data for
binary systems [84, 108, 23, 85, 24, 109, 18, 110, 88, 16, 87, 89, 90, 111, 25, 112, 113, 91,
92, 114], which usually consist of the 3-metric and extrinsic curvature. Most methods
rely on performing decompositions of the data to separate the so-called physical degrees
of freedom from those constrained by the Einstein equations and those associated with
diffeomorphisms. These physical degrees of freedom carry the gravitational wave content
of the data, and thus should be chosen to represent the astrophysical scenario that is
being described. However, the exact solution to the Einstein equations for the 2-body
scenario remains elusive. Therefore, the gravitational wave content of the data is not
known exactly.

One commonly used cure to this problem is to give an ansatz for these physical
degrees of freedom, which usually does not satisfy the constraints. This ansatz is then
projected onto the constraint-satisfying hypersurface by solving the constraint equations
for the quantities introduced by the decomposition. The projected data will now sat-
isfy the constraints, but it is unclear whether such data are astrophysically accurate.
First, some of the assumptions that are used in the construction of the initial ansatz are
known to be physically inaccurate. For example, the spatial metric is often assumed to
be conformally flat, which is known to be incorrect at 2 post-Newtonian (PN) order [3],
and which also does not contain realistic tidal deformations near the black holes. Fur-
thermore, after projecting onto the constraint hypersurface, the data will be physically
different from the initial ansatz [115, 87, 16]. It is thus unclear exactly what physical
scenario these projected data represent and whether or not they will be realistic.

Recent efforts have concentrated on using physical approximations to construct
initial data sets. One such effort can be called the quasiequilibrium approach [110, 90, 92]
where one assumes that the quantities describing the initial data evolve on a time scale
much longer than the orbital timescale, when appropriate coordinates are used. There are
also approaches built entirely from second post-Newtonian approximations [16, 27]. Even
though [16] also develops a complete method to project onto the constraint hypersurface,
both [16] and [27] are not guaranteed to be realistic close to the black holes, since post-
Newtonian theory is in principle not valid close to black holes. Another recent effort,
which will be the subject of this work, involves several analytic approximations that
are both physically accurate and close to the constraint hypersurface far and close to
the holes (see paper 1). Such initial data coming from analytic approximations can
then be evolved without solving the constraints, provided that constraint violations are
everywhere smaller than numerical error. A perhaps more appealing alternative is to
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project these data onto the constraint hypersurface. If these data are close enough
to the hypersurface, then any sensible projection algorithm should produce constraint-
satisfying data that are close to the original approximate solution.

Regardless of how such data are implemented, there are reasons to believe that
such an approach will produce astrophysically realistic initial data. First, since the data
are built from physical approximations, there are no assumptions that are unrealistic.
The only limit to the accuracy is given by the order to which the approximations are
taken. Moreover, the analytic control provided by these physical approximations allows
for the tracking of errors in the physics, thus providing a means to measure the distance
to the exact initial data set. Note however, that our work described below will only
be accurate up to leading order in both the post-Newtonian and the tidal perturbation
expansions used. This means that at the currently achieved expansion order, our initial
data are by no means guaranteed to be superior to the other approaches discussed above.
Nevertheless, our approach can be systematically extended to higher order.

Data that use analytic approximations valid on the entire hypersurface are diffi-
cult to find because such approximations are usually valid only in certain regions of the
hypersurface. One method to construct such data is by asymptotically matching two
different physical approximations in a region where they overlap. Asymptotic matching,
which for general relativity was developed in [98, 97, 100, 99, 94], consists of comparing
the asymptotic approximations of two adjacent solution inside of an overlap 4-volume.
By comparing these asymptotic approximations, matching returns a map between coor-
dinates and parameters local to different regions, which forces adjacent solutions to be
asymptotic to each other inside the overlap region called the buffer zone. Since these
solutions are close to each other in the buffer zone, it is possible to construct transition
functions that merge these solutions, thus generating a smooth global metric.

Alvi [28] attempted to apply matching to binary systems, but instead of matching
he actually performed patching, because he set the physical approximations equal to each
other at a 2-surface. As a result, Jansen and Brügmann [32] found that Alvi’s 4-metric,
and in particular his extrinsic curvature, was hard to smooth with transition functions in
the buffer zone, since the solutions were not sufficiently close to each other. Jansen and
Brügmann thus concluded that these large discontinuities in Alvi’s data renders them
impractical for numerical implementation. In paper 1, binary systems were studied
once more, but this time true asymptotic matching was implemented, thus successfully
generating solutions that approach each other in the buffer zone. It was possible to
smooth these solutions and thus to create useful initial data. The approach we used
in paper 1 was to match a PN metric in harmonic gauge [3], valid far from both black
holes but less than a gravitational wavelength from the center of mass (near zone), to a
perturbed Schwarzschild metric in isotropic coordinates, valid close to the holes (inner
zone).

In this paper, we study the method developed in paper 1 in more detail and
we investigate and improve the resulting data. This improvement is mainly due to
using different coordinates in the PN approximation. Instead of employing harmonic
gauge, we now use a post-Newtonian metric in ADMTT gauge [116, 117, 103]. We
will see that this leads to better matching. The reason for this improvement is that
the 4-metric in ADMTT coordinates can be brought into a form that is very close to
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Schwarzschild in isotropic coordinates near each black hole. Therefore, we obtain a
much smoother match between this near zone metric and the inner zone one, which is
also given in isotropic coordinates (see Fig. 3.2). The results presented in Sec. 3.6 indeed
show that matching with the ADMTT PN near zone metric works better than with the
harmonic PN near zone metric. In addition, the ADMTT PN near zone metric is very
similar to the perturbed Schwarzschild metric even near the black hole horizon, where
PN approximations in principle break down. This similarity is due to the fact that,
we use a resummed version of the ADMTT metric, obtained by adding higher order
post-Newtonian terms.

Another piece of evidence that suggests that matching works better between
ADMTT and isotropic coordinates comes from looking at Hamiltonian and momentum
constraint violations. In Sec. 3.7 we compare the Hamiltonian and momentum constraint
violations for the data of this paper and of paper 1. We find that the use of the ADMTT
PN near zone metric leads to smaller constraint violations than in paper 1. With the
help of a transition function we can also obtain a global smooth 4-metric which has errors
on the order of the error introduced by the more accurate of the two approximations we
match.

By computing the constraint violations, we discover that both the data set of
this paper and that presented in paper 1 might not be easily implemented in numerical
simulations. In particular, we observe that the momentum constraint diverges near the
apparent horizon of each black hole. This makes it difficult or impossible to excise a
region inside each black hole, which contains all points where divergences occur. This
divergence arises due to the choice of coordinates in the inner zone. Since we use the
t = const slices of isotropic coordinates as spatial slices, the lapse goes through zero
near the horizon. This zero in the lapse in turn leads to a blowup of some components
of the extrinsic curvature and the momentum constraint. In order to circumvent this
problem, we construct a map from isotropic coordinates to new horizon-penetrating
coordinates. A similar idea was presented in Ref. [29], but here we extend those ideas
and provide explicit expressions for the transformed inner zone metric in a ready-to-
implement form. These new coordinates are identical Kerr-Schild coordinates inside the
horizon and become isotropic in the buffer zone. When this transformation is applied
to either the data set presented in this paper or that presented in paper 1, the lapse of
the new t = const slices is positive through the horizon, eliminating the divergence in
the extrinsic curvature. This new coordinate system will make excision easier, without
changing the physical content of the data.

The paper is organized as follows. Sec. 3.2 explains how the spacetime is divided
into zones and how matching will be implemented. Sec. 3.3 describes the near zone post-
Newtonian metric, while Sec. 3.4 focuses on the inner zone metric. Sec. 3.5 performs
the matching and provides a map between coordinates and parameters local to the near
and inner zones. Sec. 3.6 gives explicit formulas for the global metric, introduces the
smoothing functions and also decomposes this 4-metric into initial data for numerical
relativity. Sec. 3.7 compares the constraint violations of the initial data presented in this
paper to those of paper 1. In Sec. 3.8 we present an additional coordinate transformation
which can be used to construct horizon penetrating coordinates. Sec. 3.9 concludes and
points to future work. Throughout we use geometrized units, where G = c = 1.
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3.2 Division of spacetime into zones and matching in GR

Consider a binary black hole spacetime and divide it into 4 zones. First, there
are the so-called inner zones C1 and C2 close to each black hole, where we can use black
hole perturbation theory to obtain an approximate solution to the Einstein equations.
These solutions are obtained under the assumption that the black holes are separated far
enough that the influence of black hole 2 is only a small perturbation near black hole 1.
Second, there is the near zone C3 where PN theory should provide a good approximation
as long as the black holes do not move too fast. Finally C4 denotes the far zone where
retardation effects matter. These zones are shown in Fig. 3.1 and we summarize them
in Table I. The quantities introduced in this table are defined as follows: rin and rout
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Inner Zone BH 2 (C )

Inner Zone BH 1 (C )

Near Zone (C )

2

1

3

BH 2
Buffer
Zone
(O  )

23

Buffer
Zone (O  )

13
BH 1

Far Zone (C )
4

Fig. 3.1. Schematic diagram of the near zone (dark gray), inner zones (light gray) and
buffer zones (checkered). The near zone extends up to the inner boundary of the buffer
zone, while the inner zone extends from the outer boundary of the buffer zone up to the
black hole. Therefore, the buffer zones are spherical shells where the near zone and inner
zones overlap. BH 1 and BH 2 (black) are separated by distance b.

are the approximate inner and outer boundary of each zone respectively, as measured
from the Ath black hole (A = 1 or 2) in the coordinate system local to it; ǫ(n) is the

expansion parameter used to find an approximate solution to the Einstein equations in
that zone; mA is the mass parameter of the Ath black hole in the near and far zones;
rA and r̄A are the radial distances as measured from the Ath hole in the near and inner
zones respectively; λ is the typical gravitational wavelength; and b is the coordinate
separation of the black holes.

Inside of each zone we approximate the 4-metric with an monovariate expansion
in ǫ(n), which is defined in some coordinate system, and which depends on parameters,

like the mass of the black holes or the orbital angular velocity. The inner zones are both
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Zone rin rout ǫ(n)

Inner zone BH 1 (C1) 0 ≪ b r̄1/b
Inner zone BH 2 (C2) 0 ≪ b r̄2/b

Near zone (C3) ≫ mA ≪ λ/2π mA/rA
Far zone (C4) ≫ b ∞ mA/rA

Table 3.1. Description of the division of the spacetime into zones [28].

equipped with isotropic coordinates and have parameters (MA, Ω), where the approxi-
mate solutions to the Einstein equations are given by a perturbed Schwarzschild metric.
On the other hand, the near zone is equipped with ADMTT coordinates (ADMTT
gauge), where the approximate solution to the Einstein equations is a PN approxima-
tion with parameters mA and ω. This PN approximation is valid in both C3 and C4 up
to the order treated in this paper.

As explained in paper 1, asymptotic matching consists of comparing the asymp-
totic expansions of adjacent approximate metrics in an overlap region or buffer zone.
These buffer zones are defined by the intersection of the regions of validity of two adja-
cent metrics. The 2 buffer zones are delimited by the intersection of the inner zones C1
and C2 (of BHs 1 and 2), and the near zone C3. These buffer zones O12 = C1 ∩ C2 and
O13 = C1 ∩ C3 can only be defined in the asymptotic sense [30] via mA ≪ rA ≪ b and
are the regions in which asymptotic matching will be performed. Formally, there is a
third buffer zone (O34), given by the intersection of the near and far zone, but since the
ADMTT PN metric at the order considered here is valid in both C3 and C4, it is unnec-
essary to perform any matching there. The asymptotic expansions of the approximate
metrics in the buffer zones OA3 are bivariate, because they will depend on 2 independent
parameters: mA/rA and rA/b. Thus, the errors in the asymptotic expansions valid in

the buffer zones will be denoted as O(p, q), which stands for errors of O(m/b)
p

or errors
of O(rA/b)

q
.

Asymptotic matching then produces a coordinate and parameter mapping be-
tween adjacent regions. In this paper, these maps will consist of a transformation be-
tween isotropic and ADMTT coordinates, as well as a set of conditions to relate MA
and Ω to mA and ω. With these maps, we can construct a piecewise global metric by
choosing a 3-surface inside the buffer zone, where we join the approximate solutions to
the Einstein equations together. Small discontinuities will be present in the global metric
at the chosen 3-surface, due to its inherent piecewise nature, but they are of the same
order as the errors in the physical approximations, and thus controllable by the size of
the perturbation parameters. Furthermore, if such parameters are chosen sufficiently
small, these errors could, in particular, become smaller than numerical discretization
errors. Ultimately, a C

∞
metric is sought after, so, since these discontinuities are small,

the global metric can be smoothed by introducing transition functions.
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3.3 Near Zone: An ADMTT post-Newtonian metric

In this section, we present the near zone metric in ADMTT gauge valid in C3 and
C4 and expand it in the buffer zone O13. Analyzing matching in O13 will suffice due to
the symmetry of the problem. The coordinate-parameter map for the overlap region O23
will later be given by a simple symmetry transformation.

The ADMTT PN metric is obtained by solving the equations of motion for a
binary black hole system with Hamiltonian dynamics [116]. The Hamiltonian is ex-
panded in a slow-motion, weak-field approximation (PN) in ADMTT coordinates. This
approach is similar to the standard Lagrangian PN expansion implemented in paper 1
and there exists a mapping between the two methods [3]. However, they differ in that
the Hamiltonian formulation introduces a 3 + 1 decomposition of the 4-metric from the
start, and thus it provides PN expressions for the lapse, shift, 3-metric and the conjugate
momentum.

We follow the conventions of Ref. [116] where the black hole trajectories from the
center of mass of the system is given by

~ξ1(t
′′
) =

m2

m
~b(t

′′
), ~ξ2(t

′′
) = −m1

m
~b(t

′′
). (3.1)

In Eq. (3.1), mA and m = m1 +m2 stand for the mass of BH A and the combined mass

of the system in the ADMTT gauge, whereas the separation vector ~b(t) is given by

~b(t
′′
) = b

(
cosωt

′′
, sinωt

′′
, 0
)
. (3.2)

Note that Eq. (3.2) assumes the black holes are initially in a circular orbit, which is a
sensible approximation in the late stages of inspiral, since gravitational radiation will
have circularized the orbit. The angular velocity of this orbit is given by Eq. (60) in
Ref. [16]:

ω =

√
m/b3

[
1 +

1

2

( µ
m

− 3
) m
b

]
, (3.3)

with errors of O(m/b)
5/2

. In Eq. (3.3), µ = m1m2/m is the reduced mass of the system
and b is the norm of the separation vector. This angular velocity is valid in the ADMTT
gauge, which is different from the PN velocity used in paper 1, since the latter is valid
only in harmonic coordinates.

We further define the radial vector pointing from either black hole to a field point
by

~rA
′′

= (x
′′ − ξ

x

A
, y

′′ − ξ
y

A
, z

′′ − ξ
z

A
), (3.4)

where the double primed variables (t
′′
, x

′′
, y

′′
, z

′′
) are inertial ADMTT coordinates mea-

sured from the center of mass. With these definitions, it is clear that ~r1
′′

= ~r2
′′

+ ~b,

where ~b points from black hole 1 to 2. We also introduce the unit vector

~nA

′′
= ~rA

′′
/rA

′′
. (3.5)

and the radial vector pointing from the center of mass to a field point r
′′

= (x
′′
, y

′′
, z

′′
).
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The particle’s velocity vector is given by

~vA

′′
= ∂t~rA

′′
= (−1)

A+1 µ

mA

bω
(
− sinωt

′′
, cosωt

′′
, 0
)
. (3.6)

The post-Newtonian near zone metric in inertial ADMTT coordinates (Eqs. (5. 4)-
(5. 6) in Ref. [116]) can then be written as

g
(3)

i′′j′′
= Ψ

4
δij ,

g
(3)

0′′i′′
= g

(3)

i′′j′′
β

(3)j
′′

,

g
(3)

0′′0′′
= g

(3)

0′′i′′
β

(3)i
′′

− (α
(3)

)
2
,

(3.7)

where we introduced a post-Newtonian conformal factor

Ψ = 1 +
m1

2r′′
1

+
m2

2r′′
2

. (3.8)

and where the post-Newtonian lapse and shift (Eqs.(5.4)-(5.6) in Ref. [116]) are written
as

α
(3)

=
2 − Ψ

Ψ
(3.9)

and

β
(3)i

′′

=
m1

r′′
1

[
1

2

(
v

i
′′

1
− ~v

′′
1
· ~n′′

1
n

i
′′

1

)
− 4v

i
′′

1

]
+
m2

r′′
2

[
1

2

(
v

i
′′

2
− ~v

′′
2
· ~n′′

2
n

i
′′

2

)
− 4v

i
′′

2

]
.

(3.10)

These expressions are accurate up to errors of O(m/rA)
2
. The 3-metric is conformally

flat and in the vicinity of each black hole (near rA = 0) the metric is very similar to the
metric of a black hole in isotropic coordinates. Note that Ref. [116] uses units where
16πG = 1, but in Eq. (3.7) we use units where G = 1 instead.

Also note that the PN expressions above are not pure Taylor expansions in m/r
or v/c. Instead, certain higher order PN terms have been added to make the metric
similar to the Schwarzschild metric in isotropic coordinates near each black hole. This
resummation formally does not change the PN accuracy of the metric, but in practice
it improves the PN metric since it yields a metric that is very similar to the inner
zone black hole metric. The PN metric written in this form above even has apparent
horizons near rA = mA/2. Later when we plot our results we will use this resummed
form of the metric. The reader may worry that there is a certain arbitrariness in adding
higher order terms. However, we have used the following two criteria to minimize this
arbitrariness: i) We only add terms that would actually be present at higher PN order
(compare [116, 117, 103, 16]). ii) The terms added have coefficients of order unity, and
thus do not affect the usual PN order counting. Notice that point i) of course only means
that we have added some higher order terms, not all higher order terms.
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The lapse and the spatial metric are similar to what was used in paper 1, when
we expand them in the buffer zone. However, the shift given here is different from that
in paper 1 and, thus, the maps returned by asymptotic matching will also be different.

Now that we have the 4-metric in the near zone it is convenient to remove the
frame rotation by performing the transformation

t
′′

= t,

x
′′

= x cosωt− y sinωt,

y
′′

= x sinωt+ y cosωt,

z
′′

= z, (3.11)

where unprimed symbols stand for corotating ADMTT coordinates and double primed
symbols correspond to the inertial ADMTT frame. After doing this coordinate change,
the form of the near zone metric (3.7) as well as the lapse and conformal factor remain
unchanged, with only the shift picking up an additional ω × r term and now becomes

β
(3)i

=
m1

r1

[
1

2

(
v

i

1
− ~v1 · ~n1n

i

1

)
− 4v

i

1

]
+
m2

r2

[
1

2

(
v

i

2
− ~v2 · ~n2n

i

2

)
− 4v

i

2

]
− ǫik3ωx

k
,

(3.12)

where ~vA and ~nA are now time independent and equal to the double primed versions at
t = 0. In these coordinates, the magnitude of the radial vectors become

r
′′
A

= rA =
(
x

2

A
+ y

2
+ z

2
)

1/2
, (3.13)

where x1 = x− bm2/m and x2 = x+ bm1/m.
Let us now make one final coordinate transformation where we will shift the origin

to the center of BH 1, i.e.,

x
′

= x1 = x− m2b

m
,

y
′

= y, z
′
= z, t

′
= t, (3.14)

and r
′
A

= rA. The single-primed coordinates then stand for the shifted corotating

ADMTT coordinate system. This coordinate change is useful because we will later
concentrate on matching in O13. We will usually make explicit reference to x1 instead of

x
′
to remind us that this distance should be measured from BH 1. This shift of the origin

was not performed in paper 1 and, thus, the coordinate transformations that we will find
will look slightly different. However, to O(m/b) this transformation should reduce to the
results of paper 1 when the shift is undone.
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We now concentrate on the overlap region (buffer zone) O13. Inside O13 we can
expand all terms proportional to 1/r2 in Legendre polynomials of the form

1

r′
2

=
1

b

∞∑

n=0

(
−
r
′
1

b

)n

Pn

(
x1

r′
1

)
. (3.15)

Substituting Eq. (3.15) into Eq. (3.7), we obtain

g̃
(3)

0′0′
∼ −1 +

2m1

r′
1

+
2m2

b


1 +

r
′
1

b
P1

(
x1

r′
1

)
+

(
r
′
1

b

)2

P2

(
x1

r′
1

)


+ ω
2
[(
x1 +

m2b

m

)
2

+ y
′
2
]
,

g̃
(3)

0′1′
∼ −y′ ω

{
1 +

2m1

r′
1

+
2m2

b

[
1 +

r
′
1

b
P1

(
x1

r′
1

)]}
− 1

2

µ

r′
1

bω
y
′
(
x1 +

m2b
m

)

r
′2

1


1 −

r
′
3

1

b3




+
µ

2m
bω
by

r
′2

1


m2

r′
1

+
m1

b

r
′
2

1

b2

(
1 + 3

r
′
1

b
P1

(
x1

r′
1

))
 ,

g̃
(3)

0′2′
∼

(
x1 +

m2b

m

)
ω

{
1 +

2m1

r′
1

+
2m2

b

[
1 +

r
′
1

b
P1

(
x1

r′
1

)]}
− 7

2

µ

r′
1

bω

{
1 −

r
′
1

b

+


1 +

r
′
1

b
P1

(
x1

r′
1

)
+

(
r
′
1

b

)2

P2

(
x1

r′
1

)




− 1

2

µ

r′
1

bω
y

2

r
′2

1


1 −

r
′
3

1

b3


 ,

g̃
(3)

0′3′
∼ −1

2

µ

r′
1

bω
yz

r
′2

1

(
1 −

r
′
1

b3

)
,

g̃
(3)

i′j′
∼ δij



1 +

2m1

r′
1

+
2m2

b


1 +

r
′
1

b
P1

(
x1

r′
1

)
+

(
r
′
1

b

)2

P2

(
x1

r′
1

)




 , (3.16)

where all errors are of order O(2, 3) and where m1 ≪ r1 ≪ b. Eq. (3.16) is denoted with
a tilde because it is the asymptotic expansion in the buffer zone around BH 1 of the
ADMTT metric. This metric has now been expressed entirely in terms of the shifted
corotating ADMTT coordinate system (x

′
, y

′
, z

′
, t

′
).

Note that Eq. (3.16) is a bivariate series, since it depends on two independent

expansion parameters m1/r
′
1

and r
′
1
/b. Since both expansion parameters must be small

independently, Eq.(3.16) is valid in a 4-volume defined by the size of the buffer zone.

3.4 Inner Zone: A Black Hole Perturbative Metric

In this section we discuss the metric in the inner zone C1 of BH 1 and its asymptotic
expansion in the overlap region O13. Since this metric will be the same as that used in
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the inner zone in paper 1, we will minimize its discussion and mostly refer to that
paper. However, since we are using different notation than that used in paper 1, we will
summarize here the principal formulas.

In the inner zone 1, let us use inertial isotropic coordinates, labeled by x
ī′

=
(x̄

′
, ȳ

′
, z̄

′
, t̄

′
), which are centered at BH 1. Note that these coordinate are identical to the

shifted corotated harmonic coordinates used in the near zone to zeroth order. Let us
further denote the inner zone metric by g

(1)

µ̄′ν̄′
, which will be given by a tidally perturbed

Schwarzschild solution as

g
(1)

0̄′0̄′
≈ −

[
1 −M1/(2r̄

′
1
)

1 +M1/(2r̄
′
1
)

]2

+
m2

b3

(
1 − M1

2r̄′
1

)
4 [

3
(
x̄
′
cos Ωt̄

′
+ ȳ

′
sin Ωt̄

′)2 − r̄
′2
1

]
,

g
(1)

0̄′1̄′
≈ 2m2

b3

√
m

b

(
1 − M1

2r̄′
1

)
2
(

1 +
M1

2r̄′
1

)
4 [(

z̄
′2 − ȳ

′2)
sin Ωt̄

′ − x̄
′
ȳ
′
cos Ωt̄

′]
,

g
(1)

0̄′2̄′
≈ 2m2

b3

√
m

b

(
1 − M1

2r̄′
1

)
2
(

1 +
M1

2r̄′
1

)
4 [(

x̄
′2 − z̄

′2)
cos Ωt̄

′
+ x̄

′
ȳ
′
sin Ωt̄

′]
,

g
(1)

0̄′3̄′
≈ 2m2

b3

√
m

b

(
1 − M1

2r̄′
1

)
2
(

1 +
M1

2r̄′
1

)
4 (
ȳ
′
cos Ωt̄

′ − x̄
′
sinΩt̄

′)
z̄
′
,

g
(1)

ī′j̄′
≈

(
1 +

M1

2r̄′
1

)
4
(
δij +

m2

b3

[
3
(
x̄
′
cos Ωt̄

′
+ ȳ

′
sin Ωt̄

′)2 − r̄
′2
1

]{[(
1 +

M1

2r̄′
1

)
4

−
2M

2

1

r̄′2
1


 δij −

2M1

r̄′
1


1 +

M
2

1

4r̄′2
1


 x̄

i
′

x̄
j
′

r̄′2
1






 , (3.17)

where r̄
′
1

= (x̄
′2

+ ȳ
′2

+ z̄
′2
)
1/2

. This equation is identical to that used in the inner zone

of paper 1 or Eq. (3.23) of Ref. [28]. This metric was first computed by Alvi [28] by
linearly superposing a Schwarzschild metric to a tidal perturbation near BH 1. This
perturbation is computed as an expansion in ǫ1,2 = r̄

′
1,2
/b and it represents the tidal

effects of the external universe on BH 1. Since a simple linear superposition would
not solve the Einstein equations, multiplicative scalar functions are introduced into the
metric perturbation, which in turn are determined by solving the linearized Einstein
equations. With these scalar functions, the metric then solves the linearized Einstein
equations and it represents a tidally perturbed Schwarzschild black hole. This metrics has
been found to be isomorphic to that computed by Poisson [95] in advanced Eddington-
Finkelstein coordinates.

Asymptotic matching will be easier when performed between metrics in similar
coordinate systems. We, thus, choose to make a coordinate transformation to corotating

isotropic coordinates x
ī

= (x̄, ȳ, z̄, t̄). The inner zone metric in corotating isotropic
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coordinates will be denoted by g
(1)

µ̄ν̄
and is given by

g
(1)

0̄0̄
≈ Ht +Hs1Ω

2
(
x̄

2
+ ȳ

2
)

+ 2Hstx̄
Ω

b2

(
x̄

2
+ ȳ

2 − z̄
2
)
,

g
(1)

0̄ī
≈ −Hs1Ωǭij̄3̄x

j̄
+
Hst

b2

[
ȳ
(
δ
3̄

ī
z̄ − δ

1̄

ī
x̄
)

+
(
x̄

2 − z̄
2
)
δ
2̄

ī

]
,

g
(1)

īj̄
≈ δ̄ij̄Hs1 −Hs2

x
ī
x

j̄

b2
, (3.18)

where ǭij̄k̄ is the standard Levi-Civita symbol with convention ǫ1̄2̄3̄ = 1 and where δ
ā

b̄
is

the Kronecker delta. In Eq. (3.18) we use the shorthand

Hst = 2m2

√
m

b3

(
1 − M1

2r̄1

)
2
(

1 +
M1

2r̄1

)
4

,

Hs1 =

(
1 +

M1

2r̄1

)
4



1 + 2

m2

b3
r̄
2

1
P2

(
x̄

r̄1

)

(

1 +
M1

2r̄1

)
4

− 2
M

2

1

r̄2
1






 ,

Hs2 =
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2r̄1

)
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M
2

1

4r̄2
1


 4m2M1

br̄1
P2

(
x̄

r̄1

)
,

Ht = −
(

1 −M1/2r̄1
1 +M1/2r̄1

)2

+ 2

(
1 − M1

2r̄1

)
4 m2

b3
r̄
2

1
P2

(
x̄

r̄1

)
, (3.19)

where r̄1 = r̄
′
1

and the errors are still of O(r̄1/b)
3
. These shorthands for the different

components of the metric are identical to those used in paper 1.
We now need to asymptotically expand the inner zone metric in the buffer zone,

i.e., as M1/r̄1 ≪ 1. Doing so we obtain

g̃
(1)

0̄0̄
∼ −1 +

2M1

r̄1
+

2m2

b3
r̄
2

1
P2

(
x̄

r̄1

)

+Ω
2
(
x̄

2
+ ȳ

2
)
,

g̃
(1)

0̄1̄
∼ −2m2

b3

√
m

b
ȳx̄− ȳΩ

(
1 +

2M1

r̄1

)
,

g̃
(1)

0̄2̄
∼ 2m2

b3

√
m

b

(
x̄

2 − z̄
2
)

+ x̄Ω

(
1 +

2M1

r̄1

)
,

g̃
(1)

0̄3̄
∼ 2m2

b3

√
m

b
z̄ȳ,

g̃
(1)

īj̄
∼ δij

[
1 +

2M1

r̄1
+

2m2

b3
r̄
2

1
P2

(
x̄

r̄1

)]
(3.20)
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The asymptotic expansion of g
(1)

µ̄ν̄
will be denoted by g̃

(1)

µ̄ν̄
. Note that this asymptotic

expansion is a bivariate expansion in both r̄1/b and M1/r̄1. In other words, it is the
asymptotic expansion in the buffer zone to the approximate solution in the inner zone.

3.5 Matching Conditions and Coordinate Transformations

In this section, we find the coordinate and parameter maps that relate adjacent
solutions. Since the coordinate systems are similar to each other in the buffer zone, we
make the following ansatz for the transformation between coordinates and parameters

x̄ ≈ x
′
[
1 +

(m2

b

)1/2
χ1(x

µ
′

) +
(m2

b

)
χ2(x

µ
′

) +
(m2

b

)3/2
χ3(x

µ
′

)

]
,

ȳ ≈ y
′
[
1 +

(m2

b

)
1/2

γ1(x
µ
′

) +
(m2

b

)
γ2(x

µ
′

) +
(m2

b

)
3/2

γ3(x
µ
′

)

]
,

z̄ ≈ z
′
[
1 +

(m2

b

)1/2
ζ1(x

µ′

) +
(m2

b

)
ζ2(x

µ′

) +
(m2

b

)3/2
ζ3(x

µ′

)

]
,

t̄ ≈ t
′
[
1 +

(m2

b

)1/2
τ1(x

µ
′

) +
(m2

b

)
τ2(x

µ
′

) +
(m2

b

)3/2
τ3(x

µ
′

)

]
,

M1 ≈ m1

[
1 +

(m2

b

)
1/2

η1 +
m2

b
η2 +

(m2

b

)
3/2

η3

]
,

Ω ≈ ω

[
1 +

(m2

b

)1/2
κ1 +

m2

b
κ2 +

(m2

b

)3/2
κ3

]
, (3.21)

where, as in paper 1, χ1,2,3, γ1,2,3, ζ1,2,3 and τ1,2,3 are functions of the coordinates,

whereas η1,2,3 and κ1,2,3 are coordinate independent. Note that this ansatz is slightly

different from the one made in paper 1, because here we have shifted the origin of the
near zone coordinate system, so that to zeroth order it agrees with the coordinates used
in the inner zone. In order to determine these maps, we enforce the matching condition,
i.e.

g̃
(3)

µ′ν′
(x

λ′

) ∼ g̃
(1)

ρ̄σ̄

(
x̄

λ
(
x

λ′

))
∂x̄

ρ

∂xµ′

∂x̄
σ

∂xν′
, (3.22)

which leads to a system of first-order coupled partial differential equations, which we
solve order by order.

The system to O(m/b)
0

provides no information because both metrics are asymp-
totic to Minkowski spacetime to lowest order. The first nontrivial matching, occurs at

O(m/b)
1/2

. The differential system at this order and at order O(m/b) are similar to
those obtain in paper 1 and we, thus, omit them here. The solution up to O(m/b) is
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given by

x̄ ≈ x
′
[
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m2

b

(
1 − x

′

2b

)
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(m2

b

)
3/2
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′

)
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ȳ ≈ y
′
[
1 +
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′
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′
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+
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′
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′
[
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(m2

b

)(
1 − x

′
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)
+
(m2
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µ
′

)

]
,

t̄ ≈ t
′
[
1 −

(m2

b

)(
1 − x

′

b

)
+
(m2

b

)3/2
τ3(x

µ
′

)

]
, (3.23)

with η1 = 0 and κ1 = 0. We should note that in solving the differential system to

O(m/b)
1/2

and O(m/b) we have explicitly required that the coordinate system be not
boosted or rotating with respect to each other. Furthermore, we found the particular
solution where the t

′
= 0 and the t̄ = 0 slices coincide, since t

′
= 0 implies t̄ = 0. We

should also note that Eq. (3.23) of this paper is different from the transformation found
in paper 1 because in this paper we have shifted the origin of the near zone coordinate
system, which simplifies the transformation.

Matching at O(m/b)
3/2

needs to be performed only on the 0i components of the
metric to get the first nontrivial correction to the extrinsic curvature. This order counting
does not follow the standard post-Newtonian scheme and it is explained in more detail in
paper 1. Since the near zone shift is different from that used in paper 1, the differential
system obtained by imposing the matching condition of Eq. (3.22) is also different. This
system is given by

t
′
τ3,x′ − x

′
χ3,t′ ∼

√
m

m2
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′

b2


m1

2m


 b

3

r
′3

1

− 1 + 3
m1

m


− 4




+
y
′

b

[
−m2

m
− κ2 + 1 − m1
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+
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+
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+
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′
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[
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2m

(
b
3
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+ 1

]
. (3.24)
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Note that κ2 represents the degree of freedom associated with the angular velocity. For
simplicity, we now set κ2 = 0. Also note that η2, η3 and κ3 never enter the matching
conditions to this order, so we set those quantities to zero. All the matching relations
between the parameters local to different approximation have now been specified to

O(m/b)
2
, i.e.

Ω ≈ ω, M1 ≈ m1. (3.25)

With these matching relations, we can now find a particular solution to Eqs. (3.24)
and this set will produce matching. Once more, we choose constants of integration such
that the t

′
= 0 and the t̄ = 0 slices coincide. Doing so we obtain the solution
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√
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]
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)
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[
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(m2
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)(
1 − x1

b

)]
, (3.26)

where errors are of O(2, 3).

As in paper 1, this coordinate transformation is singular at r
′
1

= 0. Note, however,

that in Eq. (3.26) we have replaced r
′
1

by

r1 =
√
r′2
1

+ 6m2. (3.27)

This replacement amounts to adding higher order terms to the coordinate transformation,
which have no effect in the buffer zone at the current level of accuracy. Yet it has the
advantage that the resulting coordinate transformation is now regular at r

′
1

= 0. Thus,

the replacement does not affect asymptotic matching (in the buffer zone). It merely
leads to an inner zone metric expressed in a better coordinate system.

In paper 1 there was one term in the coordinate transformation that was singular
at the location of the holes, whereas here there are 3 such singular terms. This increase
in singular behavior is due to the ADMTT shift having more poles than the shift of paper
1. The shift of the origin into the complex plane, as introduced in Eq. (3.27), removes
this singular behavior from the real line, while only introducing uncontrolled remainders
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at a higher order. We should also note that in Eq. (3.26), we undid the shift given by
Eq. (3.14), so that we measure distances from the center of mass of the system.

The coordinate transformations presented in Eq. (3.26) are only valid in O13,
but we can find the transformation in O23 by a simple symmetry transformation. This
transformation is given by the following rules: substitute 1 ↔ 2 and

x→ −x, y → −y, z → z. (3.28)

The set of matching conditions plus the coordinate transformation presented in
Eqs. (3.25) and (3.26) are the end result of the matching scheme. Now that we have
an approximate global metric, we can decompose it to provide initial data for numerical
simulations. This decomposition consists of a foliation of the manifold with spacelike
hypersurfaces, where we choose the slicing given by t = 0 = t̄. Notice that we have
found a coordinate transformation that is consistent both with this foliation and with
the condition mA ≪ rA ≪ b, valid in the buffer zone.

Note that there is some freedom in the matching scheme at the order of accuracy of
this paper. This freedom is rooted in that a different choice for the matching parameters
(M and Ω) could be made. However, except for the κ2 term in Ω, this would have
no effect on the coordinate transformation or the 4-metric at the orders considered
here. Furthermore, one can show that the value of κ2 does not affect the physics of the
initial data we will construct below. Above, the choice of κ2 = 0 was made in order
to simplify the relation between the parameters of the two approximations. Specifically,
it was chosen such that the angular velocity parameters of the two approximations are
equal. This is, however, not the only possible choice. Fortunately, the choice of κ2
will not affect the initial data we will construct later, since both the 3-metric and the
extrinsic curvature will change only by uncontrolled remainders of higher order. This
happens for the following reasons. A non-zero κ2 would only change the spatial part

of the coordinate transformation at O(m/b)
3/2

, and thus would have no effect on the
slicing. Since the leading order non-zero piece in the extrinsic curvature is already of

O(m/b)
3/2

and proportional to Ω, any change due to spatial coordinate transformations

or parameter changes at O(m/b)
3/2

will cause changes only at even higher order. For

the 3-metric, coordinate transformations or parameter changes at O(m/b)
3/2

will make

a difference at order O(m/b)
3/2

in the metric. We can, however, again neglect these
changes, since the 3-metric was only matched up to O(m/b). In conclusion, this means
that any allowed change in the matching parameters will not affect the physics of the
initial data sets constructed below.

3.6 Constructing a Global Metric

In this section, we present the global metric, by performing the coordinate trans-
formation found in the previous section on the inner zone metric. The piecewise metric
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in corotating ADMTT coordinates is given by

g
(global)

µν
≈





g
(1)

µν
, in C1,

g
(2)

µν
, in C2,

g
(3)

µν
, in C3.

(3.29)

In Eq. (3.29), g
(3)

µν
denotes the near zone metric given in Eq. (3.7), but in unprimed

corotating ADMTT coordinates, whereas g
(1)

µν
and g

(2)

µν
stand for the inner zone metrics

of BH 1 and 2 transformed to corotating ADMTT coordinates via Eq. (3.26). Explicitly,
the inner zone metric is given by

g
(1,2)

µν
= g

(1,2)

µ̄ν̄
J

µ̄

µ
J

ν̄

ν
, (3.30)

where J
µ̄

ν
is the Jacobian of Eq. (3.26), namely

J
µ̄

ν
=
∂x

µ̄

∂xν . (3.31)

In Eq. (3.30), g
(1)

µ̄ν̄
is the inner zone metric in corotating isotropic coordinates given by

Eqs. (3.18), while g
(2)

µ̄ν̄
can be obtained by applying Eq. (3.28) to g

(1)

µ̄ν̄
. Eq. (3.30) is also

expanded in paper 1 with the substitution h
(1)

µν
= g

(1)

µ̄ν̄
. Note that the Jacobian given

in the Appendix of [93] will be different from that presented in paper 1 because the
coordinate transformation is different.

In the following we present plots of different metric components at time t̄ = t
′
= 0.

These plots are representative samples of the initial data and will show how well the
matching procedure works. In most of these figures we choose to plot along the axis that
connects the holes (the x-axis). We have checked that the behavior along other axis is
qualitatively similar to that along the x-axis, as evidenced by the contour plots included
in the section. Furthermore, we plot only the relevant components because either the
other components vanish along the x-axis or they present similar behavior. Thus the
components and axis chosen present the general behavior of the data.

For these plots, we choose two different physical systems. The first system consists
of equal mass black holes separated by b = 10m. The two black holes are located at
x = ±5m and are surrounded by apparent horizons, which approximately are coordinate
spheres of radius m/4. For this system, some quantities, like the xx-component of the
metric, are reflection symmetric under x → −x and we then plot only the positive x-
axis, omitting the inner zone 2 data. The second system consists of two holes with mass
ratio m2/m1 = 0.25 separated by b = 20m. Here the holes are located at x = 4m
and x = −16m, and surrounded by apparent horizons with radii of approximately m1/2
and m2/2 for holes 1 and 2 respectively. In general, a dashed line corresponds to the
post-Newtonian near zone metric, while the dotted or dot-dot-dashed lines represent the
perturbed Schwarzschild inner zone metrics.
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Fig. 3.2. This figure shows the xx-component of the near zone (dashed line) and inner
zone 1 metric (dotted line) along the positive x-axis in ADMTT coordinates. The black
holes are located at x/m ≈ ±5 and the perturbative parameter is m/b = 1/10. Observe
that the metrics become asymptotic to each other in the buffer zone, whose approximate
center is roughly 4m away from each black hole. Also plotted are estimates of the error
in the approximations. Note that the off-diagonal components of the 3-metric vanish
along the x-axis for symmetry reasons, and that the yy- and zz-components are very
similar to the xx-component.

Most figures will contain error bars, which in the case of the metric are given by

Enear =
3

2



m

2

1

r2
1

+
m

2

2

r2
2


+

5

4

m1m2

b

(
1

r1
+

1

r2

)
− 2

m1m2

S2 ,

Einner,A = 2
m

b

(rA
b

)3
, (3.32)

where S = r1 + r2 + b. These error bars were obtained by analyzing the next order
term in the ADMTT PN metric and in the black hole perturbation approximation. In
particular, the PN error is different from that used in paper 1. Here the first term
comes from the expansion of the conformal factor and the last two from the 2 PN part
of the transverse-traceless term in the ADMTT metric. The full PN error, given by
the 3.5 ADMTT PN metric, is much more complex than the simplified approximation

used in Enear, where the former contains some terms that scale for example as m
2

A
/r

3

A

and m
3

A
/(Sr

2

A
). However, here we have neglected those terms and we have checked that

Enear models well both the magnitude and functional behavior of the full error in the
regions plotted in all figures with fractional errors of less than 1% everywhere.
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Fig. 3.3. Plot of the lapse along the positive x-axis for the inner zone and near zone
metrics. Note that the lapses are similar to each other not only in the buffer zone, but
also near the hole.

In Fig. 3.2, we plot the xx-component of the piecewise metric along the positive
x-axis. Observe that the inner zone metric of black hole 1 (dotted line) is close to
the post-Newtonian near zone metric (dashed line) in the buffer zone of black hole 1
given by m1 ≪ r̄1 ≪ b. Recall that the definition of the buffer zone in the theory of
asymptotic matching is inherently imprecise in the sense that as one approaches either
the inner or outer radius of the buffer zone shell, one of the two approximations (i.e.
near zone or inner zone metric) has much larger errors than the other. In our case
we need both r̄A/b and mA/r̄A to be small, which will not be the case at either end
of the interval mA ≪ r̄A ≪ b. Hence we expect the best agreement between the two
approximations to occur somewhere in the middle of each buffer zone shell. In fact the
best agreement should occur where each of the two approximations have roughly the
same error. From Fig. 3.2 we see that the inner zone metric of each black hole agrees
with the near zone metric within error bars in the middle of each of the two buffer zones,
where both have comparable errors. This agreement means that we have performed
successful matching. However, our result in Fig. 3.2 is even better than this, since the
near zone 3-metric is close to each of the inner zone 3-metrics even near the black holes,
where post-Newtonian theory has large errors and is expected to fail. The reason for
this somewhat surprising success near the black holes is that we have used resummed
post-Newtonian expressions [Eqs. (3.7), (3.8), (3.9) and (3.10)] in the ADMTT gauge,
which are very close to the isotropic Schwarzschild metric used in the inner zone. Note
that the off-diagonal components of the 3-metric vanish along the x-axis for symmetry
reasons, and that the yy- and zz-components are very similar to the xx component.
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Fig. 3.4. Plot of the y-component of the shift along the positive x-axis for the inner
zone and near zone metrics. Observe that although the inner zone and near zone curves
are similar in the buffer zones, in this case they differ near the black holes. Also note
that the x- and z-components of the shift vanish along the x-axis.

The quality of the asymptotic matching (in the buffer zone) is equally good for
all other components of the 4-metric. This is evidenced in Figs. 3.3 and 3.4 which
show the near and inner zone lapse and y-component of the shift, computed from the
4-metric (3.29) via

β
i

= g
ij
goj .

α = =
(
gokβ

k − g00

)
1/2

. (3.33)

As one can see from Fig. 3.3 the near (dashed line) and inner zone 1 lapse (dotted line)
agree well in the buffer zone, located about 4m away from each black hole. Furthermore,
the resummed expression [Eq. (3.9)] we use for the near zone lapse also is very close to
the inner zone lapse near each black hole, where post-Newtonian theory has large error
bars. In Fig. 3.4 we see that the near zone shift (dashed line) is close to the inner zone
1 shift (dotted line) in the buffer zone as expected after matching there. However, in
the inner zone the post-Newtonian near zone shift is not valid anymore and deviates
strongly from the inner zone shift.

Thus in summary asymptotic matching works well for all components of the 4-
metric in the buffer zone. In addition, for most components (except the shift) the
resummed post-Newtonian expressions [Eqs. (3.7), (3.8), (3.9) and (3.10)] we use in the
near zone, follow the inner zone behavior even near the black holes, where this is not
necessarily expected.
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Fig. 3.5. This figure shows the xx component of the piecewise metric for a system of
unequal masses and at larger separations. In particular, we have used m2/m1 = 0.25
and b = 20m. Note that the matching improves since the perturbation parameter m/b
is smaller.

We have also tested the coordinate and parameter maps for system with unequal
masses and found that matching is still valid. Figure 3.5 shows the xx-component of
the piecewise metric along the entire x-axis for the case of m2/m1 = 0.25 and b = 20m.
Observe that the matching improves in this case because the perturbation parameter
m/b has become smaller. Also note that the general features of the matching are the
same as those presented in the equal mass case. We have plotted along the entire x-axis
and show both the metrics of inner zone 1 (dotted line) and 2 (dot-dot-dashed line).

Since we are interested in initial data on the t̄ = t
′

= 0 slice we also have to
discuss the extrinsic curvature given by

Kij = − 1

2α

(
∂tgij − £βgij

)
. (3.34)

In the inner zones we use this equation to numerically compute K
(1)

ij
and K

(2)

ij
. Note

however, that the inner zone extrinsic curvature in corotating isotropic coordinates can

also be found in paper 1, where K
(1),ICC

ij
= K

(1)

īj̄
in the new notation.

The near zone extrinsic curvature can easily be computed analytically from the
near zone post-Newtonian 4-metric in ADMTT coordinates. The result [16]

K
(3)

ij
= Ψ

−2
2∑

A=1

3

2r2
A

[
p

i

A
n

j

A
+ p

j

A
n

i

A
− p

m

A
n

n

A
δmn(δij − n

i

A
n

j

A
)
]
. (3.35)
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Fig. 3.6. This figure shows the xy component of the near zone (dashed line) extrinsic
curvature, as well as the inner zone curvature (dotted line) obtained via black hole
perturbation theory. The plot is for equal mass black holes with m/b = 1/10. In the
buffer zones, where the near and inner zone approximations have comparable error bars,
the two approximations agree within error bars. All other components vanish along the
x-axis.

is of Bowen-York form, and v
i

A
and n

i

A
denote the particle velocities and directional

vectors already introduced in Sec. 3.3. On the t
′
= 0 slice these quantities become

v
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1
= ω
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= 0, (3.36)

and
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=
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2
= −m1

m
b,

ξ
2

A
= ξ

3

A
= 0. (3.37)

In Fig. 3.6 we plot the xy component of the extrinsic curvature along the positive
x-axis in the equal mass case. For reasons of symmetry all other components vanish
along the x-axis. Observe that the near zone solution (dashed line) diverges faster than
the inner zone solution (dotted line). From this figure we see that even though the
resummed ADMTT post-Newtonian expansion models well the 3-metric of a perturbed
Schwarzschild hole, the ADMTT and inner extrinsic curvatures do not agree well in the
inner zone, just like in the case of the shift. However, in the buffer zone where both
inner and near zone results have similar errors, both approximations roughly agree. On
the side away from the companion black hole this agreement is within error bars, while
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Fig. 3.7. This figure shows the xy component of the piecewise extrinsic curvature for a
system of unequal masses (m2/m1 = 0.25) at separation b = 20m. Note that the scale
of the y-axis has been reduced. The curves are closer to each other in this case because
the perturbation parameter m/b has decreased by the choice of parameters.

between the holes the two error bars do not quite overlap. This suggests that a separation
of b = 10m is at the edge of validity of the matching scheme employed here. Notice,
however, that the error bars
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plotted here (for v = (m/b)
1/2

) are only approximations of the true errors. These
approximate errors were obtained by differentiating the error bars for the metric in
Eq. (3.32) with respect to time. Note that the absolute error in the extrinsic curvature

is O(m/b)
1/2

smaller than that of the metric because the first nontrivial term in the

extrinsic curvature appears at O(m/b)
3/2

.
Similar results for the extrinsic curvature are also obtained for different separa-

tions and mass ratios. Figure 3.7 shows the xy component of the piecewise extrinsic
curvature along the x-axis for the case of m2/m1 = 0.25 and b = 20m. The near zone
curvature (dashed line) agrees within error bars with the inner zone 1 curvature (dot-
ted line) and the inner zone 2 curvature (dot-dot-dashed line) in buffer zones 1 and 2
respectively. Observe however, that the agreement worsens outside the buffer zone, e.g.
as we approach either hole.
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Transition Functions

In this subsection, we construct transition functions that allow us to remove the
piecewise nature of Eq. (3.29) and merge the approximate solutions smoothly in the
buffer zone. This smoothing is performed by taking weighted averages of the two ap-
proximations. This procedure is justified by the fact that both approximations are equal
to each other in the buffer zone up to uncontrolled remainders (asymptotic matching
theorem [30]) which were neglected in the approximations used.

In the following we assume that the middle of each buffer zone is located around

r
M

A
=
(
b
4
m

2

A
/m
)

1/5
, (3.39)

which corresponds to the distance from the black holes where the error bars of the
adjacent approximations are comparable.

The transition functions we use are all of the form

f(r) =





0, r ≤ r0
1
2

{
1 + tanh

[
s
π

(
tan( π

2w (r − r0))

− q
2

tan( π
2w

(r−r0))

)]}
, r0 < r < r0 + w

1, r ≥ r0 + w,

(3.40)

which is a function which smoothly transitions from zero to one in the region r0 < r <
r0 +w. The parameters used here are as follows: r0 defines where the transition begins;
w gives the width of the transition window; q determines the point where the transition
function is equal to 1/2 (this happens at r1/2 = r0 + (2w/π) arctan q); the slope of the

transition function at this point is s(1+q
2
)/(2w) and thus can by influenced by choosing

s (and of course w).
The global merged 4-metric is then given by

g
(global)

µν
= G(x)

{
F1(r̄1)g

(3)

µν
+
[
1 − F1(r̄1)

]
g
(1)

µν

}

+ [1 −G(x)]
{
F2(r̄2)g

(3)

µν
+
[
1 − F2(r̄2)

]
g
(2)

µν

}
, (3.41)

where we have introduced
FA(r̄A) = f(r̄A), (3.42)

with
r0 = 0.4r

M

A
, w = 3.5r

M

A
, q = 0.2, s = b/m, (3.43)

and also
G(x) = f(x), (3.44)

but with

r0 =
b(m2 −m1)

2m
− b

2
+ 2.2m2, w = b− 2.2m,

q = 1, s = 2.5. (3.45)
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Fig. 3.8. This figure shows the transition functions used to merge the different pieces of
the 4-metric. The transition function F1(r̄1) with the transition parameters of Eq. (3.43)
is shown as a solid line, while the functionG(x) with the parameters of Eq. (3.45) is shown
with a dashed line. The transition functionQ1(r̃1) (dotted line) defined in Eqs. (3.57) and
(3.58) is used in Sec. 3.8 to construct horizon penetrating coordinates via the coordinate
transformation (3.55).

The transition functions F1(r̄1) and G(x) are shown in Fig. 3.8 for mA = m/2, b = 10m
and the parameters of Eqs. (3.43) and (3.45), respectively.

The global lapse, shift and extrinsic curvature are merged using the same tran-
sition functions as for the 4-metric above. With these transition functions, the global
metric is a mixture of inner zone and near zone metric in a transition region given by

0.4r
M

A
< r̄A < 3.9r

M

A
. On the other hand, the global metric becomes identical to the in-

ner zone metric in the region r̄A < 0.4r
M

A
, while it becomes equal to the near zone metric

in the region r̄A > 3.9r
M

A
. Note that although the transition function are identical to

those used in paper 1, the transition parameters chosen here are slightly different. This
change is because the inner zone metric is very similar to the near zone metric close to
the black holes in ADMTT coordinates, so that the transition region has been moved
closer to the black holes.

The exact choice of a transition function is to a certain degree arbitrary and could
in principle be changed. However, the resulting global metrics generated by any other
reasonable transition function should look very similar, and in fact be identical up to
uncontrolled higher order post-Newtonian and tidal perturbation terms. Also note that
the functions presented in this section are general enough to perform a smooth merge
for systems with different masses and separations.
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Fig. 3.9. In this figure we show how the transition function takes the xx component of
the near zone metric to the inner zone solution around BH 1. Observe that the transition
function is smooth and does not introduce kinks into the global solution.

In Fig. (3.9), we present the xx-component of the metric around BH 1. In this
figure, the dotted curve corresponds to the inner zone metric, the dashed line is the near
zone metric and the solid line is the merged global metric. The error bar in the global
metric is given by the smallest of the error bars of the respective approximations. The
purpose of this figure is to show explicitly that the transition function effectively merges
the different approximations in the buffer zone, where the errors are comparable.

Even though the near zone 3-metric models the inner zone 3-metric well near the
black hole horizons, the two metrics diverge differently at rA = 0. In Fig. 3.10, we plot

the xx-component of the metric divided by Ψ
4
. This denominator removes the divergence

of the near zone metric, which now becomes identically unity, while showing that the
inner zone metric differs by an amount equal to the size of the tidal perturbation near

the horizon. The reason that the inner zone metric still diverges after dividing by Ψ
4

is
due to the fact that the tidal perturbation piece of the inner zone metric is divergent at
rA = 0. This happens because the tidal perturbation piece is valid only for finite spacelike
separations from the horizon, while rA = 0 which is located at the inner asymptotically
flat end inside the black hole, is infinitely far from the horizon. This means that the tidal
perturbation piece of the inner zone metric is not valid near rA = 0. Yet, if this spurious
tidal perturbation is removed, the resulting 3-metric of the Schwarzschild background
will again agree well with the resummed post-Newtonian near zone 3-metric.

The same analysis can be performed for systems of unequal masses and at different
separations. In Fig. 3.11 we plot the xx component of the metric along the x-axis for a
binary with mass ratio m2/m1 = 0.25 and at a separation b = 20m. The transition is
now easier than before (note the scale of the y-axis), because the perturbation parameter
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Fig. 3.10. In this figure we show the x-component of the metric, divided by Ψ
4
. The

dashed line is the near zone metric, the dotted line is the inner zone metric and the black
solid line is the global metric with transition functions.

has become smaller. Also note that we have used the same parameters in the transition
function as those used in the equal mass case and the transition is still smooth.

With these transition functions we can construct a smooth global metric, as shown
in Fig. 3.12. There are no discontinuous features in the global metric. Just as in the case
of the metric, to generate a global extrinsic curvature we will use the same transition
function of the previous section with the same parameters. Figure 3.13 shows the global
extrinsic curvature with the transition functions. Note that we could have computed the
extrinsic curvature directly from Eq. (3.41), but this curvature would have been very
similar to the curvature merged with transition functions. The difference between these
two curvatures lies in the derivatives of the transition functions, but these terms will be
of the same order or smaller than the uncontrolled remainders in either approximation
in the buffer zone because of the parameter choice in Eqs. (3.43) and (3.45).

The 3-metric g
(global)

ij
and the extrinsic curvature given in this section can now be

used as initial data for black hole binaries. Recall, however, that these data are solutions
to the Einstein equations only approximately and, thus, they only approximately satisfy
the constraints. An analytic estimate of the constraint violation and physical accuracy of
this data is given in Table II. Note that in the near zone, both the errors in the physics
and the constraint violations are given by the neglected terms in the post-Newtonian

approximation, which scale as O(m/rA)
2
. On the other hand, in the inner zone, the

leading error in the physics is due to the terms neglected in the perturbation, which

scales as O[(m/b)(r/b)
3
]. The inner zone constraint violations, however, are smaller,

because the perturbed Schwarzschild metric used here, satisfies the Einstein Equations

up to order O[(m/b)
5/2

(r/b)
2
].
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Fig. 3.11. In this figure we plot a system of unequal masses (m2/m1 = 0.25) and a
larger separation (b = 20m). We use the same parameters in the transition function as
in the equal mass case.

In order to obtain initial data that satisfy the constraints exactly, it will be nec-
essary to project the data given in this paper to the constraint hypersurface. However,
since these data are already significantly close to this hypersurface, sensible projection
methods should not alter much the astrophysical content of the initial data. Further-
more, as stressed earlier, if this constraint violation is smaller than discretization error,
these data could be evolved without any projection.

There are a couple of caveats that need to be discussed in more detail. First, as
in paper 1, asymptotic matching will break down when the separation of the bodies is
small enough that the near zone disappears between the two black holes. An approximate
criterion for when this happens, corresponds to the separation where the middles of the
two buffer zone shells touch for the first time. If we define the middle of each buffer
zone as in Eq. (3.39), this happens when the two spheres of radius r

M

1
and r

M

2
centered

on each of the black holes, touch for the first time (roughly b ≈ 8m for an equal mass
system). Furthermore, the tidal perturbation used in the inner zone metric is only valid
for small spacelike separation from the horizon. This criterion implies that the tidal
perturbation is good roughly for

mA

2

m

2b
≪ r̄A ≪ mA

m
b. (3.46)

Therefore, numerical simulations will need to excise the data somewhere inside the ap-
parent horizons of the black holes before evolving it, since the inner zone metric is not
valid all the way up to r̄A = 0. Notice, however, that these limitations are due to the
approximations and coordinates used and not due to asymptotic matching.
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Fig. 3.12. Contour plot of the xx-component of the global metric in the xy-plane
around black hole 1 for the equal mass system. Apart from the singularity at x = ±5m,
y = 0 the 3-metric is everywhere smooth. The different line styles correspond to different
isolines of constant metric value.
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Fig. 3.13. Contour plot of the xy component of the global extrinsic curvature in the
xy-plane around hole 1 for the equal mass system. The different line styles correspond
to different isolines of constant extrinsic curvature.
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Zone Constraint Viol. Physical Error

Inner zone BH1 (C1) O[(m/b)
5/2

(r̄1/b)
2
] O[(m/b)(r̄1/b)

3
]

Inner zone BH2 (C2) O[(m/b)
5/2

(r̄2/b)
2
] O[(m/b)(r̄2/b)

3
]

Near zone (C3) O(m/rA)
2

O(m/rA)
2

Table II: This table shows an order of magnitude estimate of the constraint violation of
this data, together with the error in the physics.

3.7 Constraint Violations

The initial data constructed here are based on approximate solutions and, thus,
they do not solve the Einstein equations exactly. We have estimated that the largest error

in the constraints of the full theory occurs in the buffer zone and is at most O(mA/b)
2
.

This error can be sufficiently small compared to other sources of numerical error such
that solving the constraints more accurately may not be required. On the other hand,
the initial data could be used as input in one of the many conformal decompositions [18]
to compute a numerical solution to the full constraints. In this section, we study the
constraint violations of the data presented in this paper and we compare them to what
was obtained in paper 1.

In Fig. 3.14 we show the Hamiltonian constraint violation along the positive x-
axis for both data sets. The solid line is the constraint violation produced by the data
presented in this paper, while the dot-dashed line is that produced by the data of paper
1. Observe that far away from both holes, both data sets (paper 1 and this paper’s)
have a constraint violation that approaches zero. This feature arises because both global
metrics are given by a 1 PN solution in the near zone, which has a constraint violation
that decays when the expansion parameter mA/rA becomes smaller. Note, however, that
the constraint violation in ADMTT gauge is much smaller than in harmonic gauge. The
reason for this difference is that our resummed PN expressions satisfy the Hamiltonian

constraint up to errors of O(mA/rA)
3

in ADMTT gauge, while the harmonic gauge

expressions have errors of O(mA/rA)
2
.

Also in Fig. 3.14, observe that close to the holes, the violation is given by that
of the inner zone solution, which is small near the horizon, but increases as we move
away from the holes. The largest constraint violation occurs in the buffer zone, where
we transition from inner to near zone expressions. Note that this maximum in the
violation is mainly caused by the transition functions. As can be seen in Fig. 3.15, both
the inner and near zone solutions individually have smaller constraint violations in the
buffer zone than the global curve. This, however, is not an indication of a bad choice of
transition functions. Rather the inner and near zone solutions have smaller constraint
violations than expected, because we have kept some extra higher order terms. Recall

that matching in the buffer zone was only performed up to errors of O(mA/rA)
2
. Hence

the two solutions differ by this amount, and thus the error in the physics is of the
same order as well. Nevertheless, the inner zone solution has constraint violations of
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Fig. 3.14. This figure shows the violation of the Hamiltonian constraint for the equal
mass system along the positive x-axis for both the data presented in this paper (solid
black line) and that of paper 1 (dot-dashed black line).

O(mA/rA)
5/2

only, and the errors in the Hamiltonian constraint in the ADMTT near

zone solution are only of O(mA/rA)
3
. When these two solutions (which are equal to up

to order O(mA/rA)) are averaged with a transition function we obtain a new solution

which differs from both inner and near zone solution by O(mA/rA)
2
. Therefore, we

expect the error in the constraints of the averaged solution to be of O(mA/rA)
2

as well,
and thus larger than the error in the individual solutions.

From Fig. 3.14 we see that the Hamiltonian constraint for the data of this paper is
smaller than the data of paper 1. This decrease in the constraint violation is an indication
that the matching performed in this paper produces near and inner zone solutions that
are closer to each other in the buffer zone. Thus, the transition function has to do less
work to join the solutions together, therefore introducing less of a constraint violation.
We should point out that while the functional form of the transition function in paper 1
and in this paper is identical, the parameters used are different. The biggest difference
is that here we use a smaller transition window w. Thus stronger artificial gradients
and larger constraint violations might be expected in this work. This however, does
not happen because matching works so much better in ADMTT coordinates that the
inner and near zone solutions are substantially closer. Also note that the singularities
in the constraint violations of the data in ADMTT and harmonic gauge (see Figs. 3.14
and 3.17) occur at different coordinate locations. This is simply because the inner zone
metric, which is relevant in this region, is expressed in different coordinates.

One obtains qualitatively similar plots if the constraints are plotted along different
directions. Evidence for this behavior can be seen in Fig. 3.16, which shows a contour
plot of Hamiltonian constraint violation for the global metric in ADMTT coordinates
in the xy-plane. We see that there is ring of radius 3m of negative constraint violation
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Fig. 3.15. This figure shows the violation of the Hamiltonian constraint for the equal
mass system along the positive x-axis for the near zone (dashed line), the inner zone
(dotted line) and the global (solid line) data with transition functions.

around the black hole. Outside this ring, about 4.5m away from the hole, there are three
maxima. The largest of these occurs on the x-axis. Note that these minima and maxima
are all located in the buffer zone. In addition, there is a blowup inside the horizon at
rA = 0.

In Fig. 3.17, we plot the y-component of the momentum constraint along the
positive x-axis close to black hole 1 for both data sets. For reasons of symmetry all
other components vanish along this axis. Observe that the violation is everywhere small,
reaching a maximum in the buffer zone. As expected, in the near zone the violation
decays as we move away from the black holes and becomes identically post-Newtonian.
Note however, that the resummed PN data in ADMTT gauge satisfy the momentum

constraint exactly, while in harmonic gauge it has an error of O(mA/rA)
2
. On the other

hand, in the inner zone, the violation is close to zero outside the horizon (which is located
at rA ≈ mA/2) and it grows as rA becomes larger. As in the case of the Hamiltonian
constraint the largest violation occurs in the region where the transition function leads
to nontrivial averaging of the two approximations. The violation is once more smaller for
the data presented in this paper relative to that of paper 1, which is one more indication
that the matching is smoother here. Finally, observe that close to the holes, and in
particular close to the horizons, the violation due to the inner zone data diverges. This
divergence can be traced back to the choice of slicing, which forces the lapse to be zero
at the horizon.

The vanishing of the lapse can be observed in Fig. 3.18, where we plot the inner
zone, near zone and global lapse along the positive x-axis. This figure shows how the
inner zone lapse goes through zero near the horizon. The vanishing of the lapse translates
into a divergence of the momentum constraint, which renders excision difficult and the
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Fig. 3.16. Hamiltonian constraint violation of the global metric in ADMTT coordinates
in the xy-plane for the equal mass system. The different line styles corresponds to isolines
of constant constraint violation.
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Fig. 3.17. This figure shows the y-component of the momentum constraint violation
along the positive x-axis for the data computed in this paper (solid black line) and in
paper 1 (dot-dashed black line), assuming the parameters of the equal mass system.
Note that all other components vanish along this axis.
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Fig. 3.18. This figure shows the near zone (dashed line), the inner zone (dotted line)
and the global lapse (solid line) along the positive x-axis in ADMTT coordinates for
the equal mass system. Observe that the global ADMTT lapse crosses zero near the
horizon. Also shown is the lapse (dash-dash-dotted line) in the new horizon-penetrating
coordinates of Sec. 3.8.

data difficult to implement numerically. However, this is a failure of the coordinate
system used in the inner zone and not of the method of asymptotic matching. In the
next section, we construct a new coordinate system in which the lapse remains non-zero
across the horizon, and approaches an isotropic Schwarzschild lapse in the buffer zone
to allow for matching.

In Figs. 3.14 and 3.17 we have compared the constraint violation of the data set
presented here to that presented in paper 1. Technically this comparison suffers from
the problem that the constraints were computed in different coordinate systems. Note
however, that both coordinate systems are identical to leading order. Yet instead of
comparing the violations point by point, we can study their global average. Figs. 3.14
and 3.17 favor the data of this paper because the humps are consistently smaller. As
explained earlier, this is an indication that after performing the matching, the inner and
near zone solutions are very close to each other, making the transition smoother.

3.8 Horizon penetrating coordinates

Recall that the global coordinate system constructed in Sec. 3.5 was based on
matching the tidally perturbed black hole metric of the inner zone in isotropic coordinates
to a post-Newtonian metric in ADMTT coordinates in the near zone. We have chosen to
match in these coordinates because they are already very similar to each other. Hence,
the coordinate transformation [Eq. (3.26)] that leads to matching is close to the identity,
and thus facilitates computations. However, the fact that the global coordinate system
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remains very close to isotropic coordinates is also a disadvantage, since the t = 0 slice
is not horizon penetrating in isotropic coordinates. The lapse goes through zero very
close to the horizon and in addition, the extrinsic curvature has a coordinate singularity
at the point where the lapse goes through zero. Initial data on such a slice may not be
suitable for numerical evolutions. In this section we present a remedy for this problem.
By constructing a further coordinate transformation, we obtain coordinates which are
close to horizon penetrating Kerr-Schild coordinates near each black hole.

The basic strategy we will use is the following. We first determine the perturbed
black hole metric valid in the inner zone in Kerr-Schild coordinates. We then trans-
form this metric into a coordinate system which remains Kerr-Schild near the black hole
horizons, but which is corotating isotropic in the buffer zone. In this manner, the trans-
formed inner zone metric components in the buffer zone will remain identical to those in
Sec. 3.5, so that we can use the same matching coordinate transformation [Eq. (3.26)]
as in Sec. 3.5.

The standard transformation between spherical Kerr-Schild (t̂
′
, r̂

′
1
) and spherical

isotropic coordinates (t̄, r̄1) centered at hole 1 and its inverse are given by [118]

t̂′ = t̄+ 2M1 ln

[
r̄1

2M1

ψ(r̄1)
2 − 1

]
, r̂

′
1

= r̄1ψ(r̄1)
2
,

t̄ = t̂
′ − 2M1 ln

[
r̂
′
1

2M1

− 1

]
, r̄1 =

r̂
′
1

ψ(r̂′
1
)2
,

θ̄ = θ̂
′
, φ̄ = φ̂

′
, (3.47)

where the radius is measured from the center of a black hole with mass M1 and where
the conformal factor and its inverse are given by

ψ(r̄1) = 1 +
M1

2r̄1
,

ψ(r̂
′
1
) =

r̂
′
1

M1

[
1 −

(
1 − 2M1

r̂′
1

)
1/2
]
. (3.48)

Note that the inverse transformation contains a square root in the conformal factor, which
becomes complex inside the horizon. For this reason, it is simpler to first transform the
inner zone metric to Kerr-Schild coordinates analytically. Then, we can construct a new
coordinate system that is the identity map near the horizon, but that brings back the
metric to isotropic coordinates outside the horizon in the buffer zone.

Let us first transform the inner zone metric of hole 1 to Kerr-Schild coordi-
nates. By applying Eqs. (3.47) to the inner zone metric in spherical isotropic coordinates
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[Eq. (3.22) of Ref. [28]] we obtain

g
(1)

0̂′0̂′
= −f +

m2

b3
r̂
′2
1
f

2
[
3 sin

2
θ̂
′ (

cos φ̂
′
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′
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)
2 − 1

]
,

g
(1)

1̂′1̂′
= (2 − f) +

m2

b3
r̂
′2
1


1 +

4M
2

1

r̂′2
1



[
3 sin

2
θ̂
′ (

cos φ̂
′
cos Ωt̄+ sin φ̂

′
sin Ωt̄

)
2 − 1

]
,

g
(1)
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′2
1

+
m2

b3
r̂
′2
1
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2
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2
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′
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)
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]
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(1)
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sin θ̂

′
,
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=
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2
θ̂
′ (
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]
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b3

√
m

b
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′3
1
f cos θ̂
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sin φ̂
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1

f
g
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0̂′2̂′
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(1)
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1

f
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(1)

0̂′3̂′
, (3.49)

where all coordinates are centered on BH 1 and where we used the abbreviation

f =

(
1 − 2M1

r̂′
1

)
. (3.50)

In Eq. (3.49), t̄ stands for the isotropic time coordinate, given in Eq. (3.47). Recall that
this metric was derived under the assumption that the second black hole responsible for
the tidal perturbation is moving slowly. In particular Alvi obtained the perturbation
from a stationary perturbation by replacing φ̄ by φ̄ − Ωt̄. This means the largest error

in this perturbation is of order O(m/b)
5/2
O(rA/b)

2
. In the following we will replace

Schwarzschild time t̄ by Kerr-Schild time t̂ to simplify our expressions. This replace-

ment will change the tidal perturbation only at order O(m/b)
5/2
O(rA/b)

2
and thus not

introduce any extra errors.
We now go one step further and transform Eq. (3.49) to Cartesian Kerr-Schild

coordinates via the standard map

t̂
′

= t̂, r̂
′
1

=
(
x̂

2
+ ŷ

2
+ ẑ

2
)

1/2
,

θ̂
′

= cos
−1

[
ẑ

(
x̂2 + ŷ2 + ẑ2

)1/2

]
,

φ̂
′

= tan
−1
(
ŷ

x̂

)
. (3.51)
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We then obtain
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2
)

cos Ωt̂+ ŷx̂ sin Ωt̂
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fẑ
(
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ẑ cos Ωt̂, (3.52)

where r̂1 = r̂
′
1
. This is the inner zone metric for hole 1 in Cartesian Kerr-Schild coordi-

nates, where the standard metric in Cartesian Kerr-Schild form is

g
(KS)

âb̂
= ηâb̂ +

2M1

r̂1
lâlb̂, (3.53)

with null vectors lâ = {1, xî
/r̂1} and where we have introduced the shorthand

d =
[
3
(
x̂ cos Ωt̂+ ŷ sin Ωt̂

)2 − r̂
2

1

]
. (3.54)



99

The lapse in this coordinate system is now a positive definite function.
The matching of Sec. 3.5, however, is performed in the buffer zone in Cartesian

corotating isotropic coordinates. We thus need a coordinate transformation that leaves
Eq. (3.52) unchanged near the horizon, but takes the metric to isotropic corotating
coordinates in the buffer zone. For black hole A, the transformation we use is given by

t̂ =
(
1 −QA

)
t̃+QA


t̃+ 2mA ln

∣∣∣∣∣∣

r̃Aψ
2

A

2mA

− 1

∣∣∣∣∣∣


 ,

x̂ =
(
1 −QA

)
x̃+QA

(
x̃ cos Ωt̃− ỹ sin Ωt̃

)
ψ

2

A
,

ŷ =
(
1 −QA

)
ỹ +QA

(
x̃ sin Ωt̃+ ỹ cos Ωt̃

)
ψ

2

A
,

ẑ =
(
1 −QA

)
z̃ +QA z̃ ψ

2

A
, (3.55)

where

ψA = 1 +
mA

2r̃A
, r̃A =

√
x̃2 + ỹ2 + z̃2 (3.56)

and the transition function
QA = f(r̃A) (3.57)

with

r0 = 2.2mA, w = 0.6r
M

A
− 2.2mA,

q = 1, s = 2.8, (3.58)

is designed such that QA is unity in the buffer zone and zero near black hole A (see
Fig. 3.8). This means that using Eq. (3.55) we can transform from Kerr-Schild co-
ordinates (labeled by a hat), to coordinates (labeled by a tilde) which are corotating
isotropic coordinates in the buffer zone (where QA = 1), but which are equal to Kerr-
Schild coordinates at the black hole horizons (where QA = 0). The function QA is chosen
carefully so that the transformed coordinate system is identically Kerr-Schild at the hori-
zon (r̃A = 2mA), while it is equal to isotropic coordinates in the buffer zone where we
perform the matching. We can adjust, as usual, how fast we transition by changing the
parameters of QA, but we are constrained to having the metric completely in isotropic
coordinates in the buffer zone, in order for the matching to be valid.

The inner zone metric then becomes

g
(1)

µ̃ν̃
= g

(1)

α̂β̂
J

α̂

µ̃
J

β̂

ν̃
, (3.59)

where, in analogy to Eq. (3.31), the Jacobian matrix is given by

J
α̂

µ̃
=
∂x

α̂

∂xµ̃
. (3.60)

This Jacobian can be computed by taking derivatives of Eq. (3.55).
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With this new coordinate transformation, the global metric contains several tran-
sition functions. A schematic drawing of these transitions is presented in Fig. 3.19. In
this drawing, the black dot represents BH 1 and the solid black line is the radial direc-
tion, where the horizon, for example, is located at r̃1 = 2m1. Fig. 3.19 also shows the
different coordinate systems used, where KS stands for Kerr-Schild, ISO for isotropic
coordinates and ADMTT for the PN near zone. The dotted line shows the region where
the transitions take place: T1 is the transition between KS to ISO and T2 is the transi-
tion produced by the matching coordinate transformation. Observe that T1 is chosen so
that the 4-metric is in KS coordinates everywhere near and inside the horizon, while it
is completely in ISO coordinates where T2 begins. This restriction makes the transition
window of T1 narrow. On the other hand, the transition window of T2 is restricted only
by the size of the buffer zone and, thus, is chosen to be wider.

Effect of the new coordinates

In this subsection, we describe the advantages of the new coordinate system. In
these coordinates, the new global 4-metric is much better behaved close to the horizons,
where it is of Kerr-Schild form. Thus, the lapse remains positive definite through the
horizon. The lapse for an equal mass system along the positive x-axis in the new coor-
dinates is shown in Fig. 3.18 (dash-dash-dotted line) together with the lapse in the old
ADMTT coordinates (solid line). The inner zone lapse in new coordinates is approxi-
mately equal to the Kerr-Schild lapse inside the horizon, while it smoothly approaches
the lapse of isotropic coordinates in the buffer zone and the ADMTT lapse in the near
zone.

Another quantity that changes in the new coordinates is the spatial metric.
Fig. 3.20 shows the xx-component of the new global metric along the x-axis for an
equal mass system. The large humps on either side of each black hole in Fig. 3.20 are
produced by derivatives of the coordinate transformation (3.55), which contains the tran-
sition function QA that changes rapidly from zero to unity in a small region of width

w = 0.6r
M

A
− 2.2mA. Had we chosen a wider transition window w to transition, this

derivative would become smaller and the hump would be smoothed out. However, we
need the metric to be completely in isotropic coordinates in the buffer zone where we per-
form the matching (approximately at r̄A = 6mA). Therefore, we are constrained to have
a narrow transition window w, which then produces large derivatives of the transition
functions and humps in the metric. Note, however, that these humps are not spurious
gravitational radiation. They simply arise because of performing a coordinate transfor-
mation. Therefore, due to the inherent diffeomorphism invariance of General Relativity,
the physical content of the data will not be altered by the coordinate transformation.

In addition, if we choose a larger black hole separation, r
M

A
increases and we obtain a

wider transition window to transition, and hence the humps become smaller.
Since the inner zone lapse in this new coordinates is now a positive definite func-

tion, we expect the extrinsic curvature and the momentum constraint violation to be
small and well-behaved across the horizon. In Fig. 3.21 we compare the y-component
of the momentum constraint violation for an equal mass binary in this new coordinate
system to that in the old ADMTT coordinates near BH 1. Observe that the constraint
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BH 1

KS ISO ADMTT
T1 T2

1r /m1 2 3 10 11 124 5 6 7 8 9

Fig. 3.19. Schematic drawing of the different metrics, coordinate systems and transition
windows. The solid line represents the distance r1 (in ADMTT coordinates) from BH 1.
The thick solid line labeled by ADMTT delineates the region where we use the PN
near zone solution in ADMTT coordinates. The other two thick solid lines labeled by
ISO and KS, show the region in which we use the inner zone solution. The labels here
stand for the isotropic (ISO) and Kerr-Schild (KS) coordinates we have used in the inner
zone before applying the matching coordinate transformation (3.26). The dotted line T1
corresponds to the region where the transition function Q1 (see Fig. 3.8) of Eqs. (3.57)
and (3.58) is between zero and one, so that the coordinate transformation of Eq. (3.55)
yields nontrivial results. I.e. in that region the inner zone metric is given in coordinates
that are a mixture of Kerr-Schild and isotropic coordinates, while to the left and right of
T1 it is given in Kerr-Schild and isotropic coordinates, respectively. Using the definitions
(3.57) and (3.58) for the transition function Q1, we find that the inner and outer radii

of T1 are 2.2mA and 0.6r
M

A
, where r

M

A
given in Eq. (3.39). The dotted line labeled T2

indicates the transition window of the transition function F1 (see Fig. 3.8) of Eq. (3.42)
with parameters given by Eqs. (3.43) and (3.39). In T2 we use a weighted average of
both the inner zone metric (transformed into ADMTT coordinates using Eq. (3.26)) and
the near zone ADMTT metric. From Eq. (3.43) we see that the inner and outer radii of

T2 are 0.4r
M

A
and 3.9r

M

A
.



102

-10 -8 -6 -4 -2 0 2 4 6 8 10
x/m

1

2

3

4

5

6

7

8

g xx

Fig. 3.20. This figure shows the xx-component of the global metric in new coordinates
for an equal-mass system along the x-axis.

violation is finite everywhere, except near the singularity. With this new coordinate
system, excision is now possible, since the curvature does not blow up until close to the
physical singularity. We have zoomed to a region 0.5m away from the singularity of
BH 1 to distinguish the behavior of the violation better. As we can observe from the
figure, the ADMTT constraint violation is identical to the violation in the new coordi-
nates away from the horizon. However, near the horizon there are spikes when we use
the old coordinates. These spikes are poorly resolved in this figure, but we have checked
that they are indeed divergences. Observe that these spikes are not present in the new
coordinates.

Since our method really yields a 4-metric we can also compute the Ricci tensor.
This tensor should be close to zero for an approximate vacuum metric. Figure 3.22 shows
the Ricci scalar along the x-axis at t = 0. One can see that it has the same qualitative
features as the Hamiltonian and momentum constraints. I.e. apart from the singularity
at the center of the black hole, the largest violations occur in the buffer zone. Notice
however, that unlike in the case of metric (see Fig. 3.20) the coordinate transformation
(3.55), with the transition function QA does not produce large humps in the Ricci scalar.
This confirms that the large humps in the metric are a pure coordinate effect, that has
no influence on coordinate invariant quantities such as the Ricci scalar.

3.9 Conclusions

We have constructed approximate initial data for non-spinning black hole binaries
by asymptotically matching the 4-metrics of two tidally perturbed Schwarzschild solu-
tions in isotropic coordinates to a post-Newtonian metric in ADMTT coordinates. The
two perturbed Schwarzschild metrics are valid only close to each black hole (in the inner
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Fig. 3.21. Plot of the y-component of the momentum constraint violation for an equal
mass binary near BH 1 in new coordinates (black solid line) and in ADMTT coordinates
(dot-dashed line). Observe that in new coordinates there is no divergence until the
singularity.
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Fig. 3.22. This figure shows the Ricci scalar at t = 0 along the x-axis for the inner
(dotted line), near (dashed line) and global (solid line) 4-metrics.
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zones) and contain tidal deformations which are correct up to O(rA/b)
2
. The ADMTT

post-Newtonian metric we use is formally correct only up to O(m/b)
3/2

and valid only in
the near zone, and not close to the black holes. However, by adding certain higher order
terms to the ADMTT metric we bring it into a form that is close to the Schwarzschild
metric plus some artificial perturbation. This means that instead of blowing up in an
uncontrolled way, the ADMTT metric approaches the Schwarzschild metric in isotropic
coordinates when we approach one of the black holes. Since the two tidally perturbed
Schwarzschild solutions, which are actually valid close to each black hole are also given
in isotropic coordinates, both metrics agree at leading order even before asymptotic
matching is performed.

The procedure we have used to achieve asymptotic matching closely follows the
calculation of paper 1, and is performed in the so called buffer zone where both the post-
Newtonian and the perturbed Schwarzschild approximations hold. The result is that
both metrics agree in the buffer zone, up to the errors in the approximations. However,
since both approximations are similar to Schwarzschild in isotropic coordinates, matching
yields much better results than in paper 1, where harmonic coordinates were used for the
post-Newtonian 4-metric. In addition, after matching in the buffer zone the two metrics
are also very similar near the black hole horizons, even though the post-Newtonian metric
is formally not valid there. The biggest deviation of the post-Newtonian 4-metric from
the correct perturbed Schwarzschild solution near the horizon occurs in the g0i or shift

components at O(m/b)
3/2

. At this same order similar deviations are also observable in
the extrinsic curvature of the t = 0 slice.

The resulting global piecewise 4-metric is made formally C
∞

by the use of smooth-
ing functions. These functions are chosen such that the smoothed global metric has errors
on the order of the error introduced by the more accurate of the two approximations
we match. This smoothing procedure works much better than in paper 1, because the
tidally perturbed Schwarzschild solutions and the post-Newtonian metric are much closer
to each other and diverge at similar locations. The smoothed global metric is obtained in
ADMTT coordinates, and thus very similar to isotropic coordinates near each black hole.
Hence our coordinates are not horizon penetrating and, for example, result in a lapse
that goes through zero close to the horizons. Since such coordinates may be problematic
for certain numerical simulations, we construct an additional coordinate map. With this
map one can transform the 4-metric from global ADMTT coordinates, obtained through
asymptotic matching, to new coordinates which are similar to Kerr-Schild coordinates
near each black hole, but which remain ADMTT further away from the black holes.
These new coordinates are horizon penetrating and lead to a lapse which is everywhere
positive on the t

′
= 0 slice. The same map can in principle also be applied to the data

computed in paper 1.
For both, global ADMTT and new coordinates we have constructed initial data

sets on the respective t
′
= 0 slices. These initial data are then used to compute Hamil-

tonian and momentum constraint violations. We find that the initial data found in this
paper is closer to the constraint hypersurface that the data presented in paper 1, making
it perhaps more amenable to numerical simulations.
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In conclusion, we have used the method of asymptotic matching to construct
improved approximate initial data for non-spinning black hole binaries. Future work
will concentrate on applying this method to spinning binary systems. This problem is
of fundamental importance to astrophysics and gravitational wave detection, since most
black holes are believed to be rotating. Using the results of [104] the matching of a tidally
perturbed Kerr black hole to a post-Newtonian metric should be possible. Other work
will concentrate on repeating this analysis to higher post-Newtonian order to explicitly
incorporate the effect of gravitational waves.
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Chapter 4

Frankenstein’s Glue:

Transition functions for approximate solutions

Approximations are commonly employed to find approximate solutions to
the Einstein equations. These solutions, however, are usually only valid in
some specific spacetime region. A global solution can be constructed by
gluing approximate solutions together, but this procedure is difficult be-
cause discontinuities can arise, leading to large violations of the Einstein
equations. In this paper, we provide an attempt to formalize this gluing
scheme by studying transition functions that join approximate analytic so-
lutions together. In particular, we propose certain sufficient conditions on
these functions and proof that these conditions guarantee that the joined
solution still satisfies the Einstein equations analytically to the same order
as the approximate ones. An example is also provided for a binary sys-
tem of non-spinning black holes, where the approximate solutions are taken
to be given by a post-Newtonian expansion and a perturbed Schwarzschild
solution. For this specific case, we show that if the transition functions
satisfy the proposed conditions, the joined solution does not contain any
violations to the Einstein equations larger than those already inherent in
the approximations. We further show that if these functions violate the pro-
posed conditions, then the matter content of the spacetime is modified by
the introduction of a matter-shell, whose stress-energy tensor depends on
derivatives of these functions.

4.1 Introduction

The detection and modeling of gravitational radiation is currently one of the pri-
mary driving forces in classical general relativity due to the advent of ground-based [119,

120, 121, 122] and space-born detectors
1

[123, 124]. This radiation is generated in highly
dynamical spacetimes, whose exact metric has not yet been found. Approximate solu-
tions to the Einstein equations, both analytical (such as post-Newtonian solutions [3])
and numerical, have served to provide insight on the dynamics of such spacetimes and
the character of the radiation produced. These approximations, however, have inherent
uncontrolled remainders, or errors, due to truncation of certain higher order terms in
the analytical case, or discretization error in the numerical case. An approximate global

1
This chapter is based on the following paper: N. Yunes, Class. Quant. Grav. 245, 4313-4336

(2007)
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solution, then, could be constructed by joining several approximate solutions together
in some overlap region [105, 93].

Before proceeding, we must distinguish between two different kinds of joined
solutions: mixed ones, where one joins an analytical solution to a numerical one; and
pure ones, where one joins two analytical solutions that have different but overlapping
regions of validity. A special kind of mixed joined solutions have been created in the
context of the effective-one-body formalism [125, 126], with the motivation of providing
accurate waveform templates to gravitational wave interferometers. Pure joined solutions
have been discussed in the context of asymptotic matching, where one of the motivations
is to use the joined solution as initial data for relativistic simulations [105, 93]. In this
paper, we concentrate on pure joined solutions, although the methods and conditions we
find can be straightforwardly extended to mixed joined solutions.

The construction of pure joined solutions is not always simple because approxi-
mation methods tend to break down in highly dynamical spacetimes. The main difficulty
lies in that approximate solutions usually depend on the existence of a background about
which to perturb the solution. However, in highly dynamical spacetimes, such a back-
ground cannot usually be constructed. Thus, in those scenarios, the region of validity of
the different approximations tends not to overlap. In slightly less dynamical cases, the
regions of validity can overlap, but the different approximate metrics usually describe
the spacetime in different coordinates and parameters. Patching [30] could be used to
relate the different approximate solutions, but this method usually leads to an overde-
termined system if we require the patched metric to be differentiable at the junction. A
better alternative is to relate the approximate solutions via asymptotic matching, which
guarantees that adjacent metrics and their derivatives be asymptotic to each other in
some overlap region.

Asymptotic matching was developed as a technique of multiple-scale analysis to
solve non-linear partial differential equations [30, 31]. In general relativity, this method
was first studied in [98, 97, 100, 99, 94] and it has recently had important applications
to post-Newtonian theory [3], black hole perturbation theory [127] and initial data con-
structions [105, 93]. Asymptotic matching requires that we compare the asymptotic
expansions of the approximate solutions inside the region of the manifold where the
regions of validity of the approximations overlap (the buffer zone.) This method then
provides a coordinate and parameter transformation that relates the approximate met-
rics, such that adjacent metrics and their derivatives become asymptotic to each other
inside the buffer zone. In essence, asymptotically matched approximations are guaran-
teed to represent the same metric components in the same coordinate system inside the
buffer zone.

After matching has been carried out, there is still freedom as to how to join the
matched approximate solutions together. The simplest way to do so is through a weighted
linear combination of approximate solutions with transition functions. This method was
first considered in depth in [105, 93], where a binary black hole system was studied to
construct initial data for numerical simulations (the so-called Frankenstein approach). In
that work, only broad comments were made as to the type of allowed transition functions,
requiring only that the functions be “differentiable enough,” and the the properties and
conditions these functions must satisfy were not studied. A priori, it might not be clear
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which functions are allowed such that the global metric still approximately solves the
Einstein equations. For instance, it might seem natural to use Heaviside functions to join
the metrics together at a hypersurface, as is done in the standard junction conditions of
general relativity [128, 129, 130, 131, 132, 133, 134, 118, 135]. These joining procedure
works well when dealing with exact solutions to the Einstein equations, in the sense that
the joined solution is itself also a solution. As we show in this paper, however, when
working with approximate solutions better transition functions need to be found.

The purpose of this paper is to study whether a global approximate solution to
the Einstein equations, be it pure or mixed, can be constructed directly from a weighted
linear superposition of approximate solutions with transition functions. We thus refine,
prove and verify many of the broad statements made in [105, 93] regarding transition
functions. This goal is achieved by constraining the family of allowed transition func-
tions for pure joined solutions via certain sufficient asymptotic differentiability condi-
tions. These conditions are independent of the perturbative order to which asymptotic
matching is carried out and the location in which the transition occurs, as long as it
is inside the buffer zone. We then derive and prove theorems that guarantee that pure
joined solutions constructed with this restricted family of transition functions satisfy the
Einstein equations to the same order as the approximations. Moreover, we also show that
if the transition functions do not satisfy the proposed conditions, their derivatives modify
the energy-matter content of the spacetime by introducing a non-negligible stress-energy
tensor. Finally, we extend these theorems to solutions projected onto spatial hypersur-
faces, so that they can be directly applied to initial data construction schemes. These
theorems then allow for the systematic construction of pure joined solutions and they
can be straightforwardly extended to mixed joined solutions.

An example of the proposed theorems and allowed transition functions is then
provided by studying a binary system of non-spinning black holes, where the approximate
solutions are taken to be given by a post-Newtonian expansion and a linearly perturbed
Schwarzschild solution. We shall not perform a systematic study of transition functions
here, but instead we pick functions that are variations of those chosen in [105, 93] in
order to illustrate how the gluing procedure works and how it breaks down. We explicitly
show that if the transition functions satisfy the proposed conditions, the 4-Ricci scalar
calculated with the pure joined solution vanishes to the same order as the uncontrolled
remainders in the approximations. In particular, we explicitly show that derivatives of
the pure joined approximate solution built with appropriate transition functions are equal
to derivatives of both original approximate solutions up to the uncontrolled remainders
in the approximations. We also numerically show that if the transition functions violate
the proposed conditions, their derivatives modify the matter content of the spacetime by
introducing a shell of matter. In this manner, we explicitly verify, both analytically and
numerically, that a pure joined solution does represent the same spacetime as that of the
original approximate solutions in their respective regions of validity up to the accuracy
of the approximations used.

This paper is divided as follows: in Sec. 4.2 we review the standard junction
conditions at a hypersurface, so that we can extend them to the case where the solutions
used are approximate instead of exact, provided the existence of a buffer zone; in Sec. 4.3
we study how to join approximate solutions with transition function and derive conditions
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such that a pure joined solution satisfies the Einstein equations to the same order as
the approximations used; in this section, we also study projections of these pure joined
solutions to a Cauchy hypersurface in order to develop conditions for transition functions
that can be used in initial data construction schemes; in Sec. 4.4 we study an example
of the theorems formulated by considering a binary system of non-spinning black hole,
constructing approximate global metrics with different transition function, and explicitly
calculating the 4-Ricci scalar; in Sec. 4.5 we conclude and point to future research.

The notation of this paper is as follows: Greek indices range over all spacetime
indices, while Latin indices range only over spatial indices; the symbol O(A) stands for
terms of order A at most, while the symbol O(A,B) stands for remainders of order A

or B at most, where A and B are dimensionless; a tilde superscript Ã stands for the
asymptotic expansion of A as defined in [30, 31]; the relation A = B+O(C) means that
A is asymptotic to B with uncontrolled remainders of order C (the so-called Landau
or asymptotic notation); we use units where c = G = 1. Symbolic calculations are
performed with either Mathematica or Maple.

4.2 Junction Conditions at a Hypersurface

In this section, we review a variation of the standard junction conditions of general
relativity. These conditions have been discussed extensively in the literature (see [128,
129, 130, 131, 132, 133, 134, 118, 135] and references therein.) Here, we review only those
concepts important to the understanding of this paper, following in particular [135].
Certain departures from the notation of [135] are so that the generalization to the case
of approximate solutions in the next section becomes easier.

Let us first set up the problem. Consider a spatial (or timelike) hypersurface J
that divides spacetime into two regions: C1 and C2. Each of these regions possesses an

associated metric and coordinates, {g(1)

µν
, x

α

(1)
} and {g(2)

µν
, x

α

(2)
}, such that these metrics

solve the Einstein equations exactly in their respective regions. In the literature, this
exact solutions and coordinate systems are also sometimes referred to as {g±

µµ
, x

α

±
}. Let

us further assume that an overlapping coordinate system x
α

exists in a neighbourhood
of J . The problem is to formulate junction conditions on J that guarantee that the
joined 4-metric satisfies the Einstein equations.

Let us make these statements more precise by considering a congruence of geodesics
piercing J defined with respect to first metric in C1 and the second metric in C2 (see
[135] for a detailed definition of such congruence.) Let then ℓ denote the proper time (or
proper distance) along the geodesics, such that ℓ = 0 corresponds to when the geodesics
reach J . The joined solution then takes the following form [135]:

gµν = Θ(ℓ)g
(1)

µν
+ Θ(−ℓ)g(2)

µν
, (4.1)

where Θ(·) is the Heaviside function. Equation (4.1) implicitly uses coordinates x
α

that
overlap both the coordinates local to C1 and C2 in a neighbourhood of J .

We now proceed to formulate the junction conditions. The first junction condition
arises by requiring that the 4-metric be continuous across J , in a coordinate system x

α
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that overlaps both x
α

1
and x

α

2
in an open region that contains this hypersurface. This

condition can be expressed in a coordinate-independent way by projecting it to J . Then,
in terms of 3-tensors this condition becomes

h
(1)

ab

∣∣∣
J

= h
(2)

ab

∣∣∣
J
, (4.2)

where here hab is the 3-metric associated with the junction hypersurface, i.e.

hµν = gµν + e±nµnν, (4.3)

with na normal to J and e± = ±1 depending on whether J is spatial (−) or timelike

(+.) Equation 4.2 guarantees that the hypersurface J has a well-defined geometry.
These equations also imply that the metric is differentiable across J , except for its
normal derivative to J that in general is discontinuous.

The second junction condition arises by requiring that this normal derivative does
not lead to violations of the Einstein equations across J . In terms of 3-tensors on J ,
this condition becomes

K
(1)

ab

∣∣∣
J

= K
(2)

ab

∣∣∣
J
. (4.4)

One can show that the failure of these equations to be satisfied changes the distribution
of energy-momentum tensor of the spacetime and gives raise to a shell of matter with
stress-energy tensor [135]

Sab = − ǫ

8π

[
K

(1)

ab

∣∣∣
J
− K

(2)

ab

∣∣∣
J
− hab

(
K

(1)
∣∣∣
J
− K

(2)
∣∣∣
J

)]
. (4.5)

In the next section, we shall be mostly interested in vacuum spacetimes, for which such
a stress-energy tensor should vanish.

The satisfaction of the Einstein equations out of J by Eq. 4.1 and the absence
of a stress-energy tensor as in Eq. 4.5 then guarantees that the junction conditions
[Eq. 4.2 and Eq. 4.4] are also satisfied. Exact solutions, however, are rarely available for
astrophysically realistic scenarios. In that case, one must rely on approximate solutions,
for which similar conditions to those discussed here can be found, as we shall study in
the next section.

4.3 Pure joined solutions

In this section we build a pure joined solution by extending the standard junction

conditions to the case where the metrics g
(1,2)

µν
are only approximate solutions to the

Einstein equations. For simplicity, we assume a vacuum spacetime and that there exists

analytic approximate expressions for g
(1,2)

µν
, such that pure joined solutions are sought.

The conclusions of this section, however, can straightforwardly be extended to other
cases, where numerical solutions are available instead of analytical ones, provided infor-
mation about first and second derivatives of the numerical solutions is also available (note
that for numerical solutions the continuum derivative operator must be replaced by its
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finite counterpart.) As shown in [105, 93], the first step in joining approximate solutions
is to apply asymptotic matching inside some overlap region. Once this has been done,
one can search for conditions such that the pure joined metric tensor satisfies the Ein-

stein equations to the same order as g
(1,2)

µν
. We here first present the basics of asymptotic

matching as applicable to this problem [3, 105]. We then search for asymptotic junction
conditions (or buffer zone conditions), which are asymptotic in the sense of [30, 31] and,
thus, are to be understood only approximately to within some uncontrolled remainder.

4.3.1 Asymptotically matched metrics

Consider then a manifold M that can be divided into two submanifolds with
boundary C1 and C2, each equipped with a approximate metrics g

(1)

µν
and g

(2)

µ̄ν̄
and a

coordinate system x
α

and x
ᾱ

respectively. These metrics are approximate in the sense

that they solve the Einstein equations to O(ǫ
ℓn

n
) for some l ∈ N in their respective

submanifolds, e.g. in vacuum

Gµν [g
(n)

µν
] = O(ǫ

ℓn+1

n
), (4.6)

where n = {1, 2}, (ℓ1, ℓ2) are real numbers greater than zero, and ǫn ≪ 1 is some di-
mensionless combination of parameters and coordinates relative to the n-th submanifold.

The symbol O(ǫ
ℓn+1

n
) refers to terms of relative order ǫ

ℓn+1

n
with respect to the leading

order term in the approximate solution g
(n)

µν
. In principle, there could be logarithms of

ǫn present in the remainders, such as in high-order post-Newtonian expansions, but we
neglect such terms here because they shall not affect the analysis of this paper. Notice
that we use here bars to denote the different coordinate systems (as opposed to numbers,
as in the previous section) because we must be more careful about the coordinates used
in these approximate metric components. For concreteness, let the region of validity of

g
(1)

µν
(x

α
) be defined by x

α ≫ x
α

in
and that of g

(2)

µν
(x

ᾱ
) by x

ᾱ ≪ x
ᾱ

out
. These inequalities

define a spacetime region of validity, since the approximate metric might not be valid
for all times. For example, such is the case for the post-Newtonian metric of two point
particles in quasi-circular orbit, which is valid only for times t≪ tc, where tc is the time
of coalescence.

Let us further assume that these submanifolds overlap in some 4-volume, defined
by the intersection B = C1∩C2, and sometimes referred to as the overlap region or buffer
zone. The boundary of the buffer zone, ∂B, cannot be determined exactly, because it is
inherently tied to the regions of validity of the approximate solutions, which themselves
are only defined approximately. With this in mind, let us further assume that the charts
{xα} and {xᾱ} are defined in the neighbourhood of any field point in the buffer zone and

that they satisfy x
ᾱ

= x
α

+O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
). The buffer zone can then be asymptotically

defined by the following condition: (x
α

in
x

in

α
)
1/2 ≪ (x

α
xα)

1/2 ≪ (x
α

out
x

out

α
)
1/2

, where

indeces are raised or lowered with the local metric to C1,2. Wherever possible, we use

the Landau notation, which specifically specifies the behavior of the remainder. The
definition of the boundary of the buffer zone should be understood only in an asymptotic
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sense, as defined in [30, 31]. This boundary is made up of two disconnected pieces,

∂B− and ∂B+, defined via x
α

= x
α

in
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
) and x

α
= x

α

out
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
)

respectively. The definition of the buffer zone can be thought of in terms of a simplistic
spherically symmetric static example, where x

α → r, ∂B is a spherical shell and ∂B±
are 2-spheres. However, in practical examples, such as binary black hole spacetimes, the
boundary of the buffer zone is not simply a spherical shell, but instead it acquires some
deformation in accordance with the deformation of the spacetime that is being modeled.

Before proceeding with the description of asymptotic matching, let us make some
comments on the approach adopted in this paper. In the previous paragraphs and in what
shall follow, we have not adopted a rigorous geometrical approach in the description of
asymptotic matching, the definition of the buffer zone and the submanifolds. A rigorous
geometrical approach, for example, would impose other constraints on B, such that it
is properly embedded in C1 and C2. Furthermore, such an approach would describe the
conditions under which asymptotic matching can be performed, since in general this
method is valid only locally. Instead of such an approach, in this paper we adopt an
analytical one, where we only provide a minimal amount of details in order to make the
presentation simpler. For example, we shall restrict our attention to coordinate grids
that coincide when both ǫ1 → 0 and ǫ2 → 0 and, henceforth, we shall call C1,2 regions

instead of submanifolds. Such an approach is adopted because the aim of this paper
is not to provide a detailed geometrical account of asymptotic matching, but instead
to study transition functions and approximate joined solutions (see [136] and references
therein for a more detailed and rigorous geometric account of asymptotic matching.)

The approximate metrics live in different regions and depend on different coordi-
nates (x

α
,x

ᾱ
) and local parameters (θ

α
,θ

ᾱ
.) Examples of these parameters are the mass

of the system and its velocity. However, since both g
(n)

µν
are valid in B, both coordinate

systems must be valid in the buffer zone (i.e., the charts of Cn overlap in B.) Using
the uniqueness theorems of asymptotic expansions [30, 31], one can find a coordinate
and parameter transformation to relate adjacent regions inside B. In order to achieve
this, one must first compute the asymptotic expansions of the approximate line elements,

d̃s
2

(n)
, near the boundaries of the buffer zone, ∂B, and then compare them inside B but

yet away from ∂B, i.e.

d̃s
2

(1)
− d̃s

2

(2)
= O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
), in B \ ∂B, (4.7)

where the \ symbol is the standard exclusion symbol of set theory and where O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
)

stands for uncontrolled remainders of order ǫ
ℓ1+1

1
or ǫ

ℓ2+1

2
as defined at the end of Sec. 1.

Using Eq. 4.7, a coordinate transformation ψ : x
ᾱ → x

α
and a parameter transforma-

tion φ : θ
ᾱ → θ

α
can be found inside B. We have written (4.7) in terms of the line

element, but we could have easily written it in terms of the metric components. In fact,
depending on the calculation, it might be necessary to asymptotically match different
components of the metric to different order. For example, for the construction of initial
data, the g00 and gij components of the metric need to be matched to lower order than

the g0i components [105, 93]. In what follows, we will assume that all metric components
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have been asymptotically matched to the same order. When this is not the case, the
conditions that we shall propose on transition functions can be adapted by noting that
one must use the highest order to which metric components have been asymptotically
matched.

These transformations guarantee that all components of adjacent 4-metrics are
asymptotic to each other inside the buffer zone [30, 31]. This fact implies that the
derivatives of adjacent metrics are also asymptotic to each other

∂
m

∂xα1 . . . ∂xαm
g
(1)

µν
− ∂

m

∂xα1 . . . ∂xαm
g
(2)

µν
= O(ǫ

ℓ1+1−m

1
, ǫ

ℓ2+1−m

2
), (4.8)

for all m < l. However, the relative order to which the derivatives of adjacent metrics
are asymptotic to each other is in general not the same as the relative order to which the
adjacent metrics themselves are asymptotic to each other. This reduction in matching
accuracy is due to the implicit assumption that asymptotic matching is carried out to
some finite order. In (4.8), we have assumed that this decrease in accuracy occurs in
single powers of ǫ1,2, but if this is not the case the results of this paper can be rescaled

appropriately.
Let us provide a general example of such matching accuracy reduction, without

specifying a particular spacetime (for a more detailed example see [105, 93].) Consider a

post-Newtonian expression that is known to O(1/c
4
) and that is asymptotically matched

to a perturbed black hole solution in some buffer zone to O(1/c
4
, ǫ

2
), where c is here the

speed of light and ǫ is the black hole perturbation theory expansion parameter. Let us
now take the time derivative of the post-Newtonian expression, which results in a term

of O(1/c
5
). In post-Newtonian theory, one would never truncate the differentiated term

at O(1/c
4
). However, in the theory of asymptotic matching to a finite order, the time

derivative of the post-Newtonian quantity remains matched only to O(1/c
4
, ǫ

2
), and thus

it will disagree with the perturbed black hole quantity at O(1/c
5
). It is in this sense

that differentiation usually decreases the relative order to which two expression have
been asymptotically matched (we should note that when asymptotic matching is carried
out to all orders, then this reduction in matching accuracy disappears [136].)

Let us provide a more explicit example that, although similar in spirit to the one
described above, does not require general relativity. Consider two functions

f(t) =
[
f

2

0
+ 2f

2

1
ǫ1x(ω t)

]
1/2

, g(t) =
9

9 + ǫ2y(Ω t)
, (4.9)

where f0,1 are constants and x(ωt) and y(Ωt) are periodic funtions of time with period

1/ω and 1/Ω respectively. Let us pretend that f(t) and g(t) are approximate solutions
to the same differential equation in the limits ǫ1 ≪ 1 and ǫ2 ≪ 1 respectively. If we
asymptotically match these functions in a buffer zone where both ǫ1 ≪ 1 and ǫ2 ≪ 1

up to uncontrolled remainders of O(ǫ
2

1
, ǫ

2

2
), we discover that at t = 0 the constants are

f0 = 1 and f1 = y(0)/[9x(0)]. If we now study their time derivatives, we find that at
t = 0

∂f

∂t
= ǫ1

y(0)

9x(0)
ω

(
∂x

∂t

)

t=0

,
∂g

∂t
=
ǫ2
9

Ω

(
∂y

∂t

)

t=0

, (4.10)
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with uncontrolled remainders of O(ǫ
2

1
, ǫ

2

2
). Note that the derivatives are not equal to

each other to this order because the velocities ω and Ω have not yet been determined
via asymptotic matching. The reduction in matching accuracy is here explicit since,
while f(t) and g(t) have been asymptotically matched up to uncontrolled remainders of

O(ǫ
2

1
, ǫ

2

2
), their time derivatives match only up to uncontrolled remainders of O(ǫ1, ǫ2).

Henceforth, we assume that asymptotic matching has been carried out and that
one of the metrics has been transformed according to {ψ, φ} such that Eq. 4.7 holds.
We refer the reader to [30, 31] for more details on the theory of asymptotic analysis
and [3, 105, 98, 97, 100, 99, 94] for a more detailed discussion on asymptotic expansions
in general relativity.

4.3.2 Asymptotic Junction Conditions

Let us now return to the buffer zone and note that it can be foliated by a family
of junction hypersurfaces Ji, where i labels the member of the family. For simplicity,
we choose these hypersurfaces to be timelike, since in the next section we project the
4-metric to a Cauchy (spatial) hypersurface Σ and it is convenient then that Ji be
orthogonal to Σ. Asymptotic matching has provided a coordinate transformation to
relate the charts inside B, so, in particular, these matched coordinates are valid in an
open region containing every Ji as long as this is not close to ∂B. We look for asymptotic
junction conditions in this subregion of B (i.e. away from ∂B), in terms of differentiability

conditions of g
(n)

µν
.

Furthermore, let us also consider a family of geodesic congruences γi that pierce
Ji. The ith member of the family is parameterized by proper distance ℓi to the ith
hypersurface Ji, such that ℓi = 0 occurs when that member reaches that hypersurface.
Such a family of geodesic congruences is defined with respect to the approximate metrics

g
(n)

µν
since these metrics are equal to each other up to uncontrolled remainders in the

asymptotic matching scheme. Even though these geodesics are not strictly necessary
for the construction of asymptotic junction conditions, we find them useful to define
a measure of distance to Ji, which shall later become important in the definition of
transition functions.

We can now begin to look for asymptotic junction conditions by considering the
following 4-metric tensor:

gµν = F (ℓi) g
(1)

µν
+
[
1 − F (ℓi)

]
g
(2)

µν
, (4.11)

where F (·) is a (proper) transition function that smoothly ranges from zero to unity
inside B and which will be defined more rigorously later. Equation 4.11 is motivated by
the fact that any tensor E

a1a2...ai

b1b2...bj
can always be split into

E
a1a2...ai

b1b2...bj
= G

a1a2...ai

b1b2...bj
F (ℓi) +

[
1 − F (ℓi)

]
H

a1a2...ai

b1b2...bj
, (4.12)
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provided that

E
a1a2...ai

b1b2...bj
= G

a1a2...ai

b1b2...bj
= H

a1a2...ai

b1b2...bj
(4.13)

inside the transition region and that the proper transition function is sufficiently regular.
The regularity requirement is to guarantee that both terms of Eq. 4.12 are differentiable.

In Eq. 4.11 this split is valid because g
(1)

µν
is asymptotic to g

(2)

µν
in B up to uncontrolled

remainders once the maps {ψ, φ} have been applied. As we will see below, however, care
must be taken when constructing such proper transition functions F (·) to avoid ruining
the differentiability properties of the joined metric.

Let us now define proper transition functions in order to clarify how to merge the
metrics via Eq. 4.11. A proper transition function is a smooth real map F : ℜ → [0, 1]
that ranges from zero to unity inside some transition window w, while it acquires the
value of 1/2 as ℓi → 0, and that satisfies the following conditions:

F (ℓi) → 1 as ℓi → ℓ+,

F (ℓi) → 0 as ℓi → ℓ−, (4.14)

where here ℓ± is the proper distance to ∂B±. Note that the point ℓi = 0 is where

the global approximate metric of Eq. 4.11 contains equal contributions from g
(1)

µν
and

g
(2)

µν
. The transition window will be studied later in Sec. 4, but we can think of it

qualitatively as a parameter of a proper transition function that determines the region
where these functions are significantly different from unity or zero. The requirement
that a proper transition function vanishes or tends to unity at ∂B± is necessary to avoid

contamination of g
(1)

µν
in C2 and vice versa, since in general g

(n)

µν
has large uncontrolled

remainders and could diverge outside its region of validity. In fact, the speed at which
a proper transition function must tend to unity or zero will depend on the speed of
the growth of the uncontrolled remainders of the approximations outside their region of
validity, as we shall study later. This definition does not constrain how the transition
function behaves inside the transition region. Also note that this family of functions
tends to the Heaviside function of the previous section as w → 0 and that it does not
need to be analytic. We shall not constrain this family further for now, but instead we
search for conditions on this family such that Eq. 4.11 satisfies the Einstein equations to

the same order as g
(n)

µν
.

With these proper transition functions, we immediately see that the joined metric
itself also satisfies the following set of asymptotic conditions:

gµν = g
(1)

µν
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
), in C1 \ B,

gµν = g
(2)

µν
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
), in C2 \ B, (4.15)

while in the buffer zone the metric is some weighted linear superposition of both approx-
imate solutions. Thanks to asymptotic matching, the approximate metrics are identical
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inside the buffer zone up to uncontrolled remainders [see Eq. 4.8] and, thus, this linear
superposition is valid there, in spite of the non-linearity of the Einstein field equations.
Also note that we are free to choose any junction hypersurface Ji to join the metrics as
long as it is inside B but away from ∂B. However, there is usually a typical choice of
Ji, given by the surface where the error bars of the approximate metrics become com-
parable. Such a choice is not unique, but has previously proved to be close to optimal
in certain scenarios [105, 93]. Asymptotic matching then seems to be a good technique
for the construction of a pure joined 4-metric as given in Eq. 4.11, as long as we find
transition functions that are sufficiently well-behaved so that their derivatives do not
introduce errors larger than those contained in the approximations.

We now proceed to determine the asymptotic junction conditions by analogy with
the standard junction conditions discussed in the previous section. The first junction
condition of the previous section is automatically satisfied asymptotically in B via Eq. 4.7

with uncontrolled remainders of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
). However, the second junction condition

is not necessarily satisfied because Eq. 4.7 does not guarantee differentiability across Ji
to the same order as continuity. Differentiating Eq. 4.11 we obtain

gµν,α = F (ℓi) g
(1)

µν,α
+
[
1 − F (ℓi)

]
g
(2)

µν,α
+ F,α

{
gµν

}
, (4.16)

where we have defined the operation {E} ≡ E
(1) − E

(2)
for any function E. In order

for Eq. 4.11 to be a solution to the Einstein equations, we should require that the third
term be as small as the uncontrolled remainders of the first two terms. By Eq. 4.8, we

know that the last piece of the third term is of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
). On the other hand, the

first two terms are bounded below by their smallest size, which is of O(ǫ
ℓ1
1
, ǫ

ℓ2
2

). We,

thus, arrive at the condition

F,α = O(ǫ
0

1
, ǫ

0

2
), in B. (4.17)

One can show that this condition is sufficient, since it excludes cases where F,α =

O(ln(ǫ1, ǫ2)). With this condition, Eq. 4.16 becomes

gµν,α = F (ℓi) g
(1)

µν,α
+
[
1 − F (ℓi)

]
g
(2)

µν,α
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
). (4.18)

In vacuum, another condition must be imposed on the 4-metric in order for the
Einstein equations to be asymptotically satisfied inside B. This condition can be enforced

by requiring that the 4-metric tensor be asymptotically C
2

in B. Differentiating Eq. 4.16
we obtain

gµν,αβ = F (ℓi) g
(1)

µν,αβ
+
[
1 − F (ℓi)

]
g
(2)

µν,αβ
+ 2F,(α

{
gµν,|β)

}
+ F,αβ

{
gµν

}
.(4.19)

Here the parenthesis on the indices represent the standard symmetry operation g(a|b,|c) =

1/2
(
gab,c + gcb,a

)
. In order for the metric to be asymptotically C

2
in B, we must require

that the last two terms be much smaller than the first two. This requirement can be
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enforced by requiring that

F,α = O(ǫ1, ǫ2), in B,
F,αβ = O(ǫ

0

1
, ǫ

0

2
), in B. (4.20)

The first condition in Eq. 4.20 is a refinement of Eq. 4.17, while the second condition is
new. These equations are also compatible with F,α ≪ F,αβ, which is a consequence of

the fact that
{
gµν,α

}
= O(ǫ

ℓ1
1
, ǫ

ℓ2
2

). As one can show, the decrease in matching accuracy

of the derivatives of matched expressions has lead to different conditions for the first and
second derivatives of the transition functions. In this way, the last two terms of Eq. 4.19

become of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
) or smaller, because by Eq. 4.8,

{
gµν

}
= O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
) and

{
gµν,α

}
= O(ǫ

ℓ1
1
, ǫ

ℓ2
2

). With these conditions, Eq. 4.19 becomes

gµν,αβ = F (ℓi) g
(1)

µν,αβ
+
[
1 − F (ℓi)

]
g
(2)

µν,αβ
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
). (4.21)

Transition functions that satisfy Eq. 4.20 are enough to guarantee a C
2

global
metric in B, irrespective of the matching order or the junction hypersurface chosen.

Requiring the joined solution to be C
2

in B guarantees that the Einstein tensor is also
continuous across any Ji. Since we are dealing with a vacuum spacetime, the junction
hypersurfaces do not represent any physical boundary, such as a shell of matter, and can
thus be chosen arbitrarily as long as they are inside B and away from ∂B, so that the
approximations are still valid.

We have then derived conditions on the 4-metric and, thus, on the transition
functions, that guarantee that the Einstein tensor is continuous in B. The standard
junction conditions in the presence of matter do not necessarily require the metric to be

C
1

across J , whereas here we must require it to be at least asymptotically C
2

in B, so
that no artificial features are introduced at the boundary. We can now formulate the
following theorem:

Theorem 4.1 (Buffer Zone Junction Condition). Consider a spacetime manifold

M that can be divided into two submanifolds with boundary C1 and C2, inside which g
(1,2)

µν

are approximate solutions to the vacuum Einstein equations up to uncontrolled remain-

ders of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
). Let the boundaries of the submanifolds be defined asymptotically

by the approximate boundary of the region of validity of g
(1,2)

µν
and let the intersection of

these submanifolds, B = C1 ∩C2, be called the buffer zone. Let us foliate the buffer zone
with a family of timelike hypersurfaces Ji and consider a family of geodesic congruences
γi, such that the ith member is parametrized by proper distance ℓi to the ith hypersurface
Ji. Consider the family of joined 4-metric tensor parameterized by ℓi, namely

gµν = F (ℓi) g
(1)

µν
+
[
1 − F (ℓi)

]
g
(2)

µν
, (4.22)
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where F (·) is a proper transition function as defined by Eq. 4.14. Then, equation (4.22) is
also an ℓi-independent approximate solution to the Einstein equations up to uncontrolled

remainders of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
) if and only if the following conditions hold:

(i) The metrics g
(1,2)

µν
have been asymptotically matched

in B up to uncontrolled remainders of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
),

(ii) F,α = O(ǫ1, ǫ2), in B,
(iii) F,αβ = O(ǫ

0

1
, ǫ

0

2
), in B.

The proof follows directly from the calculation of the Ricci tensor, which should vanish
in vacuum. Let us then use the joined metric to calculate the Christoffel connection.
Doing so we obtain

Γ
α

βγ
= Γ

α (1)

βγ
F (ℓi) + Γ

α (2)

βγ

[
1 − F (ℓi)

]
+

1

2
g

αδ
(
F,γ

{
gβδ

}
+ F,β

{
gγδ

}
− F,δ

{
gβγ

})
,

(4.23)

where the {·} operator was defined in Eq. 4.16. We have here used the fact that the

inverse metric can be written as g
αβ

= F g
αβ

(1)
+ (1 − F ) g

αβ

(2)
, neglecting terms that are

proportional to F (1 − F ) because they are of O(ǫ
2ℓ1
1
, ǫ

2ℓ2
2

). Outside the buffer zone the

terms in parenthesis clearly vanish, but inside this region they could be large. However,

note that by condition (i),
{
gµν

}
= O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
), while by condition (ii) the derivative

of the transition function satisfies F,α = O(ǫ1, ǫ2). Thus, the term in parenthesis satisfies

(
F,γ

{
gβδ

}
+ F,β

{
gγδ

}
− F,δ

{
gβγ

})
≪ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
). (4.24)

Due to the precision of the Christoffel symbols, namely that Γ
α (1)

βγ
= Γ

α (2)

βγ
in B up to

uncontrolled remainders of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
), combined with conditions (i) and (ii), we are

allowed to write the connection as

Γ
α

βγ
= Γ

α (1)

βγ
F (ℓi) + Γ

α (2)

βγ

[
1 − F (ℓi)

]
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ1+1

2
). (4.25)

However, in order to compute the 4-Riemann tensor, we need the derivative of
the connection. This quantity is given by

Γ
α

βγ,σ
= Γ

α (1)

βγ,σ
F (ℓi) + Γ

α (2)

βγ,σ

[
1 − F (ℓi)

]
+ F,σ

{
Γ

α

βγ

}
(4.26)

+
1

2
g

αδ
(
F,γσ

{
gβδ

}
+ F,σβ

{
gγδ

}
− F,δσ

{
gβγ

})

+
1

2
g

αδ
(
F,γ

{
gβδ,σ

}
+ F,β

{
gγδ,σ

}
− F,δ

{
gβγ,σ

})
,
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where other terms either vanish by Eq. 4.24 or are negligible. Equation 4.26 must be
obtained by differentiating Eq. 4.23, rather than Eq. 4.25, because otherwise we would
miss the second derivatives of the transition functions. The third and fourth terms of
Eq. 4.26 are already of O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
) by Eq. 4.8, condition (i), (ii) and (iii). The

last term is finally also of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
) because although

{
gµν,σ

}
= O(ǫ

ℓ1
1
, ǫ

ℓ2
2

), by

condition (ii) F,α = O(ǫ1, ǫ2). We are therefore left with

Γ
α

βγ,σ
= Γ

α (1)

βγ,σ
F (ℓi) + Γ

α (2)

βγ,σ

[
1 − F (ℓi)

]
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
), (4.27)

which again leads to the asymptotic condition Γ
α (1)

βγ,σ
− Γ

α (2)

βγ,σ
= O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
) in B.

We are now ready to compute the Ricci tensor. Once more, using Eq. 4.25 and
Eq. 4.27 we can write

Rαβ = R
(1)

αβ
F (ℓi) +R

(2)

αβ

[
1 − F (ℓi)

]
+ O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
), (4.28)

where the third term groups all the cross terms that are O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
) in B. Further-

more, we know that the approximate solutions g
(1,2)

µν
satisfy the Einstein equations to

O(ǫ
ℓn

n
), which then implies that

R
(n)

αβ
= O(ǫ

ℓn+1

n
). (4.29)

We thus arrive at the conclusion that

Rαβ = O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
), (4.30)

which then proves the theorem. q. e. d.
This theorem allows for the construction of pure joined solutions, with a restricted

class of transition functions. Although the theorem has been formulated for vacuum
spacetimes, it also holds for non-vacuum scenarios as discussed above. The proof for the
non-vacuum case can be established simply by following the above proof and realizing

that now R
(n)

αβ
− 8πT

(n)

αβ
= O(ǫ

ℓn+1

n
). Also note that the ideas of this section can be ex-

tended to mixed joined solutions, by replacing condition (i) by some other condition that
guarantees that the approximate solutions represent the same spacetime in B. Finally,
note that the conditions we impose on the transition functions are not very stringent,
thus allowing for a wide range of possible functions.

4.3.3 Projection to a Cauchy Hypersurface

Let us now specialize the pure joined solution of Eq. 4.11 to joined initial data on
a Cauchy hypersurface. Since this hypersurface is by definition spacelike, it is convenient
to have a foliation of the buffer zone that is timelike as given in the previous section.
The data constructed in this section consists of an induced 3-metric on the Cauchy
hypersurface and its extrinsic curvature.
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Consider then a Cauchy hypersurface Σ ∈ M, on which the 4-dimensional regions
(C1,C2,B) become 3-dimensional surfaces. We still have a foliation of the buffer zone
by an infinite number of timelike junction hypersurfaces Ji of Σ. These hypersurfaces
are now actually submanifolds with boundary of co-dimension 1 with respect to Σ but
co-dimension 2 with respect to M.

In either Cn we can now define the 3-metric (h
(n)

ab
) and the extrinsic curvature

(K
(n)

ab
) of Σ by projecting the asymptotically matched approximate metrics g

(n)

µν
to this

hypersurface [9]. In analogy with the previous section, let us then define these objects
via

hab = F (ℓi) h
(1)

ab
+
[
1 − F (ℓi)

]
h

(2)

ab
,

Kab = F (ℓi) K
(1)

ab
+
[
1 − F (ℓi)

]
K

(2)

ab
. (4.31)

In Eq. 4.31, F (·) is a proper transition function as defined by Eq. 4.14. Provided this
transition function satisfies conditions (ii) and (iii) of Theorem 1, then Eq. 4.31 satisfies
the constraint equations of general relativity.

There might be some concern that the extrinsic curvature of Eq. 4.31 does not
correspond to the same hypersurface Σ as that described by the 3-metric because deriva-
tives of the transition functions have been neglected. However, if the transition functions
satisfy the conditions of Theorem 1, then these derivatives are of the same order as the
uncontrolled remainders. In order to show this, we can compute the extrinsic curvature
from the spatial metric of Eq. 4.31 directly, i.e.

Kab = F (ℓi) K
(1)

ab
+
[
1 − F (ℓi)

]
K

(2)

ab
− 1

2

{
hab

}
L~nF (ℓi), (4.32)

where L~n is the Lie derivative along the normal vector to Σ. Clearly, since F (·) is a scalar
function, the Lie derivative reduces to the directional partial derivative of this function
along the normal vector, i.e. L~n = n

α
F,α. Here n

α
could be that associated with either

of the approximate solutions, since in the buffer zone n
α

(1)
−nα

(2)
= O(ǫ

ℓ1+1

1
, ǫ

ℓ2+1

2
). Since

the 3-metrics are already asymptotic to each other up to uncontrolled remainders of

O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
) by Eq. 4.8, we must only require that the Lie derivative be of O(ǫ1, ǫ2).

This condition is consistent with the conditions of the asymptotic junction theorem.
We see then that the global 3-metric and extrinsic curvature of Eq. 4.31 represent

the same data as that obtained from Eq. 4.11 directly up to the uncontrolled remainders
in the approximations. We can then formulate the following theorem, which can be
viewed as a corollary of Theorem 1:

Theorem 4.2. Consider a spacetime manifold M with approximate metrics g
(1)

µν
and g

(2)

µν

that satisfy the vacuum Einstein equations up to uncontrolled remainders of O(ǫ
ℓ1+1

1
) and

O(ǫ
ℓ2+1

2
) on submanifolds with boundary C1 and C2 respectively. Let these submanifolds

intersect on a 4-volume B = C1 ∩ C2 and foliate the 3-dimensional projection of B onto
a Cauchy hypersurface Σ with timelike junction hypersurfaces Ji. Consider the 3-metric
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and extrinsic curvature of Σ constructed via

hab = F (ℓi) h
(1)

ab
+
[
1 − F (ℓi)

]
h

(2)

ab
,

Kab = F (ℓi) K
(1)

ab
+
[
1 − F (ℓi)

]
K

(2)

ab
, (4.33)

where F (·) is a proper transition function as defined via Eq. 4.14, ℓi is the proper distance

to Ji on Σ, and {h(1,2)

ab
,K

(1,2)

ab
} are the 3-metric and extrinsic curvature of Σ associated

with g
(1,2)

µν
. Then, the 3-metric and extrinsic curvature Eq. 4.33 satisfy the constraint

equations of General Relativity on Σ to the same order as g
(1,2)

µν
if and only if the following

conditions are satisfied:

(i) The metrics g
(1,2)

µν
have been asymptotically matched

in B up to uncontrolled remainders of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
),

(ii) F,α = O(ǫ1, ǫ2), in B,
(iii) F,αβ = O(ǫ

0

1
, ǫ

0

2
), in B. (4.34)

The proof of this theorem is established by projecting the 4-metric onto Σ. The 3-metric
is given by

hαβ = gαβ + nαnβ, (4.35)

where nα is the covariant normal vector to Σ. Using Eq. 4.11 and the fact that any
smooth tensor can be decomposed with transition functions via Eq. 4.12, we rewrite the
spatial part of the 3-metric as

hab = h
(1)

ab
F (ℓi) +

[
1 − F (ℓi)

]
h

(2)

ab
. (4.36)

The extrinsic curvature is given by

Kab = L~nhab. (4.37)

Inserting Eq. 4.36 into Eq. 4.37 we can rewrite the extrinsic curvature as given in Eq. 4.32.
However, since the transition function satisfies F,α = O(ǫ1, ǫ2), the last term of that

equation can be neglected and we obtain

Kab = K
(1)

ab
F (ℓi) +

[
1 − F (ℓi)

]
K

(2)

ab
. (4.38)

Now, recall that the 4-metric satisfies the vacuum Einstein equations up to un-

controlled remainders of O(ǫ
ℓ1+1

1
, ǫ

ℓ2+1

2
) by Theorem 1. Therefore, this metric also sat-

isfies the constraint equations, since these are related to the temporal components of
the Einstein tensor and the normal vector to Σ. Recall here that the normal can be
that associated with either approximate solution, since these vectors are asymptotic to
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each other inside the buffer zone. Since the 3-metric and extrinsic curvature come di-
rectly from a projection of this 4-metric, it follows that this data must also satisfy the
constraints to the same order. q. e. d.

4.4 A simple example

In this section, we investigate the impact of different transition functions on the
satisfaction of the Einstein equations. For this purpose, we pick a metric that has already
been matched in [93], henceforth paper I. This metric represents a binary system of
Schwarzschild black holes in a quasicircular orbit. We here show explicitly that as long
as the transition functions satisfy the conditions of Theorems 1 and 2, the joined metric
satisfies the vacuum Einstein equations and, thus, also the constraint equations.

As explained in paper I, the manifold can be divided into 3 regions (Table 3.1).
The symbols of Table 3.1 represent the following quantities: Cn labels the nth regions,
where n = {1, 2, 3}; A labels the black hole, with A = {1, 2}; rin and rout are the
approximate inner and outer boundary radius of each Cn regions as measured from the
Ath black hole; rA and r̄A are the radial distances as measured from the Ath black
hole in near and inner zone coordinates; ǫn is the perturbation parameter used in the

approximate solution g
(n)

µν
in Cn; mA is the mass of the Ath black hole; b is the orbital

separation on Σ; λ is the gravitational wavelength. The quantity b is usually defined as
the black hole separation in the near zone, which we shall see coincides with the black
hole separation in the inner zone up to uncontrolled remainders, namely b = b̄+O(ǫ1, ǫ2).
Technically, there is a fourth region beyond the near zone, but we neglect this here since
it does not affect the study of transition functions. For a detailed description of this
subdivision and a pictorial representation of these zones refer to [105, 93].

These regions overlap clearly in two buffer zones, which on the t = t̄ = 0 slice
can be defined by the following inequalities: O13 = C1 ∩ C3 (m1 ≪ r1 ≪ b) and
O23 = C2∩C3 (m2 ≪ r2 ≪ b), where rA is the radial distance from the nth black hole to
a field point. Asymptotic matching and the transition functions act in these buffer zones,
which can only be defined asymptotically and, thus, any statement regarding them must
be interpreted in that sense. In particular, this implies that any quantity that is valid in
the buffer zone need not be valid near the boundary of the buffer zone (i.e., as rA → b or
rA → mA.) Also note that these buffer zones are actually 4-volumes and can be foliated
by an infinite number of timelike junction hypersurfaces.

Different approximations are used in each zone to solve the Einstein equation. In
either inner zone, black hole perturbation theory allows us to obtain a tidally perturbed
metric. Let us concentrate on inner zone 1 near black hole 1, since the metric in the
other inner zone can be obtained via a symmetry transformation. In C1, the perturbed
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metric is given in isotropic corotating coordinates x
ā

= {t̄, x̄, ȳ, z̄} by

g
(1)

0̄0̄
≈ Ht +Hs1Ω

2
(
x̄

2
+ ȳ

2
)

+ 2Hstx̄
Ω

b2

(
x̄

2
+ ȳ

2 − z̄
2
)
,

g
(1)

0̄ā
≈ −Hs1Ωǫāb̄3̄x

b̄
+
Hst

b2

[
ȳ
(
δ
3̄

ā
z̄ − δ

1̄

ā
x̄
)

+
(
x̄

2 − z̄
2
)
δ
2̄

ā

]
,

g
(1)

āb̄
≈ δāb̄Hs1 −Hs2

x
ā
x

b̄

b2
, (4.39)

where Ω is the angular velocity of the perturbation, ǫāb̄c̄ is the standard Levi-Civita

symbol with convention ǫ1̄2̄3̄ = 1 and where δ
ā

b̄
is the Kronecker delta. In Eq. 4.39 we

used the shorthand

Hst = 2m2

√
m

b3

(
1 − M1

2r̄

)
2
(

1 +
M1

2r̄

)
4

,

Hs1 =

(
1 +

M1

2r̄

)
4



1 + 2

m2

b3
r̄
2
P2

( x̄
r̄

)


(

1 +
M1

2r̄

)
4

− 2
M

2

1

r̄2






 ,

Hs2 =

(
1 +

M1

2r̄

)
4


1 +

M
2

1

4r̄2


 4m2M1

br̄
P2

( x̄
r̄

)
,

Ht = −
(

1 −M1/2r̄

1 +M1/2r̄

)2

+ 2

(
1 − M1

2r̄

)
4 m2

b3
r̄
2
P2

( x̄
r̄

)
, (4.40)

where M1 is the mass of the background black hole, m2 is the mass of the binary
companion that is causing the perturbation, m = M1 + m2 is the total mass, r̄ =

(x̄
2

+ ȳ
2

+ z̄
2
)
1/2

and P2(·) is the second Legendre polynomial. Equation 4.39 then
satisfies the linearized Einstein equations in C1. These equations are identical to (18)
and (19) of paper I and solve the Einstein equations up to uncontrolled remainders of

O(r̄1/b)
3
. We refer the reader to that paper for an explanation of the derivation of this

metric.
In the near zone, a post-Minkowskian expansion is used to find an approximate

solution. This solution in corotating ADMTT coordinates x
a

= {t, x, y, z} [ (7)-(12) in
paper I] is given by

g
(3)

ab
= Ψ

4
δab,

g
(3)

0a
= g

(3)

ab
β

(3)b
,

g
(3)

00
= g

(3)

0a
β

(3)a − (α
(3)

)
2
,

(4.41)

where we introduced a post-Newtonian conformal factor

Ψ = 1 +
m1

2r1
+
m2

2r2
, (4.42)
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and where the post-Newtonian lapse and shift are given by

α
(3)

=
2 − Ψ

Ψ

β
(3)i

=
m1

r1

[
1

2

(
v

i

1
− ~v1 · ~n1n

i

1

)
− 4v

i

1

]

+
m2

r2

[
1

2

(
v

i

2
− ~v2 · ~n2n

i

2

)
− 4v

i

2

]
− ǫik3ωx

k
. (4.43)

In these equations, the radial distance to the Ath black hole is given by rA = (x
2

A
+

y
2

+ x
2
)
1/2

, where x1 = x −m2b/m and x2 = x + m1b/m. These equations solve the

Einstein equations in C3 up to uncontrolled remainders of O(mA/rA)
2
. Once more, we

refer the reader to that paper for an explanation of the derivation of such a metric. In
these equations, the non-zero components of the velocities ~vA and the unit vectors ~nA
are given in the t = 0 slice by

v
2

1
= ω

m2

m
b, v

2

2
= −ωm1

m
b,

n
k

A
=

x
k − ξ

k

A

rA
, ξ

1

1
=
m2

m
b, ξ

1

2
= −m1

m
b, (4.44)

where w is the post-Newtonian angular velocity given by

ω =

√
m

b3

[
1 +

1

2

( µ
m

− 3
) m
b

]
, (4.45)

with errors of O(m/b)
5/2

. Equation 4.45 appears also in paper I and in (60) of [16],
where µ = m1m2/m is the reduced mass of the system.

Asymptotic matching was performed in paper I and a coordinate and parameter
transformation was found such that Eq. 4.7 is satisfied. For buffer zone 1, O13, such a

transformation to O[mA/rA, (r̄A/b)
2
] is given by

x
µ̄

= x
σ
[
δσ

µ̄
+ ησ

µ̄m2

b

(
1 − x

b

)]
+ δy

µ̄
t
m2√
mb

,

MA = mA, Ω = ω, (4.46)

where ηµν is the Minkowski metric and δµν is the 4-Euclidean metric. Note that x
µ̄

= x
µ

to zeroth order as previously mentioned and, when describing certain figures, we will
sometimes use them interchangeably. One might worry that Eq. 4.46 is not bounded
above, since x

σ̄ → ∞ as t → ∞. However, recall that the buffer zone is technically a
4-volume delimited by the boundaries of the regions of validity of the approximations.
In this sense, time cannot go to infinity, because then the post-Newtonian metric would
break down as t approaches the time of coalescence. Furthermore, when constructing
initial data, t = 0 and t̄ = 0, and it is clear that t → ∞ is not allowed. In paper I,
asymptotic matching is carried out to slightly higher order, but since the purpose of this
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section is to study transition functions we use Eq. 4.46 instead. The metric in inner zone
2 and the matching coordinate and parameter transformations in buffer zone 2, O23, can
be obtained by applying the following transformation to Eq. 4.39 and Eq. 4.46:

1 → 2, x→ −x, y → −y, z → z. (4.47)

In order to study these transition functions, we pick a particular physical system.
We choose a system of equal mass black holes m1 = m2 = 0.5m separated by an orbital
distance b = 20m. The black holes are non-spinning and located on the x-axis at
x = 10m and x = −10m for the first and second black hole respectively. The black holes
are orbiting in the counter-clockwise direction about the z-axis. The buffer zones are
then given by OA3 : 20 ≫ rA/m≫ 0.5. This system is used to study different transition
functions, but we should note that the asymptotically matched metric of paper I is valid
for a wide range of systems.

We here keep the physical system fixed and pick several different transition func-
tions to investigate how these functions change the satisfaction of the Einstein equations.
We consider the following type of transition functions:

• Transition function 1 (TF 1)

f1(r) =





0 , r ≤ r−
1
2

{
1 + tanh

[
s
π

(
tan(2mπ

bw (r − r−))

− q
2

tan( 2mπ
bw

(r−r
−

))

)]}
, r− < r < r+

1 , r ≥ r+,

(4.48)

where r− and r+ determine where the transition begins and ends, w determines
the size of the region, and s and q determine the slope of the transition function
roughly when f1 ≈ 1/2. This function is similar to that used in paper I and we
use similar parameters, i.e.

r− = m, r+ = b−m,

w = 9m, q = 0.2, s = b/m. (4.49)

• Transition function 2 (TF 2) and 3 (TF 3)

f2(r) = exp

(
b

2m

r − d

w

)[
1 + exp

(
b

2m

r − d

w

)]−1

, (4.50)

where w is approximately the size of the transition window and d is approximately
the distance from the Ath black hole at which the derivative of the transition
function peaks. For TF 2 we choose the following parameters

w = 7m, d = 6m, (4.51)

while for TF 3 we choose
w = m, d = 8m. (4.52)
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For all these transition functions, the transition window w is defined approximately as
the size of the region inside which the function ranges from 0.01 to 0.99.

The purpose of this paper is not to perform a systematic study of the properties
of transition functions, but to illustrate the theorems discussed in earlier sections with
a practical example. In fact, as discussed in the introduction, transition functions were
first introduced in [105, 93], but the properties and conditions that these functions must
satisfy were not explored. In this paper, we are in essence following up on previous
work and providing further details that might be relevant to future investigations. In
particular, we shall investigate how the gluing of asymptotically matched approximate
solutions breaks down if improper transition functions are chosen.

The transition functions that we have chosen clearly have different properties.
First, notice that the region where functions are significantly different from zero or unity
varies, because the size of their respective transition windows w is different. In particular,
TF 3 has the smallest transition window, followed by TF 2 and then TF 1. Second, notice
that the transition functions become roughly equal to 1/2 at different radii: r ≈ 7m for
TF 1, r ≈ 6m for TF 2 and r ≈ 8m for TF 3. Third, notice that the speed at which the
transition functions tend to zero and unity is also different. In particular, note that TF 3
tends to zero the fastest, followed by TF 1 and finally TF 3. This speed is important in the
definition of proper transition functions in Eq. 4.14, because it prevents contamination
of possibly divergent uncontrolled remainders outside the buffer zone. Finally, notice
that not all functions are analytic, since TF 1 does not have a Taylor expansion about
r = r± (recall, however, that analyticity was not required.)

These different features of the transition functions can be observed in Figures 4.1
and 4.2. Figure 4.1 shows the behaviour of the different transition functions as a function
of radius, while Fig. 4.2 shows their first and second derivatives. Observe in Fig. 4.1 that
the transition occurs at different radii and that they transition at different speeds. In
Fig. 4.2 we can observe the difference in the transitioning speed better. We can clearly
see in this figure that the derivatives of TF 1 are the smallest, followed by TF 2 and
then TF 3. However, both TF 1 and TF 2 have derivatives that are consistently of order
much less than O(1), while TF 3 has first derivatives of O(1) or larger. The inset in this
figure shows the large derivatives of TF 3. Also note that the second derivatives of the
first and second transition functions are consistently smaller than their first derivatives.
This is a consequence of the size of the transition window. If such a window were chosen
to be smaller, as in the case of TF 3, then the second derivative would become larger
than the first.

With these transition functions we can now construct pure joined solutions via

gµν = f(r̄1)f(r̄2)g
(3)

µν
+
[
1 − f(r̄1)

]
g
(1)

µν
+
[
1 − f(r̄2)

]
g
(2)

µν
, (4.53)

where we assume g
(1,2)

µν
has been transformed with the coordinate and parameter trans-

formation of Eq. 4.46 and where f(·) can be any of TF 1, TF 2 or TF 3. Equation 4.53
is an extension of Eq. 4.11 applicable to two buffer zones. Extensions to more than 2
buffer zones are also straightforward.
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Fig. 4.1. This figure shows the first (TF 1), second (TF 2) and third (TF 3) transition
functions as a dashed, dotted and solid lines respectively. Observe that these functions
transition at different radii and at different speeds.

Whether the joined metric of Eq. 4.53 satisfies the Einstein equations to the
same order as the approximate solution depends on the transition function used. We
expect the metric constructed with TF 1 to generate small violations because it is a
proper transition function that clearly satisfies the differentiability conditions required
in Theorems 1 and 2. On the other hand, TF 2 and 3 do not satisfy these conditions
because TF 2 is not a proper transition function and TF 3 violates condition (ii) and
(iii) of Theorem 1. This behaviour, however, is not clear by simply looking at metric
components. In Fig. 4.3 we plot the determinant of the spatial metric along the x-axis,
corresponding to the x harmonic (near zone) coordinate, with t = 0, y = 0 and z = 0.
This axis is where joined metrics are glued together with different transition functions.
This determinant gives a measure of the volume element on Σ and, as one can see in the
figure, the difference when different transition function are used is small. This behaviour
is not unique to the x-axis, but is actually observed along the other axis as well. When
this is the case, we only show the behaviour along the x-axis in order to avoid redundancy.

Although the volume element computed with different transition functions is simi-
lar, metrics joined with different transition functions do not satisfy the Einstein equations
to the same order. In Fig. 4.4, we plot the 4-Ricci scalar calculated with the global met-
rics joined with different transition functions. This plot is representative of the behaviour
of the 4-Ricci scalar in the entire domain, although here we plot it only along the x-axis.
We also plot only the region x/m > 10, to the right of where BH 1 is located at t = 0,
because the behaviour of the 4-Ricci scalar is symmetric about x = 0 and the transition
functions are symmetric about r̄A = 0. Thus, the behaviour of the 4-Ricci scalar in other
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Fig. 4.2. This figure shows the first and second derivatives of the transition functions.
The first derivative of the first [(TF 1),r], second [(TF 2),r] and third [(TF 3),r] transition

functions are denoted with a dashed, dotted and solid black line respectively. The second
derivative of the first [(TF 1),rr], second [(TF 2),rr] and third [(TF 3),rr] transition

functions are denoted with a dashed, dotted and solid cyan (or light gray on black and
white print) line respectively. In the inset we zoomed out to show better the derivatives
of the third transition function.
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Fig. 4.3. This figure shows the determinant of the spatial metric along the x-axis with
TF 1 (dashed line), TF 2 (dotted line) and TF 3 (solid line.) Observe that the differences
in the global metrics are small if at all visible. In the inset we zoom to the region where
the curves look the most different.

regions of the domain is similar to that shown in Fig. 4.4 (see paper I for contour plots
of some of these quantities.)

There are several features in Fig. 4.4 that we should comment on. First, observe

that the
(4)
R is everywhere smaller than the uncontrolled remainder in the approximate

solutions (roughly O(m/b)
2 ≈ 0.0025 in the buffer zone for the system considered) when

the joined metric is constructed with TF 1. However, this is not the case for the metrics

constructed with TF 2 and 3. For those metrics,
(4)
R has spikes close to rA = 0 (x ≈ 10m)

and rA = 8m (x ≈ 18m) for TF 2 and 3 respectively. The spike resulting from the metric
constructed with TF 3 is associated with the small size of its transition window, which
forces large derivatives in the transition function, thus violating conditions (ii) and (iii)
of Theorems 1 and 2. The spike in the metric built with TF 2 is related to the fact
that this function does not tend to zero faster than the uncontrolled remainders of the
post-Newtonian near zone metric close to BH A. As we discussed earlier, the rate at
which transition functions tend to zero and unity is important to avoid contamination
from divergent uncontrolled remainders in the approximations. In this case, TF 2 is of

O(m/b)
3

as r/m → m/b, while the post-Newtonian Ricci scalar diverges as m/r
3

as

r → 0 and is in fact of O(b/m)
3

as r/m→ m/b. Since the transition function is not able
to eliminate this contamination from the near zone metric, the Einstein equations are
violated near either black hole for the metric constructed with TF 2. From a physical
standpoint, the failure to use appropriate transition functions to create a pure joined
solution introduces a modification in the matter-sector of the Einstein equations, namely
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the artificial creation of a shell of matter. One can straightforwardly see from Eq. 4.5
and Eq. 4.32 that the stress-energy tensor of this shell depends on the non-vanishing
derivatives of the transition function.

10 11 12 13 14 15 16 17 18 19 20 21 22
x/m

-0.1

0

0.1

0.2
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0
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Fig. 4.4. 4-Ricci scalar along the x-axis for the global metrics joined with TF 1 (dashed
line), TF 2 (dotted line) and TF 3 (solid line.) Observe that the 4-Ricci scalar is small
everywhere for the metric constructed with TF 1, but it has spikes for that built with
TF 2 and 3. The inset zooms to the region x ∈ [11, 22] so that the difference between
the 4-Ricci scalar calculated with TF 1 and 2 are more noticeable.

A deeper analysis of the spike in
(4)
R due to the joined metric with TF 2 reveals

that the conditions found are sufficient but formally not necessary. The 4-Ricci scalar

constructed with the post-Newtonian metric (
(4)
RPN) diverges close to BH A, since this

approximation breaks down in that region. Therefore, if the transition function does not

vanish identically, or faster than the divergence in
(4)
RPN , then

(4)
R will present a spike.

This spike, however, would disappear if the transition function decayed to zero faster

than the divergence in
(4)
RPN . In this sense, eventhough the conditions discussed here

are not necessary since the definition of a proper transition function could be weakened,
they are certainly sufficient and universal.

The second feature we should comment on is the behaviour of
(4)
R in the region

x/m ∈ [11, 17]. As one can observe in the inset, the transition functions indeed introduce
some error in this region. However, note that this error for the metric constructed with
TF 1 is smaller than the uncontrolled remainders in the approximate solutions. Also
note that this error is independent of the location of the center of the transition window.
In other words, asymptotic matching is performed inside of a buffer zone and not on a
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patching surface, which means that approximate solutions can be glued with transition
functions anywhere in the buffer zone away from the boundaries and not just at a specific
2-surface. As one can see from the figure, the metric constructed with TF 1 has the
smallest error in this region, followed by that built with TF 2 and 3. This fact is not
too surprising because, as shown in the proof of Theorem 1, the error introduced by the
transition functions in the calculation of the Ricci tensor scales with the first and second
derivatives of these functions. Finally, note that the error introduced by these functions
seems to be correlated to both the size and functional form of the second derivative of
the transition functions, as one can see by comparing the inset of Fig. 4.2 to Fig. 4.4.
The reason for such similarity, however, is beyond the scope of this paper.

Once an approximate global 4-metric has been found, we can use it to construct
initial data. These data could be given for example by

hab = f(r̄1)f(r̄2)h
(3)

ab
+
[
1 − f(r̄1)

]
h

(1)

ab
+
[
1 − f(r̄2)

]
h

(2)

ab
,

Kab = f(r̄1)f(r̄2)K
(3)

ab
+
[
1 − f(r̄1)

]
K

(1)

ab
+
[
1 − f(r̄2)

]
K

(2)

ab
. (4.54)

Equation 4.54 is simply a generalization of Eq. 4.31 for 2 buffer zones. The extrinsic
curvatures for the inner zones and near zone are provided explicitly in paper I.

Are we allowed to construct data with transition functions in this way? There
might be some doubt as to whether this is valid, since the fact that the joined metric
satisfies the Einstein equations does not necessarily guarantee that we can use transition
function to construct the data itself. In particular, there might be some worry that the
extrinsic curvature calculated from Eq. 4.53 generally contains derivatives of the transi-
tion functions that Eq. 4.54 neglects. Theorem 2, however, ensures that this construction
is indeed valid, provided the transition functions satisfy the same differentiability condi-
tions proposed in Theorem 1. This is because the derivatives of these functions are then
small and, in particular, the terms that are proportional to them are of the same order
as the uncontrolled remainders in the approximations.

These expectations can be verified in Fig. 4.5, where we plot the xy-component
of the extrinsic curvature along the x-axis constructed both via Eq. 4.54 (referred to as
glued T 1, 2 and 3 in the figure) and by direct differentiation of Eq. 4.53 (referred to
as full T 1, 2 and 3 in the figure.) We plot only the xy-component because this is the
dominant term of this tensor along the x-axis for the system considered and it shows
the main differences in using different transition functions. We have checked that other
quantities, like the trace of the extrinsic curvature, behaves similarly. For contour plots
of the extrinsic curvature refer to paper I.

As in the case of the Ricci scalar, there are several features of Fig. 4.5 that
we should discuss. First, observe that that the extrinsic curvatures constructed with
TF 1 agree in the buffer zone up to uncontrolled remainders. These remainders are of

O(m/b)
3/2 ≈ 0.01 in the buffer zone, because here we have used a coordinate transfor-

mation from the matching scheme that is valid only up to O(m/b). The inset zooms to
a region close to the outer boundary of the buffer zone in order to show this agreement
better. The humps in this region are produced by the non-vanishing Lie derivatives of
the transition functions. Observe that, as expected, these humps are smallest for TF 1,
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Fig. 4.5. xy-component of the extrinsic curvature along the x-axis, constructed via
Eq. 4.54 (black) for TF 1 (dashed line), TF 2 (dotted line) and TF 3 (solid line.) We
also plot this component constructed by direct differentiation of Eq. 4.53 (cyan, or light
gray on black and white print) for TF 1 (dashed line), TF 2 (dotted line) and TF 3
(solid line.) The inset zooms to the region x ∈ {15, 22} so that the differences are more
noticeable.
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followed by TF 2 and 3. Our analysis suggests that if we performed matching to higher
order, the agreement would be better and the size of the humps would decrease. The
agreement is good for the curvatures constructed with TF 1, but the curvatures built
with TF 2 and 3 have strong spikes roughly near the boundary of the buffer zone. These
spikes arise because TF 2 violates the definition of a proper transition function, while
TF 3 violates conditions (ii) and (iii) of Theorem 2.

We have then seen in this section how Theorems 1 and 2 can aid us in constructing
transition functions. Even though we have not shown the error in the constraints, we
have checked that this error presents the same features as those shown in Fig. 4.4. We
have also seen the importance of restricting the family of transition functions to those
that satisfy conditions (ii) and (iii) of Theorems 1 and 2, as well as the definition of
a proper transition function. The construction of pure, or mixed, joined solutions can
then be carried out with ease as long as transitions functions are chosen that satisfy the
conditions suggested here.

4.5 Conclusion

We studied the construction of joined solutions via transition functions. In partic-
ular, we focused on pure joined solutions, constructed by gluing analytical approximate
solutions inside some buffer zone where they were both valid. The gluing process was
accomplished via a weighted-linear combination of approximate solutions with certain
transition functions. We constrained the family of allowed transition functions by im-
posing certain sufficient conditions that guarantee that the pure joined solution satisfies
the Einstein equations to the same order as the approximations. With these conditions,
we formulated and proved a theorem that ensures that the joined solution is indeed an
approximate solution to the Einstein equations. We extended these conditions to pro-
jections of the joined solution onto a Cauchy hypersurface. We verified that the data
on this hypersurface can itself be constructed as a weighted-linear combination with
the same transition functions as those used for the joined solution. We proved that if
these functions satisfy the same sufficient conditions, the data is guaranteed to solve the
constraints of the Einstein equations to the same order as the approximations.

We explicitly verified these theorems numerically by considering a binary system
of non-spinning black holes. The approximate solutions used were a post-Newtonian
expansion in the far field and a perturbed Schwarzschild solution close to the black
holes. We considered three different kinds of transition functions, two of which violated
the conditions proposed in the theorems. The joined solutions constructed with these
transition functions were shown to produce large violations to the Einstein equations.
These violations were interpreted as the introduction of a matter-shell, whose stress-
energy tensor was shown to be related to derivatives of the transition functions. The
joined solution constructed with the transition function that did satisfy the conditions
of the theorems was seen to introduce error comparable to that already contained in
the approximate solutions. We further verified that projections of this joined solution
to a Cauchy hypersurface can also be constructed as a weighted-linear combination of
projections of approximate solutions with transition function. These joined projected
solutions were seen to still satisfy the constraints of the theory to the same order as the
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approximate solutions provided the transition functions satisfied the conditions of the
theorems.

The glue proposed here to join approximate solutions has several applications to
different areas of relativistic gravitation. Initial data for numerical simulations could,
for example, be constructed once approximate solutions to the system have been found
and asymptotically matched inside some buffer zone. In particular, initial data for a
binary system of spinning black holes could be generated by asymptotically matching
and gluing a tidally perturbed Kerr metric [104] to a post-Newtonian expansion (see
[137].) One could also study the absorption of energy and angular momentum [34],
as well as the motion of test particles [138], in the spacetime described by such pure
joined solutions. Finally, one could extend the scheme developed here to formalize the
construction of mixed joined solutions. Such solutions could, for example, be composed
of a post-Newtonian metric glued to a numerically simulated metric or a semi-analytical
approximate metric [125, 126, 139, 140]. Such mixed joined solutions could then be used
to construct reliable waveform templates for extremely non-linear physical scenarios.
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Chapter 5

Metric of a tidally perturbed spinning black hole

We explicitly construct the metric of a Kerr black hole that is tidally per-
turbed by the external universe in the slow-motion approximation. This
approximation assumes that the external universe changes slowly relative
to the rotation rate of the hole, thus allowing the parameterization of the
Newman-Penrose scalar ψ0 by time-dependent electric and magnetic tidal
tensors. This approximation, however, does not constrain how big the spin
of the background hole can be and, in principle, the perturbed metric can
model rapidly spinning holes. We first generate a potential by acting with
a differential operator on ψ0. From this potential we arrive at the metric
perturbation by use of the Chrzanowski procedure in the ingoing radiation
gauge. We provide explicit analytic formulae for this metric perturbation
in Kerr coordinates, where the perturbation is finite at the horizon. This
perturbation is parametrized by the mass and Kerr spin parameter of the
background hole together with the electric and magnetic tidal tensors that
describe the time evolution of the perturbation produced by the external
universe. In order to make the metric accurate far away from the hole,
these tidal tensors should be determined by asymptotically matching this
metric to another one valid far from the hole. The tidally perturbed metric
constructed here could be useful in initial data constructions to describe the
metric near the horizons of a binary system of spinning holes. This perturbed
metric could also be used to construct waveforms and study the absorption of
mass and angular momentum by a Kerr black hole when external processes
generate gravitational radiation.

5.1 Introduction

Gravitational wave observatories, such as LIGO and VIRGO, have the potential

to study black holes in the strong field regime
1

[2]. These black holes are expected to be
immersed in a sea of gravitational perturbations that will alter the gravitational field of
the background hole. Even though tidal perturbations are expected to be small relative
to the background, they will be important in some astrophysical scenarios when attempt-
ing to provide an accurate description of the non-linear dynamical orbital evolution of

1
This chapter is based on the following paper: N. Yunes and J. González, Phys. Rev. D 73,

024010 (2006)
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bodies around this background. The need for high accuracy in the description of the or-
bital evolution derives from the fact that gravitational wave observatories are extremely
sensitive to the phase of the gravitational waves emitted by the system. Therefore, since
this phase is directly related to the orbital evolution, in some astrophysical scenarios it
is necessary to take these tidal effects into consideration.

The study of gravitational perturbations around Kerr black holes is important for
several reasons. First, it is of astrophysical interest to study the flux of mass and angular
momentum across a perturbed Kerr horizon [34, 141, 142, 143], which can be calculated
through manipulations of the tidally perturbed metric computed in this paper. Although
this flux might be small for equal-mass binaries, in extreme-mass ratio inspirals (EMRI)
up to 5% of the total energy might be absorbed by the background hole. This absorp-
tion might slow down the orbital evolution increasing the duration of the gravitational
wave signal [144, 138]. Space-based detectors, such as LISA, will be able to observe
and measure the gravitational waveforms of EMRIs, since they have particularly low
noise in the low frequency band where such inspirals are common. Therefore, precise
knowledge of the gravitational waveform including the tidal perturbations effects might
be important in data analysis [145]. Finally, the explicit formulae of this paper might
be useful to compute initial data near the horizons of a binary system of spinning holes.
For example, Refs. [28, 105] make use of such explicit formulae for the non-spinning case
to construct initial data via asymptotic matching. This data might be useful to the
numerical relativity community because it derives from an approximate solution to the
Einstein equation and, thus, we expect it to accurately describe the gravitational field
of the system up to uncontrolled remainders.

In this paper, we analytically construct explicit formulae for the metric of a tidally
perturbed Kerr hole, where the perturbations of the external universe are assumed to
vary slowly in a well-defined sense. Metric perturbations for non-spinning holes have
been studied in Refs. [100, 99, 146, 28, 95] using the Regge-Wheeler formalism [147].
However, this method is difficult to implement for spinning holes because the metric
will now depend on both radius and angle θ in a non-trivial way, rendering the Einstein
equations very difficult to solve. For this reason, we use the Chrzanowski procedure
[148, 149] to construct the metric perturbation from the Newman-Penrose (NP) scalar
ψ0. This procedure allows us to calculate the metric in the so-called ingoing radiation
gauge (IRG), which is suitable to study gravitational perturbations near the outer horizon
(r+), since there the metric is transverse and traceless.

We will work in the slow-motion approximation, described in detail in Refs. [97,
98, 100, 99, 94, 146, 34, 95], where we assume that the rate of change of the curvature
of the external universe is small relative to the rotation rate of the background black
hole, which in principle could be extremal. The external universe is completely arbitrary
in that sense, as long as it respects the slow-motion approximation. For example, in
the case where the external universe is given by a second black hole in a quasicircular
orbit around the background hole, this approximation is valid as long as their orbital
separation is sufficiently large. In particular, this separation must be at least greater
than the inner most stable circular orbit (ISCO)[85, 110], so that the binary is still in
a quasicircular orbit. In that case, the curvature generated by the second hole would
correspond to the external universe, which will change slowly as long as the orbital
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velocity is sufficiently small. In this sense, the slow-motion approximation will hold for
astrophysically realistic binaries as long as they are sufficiently separated.

Assuming this approximation to be valid, Poisson [34] has computed ψ0 in the
neighborhood of a spinning hole. First, the Weyl tensor of the spacetime is re-expressed
in terms of the electric and magnetic tidal tensors of the external universe. Using the
slow-motion approximation, Poisson argues that these tensors will be spatially coordinate
independent if evaluated at sufficiently large distances from the worldline of the hole.
With this tensor, the asymptotic form of ψ0, denoted by ψ̃0, is computed far from
the hole by projecting the Weyl tensor onto the Kinnersly tetrad. This scalar will be
a combination of slowly varying functions of time, which will be parametrized via the
electric and magnetic tidal tensors, and scalar functions of the spatial coordinates, which
will be given by the tetrad. The asymptotic form of ψ0 now allows for the construction

of an ansatz for ψ0, which consists of its asymptotic form ψ̃0 multiplied by a set of
undetermined function of radius Rm(r). These functions must satisfy the asymptotic
condition Rm → 1 as r ≫ r+, as well as the Teukolsky equation. This last condition is

a differential constraint on Rm(r) which can be solved for explicitly, thus allowing for
the full determination of ψ0. In this manner, the final expression for ψ0 is obtained and
is now valid close to the horizon as well, in particular, approaching the perturbations
generated by the external universe sufficiently far from the hole’s worldline.

Once ψ0 has been calculated, we can apply the Chrzanowski procedure to com-
pute the metric perturbation, still in the slow-motion approximation. This calculation
contains two parts: the computation of a potential (Ψ) and the determination of the
metric perturbation (hab) from Ψ. In principle, one might think that it would be easier
to try to compute hab directly from ψ0. Chrzanowski [148] attempted this by applying
a differential operator onto ψ0. However, Wald [150] discovered that doing this leads
to a physically different gravitational perturbation from that represented by ψ0. Cohen
and Kegeles [151] showed that by constructing a Hertz-like potential Ψ from ψ0 first and
then applying Chrzanowski’s differential operator to Ψ instead leads to the real metric
perturbation. This is the procedure we will follow to construct the metric perturbation
in this paper.

The construction of Ψ requires the action of a fourth order differential operator
on ψ0, where here we follow Ori [149]. This potential is simplified by the use of the slow-
motion approximation that allows us to neglect any time derivatives of the electric and
magnetic tidal tensors. Once Ψ is calculated, we can apply Chrzanowski’s differential op-
erator to this potential [151, 152]. In this manner, we compute the metric of a perturbed
spinning hole from a tidal perturbation described by ψ0 in terms of tidal tensors. These
tensors are unknown functions of time that represent the external universe and which
should be determined by asymptotically matching this metric to another approximation
valid far from the holes [28, 105].

The metric computed here, however, has a limited applicability given by the valid-
ity of the slow-motion approximation and the Chrzanowski procedure. The slow-motion
approximation implies that we can neglect all derivatives of the tidal tensors. Further-
more, since we are working only to first non-vanishing order in this approximation, it
suffices to consider only the quadrupolar perturbation of the metric, since the monopolar
and dipolar perturbations are identically zero. In perturbation theory, any l mode in the



138

decomposition of the perturbation is one order larger than the l + 1 mode. Therefore,
any higher modes or couplings of the quadrupole to other modes will be of higher order.
The Chrzanowski procedure also possesses a limited region of validity, given by a region
sufficiently close to the event horizon so that the spatial distance from the horizon to
the radius of curvature of the external universe is small. This restriction is because the
Chrzanowski procedure builds the metric as a linear perturbation of the background
and neglects any non-linear interactions with the external universe. In particular, this
restriction implies that this metric cannot provide valid information on the dynamics of
the entire spacetime. However, if this metric is asymptotically matched to another ap-
proximation that is valid far from the background hole, then the combined global metric
will describe the the 3-manifold accurately.

We verify the validity of our calculations in several ways. First, we check that
ψ0 indeed satisfies the Teukolsky equation. After computing Ψ, we also check that it
satisfies the Teukolsky equation and the differential constraint that relates Ψ to ψ0.
Finally, we check that the metric perturbation constructed with this potential satisfies
all of the Einstein equations to the given order. We further check that this perturbation
is indeed transverse and traceless in the tetrad frame so that it is suitable for the study
of gravitational perturbations near the horizon.

This paper is divided as follows. Sec. 5.2 describes the slow-motion approximation
in detail, summarizes some relevant results from Ref. [34] and establishes some notation.
Sec. 5.3 computes Ψ from ψ0 while Sec. 5.4 calculates hab from Ψ. Finally, Sec. 5.5
presents some conclusions and points toward future work. In the appendix, we provide
an explicit transformation to Kerr-Schild coordinates that might be more amenable to
numerical implementation.

In the remaining of the paper, we use geometrized units (G = 1, c = 1) and the
symbol O(a) stands for terms of order a, where a is dimensionless. Latin indices range
from 0 to 3, where 0 is the time coordinate. The Einstein summation convention is
assumed all throughout the paper, where repeated indices are to be summed over unless
otherwise specified. Tetrad notation will be used, where indices with parenthesis refer to
the tetrad and those without parenthesis to the components of the tensor. The relational
symbol ∼ stands for “asymptotic to” as defined in [30], while the symbols ≪ and ≫ are
also to be understood in the asymptotic sense. In particular, note that if f(r) is valid
for r ≪ b, then this function is not valid as r → b. In this paper we have relied heavily
on the use of symbolic manipulation software, such as MAPLE and MATHEMATICA.

5.2 The slow-motion approximation and the NP scalar

In this section we will describe the slow-motion approximation in more detail and
discuss the construction of ψ0 due to perturbations of the external universe. Both the
slow-motion approximation and ψ0 have already been explained in detail and computed
by Poisson in Ref. [34]. Therefore, here we follow this reference and summarize the most
relevant results for this paper while establishing some notation.

Let us begin by discussing the slow-motion approximation. Consider a non-
spinning black hole of massm1 immersed in an external universe, with radius of curvature
R. This external universe could be given by any object that lives in the exterior of the
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hole’s horizon, such as a scalar field or another black hole. The slow-motion approxi-
mation requires that the external universe’s length scales be much larger than the hole’s
scales. In other words, for the non-spinning case we must have m1/R ≪ 1, since these
are the only scales available.

For concreteness, let us assume that the external universe can be described by
another object of mass Mext and that our hole is in a quasicircular orbit around it. Then,
we have

m1

R ∼ m1

m1 +Mext

V
2
, V =

√
m1 +Mext

b
, (5.1)

where V is the orbital velocity and b is the orbital separation. There are two ways
of enforcing m1/R ≪ 1: the small-body approximation, where we let m1/Mext ≪ 1;
and the slow-motion approximation, where V ≪ 1. However, in a future paper we
might want to asymptotically match the metric perturbation computed in this paper to
a post-Newtonian (PN) expansion [3], which requires small velocities. For this reason,
we will restrict our attention to the slow-motion approximation, which implies that
we can only investigate systems that are sufficiently separated. The ISCO is not a well-
defined concept for black hole binaries, but it has been estimated for non-spinning binary
numerically [85, 110] to be given approximately by ωISCOM/10, where M and ωISCO
are the total mass of the system and its angular velocity at the ISCO respectively. For
spinning binaries the holes can get closer without plunging, where the value of the ISCO
becomes a function of the spin parameter of the holes. Regardless of the type of binary
system, the slow-motion approximation will hold as long as we consider systems that are
separated by at least more than their ISCO so that they are still in a quasicircular orbit.

The above considerations suffice for non-spinning holes because there is only one
length scale associated with it, m1. However, for spinning ones we must also take into
account the time scale associated with the intrinsic spin of the hole. The slow motion
approximation does not constraint how large the spin of the background hole could be.
However, in the standard theory, it is usually assumed that isolated holes will obey
a < m1, where a is the rotation parameter of the hole and m1 is its mass. If the
previous inequality did not hold, then the hole would be tidally disrupted by centrifugal
forces. When the background hole is surrounded by an accretion disk, however, some
configuration might lead to a violation of the previous condition [153], but we will not
consider those in this paper. Let us then define a dimensionless rotation parameter
χ = a/m1, which is now restricted to 0 < χ < 1. The mass of the hole and this rotation
parameter now define a new timescale, related to the rotation rate of the horizon and
given by

τH =
1

ΩH

=
2m1

χ
(1 +

√
1 − χ2), (5.2)

where ΩH is the angular velocity of the hole’s horizon [135]. The slow-motion approxi-
mation then requires this time scale to be much smaller than the time scale associated
with the change of the radius of curvature of the external universe, τext, i.e. τH/τext ≪ 1.
This condition then becomes

m1/R ≪ χ, (5.3)
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since τext ≈ R. We take the above relation as the precise definition of the slow-motion
approximation for spinning black holes. Following the reasoning that lead to Eq. (5.1),

we must then have V
2 ≪ χ, which, for a binary system, means that the orbital velocity

of the system cannot exceed the rotation rate of the background hole. Thus, the slow-
motion approximation implies that, to this order and for spinning holes, we can also
only consider systems that are sufficiently separated and where the black holes have
relatively rapid spins. This reasoning does not imply that the Schwarzschild limit is
incompatible with the slow motion approximation. Actually, Poisson [34] showed that
when computing certain quantities, such as ψ0, this limit can be recovered if we work
to higher order in the slow-motion approximation. The precise radius of convergence
of the slow-motion approximation to first order remains unknown, but an approximate
measure of how small a separation the approximation can tolerate will be studied in a
later section.

Now that the slow-motion approximation has been explained in detail, let us
proceed with the construction of ψ0, which is defined by

ψ0 = Cabcdl
a
m

b
l
c
m

d
, (5.4)

where Cabcd is the Weyl tensor of the spacetime and l
a

and m
a

are the first and third

tetrad vectors. This null vector m
a

is not to be confused with the m that we will
introduce later in this section to denote the angular mode of the perturbation. Poisson
works with the Kinnersly tetrad in advanced Eddington-Finkelstein (EF) coordinates,
also known as Kerr coordinates, which are well-behaved at the outer horizon, given by

r+ = m1 + (m
2

1
− a

2
)
1/2

.

The calculation of ψ0 is based on making an ansatz guided by its asymptotic form
far from the worldline of the hole but less than the radius of curvature of the external
universe, i.e. r+ ≪ r ≪ R. In this region, the Weyl tensor can be decomposed into
electric Eab and magnetic Bab tidal fields, which are slowly varying functions of advanced
time v only. Thus, in this region, the only spatial coordinate dependence in ψ0 is given
by the tetrad, namely

ψ̃0 ∼ −
∑

m

zm(v) 2Y
m

2
(θ, φ), (5.5)

where the tilde is to remind us that this quantity is the asymptotic form of ψ0 and where

2Y
m

2
(θ, φ) are spin-weighted spherical harmonics, given by

2Y
0

2
(θ, φ) = −3

2
sin

2
θ,

2Y
±1

2
(θ, φ) = − sin θ(cos θ ∓ 1)e

±iφ
,

2Y
±2

2
(θ, φ) =

1

4
(1 ∓ 2 cos θ + cos

2
θ)e

±2iφ
. (5.6)
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In Eq. (5.5), the quantities zm(v) are complex combinations of the tidal fields given by
zm(v) = αm(v) + iβm(v), where

α0(v) = E11(v) + E22(v),

α±1(v) = E13(v) ∓ iE23(v),

α±2(v) = E11(v) − E22(v) ∓ 2iE12(v),

β0(v) = B11(v) + B22(v),

β±1(v) = B13(v) ∓ iB23(v),

β±2(v) = B11(v) −B22(v) ∓ 2iB12(v). (5.7)

Note that in this region, ψ0 is independent of radial coordinate.
With Eq. (5.5) at hand, Poisson makes an ansatz for the functional form of ψ0,

namely

ψ0 = −
∑

m

zm(v)Rm(r)2Y
m

2
(θ, φ), (5.8)

where Rm(r) is an undetermined function of radius that must satisfy Rm(r) → 1 as
r ≫ r+. If Eq. (5.8) is inserted into the Teukolsky equation, one obtains a differential

equation for Rm(r). The angular part of the Teukolsky equation is automatically satisfied
by the angular decomposition of ψ0 in spin-weighted spherical harmonics with eigenvalue
E = 4 (Eq. 2.10 in Ref. [154]). The spatial part of the Teukolsky equation yields a
differential constraint for Rm(r) namely,

{
x(1 + x)

d
2

dx2 + [3(2x+ 1) + 2imγ]
d

dx
+ 4imγ

2x+ 1

x(1 + x)

}
Rm(x) = 0, (5.9)

where x is a rescaled version of the radial coordinate given by

x =
r − r+
r+ − r−

, (5.10)

and where the inner and outer horizons are given, respectively, by r± = m
2

1
±(m

2

1
−a2

)
1/2

.

We should note that r+ is an event horizon, while r− is actually an apparent horizon.

Solving this equation [34] one obtains

Rm(r) = Amx
−2

(1 + x)
−2
F (−4, 1,−1 + 2imγ;−x), (5.11)

where Am is a normalization constant given by

Am = − i

6
mγ(1 + imγ)(1 + 4m

2
γ

2
). (5.12)

In Eq. (5.11), the function F (a, b, c;x) is the hypergeometric function

F (a, b, c;x) =

∞∑

n=0

(a)n(b)n
(c)n

x
n

n!
, (5.13)
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where (a)n is the Pochammer symbol defined as

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1) =
(a+ n− 1)!

(a− 1)!
,

(a)0 = 1. (5.14)

For the present case, the series gets truncated at the fourth power and we obtain

F (−4, 1,−1 + 2imγ;−x) =

(
1 +

4

2imγ − 1
x

+
6

(2imγ − 1)imγ
x

2
+

12

(2imγ − 1)imγ(2imγ + 1)
x

3

+
12

(2imγ − 1)imγ(2imγ + 1)(2imγ + 2)
x

4
)
, (5.15)

where γ is a constant given by

γ =
a

r+ − r−
. (5.16)

In this manner, Poisson calculates ψ0, which encodes the gravitational perturba-
tions of the external universe on a spinning hole in the slow-motion approximation. The
full expression for ψ0 is then given by

ψ0 = −
∑

m6=0

Bmx
−2

(1 + x)
−2
(

1 +
4

2imγ − 1
x+

6

(2imγ − 1)imγ
x

2

+
12

(2imγ − 1)imγ(2imγ + 1)
x

3
+

12

(2imγ − 1)imγ(2imγ + 1)(2imγ + 2)
x

4
)

× 2Y
m

2
(θ, φ), (5.17)

where we have used the final abbreviation

Bm = Amzm(v), (5.18)

without summing over repeated indices here, to group all terms that are spatially co-
ordinate independent. We have checked that Eq. (5.17) indeed satisfies the Teukolsky
equation [154] for the s = 2 mode that corresponds to this scalar. Note that, in this
final expression, summation over the m = 0 mode is removed because Poisson [34] has
shown that it corresponds to the Schwarzschild limit and, thus, it contributes at a rel-
ative O(m1/R) higher than all other modes. Also note that the final expression for ψ0
only contains the quadrupolar l = 2 mode, once more because higher multipoles will be
smaller by a relative factor of m1/R in the slow-motion approximation. For this reason,
there are no mode couplings in the ψ0 presented above.

The time-evolution of the tidal perturbation will be exclusively governed by the
electric and magnetic tidal fields. These tensors should be determined by asymptotically
matching the metric perturbation generated by this ψ0 to another approximation valid
far from the hole. However, in Refs. [94, 28, 105, 95] it has been shown that when the



143

external universe is given by another non-spinning black hole in a quasicircular orbit,
these tensors scale approximately as

zm ≈ m2

b3
, (5.19)

where m2 is the mass of the other hole (the external universe) and b is the orbital separa-
tion (approximately equal to the radius of curvature of the external universe). Note that

the factor of b
3

in the denominator is necessary to make the tidal tensors dimensionally
correct. Also note that in Eq. (5.19) we have neglected the time dependence of the tidal
fields, which generally is given by a trigonometric function, since we are interested in
a spatial hypersurface of constant time. For the case where the other hole is spinning,
Eq. (5.19) will contain corrections proportional to χ, but these terms will not change the
overall scale of the tidal tensors.

Throughout the rest of the paper we will generate plots of physical quantities, such
as ψ0, Ψ and hab. For the purpose of plotting, we will have to make two choices: one
regarding the physical scenario that produces the perturbation of the external universe;
and another regarding the parameters of the background black hole. As for the physical
scenario, we will choose the external universe to be given by another orbiting black
hole in a quasicircular orbit. This choice allows us to represent the tidal fields with the
scaling given in Eq. (5.19). This scaling is not the exact functional form of the tidal
fields and, therefore, the plots generated will not be exact. However, this scaling will
allow us to provide plots accurate enough to study the general features of the global
structure of the quantities plotted, as well as some local features near the horizons.
Regarding the parameter choice, we will assume m1 = m2, a = 0.99m1, and b = 10m1,
where M = m1 +m2 = 1 is the total mass. These choices are made in accordance with
the slow-motion approximation, while making sure the system is not inside its ISCO.
However, the formulae presented in this paper should apply to other choices of physical
scenarios and background parameters as well, as long as these do not conflict with the
slow motion approximation.

Given the chosen physical scenario, the formulae in this paper should apply to
other mass ratios and separations, as long as the orbital velocity does not become too
large. For the background parameters chosen, the orbital velocity is approximately
V ≈ 0.3, which indicates that, for fixed masses, we cannot reduce the orbital separa-
tion by much more without breaking the slow-motion approximation. However, since we
provide explicit analytic formulae for all relevant physical quantities, we can estimate
their error by considering the uncontrolled remainders, i.e. the neglected terms in the
approximation. In particular, in a later section, we will see that the uncontrolled re-
mainders are still much smaller than the perturbation itself even at b = 10M as long as
we restrict ourselves to field points sufficiently near the outer horizon of the background
hole.

In Fig.5.1 we plot the real part of ψ0 with the plotting choices described earlier.

Observe that as r becomes large the scalar asymptotes to a constant given by ψ̃0. Also
observe that the functional behavior of the scalar is drastically different as r becomes
small. In this figure, as well as in future figures, we have chosen to include an inset where
we zoom to a region close to the horizons, so that we can observe its local and global
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Fig. 5.1. Plot of the real part of the NP scalar ψ0 along the x-axis with the plotting
parameters described in Sec. 5.2.

behavior. For the orbital parameter chosen, the inner and outer horizons are given by
r− ≈ 0.43M and r+ ≈ 0.57M . Observe from the inset in Fig. 5.1 that the scalar diverges
at the horizons and as r → 0, which is due to the choice of tetrad. Finally, observe that,

except for where it diverges, the real part of ψ0 is of O(V
2
) in the entire 3-manifold.

5.3 The potential

In this section we will use ψ0 to construct the potential Ψ by acting some differ-
ential operators on the NP scalar. This potential must satisfy the vacuum Teukolsky
equation for the s = −2 mode together with the differential equation

ψ0 = D
4
[Ψ̄], (5.20)

where the overbar stands for complex conjugation and where the differential operator is
given by D = l

a
∂a [150, 155, 149].

Ori [149] has shown that the above differential equations can be inverted with use
of the Teukolsky-Starobinsky relation to obtain

Ψ =
1

p
∆

2
(D

†
)
4
[∆

2
ψ̄0], (5.21)

where here ∆ is given by

∆ = r
2 − 2m1r + a

2
, (5.22)
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while p is a constant that for the time-independent case reduces to

p =
[
l(l + 1) − s

2
+ |s|

]
2
[
l(l + 1) − s

2
+ |s| + 2

]
2
. (5.23)

In our case, since s and l refer to ψ0, s = 2 and l = 2 so that this constant becomes
p = 576.

The differential operator D
†
is given in spherical Brill-Lindquist (BL) coordinates

(tBL, r, θ, φBL) by

D
†
BL

= ∂r −
a

∆
∂φBL

, (5.24)

neglecting any time dependence, since time derivatives will only contribute at a higher
order. In order to compute Ψ in Kerr coordinates, we must transform the above differ-
ential operator. The transformation between Kerr and BL coordinates is given by

dv = dtBL + drBL

(
2m1r

∆
+ 1

)
,

dr = drBL,

dθ = dθBL,

dφ = dφBL + drBL

a

∆
. (5.25)

After transforming the differential operator D
†
BL

we obtain

D
†

= ∂r, (5.26)

because the drBL/dφ term in the transformation cancels the φ dependence. Note that r
and θ do not change in this transformation and, thus, ∆ remains unchanged. Also note
that Ψ is a scalar constructed from differential operators on ψ0 and, since the latter is a
scalar, Ψ will also be gauge invariant.

Before plugging in Eq. (5.17) into Eq. (5.21) to compute Ψ, let us try to simplify
these expressions. In the previous section, we defined the inner and outer horizons r+
and r−, as well as the new variable x. We can invert the definition of x so that it becomes

a definition for r as a function of x and then insert this into Eq. (5.22). We then obtain

∆ = 4ηx(1 + x), (5.27)

where we have defined η = m
2

1
− a

2
. It is clear now that when we combine the square of

this expression with Eq. (5.17) some cancellations will occur that will simplify all future
calculations.

We are now ready to compute Ψ, but first let us rewrite the function we want to
differentiate, namely

∆
2
ψ̄0 =

∑

m6=0

C̄mF̄ (x) 2Ȳ
m

2
(θ, φBL), (5.28)
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where F (x) is shorthand for the aforementioned hypergeometric function and where Cm
is a new function of advanced time only given by

Cm = −16Bmη
2

= −16Amη
2
zm(v). (5.29)

Note that the angular dependence occurs in the spherical harmonics, while the only x

dependence is in the hypergeometric function. We can transform the D
†

operator to x
space to obtain

D
†
= ∂r =

1

2η1/2
∂x. (5.30)

Applying all these simplifications, Ψ becomes

Ψ =
∆

2

576

∑

m6=0

C̄m 2Ȳ
m

2
(θ, φ)

1

16η2 ∂
4

x
[F̄ (x)]. (5.31)

We can now apply all derivatives to obtain

Ψ =
∆

2

576

∑

m6=0

C̄m 2Ȳ
m

2
(θ, φ)

F̄
(4)

16η2 , (5.32)

where we have used the shorthand F̄
(n)

which stands for the nth derivative of the complex
conjugate of the hypergeometric function. This derivative is given by

F̄
(4)

=
288

(2imγ + 1)imγ(−2imγ + 1)(−2imγ + 2)
, (5.33)

Note that we can reexpress the constant γ in terms of η as γ = a/(2η
1/2

). Interestingly
this constant combines with C̄m to return an overall constant that is purely real so that
Ψ is given by

Ψ = − 1

24
∆

2 ∑

m6=0

Y
m

(θ)e
−imφ

z̄m(v), (5.34)

where here Y
m

stands for the l = 2 spherical harmonics with zero φ dependence. We
have checked that the potential of Eq. (5.34) indeed satisfies the definition of Eq. (5.20)
as well as the Teukolsky equation for the s = −2 mode with angular eigenvalue E = 10.
Note that Ψ has units of mass squared because the electric and magnetic tidal fields scale
as the inverse of the mass squared. Furthermore, note that eventhough ψ0 is singular at
the horizon, Ψ is finite and actually vanishes there.

Next, we proceed to decompose Ψ into real and imaginary parts. The potential
contains 2 complex terms, namely the φ part of the spherical harmonics and the electric
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and magnetic tidal tensors. Decomposing Ψ we obtain

ΨR = −∆
2

24

∑

m6=0

Y
m (

αm(v) cosmφ− βm(v) sinmφ
)
,

ΨI =
∆

2

24

∑

m6=0

Y
m (

αm(v) sinmφ+ βm(v) cosmφ
)
.

(5.35)

Note that the entire radial dependence is encoded in ∆
2
, whereas the angular dependence

is hidden in the spherical harmonics. The time dependence occurs only in the the tidal
fields that should be determined via asymptotic matching, as mentioned previously. This
is the potential in Kerr coordinates associated with the ψ0 calculated in the previous
section in the slow-motion approximation.

In Fig. 5.2 we plot ΨR with the plotting choices described in Sec. 5.2. Observe from
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Fig. 5.2. Plot of the potential ΨR along the x-axis with the plotting parameters de-
scribed in Sec. 5.2.

the inset that the potential has nodes at both horizons. Also observe that the potential
does not asymptote to a constant, but instead it grows quartically. This growth is due

to the factor of ∆
2

that dominates at large radius. Finally, note that the potential is

still of O(V
2
) for radii sufficiently close to the hole (roughly for r < 8m).
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5.4 The metric perturbation

In this section we compute the metric perturbation by applying Chrzanowski’s
differential operator to the potential calculated in the previous section. The full metric
of the spacetime is given by

gab = g
B

ab
+ hab, (5.36)

where g
B

ab
is the background metric and hab is the perturbation. Since ψ0 and Ψ were

computed in Kerr coordinates, the background should also be in this coordinate system.
This background is given then by

g
B

00
= −

(
1 − 2m1r

Σ

)
,

g
B

01
= 1,

g
B

03
= −m1r

Σ
(2a sin

2
θ),

g
B

13
= −a sin

2
θ,

g
B

22
= Σ,

g
B

33
= (r

2
+ a

2
) sin

2
θ +

2m1r

Σ
(a

2
sin

4
θ), (5.37)

where m1 is the mass of the background black hole, a is its spin parameter, related to

the angular momentum vector by ~S = m~a, and where Σ = r
2
+ a

2
cos

2
θ.

Let us now construct the metric perturbation. We will work with the form of the
differential operator presented in Ref. [152], namely

hab = 2ℜ
({

−lalb(δ + ᾱ+ 3β − τ)(δ + 4β + 3τ) (5.38)

−mamb(D − ρ)(D + 3ρ) + l(amb)

[
(D − 2iρI)

(δ + 4β + 3τ) + (δ + 3β − ᾱ− π̄ − τ)

(D + 3ρ)]}Ψ) ,

where we have replaced ρ̄ − ρ = −2iρI . The metric perturbation constructed in this
fashion will be in the ingoing radiation gauge (IRG), which is defined by the conditions

hll = hln = hlm = hlm̄ = hmm̄ = 0. (5.39)

In Eq. (5.38) there are terms that depend on the differential operators D = l
a
∂a

and δ = m
a
∂a, which in turn depends on the tetrad. To be consistent, we will continue
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to work with the Kinnersly tetrad in Kerr coordinates given by

e
a

(1)
= l

a
=

(
2
r
2
+ a

2

∆
, 1, 0

2a

∆

)
,

e
a

(2)
= n

a
=

(
0,− ∆

2Σ
, 0, 0

)
.

e
a

(3)
= m

a
=

1√
2(r + ia cos θ)

[
ia sin θ, 0, 1,

i

sin θ

]
,

e
a

(4)
= m̄

a
, (5.40)

where the overbar stands for complex conjugation. Note that the m
a

vector is the same
as the one in BL coordinates, but l

a
and n

a
are different. The differential operators

associated with this tetrad in Kerr coordinates are

D = ∂r +
2a

∆
∂φ

δ =
1√

2(r + ia cos θ)

(
∂θ +

i

sin θ
∂φ

)
, (5.41)

where once more we neglect the time derivatives by use of the slow motion approximation.
The covariant form of the tetrad in these coordinates is given by

la = l
R

a
=

(
1,−2Σ

∆
, 0,−a sin

2
θ

)
, (5.42)

na = n
R

a
=

1

2Σ

(
∆, 0, 0,−a∆ sin

2
θ
)
,

m
R

a
=

a sin θ√
2Σ

[
a cos θ, 0,− rΣ

a sin θ
,− cos θ(r

2
+ a

2
)

]
,

m
I

a
=

1√
2Σ

[
ar sin θ, 0, aΣ cos θ,−r sin θ(r

2
+ a

2
)
]
,

where the superscript I and R stand for the imaginary and real parts respectively. One

can show that if this tetrad is used we can recover the background metric g
B

ab
with the

formula g
B

ab
= 2l(anb) + 2m(am̄b).

Eq. (5.38) contains terms that depend on the spin coefficients of the background
[156]. These coefficients, also called Ricci rotation coefficients for the case where the
tetrad is non-null, are simply contraction of the tetrad with its derivatives. In the tetrad
formalism, these quantities can also be related to the Riemann tensor. Let us decompose
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the spin coefficients into real and imaginary parts, i.e.

ρR = − r

Σ
, ρI = − a

Σ
cos θ,

βR =

√
2

4

r

Σ
cot θ, βI = −

√
2

4

a

Σ
cot θ cos θ,

πR = −
√

2
a

2

Σ2 r sin θ cos θ,

πI =

√
2

2

a

Σ2

(
r
2 − a

2
cos

2
θ
)

sin θ, τI = −
√

2

2

a

Σ
sin θ,

αR = −
√

2
a

2

Σ2 r sin θ cos θ −
√

2

4

r

Σ
cot θ,

αI =

√
2

2

a

Σ2 sin θ
(
r
2 − a

2
cos

2
θ
)
−

√
2

4

a

Σ
cot θ cos θ.

(5.43)

These spin coefficients are the same as those obtained with the Kinnersly tetrad in BL
coordinates. This invariance is due to the fact that the spin coefficients are only tetrad
dependent but still gauge invariant.

We will split Eq. (5.38) into 4 terms in order to make calculations more tractable.
The split is as follows: the term proportional to lalb will be denoted term A; the term
proportional to mamb will be referred to as term B; the first half of the term proportional
to l(amb) will be denoted term C; and the remaining of this term will be referred to as

term D. In this manner we have

h
A

ab
=

[
−lalb(δ + ᾱ+ 3β − τ)(δ + 4β + 3τ)

]
Ψ,

h
B

ab
=

[
−mamb(D − ρ)(D + 3ρ)

]
Ψ,

h
C

ab
=

[
l(amb)(D − 2iρI)(δ + 4β + 3τ)

]
Ψ,

h
D

ab
=

[
l(amb)(δ + 3β − ᾱ− π̄ − τ)(D + 3ρ)

]
Ψ, (5.44)

and the full metric perturbation is given by

hab = 2ℜ(h
A

ab
+ h

B

ab
+ h

C

ab
+ h

D

ab
). (5.45)

With this split we can now proceed to simplify each expression more easily. One
such simplification is to operate with the differential operators. Expanding all terms we
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obtain

h
A

ab
= −lalb

[
δ
2
Ψ + Ψ (4δβ + 3δτ) + (7β + 2τ + ᾱ) δΨ + (ᾱ+ 3β − τ) (4β + 3τ) Ψ

]
,

h
B

ab
= −mamb

[
D

2
Ψ + 2ρDΨ + 3ΨDρ− 3ρ

2
Ψ
]
,

h
C

ab
= l(amb)

[
DδΨ + 4ΨDβ + 3ΨDτ + (4β + 3τ)DΨ − 2iρI (4β + 3τ) Ψ − 2iρIδΨ

]
,

h
D

ab
= l(amb) [δDΨ + 3Ψδρ+ 3ρδΨ + (3β − π̄ − τ − ᾱ)DΨ + (3β − π̄ − τ − ᾱ) 3ρΨ] ,(5.46)

These expressions give the metric perturbation in terms of the action of the differential
operators on the spin coefficients and the potential.

5.4.1 Action of the Differential Operators

In order to provide explicit formulae for the metric perturbation we must investi-
gate how the differential operators act on the spin coefficients and on the potential. Let
us first concentrate on the action of the differential operators on the spin coefficients.
After taking the necessary derivatives and decomposing the result into imaginary and
real parts, we obtain

Dρ = Dρ,R + iDρ,I =
r
2 − a

2
cos

2
θ

Σ2 + i

[
2
ra

Σ2 cos θ

]
,

Dτ = iDτ,I = i
√

2
ar

Σ2 sin θ,

Dβ = Dβ,R + iDβ,I = −
√

2

4

cot θ
(
r
2 − a

2
cos

2
θ
)

Σ2 + i

[√
2

2

ra

Σ2 cot θ cos θ

]
,

δρ = δρ,R + iδρ,I = −
√

2

2

a
2

Σ2 sin θ cos θ

+i

[√
2

2

ar

Σ2 sin θ

]
,

δβ = δβ,R + iδβ,I

=
a

4
cos

6
θ − r

4
+ 3r

2
a

2
cos

2
θ − 3 cos

4
θr

2
a

2

4Σ3 sin2 θ

+ i

[
ra cos θ

3a
2
cos

4
θ − r

2
cos

2
θ + 3r

2

4 sin2 θΣ3 − ra cos θ
a

2
cos

2
θ

4 sin2 θΣ3

]
,

δτ = δτ,R + iδτ,I (5.47)

=
1

2
a

2
cos

2
θ
−r2 + a

2
cos

2
θ − 2a

2

Σ3 + i

[
1

2
ra cos θ

−r2 + a
2
cos

2
θ − 2a

2

Σ3

]
.
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We now need to act with the differential operators on the potential itself. We can
separate the φ dependence from these operators to obtain

DΨ = DmΨ,

δΨ = δmΨ,

(Dδ)Ψ = (Dδ)mΨ,

(δD)Ψ = (δD)mΨ (5.48)

where

Dm = ∂r − 2i
ma

∆
=

1

2η1/2
∂x − ima

2η

1

x(1 + x)
,

δm = δ0

(
∂θ +

m

sin θ

)
,

δ0 =
−ρ̄√

2
, δ0,r = −

√
2δ

2

0
. (5.49)

We can also compute the square of these operators acting on ∆
2
Y

m
, where Y

m
stands

for the spherical harmonics with no φ dependence. Doing so we obtain

D
2

m
[∆

2
] = 8(r −m1)

2
+ 4∆ − 4m

2
a

2 − 12ima(r −m1),

δ
2

m
[Y

m
] = δ

2

0
Y

m

,θθ
+

[
δ0

(
ia sin θ√

2Σ
+
δ0
Σ
a

2
sin 2θ

)
+ 2δ

2

0

m

sin θ

]
Y

m

,θ

+


 δ0m

sin θ

(
ia sin θ√

2Σ
+
δ0
Σ
a

2
sin 2θ

)
+

δ
2

0
m

sin2 θ
(m− cos θ)


Y m

,

(δD)m[∆
2
Y

m
] = δ0

(
Y

m

,θ
+

m

sin θ
Y

m
) [

4∆(r −m1) − 2ima∆
]
,

(Dδ)m[∆
2
Y

m
] = −

√
2δ

2

0
∆

2
(
Y

m

,θ
+

m

sin θ
Y

m
)

+ (δD)m[∆
2
Y

m
], (5.50)

where the commas stand for partial differentiation.
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We now have all the ingredients to compute the action of the differential operators
on the potential. Doing so we obtain

DmΨ = −∆

12

∑

m6=0

Y
m
z̄me

−imφ [
2(r −m1) − ima

]
,

δmΨ = −∆
2

24

∑

m6=0

(
Y

m

,θ
+

m

sin θ
Y

m
)
e
−imφ

z̄mδ0,

(Dm)
2
Ψ = −1

6

∑

m6=0

Y
m
e
−imφ

z̄m

[
2(r −m1)

2
+ ∆ −m

2
a

2 − 3ima(r −m1)
]
,

(δm)
2
Ψ = −∆

2

24
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e
−imφ

z̄m

{
δ
2

0
Y

m

,θθ
+

[
δ0
ia sin θ√

2Σ

+δ
2

0

(
a

2
sin 2θ

Σ
+ 2

m

sin θ

)]
Y

m

,θ
+

[
δ0m

sin θ

(
ia sin θ√

2Σ
+
δ0
Σ
a

2
sin 2θ

)
+

δ
2

0
m

sin2 θ
(m− cos θ)


Y m



 ,

(δD)mΨ = −∆

12

∑

m6=0

(
Y

m

,θ
+

m

sin θ
Y

m
)
e
−imφ

z̄m
[
2δ0(r −m1) − δ0ima

]
,

(Dδ)mΨ = (δD)mΨ +

√
2

24
∆

2 ∑

m6=0

(
Y

m

,θ
+

m

sin θ
Y

m
)
e
−imφ

z̄mδ
2

0
, (5.51)

In order to complete the calculation, we need to provide explicit formulae for the
first and second derivatives of the spherical harmonics. These derivatives are given by

Y
±1

,θ
= −2 cos

2
θ + 1 ± cos θ,

Y
±1

,θθ
= sin θ (4 cos θ ∓ 1) ,

Y
±2

,θ
= −1

2
sin θ (cos θ ∓ 1) ,

Y
±2

,θθ
= − cos

2
θ ± 1

2
cos θ +

1

2
. (5.52)

Note that the spherical harmonics and all of its derivatives are purely real.

5.4.2 Decomposition into real and imaginary parts

We will conclude this section by explicitly taking the real part of the metric
perturbation, so as to have explicit formulae for the metric in terms of only the real and
imaginary parts of the spin coefficients, the potential and the action of the differential
operators on these quantities.

Before decomposing Eq. (5.46), however, we must decompose the action of the
differential operators on the potential, i.e. Eq. (5.51). Let us first note that the action
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of any differential operator on the potential always contains the product of 3 complex

terms, the first 2 of which are always e
−imφ

and z̄m. The third term varies depending
on the differential operator. Let us define the third term with superscripts as

c
(D)

= −∆

12

∑

m6=0

Y
m [

2(r −m1) − ima
]
,

c
(δ)

= −∆
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c
(D

2
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+
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+
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= −∆

12

∑

m6=0

(
Y

m

,θ
+

m

sin θ
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m
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2δ0(r −m1) − δ0ima
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= c
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√
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∆
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Y

m
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m
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Y
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δ
2

0
, (5.53)

In general, if we want to decompose the product of 3 complex quantities a, b and
c we will obtain

(abc)R = cR
(
aRbR − aIbI

)
− cI

(
aRbI + aIbR

)
,

(abc)I = cR
(
aRbI + aIbR

)
+ cI

(
aRbR − aIbI

)
. (5.54)

Since we have identified a = e
−imφ

and b = z̄m, their real and imaginary parts are
aR = cosmφ, aI = − sinmφ, bR = αm and bI = −βm. Finally, if we further decompose
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c we obtain
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(5.55)

and where

δ0,R =
r√
2Σ

δ0,I =
−a√
2Σ

cos θ. (5.56)

From these equations it is simple to reconstruct the real and imaginary parts of the
action of the differential operators on the potential by combining Eq. (5.55) and (5.54).
For example, the real part of DmΨ is then given by

(DmΨ)R = c
(D)

R

(
aRbR − aIbI

)
− c

(D)

I

(
aRbI + aIbR
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+ma
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)]
. (5.57)
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We are now finally ready to get a final expression for the metric perturbation by
taking the real part of Eq. (5.46). Doing so we obtain

ℜ[h
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. (5.58)

The full metric perturbation is then given by

hab = 2
[
ℜ[h

(A)

ab
] + ℜ[h

(B)

ab
] + ℜ[h

(C)

ab
] + ℜ[h

(D)

ab
]
]
. (5.59)

This is the metric of a tidally perturbed Kerr black hole in Kerr coordinates. We can
transform this metric to Kerr-Schild coordinates, but this is left to the Appendix. We
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have checked that this metric indeed satisfies the Einstein equations by linearizing the
Ricci tensor and verifying that all components vanish to first order. We have further
checked that the metric perturbation is transverse and traceless (h

a

a
= 0 and habl

a
= 0) in

the tetrad frame making it suitable to study gravitational perturbations near the horizon.
Furthermore, we have checked that the conditions that define the IRG [Eq. (5.39)] are
also satisfied. Another feature of this metric is that its determinant is zero, which renders

it non-invertible. However, the full metric gab = g
B

ab
+ hab is invertible and, thus, the

calculation of the Einstein tensor is straightforward.
The metric perturbation has now been expressed entirely in terms of quantities

explicitly defined in this paper. These quantities are the real and imaginary parts of the
spin coefficients, the potential and the action of the differential operators on the spin
coefficients and the potential. The spin coefficients where decomposed in Eq. (5.43); the
potential was decomposed in Eq. (5.35); the action of the differential operators on the
spin coefficients is given in Eq. (5.47); and the action of these operators on the potential
is decomposed in Eq. (5.54) and (5.55).

The metric perturbation possesses the general global features that it diverges as
r → ∞ and it either diverges or converges to a finite value as r → 0. The behavior as
r → ∞ is to be expected because the Chrzanowski procedure seizes to be valid far from
the hole. On the other hand, the behavior as r → 0 is a bit more surprising. In this
region there are two different types of behavior: either the perturbation remains finite
or it diverges. These different types of behavior depend on the component and axis we
are investigating. On the one hand, there are some components that either are finite

and of O(V
2
) or vanish as r → 0 for all angles, such as h01, h11, h12, h13 and h22. On

the other hand, there are other components that diverge along certain axis as r → 0.
For example, h00, h03 and h33 diverge along the x-axis, the y-axis and the x-y diagonal,
while h02 and h23 diverge along the y-axis and x-y diagonal. This divergence is due to
the choice of tetrad, since the fourth Kinnersly tetrad vector clearly diverges as r → 0.
Note, however, that since the divergences occur well inside the inner horizon they will
be causally disconnected with all physical processes ocurring outside the outer horizon
and, thus, these divergences are irrelevant to most physical applications. This divergent
behavior could nonetheless be avoided if a different tetrad, such as the Hawking-Hartle
one, is used to compute the perturbation, but this will not be discussed here further.

In order to illustrate this global behavior, we have plotted h00 in Fig. 5.3 with
the plotting choices described in Sec. 5.2 along the x-axis and the y-z diagonal (θ = π/4
and φ = π/2). Observe that the perturbation diverges as r → ∞ and as r → 0 along the
x-axis, but it remains finite as r → 0 along the y-z diagonal. Everywhere else, and in

particular near the outer horizon, the perturbation is of O(V
2
), where V = (M/b)

1/2
is

the orbital velocity. Finally, observe that the perturbation vanishes close but not really
at either horizon, remaining finite through them.

The divergence of the perturbation can be used to approximately determine the
region of validity of the approximation. As we have discussed previously and seen in
Fig. 5.3, the perturbation will be valid inside a shell centered at the background hole.
The inner radius of this shell can be approximately determined by graphically studying

the radius where hab > O(V
2
), approximately given by rinner ≈ 0.01M . This value for
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Fig. 5.3. Plot of the 00 component of the metric perturbation along the x-axis (solid
line) and along the y-z diagonal (dashed line) with the plotting parameters described in
Sec. 5.2.

the inner radius of the shell is only an order of magnitude estimate, but is suffices to see
that rinner ≪ r−. The causal structure of the region r < r− is extremely complex and
many of its features are known to be unstable under small perturbations that destroy the
symmetries of the spacetime [135]. However, note that the perturbation is well behaved
for r − r− ≪ M and in particular it is of the order predicted by the approximation

[O(V
2
)]. In any case, the region r < r− is hidden inside the event horizon and most

astrophysical applications will be concerned with regions of small spacelike separations
from the outer horizon, and not the inner one.

The outer radius of the shell can be estimated by studying the fractional error in
the perturbation, which is determined by comparing the perturbation to the uncontrolled
remainders in the approximation. The approximate error bars in Fig. 5.3 are given by an
estimate of these uncontrolled remainders, δhab, which are due to truncating the formal

series solution at a finite order. In the present case, this truncation is done at O(V
2
),

where the tidal fields provide this scaling. The uncontrolled remainders then will be of

O(V
3
) and should come from time derivatives of the tidal tensors, i.e. δhab ∝ ḣab. The

argument of the tidal tensors is ωv, where ω = V/b is the angular velocity and where v
is the advanced time coordinate. Any time derivative will pull out a factor of ω, which
will in turn increase the order of that term. However, in order for the uncontrolled
remainders to be dimensionally consistent (δhab must have the same dimensions as hab),
we need to multiply the time derivatives of the tidal tensors by r, so that

δhab ≈ rḣab ≈ r(V/b)hab. (5.60)
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This line of reasoning, however, only leads to an order of magnitude estimate of the
uncontrolled remainder. In principle, any dimensionless scalar function could be multi-
plying this estimate as long as it does not change the scaling. For the case of non-spinning

holes, the metric perturbation has been computed to O(V
3
) [95], which allows us to com-

pare these terms to Eq. (5.60). This comparison suggests that the multiplicative scalar
function is roughly unity and, thus, unnecessary so that Eq. (5.60) is indeed a good
approximation to the scaling of the uncontrolled remainders. Clearly, this estimate is
not the exact error in the approximation, which can formally only be determined if we
know the exact functional form of the next order term. This estimate, however, is a
physically well-motivated approximation for the uncontrolled remainders.

The outer radius of the region of validity of this approximation can be approxi-
mately determined by studying the behavior of these error bars. From Fig. 5.3 we see
that the error bars become considerable large (approximately 50% as big as the pertur-
bation itself) roughly at r = 13M . However, for r < 4M the estimated error bars are
less than 10% relative to the perturbation. This seems to indicate that, even at b = 10M
where the slow-motion approximation begins to become inaccurate, the approximate so-
lution is still valid sufficiently close to the outer horizon. This estimation of the fractional
errors is by no means a formal proof of the existence or size of the region of validity of
the approximation. However, this estimation does provide a strong argument that the
approximation is indeed valid sufficiently close to the outer horizon. If 10% fractional

error is tolerable, which would correspond to neglecting terms of O(V
3
), then the outer

radius of the shell is approximately given by router ≈ 4M . Clearly, as b is increased, the
slow-motion approximation will become more accurate and, thus, the perturbation will
be valid inside a bigger shell with larger outer radii.

The results of this paper are clearly valid close to the outer horizon of the back-
ground hole, thus allowing the study of physical processes of interest to the relativity
community. For instance, we can use the perturbation presented here to construct ini-
tial data for a binary system near either hole. In this case, we are not interested in the
behavior of the perturbation inside the inner horizon because that region can be excised
and does not belong to the computational domain. Furthermore, the calculations of an-
gular momentum and mass flux across the horizon can still be performed because they
only depend on the behavior of the perturbation near or at the outer horizon.

5.5 Conclusions

We have computed a tidally perturbed metric for a spinning black hole in the slow-
motion approximation. This approximation allows us to parameterize the NP scalar ψ0
[Eq. (5.17)] in terms of the electric and magnetic tidal tensors of the external universe.
With this scalar we can then construct a potential Ψ [Eq. (5.34)], by applying certain dif-
ferential operators to it. From this potential, we can then apply the Chrzanowski proce-
dure to construct a metric perturbation [Eqs. (5.35),(5.43),(5.47),(5.54),(5.55),(5.58),(5.59)].

The metric is naturally computed in the ingoing radiation gauge and in Kerr
coordinates, which are suitable to study perturbation near the horizon due to its horizon
penetrating properties. This metric is given explicitly in terms of scalar functions of
the coordinates and is parametrized by the mass of the background hole, its Kerr spin
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parameter and electric and magnetic tidal tensors. The mass and the spin parameters
of the background hole do not have to be small relative to each other, so in principle
the metric presented here is capable of representing tidally perturbed extremal Kerr
holes. The tidal tensors describe the time-evolution of the perturbation produced by the
external universe and, thus, are functions of time that should be determined by matching
the metric to another approximation valid far from the holes.

The slow motion approximation constrains what kind of perturbations are allowed,
thus limiting the external universe that is producing them. In this approximation, the
radius of curvature of the external universe must be changing sufficiently slowly relative
to the scales of the background hole. One consequence of this restriction is that the
tidal fields must be slowly-varying functions of time, thus allowing us to neglect their
time derivatives. In this sense, this approximation leads to a quasi-static limit, where in
this paper we have calculated the first non-vanishing deviations from staticity. Another
consequence of this approximation is that we can parametrized the perturbation in terms
of multipole moments, where here we have only considered the first non-vanishing one
(the quadrupolar perturbation). In perturbation theory, the l+1 mode will be one order
smaller than the l mode, which allows us to neglect the octopole and any other higher
modes, as well as any mode beating between the quadrupole and higher modes.

Due to these restrictions, if we allow the external universe to be given by another
hole in a quasicircular orbit around the background (a binary system), we are limited to
those whose separation is sufficiently large. In this case, we must have sufficiently large
orbital separations so that the Riemann curvature produced by the companion is large
relative to the scales of the background hole. In other words, this approximation will
break if we consider systems that are close to their innermost stable orbit and ready to
plunge. We have seen, however, that for a separation of b = 10M , the metric presented
here is valid inside a shell given approximately by 0.01M < r < 4M .

The reason why the region of validity of the approximation is a shell can be traced
back to the choice of tetrad and to the limitations of the Chrzanowski procedure. The
perturbation cannot be valid too close to the background hole because in that region
the Kinnersly tetrad, from which the perturbation was constructed, is also divergent.
This perturbation is also divergent as r → ∞ because the Chrzanowski procedure builds
the perturbation as a linear expansion of the metric. In other words, we cannot analyze
the dynamics of the entire spacetime with this metric, since its validity is limited to
field points sufficiently close to the outer horizon of the background hole. However,
if this metric were to be asymptotically matched to another metric valid far from the
background hole, then the resultant metric would be accurate on the entire 3-manifold
up to uncontrolled remainders thus, capable of reproducing the dynamics of the entire
spacetime.

This metric might be useful to different areas in general relativity. On the one
hand it might be useful in the construction of astrophysically realistic initial data for
binary systems of spinning black holes. Its importance relies in that it could accurately
represent the metric field in the neighborhood of a black hole tidally disrupted by a
companion. These tides are analytic and arise as a true approximate solution to the
Einstein equations in the slow-motion approximation. Initial data, however, requires a
metric that is valid in the entire 3-manifold. Therefore, in order to use these results as
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initial data they will first have to be asymptotically matched [28, 105] to a PN expansion
valid far from the background holes [3]. In this manner, initial data could be constructed
that satisfies the full set of the Einstein equation, including the constraints, to a high
order of accuracy.

Another use for the metric computed in this paper relates to the flux of mass and
angular momentum through a perturbed Kerr horizon. This flux will be important for
EMRIs, where the effect of tidal perturbations could be large enough to lead to large
fluxes, which in turn could affect the gravitational wave signal emitted by the system
[144, 138]. Recent investigations [34] have used a curvature formalism to compute this
flux directly from ψ0. However, there exists a metric formalism to obtain this flux directly
from the metric itself. An interesting research direction would be to compute this flux
and compare to the results obtained with the curvature formalism.

Finally, the perturbed metric computed here can also be of use to the data analysis
community to construct gravitational waveforms. EMRIs are particularly good candi-
dates to be observed by LISA, but such observations require extremely accurate formulae
for the phasing of the gravitational waves due to the use of matched filtering. Recently,
Ref. [145] studied how to use and implement a quasi-Kerr metric (a perturbed Kerr
metric in the limit of slow rotation of the background hole) to detect EMRIs with LISA.
A similar study could be performed with the perturbed metric computed in this paper,
which can also describe rapidly rotating black holes.

Future work will concentrate on performing the necessary asymptotic matching
to shape this metric into useful initial data for numerical relativity applications. The
matching procedure will provide expressions for the tidal tensors in terms of PN quanti-
ties, as well as a coordinate transformation between Kerr coordinates and the coordinate
system used in the PN approximation. In this manner, a piece-wise global solution can
be computed, which will contain small discontinuities inside the matching region that
could be eliminated by the introduction of transition function. Since these discontinu-
ities will be small due to the matching, the transition functions will not alter the content
of the data to the order of the approximation used. After the matching is completed,
we will have obtained an approximate analytic global metric that will contain the tidal
fields of one hole on the other near the outer horizon of the former, where these fields
come directly from solutions to the Einstein equations.
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Chapter 6

Gravitational Recoil from Binary Black Hole Mergers:

the Close-Limit Approximation

The coalescence of a binary black hole system is one of the main sources of
gravitational waves that present and future detectors will study. Apart from
the energy and angular momentum that these waves carry, for unequal-mass
binaries there is also a net flux of linear momentum that implies a recoil
velocity of the resulting final black hole in the opposite direction. Due to
the relevance of this phenomenon in astrophysics, in particular for galaxy
merger scenarios, there have been several attempts to estimate the magni-
tude of this velocity. Since the main contribution to the recoil comes from
the last orbit and plunge, an approximation valid at the last stage of coales-
cence is well motivated for this type of calculation. In this paper, we present
a computation of the recoil velocity based on the close-limit approximation
scheme, which gives excellent results for head-on and grazing collisions of
black holes when compared to full numerical relativistic calculations. We
obtain a maximum recoil velocity of ∼ 64 km/s for a symmetric mass ratio

η = M
1
M

2
/(M

1
+ M

2
)
2 ∼ 0.19 and an initial proper separation of 4M ,

where M is the total ADM mass of the system. This separation is the maxi-
mum at which the close-limit approximation is expected to provide accurate
results. Therefore, it cannot account for the contributions due to inspiral
and initial merger. If we supplement this estimate with PN calculations up
to the innermost stable circular orbit, we obtain a lower bound for the recoil
velocity, with a maximum around 84 km/s. This is a lower bound because it
neglects the initial merger phase. We can however obtain a rough estimate
by using PN methods or the close-limit approximation. Since both methods
are known to overestimate the amount of radiation, we obtain in this way
an upper bound for the recoil with maxima in the range of 220 − 265 km/s.
We also provide non-linear fits to these estimated upper and lower bounds.
These estimates are subject to uncertainties related to issues such as the
choice of initial data and higher effects in perturbation theory. Nonethe-
less, our estimates are consistent with previous results in the literature and
suggest a narrower range of possible recoil velocities.

6.1 Introduction

The inspiral and merger of binary black holes systems is one of the most interesting
sources of gravitational waves that both earth-based interferometric antennas (LIGO [5],
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VIRGO [6], GEO600 [7] and TAMA [8]) and space-based ones (LISA [124]) will detect
1
.

These waves carry both energy and momentum away from the system, leading to the
adiabatic shrinking of the orbit, due to the former, and a recoil of the merged object
by conservation of momentum, due to the latter. The magnitude of this recoil is of
astrophysical importance because it determines whether the merged hole will be ejected
from its host galaxy.

Possible observational evidence for such a recoil may be the observations of faint
galaxies [157, 158] where the lack of a dense nucleus has been associated with the central
black hole being ejected after merger [41]. There is also evidence of an ejection of a
supermassive black hole in ongoing galaxy mergers, either because of recoil or because of
slingshot due to the presence of 3 or more supermassive black holes in the merger [159].
The gravitational recoil has also been shown to have important consequences in hierar-
chical merging scenarios and the observable structure of galaxy nuclei. Recoil velocities
of a few hundred km/s could be large when compared to escape velocities of dwarf galax-
ies, globular clusters and dark matter halos [160, 41]. For super-massive black holes at
the centers of galaxies, a kick of this magnitude could potentially transfer energy to the
stars in the nucleus [41]. There are thus very important astrophysical aspects that can
be refined or clarified with a better understanding of the black hole kicking process.

Mass distributions without symmetries that undergo gravitational collapse of any
sort will exhibit momentum ejection and recoil of the center of mass of the remnant due
to the strong emission of gravitational radiation [161, 162, 163, 164, 47]. Of particular
interest is the case of unequal-mass black-hole binary systems. An intuitive picture of
how the system gets a kick after the merger is the following [40, 48]: From the center
of mass point of view, the lighter black hole will move faster than the heavier one, and
hence it will beam forward gravitational radiation stronger. Then, there will be a net flux
of linear momentum carried by the gravitational radiation in the direction of the lighter
black hole, and this will cause a recoil of the center of mass in the opposite direction. The
first analytic studies of this subject were carried out by Fitchett and Detweiler [43, 46];
Oohara and Nakamura [44]; Nakamura and Haugan [45]; and Wiseman [40]. Due to the
strong non-linearity of the merger phase, analytic studies have difficulties in obtaining an
accurate estimate of the recoil velocity. The first quasi-Newtonian analytic calculations
were presented in [43, 46], while a post-Newtonian (PN) analysis have been carried
out in [40, 49, 57]. Estimates using black-hole perturbation theory have been given
in [48, 165], and a estimate that combines full numerical relativity and perturbation
theory, the Lazarus approach, is given in [166].

Full numerical relativistic simulations are a natural approach to this problem
since they can in principle handle the non-linearities of the gravitational field during
the merger. The challenge is the resolution that the computational resources impose.
Some calculations have already been carried out in different scenarios to estimate recoil
velocities. The first one was done by Anninos and Brandt [167] for the case of the head-on
collision of two unequal-mass black holes. Their numerical calculations were effectively 2-
dimensional since they made use of the axisymmetry of the configuration. Using the same

1
This chapter is based on the following paper: C. F. Sopuerta, N. Yunes and P. Laguna,

Phys. Rev. D 74, 124010 (2006)
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type of numerical calculations they also estimated the gravitational radiation recoil from
highly distorted black holes [168]. More recently, and due to the significant advances
in 3-dimensional numerical relativity in the binary black hole problem [35, 36, 169],
estimates of the radiation recoil velocity have also appeared [170, 171].

Each of the approaches described above has its own limitations. Analytic ap-
proaches are able to provide accurate estimates in their region of validity. However,
the largest contribution to the recoil velocity occurs during merger, precisely where the
approximation methods break down. Numerical simulations, in principle, have the op-
portunity of producing estimates with a minimal number of assumptions. However, as
we have mentioned, these calculations have also limitations and use initial data that is
only an approximation to the actual astrophysical configurations. Therefore, the error
bars on the computed distribution of recoil velocities relative to the distribution present
in nature are believed to be large and, even worse, are difficult to estimate. It is then
not surprising to find disagreements on the estimated recoil velocity as calculated with
different methods.

In this paper, we present estimates of the recoil velocity using an approach not
used before, the close-limit approximation (CLA), which combines both analytical and
numerical techniques. The CLA was introduced by Price and Pullin [13], who showed
that this approximation method provides accurate results compared to those obtained
from numerical relativity [14] for head-on collisions of two black holes (see also [15]).
The CLA scheme is based on the assumption that in the last stage of coalescence, when
the black holes are sufficiently close to each other, the system behaves, up to a certain
degree of approximation, as a single distorted hole. Then, the CLA scheme consists of
establishing an appropriate correspondence between the binary black hole system and a
single perturbed hole. Once this correspondence is made, one can extract initial data
that can be evolved by the perturbative relativistic equations. From the outcome of
the evolution, one can estimate the fluxes of energy, angular momentum, and linear
momentum carried away to spatial infinity by the gravitational radiation emitted. The
CLA scheme has been developed and applied by a number of authors [172, 173, 174, 175,
176, 177, 178, 179]. In particular, Andrade and Price [180] used the CLA to estimate
the recoil velocity of a head-on collision of unequal-mass black holes starting from rest.

Since the CLA applies to the last stage of the merger of two black holes, it is
very appealing to use it to estimate the recoil velocity of the merger of an unequal-
mass black hole binary system. With this scheme, we obtain a maximum recoil velocity

of ∼ {17, 33, 64} km/s for a symmetric mass ratio η = M
1
M

2
/(M

1
+M

2
)
2 ∼ 0.19 and

initial proper separations of {3, 3.5, 4}M , with M the total ADM mass. Beyond a proper
separation of 4M the CLA is not expected to provide accurate results [180]. Therefore,
this method cannot account for the contributions during the inspiral and initial merger
phase. Supplementing this estimate with PN calculations up to the innermost stable
circular orbit (ISCO), we obtain a lower bound for the recoil velocity, with a maximum of
∼ 84 km/s. This lower bound neglects the initial merger phase, for which we can obtain
an approximate estimate by using either PN methods or the CLA. Since both methods
are known to overestimate the amount of radiation during the early merger phase, we
obtain, thus, an upper limit for the recoil with maxima in the range of 220 − 265 km/s.
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We also perform non-linear fits to these bounds and obtain

vfit = aη
2√

1 − 4η
(
1 + bη + cη

2
)
, (6.1)

where a = 7782 km/s, b = −2.507 and c = 2.727 for the lower bound and a = 14802
km/s, b = −1.1339 and c = 1.4766 for the upper bound.

The plan of this paper is as follows: Sec. 6.2 describes the main procedure of our
calculation; Sec. 6.3 constructs initial data for a quasicircular binary black hole system
in the 3 + 1-formalism; Sec. 6.4 maps these initial data to a single perturbed black hole
spacetime, such that it is suitable for a CLA evolution; Sec. 6.5 describes the numerical
implementation and presents results from the evolution within the CLA scheme; Sec. 6.6
estimates the lower and upper bounds, as well as constructing the non-linear fits to these
bounds; we finish in Sec. 6.7 with a summary and discussion of the main results and
points to future research to obtain improved estimates.

The conventions that we use throughout this work are the following: For the
4-dimensional spacetime, we use Greek letters for the indices and a semicolon for the
covariant derivative. The Schwarzschild metric admits a 2+2 decomposition consisting of
the warped product of a Lorentzian 2-dimensional manifold with the 2-sphere (see [181,
182]). On the 2-dimensional Lorentzian manifold indices are denoted by capital Latin
letters, the covariant derivative associated with the 2-dimensional metric is represented
by a vertical bar, and the Levi-Civita antisymmetric tensor by ǫ

AB
. On the 2-sphere

indices are denoted by the lower-case Latin letters a, b, . . . , h, the covariant derivate
by a colon, and the Levi-Civita antisymmetric tensor by ǫ

ab
. When using the 3 + 1

decomposition of spacetime quantities, spatial indices are denoted by the lower-case
Latin letters i, j, k, . . . . Uncontrolled remainders are denoted with O(A) or O(A,B),
which stands for terms of order A and terms of order A or B respectively. Although
usually, when dealing with order symbols, A and B must be dimensionless, here they
will not be, but can be made to be dimensionless through division by the appropriate
factor. We also use physical units in which G = c = 1.

6.2 Description of our Calculation

In this paper, we use the CLA scheme to calculate the recoil velocities after
the merger of an unequal-mass binary black hole system. Due to the complexity of
the calculation, we discuss here the different steps involved, while getting a glimpse
of the general scheme. First, we need to construct initial data corresponding to a non-
spinning binary black hole system in quasicircular orbital motion. The method employed
to construct the data is the standard one: we solve the constraints on an initial slice
using the York-Lichnerowicz conformal decomposition. Then, the solution needs to be
expanded in two parameters: the separation of the two black holes, based on the main
assumption of the CLA, that is, small separation between the holes; and their linear
momenta, rooted in an additional slow motion approximation [183].

The second step is to establish a map between this initial data and the generic
initial data corresponding to a perturbed single black hole. In this work we only consider
the case in which the single black hole is a non-rotating Schwarzschild hole. There
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is also the possibility of considering a Kerr black hole (see [183] for details), but the
CLA machinery in that case is more intricate. After expanding the initial data in the
separation and linear momenta, it is straightforward, after some coordinate changes, to
identify a Schwarzschild background and its perturbations.

Once the perturbations have been identified, we need to calculate initial data suit-
able for evolving the linearized (around the Schwarzschild background) Einstein equa-
tions. The spherical symmetry of the background allows us to separate the linearized
equations. Then, by decomposing the perturbations in spherical harmonics we obtain
decoupled equations for each mode. Moreover, by appropriately reparameterizing the
perturbations, we can decouple the equations for each individual mode, so that the
problem reduces to solving a master equation for a complex combination of the metric
perturbations. These master equations (usually known as the Regge-Wheeler and Zerilli-
Moncrief equations) are 1-dimensional wave-type equations containing a potential that
accounts for the effect of the background spacetime curvature. Therefore, the problem
of providing initial data reduces to finding initial conditions for these master functions.

The initial data contains three parameters that we need to specify. These pa-
rameters are associated with the initial distance between the holes, the mass ratio, and
the initial linear momentum. The mass ratio is an independent parameter that will be
used to study the functional behavior of the recoil velocity. The distance and linear
momentum parameters determine the dynamical character of the binary and, therefore,
they must be chosen carefully. To that end, we use the standard method of minimizing
the binding energy of the system, so that the binary is in a quasi-circular orbit. The
expressions that we obtain are formally the same as in Newtonian theory, although they
cannot be assigned the same interpretation, since they are expressed in terms of bare
parameters. In order to relate these parameters to meaningful physical ones, we must
introduce a proper separation and a physical mass ratio. The proper separation can be
calculated by evaluating the minimum proper distance between the marginally trapped
surfaces surrounding each individual hole.

The final step is to solve the master equations and evaluate the different physical
quantities of interest. The metric waveforms h

+
and h

×
, together with the fluxes of

energy, angular and linear momentum carried away by gravitational waves can be com-
puted in terms of the master functions and their first time derivatives. In this paper, we
include the general formulae for the linear momentum fluxes in terms of the perturbation
master functions. We present several plots of these quantities, together with plots of the
recoil velocities for different initial separations.

6.3 Initial Data

In this section, we begin the initial data construction for an unequal-mass binary
black hole system suitable to the CLA scheme. To that end, we extend the results of
Andrade and Price [180], who carried out the calculation for unboosted head-on collisions,
and also extend the results of Khanna et al [183], who constructed data for equal-mass
black holes in a quasicircular orbit. Our calculation not only allows for arbitrary mass
ratios, but it also includes higher-order terms in the expansion of the initial data, which
are essential in the calculation of the recoil.
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In order to solve the Hamiltonian and momentum constraints, we use the confor-
mal transverse-traceless method of Lichnerowicz, York and others [184, 19, 185, 20, 18].
The 3-metric γ

ij
is decomposed in terms of a conformal factor Φ and an auxiliary metric

γ̂
ij

, γ
ij

= Φ
4
γ̂

ij
, which here we assume to be conformally flat:

ds
2

= γ
ij
dx

i
dx

j
= Φ

4
(dR

2
+R

2
dΩ

2
) , (6.2)

where dΩ
2

= dθ
2

+ sin
2
θdϕ

2
is the line element of the 2-sphere. For the extrinsic

curvature K
ij
, we choose a maximal initial slice, that is, K

ij
is trace free: γ

ij
K

ij
= 0.

Then, we also conformally decompose the trace-free extrinsic curvature K
ij

as

K
ij

= Φ
−2
K̂

ij
, (6.3)

and we further make the choice that the longitudinal part of K̂
ij

vanishes, so that

K̂
ij

is a symmetric transverse traceless tensor. Then, the momentum and Hamiltonian

constraints reduce to
∇̂j
K̂

ji
= 0 , (6.4)

∇̂2
Φ = −1

8
Φ
−7
K̂

ij
K̂

ij
, (6.5)

where ∇̂
i

and ∇̂2
denote the covariant derivative and Laplacian associated with the

flat 3-metric γ̂
ij
. The momentum constraint [Eq. (6.4)] can be exactly solved using the

method of Bowen and York [21]. For a single black hole located at R = R
o

with linear

momentum P it can be written as follows:

K̂
one

ij
=

3

2|R − R
o
|2
[
2P

(i
n

j)
− (γ̂

ij
− n

i
n

j
)P

k
n

k

]
, (6.6)

P
i

is the ADM momentum of a single hole, while n
i

is a unit vector in flat three-

dimensional space directed from the location of the single hole to an arbitrary point,
namely

n
i
=

R
i −R

i

o

|R − R
o
| , (6.7)

and the vertical bars, | · |, denote the norm of vector in the flat 3-dimensional space. In
order to construct a solution for two holes, we can simply superpose two solutions of the
type of Eq. (6.6).

Before constructing the extrinsic curvature, it will be usefull to first describe the
initial physical configuration. The system we are modeling consists of two black holes
with masses M

1
and M

2
located on the X-axis, a coordinate distance d apart, as shown

in Figure 6.1. In this figure, R
1
, R

2
, and R are radial vectors that point from the origin

to hole 1, hole 2 , and an arbitrary point, respectively. Moreover, R
12

= R
2
−R

1
is also



170

a vector that points from hole 1 to 2, and P and −P are the linear momenta associated
with holes 1 and 2 respectively. Since the linear momenta are parallel to the Y -axis, the
orbital angular momentum is directed along the Z-axis. With such physical scenario,

MR12

R

P
M2

1

−P

Y

Z

X

Fig. 6.1. Schematic diagram of the initial physical configuration. The linear momenta
are parallel to the Y -axis and span the X-Y plane, so that the angular momentum is
aligned with the Z-axis.

the solution of Eq. (6.4) can be written as (see also [183]):

K̂
ij

= K̂
one

ij
[R

o
= R

1
,P ] + K̂

one

ij
[R

o
= R

2
,−P ] , (6.8)

where we have defined P = P ŷ. The ADM momentum corresponding to K̂
one

ij
is simply

P and the one associated with K̂
ij

is zero.

Let us now concentrate on the solution to the Hamiltonian constraint. Using
Eq. (6.8) in the Hamiltonian constraint leads to a source term quadratic in P . We now
introduce a slow-motion approximation, where we assume that the linear momentum P

is small, in the sense that terms of O(v
2
) are much smaller than terms of O(v), where

v is a measure of the orbital velocity. We, thus, neglect terms of O(P
2
), so that the

Hamiltonian constraint reduces to the Laplace equation

∇2
Φ = 0 . (6.9)

The solution of this equation depends on our choice of topology. If we choose the initial
slice to have a single asymptotically flat region, the solution to the conformal factor is
the Misner solution [186], but if one chooses the slice to have three asymptotically-flat
regions, the solution is the Brill-Lindquist [22] one. In this paper, we adopt the latter
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and the conformal factor takes the form of the Newtonian potential:

Φ = 1 +
m

1

2|R − R
1
| +

m
2

2|R − R
2
| , (6.10)

wherem
1

and m
2

denote the bare masses of each individual hole. One reason for choosing

the Brill-Lindquist (BL) solution is that it is simpler to manipulate, while it has also
been shown [180] to lead to essentially the same results when calculating recoil velocities

for head-on collisions. We remark that, although terms of O(P
2
) have been neglected,

they can be straightforwardly added in a perturbative fashion, but this will be studied
elsewhere.

Let us comment further on the topology of the initial slice associated with the
BL solution, as it is important in some calculations. As we have already mentioned,
this solution has three asymptotically-flat regions: one of them, Σ

0
, corresponds to the

region far from the two holes, R = |R| ≫ |R
1
| = R

1
and R ≫ |R

2
| = R

2
; the other

two, Σ
1

and Σ
2
, are associated with hole 1 and 2 respectively. By simple inspection of

the conformal factor [Eq. (6.10)], the solution seems ill-behaved at the location of the
holes, R = R

1
and R = R

2
, although it is actually not. Near each hole, the geometry

is invariant under the transformation: |R − R
Λ
| → m

2

Λ
/(4R

′
Λ
) (Λ = 1, 2). The value

m
Λ
/2 coincides with the intersection of the event horizon with the initial slice for a single

hole and it is a fixed point in the transformation. This value is sometimes referred to as
the throat, joining two asymptotically-flat regions. Therefore, the points R = R

1
and

R = R
2

are just an image of the infinities of Σ
1

and Σ
2
. For a single hole, there are two

asymptotically-flat regions, and its mass, equal to m, is the same independent of which
region we evaluate it on. In the case of a binary system, the gravitational interaction
between the holes will change the value of the individual masses. Actually, there is not
an invariant measure of them in Σ

0
, but such a measure does exist on Σ

1
and Σ

2
. Doing

the calculation yields the following result [22]

M
1

= m
1

(
1 +

m
2

2d

)
, M

2
= m

2

(
1 +

m
1

2d

)
, (6.11)

where d = |R
12
| . In Σ

0
, we can compute the total mass of the binary system, the ADM

mass of the system. We call the result M and it is given by

M = m
1
+m

2
. (6.12)

Eqs. (6.8), (6.10), and (6.3) are the initial data. We should note that, apart from our
choice of initial data (BL conformal factor and Bowen-York extrinsic curvature), there
are other possible choices that can be used in the CLA scheme. Some examples of
other possible data sets are the following: a Misner conformal factor with a Bowen-York
extrinsic curvature with inversion symmetry through the throats; Kerr-Schild initial
data [178].

The next step in the construction of the initial data is to put it in a form suitable
for the CLA scheme. Before doing so, however, it is convenient to study the parameters
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that determine the configuration described by the data. To begin with, let us introduce
the bare mass ratio

q =
m

2

m
1

. (6.13)

The initial configuration can then be fully specified in terms of the parameters (q, d, P ).
Since q and d are bare parameters, in the sense that we cannot give them a physical
meaning, we are going to introduce analogous parameters, which can be given a physical
interpretation. First, we introduce the mass ratio between the individual masses of the
holes as computed in their respective asymptotically-flat regions:

Q =
M

2

M
1

. (6.14)

The quantities q and Q are related through d via [180]:

Q = q
1 + [(1 + q)/2](M/d)

1 + [(1 + q)q/2](M/d)
, (6.15)

q =
Q− 1

2

(
1 +

M

2d

)
+

√

Q+

[
Q− 1

2

(
1 +

M

2d

)]
2

. (6.16)

Defining a useful distance is a more difficult matter. In this paper, we use the same
distance as Andrade and Price [180], which is the proper distance between the points
where the marginally trapped surfaces, surrounding each individual hole, cross the X-
axis (we obviously refer to crossing points closer to the opposite hole). When the initial
configuration does not present a common apparent horizon, these marginally trapped
surfaces are the individual components of the apparent horizon. If x

1
and x

2
stand for

these crossing points, the distance we have just defined is given by D =
∫ x

1
x
2

Φ
2
dx , which

yields

D = ∆x



1 +

m
2

1

4(X
1
− x

1
)(X

1
− x

2
)

+
m

2

2

4(x
1
−X

2
)(x

2
−X

2
)





− M
1
ln

(
X

1
− x

1

X
1
− x

2

)
+M

2
ln

(
x

1
−X

2

x
2
−X

2

)
, (6.17)

where ∆x = x
1
−x

2
> 0 , and X

1
(= R

1
) and X

2
(= −R

2
) are the x-coordinate locations

of holes 1 and 2 respectively in the conformal space. In summary, we can determine our
initial configuration either by specifying the set (q, d, P ) or the set (Q,D,P ) .

The CLA scheme assumes that the black holes are sufficiently close enough, which
allows us to expand the initial data in R≫ R

1
and R≫ R

2
. In this sense, it is useful to

choose the coordinate origin, R = 0 , in such a way that it coincides with the bare center
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of mass of the binary black hole, that is:

m
1
R

1
+m

2
R

2
= 0 . (6.18)

We can write then R
1

and R
2

in terms of the separation vector R
12

via

R
1

= χ
1
R

12
, R

2
= χ

2
R

12
, (6.19)

where we have defined

χ
1

= − q

1 + q
, χ

2
=

1

1 + q
. (6.20)

Then, it is natural to expand the initial data in the following dimensionless parameter ǫ

ǫ = |ǫ| =
d

R
, ǫ =

R
12

R
. (6.21)

A key formula for performing these expansions is the following:

1

|R − R
A
|N

=
1

RN

∞∑

ℓ=0

C
(N/2)

ℓ
(ǫ̂ · R̂)

(
χ

A
ǫ
)

ℓ
, (6.22)

where we have introduced the following unit vectors

R̂ =
R

R
, ǫ̂ =

ǫ

ǫ
, (6.23)

and where C
(N/2)

ℓ
denote the Gegenbauer polynomials. These polynomials, also known as

ultra-spherical polynomials, are a generalization of the Legendre polynomials to (N/2 +
2)-dimensional spaces, which are common in angular momentum theory [187, 188]. For
the special cases of N = 0 , 1 , 2 , these polynomials reduce to Legendre polynomials and
Chebyshev polynomials of type 1 and 2 respectively. We refer to Appendix B for more
details on these polynomials.

We now use all these definitions and results to expand the conformal extrinsic
curvature given by Eq. (6.8) in ǫ to arbitrary order. The result we obtain can be written
as follows:

K̂
ij

=
3

2R2

∞∑

ℓ=0

(
d

R

)
ℓ+1 (

χ
ℓ+1

1
− χ

ℓ+1

2

){
C

(3/2)

ℓ+1

[
2P

(i
R̂

j)
− (P · R̂) γ̂

ij

]
+ C

(5/2)

ℓ+1
(P · R̂)

× R̂
i
R̂

j
+C

(3/2)

ℓ

[
(P · ǫ̂) γ̂

ij
− 2P

(i
ǫ̂
j)

]
− C

(5/2)

ℓ

[
(P · ǫ̂) R̂

i
R̂

j
+ 2(P · R̂) R̂

(i
ǫ̂
j)

]}

+

(
d

R

)
ℓ+2 (

χ
ℓ+2

1
− χ

ℓ+2

2

)
C

(5/2)

ℓ

[
(P · R̂) ǫ̂

i
ǫ̂
j
+ 2(P · ǫ̂) R̂

(i
ǫ̂
j)

]

−
(
d

R

)
ℓ+3 (

χ
ℓ+3

1
− χ

ℓ+3

2

)
C

(5/2)

ℓ
(P · ǫ̂) ǫ̂

i
ǫ̂
j
, (6.24)

where for simplicity we have omitted the argument of the Gegenbauer polynomials, which

still is ǫ̂ ·R̂. It is worth noting that the ǫ
0

term has identically vanished due to the choice
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of coordinate origin, which coincides with the bare center of mass. Another interesting
fact is that only combinations of the (3/2)- and (5/2)-Gegenbauer polynomials appear
due to the combination of odd powers in the denominators of the extrinsic curvature.

In this paper we are going to consider terms up to O(ǫ
3
), which is enough to

get a gravitational recoil effect and actually the dominant part of it (see, e.g. [180]).
Extensions of our calculations to higher order are in principle straightforward, but we
are not going to present them here. Then, up to this order of approximation we can
rewrite Eq. (6.24) as follows:

K̂
ij

=
9

2

d

R3

{
R̂ · ǫ̂ +

1

2

d

R

1 − q

1 + q
[5(R̂ · ǫ̂)2 − 1]

} [
(P · R̂)γ̂ij − 2P

(i
R̂

j)

]

− 3

2

d

R3

{
1 + 3

d

R

1 − q

1 + q
R̂ · ǫ̂

}[
(P · ǫ̂)γ̂ij − 2P

(i
ǫ̂
j)

]

− 15

2

d

R3

{
R̂ · ǫ̂ +

1

2

d

R

1 − q

1 + q
[7(R̂ · ǫ̂)2 − 1]

}
(P · R̂)R̂

i
R̂

j

+
3

2

d

R3

{
1 + 5

d

R

1 − q

1 + q
R̂ · ǫ̂

}[
(P · ǫ̂)R̂

i
R̂

j
+ 2(P · R̂)R̂

(i
ǫ̂
j)

]

− 3

2

d
2

R4

1 − q

1 + q

[
(P · R̂)ǫ̂

i
ǫ̂
j
+ 2(P · ǫ̂)R̂

(i
ǫ̂
j)

]
+ O(Pd

3
) . (6.25)

The lowest-order contribution is of O(Pd) and it is the only contribution used by Khanna
et al [183] for grazing collisions of equal-mass black holes. The next contribution is of

O(Pd
2
) and, as far as we know, this is the first time it has been considered.
Let us now look at the conformal factor [Eq. (6.10)]. Using Eq. (6.22), we can

also expand Φ in Gegenbauer polynomials to obtain

Φ = 1 +
M

2R
+

∞∑

ℓ≥2

C
(1/2)

ℓ
(R̂ · ǫ̂) ǫℓ

(
m1χ

ℓ

1
+m2χ

ℓ

2

)
. (6.26)

It is important to recall that in solving the Hamiltonian constraint we have used a slow-

motion approximation, neglecting terms of O(P
2
). The terms we are, thus, neglecting

are of O(P
2
d
2
). This expression can also be written in terms of the parameters (q, d)

and M , and in terms of Legendre polynomials. In this way we obtain

Φ = 1 +
M

2R
+

∞∑

ℓ≥2

φ
ℓ

(
M

R

)
ℓ+1

P
ℓ
(R̂ · ǫ̂) + O(P

2
d
2
) , (6.27)

where Pℓ denotes the Legendre polynomials and where the coefficients φ
ℓ

are given by

φ
ℓ
=

1

2

{
(−1)

ℓ
+ q

ℓ−1
} q

(1 + q)ℓ+1

(
d

M

)
ℓ

. (6.28)
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The ℓ = 1-term vanishes due to the choice of the origin of coordinates in Eq. (6.18).
Finally, the expansion of the conformal factor up to third order in d is given by

Φ = 1 +
M

2R
+

1

2

q

(1 + q)2
Md

2

R3 P2(R̂ · ǫ̂)

− 1

2

q(1 − q)

(1 + q)3
Md

3

R4 P3(R̂ · ǫ̂) + O(P
2
d
2
, d

4
) . (6.29)

With this, we finish the construction of initial data to be used in the CLA scheme. To
summarize, we remark that this construction is based on expansions on two different
parameters: P (related to the slow-motion approximation) and d (related to the as-
sumption that the holes are close to each other). Since P and d have dimensions, the

meaning of these expansions is that terms of order d
N

and/or P
M

are smaller than terms

of order d
N−1

and/or P
M−1

. As we are going to see later, these expansions will provide
the leading contribution of the multipoles ℓ = 2 and ℓ = 3.

6.4 The Close Limit Approximation

The next stage in our computation is to recast the initial data just constructed
into data for a perturbed Schwarzschild black hole, which is the essence of the CLA
scheme. In this way we can extract initial data to be evolved by the corresponding
perturbation equations. Thanks to the expansions performed in the previous section,
the main task now becomes the extraction of the different multipoles from the data.

The 3-metric on the initial slice is conformally flat and hence determined by
the conformal factor Φ. If we look at the lowest-order contribution [see Eq. (6.29)] we
realize that it coincides with the 3-metric of Schwarzschild spacetime associated with the
{t = const.}-slicing in isotropic coordinates, being t the Schwarzschild time coordinate.
However, in order to make the connection with perturbation theory, it is very convenient
to reexpress the initial data in Schwarzschild coordinates:

ds
2

= f
−1
dr

2
+ r

2
dΩ

2
, f = 1 − 2M

r
, (6.30)

where we recall that M is the total ADM mass. The transformation from isotropic
coordinates to Schwarzschild coordinates is given by the following relations:

R =
1

4
(
√
r +

√
r − 2M )

2
, r = R

(
1 +

M

2R

)
2

, (6.31)

Applying this transformation to the 3-metric of our initial data we obtain:

ds
2

= F4
(
f
−1
dr

2
+ r

2
dΩ

2
)
, (6.32)

where

F =
Φ

1 + M
2R

. (6.33)
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In order to construct initial data for the perturbations, evolve it, and compute
from the result all the relevant physical information, in the next subsections we give a
summary of (non-rotating) black-hole perturbation theory and the main tools needed
for the application of the CLA scheme. Afterwards, we apply this machinery to the
construction of the initial data and describe how the energy, angular momentum, and
linear momentum fluxes carried away by the gravitational waves are evaluated.

6.4.1 Black hole perturbation theory

The CLA is based on the fact that, in the last stages of coalescence, the gravi-
tational field can be modeled, to a good degree of approximation, as the gravitational
field of a single perturbed black hole. Thus, perturbation theory plays a key role in our
calculations and it is worth reviewing its main concepts and tools. The starting point

is the assumption that the spacetime metric, g
µν
, can be written as: g

µν
= g

Sch

µν
+ h

µν
,

where g
Sch

µν
denotes the background Schwarzschild metric and h

µν
the first-order pertur-

bations. Then, we can take advantage of the spherical symmetry of the Schwarzschild
metric to simplify the structure of the perturbations and of the equations that govern
them. We can do this by expanding the perturbations in tensor spherical harmonics. It
turns out that the linearized Einstein equations (in this case, around the Schwarzschild
background) decouple for each harmonic. Not only this, we can distinguish between

the perturbative modes with polar parity, which pick up a factor of (−1)
l
under parity

transformations, and the ones that have axial parity, which pick up a factor of (−1)
l+1

.
This distinction is important because polar and axial modes also decouple.

Following this discussion, we split the metric perturbations hµν into polar and

axial perturbations, hµν = h
a
µν

+ h
p
µν

. And these perturbations can be expanded in

tensor spherical harmonics as

h
a

µν
=
∑

ℓ,m

h
a,ℓm

µν
, h

p

µν
=
∑

ℓ,m

h
p,ℓm

µν
, (6.34)

where

h
a,ℓm

µν
=




0 h
ℓm

A
S

ℓm

a

∗ H
ℓm
S

ℓm

ab


 , (6.35)

h
p,ℓm

µν
=




h
ℓm

AB
Y

ℓm
p

ℓm

A
Y

ℓm

a

∗ r
2
(K

ℓm
Y

ℓm

ab
+G

ℓm
Z

ℓm

ab
)


 , (6.36)

where asterisks are used to denote components that are given by the symmetry of these

tensors. Y
ℓm

are the scalar spherical harmonics [see Appendix B.2 for the conventions

that we use and other details]. Y
ℓm

a
and S

ℓm

a
are vector spherical harmonics and are



177

defined (for l ≥ 1) in terms of the scalar spherical harmonics by

Y
ℓm

a
≡ Y

ℓm

:a
, S

ℓm

a
≡ ǫa

b
Y

ℓm

b
. (6.37)

Finally, Y
ℓm

ab
, Z

ℓm

ab
, and S

ℓm

ab
are (symmetric) tensor spherical harmonics, which can also

be defined (Z
ℓm

ab
and S

ℓm

ab
only for l ≥ 2) in terms of the scalar spherical harmonics by

Y
ℓm

ab
≡ Y

ℓm
Ωab , Z

ℓm

ab
≡ Y

ℓm

:ab
+
ℓ(ℓ+ 1)

2
Y

ℓm
Ωab , (6.38)

S
ℓm

ab
≡ S

ℓm

(a:b)
. (6.39)

Here, the sign convention for the Levi-Civita tensor associated with the metric of the
2-sphere is: ǫ

θϕ
= sin θ. In Appendix B.2, we give the orthogonality relations for the

different harmonic objects. All perturbative quantities, scalar (h
ℓm

AB
), vectorial (p

ℓm

A
and

q
ℓm

A
), and tensorial (K

ℓm
, G

ℓm
, and q

ℓm

2
), are functions of t and r only.

The metric perturbations are in general not invariant under transformations of
the mapping between the background and perturbed spacetimes, or in other words, they
are in general not invariant under gauge transformations. However, for the case of a
spherically-symmetric background, like the Schwarzschild metric, there is a complete set
of perturbative quantities that are gauge invariant. For polar modes this set can be
chosen as follows

h̃
ℓm

AB
= h

ℓm

AB
− 2v

ℓm

A|B
, (6.40)

K̃
ℓm

= K
ℓm

+
ℓ(ℓ+ 1)

2
G

ℓm − 2
r
|A

r
v

ℓm

A
, (6.41)

where v
ℓm

A
= p

ℓm

A
− (r

2
/2)G

ℓm

|A
. And for axial modes

h̃
ℓm

A
= h

ℓm

A
− 1

2
H

ℓm

|A
+
r
|A
r
H

ℓm
, (6.42)

The equations for the metric perturbations decouple in terms of complex master
functions, so that once we solve the decoupled equations for these master functions all
the metric perturbations can be reconstructed from them. In the case of axial modes,
it was first done by Regge and Wheeler [189], and for polar modes by Zerilli [190] and
later by Moncrief [191]. These functions are made out of metric perturbations and their
first derivatives and they are gauge invariant. It is also possible to express them in a
covariant form. In the case of polar modes, the Zerilli-Moncrief function can be written
as follows [192]

Ψ
ℓm

ZM
=

r

1 + λ
ℓ

{
K̃

ℓm
+

1

Λ
ℓ

[
r
|A
r
|B
h̃

ℓm

AB
− rr

|A
K̃

ℓm

|A

]}
, (6.43)
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where λ
ℓ
= (ℓ+ 2)(ℓ − 1)/2 and Λ

ℓ
= λ

ℓ
+ 3M/r. For axial modes, instead of using the

well-known Regge-Wheeler master function

Ψ
ℓm

RW
= −f

r
r
|A
h̃

ℓm

|A
, (6.44)

we are going to use the master function introduced by Cunningham, Price and Mon-
crief [193], in the form used in [194, 192]. The main reason for this choice is that it
is simpler to evaluate the fluxes of energy, angular momentum, and linear momentum.
Moreover, the contributions of axial modes to these physical quantities have the same
form as the one of polar modes. Nevertheless, for the sake of completeness, we provide
formulae for both master functions. The Cunningham-Price-Moncrief master function
can be written in covariant form as [192]

Ψ
ℓm

CPM
=

r

λ
ℓ

ǫ
AB
(
h̃

ℓm

B|A
− 2

r
r
|A
h̃

ℓm

B

)
. (6.45)

In Schwarzschild coordinates these functions take the following form (the connection
with the Regge-Wheeler parameterization of the perturbations is given Appendix C)

Ψ
ℓm

ZM
=

r

1 + λ
ℓ

{
K

ℓm
+ (1 + λ

ℓ
)G

ℓm

+
f

Λ
ℓ

[
fh

ℓm

rr
− r∂

r
K

ℓm − 2

r
(1 + λ

ℓ
)p

ℓm

r

]}
, (6.46)

Ψ
ℓm

RW
= −f

r

(
h

ℓm

r
− 1

2
∂

r
H

ℓm
+

1

r
H

ℓm
)
, (6.47)

Ψ
ℓm

CPM
= − r

λ
ℓ

{
ḣ

ℓm

r
− ∂

r
h

ℓm

t
+

2

r
h

ℓm

t

}
. (6.48)

These master functions obey the following wave-type equation with a potential:

[
−∂2

t
+ ∂

2

r
∗

− V
RW/ZM

ℓ
(r)

]
Ψ

ℓm

CPM/ZM
= 0 , (6.49)

where r
∗

is the so-called tortoise coordinate (r
∗

= r+2M ln(r/(2M)−1)). The potential

for the axial modes is the Regge-Wheeler potential

V
RW

ℓ
(r) =

f

r2

(
ℓ(ℓ+ 1) − 6M

r

)
, (6.50)

and the one for polar modes is the Zerilli potential

V
ZM

ℓ
(r) =

f

r2Λ2

[
2λ

2

ℓ

(
1 + λℓ +

3M

r

)
+ 18

M
2

r2

(
λℓ +

M

r

)]
, (6.51)
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Once the different master functions have been computed we can estimate the en-
ergy and angular momentum carried out by the radiation field to infinity. We can do this
by using the expressions of the energy and angular momentum fluxes at infinity obtained
from the Isaacson’s averaged energy-momentum tensor for gravitational waves [195, 196]
(see also [197, 59]). In terms of the axial and polar master functions the expressions are

Ė
GW

=
1

64π

∑

ℓ≥2,m

(ℓ+ 2)!

(ℓ− 2)!

(
|Ψ̇ℓm

CPM
|2 + |Ψ̇ℓm

ZM
|2
)
, (6.52)

L̇
GW

=
1

64π

∑

ℓ≥2,m

im
(ℓ+ 2)!

(ℓ− 2)!

(
Ψ̄

ℓm

CPM
Ψ̇

ℓm

CPM
+ Ψ̄

ℓm

ZM
Ψ̇

ℓm

ZM

)
. (6.53)

We can also construct the metric waveforms by using

h
+
− ih

×
=

1

2r

∑

ℓ≥2,m

√
(ℓ+ 2)!

(ℓ− 2)!

(
Ψ

ℓm

ZM
+ iΨ

ℓm

CPM

)
−2
Y

ℓm
, (6.54)

where
−2
Y

ℓm
denotes the spherical harmonics of spin weight −2 (see, e.g. [198] and

Appendix B.3 for details). In this work we are interested in studying the gravitational
recoil due to the merger of unequal-mass black-hole binary systems and therefore, we
want to evaluate the flux of linear momentum emitted in gravitational waves. This
quantity can also be computed from the Isaacson’s energy-momentum tensor and can be
written in terms of the metric waveforms as follows:

Ṗ
k

GW
=

r
2

16π

∫
dΩ r̂

k

obs

(
ḣ

2

+
+ ḣ

2

×

)
, (6.55)

where r̂
k

obs
is a unit vector that points from the source to the observer. We can then

express the components of r̂
k

obs
in terms of scalar spherical harmonics as

r̂
k

obs
= −2

√
2π

3

(
ℜ(Y

1,1
) ,ℑ(Y

1,1
) ,−Y

1,0

√
2

)
, (6.56)

where ℜ and ℑ denote the real and imaginary parts of a complex number. By simple
inspection of the linear momentum flux in Eq. (6.55), and taking into account the har-

monic structure of the metric waveforms in Eq. (6.54) and of r̂
k

obs
in Eq. (6.56), we realize

that all terms in the flux contain the product of three spherical harmonic objects. There-

fore, in order to obtain a practical expression for Ṗ
k

GW
we need to use the machinery for

studying coupled angular momenta common in quantum physics [187, 188]. The calcu-
lation goes along the lines described in [59], and some details are given in Appendix D.
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The result can be written in the following form

Ṗ
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GW
= − 1

64π
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, (6.57)
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−
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, (6.58)

Ṗ
z

GW
=

1

32π

∑

ℓ≥2,m

(ℓ+ 3)!

(ℓ− 2)!

√
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32π
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(
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)
. (6.59)

In conclusion, all we need to extract relevant physical information is the master functions.
In the next subsections, we extract initial data for these master functions.

6.4.2 Relation between ADM variables and metric perturbation

In section 6.3, we constructed initial data for a binary black hole system in coa-
lescence. The procedure used for this construction was based on the 3 + 1 ADM formal-
ism [199] and, hence, the initial data is given in terms of ADM variables [Eqs. (6.29),
(6.25) and (6.3)]. Then, in order to build initial data for the evolution of the master
functions, we need to first find the relation between the ADM variables and the metric
perturbations (see, e.g. [200]). This means that we need to use the relations between
the components of the 3-metric γ

ij
and the metric perturbations, and also the rela-

tions between the metric perturbations and their first derivatives and the components
of the extrinsic curvature K

ij
. For the former, we use the fact that the components of
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the 3-metric are the spatial components of the orthogonal projection operator on the
hypersurfaces of the spacetime slicing, described by a normal n

µ
:

γ
µν

= g
µν

+ n
µ
n

ν
. (6.60)

Then, the different modes of the harmonically decomposed 3-metric are related to the
metric perturbations via

γ
ℓm

tt
= −f δ0,0

, (6.61)

γ
ℓm

tr
= h

ℓm

tr
Y

ℓm
, (6.62)

γ
ℓm

ta
= p

ℓm

t
Y

ℓm

a
+ h

ℓm

t
S

ℓm

a
, (6.63)

γ
ℓm

rr
= f

−1
δ
0,0

+ h
ℓm

rr
Y

ℓm
, (6.64)

γ
ℓm

ra
= p

ℓm

r
Y

ℓm

a
+ h

ℓm

r
S

ℓm

a
, (6.65)

γ
ℓm

ab
= r

2
Ω

ab
δ
0,0

+ r
2
(
K

ℓm
Y

ℓm

ab
+G

ℓm
Z

ℓm

ab

)

+ H
ℓm
S

ℓm

ab
. (6.66)

The first three equations are related to the choice of slicing, that is, to the choice of shift

vector β
i
and lapse α . Actually, the lapse and shift at first order are given by

α
2

= f(1 − fh
tt
) = f − h

tt
+ O(h

2
) , (6.67)

β
i

= ht

i
+ O(h

2
) . (6.68)

The relation between the extrinsic curvature and the metric perturbations can be
found through the relation between the 3-metric and the extrinsic curvature

K
µν

= −1
2£n

γ
µν
, (6.69)

where the symbol £ denotes Lie differentiation, and Eq. (6.60) between the 3-metric and
the spacetime metric. In this way, we find that the different modes of the harmonically
decomposed extrinsic curvature are related to the metric perturbations by the following
expressions:

K
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[
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, (6.70)
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,(6.71)
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[
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+
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]
S

ℓm

ab

}
, (6.72)



182

where the dots and primes denote partial differentiation with respect to time t and radial
coordinate r respectively.

6.4.3 Initial data for the metric perturbations

Before computing initial data for the master functions, we must find data for the
metric perturbations, that is, find (h

µν
, ḣ

µν
), in the parameterization given in Eqs. (6.35)

and (6.36) on the initial slice t = t
o
. To begin with, since our 3-metric is conformally

flat, the following metric perturbations vanish on the initial slide:

p
ℓm

r
= G

ℓm
= 0 , h

ℓm

r
= H

ℓm
= 0 . (6.73)

We have also seen that the conformal factor, the physical and the conformal extrinsic
curvatures can be formally expanded in powers of d and P as follows

Φ = Φ
(0)

+ Φ
(2)
d
2
+ Φ

(3)
d
3
+ O(P

2
d
2
, d

4
) , (6.74)

K̂
ij

= Pd K̂
(1)ij

+ Pd
2
K̂

(2)ij
+ O(Pd

3
) , (6.75)

where K̂
(1)ij

and K̂
(2)ij

are the coefficients of the terms of order Pd and Pd
2

respectively

in the expansion of K̂
ij

. Then, the physical extrinsic curvature, K
ij

, given by Eq. (6.3),

can be formally expanded in the form

K
ij

= Φ
−2

(0)

(
Pd K̂

(1)ij
+ Pd

2
K̂

(2)ij

)
+ O(Pd

3
) , (6.76)

which means that in order to obtain the physical extrinsic curvature up to O(Pd
2
) we

only need the zero-th order piece of the conformal factor. The explicit expressions of the
coefficients of these expansions are given by equations (6.29), (6.25) and (6.3).

With this in mind, we are going to extract the remaining modes of the initial data.
To that end, we use the expression of the separation vector ǫ̂ in spherical coordinates,
namely

ǫ̂
i
=

(
sin θ cosϕ ,

cos θ cosϕ

R
,− sinϕ

R cos θ

)
. (6.77)

Then, the non-zero components of the 3-metric on the initial slice are given by

γrr = f
−1

[
1 + 2

q

(1 + q)2
Md
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Md

3

r4
1

σ7P3(ξ)

]
+ O(P

2
d
2
, d

4
) ,

(6.78)
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]
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d
2
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4
) ,

(6.79)
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where we have introduced the following definitions

ξ = sin θ cosϕ , σ =
1 +

√
f

2
. (6.80)

We can now rewrite the 3-metric in terms of spherical harmonics as follows
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In order to repeat this procedure with the extrinsic curvature, we first need to
compute the components of the conformal extrinsic curvature with the separation vector
ǫ̂ of Eq. (6.77). The components of the conformal extrinsic curvature are given by

K̂
RR

= 3
Pd
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2
θ sin(2ϕ) − 3
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) . (6.88)

Here we have checked that the terms of O(Pd) agree with those in [183] (up to a typo
in their value of the {θ, ϕ} component). The next step is the calculation of the physical
extrinsic curvature in terms of spherical harmonics and Schwarzschild coordinates. This
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quantity is given by
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(6.91)

Eqs. (6.81,6.82) and (6.89)-(6.91) give the complete harmonic decomposition of the initial
data (γ

ij
,K

ij
). We must now extract the initial values of the metric perturbations and

their time derivative by comparing these expressions with Eqs. (6.64)-(6.66) and (6.70)-
(6.72). To simplify notation, we now drop the truncation error in all equations, since
it has already been given in the main expansions. Comparison of Eqs. (6.81,6.82) with
Eqs. (6.64)-(6.66) yields the non-vanishing initial metric perturbations, namely
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As we can see, all the axial metric perturbations initially vanish. Now, in order to obtain
the initial values of the time derivative of the metric perturbations, we must compare
Eqs. (6.89)-(6.91) with Eqs. (6.70)-(6.72). It is important to realize that in Eqs. (6.70)-
(6.72) there are terms that are associated with the gauge freedom of choosing the slicing,
more specifically, terms associated with components of the shift vector [see Eq. (6.68)].
Moreover, there is no unique way of assigning values to the different time derivatives
of the metric perturbations and the metric perturbations themselves. This reflects the
fact that the values of the metric perturbations are gauge dependent, since in general
the components of the metric perturbations (and their time derivatives) are not gauge
invariant. Keeping this in mind, we have assigned the following initial values to the time
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derivatives of the metric perturbations: the non-vanishing polar modes are
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and the axial ones are
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By using the correspondence between our parameterization of the metric perturbations
and that of Regge Wheeler [Eqs. (C.1)-(C.5) in Appendix C] we have checked that up to

O(d
2
) and O(Pd) our expressions agree with those found in [183] (up to a typo in their

ḣ
1,0

r
). We have decided to assign values to the time derivatives of the metric perturbations

and the metric perturbations themselves by the following usual convention: all modes
with ℓ = 1 are assigned to metric perturbations associated with the shift vector. These
perturbations represent either translations or rotations of the observers associated with
the normal to the initial slice with respect to our coordinate system. In our case, these
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perturbations are given through the following relationships
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Pd
2
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√
f
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Here, two comments are in order. First, one can see that these equations are consistent
in the sense that the derivative of Eq. (6.112) with respect to r can be reduced to a
trivial identity by using Eqs. (6.110) and (6.111). Second, from these equations we can
immediately see that the shift vector is different from zero [see Eq. (6.68)]. A non-zero
shift could in principle be a problem if we wanted to place observers at constant r (in
the wave zone), evaluate the linear momentum flux, and then infer a recoil velocity of
the final black hole after the merger. If we were to do this, the measured velocity would
have a component due to the motion of the observers with respect to the position of the
final black hole, as described by the shift vector. This contribution would then have to
be subtracted, but it can be seen that the shift vector decays quite fast as r becomes
large and, hence, this effect would be negligible.

6.4.4 Initial data for the master functions

Using the initial data for the metric perturbations [Eqs. (6.92)-(6.95), (6.96)-
(6.106), and Eqs. (6.107)-(6.109)] in the master functions [Eqs. (6.46)-(6.48)], we can

compute initial data for them: (Ψ
ℓm

ZM
, Ψ̇

ℓm

ZM
) , (Ψ

ℓm

RW
, Ψ̇

ℓm

RW
) , and (Ψ

ℓm

CPM
, Ψ̇

ℓm

CPM
) on

the initial slice t = t
o
.

The results for the Regge-Wheeler master function are:

Ψ
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= 0 , (6.113)
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and for the Cunningham-Price-Moncrief master function are
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Ψ̇
ℓm

CPM
= 0 . (6.116)
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In the same way, the non-vanishing initial data for the Zerilli-Moncrief master
functions is given by
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= −2

3

√
π

5

q

(1 + q)2
Md

2

r2
1 + 5σ

Λ2σ
5 , (6.117)
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5 , (6.118)
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Ψ̇
3,±1

ZM
= − i

2

√
π

21

1 − q

1 + q

Pd
2

r3

√
f

Λ3σ
3

[
10σ + (1 + 3σ)

M

r

]
, (6.122)
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Note that the master equations do not have the same uncontrolled remainders as its
derivatives, since they come from different components of the initial data. In the case of

unboosted head-on collisions [180], the initial data scales in powers of d
N

. Therefore, one
only needs to perform one single numerical evolution of the master functions for some
reference value of d = d

⋆
, and the results for any other value of d can be found using the

scaling relation. For non-time-symmetric data, such as for quasicircular or boosted sets,

such scaling does not exist. In our case, for example, although Ψ
ℓm

ZM
still scales as d

N
, its

time derivative Ψ̇
ℓm

ZM
scales as Pd

N
. Therefore, the master functions themselves are not

straightforwardly scalable and several runs with different values of the initial parameters
must be performed.

6.5 Results from the CLA

In this section, we evolve the master functions with the initial data obtained in
the previous sections in the CLA scheme and report the results for the main physical
quantities, in particular for the gravitational recoil velocities. We first need to choose
appropriately the parameters that completely determine the initial data, such that it de-
scribes a binary black hole system merging from a quasicircular orbit (subsection 6.5.1).
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Then, in subsection 6.5.2, we use a numerical code to evolve the different master equa-
tions [Eqs. (6.49)] and compute the relevant physical quantities. We discuss the results
and compare with previous ones in the literature when possible.

6.5.1 Determining the parameters of the initial data

Our initial data depends on the following parameters:

• The total (ADM) mass of the system, M ;

• The mass ratio, where one can use either the bare mass ratio q or the physical one
Q, related by Eqs. (6.15) and (6.16).

• The initial separation, where again one can use the bare separation d or the physical
one D, related by Eq. (6.17);

• The linear momentum parameter P of each individual hole.

Within the family of initial data spanned by these four parameters, we need to
single out the subset that corresponds to configurations in quasicircular orbital motion.
In numerical relativity this is done by looking at the minimum in the binding energy of the
system with respect to the distance, while keeping the total ADM angular momentum
constant (see, e.g. [18]). We here follow the same procedure without using the slow
motion approximation. The binding energy that we minimize is

Eb = M
ADM

−M
1
−M

2
. (6.124)

where M
ADM

is the total ADM mass and it is computed in the asymptotically-flat region

containing the two holes (Σ
0
). This mass is given by (see, e.g. [201])

M
ADM

= M +
5P

2

8µ
, (6.125)

where M is given in Eq. (6.12) and µ is the reduced bare mass, i.e. µ = m
1
m

2
/M .

Moreover, in Eq. (6.124), M
1
and M

2
denote the masses computed in the asymptotically-

flat regions Σ
1

and Σ
2
. These masses are given by (see, e.g. [201])

M
Λ

= M
Λ

+
P

2

8m
Λ

(Λ = 1, 2) , (6.126)

whereM
Λ

is given in Eq. (6.11). Then, the binding energy can be written in the following

form

Eb = −m1m2

d
+

J
2

2µd2 , (6.127)

where J is the ADM angular momentum, given by J = Pd . This binding energy is
formally the same as the one corresponding to a binary system in Newtonian gravity.
One can then minimize this binding energy with respects to d, while keeping J fixed, to
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obtain the condition for quasicircular motion (note that in our context there is no such
a thing as an ISCO)

d =
J

2

µ2M
. (6.128)

In the same way, one can calculate the associated orbital frequency of such orbital motion
by differentiating the binding energy with respect to J , while keeping d fixed. The result
is

Ω =
J

µd2 . (6.129)

From Eq. (6.128) we can write the linear momentum P is terms of the other parameters
of our initial data as

P = µ

√
M

d
. (6.130)

The binding energy and other quantities derived from it have a Newtonian form because
of the particular type of initial data that we are using: a conformally-flat 3-metric with a
Bowen-York extrinsic curvature and a Brill-Lindquist conformal factor. The PN metric

produced by a binary system differs from conformal flatness at O(v
4
) (see [101, 26]

for the argument in the case of time-symmetric initial data), and, hence, the binding
energy used above differs from the PN binding energy at that order. Note, however, that
although the binding energy, linear and angular momentum used here have a Newtonian
form, they are not strictly Newtonian. This is mainly because the distance parameter d
is not the physical distance D, which is related to the parameter d via Eq. (6.17).

Adopting Eq. (6.130) for the linear momentum parameter in our initial data and
leaving the total mass M fixed (which defines a system of units), we reduce our initial
parameter space to a 2-dimensional one. The final parameter space can be parameterized
either by the bare quantities (q, d) or by the physical quantities (Q,D) . The range of
q, or Q, is the obvious one, i.e. [0, 1] , while the range for the bare distance parameter
d is [d

min
, d

CLA
], where d

CLA
is an estimate of the maximum distance for which the

CLA is expected to be valid. For the case of equal-mass head-on collisions, it has
been shown [172], by comparing with second-order calculations and with fully numerical
relativistic simulations, that d

CLA
∼ 1.7M , which roughly corresponds to D

CLA
∼

4M . On the other hand, in principle d
min

could be just zero however, if we adopt the

prescription (6.130) for the linear momentum parameter, then we are limited by the slow
motion approximation that we are using, which means that d

min
should be bigger than

qM/(1 + q)
2
. Finally, we should remark that the CLA also is expected to fail in the

point-particle limit [202], but, as we will see, the recoil is very small when Q≪ 1.
In order to study the gravitational recoil in the CLA scheme, we are going to

evaluate the recoil velocity for a representative number of (physical) mass ratios for a
given fixed physical distance D . In particular, we study the cases D = 3 , 3.5 , 4M and
instead of using Q we use the physical symmetric mass ratio

η =
M1M2

(M1 +M2)
2 =

Q

(1 +Q)2
. (6.131)
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The inverse relation is given by

Q =
1

2η

(
1 −

√
1 − 4η

)
− 1 . (6.132)

However, the parameters that appear in our expressions for the initial data are the bare
ones. Then, in order to obtain a plot of the recoil velocity in terms of the physical
mass ratio, we need to translate from the set (Q,D) to (q, d). This, however, is not a
trivial calculation because the definition of D [Eq. (6.17)] is quite intricate, involving x

1
and x

2
. These numbers are the values of the coordinate x in the conformal flat space

of the intersections of the extremal surfaces (marginally trapped surfaces or apparent
horizons depending on the parameters of each particular configuration) surrounding each
individual hole with the X-axis. The translation has to be done numerically through the
following iteration scheme in which the physical distance D is kept fixed:

1. Given a value of η we pick an initial guess for the bare distance, say d
∗
.

2. By solving the equations that determine the extremal surfaces surrounding each
individual holes (they are given in Appendix E) we find some intersection points x

∗
1

and x
∗
2
. This requires another iteration, since we do not know a priori where these

surfaces are located. What we do is to start, for each individual hole, with an initial
guess for the intersection of the extremal surface at the other end of the X axis
(the intersection more distance to the other hole) and integrate the corresponding
ODEs by using an extrapolation Bulirsch-Stoer scheme [203, 204, 205]. Then we
study whether the integration ends far away from the X axis or converges towards
it. We repeat the iteration until we find the intersection points x

∗
1

and x
∗
2

with

enough accuracy.

3. Using Eq. (6.17) we compute the physical distance associated with these values of
the intersection points and (q

∗
, d

∗
) [where q

∗
is computed in terms of η and d

∗
using

expressions (6.132) and (6.16)], D
∗
. We compare D

∗
and D and stop the iteration

if the absolute difference between them is smaller than 10
−4
M . Otherwise, we go

back to point (i) changing the ansatz depending on whether D
∗

is bigger or smaller

than D .

We have carried out this iteration for 101 values of η . The coordinate distance
(in the conformally related flat space) from the holes to the intersection points of the
extremal surfaces is shown in Figure 6.2. Here, we observe how these distances move
from equal values (top right) to the values corresponding to the point particle limit,
M

2
→ m

2
→ 0 (top left). The bare distance as a function of η is shown in Figure 6.3

for the three values of fixed proper separation.

6.5.2 Results from the numerical evolution of the master equations

We now have initial data for the master equations and also a method to prescribe
the initial data parameters in a meaningful way. Then, the next step is to evolve the
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Fig. 6.2. Plot of the coordinate distance between the holes and the intersection points
of the extremal surfaces with the X-axis in terms of the symmetric mass ratio η for three
values of the physical distance: D = 3 , 3.5 , 4M .

master equations [Eq. (6.49)]. In this paper we use a numerical code, based on Finite
Element methods, that was developed in [206] for calculations of the gravitational ra-
diation emitted by a point particle orbiting a non-rotating black hole. This method is
based on linear elements and hence it has a second order convergence rate with respect
to the spatial resolution. The time-evolution algorithms that it uses are second-order
and unconditionally stable, since they are based on implicit methods. Apart from the
tests of the numerical code carried out in [206], we have also done some checks to val-
idate the additional infrastructure added for the gravitational recoil calculations in the
CLA scheme. First, we have checked that the energy and angular momentum emitted
in an equal-mass grazing collision coincide with the ones found by Khanna et al in [183].
Second, we have checked that the recoil velocities that we obtain are consistent with the
plots shown by Andrade and Price [180] for the case of head-on collisions from rest of
unequal mass black holes using BL initial data.

We have then performed evolutions for 101 equally-spaced values of the symmetric
mass ratio η covering the whole range [0, 0.25] for the three values of the physical distance
mentioned above, i.e. D = 3 , 3.5 , 4M . The procedure to calculate the bare distance d
has been described in the previous subsection. Finally, the linear momentum parameter
P is obtained through Eq. (6.130). For each evolution we have computed the fluxes of
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Fig. 6.3. Plot of the bare distance d in terms of the symmetric mass ratio η for three
values of the physical distance: D = 3 , 3.5 , 4M .

energy, angular momentum and linear momentum carried by the gravitational waves to
infinity.

Our initial data only has a few non-zero multipoles contributing to the gravita-
tional radiation emitted. Thus, the expressions for the different fluxes simplify dramat-
ically. The energy flux is given by

Ė
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, (6.133)

Figure 6.4 shows the total energy to infinity, given by the integral of Eq. (6.133) over
time, as a function of the symmetric mass ratio.

The angular momentum flux also simplifies greatly and becomes
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. (6.134)
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Fig. 6.4. Energy radiated to infinity in terms of the symmetric mass ratio η for three
values of the physical distance: D = 3 , 3.5 , 4M .

Note that Eq. (6.134) does not contain any contributions from the axial modes, since

the only non-zero axial mode, Ψ
2,1

CPM
, is purely real. Figure 6.5 shows the total angular

momentum radiated to infinity, given by the integral of Eq. (6.134), as a function of the
symmetric mass ratio.

Finally, the gravitational waveform also simplifies, and we obtain
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, (6.135)

h
×

= −2
√
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r
ℜ(Ψ
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CPM
)ℜ(−2Y

2,1
) , (6.136)

where the definition and some properties of the spin-weighted spherical harmonics
s
Y

ℓm

are given in Appendix B.3. Note that the ×-polarization consists purely of the axial
modes, while the +-polarization contains only polar contributions. Figure 6.6 shows a
typical metric waveform, namely h+ as a function of time, for an observer located at

∼ 300M on the Z-axis (the cross polarization vanishes on this axis).
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Fig. 6.5. Angular momentum radiated to infinity in terms of the symmetric mass ratio
η for three values of the physical distance: D = 3 , 3.5 , 4M .

Let us now concentrate on the main physical quantity of interest, namely the
linear momentum flux, given in Eqs. (6.57-6.59). These expressions reduce to
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Fig. 6.6. Metric waveform h
+

for the case D = 3.5M and η = 0.185 as a function of

time. The observer is located at ∼ 300M on the Z-axis

Ṗ
z

GW
= 0 . (6.139)

As we can see, there is only contributions from the overlap of polar modes with different
ℓ and m. From this flux, the recoil velocity can be obtained by performing the following
integration

v
i

recoil
= − 1

M

∫
t
f

t
i

dt Ṗ
i
, (6.140)

where the integration times, t
i
and t

f
, are such that the time interval includes essentially

all the contribution from the waves to the flux. We can then calculate the magnitude of
the recoil velocity simply by

v
recoil

=

√
(vx)2 + (vy)2 + (vz)2 , (6.141)

where v
z

= 0 in our case, due to the choices made in the initial setup. Figure 6.7 shows
the time derivatives of the master functions that contribute to the recoil velocity for
a typical evolution. In this figure, we have separated the real (bottom panel) and the
imaginary (top panel) parts of these time derivatives. Observe that the magnitude of
the ℓ = 2 modes is much bigger than the one of the ℓ = 3 modes, as expected. This also
gives an indication that the superposition of the ℓ = 2 modes with ℓ = 2 and ℓ = 3 modes
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is going to be the dominant contribution to the gravitational recoil. The contribution
from superpositions involving higher ℓ’s is going to be much smaller.

Fig. 6.7. Time derivate of the Zerilli-Moncrief and Cunningham-Price-Moncrief master
functions as a function of time, for the case D = 3.5M and η = 0.185. The plots in the
top panel represent the imaginary parts whereas the ones in the bottom panel represent
the real parts.

Figure 6.8 shows the the linear momentum flux as a function of time. Observe
that the magnitude of the x-component is bigger than the y-component, which reflects
the fact that our configuration corresponds to the transition from merger to plunge.

Finally, Figure 6.9 presents the magnitude of the recoil velocity as a function of the
symmetric mass ratio, for the following initial physical separations: D = 3 , 3.5 , 4M .
For all cases studied, the maximum velocity is reached for a symmetric mass ratio of
η ∼ 0.19, which agrees with the value reported in Refs. [49, 57] up to uncontrolled
remainders. Observe that this maximum is not a strong peak, but instead resembles a
plateau, where this maximum is spread out for a number of etas, as also seen in other
calculations [49, 57].
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Fig. 6.8. Linear momentum fluxes, Ṗ
x

GW
and Ṗ

y

GW
, as a function of time, for the case

D = 3.5M and η = 0.185 .

6.6 Estimating the total recoil

In this section, we discuss the recoil velocities obtained from the evolution of the
master functions and produce lower and upper limits for the total recoil velocity. In
particular, we will provide analytic approximations to the data and we will also compare
these results to other ones already present in the literature.

One of the limitations, and at the same time an advantage, of the CLA scheme
is that the initial separation of the black holes must be sufficiently small in some well-
defined sense. Apart from numerical relativity, this method is the only known one to
be capable of producing accurate estimates of physical quantities near plunge. This
advantage, however, is a double-edged sword since the method cannot account for the
inspiral phase. Actually, the initial separation must even be smaller than that for which
the last ISCO exists. Thus, not only is the inspiral phase neglected but also the beginning
part of the merger phase.

Due to these limitations, an approximate value for the total recoil velocity cannot
be provided by the CLA alone, without supplementing it with some other scheme valid
when the system is well separated. The PN scheme is well suited for this task and
extensive studies have been recently carried out [49, 57] to estimate the recoil velocity.
The approximate recoil velocity accumulated from infinity up to some final separation
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Fig. 6.9. Magnitude of the recoil velocity in terms of the symmetric mass ratio η for
three values of the physical distance: D = 3 , 3.5 , 4M .

in the PN scheme is given by [49]
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with remainders of O(v
5
). In Eq. (6.142), xf = (mωf )

2/3
is a PN parameter, m

PN
=

m
1,PN

+m
2,PN

is the total mass, m
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are the masses of the PN point particles, η =
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2

is the symmetric mass ratio and δmPN = m
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−m
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is the mass difference.

The PN masses m1,2,PN have been shown to agree, within the PN approximation, with

the horizon masses M1,2 [101, 26] and we make this identification here. The angular

velocity ω is given to O(v
4
) by

ω
2

=
m

PN

b3


1 +

m
PN

b
(η − 3) +

m
2

PN

b2

(
6 +

41

4
η + η

2
)
 . (6.143)
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and ωf is the angular velocity evaluated at some final coordinate separation bf . Post-

Newtonian theory is usually carried out in harmonic coordinates, which are different from
the Schwarzschild coordinate system we use in the CLA scheme. However, sufficiently

far from the holes, D ∼ b, to O(v
2
).

Supplementing the CLA estimate with the PN estimate, we can obtain upper and
lower limits on the possible values of the magnitude of the recoil velocity. A lower limit
can be obtained via

v
low

= v
CLA

[0 , 4M ] + v
PN

[6M ,∞] , (6.144)

where v
PN

[D
2
,∞] is the PN estimate for the recoil velocity of Eq. (6.142) evaluated at

bf = D
2
. For this lower limit, we evaluate the PN estimate at the edge of the region of

validity of the PN approximation, i.e. bf = 6M , or equivalently xf = 6
−3/2

, as done in

Ref. [49]. This location corresponds to the ISCO of a test particle around a Schwarzschild

hole of mass M . One obtains this value of xf (bf = 6M) by neglecting terms of O(v
2
)

and higher in Eq. (6.143). If we had included these higher order terms in ωf and xf ,

the upper bounds would have decreased by approximately 50 km/s. These higher order
terms, however, become large as b becomes smaller, and thus we choose to neglect them
to have a conservative upper bound. In Eq. (6.144), v

CLA
[0 ,D

1
] is the estimate of the

recoil velocity in the CLA approximation with an initial proper separation of D = D
1
.

The estimate of v
low

is a lower limit because it does not take into account the

contribution to the gravitational recoil in the region b ∈ (4, 6)M . In this region neither
the CLA, nor the PN scheme, is guaranteed to provide an accurate estimate for the
recoil. However, it is possible to construct upper limits by modelling either the entire
region or part of it with PN and CLA estimates. Such upper limits are given by

v
up,1

= v
CLA

[0, 4M ] + v
PN

[4M,∞] , (6.145)

v
up,2

= v
CLA

[0, 5M ] + v
PN

[5M,∞] . (6.146)

These expressions are upper limits because the contribution to the recoil estimated either
with PN theory or the CLA approximation in the region bf ∈ (4, 6)M is monotonically

increasing with bf .

Equations (6.144), (6.145), and (6.146) require some extra justification and clari-
fication. In general, it is not true that the magnitude of the total recoil can be estimated
by adding the magnitude of the integrated momentum flux in the region [4M,∞] to
that in the region [0, 4M ]. The important point is that the cut is made at a separation
D = 4M in the regime where the main contribution to the recoil comes from. Then,
the main contribution to each recoil velocity vector comes from the region near the cut
and hence, the error we made by adding the norms will be relatively small. Indepen-
dent of this argument we have the inequality v[0,∞] ≤ v[0,Dcut] + v[Dcut,∞] (with
equality when v[0,Dcut] and v[Dcut,∞] are aligned). In this sense, the proposed upper
limit is indeed always an upper limit, irrespective of the orientation of the vectors. As
for the lower limit, neglecting the accumulated recoil in the region [4M, 6M ] is a very
conservative estimate, because there the recoil accumulates greatly. Thus, the issue of
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Fig. 6.10. Estimated lower (black solid curve) and upper limits 1 (dotted red line) and
2 (dashed blue line) for the recoil velocity after a binary black hole merger as a function
of the physical symmetric mass ratio. Note that the maximum occurs roughly in the
same place, namely η

⋆ ∼ {0.19, 0.2}.

the orientation of the vectors will not affect the fact that this is a lower limit, as other
recent estimates in the literature confirm.

Figure 6.10 shows the behavior of these upper limits (red dotted and blue dashed
lines respectively) and the lower limit (black solid curve as a function of η. The maximum
in these curves occurs roughly at the same symmetric mass ratio, namely η ∼ {0.19, 0.2}.
The slight disagreement in this maximum is within error bars and rooted in that PN
theory predicts it at approximately η ∼ 0.2, while the CLA predicts it at η ∼ 0.19.
We should note that the maximum recoil from v

CLA
[0, 4M ] and v

CLA
[0, 5M ] is approxi-

mately 64 km/s and 215 km/s, while the maximum recoil from v
PN

[4M,∞], v
PN

[5M,∞]

and v
PN

[6M,∞] is approximately 160 km/s, 50 km/s, and 20 km/s respectively.

A non-linear fit can be performed to these curves via Eq. (6.1)

vfit = aη
2√

1 − 4η
(
1 + bη + cη

2
)
,

where the fitting parameters a, b and c are listed in Table 6.1.
Observe that the mean square error for all cases is small, which is an indication

that Eq. (6.1) is a good analytic model for the functional form of the recoil velocity. In
this table, we also present the values corresponding to the estimates of Refs. [49] (BQW)
and [57] (DG.) Since the predictions of these references are based on analytic formulae,
the mean square error can be made arbitrarily small by increasing the number of points
in the discretization of the analytic curve.

With the analytic fits to the upper and lower limits, we can construct a curve
that is in between these limits with an error given by the distance from the curve to
the upper or lower bound. Such a curve is given by Eq. (6.1) with the following fitting
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Model a (km/s) b c Mean square error

v
CLA

[0, 3M ] 1841 −3.31 3.45 0.001

v
CLA

[0, 3.5M ] 3548 −3.15 3.33 0.003

v
CLA

[0, 4M ] 6576 −2.98 3.21 0.008

v
low

7782 −2.51 2.73 0.008

v
up,1

14802 −1.13 1.48 0.008

v
up,2

23124 −2.33 2.61 0.06

v
BQW

12891 0.25 0 10
−8

v
DG

4483 −0.95 2.68 10
−10

Table 6.1. Values of the parameter of the non-linear fitting for the following models:
the CLA with initial separations of D = {3, 3.5, 4}M ; the lower and upper limits of
Eqs. (6.144)-(6.146); Taylor PN (BQW) and EOB PN (DG) calculations [49, 57].

parameters

a =
alow + aup

2
, (6.147)

b =
alowblow + aupbup

alow + aup

, (6.148)

c =
alowclow + aupcup

alow + aup

, (6.149)

while the error on this curve is also given by Eq. (6.1) with the following fitting param-
eters

a =
alow − aup

2
, (6.150)

b =
alowblow − aupbup

alow − aup

, (6.151)

c =
alowclow − aupcup

alow − aup

, (6.152)

where the subscript low and up stand for the fitting parameters of the lower or upper
limit respectively. This curve is only an alternative way to visualize the upper and lower
limits of Fig. 6.10. The curve is not to be interpreted as the best guess in this work,
since in principle, the recoil velocities present in nature could be closer to either upper
or lower limit.

We can now compare these estimates of the recoil velocity with those present
in the literature. Fig. 6.11 shows the recoil velocity in units of km/s as a function of
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Fig. 6.11. Estimates for the recoil velocity (km/s) of the inspiral and merger of a
binary system of compact object as a function of the physical symmetric mass ratio
parameter. The symbols used are the following: squares and triangles stand for black
hole perturbation theory results [46, 48]; circles stand for Lazarus results [166]; stars and
crosses correspond to full numerical relativistic simulation [170, 171]; the dotted line and
the dashed line correspond to 2 PN Taylor expansions [49] and 2 PN effective-one-body
expansions [57] respectively. The solid black line corresponds to the estimate of this
paper, which, together with the error bars, condense both upper and lower limits. Other
error bars, when present, correspond to an estimate of some of the error contained in
the calculation.

the physical symmetric mass ratio as estimated in the literature and by this paper. As
is clear from the figure, there are many approaches to calculate this velocity and not
all of them agree. The symbols used are the following: squares and triangles stand
for the results obtained using black hole perturbation theory in the extreme-mass ratio
approximation in Refs. [46, 48] respectively; circles stand for the calculations carried out
via the Lazarus approach [166]; stars and crosses correspond to the results coming from
a full numerical relativistic simulation (PSU stands for Ref. [170] and NASA stands for
Ref. [171]); the dotted line and the dashed line correspond to the 2 PN Taylor expansion
approach [49] and the 2 PN effective-one-body (EOB) approach [57] respectively. The
solid line with error bars is the estimate of Eq. (6.149,6.152) that properly condenses the
lower and upper limits into one curve. We briefly describe each approach below.

In the PN calculations of Ref. [49], the recoil velocity (dotted line in the figure)
and momentum flux are estimated by studying the 2 PN Taylor-expanded radiative
moments of a binary system of compact objects, while in Ref. [57] an effective-one-
body approach is used (dashed line in the figure.) Post-Newtonian calculations are
usually valid only when the binary is weakly gravitating, or equivalently when the orbital
separation is greater than the ISCO. In this regime, the recoil velocity (Eq. (6.142) has
been found to be small for any mass ratio (usually less than 20 km/s), since, as expected,
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most of the contribution to the recoil comes from the merger part of the inspiral. In
Ref. [49] the calculation is extended through the merger by integrating the 2 PN Taylor-
expanded momentum flux along a geodesic of the Schwarzschild metric. On the other
hand, Ref. [57] uses the effective-one-body Hamiltonian to extend the inspiral through
the merger. Both of these approaches have inherent errors that are difficult to estimate
without calculating the 3 PN contributions to the recoil velocity.

Black hole perturbation theory has also been used to estimate the recoil velocity
in Refs. [46, 48]. In these studies, the extreme-mass ratio approximation is adopted (i.e.,
Q ≪ 1) and then the system is approximated as a point particle orbiting a black hole.
The first study of the recoil velocity using this formalism was performed in Ref. [46]
(squares in the figure), but there the gravitational force was treated as Newtonian and
only the lowest multipoles were considered. In Ref. [48], these relativistic effects were
taken into account, as well as spin, and the velocity estimates were improved (triangles
in the figure.) The extreme-mass ratio approximation, however, requires Q ≪ 1, which
allows the exploration of a limited section of the η-space.

A combination of black hole perturbation theory and full numerical relativity
(the so-called Lazarus approach) has also been implemented to estimate the recoil ve-
locity [166]. In this case, a full numerical relativistic simulation is carried out until the
black holes merge and a single perturbed spinning black hole has formed. Then, this
spacetime is used as initial data in a Teukolsky evolution to determine the recoil velocity
(circles in the figure.) The error in this calculation is rooted in the interpretation of the
initial data as that of a perturbed Kerr spacetime. Finally, there have also been recently
full numerical relativistic simulations of binary black hole coalescence [170, 171] (shown
as stars and crosses respectively in the figure.) In this case, the error shown in the figure
is assumed to be given only by finite differencing, while the error due to initial data is
neglected.

Even though there has been much work in the calculation of the recoil velocity
there is still some disagreement. In Fig. 6.11 we observe that there seem to be three
groups of results: one that clusters around the 2 PN Taylor expanded result; another
that is close to the 2 PN effective-one-body result; and a third one that is in between
the first two. This disagreement, however, is misleading in several ways. First, some
estimates of the recoil velocity quote no error bars, as is the case of the first perturbation
theory approach [46] and the 2 PN effective-one-body approach [57]. Second, the error
bars that do exist in other calculation are only estimates and could very well have been
underestimated. A surprising disagreement is between the PN approaches, since when
used to calculate other quantities, such as the angular frequency at the ISCO, they do
agree. This disagreement seems to be rooted in the fact that the greatest contribution
to the recoil velocity comes from the merger part of the inspiral, where neither extension
of the PN approach is guaranteed to be accurate.

Our estimates seem to agree with most results if one accounts for error bars. The
results of Refs. [46, 166, 48] (squares, triangles and circles in the figure) seem to overesti-
mate the recoil, which is expected in the case of the extreme-mass ratio approximation.
The PN results of Refs. [49, 57] seem to overestimate and underestimate the recoil re-
spectively, but they are consistent with our bounds if one takes their error bars (not
shown in the figure) into account. The full numerical relativity results seem to overlap
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with our bounds, although there are only a few of them. We should note that our bound
seems to disagree with the full numerical relativistic result for η ∼ 0.18, but that result
seems to be an underestimate because of the small initial separation [207].

6.7 Conclusions and Discussion

We have calculated the recoil velocity after the merger of an unequal mass binary
black hole system using the CLA scheme. This approximation assumes that the black
holes are close enough that the system can be approximated by a single perturbed black
hole spacetime. In contrast to other approaches, except for full numerical relativity,
this approximation allows us to make valid statement about physical process when the
system is close to plunge. Therefore, it is of great interest to use this method for the
study of gravitational recoil. However, the CLA has the disadvantage that it cannot be
used during the beginning of the merger or the inspiral phases.

Initial data for the CLA can be constructed analytically by mapping data suit-
able for a binary black hole inspiral to that of a single perturbed hole. With such
initial data, the Cunningham-Price-Moncrief and the Zerilli-Moncrief master functions
can be numerically evolved from some initial proper separation through ringdown. These
gauge-invariant master functions contain all the information necessary to evaluate the
gravitational metric waveforms and, thus, the energy, angular momentum and linear
momentum fluxes carried away from the system.

The results obtained can be summarized as follows. First, the maximum recoil ve-
locity obtained in the CLA scheme is of v ∼ 64 km/s for the maximum initial separation
allowed by this method (D = 4M). This maximum occurs at a symmetric mass ratio
of η ∼ 0.19. By supplementing this estimate with PN ones valid in the inspiral regime,
we obtain lower and upper bounds with maxima of v ∼ 84 km/s and v ∼ 220 km/s
respectively. We have further provided non-linear analytic fit functions that conveniently
parameterize these bounds, together with the results from the CLA, and other results
in the literature. These results also suggest that there is a region around D ∼ {4, 6}M
that greatly contributes to the recoil, but can only be poorly modelled by current ap-
proximation schemes.

Ultimately, the estimates presented here suffer of the same predicaments as other
calculations. Due to its analytical nature, the CLA relies on certain assumptions that do
not hold over the entire history of the binary. Such assumptions introduce an error in the
estimated recoil that is difficult to quantify. In particular, the assumptions made here
are the following: close separations ; slow-motion; simple initial data. The close-limit
assumption is essential to allow a mapping of a binary inspiral to a single perturbed
spacetime. The slow-motion approximation supplements the close-limit assumption and
can, in principle, be improved on in future extensions of this work. The choice of initial
data is assumed to represent the gravitational content of some initial slice, although we
know that this fails even at large separation because it does not agree with the devi-
ations from conformal flatness predicted by PN theory. Moreover, it does not contain
any radiation, which is not what it should be expected for initial data corresponding
to a snapshot of the orbital evolution. Due to these assumptions, the estimate of the
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recoil velocity will be contaminated by some error. However, experience in CLA calcula-
tions indicates that the error made only overestimates the physical quantities calculated,
relative to full numerical simulations [175, 208, 183].

Future work will concentrate on extending this approach to second order in P
and to other, more realistic, initial data sets [105, 93]. Ultimately, it would be inter-
esting to compare the CLA approach directly to full numerical relativistic simulations
in an attempt to determine the region of validity of the CLA more accurately. Another
possibility is to use a multi-parameter perturbation scheme (see [209, 210, 211, 212])
where perturbations in the linear momentum and separation parameters can be cleanly
separated at the different perturbative orders.
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Chapter 7

Gravitational recoil velocities

from eccentric binary black hole mergers

The formation and growth of supermassive black holes is a key issue to un-
veil the secrets of galaxy formation. In particular, the gravitational recoil
produced in the merger of unequal mass black hole binaries could have a
number of astrophysical implications, such as the ejection of black holes
from the host galaxy or globular cluster. We present estimates of the re-
coil velocity that include the effect of small eccentricities. The approach is
specially suited for the last stage of the merger, where most of the emission
of linear momentum in gravitational waves takes place. Supplementing our
estimates with post-Newtonian approximations, we obtain lower and upper
bounds that constrain previous recoil velocities estimates as well as a best
estimate that agrees with numerical simulations in the quasi-circular case.
For eccentricities e ≤ 0.1, the maximum recoil is found for a mass ratio of

M1/M2 ∼ 0.38 with velocities in the range 79−216 km s
−1

(1+e) and a best

estimate of 167 km s
−1

(1 + e).

7.1 Introduction

In present hierarchical cold dark matter cosmologies, large-scale structures are
formed by the merger of small (sub-galactic) structures that originated from small pri-

mordial density perturbations
1

[213]. In the case of galaxies, there is evidence that most
of the nearby ones host super-massive black holes (SMBH) at their centers [214, 215]

with masses in the range 10
5 − 10

9
M

⊙
. Moreover, observations have revealed tight rela-

tions between the SMBH and the bulge of the host galaxy [216], and indicate also that
the SMBH mass may be determined by the mass of the host dark matter halo [217].
This suggests that there must be a deep relation between the formation mechanism of
the SMBH and the host galaxy which is not yet completely understood. It has been
suggested [218] that SMBHs grow as a combination of gas accretion and mergers with
other SMBHs that come together as a result of the merger of their host dark matter
halos and dynamical friction [219].

The last stages of the merger of SMBHs will be driven by the emission of gravi-
tational radiation in the low-frequency band. These extremely energetic events will be

1
This chapter is based on the following paper: C. F. Sopuerta, N. Yunes and P. Laguna,

Astrophys. J. 659, L9-12 (2006)
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observable by the planned space-based gravitational wave antenna LISA [51, 50]. In
addition to energy and angular momentum, in the case of unequal mass SMBHs, there
is a net flux of linear momentum carried away form the system by the gravitational
waves [163, 164]. Then, momentum conservation implies that the final SMBH remnant
will experience a recoil. There may be observational evidence of an ejected SMBH from
an ongoing galaxy merger [159] either from gravitational recoil or gravitational slingshot
of three o more SMBHs in the merger. The knowledge of the magnitude of the recoil
velocity is crucial to understand the demography of SMBHs at the centers of galaxies and
in the interstellar and intergalactic media, and their apparent absence in dwarf galaxies
and stellar clusters [220, 41]. An estimate of the recoil can also be used to constrain
theories in which SMBHs grow at the center of dark matter halos [160] and to estimate
SMBH merger rates [221].

In this letter, we present the results of a calculation of the recoil velocity based on
an approximation scheme which is valid when the black holes (BHs) are very close to each
other, that is, in the last stage of the binary merger. During this stage is where most of
the recoil accumulates. This contrasts with previous calculations that use approximations
valid when the BHs are well-separated, except for recent fully numerical relativistic
calculations [171, 170, 58]). We include the effect of eccentricity in the recoil velocity
since there are indications that SMBH binaries may have not completely circularized by
the time of merger [222, 223, 224].

7.2 Recoil velocities and the Close Limit approximation

General relativity predicts that an unequal mass binary system in coalescence
produces anisotropic emission of gravitational waves that carry linear momentum away
from the binary. As a consequence, the center of mass of the system experiences a
recoil velocity v

r
[40]. The first estimates, done by [43] using a quasi-Newtonian ap-

proach, yielded a maximum v
r
∼ 1480 km s

−1
(r

g
/r

f
)
4

for a symmetric mass ratio of

η = M
1
M

2
/M

2 ∼ 0.2 , where r
g

= 2GM/c
2

is the gravitational radius, M
1,2

and M are

the individual and total masses respectively, and r
f

is the orbital separation at which

gravitational-wave emission ends. Similar results up to the innermost stable circular
orbit (ISCO) where found using a relativistic perturbative method [46]. This velocity
estimate is large compared to galactic escape velocities. In contrast, the first post-
Newtonian (PN) calculation [40] for neutron star binaries produced a much lower result:

v
r
< 1 km s

−1
.

Motivated by the astrophysical impact of the gravitational recoil, there has been
recently a number of efforts to obtain better estimates of the recoil velocity. Using a
relativistic perturbative scheme for the description of extreme-mass ratio (η ≪ 1) binaries
and including gravitational back-reaction, [48] and [41] obtained maximum recoil at η ∼
0.2 with 167 km s

−1 ≤ v
r
≤ 622 km s

−1
, depending on the spin parameter of the massive

black hole (v
r

= 456 km s
−1

for the non-spinning case). Recently, [49] used second-order

PN approximations up to ISCO, followed by an integration of the 2PN linear-momentum

flux along a plunge geodesic, to obtain a maximum kick velocity v
r

= 250 ± 50 km s
−1
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for a symmetric mass ratio η = 0.2 . On the other hand, estimates with the effective

one body approach [57] give a maximum recoil in the range 49 − 172 km s
−1

for the
same η = 0.2. Using the hybrid perturbative-fully relativistic Lazarus approach, [166]
obtained also that the maximum recoil takes place at η ∼ 0.2 with a magnitude of ∼
250 km s

−1
. Currently, there are very few fully general relativistic numerical simulations

of kicks. [171] reported v
r

= 105 km s
−1

for a symmetric mass ratio η = 0.24, while

[170] obtained v
r

= 82km s
−1

for η = 0.23. Recently, [58] report a maximum recoil

v
r

= 176 ± 11 km s
−1

for a symmetric mass ratio of η = 0.195 ± 0.005, where the error

bars account only for finite differencing Einstein’s equations.
Except for the fully relativistic approaches, which have their own uncertainties

(mainly from computational resource limitations), all other approaches become less ac-
curate the closer the BHs get. Motivated by the fact that the main contribution to the
recoil comes from the last stage of the merger and plunge, as many of the previously cited
studies suggest, in this letter we compute the distribution of kicks using a scheme that
works better the closer the orbital separation. This scheme [13], known as the close-limit
approximation (CLA), has been shown to provide accurate results for head-on collisions
when compared to full numerical relativity [15]. The CLA is based on the idea that the
last stages of binary black hole (BBH) mergers can be modeled as a single perturbed
BH. Gravitational recoil was studied in the context of the CLA scheme for the case of
head-on collisions of BHs starting from rest by [180]. Recently, we [139] extended this

analysis to the quasi-circular case and found a maximum recoil of v
r
∼ 57 km s

−1
for

η ∼ 0.19 starting from a separation of 4GM/c
2
, the maximum separation at which it

has been estimated that the CLA scheme works [172]. This estimate covers the last part
of the merger, plunge and ringdown. One can complement this result with PN estimates
from the inspiral phase. If we consider the contribution from PN approximations up to

ISCO, we obtain a lower bound for the maximum recoil of v
r
∼ 80 km s

−1
, whereas if

we push the PN approximations up to the point where we start the CLA scheme, we

get an upper limit in the maximum recoil of v
r
∼ 215 km s

−1
(it is known that PN and

perturbative schemes overestimate the linear-momentum flux in the strong field region).
Alternatively, if, instead of pushing the PN method towards small separations, we push

the CLA scheme towards larger separations around 5GM/c
2
, we get a slightly larger

upper bound.
In this letter, we improve and extend these estimates for initial configurations cor-

responding to BBHs in eccentric orbits. The most important point in the implementation
of the CLA scheme is to establish a correspondence between the initial configuration rep-
resenting a BBH and a perturbed single BH. This correspondence allows us to identify,
in the initial BBH configuration, a background (a non-spinning Schwarzschild BH) and
perturbative multipolar gravitational modes [139]. We then evolve these modes by using
the machinery of BH perturbation theory and, from the results of the evolution, we can

compute the fluxes of energy, angular momentum, and linear momentum (Ṗ
i

GW
) emitted
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by the BBH system during the merger. Then, the recoil velocity is given by

v
r

= ‖vi

r
‖ , v

i

r
= −M−1

∫
t
f

t
i

dt Ṗ
i

GW
. (7.1)

where t
i
is the time corresponding to the initial separation of the BBH, and t

f
is some

time after merger, when the gravitational wave emission becomes negligible. In our cal-
culations, we use an initial BBH configuration [22, 21] that has been shown to accurately
represent binaries to Newtonian order. They are characterized by four parameters [139]:
the total mass of the system (M), the symmetric mass ratio of the binary (η), the initial
separation (d), and the initial linear momentum (P ) of each BH. M and η enter as a
scale and input parameters, respectively. Given η, the type of orbit is determined by the
pair (d, P ). For a quasi-circular orbit we find a relation between P and d by minimizing
the gravitational binding energy of the black hole binary. This relation turns out to be
analogous to the Newtonian one, although it has to be interpreted within the framework
of general relativity.

In this work, in order to study the effect of eccentricity in the gravitational recoil,
we take the distance parameter to be d = a(1 − e), where a is a parameter distance
that plays the role of the semi-major axis and e is the eccentricity. Then, the linear
momentum parameter is given by

P = P
qc

(a)

√
1 + e

1 − e
, (7.2)

where P
qc

(a) is the linear momentum parameter for quasi-circular configurations [139]

with radius a.
For our kick estimates, we have kept the semi-major axis fixed (a = 4GM/c

2
)

and only varied the symmetric mass ratio and eccentricity parameters (η, e). Figure 7.1
shows the recoil velocity v

r
as a function of the symmetric mass ratio η for several

values of the eccentricity: e = 0 − 0.25 . We observe that the maximum recoil occurs
at η ∼ 0.19, consistent with previous results. As we increase the eccentricity, the recoil
velocity also increases by approximately a factor of 1 + e for eccentricities in the range
e < 0.1. This increase can be qualitatively understood by expanding equation (7.2) for
small eccentricities, which leads to an increase by a factor 1+ e in the linear momentum
parameter. Thus, it seems that an increase in the plunge velocity leads to roughly the
same increase in the recoil velocity. If we consider the entire range of eccentricities
that we considered, the numerical results can be fitted to the following two-parameter
non-linear function

v
CLA

r
(η, e) = α

√
1 − 4η η

2
(
1 + β

1
η + β

2
η

2
)

× 1 + e

1 − e

(
1 + γ

1
e+ γ

2
e
2
+ γ

3
e
3
)
, (7.3)

where α (km s
−1

), β
1
, β

2
, γ

1
, γ

2
, and γ

3
are fitting parameters given in Table 7.1 in the

CLA row. The fit was performed using numerical results in the range η = 0 − 0.25 and
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Fig. 7.1. Recoil velocity in km s
−1

as a function of symmetric mass ratio η for eccen-
tricities in the range e = 0 − 0.25 .

e = 0 − 0.5 with an average error < 1 km s
−1

. The fitting function (7.3) can be shown
to be functionally equivalent to that presented by [43] for small eccentricities, but with
different coefficients that lead to significantly smaller magnitudes for the recoil.

7.3 Estimating the total recoil

The estimates of the recoil velocities for BBH mergers provided by equation (7.3)
and the first row of Table 7.1 are incomplete because we have not taken into account the

contribution from the inspiral (∼ 20 km s
−1

) and the beginning of the merger, where
fully non-linear computations are needed. In order to obtain an estimate of the total
accumulated recoil velocity, we can supplement our calculations with estimates from
approximation techniques that are accurate for moderate and large separations. In
this letter, we use a PN approximation that provides the accumulated kick up to some
minimum separation. For quasi-circular orbits [49] and assuming the angular frequency

is given by the Newtonian estimate ω =
√
M/d3, the accumulated recoil up to some

minimum separations of 4GM/c
2

and 6GM/c
2

respectively can be fitted by Eq. (7.3)
with the second and third rows of Table 7.1 respectively. As in [139], upper and lower
limits can be obtained by combining these PN estimates with the CLA calculation.

Our best estimate consists in adding to the CLA estimates, obtained by starting

at a separation of 4GM/c
2
, the PN accumulated recoil from infinity to that separation.

However, to compensate for using the PN approximation in a regime where it becomes

less accurate, we use a PN expression for the angular velocity with errors of O(v/c)
5
,
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Model α β
1

β
2

γ
1

γ
2

γ
3

CLA 5232 −2.621 3.199 −0.942 0.808 −0.405

PN (r
min

1
) 8226 0.347 0.083 0 0 0

PN (r
min

2
) 1206 0.1057 0.05 0 0 0

Table 7.1. Non-linear fit parameters for the recoil velocity. Here r
min

1
= 4GM/c

2
and

r
min

2
= 6GM/c

2
are the minimum separations up to which the PN approximation is

applied.

instead of the Newtonian value used in [139] to obtain an upper limit. Our results for
the quasi-circular case are shown in Fig. 7.2, with error bars derived just from the PN
approximate error. In this figure, we also compare our results to the full relativistic
results of [58] and find that they agree remarkably well.

The main caveat of supplementing the CLA with a PN approximation is that
presently the latter is only available for quasi-circular orbits [49]. However, by comparing
the contribution from the CLA scheme with that provided by the PN approximation for
the quasi-circular case, we find that the total recoil velocity can be accurately described
by the CLA contribution times a factor:

v
total

r
= v

CLA

r
(1 + E) , (7.4)

so that E can be written in terms of the symmetric mass ratio η as

E = κ (1 + λ
1
η + λ

2
η

2
), (7.5)

where the coefficients κ, λ
1
, and λ

2
depend on the minimum distance that we use in

the PN approximation. When the minimum distance is taken to be r
min

1
= 4GM/c

2

we obtain: κ = 1.357 (0.648), λ
1

= 4.418 (5.612), and λ
2

= 5.33 (23.63) [the values

in parenthesis correspond to using the 2PN angular velocity instead of the Keplerian

one]; whereas when we take it to be r
min

2
= 6GM/c

2
the coefficients are: κ = 0.199,

λ
1

= 4.223, and λ
2

= 3.926.

We can then obtain lower and upper bounds as well as a best estimate for the
total recoil velocities from eccentric BBH mergers if we assume that expressions (7.4)
and (7.5) can be extrapolated to the range of eccentricities under consideration, e ≤ 0.25.

When we use r
min

2
= 6GM/c

2
and the Keplerian estimate for the angular velocity, the

total recoil obtained is a lower limit because we do not account for the contribution in
the region 4−6GM/c

2
. On the other hand, if we use r

min

1
= 4GM/c

2
and the Keplerian

angular velocity, Eq. (7.4) provides an upper limit, since it is well-known that the PN

approximation overestimate the recoil in the 4 − 6GM/c
2

range. Our best estimate is
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Fig. 7.2. Best estimate of the recoil velocity in km s
−1

as a function of symmetric mass
ratio η for the quasi-circular case e = 0 , calculated by combining the CLA calculation
with a 2 PN approximation. Also plotted are the results from a full numerical relativistic
simulation [58].

obtained with r
min

1
= 4GM/c

2
and the 2PN angular velocity. These estimates, lower

and upper bounds and best estimate, are shown in Figure 7.3.

7.4 Summary and Discussion

We applied the CLA scheme to the computation of recoil velocities for BBH
mergers including the effect of eccentricity. For small eccentricities, e < 0.1, we find a
generic increase in the recoil of the order of 10% with respect to the quasi-circular case.
This increase is related to the fact that, for slightly eccentric orbits, the magnitude of
the initial velocity of each BH increases roughly by a factor of 1 + e. Since the CLA
scheme is valid for separations smaller than the corresponding one for the ISCO, we have
supplemented our results with estimates obtained with a 2PN approximation, which work
very well for large separations. Combining appropriately both approximation schemes,
we have produced lower and upper bounds, as well as a best estimate, for the recoil
velocity.

Our calculations indicate that the maximum recoil velocity takes place at a sym-

metric mass ratio of η ∼ 0.19 and its magnitude can be as low as ∼ 79− 88 km s
−1

and

as high as ∼ 216 − 242 km s
−1

, with a best estimate in the range ∼ 167 − 187 km s
−1

.
The variation in these estimates is due to the eccentricity of the orbit. All our esti-
mates can be fitted by non-linear function of η and e given by Eq. (7.3). This formula
is expected to work well for small eccentricities, and it reduces to the expression given
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Fig. 7.3. Upper and lower limits (dashed and dotted lines) and best estimate (solid

lines) to the total recoil velocity in km s
−1

as a function of symmetric mass ration η for
eccentricities in the range e = 0 − 0.1 .

by [43], with a significantly smaller magnitude, when e ≪ 1. These results also sig-
nificantly narrow previous calculations [48, 49, 57] and agree remarkably well with full
relativistic computations [58] in the quasi-circular case.

One of the main conclusions that can be extracted from our and recent estimates
of the gravitational recoil from BBH mergers is that the main contribution to the recoil
comes from a narrow interval of separations that include the ISCO. Not surprisingly, this
coincides with the non-linear gravitational regime, where perturbative approximation
schemes tend to break down. In this sense, the attractive feature of our approach is
that it uses an approximation method, the CLA scheme, valid for small separations, and
complements the estimate with another approximation, the PN scheme, valid for large
to moderate separations.

As mentioned before, SMBH merger recoil velocities are relevant for hierarchical
dark matter scenarios for structure formation, as well as in the understanding of the
displacement of nuclear structure in dense galaxies and the distortion of X-shaped radio
sources. Our results do not significantly alter the astrophysical conclusions obtained pre-
viously by [41]. Instead, our results confirm and sharpen these conclusions, by providing
a narrower lower and upper bounds for the possible recoil velocities.

Future work can assess the robustness of our estimates by studying their depen-
dence on the initial configuration as well as the inclusion of higher gravitational multi-
poles in the calculation. In the future, when precise numerical relativistic simulations
of eccentric orbits become available, it would then be possible to compare results and
to determine with better precision the distribution of recoil velocities in the parameter
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space (η, e). A very important issue is the effect of spins, which has not yet been dealt
with enough generality to ascertain what is the impact of the additional scales introduced
by spinning BHs.
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Chapter 8

Relativistic Effects

in Extreme Mass Ratio Gravitational Wave Bursts

Extreme mass ratio bursts (EMRBs) have been proposed as a possible source
for future space-borne gravitational wave detectors, such as the Laser Inter-
ferometer Space Antenna (LISA). These events are characterized by long-
period, nearly-radial orbits of compact objects around a central massive
black hole. The gravitational radiation emitted during such events consists
of a short burst, corresponding to periapse passage, followed by a longer,
silent interval. In this paper we investigate the impact of including relativis-
tic corrections to the description of the compact object’s trajectory via a
geodesic treatment, as well as including higher-order multipole corrections
in the waveform calculation. The degree to which the relativistic corrections
are important depends on the EMRB’s orbital parameters. We find that
relativistic EMRBs (vmax/c > 0.25) are not rare and actually account for
approximately half of the events in our astrophysical model. The relativistic
corrections tend to significantly change the waveform amplitude and phase
relative to a Newtonian description, although some of this dephasing could
be mimicked by parameter errors. The dephasing over several bursts could
be of particular importance not only to gravitational wave detection, but
also to parameter estimation, since it is highly correlated to the spin of the
massive black hole. Consequently, we postulate that if a relativistic EMRB
is detected, such dephasing might be used to probe the relativistic character
of the massive black hole and obtain information about its spin.

8.1 Introduction

Low-frequency (10
−5

. f . 0.1 Hz) gravitational wave interferometers, such
as the proposed Laser Interferometer Space Antenna (LISA) [225, 226, 227], will open

a completely new window to the Universe
1
. Through observations of low-frequency

gravitational radiation we will be able to witness the inspiral and merger of massive
black hole binaries; the inspiral of compact objects into massive black holes; and millions
of quasi-stationary compact galactic binaries. Recently, a new source of low-frequency
gravitational radiation has been suggested: extreme mass ratio bursts (EMRBs) [55, 228].

1
This chapter is based on the following paper: N. Yunes, C. F. Sopuerta, L. J. Rubbo and

K. Holley-Bockelmann, accepted for publication in the Astrophys. J. (2007)
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EMRBs consist of a stellar-mass compact object (SCO) orbiting a massive black

hole (MBH) of 10
4−8

M⊙ with orbital periods greater than Tcut = 3×10
4

s. The defining

orbital period cutoff is derived from LISA’s lower frequency limit of fcut = 3× 10
−5

Hz.
Systems with orbital periods less than Tcut will radiate continuously inside the LISA
band. Such continuous systems are more appropriately categorized as extreme mass
ratio inspirals (EMRIs) and have been studied extensively elsewhere: recent estimations
of the event rate are given by [229] and [230]; a discussion on a possible EMRI background
is given by [231]; accounts on the theoretical description of EMRIs can be found in the
reviews by [10] and [53], while the recent review by [54] describes the astrophysical and
detection applications.

Although EMRB events are distinct from EMRI events, their evolutionary track
could be connected. In the burst scenario, the SCO orbits the MBH emitting a beamed
burst of gravitational radiation during pericenter passage. The emitted radiation carries
away energy and angular momentum from the system so that after multiple pericenter
passages the orbital period decreases, and possibly the system becomes an EMRI. How-
ever, this evolutionary track is most likely disrupted by scattering interactions with other
stars and/or if the SCO plunges directly into the central MBH on one of its passages.

The EMRB event rate has recently been investigated using simplified galactic
models and data analysis techniques [55, 228, 56]. Using a density profile described by

an η-model [232], [55, 228] suggested an event rate of ∼15 yr
−1

for events with signal-to-
noise ratios (SNRs) greater than five out to the Virgo cluster. When mass segregation
and different inner cusp models are considered, the predicted rate decreases by an order
of magnitude [56]. These preliminary studies were aimed at understanding if EMRB
event rates are interesting for low-frequency gravitational wave detectors such as LISA.
More work is still needed to improve the predicted event rate in the context of realistic
galaxies, where the role of non-equilibrium dynamics, anisotropy, complex star formation
histories, substructure, and non-sphericity may act to change the rate from these fiducial
estimates by orders of magnitude [233, 55, 228].

In addition to the astrophysical uncertainties, there are no investigations of the
impact of relativistic corrections to EMRB dynamics. All EMRB studies have been
carried out in a quasi-Newtonian framework. In this framework, one uses the Newtonian
equations of motion and extracts the gravitational waveforms by means of the quadrupole
formula. This approximation ignores the black hole nature of the central potential,
including the black hole’s rotation (spin), and is technically valid only for orbits with
non-relativistic velocities. However, a considerable number of EMRBs are characterized
by large pericenter velocities (vp & 0.25 c) and these relativistic EMRBs should produce

gravitational wave signals with larger SNRs, as we will show later.
In this paper, we shall not consider the issue of EMRB event rates, but instead we

shall study the effects of relativistic corrections to such events. For extreme-mass-ratio
systems a simple way of introducing relativistic corrections is by using the so-called semi-
relativistic approximation introduced by [234], and used recently in the context of EMRIs
by [235, 236]. In this approximation, the MBH and surrounding area are modeled using
the Kerr solution to Einstein’s field equations, which describes a stationary spinning
black hole (the Schwarzschild solution corresponds to the non-spinning case). The SCO
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is considered to be a point-like object (neglecting its own self-gravity) whose trajectory is
described by a geodesic of the Kerr spacetime. In other words, relative to previous work,
we have replaced the Newtonian equations of motion by relativistic geodesic equations
of motion.

The relativistic description introduces effects such as orbital precession and frame
dragging, but it does not account for effects due to the gravitational field induced by the
SCO. These effects, for example, lead to changes in the (geodesic) constants of motion
due to radiation reaction. Even though these effects introduce errors that scale with the
system’s mass ratio [e.g. see 53], they cannot be neglected for EMRIs. This is because
in the late stages of the EMRI the SCO spends a substantial fraction of cycles in the
strong-field region of the MBH. On the other hand, in the case of EMRBs, the SCO sling-
shots around the MBH and its interaction time during pericenter passage is relatively

small (< 10
5

s). Radiation reaction effects can then be neglected in EMRBs since the
radiation reaction timescale is always much larger than the period of pericenter passage.

In this paper, we also improve on the semi-relativistic approximation by using a
more precise gravitational wave extraction procedure. The procedure employed is the
multipole-moment wave generation formalism for slow-motion objects with arbitrarily
strong internal gravity [59]. We consider terms up to the mass-octopole and current-
quadrupole multipoles, thus improving on the mass-quadrupole analysis of [55, 228]
and [56]. Higher multipoles will become important if the system becomes even more
relativistic, but pericenter velocities for EMRBs are typically small to moderate relative
to the speed of light (typically 0.1 . vp/c . 0.5). Such higher multipolar corrections were

taken into account for EMRIs by [237], but for those sources the phase evolution must be
tracked very accurately, requiring techniques from black hole perturbation theory [10, 53]
that we shall not consider here.

The study of the relativistic corrections considered in this work leads to the follow-
ing conclusions. First, we find that relativistic effects are significant for approximately
50% of the orbits contained in the EMRB phase space considered by [55, 228]. These
relativistic EMRB orbits differ from their Newtonian counterparts in such a way that
the associated waveforms present a noticeably different structure. In particular, we find
that there is a dephasing relative to Newtonian waveforms that is due to precessional
effects and depend strongly on the MBH spin. These findings show that EMRB events
are relativistic enough that they should be treated accordingly, as was previously found
for EMRIs [53].

Second, we find that the corrections to the trajectories affect the waveforms much
more than the corrections in the waveform generation over several bursts. For example,
for a given relativistic trajectory, we find that the difference between the SNR of a wave-
form obtain from the quadrupole formula to that obtained from the quadrupole-octopole
formula is of the order of 10% (depending on the location of the observer.) On the other
hand, using the same waveform generation formula (quadrupole or quadrupole-octopole),
the difference between the SNR of a Newtonian waveform to that of a Kerr waveform
is of the order of 100%. These findings show that modeling EMRB waveforms with a
quasi-Newtonian treatment might not be sufficient for certain data analysis applications.
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Third, we find that the relativistic corrections accumulate with multiple bursts
and, thus, they may have an important impact in improving the SNR. It is also con-
ceivable that such corrections might be important for parameter estimation studies and,
perhaps, may be used to determine or bound the spin of the MBH if a high SNR event
is detected. Along this same lines, if parameters can be determined accurately enough,
it might also be possible to use EMRB measurements to test deviations from General
Relativity. We must note, however, that changing the orbital parameters in Newtonian
waveforms could somewhat mimic some of the relativistic corrections, but a detailed
Fisher analysis of such effects is beyond the scope of this paper.

The remainder of this paper is divided as follows: Section 8.2 deals with the
dynamics of EMRBs in the semi-relativistic approximation and justifies the use of this
approximation for these systems; Section 8.3 reviews the inclusion of higher-order mul-
tipolar corrections to the waveform generation formalism; Section 8.4 describes the nu-
merical implementation of the equations of motion and the initial data used; Section 8.5
compares the orbital trajectories and waveforms; Section 8.6 concludes and points to
future research.

In this paper, we denote the MBH mass by M• and its gravitational radius by

R• = 2GM•/c
2
, where c is the speed of light andG the Newtonian gravitational constant.

To simplify some expressions we normalize masses with respect to MMW = 4× 10
6
M⊙,

which is of the same magnitude as the mass of the MBH at the center of the Milky Way
[238]. The gravitational radius can then be written as:

R• = (3.82 × 10
−7

pc)
M•
MMW

. (8.1)

8.2 EMRB Dynamics

In this section, we discuss the description of the orbital motion. Newtonian dy-
namics usually provides an adequate description of many astrophysical sources of gravita-
tional waves, at least from a qualitative point of view. However, for certain gravitational
wave sources, such a description is insufficient and relativistic effects have to be consid-
ered. For EMRB sources with pericenter distances rp > 4R• and velocities vp/c < 0.5,

the semi-relativistic approximation to the equations of motion, in combination with a
multipolar description of the gravitational radiation, can adequately model the dynamics
and gravitational radiation, as we argue below.

The semi-relativistic approximation treats the motion of the SCO in the point-
particle limit as a geodesic of the MBH geometry, which is justified based on the small
mass-ratios associated with these systems. In this work, we adopt Cartesian Kerr-Schild

coordinates, {t, xi} (i = 1, 2, 3), in which the MBH geometry is time-independent, reflect-
ing its stationary character, and tends to a flat-space geometry in Cartesian coordinates

far from the MBH. We denote the geodesic trajectory by z
i
(t), its spatial velocity by

v
i
(t) = dz

i
/dt, and its spatial acceleration by a

i
(t) = dv

i
/dt. The latter, in such a

coordinate system, and by virtue of the geodesic equations of motion, has the following
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form [e.g. see 239]:

a
i
= F

i
[v

j
; g

µν
, ∂

j
g

µν
] , (8.2)

where g
µν

(µ, ν = 0, 1, 2, 3) are the spacetime components of the MBH metric. These

equations describe the influence of the spacetime curvature produced by the MBH and

approach the Newtonian equations of motion in the regime where v/c = |vi|/c ≪ 1 and

GM•/(c
2
r) ≪ 1 (r = |xi|).

The effects from the self-gravity of the SCO can be neglected. To see this, con-
sider the (Keplerian) orbital timescale, T

orb
, in comparison to a characteristic radiation-

reaction timescale, T
rr
. For the latter, we can use the timescale associated with the rate

of change of the semi-latus rectum, p, related to the pericenter distance by rp = p/(1+e),

namely T
rr
∼ p/|dp/dt|. The radiation-reaction timescales of the other orbital elements

are comparable or larger [see, e.g., 53]. The ratio of these timescales is

T
orb

T
rr

∼ 2πµ

(
R•
2p

)
5/2

, (8.3)

where µ = m/M• is the mass ratio of the system and m the SCO mass. It is evident
that the radiation-reaction timescale is much greater than the orbital timescale due to

the extreme mass ratio, µ ≪ 1, and because EMRBs have p ≫ µ
5/2
R•. In the unlikely

case that more accuracy is required, one could improve the analysis through the use of
“Kludge” waveforms [237], which have been shown to reproduce numerical results in the
adiabatic approximation accurately for EMRIs.

Formally, the orbital timescale used is not really the exact timescale of orbital
motion. This is because the mass distribution of a MBH-embedded galaxy possesses
a non-Keplerian potential that leads to non-Keplerian orbits. However, most EMRBs
(by rate) have apocenters that do not extend far into the stellar population, implying
that the contribution from the galaxy potential is minimal. The orbits we study in later
sections have a contamination from the galactic potential that is less than 2% of the
MBH mass. Moreover, [56] rightly argue that the inner region is statistically empty of
stars, which is due to finite effects realized at the small scales observed near the MBH.

Certain constraints may be derived on the size of p and rp for EMRB events.

The most important constraint is derived from the definition of EMRBs: orbits with
sufficiently large orbital period Torb > Tcut. Assuming a Keplerian orbit (which is a
rough assumption), this constraint translates to pericenter distances as follows

rp > (7.98 × 10
−7

pc)
(1 − e)

0.1

(
M•
MMW

)
1/3
(

T

Tcut

)
2/3

, (8.4)

where we have rescaled quantities assuming a typical eccentricity of e = 0.9 [55, 228] and
a typical MBH mass of M• = MMW. In terms of geometrized units, such a constraint
translates roughly to rp > 2R•.

This constraint can be compared with the requirement that the SCO does not get
captured. Any object that enters the black hole event horizon is captured, where the
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horizon is located (in Boyer-Lindquist coordinates) at

rcap = (1.91 × 10
−7

pc)
M•
MMW


1 +

√√√√1 −
a2

•
M2

•


 , (8.5)

where a• is the (Kerr) MBH spin parameter, related to its intrinsic angular momentum
by S• = GM• a•/c, and bounded by a•/M• ≤ 1. Thus, for a maximally spinning Kerr
MBH (a• = M•), rcap = 0.5R•, while for a Schwarzschild (non-spinning) MBH it is just

R•. This condition tell us simply that rp > rcap, which is a condition superseded by the

constraint on the orbital period given in equation (8.4). One could explore other possible
constraints [55, 228] but they are in general superseded by equation (8.4).

These constraints clearly exclude the ergosphere of the MBH (rcap < r . R•)
where frame dragging effects are most pronounced. However, for EMRIs it has been
argued [53] that orbits with rp < 10R• cannot be considered Keplerian anymore, mainly

due to precessional effects. This statement can be made more quantitative by looking at
the ratio of first-order post-Newtonian (1 PN) predictions [3] to Newtonian ones (0 PN).
For example, for the energy of a circular orbit, this ratio scales as 7R•/(8rp), while for

the perihelion precession angle, the ratio scales as 3R•/(2rp), for extreme-mass ratios.

Therefore, for orbits with pericenter passage rp ∼ 5R•, the 1 PN correction to the energy

and the perihelion precession angle is approximately 20% and 30% respectively, relative
to the Newtonian value. This indicates that, even for orbits outside the ergosphere,
relativistic effects are not necessarily negligible.

The relativistic geodesic equations of motion introduce corrections to the New-
tonian motion that can be interpreted in terms of a black hole effective potential. By
comparing the Newtonian and relativistic potentials one can see that the relativistic
corrections dominate over the centrifugal barrier at small distances from the black hole
center. In this work we show that these relativistic corrections can be sampled by EM-
RBs and hence, one should model these systems accordingly. Nevertheless, as we argued
above, the relativistic treatment of EMRBs does not need to be as sophisticated as in
the case of EMRIs, since radiation-reaction can be neglected.

8.3 EMRB Waveforms

In this section we describe how we extract gravitational waveforms once we have
integrated the geodesic equations of motion. We use a multipole-moment wave generation
formalism for slowly-moving objects with arbitrarily strong internal gravity [59, 240, 53].
In quasi-Newtonian and semi-relativistic treatments, the radiation is modeled by the
lowest non-vanishing multipole moment: the mass-quadrupole. To that order, and for
the case of a point-like object orbiting a MBH at a fixed coordinate location, the plus
and cross polarizations are given by [197, 59]

h+,× =
2Gm

rc4
ǫ
ij

+,×

(
aizj + vivj

)
, (8.6)
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where r is the (flat-space) distance to the observer and ǫ
ij

+,×
are polarization tensors.

This expression assumes, based on the slow motion approximation, that the change

in the acceleration with respect to time, the jerk, j
i

= da
i
/dt, is a small quantity.

More precisely, we are neglecting terms of order (v/c)
3
, or in other words, since the

(quadrupole) leading order terms are of order (v/c)
2
, this implies a relative error of

order v/c.
One can improve on this description for the gravitational radiation by accounting

for higher-order multipole moments. In this paper, we consider the mass-octopole and
current-quadrupole multipoles, which require the knowledge of one more time derivative
of the trajectory, the jerk. Adding these contributions to equation (8.6), the gravitational
waveforms are given by [59]

h+,× =
2Gm

rc4
ǫ
ij

+,×

{
aizj + vivj

+
1

c

[
(n · z)

(
zijj + 3aivj

)
+ (n · v)

(
aizj + vivj

)

− (n · a) vizj −
1

2
(n · j) zizj

]}
, (8.7)

where n
i
= x

i
/r is a unit vector that points to the observer and the vector product is

the flat-space scalar product. In this case, we are neglecting terms of order (v/c)
4

and

hence we are making a relative error of order (v/c)
2

with respect to the leading order
quadrupole term.

The waveforms of equation (8.7) are a truncated multipole expansion, where we
are neglecting the current-octopole, mass-hexadecapole, and higher multipole moments.
This expansion is based on a slow-motion approximation which is valid for orbits whose
pericenter velocity is small relative to the speed of light. For closed circular orbits, we
can use the Virial theorem to argue that this is equivalent to requiring rp > M•. For

a relativistic EMRB event with vp/c = 0.4, the maximum relative contribution of the

octopole to the quadrupole is of the order of 40%, since the octopolar term is of order v/c
smaller than the quadrupolar one. In this paper, we shall study EMRBs from the sample
of Milky Way sources studied in [55]. These sources have initial pericenter distances of
rp > 8M•, thus justifying the use of a low-multipolar expansion in the wave-generation

formalism and the neglect of radiation reaction effects in the orbital motion.

8.4 Numerical Simulations

In this section we describe the EMRB simulations that were carried out, including
the choice of initial conditions. The simulations involve integrating the equations for
geodesic motion around a Kerr black hole, equation (8.2), forward in time. [For a detailed
exposition of Kerr geodesics see 241]. Since Cartesian Kerr-Schild coordinates are used,

the initial conditions can be denoted by (z
i

0
, v

i

0
). The numerical implementation does

not use the Kerr geodesic constants of motion (energy, angular momentum, and Carter
constant) in order to reduce the number of variables of the resulting system of ordinary
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differential equations. Instead, we have used the constants of motion to monitor the
accuracy of the time integration. The integration accuracy is set so that we obtain

fractional errors for the constants of motion smaller than one part in 10
10

. The code
uses a Bulirsh-Stoer extrapolation method as the evolution algorithm [see, e.g. 205, 204].
We have also introduced in the code the possibility of switching between Kerr geodesics
and Newtonian equations of motion. The gravitational waveforms are then obtained
directly by applying expressions (8.6) and (8.7) to the numerically obtained trajectory

z
i
(t).

Comparisons are carried out by choosing a representative relativistic orbit within
the allowed phase space for EMRB’s. We made the following choices for the test case:

• The central MBH mass is M• = MMW and the SCO mass is m = 1 M⊙, such that

the mass ratio is µ = m/M• = 2.5 × 10
−7 ≪ 1.

• The MBH spin parameter is either a• = 0 (Schwarzschild) or a• = 0.998 M• (Kerr).

The angular momentum is aligned along the z-axis and equal to either S
z

= 0 or

S
z

= 0.998GM
2

•
/c.

• The observer is located at robs = 8 kpc along the z-axis, which corresponds to the
approximate distance from Earth to the center of the Milky Way [242].

Furthermore, we make the following choices for the orbital initial conditions:

z
i

0
= (−1.59, 1.05,−0.185) × 10

−5
pc,

v
i

0
= (1.70,−2.89, 0.510) × 10

4
km s

−1
. (8.8)

The initial conditions are such that r0 = |zi

0
| = 50R• = 1.91 × 10

−5
pc, and |vi

0
| =

0.11 c = 3.39 × 10
4

km s
−1

. The orbital plane is inclined by 10
◦

with respect to the
x− y plane to demonstrate the effects of orbital plane precession, which only occurs for
spinning MBHs. Since this paper is concerned with the effect of relativistic corrections
to EMRB events, we choose to give all orbits the same initial conditions. The possibility
of relaxing this choice and its effect on the conclusions derived in this paper shall be
discussed in a later section.

Although the test orbit is in the phase space of EMRB events studied in [55],
one might worry that it is too relativistic to actually have a significant probability to
occur in nature. In particular, one can think that the SCO may be tidally disrupted. To
address this question, let us consider a Newtonian description of the central potential,
which leads to the following values of the pericenter distance and velocity:

rp = 6.45 R• = 2.48 × 10
−6

pc,

|vp| = 0.384 c = 1.15 × 10
5

km s
−1
. (8.9)

One might worry that stars might be tidally disrupted with such small pericenters.
However, as shown by [56], most SCOs in EMRB scenarios consist of stellar-mass black
holes, which cannot be tidally disrupted.
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Such relativistic orbits are actually naturally occurring in the phase space of pos-
sible EMRBs studied in [55]. Of all orbits in the allowed EMRB phase space considered
in [55, 228], 6% is contained within a small 6-dimensional phase space volume centered

on the test orbit
2
. Furthermore, the test case shown possesses a short orbital timescale,

bursting approximately 150 times per year. Such events with small orbital timescale
were shown to dominate the EMRB event rate in [55]. It is in this sense that the test
orbit studied here is typical or representative of EMRBs.

The relative location of the test orbit in the pericenter distance-eccentricity plane
of the phase space of allowed EMRBs [55] is presented in Figure 8.1 (triangle.) The ec-
centricity was here calculated assuming a Newtonian orbit and the pericenter separation
is given in gravitational radii, R•. Although the test orbit has a large eccentricity, its

apocenter is small enough (ra . 150R• ≈ 6 × 10
−5

pc) that the contribution from the
surrounding stellar population to the potential can be neglected. In general, the left side
of the figure corresponds to highly relativistic orbits with large pericenter velocities and

small pericenter distances. Orbits with pericenter velocities |vp| > 0.25 c = 3×10
4

km s
−1

account for approximately 50% of the possible orbits within the phase space studied
in [55].

Although the test orbit is a good source to demonstrate the differences between
the Newtonian and relativistic treatments, we could have chosen an even more relativistic
one. Such an event would still be classified as an EMRB in a Newtonian treatment, but it
would border with the definition of a continuous source. An example of such an extreme
orbit is shown with a circle in Figure 8.1, to the left of the test orbit (triangle). This
extreme orbit possesses the following initial conditions:

z
i

0
= (−1.81, 0.6,−1.06) × 10

−6
pc,

v
i

0
= (1.72,−1.78, 0.31) × 10

5
km s

−1
, (8.10)

where rp = 4R• = 1.53× 10
−6

pc and |vp| = 0.49c = 1.46× 10
5

km s
−1

for a Newtonian

potential. We will study such an extreme orbit at the end of the next section as an
example of a limiting relativistic case.

8.5 Comparison of Trajectories and Waveforms

In this section we compare the results obtained for both the orbital motion and
the gravitational radiation emitted by an EMRB event using both the Newtonian and
relativistic description. Since the plus and cross polarization waveforms present similar
features, we only plot the plus polarization waveforms. In the remainder of this section we
use the following nomenclature: a quadrupolar (octopolar) Newtonian waveform is one
that was calculated using the quadrupole (octopole) formula and Newtonian equations

2
In other words, 6% of the test orbits considered to be EMRBs in [55] are close in phase

space to our test orbit. This does not imply that the probability of such a test orbit actually
occurring in nature is 6%, since any element of phase space may have small overall probabilities,

even down to 10
−7

%.
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Fig. 8.1. Plot of the set of possible EMRB orbits as computed in [55] in the pericenter
distance-eccentricity plane. The pericenter distance is given in units of the gravitational
radius R•. The initial conditions for the test [Eq. (8.8)] and the extreme [Eq. (8.10)]
orbits are indicated by a triangle and a circle respectively.
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of motion; a quadrupole (octopole) Schwarzschild waveform is one that was calculated
using the quadrupole (octopole) formula and the geodesic equations of motion with
no spin (a• = 0); a quadrupole (octopole) Kerr waveform is one that was calculated
using the quadrupole (octopole) formula and the geodesic equations of motion with spin
a• = 0.998M•.

8.5.1 Orbital Trajectories

Let us begin by comparing the trajectories obtained in our simulations. In Fig-
ure 8.2, we plot the test orbit corresponding to a Newtonian treatment (solid line) and
the one corresponding to a relativistic treatment without spin (dashed line) and with
spin (dotted line). The dot and arrow indicate the initial location and velocity projected
onto the x-y plane. The MBH is located at the origin of the coordinates, and the vectors
denoted by L and S describe the direction of the initial orbital angular momentum and
the MBH spin respectively. In the relativistic description there are precessional effects
in the SCO orbit that can be clearly observed in Figure 8.2. These precessional effects
are: pericenter precession about the orbital angular momentum axis, which acts in the
initial orbital plane; and frame-dragging precession about the total angular momentum
axis, which acts out of the initial orbital plane. While the former always occurs in a
relativistic treatment, the latter is present only in the spinning case.

 150
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-10

-30
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x/R•
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Fig. 8.2. Trajectories for the SCO, with initial conditions given by (8.8), corresponding
to a Newtonian description (solid line) and relativistic descriptions with no spin (dashed
line) and with spin (dotted line). The MBH is located at the origin and the vectors L
and S denote the initial orbital angular momentum and the MBH spin respectively.
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Different relativistic precessional effects are generally of different magnitude. These
effects are usually inversely proportional to the pericenter distance, or equivalently pro-
portional to the pericenter velocity of the SCO. Precession out of the initial orbital plane,
however, is smaller than precession in the orbital plane by a relative factor of order vp/c

and it is directly proportional to the spin of the MBH. In terms of post-Newtonian theory
[see, e.g. 3], the pericenter advance is described by 1st-order post-Newtonian corrections

to the equations of motion (order (v/c)
2

relative to the Newtonian acceleration), while
precession off the orbital plane is due to spin-orbit and spin-spin couplings that corre-

spond to 1.5 and 2-order corrections (order (v/c)
3

and (v/c)
4

relative to the Newtonian
acceleration.) Therefore, since EMRBs are characterized as events with small to moder-
ate pericenter velocities, precession out of the initial orbital plane is small to moderate
relative to pericenter advance, even for maximally spinning MBHs.

We can estimate the precession rate by comparing the Newtonian and relativistic
trajectories. For the test orbit considered, we find that the rate in the orbital plane
is roughly π/3 radians per orbit for the non-spinning case and 2π/3 radians per orbit
for the spinning one. These precessional effects have been studied extensively in the
context of EMRIs [see, e.g. 243] and also specifically for S-stars in the central region of
our Galaxy in [244]. Nonetheless, these effects have not been previously analyzed in the
context of EMRBs, since previous studies employed a quasi-Newtonian treatment.

8.5.2 Waveforms

Let us now analyze how the differences in the SCO trajectories translate into
different signatures in the waveforms. In Figure 8.3 we plot the quadrupole Newtonian
and Schwarzschild waveforms (solid and dashed lines respectively), while in Figure 8.4
we plot the quadrupole Schwarzschild and Kerr waveforms (dashed and dot-dot-dashed
lines respectively.) There are three main differences between the Newtonian and the
relativistic waveforms: a modulated phase change, an amplitude change, and a time of
arrival change. The changes in amplitude and time of arrival are due to the test particle
experiencing a larger “force” of attraction as it approaches the black hole. Quantitatively,

this increase in force is due to the presence of (r
−n

p
)-contributions to the relativistic

corrections to the central potential (with n a real positive number.)
Gravitational wave interferometers are most sensitive to the phase, which is clearly

different for Newtonian and relativistic waveforms. The dephasing present in Figures 8.3
and 8.4 parallels the orbital dephasing discussed earlier (the gravitational-wave and or-
bital frequencies are intimately related) and leads to an amplitude modulation. In terms
of the gravitational wave phase, both Figures 8.3 and 8.4 show a dephasing of π/6 ra-
dians per cycle. This can be seen after the third burst where the waveforms are back
in phase. In fact, there is a significant dephasing even between the relativistic wave-
forms due to the effect of the MBH spin. If a cursory examination by eye can detect
the difference in the waveforms due to differences in the nature of the central potential,
it stands to reason that strong-field EMRB waveforms might allow us to probe of the
spacetime near a MBH. We should note, however, that no work has yet been done to
find best-fit parameters for Newtonian waveforms that maximize the correlation with
relativistic ones. In other words, it might be possible to mimic some of the relativistic
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Fig. 8.3. EMRB waveforms (plus polarization): The Newtonian waveform corresponds
to the solid line and the Schwarzschild one to the dashed line.

corrections by choosing different initial data for the Newtonian waveforms, but such a
study is beyond the scope of this paper.

The difference in dephasing can be better studied by calculating the signal overlap,

(h1|h2) =

∫ T

0
h1(t)h2(t)dt√∫

T

0
h2

1
(t)dt

√∫
T

0
h2

2
(t)dt

. (8.11)

The overlap indicates how well a signal h1 can be extracted via matched filtering with

a template h2
3
. In Figures 8.5 and 8.6 we plot the normalized integrand as a function

of time, with h1 given by the quadrupole Kerr waveform and h2 given by either the
quadrupole Newtonian or Schwarzschild waveforms. Observe that neither the Newtonian
nor the Schwarzschild waveforms match well with the Kerr waveform. Moreover, note
that the correlation with the Newtonian waveform deteriorates greatly after only the first
cycle. The integral of equation (8.11) gives the correlation between different waveforms
over nine days (four bursts): for the Newtonian and Kerr plus-polarized waveforms it is
9.6%; for the Schwarzschild and Kerr plus-polarized waveforms it is −6.3%. As a point
of comparison, a substantial signal overlap should be & 95%. As already mentioned,
the same initial conditions were chosen for both the Newtonian and relativistic orbits,
such that their waveforms would be both initially in-phase and any dephasing due to
relativistic effects could be clearly studied. However, such a choice forces the SCO
to pass through periapsis at slightly different times, because in the relativistic case this

3
The overlap is given here in the time domain, but an analogous representation in the fre-

quency domain could also be used. Such an expression in the frequency domain can be derived
through Parseval’s theorem.
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Fig. 8.4. EMRB waveforms (plus polarization): The Schwarzschild waveform corre-
sponds to the dashed line and the Kerr one to the dot-dot-dashed line. The dephasing
of the waveforms can be best observed during the silent transitions between bursts. For
example, in the first silent transition the waveforms are roughly π radians out of phase,
while in the third one they are in phase.

object experiences a “deeper” potential. Such a difference in timing degrades the overlap
somewhat and could, in principle, be ameliorated by choosing different initial conditions
for the Newtonian evolution, i. e. by maximizing the overlap over all orbital parameters,
but such a study is beyond the scope of this paper.

Figures 8.5 and 8.6 provide some evidence that the use of a relativistic waveform
might be required for the data analysis problem of extracting EMRB signals. Such expec-
tations are somewhat confirmed in Table 8.1, where we present the correlation between
Newtonian and Kerr plus-polarized waveforms integrated over both a single day (one

burst) and nine days of data (several bursts) for a sample of different EMRB orbits
4
.

Both a single and several bursts should be studied because, in principle, parameter ad-
justments might mitigate the between-burst dephasing, but probably not the in-burst
dephasing. The orbits chosen were taken directly from the allowed EMRB phase space
of [55] and possess different initial positions and velocities, leading to different eccentrici-
ties, initial inclination and orbital periods. The orbital period can be used to classify the
orbits into highly-bursting (burst more than once per week) and slowly-bursting (burst
less than once per week.) For highly-bursting EMRBs, the average correlation is ∼ 27%
when all nine days of data (several bursts) are used, while it is ∼ 93% when only one
day of data (single burst) is used. For the slowly-bursting EMRBs we considered here,
there is actually only one burst per week and its correlation is ∼ 85%. These results

4
Here we use the frequency representation of the correlation calculation, employing the Fourier

transform of the waveforms.
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rp [µpc] vp/c P [yrs] e # Bursts |∆ρ|
ρ

|∆ρ(1)|
ρ(1) (h1|h2) (h1|h2)

(1)

7.8 0.196 0.0042 0.603 6 0.38 0.049 0.27 0.98
7.5 0.207 0.0055 0.684 5 0.13 0.0007 0.20 0.88
7.2 0.217 0.0074 0.749 4 0.22 0.057 0.31 0.90
7.1 0.220 0.0086 0.777 3 0.49 0.061 0.33 0.99

13 0.163 0.0450 0.859 1 · 0.002 · 0.90
8.0 0.217 0.1953 0.968 1 · 0.033 · 0.97
10 0.193 0.7683 0.984 1 · 0.009 · 0.72
12 0.173 3.0407 0.992 1 · 0.015 · 0.80

Table 8.1. SNR and overlap for different EMRB orbits. In this table we present the
SNR and correlation computed in the frequency domain between Kerr quadrupole and
octopole waveforms for different EMRB orbits. The orbits are separated into two groups:
highly-bursting (top) and slowly-bursting (bottom). The first five columns present in-
formation about the different orbits, including how many times they burst, their eccen-
tricities and periods, which were chosen directly from the allowed EMRB phase space
of [55] and thus represent Milky Way sources. The sixth and seventh columns present
the difference in SNR between a Newtonian and Kerr quadrupole waveform relative to
the former using the entire data set and only one burst respectively. Similarly, the eighth
and nineth columns show the correlation between the plus polarizations using the entire
data set four and one burst respectively. Since the slowly-bursting sources burst only
once, the sixth and eighth columns are redundant for these sources. All calculations
assume the observer is located on the z-axis and random initial inclination angles.
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Fig. 8.5. Plot of the overlap integrand of equation (8.11) with h1 given by the quadrupole
Kerr waveform and h2 by the quadrupole Newtonian one. The inset zooms to a region
near the small peaks.

indicate that accumulating precession effects lead to a significant loss of correlation be-
tween Newtonian and Kerr waveforms if bursts are to be connected. Moreover, we see
that even for a single burst the shape of the relativistic waveforms is sufficiently different
from its Newtonian counterpart to lead to a significant mismatch (in-phase dephasing).
If one maximizes the correlation over intrinsic orbital parameters it might be possible to
increase the correlation somewhat, but again that is to be studied elsewhere.

Let us now focus on the differences in the waveforms when they are calculated
with the quadrupolar approximation versus the quadrupolar-octopolar one. In Figure 8.7
we plot the absolute value of the difference between the octopole and quadrupole wave-
forms as a function of time for a Schwarzschild (upper panel) and a Kerr (lower panel)
central potential. The difference is normalized to the maximum of the first peak of
the quadrupole waveform, since other peaks have approximately the same maximum.
Observe that the inclusion of higher-order multipoles does not affect the phasing of the
waveforms, but only the amplitude, which is in general different by roughly 4% rela-
tive to the quadrupole waveform for the Kerr test case. At first sight, this result is in
disagreement with the expectation that the octopolar correction is at most . 40% of
the quadrupolar one. Note, however, that the 40% estimate is an order-of-magnitude
upper limit , since the octopole correction is dependent on the location of the observer
relative to the trajectory, velocity, acceleration and jerk vectors. For the test case,
where the observer is located on the ẑ-axis and the orbit is initially inclined by 10

◦
,

the octopolar change is reduced by approximately an order of magnitude, since initially
(n ·z) ≈ (n ·v) ≈ (n ·a) ≈ (n ·j) ≈ 0.1. In Table 8.2, we present the approximate maxi-
mum difference between octopolar and quadrupolar waveforms as a function of observer
location, focusing only on the first burst of radiation. The location of the observer is
rotated about the ŷ-axis on the x̂ − ẑ plane, always at a fixed radial distance of 8 kpc.
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Fig. 8.6. Plot of the overlap integrand of equation (8.11) with h1 given by the quadrupole
Kerr waveform and h2 by the quadrupole Schwarzschild one.

Note that for some observers the difference is larger and, in fact, of the order of 40%,
since the dot products are closer to unity. These results are thus consistent with the
expectation that the n-th multipolar contribution cannot in general be larger than order
(v/c)

n
relative to the quadrupolar leading term.

8.5.3 Data Analysis

In order to quantify some of our statements about the change in phase and am-
plitude, we calculated the SNR for the relativistic waveforms via the standard formula

ρ
2

= 4

∫ ∞

0

|h̃(f)|2
Sn(f)

df , (8.12)

where the tilde denotes the Fourier transform and Sn(f) is the one-sided power spectral
noise density. Here we employ the Online Sensitivity Curve Generator [245] with the
standard LISA settings and the inclusion of the white-dwarf background contribution.
When calculating SNRs, we set the observation time to roughly nine days, so as to
include multiple bursts in our single SNR value.

The inclusion of relativistic corrections in the trajectories has a dramatic impact
in the SNR. We find that the Schwarzschild waveform increases the SNR by a factor
of approximately 59%, while the Kerr waveform increases it by 162%, relative to the
Newtonian SNR. The difference in SNR is because the relativistic orbits experience a
deeper effective potential and, thus, the interaction timescale is smaller. Therefore, the
inverse of the interaction time, f⋆ = vp/rp, is larger for the Schwarzschild and Kerr

waveforms relative to the Newtonian one. As a result, the Fourier power is shifted to
higher frequencies, where LISA is more sensitive.
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Fig. 8.7. Plot of the absolute magnitude of the difference between the quadrupole and
octopole Schwarzschild (upper panel) and Kerr (lower panel) waveforms. The difference
is normalized to the maximum value of the first peak of the quadrupole waveform.

Angle [degrees] xobs [kpc] yobs [kpc] zobs [kpc] Amp. diff.

0 0 0 8 3.9%
20 2.73 0 7.51 3.3%
40 5.14 0 6.12 11.5%
60 6.93 0 4 15.2%
80 7.88 0 1.39 19.7%
100 7.88 0 −1.39 21.6%
120 6.93 0 −4 17.8%
140 5.14 0 −6.13 43.3%
160 2.74 0 −7.52 8.6%

Table 8.2. Comparison between quadrupole and octopole waveforms. Here we present
an approximate measure of the amplitude difference between the quadrupole and oc-
topole waveforms. We concentrate only on the first burst of radiation and we normalize
the difference to the maximum of the first peak of the quadrupole waveform. The differ-
ence is presented as a function of the observer location, which is always at a fixed radial
distance of robs = 8 kpc, but rotated about the ŷ-axis on x̂− ẑ plane (θ is here the usual
Euler polar angle.)
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The SNR behaves similarly for other EMRB orbits with different orbital periods,
eccentricities and pericenter parameters. This can be observed in Table 8.1 where we
present the SNR difference between Newtonian and Kerr waveforms for different EMRB
orbits for a single and several bursts. Highly-bursting EMRBs lead to a large change in
the SNR over a week of data, since they experience the depths of the effective potential
several times. Per burst, the change in SNR can range from one, to ten or even ninety
percent, depending on the inclination angle of the orbit, the pericenter distance and
other orbital parameters. Also note that the orbits presented in the table are not as
relativistic as the test case, which is why the SNR difference is smaller. This study
seems to indicate that the SNR is in general somewhat larger for relativistic waveforms,

specially when several burst are taken into account.
5

Consequently, the event rate
calculated in [55, 228], which in particular summed over all bursts in one year of data, is
an underestimate for their galaxy model, because some of the systems with a Newtonian
SNR . 5 should have been added to the detectable event rate. However, the uncertainty
in the event rate is still probably dominated by astrophysical uncertainties and not by
the dynamics modeling.

Conversely, the inclusion of higher multipole moments to the wave generation
formalism has little to no effect in the SNR. In the previous section we showed that
there was ≈ 4% difference between the octopole and quadrupole waveforms relative to
the maximum of the first peak of the quadrupole waveform. We further showed that this
difference depends on the location of the observer (see table 8.2), but for the test case
it does not exceed a maximum of 40%, which agrees with the multipole-ordering argu-
ment previously described. However, we also pointed out that the amplitude difference
is confined to sharp peaks in the time domain. Such a confined change in the waveform
amplitude leads to a Fourier power being dispersed over a large frequency region, includ-
ing outside the LISA band. As a result, there is a correspondingly small change in the
SNR: of the order of ≈ 1% relative to the quadrupolar formalism. Such a result is in
agreement with the analysis of [237], which was carried out for EMRIs. Therefore, we
see that the change in SNR is primarily dominated by the modifications introduced in
the geodesic description of the equations of motion, and not in the octopolar correction
to the waveform generation.

The analysis presented in this section, in particular Figure 8.5, makes it clear
that relativistic corrections to the waveforms accumulate with multiple bursts. In other
words, over a single burst (pericenter passage), a quadrupolar waveform calculation using
Newtonian dynamics might be sufficient. However, if one wants to estimate parameters
associated with the central MBH, then multiple bursts might be necessary to associate
the events to a single SCO trajectory. In terms of data analysis, for a detection search
it is simpler to look for a single burst using techniques such as excess power and wavelet
decompositions [e.q. see 246, 247, 248, 249]. For estimating MBH parameters, the results

5
Naive intuition might suggest that the change in the SNR should scale like the square root of

the number of bursts, but this is not necessarily correct. First, different orbits possess different
beaming patterns on the sky due to precession. Second, the starting frequencies of these bursts

is very close to the limit of LISA’s sensitivity band [10
−5

Hz]. As the orbits burst, precession
somewhat increases the frequency of the waveform, forcing different bursts to contribute different
amounts to the SNR.
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of this paper suggest that multiple bursts might have to be connected. For this to occur,
a single template may be used, but as our results indicate, the template will need to

incorporate the effects of general relativity.
6

At this junction, we should comment on some of the caveats in the conclusions
derived from the analysis presented here. First, in this paper we have primarily con-
centrated on the question of characterizing the gravitational waves through the study
of the SNR and overlap. In this study, however, we have not maximized these data
analysis measures with respect to (intrinsic or extrinsic) orbital parameters. Although
it might be possible to improve the SNR and overlap via parameter maximization, our
study suggests that the introduction of relativistic effects, such as precession, lead to a
clear imprint on the waveform that might be difficult to mimic with a purely Newtonian
waveform irrespective of its parameters. Second, in this paper we have only touched
the iceberg of the signal characterization and parameter estimation problem. A possible
route to study this problem is through a numerical Fisher analysis, with the complica-
tions derived from the fact that the waveforms are known only numerically. Furthermore,
increasing the complexity of the waveform will also increase the computational cost of
these studies and, thus, it might be interesting to investigate whether it is possible or
advantageous to search for individual bursts with similar frequency and identify them as
belonging to the same physical system. These issues are beyond the scope of this paper,
but they should be addressed in future investigations.

Setting these caveats momentarily aside, let us conclude with some discussion of
the extreme relativistic case introduced earlier. As we have seen, relativistic corrections
can introduce strong modifications to EMRB waveforms, which depend on how relativis-
tic the EMRB event is and, in particular, on the pericenter velocity. The corrections are
particularly strong for the class of EMRBs that inhabit the boundary between EMRBs

and EMRIs, defined by the Tcut = 3 × 10
4

s value, corresponding to the period between
apocenter passages. An example of such an event is the extreme orbit discussed in Sec-
tion 8.4, whose waveform is shown in Figure 8.8. Observe that a simplistic Newtonian
description misses the rich structure, in which the SCO whirls twice about the black
hole before zooming out to apocenter again. This behavior is missed entirely when we
evolve the orbit with the Newtonian equations of motion, even though the same initial
conditions were used. Even though in the previous cases a Newtonian waveform might
be able to extract relativistic events by adjusting intrinsic parameters, such is definitely
not the case for the highly-relativistic event of Fig. 8.8, since no choice of parameters in
the Newtonian waveform can reproduce its multiple-peak structure.

Due to their whirling behavior, the extreme orbit waveform resembles the zoom-
whirl events often mentioned in the EMRI literature [250, 251, 252]. However, the event
is still an EMRB and not an EMRI because the period between apocenter passages is
too long. For our galactic model, we find the probability of a small region of phase space
around this orbit to be rather high, 10%. If this EMRB is detected with sufficiently high

6
A note of caution should be added here, since a detailed study of the maximization of

the overlap with respect to orbital parameters in the Newtonian waveform has not yet been
carried out. Indeed, it might be possible to mimic some of the relativistic effects with Newtonian
waveforms with varying parameters, but such mimicking is most probably not possible for highly
relativistic EMRBs.
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SNR it seems plausible that a parameter estimation analysis would allow for a determi-
nation of the background parameters, such as the black hole spin. [253] have already
investigated LISA’s ability to measure MBH properties using approximate EMRI sig-
nals. They found that, depending on the actual orbital parameters, it will be possible

to measure the MBH spin with fractional errors of 10
−3

to 10
−5

. This high precision

measurement is the result of observing up to ∼ 10
6

complete orbits. Conversely, it is
very unlikely that EMRB measurements will be able to match the measurement capa-
bilities of EMRI signals, since only a few bursts will probably be available. Whether
accurate parameter extraction is possible can only be determined with a more detailed
data analysis investigation of EMRBs.
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Fig. 8.8. Plot of the quadrupole Newtonian (solid) and Schwarzschild (dashed) gravi-
tational waveform as a function of time.

8.6 Conclusions

We have studied the effects of relativistic corrections on the gravitational waves
produced by EMRBs. These events originate from long period orbits of a SCO around a
MBH, leading to large-amplitude, quasi-periodic gravitational wave bursts. Using a more
accurate relativistic treatment of the phenomenon, we have improved on the waveforms
and trajectories relative to previous work. The orbital trajectories were corrected by
accounting for the spacetime curvature of the system for Schwarzschild and Kerr MBHs.
The waveform generation was corrected by accounting for the next order term in the
multipolar expansion of gravitational radiation.

We found that relativistic corrections change the waveform shape relative to
its Newtonian counterpart. One of the most significant changes was found to be an
amplitude-modulated dephasing, produced by the relativistic corrections to the orbital



236

trajectory and, in particular, by relativistic precessional effects. Other effects included a
change in the amplitude of the waveform, partially produced by the inclusion of higher-
order terms in the gravitational wave generation scheme.

The magnitude of the relativistic corrections was found to be directly proportional
to the pericenter velocity of the orbit, as expected. Surprisingly, we estimated that at
least 50% of the orbits analyzed in [55, 228] acquire relativistic velocities and, thus, non-
negligible relativistic corrections. We investigated these corrections in detail by choosing
a test orbit, that is representative of the kind that dominated the event rate calculation
of [55]. We also studied a limiting case of a highly relativistic EMRB and found that it
whirls more than once around the MBH before zooming back to apocenter and becoming
silent again.

We have also discussed the possible consequences that relativistic effects might
have on the detection and parameter estimation of gravitational waves from EMRBs by
LISA, namely a change in the SNR and loss of overlap. These changes are mainly due to
the relativistic treatment of the equations of motion, while a quadrupolar wave genera-
tion formalism seems to suffice. This finding is relevant particularly to match filtering
searches, where a Newtonian treatment of the orbit might lead to a deterioration of con-
fidence limits. Furthermore, our study suggests that, given an EMRB gravitational wave
detection, it might be plausible to extract or bound the spin of the central potential with
a template that takes into account the Kerr character of the MBH. Other astrophysical
consequences include a possible increase in the event rate, which implies that the rates
of [55, 228] and [56] might be lower limits, although these estimates are still dominated
by uncertainties in the astrophysical modeling for the host galaxy.

In addition to the astrophysical modeling, future research should tackle the details
of the EMRB data analysis and signal extraction issues put forward above. Based on
the results of this paper, one may explore the possibility of testing alternative theories
of gravity with EMRBs by performing matched filtering with templates from alternative
theories [66, 72, 69, 70, 71]. Another possible avenue for future research is the study of
confidence limits with which the spin of the central MBH can be measured.

This research could then be used to examine whether EMRB events can distin-
guish between a pure Kerr MBH and some other spacetime. Such studies have already
began with the analysis of [254], [145] and [255], where comparisons between a Kerr
and other non-Kerr spacetimes were performed. Such studies could be extended to the
perturbed Kerr solution found by [104], where the perturbation is parameterized by the
Weyl tensor of the external universe and could represent some external accretion disk,
planetary system or some other compact object. Ultimately, these investigations will de-
cide whether EMRB events are worth studying in further detail by future gravitational
wave observatories.
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Chapter 9

Parametrized post-Newtonian Expansion

of Chern-Simons gravity

We investigate the weak-field, post-Newtonian expansion to the solution of
the field equations in Chern-Simmons gravity with a perfect fluid source.
In particular, we study the mapping of this solution to the parameterized
post-Newtonian formalism to 1 PN order in the metric. We find that the
PPN parameters of Chern-Simmons gravity are identical to those of general
relativity, with the exception of the inclusion of a new term that is propor-
tional to the Chern-Simmons coupling parameter and the curl of the PPN
vector potentials. We also find that the new term is naturally enhanced by
the non-linearity of spacetime and we provide a physical interpretation for
it. By mapping this correction to the gravito-electro-magnetic framework,
we study the corrections that this new term introduces to the acceleration of
point particles and the frame-dragging effect in gyroscopic precession. We
find that the CS correction to these classical predictions could be used by
current and future experiments to place bounds on intrinsic parameters of
Chern-Simons gravity and, thus, string theory.

9.1 Introduction

Tests of alternative theories of gravity that modify general relativity (GR) at a

fundamental level are essential to the advancement of science
1
. One formalism that has

had incredible success in this task is the parameterized post-Newtonian (PPN) frame-
work [256, 80, 257, 81, 258, 82]. In this formalism, the metric of the alternative theory
is solved for in the weak-field limit and its deviations from GR are expressed in terms
of PPN parameters. Once a metric has been obtained, one can calculate predictions
of the alternative theory, such as light deflection and the perihelion shift of Mercury,
which shall depend on these PPN parameters. Therefore, experimental measurements
of such physical effects directly lead to constraints on the parameters of the alternative
theory. This framework, together with the relevant experiments, have already been suc-
cessfully employed to constrain scalar-tensor theories (Brans-Dicke, Bekenstein) [259],
vector-tensor theories (Will-Nordtvedt [260], Hellings-Nordtvedt [261]), bimetric theo-
ries (Rosen [262, 263]) and stratified theories (Ni [264]) (see [60] for definitions and an
updated review.)

1
This chapter is based on the following papers: S. Alexander and N. Yunes, Phys. Rev. D 75,

124022 (2007); S. Alexander and N. Yunes, Phys. Rev. Letts. 99, 241101 (2007)
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Only recently has this framework been used to study quantum gravitational and
string-theoretical inspired ideas. On the string theoretical side, Kalyana [265] inves-
tigated the PPN parameters associated with the graviton-dilaton system in low-energy
string theory. More recently, Ivashchuk, et. al. [266] studied PPN parameters in the con-
text of general black holes and p-brane spherically symmetric solutions, while Bezerra,
et. al. [267] considered domain wall spacetimes for low energy effective string theories
and derived the corresponding PPN parameters for the metric of a wall. On the quan-
tum gravitational side, Gleiser and Kozameh [268] and more recently Fan, et. al. [269]
studied the possibility of testing gravitational birefringence induced by quantum gravity,
which was proposed by Amelino-Camelia, el. al. [270] and Gambini and Pullin [271].
Other non-PPN proposals have been also put forth to test quantum gravity, for example
through gravitational waves [66, 67, 72, 68, 69, 70, 71, 272], but we shall not discuss
those tests here.

Chern-Simmons (CS) gravity [273, 274] is one such extension of GR, where the
gravitational action is modified by the addition of a parity-violating term. This ex-
tension is promising because it is required by all 4-dimensional compactifications of
string theory [275] for mathematical consistency because it cancels the Green-Schwarz
anomaly [276]. CS gravity, however, is not unique to string theory and in fact has its
roots in the standard model, where it gives rise to a model independent axion.

Chern-Simmons gravity has been recently studied in the cosmological context.
In particular, this framework was used to shed light on the anisotropies of the cosmic
microwave background (CMB) [75, 76, 77] and the leptogenesis problem [73, 74, 76].
Parity violation has also been shown to produce birefringent gravitational waves [274,
272], where different polarizations modes acquire varying amplitudes. These modes obey
different propagation equations because the imaginary sector of the classical dispersion
relation is CS corrected. Different from [271], in CS birefringence the velocity of the
gravitational wave remains that of light.

In this paper we study CS gravity in the PPN framework, extending the analysis
of [277] and providing some missing details. In particular, we shall consider the effect of
the CS correction to the gravitational field of, for instance, a pulsar, a binary system or a
star in the weak-field limit. These corrections are obtained by solving the modified field
equations in the weak-field limit for post-Newtonian (PN) sources, defined as those that
are weakly-gravitating and slowly-moving [3]. Such an expansion requires the calculation
of the Ricci and Cotton tensors to second order in the metric perturbation. We then
find that CS gravity leads to the same gravitational field as that of classical GR and,
thus, the same PPN parameters, except for the inclusion of a new term in the vectorial
sector of the metric, namely

g
(CS)

0i
= 2ḟ (∇× V )i , (9.1)

where ḟ acts as a coupling parameter of CS theory and Vi is a PPN potential. We also
show that this solution can be alternatively obtained by finding a formal solution to
the modified field equations and performing a PN expansion, as is done in PN theory.
The full solution is further shown to satisfy the additional CS constraint, which leads to
equations of motion given only by the divergence of the stress-energy tensor.
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The CS correction to the metric found here leads to an interesting interpretation
of CS gravity and forces us to consider a new type of coupling. The interpretation
consists of thinking of the field that sources the CS correction as a fluid that permeates
all of spacetime. Then the CS correction in the metric is due to the “dragging” of such
a fluid by the motion of the source. Until now, couplings of the CS correction to the
angular momentum of the source had been neglected by the string theory community.
Similarly, curl-type terms had also been considered unnecessary in the traditional PPN
framework, since previous alternative gravity theories had not required it. As we shall
show, in CS gravity and thus in string theory, such a coupling is naturally occurring.
Therefore, a proper PPN mapping requires the introduction of a new curl-type term
with a corresponding new PPN parameter of the type of Eq. (9.1).

A modification to the gravitational field leads naturally to corrections of the
standard predictions of GR. In order to illustrate such a correction, we consider the
CS term in the gravito-electro-magnetic analogy [278, 279], where we find that the CS
correction accounts for a modification of gravitomagnetism. Furthermore, we calculate
the modification to the acceleration of point particles and the frame dragging effect in
the precession of gyroscopes. We find that these corrections are given by

δa
i

= −3

2

ḟ

r

Gm

c2 r2

(v
c
· n
)(v

c
× n

)
i
,

δΩ
i

= − ḟ
r

Gm

c3 r2

[
3
(v
c
· n
)
n

i − v
i

c

]
, (9.2)

where m and v are the mass and velocities of the source, while r is the distance to the

source and n
i
= x

i
/r is a unit vector, with · and × the flat-space scalar and cross prod-

ucts. Both corrections are found to be naturally enhanced in regions of high spacetime
curvature. We then conclude that experiments that measure the gravitomagnetic sector
of the metric either in the weak-field (such as Gravity Probe B [280]) and particularly
in the non-linear regime, will lead to a direct constraint on the CS coupling parameter
ḟ . In this paper we develop the details of how to calculate these corrections, while the
specifics of how to actually impose a constraint, which depend on the experimental setup,
are beyond the scope of this paper.

The remainder of this paper deals with the details of the calculations discussed
in the previous paragraphs. We have divided the paper as follows: Sec. 9.2 describes the
basics of the PPN framework; Sec. 9.3 discusses CS modified gravity, the modified field
equations and computes a formal solution; Sec. 9.4 expands the field equations to second
order in the metric perturbation; Sec. 9.5 iteratively solves the field equations in the
PN approximation and finds the PPN parameters of CS gravity; Sec. 9.6 discusses the
correction to the acceleration of point particles and the frame dragging effect; Sec. 9.7
concludes and points to future research.

The conventions that we use throughout this work are the following: Greek letters
represent spacetime indices, while Latin letters stand for spatial indices only; semicolons
stand for covariant derivatives, while colons stand for partial derivatives; overhead dots
stand for derivatives with respects to time. We denote uncontrolled remainders with the
symbol O(A), which stands for terms of order A. We also use the Einstein summation
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convention unless otherwise specified. Finally, we use geometrized units, where G = c =
1, and the metric signature (−,+,+,+).

9.2 The ABC of PPN

In this section we summarize the basics of the PPN framework, following [82].
This framework was first developed by Eddington, Robertson and Schiff [82, 256], but it
came to maturity through the seminal papers of Nordtvedt and Will [80, 257, 81, 258].
In this section, we describe the latter formulation, since it is the most widely used in
experimental tests of gravitational theories.

The goal of the PPN formalism is to allow for comparisons of different metric
theories of gravity with each other and with experiment. Such comparisons become
manageable through a slow-motion, weak-field expansion of the metric and the equa-
tions of motion, the so-called PN expansion. When such an expansion is carried out to
sufficiently high but finite order, the resultant solution is an accurate approximation to
the exact solution in most of the spacetime. This approximation, however, does break
down for systems that are not slowly-moving, such as merging binary systems, or weakly
gravitating, such as near the apparent horizons of black hole binaries. Nonetheless, as far
as solar system tests are concerned, the PN expansion is not only valid but also highly
accurate.

The PPN framework employs an order counting-scheme that is similar to that
used in multiple-scale analysis [30, 31, 105, 93]. The symbol O(A) stands for terms of

order ǫ
A
, where ǫ ≪ 1 is a PN expansion parameter. For convenience, it is customary

to associate this parameter with the orbital velocity of the system v/c = O(1), which
embodies the slow-motion approximation. By the Virial theorem, this velocity is related

to the Newtonian potential U via U ∼ v
2
, which then implies that U = O(2) and

embodies the weak-gravity approximation. These expansions can be thought of as two
independent series: one in inverse powers of the speed of light c and the other in positive
powers of Newton’s gravitational constant.

Other quantities, such as matter densities and derivatives, can and should also be
classified within this order-counting scheme. Matter density ρ, pressure p and specific
energy density Π, however, are slightly more complicated to classify because they are
not dimensionless. Dimensionlessness can be obtained by comparing the pressure and
the energy density to the matter density, which we assume is the largest component of
the stress-energy tensor, namely p/ρ ∼ Π/ρ = O(2). Derivatives can also be classified in
this fashion, where we find that ∂t/∂x = O(1). Such a relation can be derived by noting

that ∂t ∼ v
i∇i, which comes from the Euler equations of hydrodynamics to Newtonian

order.
With such an order-counting scheme developed, it is instructive to study the

action of a single neutral particle. The Lagrangian of this system is given by

L =
(
gµνu

µ
u

ν
)

1/2
,=
(
−g00 − 2g0iv

i − gijv
i
v

j
)

1/2
(9.3)
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where u
µ

= dx
µ
/dt = (1, v

i
) is the 4-velocity of the particle and v

i
is its 3-velocity. From

Eq. (9.3), note that knowledge of L to O(A) implies knowledge of g00 to O(A), g0i to
O(A−1) and gij to O(A−2). Therefore, since the Lagrangian is already known to O(2)

(the Newtonian solution), the first PN correction to the equations of motion requires g00
to O(4), g0i to O(3) and gij to O(2). Such order counting is the reason for calculating

different sectors of the metric perturbation to different PN orders.
A PPN analysis is usually performed in a particular background, which defines a

particular coordinate system, and in an specific gauge, called the standard PPN gauge.
The background is usually taken to be Minkowski because for solar system experiments
deviations due to cosmological effects are negligible and can, in principle, be treated
as adiabatic corrections. Moreover, one usually chooses a standard PPN frame, whose
outer regions are at rest with respect to the rest frame of the universe. Such a frame, for
example, forces the spatial sector of the metric to be diagonal and isotropic [82]. The
gauge employed is very similar to the PN expansion of the Lorentz gauge of linearized
gravitational wave theory. The differences between the standard PPN and Lorentz gauge
are of O(3) and they allow for the presence of certain PPN potentials in the vectorial
sector of the metric perturbation.

The last ingredient in the PPN recipe is the choice of a stress-energy tensor. The
standard choice is that of a perfect fluid, given by

T
µν

= (ρ+ ρΠ + p)u
µ
u

ν
+ pg

µν
. (9.4)

Such a stress-energy density suffices to obtain the PN expansion of the gravitational field
outside a fluid body, like the Sun, or of compact binary system. One can show that the
internal structure of the fluid bodies can be neglected to 1 PN order by the effacement
principle [3] in GR. Such effacement principle might actually not hold in modified field
theories, but we shall study this subject elsewhere [281].

With all these machinery, on can write down a super-metric [82], namely

g00 = −1 + 2U − 2βU
2 − 2ξΦW +

(
2γ + 2 + α3 + ζ1

− 2ξ) Φ1 + 2
(
3γ − 2β + 1 + ζ2 + ξ

)
Φ2

+ 2
(
1 + ζ3

)
Φ3 + 2

(
3γ + 3ζ4 − 2ξ

)
Φ4 −

(
ζ1 − 2ξ

)
A,

g0i = −1

2

(
4γ + 3 + α1 − α2 + ζ1 − 2ξ

)
Vi

− 1

2

(
1 + α2 − ζ1 + 2ξ

)
Wi,

gij = (1 + 2γU) δij , (9.5)

where δij is the Kronecker delta and where the PPN potentials (U,ΦW ,Φ1,Φ2,Φ3,Φ4,A, Vi,Wi)

are defined in Appendix F. Equation (9.5) describes a super-metric theory of gravity, be-
cause it reduces to different metric theories, such as GR or other alternative theories [82],
through the appropriate choice of PPN parameters (γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4). One
could obtain a more general form of the PPN metric by performing a post-Galilean
transformation on Eq. (9.5), but such a procedure shall not be necessary in this paper.
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The super-metric of Eq. (9.5) is parameterized in terms of a specific number
of PPN potentials, where one usually employs certain criteria to narrow the space of
possible potentials to consider. Some of these restriction include the following: the
potentials tend to zero as an inverse power of the distance to the source; the origin of
the coordinate system is chosen to coincide with the source, such that the metric does
not contain constant terms; and the metric perturbations h00, h0i and hij transform as

a scalar, vector and tensor. The above restrictions are reasonable, but, in general, an
additional subjective condition is usually imposed that is based purely on simplicity:
the metric perturbations are not generated by gradients or curls of velocity vectors or
other generalized vector functions. As of yet, no reason had arisen for relaxing such a
condition, but as we shall see in this paper, such terms are indeed needed for CS modified
theories.

What is the physical meaning of all these parameters? One can understand
what these parameters mean by calculating the generalized geodesic equations of motion
and conservation laws [82]. For example, the parameter γ measures how much space-
curvature is produced by a unit rest mass, while the parameter β determines how much
“non-linearity” is there in the superposition law of gravity. Similarly, the parameter
ξ determines whether there are preferred-location effects, while αi represent preferred-
frame effects. Finally, the parameters ζi measure the amount of violation of conservation
of total momentum. In terms of conservation laws, one can interpret these parameters
as measuring whether a theory is fully conservative, with linear and angular momentum
conserved (ζi and αi vanish), semi-conservative, with linear momentum conserved (ζi
and α3 vanish), or non-conservative, where only the energy is conserved through lowest
Newtonian order. One can verify that in GR, γ = β = 1 and all other parameters vanish,
which implies that there are no preferred-location or frame effects and that the theory
is fully conservative.

A PPN analysis of an alternative theory of gravity then reduces to mapping its
solutions to Eq. (9.5) and then determining the PPN parameters in terms of intrinsic
parameters of the theory. The procedure is simply as follows: expand the modified
field equations in the metric perturbation and in the PN approximation; iteratively
solve for the metric perturbation to O(4) in h00, to O(3) in h0i and to O(2) in hij ;

compare the solution to the PPN metric of Eq. (9.5) and read off the PPN parameters
of the alternative theory. We shall employ this procedure in Sec. 9.5 to obtain the PPN
parameters of CS gravity.

9.3 CS Gravity in a Nutshell

In this section, we describe the basics of CS gravity, following mainly [273, 274].
In the standard CS formalism, GR is modified by adding a new term to the gravitational
action. This term is given by [273]

SCS =
m

2

pl

64π

∫
d
4
xf

(
⋆
R R

)
, (9.6)
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where mpl is the Planck mass, f is a dynamical field that is prescribed externally
2

with

units of squared mass (or squared length in geometrized units), R is the Ricci scalar and
the star stands the dual operation, such that

R
⋆
R =

1

2
Rαβγδǫ

αβµν
R

γδ

µν , (9.7)

with ǫµνδγ the totally-antisymmetric Levi-Civita tensor and Rµνδγ the Riemann tensor.

Such a correction to the gravitational action is interesting because of the un-
avoidable parity violation that is introduced. Such parity violation is inspired from CP
violation in the standard model, where such corrections act as anomaly-canceling terms.
A similar scenario occurs in string theory, where the Green-Schwarz anomaly is canceled
by precisely such a CS correction [276], although CS gravity is not exclusively tied to
string theory. Parity violation in CS gravity inexorably leads to birefringence in gravita-
tional propagation, where here we mean that different polarization modes obey different
propagation equations but travel at the same speed, that of light [273, 73, 274, 281]. If
CS gravity were to lead to polarization modes that travel at different speeds, then one
could use recently proposed experiments [268] to test this effect, but such is not the case
in CS gravity. Birefringent gravitational waves, and thus CS gravity, have been proposed
as possible explanations to the cosmic-microwave-background (CMB) anisotropies [73],
as well as the baryogenesis problem during the inflationary epoch [75].

The magnitude of the CS correction is controlled by the externally-prescribed
quantity f , which depends on the specific theory under consideration. When we consider
CS gravity as an effective quantum theory, then the correction is suppressed by some
mass scale M , which could be the electro-weak scale or some other scale, since it is
unconstrained. In the context of string theory, the quantity f has been calculated only
in conservative scenarios, where it was found to be suppressed by the Planck mass.
In other scenarios, however, enhancements have been proposed, such as in cosmologies
where the string coupling vanishes at late times [284, 285, 286, 287, 288, 289, 290, 291,
292, 293, 294], or where the field that generates f couples to spacetime regions with large
curvature [295, 296] or stress-energy density [281, 272]. For simplicity, we here assume
that this quantity is spatially homogeneous and its magnitude is small but non-negligible,
so that we work to first order in the string-theoretical correction. Therefore, we treat

ḟ as an independent perturbation parameter,
3

unrelated to ǫ, the PN perturbation
parameter.

The field equations of CS modified gravity can be obtained by varying the action
with respect to the metric. Doing so, one obtains

Gµν + Cµν = 8πTµν , (9.8)

2
The quantity f is a dynamical field that must be determined “externally” [273], within the

theoretical framework under consideration. This quantity has been identified with the infla-
ton field in a cosmological context [282], as well as with a model-independant axion in other
contexts [283]

3
Formally, ḟ by itself is dimensional, so it cannot be treated as an expansion parameter.

A dimensionless parameter can, however, be constructed by dividing ḟ by some length scale
squared.
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where Gµν is the Einstein tensor, Tµν is a stress-energy tensor and Cµν is the Cotton

tensor. The latter tensor is defined via

Cµν = − 1√−g
[
f,σǫ

σαβ

(µDαRν)β +
(
Dσf,τ

)
⋆
R

τ

(µ

σ

ν)

]
, (9.9)

where parenthesis stand for symmetrization, g is the determinant of the metric, Da
stands for covariant differentiation and colon subscripts stand for partial differentiation.

Here, the factor of (−g)−1/2
could have been absorbed in f , since ǫ

σαβ
µ is already a

tensor. However, since g = 1 + h, this term would only contribute to O(h)
2

and, as we
shall show later, the only component that we need to this order in the Cotton tensor
actually vanishes.

Formally, the introduction of such a modification to the field equations leads to a
new constraint, which is compensated by the introduction of the new scalar field degree
of freedom f . This constraint originates by requiring that the divergence of the field
equations vanish, namely

D
µ
Cµν =

1

8
√−gDνf

(
⋆
RR
)

= 0, (9.10)

where the divergence of the Einstein tensor vanished by the Bianchi identities. If this
constraint is satisfied, then the equations of motion for the stress-energy DµT

µν
are

unaffected by CS gravity. A common source of confusion is that Eq. (9.10) is sometimes
interpreted as requiring that R

⋆
R also vanish, which would then force the correction to

the action to vanish. However, this is not the case because, in general, f is an exact

form (d
2
f = 0) and, thus, Eq. (9.10) only implies an additional constraint that forces all

solutions to the field equations to have a vanishing R
⋆
R.

This new constraint then allows for the use of the stress energy considered dis-
cussed above, since it also allows the strong equivalence principle (SEP) to hold in CS
gravity [73]. This principle states that the outcome of all local gravitational experiments
is independent of the experimenters frame of reference. In other words, the motion of
test particles is exclusively governed by the spacetime metric, through the divergence of
the particle’s stress-energy tensor. In CS gravity, the divergence of the modified field
equations leads to Eq. (9.10), where the divergence of the Einstein tensor vanishes by
the Bianchi identities, since one can define Riemann normal coordinates where all first
derivatives of the metric are zero. The right-hand side of Eq. (9.8) vanishes in vac-
uum and, thus, the SEP holds provided R

⋆
R = 0, which is known as the Pontryagin

constraint. We shall later see that the solution to the modified field equations found

here automatically satisfies this constraint to O(h)
2

and, thus, the SEP naturally holds
without any additional constraints.

The previous success of CS gravity in proposing plausible explanations to impor-
tant cosmological problems prompts us to consider this extension of GR in the weak-field
regime. For this purpose, it is convenient to rewrite the field equations in trace-reversed
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form, since this form is most amenable to a PN expansion. Doing so, we find,

Rµν + Cµν = 8π

(
Tµν − 1

2
gµνT

)
, (9.11)

where the trace of the Cotton tensor vanishes identically and T = gµνT
µν

is the four

dimensional trace of the stress-energy tensor. To linear order, the Ricci and Cotton
tensors are given by [273]

Rµν = −1

2
�hµν + O(h)

2
,

Cµν = − ḟ
2
ǫ̃
0αβ

(µ�ηhν)β,α + O(h)
2
, (9.12)

where ǫ̃
αβγδ

is the Levi-Civita symbol, with convention ǫ̃
0123

= +1, and �η = −∂2

t
+

η
ij
∂i∂j is the flat space D’Alambertian, with ηµν the Minkowski metric. In Eq. (9.12),

we have employed the Lorentz gauge condition hµα,
α

= h,µ/2, where h = g
µν
hµν is the

four dimensional trace of the metric perturbation.
The Cotton tensor changes the characteristic behavior of the Einstein equations

by forcing them to become third order instead of second order. Third-order partial differ-
ential equations are common in boundary layer theory [30]. However, in CS gravity, the
third-order contributions are multiplied by a factor of f and we shall treat this function
as a small independent expansion parameter. Therefore, the change in characteristics in
the modified field equations can also be treated perturbatively, which is justified because
eventhough ḟ might be enhanced by standard model currents, extra dimensions or a
vanishing string coupling, it must still carry some type of mass suppression.

The trace-reversed form of the field equations is useful because it allows us to
immediately find a formal solution. Inverting the D’Alambertian operator we obtain

Hµν = −16π �
−1

η

(
Tµν − 1

2
gµνT

)
+ O(h)

2
, (9.13)

where we have defined an effective metric perturbation as

Hµν ≡ hµν + ḟ ǫ̃
0αβ

(µhν)β,α. (9.14)

Note that this formal solution is identical to the formal PN solution to the field equations
in the limit ḟ → 0. Also note that the second term in Eq. (9.14) is in essence a curl
operator acting on the metric. This antisymmetric operator naturally forces the trace
of the CS correction to vanish, as well as the 00 component and the symmetric spatial
part.

From the formal solution to the modified field equations, we immediately identify
the only two possible non-zero CS contributions: a coupling to the vector component of

the metric h0i; and coupling to the transverse-traceless part of the spatial metric h
TT

ij
.

The latter has already been studied in the gravitational wave context [273, 274, 281]
and it vanishes identically if we require the spatial sector of the metric perturbation to
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be conformally flat. The former coupling is a new curl-type contribution to the metric
perturbation that, to our knowledge, had so far been neglected both by the string theory
and PPN communities. In fact, as we shall see in later sections, terms of this type will
force us to introduce a new PPN parameter that is proportional to the curl of certain
PPN potentials.

Let us conclude this section by pushing the formal solution to the modified field
equations further to obtain a formal solution in terms of the actual metric perturbation
hµν . Combining Eqs. (9.13) and (9.14) we arrive at the differential equation

hµν + ḟ ǫ̃
0αβ

(µhν)β,α = −16π �
−1

η

(
Tµν − 1

2
gµνT

)
+ O(h)

2
. (9.15)

Since we are searching for perturbations about the general relativistic solution, we shall
make the ansatz

hµν = h
(GR)

µν
+ ḟ ζµν + O(h)

2
, (9.16)

where h
(GR)

µν
is the solution predicted by general relativity

h
(GR)

µν
≡ −16π �

−1

η

(
Tµν − 1

2
gµνT

)
, (9.17)

and where ζµν is an unknown function we are solving for. Inserting this ansatz into

Eq. (9.15) we obtain

ζµν + ḟ ǫ̃
0αβ

(µζν)β,α = 16πǫ̃
0αβ

(µ∂α�
−1

η

(
Tν)β − 1

2
gν)βT

)
. (9.18)

We shall neglect the second term on the left-hand side because it would produce a second
order correction. Such conclusion was also reached when studying parity violation in GR
to explain certain features of the CMB [77]. We thus obtain the formal solution

ζµν = 16πǫ̃
0αβ

(µ∂α�
−1

η

(
Tν)β − 1

2
gν)βT

)
(9.19)

and the actual metric perturbation to linear order becomes

hµν = −16π �
−1

η

(
Tµν − 1

2
ηµνT

)
(9.20)

+ 16πḟ ǫ̃
kℓi

�
−1

η

(
δi(µTν)ℓ,k − 1

2
δi(µην)ℓT,k

)
+ O(h)

2
,

where we have used some properties of the Levi-Civita symbol to simplify this expression.
The procedure presented here is general enough that it can be directly applied to study
CS gravity in the PPN framework, as well as possibly find PN solutions to CS gravity.
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9.4 PN expansion of CS Gravity

In this section, we perform a PN expansion of the field equations and obtain a
solution in the form of a PN series. This solution then allows us to read off the PPN
parameters by comparing it to the standard PPN super-metric [Eq. (9.5)]. In this section
we shall follow closely the methods of [82] and [197] and indices shall be manipulated
with the Minkowski metric, unless otherwise specified.

Let us begin by expanding the field equations to second order in the metric per-
turbation. Doing so we find that the Ricci and Cotton tensors are given to second order
by

Rµν = −1

2

[
�ηhµν − 2hσ(µ,ν)

σ
+ h,µν

]
− 1

2

[
h

ρλ

(
2hρ(µ,ν)λ − hµν,ρλ − hρλ,µν

)

− 1

2
h

ρλ

,µhρλ,ν + h
λ

µ,ρh
ρ

ν,λ − h
ρ

µ,λhρν,

λ
+

1

2

(
h

,λ − 2h
λρ

,ρ

)(
hµν,λ − 2hλ(µ,ν)

)]

+ O(h)
3
,

Cµν = − ḟ
2
ǫ̃
0αβ

(µ

(
�ηhν)β,α − hσβ,αν)

σ
)
− ḟ

2
ǫ̃
0αβ

(µ

[
h
(
�ηhν)β,α − hσβ,αν)

σ
)

+
1

2

(
2hν)(λ,α) − hλα,ν)

)(
�ηh

λ

β − 2hσ

(λ

,β)

σ
+ h,β

λ
)
− 2Q̂Rν)β,α

]

− ḟ

4
ǫ̃
σαβ

(µ

(
2h

0

(σ,τ) − hστ,

0
)(

h
τ

[β,α]ν) − hν)[β,α]

τ
)

− ḟ

2
hµλǫ̃

0αβ(λ
(
�ηhν)β,α − hσβ,αν)

σ
)
− ḟ

2
ǫ̃
0αβ(µ

(
�ηh

λ)

β,α − hσβ,α

σλ)
)
hνλ

+ O(h)
3
. (9.21)

where index contraction is carried out with the Minkowski metric and where we have not
assumed any gauge condition. The operator Q̂(·) takes the quadratic part of its operand

[of O(h)
2
] and it is explained in more detail in Appendix G, where the derivation of the

expansion of the Cotton tensor is presented in more detail. In this derivation, we have
used the definition of the Levi-Civita tensor

ǫαβγδ = (−g)1/2
ǫ̃αβγδ =

(
1 − 1

2
h

)
ǫ̃αβγδ + O(h)

2
, (9.22)

ǫ
αβγδ

= −(−g)−1/2
ǫ̃
αβγδ

= −
(

1 +
1

2
h

)
ǫ̃
αβγδ

+ O(h)
2
.

Note that the PN expanded version of the linearized Ricci tensor of Eq. (9.21) agrees
with previous results [82]. Also note that if the Lorentz condition is enforced, several
terms in both expressions vanish identically and the Cotton tensor to first order reduces
to Eq. (9.12), which agrees with previous results [273].
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Let us now specialize the analysis to the standard PPN gauge. For this purpose,
we shall impose the following gauge conditions

hjk,

k − 1

2
h,j = O(4),

h0k,

k − 1

2
h

k

k,0 = O(5), (9.23)

where h
k
k is the spatial trace of the metric perturbation. Note that the first equation is

the PN expansion of one of the Lorentz gauge conditions, while the second equation is
not. This is the reason why the previous equations where not expanded in the Lorentz
gauge. Nonetheless, such a gauge condition does not uniquely fix the coordinate system,
since we can still perform an infinitesimal gauge transformation that leaves the modified
field equations invariant. One can show that the Lorentz and PPN gauge are related to
each other by such a gauge transformation. In the PPN gauge, then, the Ricci tensor
takes the usual form

R00 = −1

2
∇2
h00 −

1

2
h00,ih00,

i
+

1

2
h

ij
h00,ij + O(6),

R0i = −1

2
∇2
h0i −

1

4
h00,0i + O(5),

Rij = −1

2
∇2
hij + O(4), (9.24)

which agrees with previous results [82], while the Cotton tensor reduces to

C00 = O(6),

C0i = −1

4
ḟ ǫ̃

0kl

i∇
2
h0l,k + O(5),

Cij = −1

2
ḟ ǫ̃

0kl

(i∇
2
hj)l,k + O(4), (9.25)

where ∇ = η
ij
∂i∂j is the Laplacian of flat space [see Appendix G for the derivation of

Eq. (9.25).] Note again the explicit appearance of two coupling terms of the Cotton
tensor to the metric perturbation: one to the transverse-traceless part of the spatial
metric and the other to the vector metric perturbation. The PN expansions of the
linearized Ricci and Cotton tensor then allow us to solve the modified field equations in
the PPN framework.

9.5 PPN Solution of CS gravity

In this section we shall proceed to systematically solve the modified field equation
following the standard PPN iterative procedure [82]. We shall begin with the 00 and ij
components of the metric to O(2), and then proceed with the 0i components to O(3)
and the 00 component to O(4). Once all these components have been solved for in terms
of PPN potentials, we shall be able to read off the PPN parameters adequate to CS
gravity.
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9.5.1 h00 and hij to O(2)

Let us begin with the modified field equations for the scalar sector of the metric
perturbation. These equations are given to O(2) by

∇2
h00 = −8πρ, (9.26)

because T = −ρ. Eq. (9.26) is the Poisson equation, whose solution in terms of PPN
potentials is

h00 = 2U + O(4). (9.27)

Let us now proceed with the solution to the field equation for the spatial sector
of the metric perturbation. This equation to O(2) is given by

∇2
hij + ḟ ǫ̃

0kl

(i∇
2
hj)l,k = −8πρδij , (9.28)

where note that this is the first appearance of a Cotton tensor contribution. Since the
Levi-Civita symbol is a constant and ḟ is only time-dependent, we can factor out the
Laplacian and rewrite this equation in terms of the effective metric Hij as

∇2Hij = −8πρδij , (9.29)

where, as defined in Sec. 9.3,

Hij = hij + ḟ ǫ̃
0kl

(ihj)l,k. (9.30)

The solution of Eq. (9.29) can be immediately found in terms of PPN potentials as

Hij = 2Uδij + O(4), (9.31)

which is nothing but Eq. (9.13). Recall, however, that in Sec. 9.3 we explicitly used
the Lorentz gauge to simplify the field equations, whereas here we are using the PPN
gauge. The reason why the solutions are the same is that the PPN and Lorentz gauge
are indistinguishable to this order.

Once the effective metric has been solved for, we can obtain the actual metric
perturbation following the procedure described in Sec. 9.3. Combining Eq. (9.30) with
Eq. (9.31), we arrive at the following differential equation

hij + ḟ ǫ̃
0kl

(ihj)l,k = 2Uδij . (9.32)

We look for solutions whose zeroth-order result is that predicted by GR and the CS term
is a perturbative correction, namely

hij = 2Uδij + ḟ ζij , (9.33)
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where ζ is assumed to be of O(ḟ)
0
. Inserting this ansatz into Eq. (9.32) we arrive at

ζij + ḟ ǫ̃
0kl

(iζj)l,k = 0, (9.34)

where the contraction of the Levi-Civita symbol and the Kronecker delta vanished. As
in Sec. 9.3, note that the second term on the left hand side is a second order correction
and can thus be neglected to discover that ζij vanishes to this order.

The spatial metric perturbation to O(2) is then simply given by the GR prediction
without any CS correction, namely

hij = 2Uδij + O(4). (9.35)

Physically, the reason why the spatial metric is unaffected by the CS correction is re-
lated to the use of a perfect fluid stress-energy tensor, which, together with the PPN
gauge condition, forces the metric to be spatially conformally flat. In fact, if the spa-
tial metric were not flat, then the spatial sector of the metric perturbation would be
corrected by the CS term. Such would be the case if we had pursued a solution to 2
PN order, where the Landau-Lifshitz pseudo-tensor sources a non-conformal correction
to the spatial metric [3], or if we had searched for gravitational wave solutions, whose
stress-energy tensor vanishes [73, 274]. In fact, one can check that, in such a scenario,
Eq. (9.29) reduces to that found by [273, 73, 274, 281] as ρ → 0. We have then found
that the weak-field expansion of the gravitational field outside a fluid body, like the Sun
or a compact binary, is unaffected by the CS correction to O(2).

9.5.2 h0i to O(3)

Let us now look for solutions to the field equations for the vector sector of the
metric perturbation. The field equations to O(3) become

∇2
h0i +

1

2
h00,0i +

1

2
ḟ ǫ̃

0kl

i∇
2
h0l,k = 16πρvi, (9.36)

where we have used that T
0i

= −T0i. Using the lower order solutions and the effective
metric, as in Sec. 9.3, we obtain

∇2H0i + U,0i = 16πρvi, (9.37)

where the vectorial sector of the effective metric is

H0i = h0i +
1

2
ḟ ǫ̃

0kl

ih0l,k. (9.38)

We recognize Eq. (9.37) as the standard GR field equation to O(3), except that the
dependent function is the effective metric instead of the metric perturbation. We can
thus solve this equation in terms of PPN potentials to obtain

H0i = −7

2
Vi −

1

2
Wi, (9.39)
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where we have used that the superpotential X satisfies X,0j = Vj −Wj (see Appendix F

for the definitions.) Combining Eq. (9.38) with Eq. (9.39) we arrive at a differential
equation for the metric perturbation, namely

h0i +
1

2
ḟ ǫ̃

0kl

ih0l,k = −7

2
Vi −

1

2
Wi. (9.40)

Once more, let us look for solutions that are perturbation about the GR prediction,
namely

h0i = −7

2
Vi −

1

2
Wi + ḟ ζi, (9.41)

where we again assume that ζi is of O(ḟ)
0
. The field equation becomes

ζi +
1

2
ḟ (∇× ζ)i =

1

2

(
7

2
(∇× V )i +

1

2
(∇×W )i

)
, (9.42)

where (∇×A)
i
= ǫ

ijk
∂jAk is the standard curl operator of flat space. As in Sec. 9.3, note

once more that the second term on the left-hand side is again a second order correction
and we shall thus neglect it. Also note that the curl of the Vi potential happens to be
equal to the curl of the Wi potential. The solution for the vectorial sector of the actual
gravitational field then simplifies to

h0i = −7

2
Vi −

1

2
Wi + 2ḟ (∇× V )i + O(5). (9.43)

We have arrived at the first contribution of CS modified gravity to the met-
ric for a perfect fluid source. Chern-Simons gravity was previously seen to couple to
the transverse-traceless sector of the metric perturbation for gravitational wave solu-
tions [273, 73, 274, 281]. The CS correction is also believed to couple to Noether vector
currents, such as neutron currents, which partially fueled the idea that this correction
could be enhanced. However, to our knowledge, this correction was never thought to
couple to vector metric perturbations. From the analysis presented here, we see that in
fact CS gravity does couple to such terms, even if the matter source is neutrally charged.
The only requirement for such couplings is that the source is not static, ie. that the
object is either moving or spinning relative to the PPN rest frame so that the PPN
vector potential does not vanish. The latter is suppressed by a relative O(1) because in
the far field the velocity of a compact object produces a term of O(3) in Vi, while the
spin produces a term of O(4). In a later section, we shall discuss some of the physical
and observational implications of such a modification to the metric.

9.5.3 h00 to O(4)

A full analysis of the PPN structure of a modified theory of gravity requires that
we solve for the 00 component of the metric perturbation to O(4). The field equations
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to this order are

− 1

2
∇2
h00 −

1

2
h00,ih00,i +

1

2
hijh00,ij = 4πρ [1

+ 2

(
v
2 − U +

1

2
Π +

3

2

p

ρ

)]
, (9.44)

where the CS correction does not contribute at this order (see Appendix G.) Note
that the h0i sector of the metric perturbation to O(3) does not feed back into the field
equations at this order either. The terms that do come into play are the h00 and hij

sectors of the metric, which are not modified to lowest order by the CS correction. The
field equation, thus, reduce to the standard one of GR, whose solution in terms of PPN
potentials is

h00 = 2U − 2U
2
+ 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4 + O(6). (9.45)

We have thus solved for all components of the metric perturbation to 1 PN order beyond
the Newtonian answer, namely g00 to O(4), g0i to O(3) and gij to O(2).

9.5.4 PPN Parameters for CS Gravity

We now have all the necessary ingredients to read off the PPN parameters of CS
modified gravity. Let us begin by writing the full metric with the solutions found in the
previous subsections:

g00 = −1 + 2U − 2U
2
+ 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4 + O(6),

g0i = −7

2
Vi −

1

2
Wi + 2ḟ (∇× V )i + O(5),

gij = (1 + 2U) δij + O(4). (9.46)

One can verify that this metric is indeed a solution of Eqs. (9.26), (9.28), (9.36) and (9.44)
to the appropriate PN order and to first order in the CS coupling parameter. Also note
that the solution of Eq. (9.46) automatically satisfies the constraint

⋆
RR = 0 to linear

order because the contraction of the Levi-Civita symbol with two partial derivatives
vanishes. Such a solution is then allowed in CS gravity, just as other classical solutions
are [297], and the equations of motion for the fluid can be obtained directly from the
covariant derivative of the stress-energy tensor.

We can now read off the PPN parameters of the CS modified theory by comparing
Eq. (9.5) to Eq. (9.46). A visual inspection reveals that the CS solution is identical to
the classical GR one, which implies that γ = β = 1, ζ = 0 and α1 = α2 = α3 = ξ1 =
ξ2 = ξ3 = ξ4 = 0 and there are no preferred frame effects. However, Eq. (9.5) contains
an extra term that cannot be modeled by the standard PPN metric of Eq. (9.5), namely
the curl contribution to g0i. We then see that the PPN metric must be enhanced by the
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addition of a curl-type term to the 0i components of the metric, namely

g0i ≡ −1

2

(
4γ + 3 + α1 − α2 + ζ1 − 2ξ

)
Vi

− 1

2

(
1 + α2 − ζ1 + 2ξ

)
Wi + χM (∇× V )i , (9.47)

where χ is a new PPN parameter and whereM is a characteristic mass scale of the source
inducing the vector potential. Note that there is no need to introduce any additional
PPN parameters because the curl of Wi equals the curl of Vi. In fact, we could have
equally parameterized the new contribution to the PPN metric in terms of the curl of
Wi, but we chose not to because Vi appears more frequently in PN theory. For the case
of CS modified gravity, the new χ parameter is simply

χ = 2
ḟ

M
, (9.48)

where ḟ was rescaled by M to make it dimensionless and coordinate independent.The
choice made here to make ḟ dimensionless might seem a bit arbitrary, but if we consider
ḟ as some CS mass scale, then χ ∝ mCS/M is a ratio of masses with a straghtforward
physical meaning.

9.6 Astrophysical Implications

In this section we shall propose a physical interpretation to the CS modification
to the PPN metric and we shall calculate some GR predictions that are modified by this
correction. This section, however, is by no means a complete study of all the possible
consequences of the CS correction, which is beyond the scope of this paper.

Let us begin by considering a system of A nearly spherical bodies, for which the
gravitational vector potentials are simply [82]

V
i

=
∑

A

mA

rA
v

i

A
+

1

2

∑

A

(
JA

r2
A

× nA

)
i

, (9.49)

W
i

=
∑

A

mA

rA

(
vA · nA

)
n

i

A
+

1

2

∑

A

(
JA

r2
A

× nA

)
i

,

where mA is the mass of the Ath body, rA is the field point distance to the Ath body,

n
i

A
= x

i

A
/rA is a unit vector pointing to the Ath body, vA is the velocity of the Ath body

and J
i

A
is the spin-angular momentum of the Ath body. For example, the spin angular

momentum for a Kerr spacetime is given by J
i

= m
2
a

i
, where a is the dimensionless

Kerr spin parameter. Note that if A = 2 then the system being modeled could be a
binary of spinning compact objects, while if A = 1 it could represent the field of the sun
or that of a rapidly spinning neutron star or pulsar.

In obtaining Eq. (9.49), we have implicitly assumed a point-particle approxi-
mation, which in classical GR is justified by the effacement principle. This principle
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postulates that the internal structure of bodies contributes to the solution of the field
equations to higher PN order. One can verify that this is indeed the case in classical GR,
where internal structure contributions appear at 5 PN order. In CS gravity, however, it
is a priori unclear whether an analogous effacement principle holds because the CS term
is expected to couple with matter current via standard model-like interactions. If such
is the case, it is possible that a “mountain” on the surface of a neutron star [298] or an
r-mode instability [299, 300, 301] enhances the CS contribution. In this paper, however,
we shall neglect these interactions, and relegate such possibilities to future work [281].

With such a vector potential, we can calculate the CS correction to the metric.

For this purpose, we define the correction δg0i ≡ g0i − g
(GR)

0i
, where g

(GR)

0i
is the GR

prediction without CS gravity. We then find that the CS corrections is given by

δg0i = 2
∑

A

ḟ

rA


mA

rA

(
vA × nA

)i −
J

i

A

2r2
A

+
3

2

(
JA · nA

)

r2
A

n
i

A


 , (9.50)

where the · operator is the flat-space inner product and where we have used the identities
ǫ̃ijkǫ̃klm = δilδjm − δimδjl and ǫ̃ilkǫ̃jlm = 2δij . Note that the first term of Eq. (9.50) is of

O(3), while the second and third terms are of O(4) as previously anticipated. Also note

that ḟ couples both to the spin and orbital angular momentum. Therefore, whether the

system under consideration is the Solar system (v
i
of the Sun is zero while J

i
is small),

the Crab pulsar (v
i
is again zero but J

i
is large) or a binary system of compact objects

(neither v
i
nor J

i
vanish), there will in general be a non-vanishing coupling between the

CS correction and the vector potential of the system.
From the above analysis, it is also clear that the CS correction increases with

the non-linearity of the spacetime. In other words, the CS term is larger not only for
systems with large velocities and spins, but also in regions near the source. For a binary
system, this fact implies that the CS correction is naturally enhanced in the last stages
of inspiral and during merger. Note that this enhancement is different from all previous
enhancements proposed, since it does not require the presence of charge [281, 272], a fifth
dimension with warped compactifications [295, 296], or a vanishing string coupling [284,
285, 286, 287, 288, 289, 290, 291, 292, 293, 294]. Unfortunately, the end of the inspiral
stage coincides with the edge of the PN region of validity and, thus, a complete analysis
of such a natural enhancement will have to be carried out through numerical simulations.

In the presence of a source with the vector potentials of Eq. (9.49), we can write
the vectorial sector of the metric perturbation in a suggestive way, namely

g0i =
∑

A

−7

2

mA

rA
v

i

A
−
∑

A

mA

6r2
A

(
vA − v

(eff)

A

)
i

(9.51)

− 1

2

∑

A

n
i

A

mA

rA
v
(eff)

A
· nA − 2

∑

A



J

(eff)

A

r2
A

× nA




i

,
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where we have defined an effective velocity and angular momentum vector via

v
i

A(eff)
= v

i

A
− 6ḟ

J
i

A

mAr
2

A

,

J
i

A(eff)
= J

i

A
− ḟmAv

i

A
, (9.52)

or in terms of the Newtonian orbital angular momentum L
i

A(N)
= rA × pA and linear

momentum p
i

A(N)
= mAv

i

A

L
i

A(eff)
= L

i

A(N)
− 6ḟ

(
nA × JA

)i
,

J
i

A(eff)
= J

i

A
− ḟ p

i

A
. (9.53)

From this analysis, it is clear that the CS corrections seems to couple to both a quantity
that resembles the orbital and the spin angular momentum vector. Note that when the
spin angular momentum vanishes the vectorial metric perturbation is identical to that
of a spinning moving fluid, but where the spin is induced by the coupling of the orbital
angular momentum to the CS term.

The presence of an effective CS spin angular momentum in non-spinning sources
leads to an interesting physical interpretation. Let us model the field that sources ḟ
as a fluid that permeates all of spacetime. This field could be, for example, a model-
independent axion, inspired by the quantity introduced in the standard model to resolve
the strong CP problem [302]. In this scenario, then the fluid is naturally “dragged” by
the motion of any source and the CS modification to the metric is nothing but such
dragging. This analogy is inspired by the ergosphere of the Kerr solution, where inertial
frames are dragged with the rotation of the black hole. In fact, one could push this
analogy further and try to construct the shear and bulk viscosity of such a fluid, but
we shall not attempt this here. Of course, this interpretation is to be understood only
qualitatively, since its purpose is only to allow the reader to picture the CS modification
to the metric in physical terms.

An alternative interpretation can be given to the CS modification in terms of
the gravito-electro-magnetic (GED) analogy [278, 279], which shall allow us to easily
construct the predictions of the modified theory. In this analogy, one realizes that the
PN solution to the linearized field equations can be written in terms of a potential and
vector potential, namely

ds
2

= − (1 − 2Φ) dt
2 − 4 (A · dx) dt+ (1 + 2Φ) δijdx

i
dx

j
, (9.54)

where Φ reduces to the Newtonian potential U in the Newtonian limit [279] and A
i

is
a vector potential related to the metric via Ai = −g0i/4. One can then construct GED
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fields in analogy to Maxwell’s electromagnetic theory via

E
i

= − (∇Φ)
i − ∂t

(
1

2
A

i
)
,

B
i

= (∇×A)
i
, (9.55)

which in terms of the vectorial sector of the metric perturbation becomes

E
i

= − (∇Φ)
i
+

1

8
ġ

i
,

B
i

= −1

4
(∇× g)

i
, (9.56)

where we have defined the vector g
i

= g0i. The geodesic equations for a test particle
then reduce to the Lorentz force law, namely

F
i
= −mEi − 2m (v ×B)

i
. (9.57)

We can now work out the effect of the CS correction on the GED fields and
equations of motion. First note that the CS correction only affects g. We can then write

the CS modification to the Lorentz force law by defining δa
i
= a

i − a
i

(GR)
, where a

i

(GR)

is the acceleration vector predicted by GR, to obtain,

δa
i
=

1

8
δġ

i
+

1

2
(v × δΩ)

i
, (9.58)

where we have defined the angular velocity

δΩ
i
= (∇× δg)

i
. (9.59)

The time derivative of the vector g
i
is of O(5) and can thus be neglected, but the angular

velocity cannot and it is given by

δΩ
i
= −

∑

A

ḟ
mA

r3
A

[
3
(
vA · nA

)
n

i

A
− v

i

A

]
, (9.60)

which is clearly of O(3). Note that although the first term between square brackets

cancels for circular orbits because n
i

A
is perpendicular to v

i

A
to Newtonian order, the

second term does not. The angular velocity adds a correction to the acceleration of O(4),
namely

δa
i
= −3

2

∑

A

ḟ
mA

r3
A

(
vA · nA

) (
vA × nA

)i
, (9.61)

which for a system in circular orbit vanishes to Newtonian order. One could use this
formalism to find the perturbations in the motion of moving objects by integrating
Eq. (9.61) twice. However, for systems in a circular orbit, such as the Earth-Moon
system or compact binaries, this correction vanishes to leading order. Therefore, lunar
ranging experiments [303] might not be able to constraint ḟ .
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Another correction to the predictions of GR is that of the precession of gyroscopes
by the so-called Lense-Thirring or frame-dragging effect. In this process, the spin angular
momentum of a source twists spacetime in such a way that gyroscopes are dragged with it.
The precession angular velocity depends on the vector sector of the metric perturbation
via Eq. (9.60). Thus, the full Lense-Thirring term in the precession angular velocity of
precessing gyroscopes is

Ω
i

LT
= − 1

r3
A

∑

A

J
i

A(eff)
− 3n

i

A

(
JA(eff) · nA

)
i
. (9.62)

Note that this angular velocity is identical to the GR prediction, except for the replace-

ment J
i

A
→ J

i

A(eff)
. In CS modified gravity, then, the Lense-Thirring effect is not only

produced by the spin angular momentum of the gyroscope but also by the orbital an-
gular momentum that couples to the CS correction. Note, however, that this correction
vanishes for zero velocities and angular momentum.

If experiments [280] detect frame-dragging and find it in agreement with the GR
prediction, we can immediately test CS gravity. In order to place a bound, however,
a careful analysis must be performed, using the tools developed in [304] and properly
accounting for the experiment’s frame. Nonetheless, we can construct a crude, order-
of-magnitude estimate of the size of such a bound. In order to do so, we assume the
Newtonian limit O(J) ∼ O(mRv), with m the total mass of the system, R the distance
from the gyroscope to the gravitational source (for GP B, R ∼ 7000 km [304]) and v the

orbital velocity, such that we can model the CS correction as |Ω| ∼ Ω
GR

(1+ḟ /R)
4
. Then,

a one percent accuracy in the frame-dragging measurement relative to the GR prediction

(nominal for GP B [304]) translates, roughly, into the bound ḟ . 10
−3

seconds.
Are there other experiments that could be performed to measure such a deviation

from GR? Any experiment that samples the vectorial sector of the metric would in effect
be measuring such a deviation. In this paper, we have only discussed modifications to
the frame-dragging effect and the acceleration of bodies through the GED analogy, but
this need not be the only corrections to classical GR predictions. In fact, any predictions
that depends on g0i indirectly, for example via Christoffel symbols, will probably also
be modified unless the corrections is fortuitously canceled. In this paper, we have laid
the theoretical foundations of the weak-field correction to the metric due to CS gravity
and studied some possible corrections to classical predictions. A detailed study of other
corrections is beyond the scope of this paper.

9.7 Conclusion

We have studied the weak-field expansion of the solution to the CS modified field
equations in the presence of a perfect fluid PN source in the point particle limit. Such an
expansion required that we linearize the Ricci and Cotton tensor to second order in the
metric perturbation without any gauge assumption. An iterative PPN formalism was

4
This can be seen by inserting O(J) ∼ O(mRv) into Eq. (9.62), with the definition of the

effective angular velocity given in Eq. (9.53), and factoring out 1 + ḟ /R.
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then employed to solve for the metric perturbation in this modified theory of gravity.
We have found that CS gravity possesses the same PPN parameters as those of GR, but
it also requires the introduction of a new term and PPN parameter that is proportional
to the curl of the PPN vector potentials. Such a term is enhanced in non-linear scenarios
without requiring the presence of standard model currents, large extra dimensions or a
vanishing string coupling.

We have proposed an interpretation for the new term in the metric produced
by CS gravity and studied some of the possible consequences it might have on GR
predictions. The interpretation consists of picturing the field that sources the CS term
as a fluid that permeates all of spacetime. In this scenario, the CS term is nothing but
the “dragging” of the fluid by the motion of the source. Irrespective of the validity of
such an interpretation, the inclusion of a new term to the weak-field expansion of the
metric naturally leads to corrections to the standard GR predictions. We have studied
the acceleration of point particles and the Lense-Thirring contribution to the precession
of gyroscopes. We have found that both corrections are proportional to the CS coupling
parameter and, therefore, experimental measurement of these effects might be used to
constraint CS and, possibly, string theory.

Future work could concentrate on studying further the non-linear enhancement
of the CS correction and the modifications to the predictions of GR. The PPN analysis
performed here breaks down very close to the source due to the use of a point particle
approximation in the stress energy tensor. One possible research route could consists
of studying the CS correction in a perturbed Kerr background [104]. Another possible
route could be to analyze other predictions of the theory, such as the perihelion shift of
Mercury or the Nordtvedt effect. Furthermore, in light of the imminent highly-accurate
measurement of the Lense-Thirring effect by Gravity Probe B, it might be useful to
revisit this correction in a frame better-adapted to the experimental setup. Finally, the
CS modification to the weak-field metric might lead to non-conservative effects and the
breaking of the effacement principle [281], which could be studied through the evaluation
of the gravitational pseudo stress-energy tensor. Ultimately, it will be experiments that
will determine the viability of CS modified gravity and string theory.
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Chapter 10

How do Black Holes Spin

in Chern-Simons Modified Gravity?

No Kerr-like exact solution has yet been found in Chern-Simons modified
gravity. Intrigued by this absence, we study stationary and axisymmet-
ric metrics that could represent the exterior field of spinning black holes.
For the standard choice of the background scalar, the modified field equa-
tions decouple into the Einstein equations and additional constraints. These
constraints eliminate essentially all solutions except for Schwarzschild. For
non-canonical choices of the background scalar, we find several exact so-
lutions of the modified field equations, including mathematical black holes
and pp-waves. We show that the ultrarelativistically boosted Kerr metric
can satisfy the modified field equations, and we argue that physical spinning
black holes may exist in Chern-Simons modified gravity only if the metric
breaks stationarity, axisymmetry or energy-momentum conservation.

10.1 Introduction

General relativity (GR) is one of physics’ most successful theories, passing all ex-

perimental tests so far with ever increasing accuracy
1

[305]. Nevertheless, modifications
to GR are pursued vigorously for two main reasons: from a theoretical standpoint, we
search for an ultraviolet (UV) completion of GR, such as string theory, that would lead
to corrections in the action proportional to higher powers of scalar invariants of the Rie-
mann tensor; from an experimental standpoint, observations in the deep infrared (IR)
regime suggest the existence of some form of dark energy [306, 307, 308]. One possibility
to accommodate dark energy is to consider an action with non-linear couplings to the
Ricci scalar [309, 310], similar in spirit to the corrections that we expect from a UV
completion of GR.

UV and IR corrections entail higher derivatives of the fundamental degrees of
freedom in the equations of motion, which on general grounds tend to have disastrous

consequences on the stability of the solutions of the theory
2
: the so-called Ostrogradski

instability (for a review cf. e.g. [313]). A few loopholes exist, however, that allow to

1
This chapter is based on the following papers: D. Grumiler and N. Yunes, accepted for

publication in the Phys. Rev. D (2007)
2
If one considers the classical solutions of the non-modified theory (without higher derivatives)

and regards additional terms as loop corrections, then no stability issues arise. In that case,
additional (unstable) solutions must be considered spurious [311, 312].
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bypass this theorem (for example, if the non-linear corrections can be converted into
a representation of a scalar-tensor theory). Along these lines, special combinations of
scalar invariants that play the role of a topological term, such as the Euler or Pontryagin
term, can in general be added safely to the action.

In this paper, we study Chern-Simons (CS) modified gravity [79], where the
Einstein-Hilbert action is modified by the addition of a parity-violating Pontryagin
term. As described by Jackiw and Pi [79], this correction arises through the embed-
ding of the 3-dimensional CS topological current into a 4-dimensional spacetime mani-
fold. CS gravity is not a random extension of GR, but it has physical roots in particle
physics. Namely, if there is an imbalance between left- (NL) and right-handed (NR)

fermions, then the fermion number current j
µ

has a well-known gravitational anomaly
[314], ∂µj

µ ∝ (NL − NR)
∗
RR, analogous to the original triangle anomaly [315]. Here

∗
RR is the Pontryagin term (also known as the gravitational instanton density or Chern-

Pontryagin term) to be defined in the next section. CS gravity is also motivated by
string theory: it emerges as an anomaly-canceling term through the Green-Schwarz
mechanism [276]. Such a correction to the action is indispensable, since it arises as a
requirement of all 4-dimensional compactifications of string theory in order to preserve
unitarity [74].

CS gravity has been studied in the context of cosmology, gravitational waves,
solar system tests and Lorentz invariance. In particular, this framework has been used
to explain the anisotropies in the cosmic microwave background [75, 76, 77] and the
leptogenesis problem [73, 74] (essentially using the gravitational anomaly described above
in the other direction). CS gravity has also been shown to lead to amplitude birefringent
gravitational waves [79, 316, 277, 317], possibly allowing for a test of this theory with
gravitational-wave detectors [272]. Moreover, CS gravity has been investigated in the far-
field of a spinning binary system, leading to a prediction of gyromagnetic precession [277,
317] that differs from GR. This prediction was later improved on and led to a constraint
on the magnitude of the CS coupling [83]. Finally, CS gravity has been studied in the
context of Lorentz-invariance and -violation [297] and the theory has been found to
preserve this symmetry, provided the CS coupling is treated as a dynamical field. For
further studies of these and related issues cf. e.g. [79, 318, 319, 316, 320, 321, 322, 323,
324, 325, 77, 326, 282, 297, 317, 327, 83, 328, 329].

CS gravity introduces the following modification to the action [79]: S = SEH +
Smat + SCS, where SEH is the Einstein-Hilbert action, Smat is some matter action, and
the new term is given by

SCS ∼
∫
dV θ

∗
RR . (10.1)

In Eq. (10.1), dV is a 4-dimensional volume element,
∗
RR is the Pontryagin term and θ

is a background scalar field (we shall define this action in more detail in the next section).
This scalar field, sometimes called a gravitational axion, acts as a CS coupling function
that can be interpreted either as an external or a dynamical quantity. In the former
case, CS gravity is an effective theory that derives from some other, more fundamental
gravity theory that physically defines the scalar field. In the latter case, the scalar field
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possesses its own equation of motion, which could in principle contain a potential and a
kinetic term [83].

The strength of the CS correction clearly depends on the CS coupling function.
If we consider CS gravity as an effective theory, the coupling function is suppressed by
some mass scale, which could lie between the electro-weak and the Planck scale, but it
is mostly unconstrained [83]. In the context of string theory, the coupling constant has
been computed in very conservative scenarios, leading to a Planck mass suppression [73].
In less conservative scenarios, there could exist enhancements that elevate the coupling
function to the realm of the observable. Some of these scenarios are cosmologies where
the string coupling vanishes at late times [284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294], or where the field that generates θ couples to spacetime regions with large
curvature [295, 296] or stress-energy density [272].

The CS correction is encoded in the modified field equations, which can be ob-
tained by varying the modified action with respect to the metric. The divergence of
the modified field equations establishes the Pontryagin constraint

∗
RR = 0, through

the Bianchi identities for a vacuum or conserved stress-energy tensor. Not only does
this constraint have important consequences on the conservation of energy, but it also
restricts the space of solutions of the modified theory. For example, although this restric-
tion is not strong enough to eliminate the Schwarzschild solution, it does eliminate the
Kerr solution. Since astrophysical observations suggest that supermassive black holes
(BHs) at the center of galaxies do have a substantial spin (cf., e. g. [330] and references
therein), this raises the interesting question of what replaces the Kerr solution in CS
gravity.

In this paper, we search for solutions to the CS modified field equations that
could represent the exterior gravitational field of a spinning star or BH. We find that
solutions cluster into two different classes: GR solutions that independently satisfy both
the vacuum Einstein equations and the modified field equations; non-GR solutions that
satisfy the modified field equations but not the vacuum Einstein equations. We carry out
an extensive study of solutions by looking at three groups of line elements: spherically
symmetric metrics; static and axisymmetric metrics; and stationary and axisymmetric
metrics. The first group contains GR solutions only, independently of the choice of the
CS scalar field. The second group leads to a decoupling of the modified field equations
for ’natural’ choices of the scalar field, which again reduces to trivial GR solutions. In
fact, we show here that static and axisymmetric line elements are forced to be spatially
conformally flat if such a decoupling occurs. The third group also leads to the same
decoupling for the canonical choice of the scalar field, and we argue against the existence
of non-trivial solutions.

This paper suggests that stationary and axisymmetric line elements in CS gravity
probably do not admit solutions of the field equations for the canonical choice of the CS
scalar field. However, solutions do exist when more general scalar fields are considered,

albeit not representing physical BH configurations
3
. We find two types of solutions,

3
The conclusion that stationary and axisymmetric solutions to the modified field equations

do not exist is in agreement with [327]. However, this fact does not lead to the conclusion that
spinning BHs cannot exist in the modified theory, as implied in [327]. In fact, an approximate



264

mathematical BHs and ultrarelativistically boosted BHs, which, to our knowledge, are
the first examples of BH and BH-like solutions in CS gravity, besides Schwarzschild and
Reissner-Nordström. The first type arises when we consider a subclass of stationary and
axisymmetric line elements (the so-called van Stockum class), for which we find both GR
and non-GR solutions for non-canonical scalar fields. For instance, we shall demonstrate
that the line-element

ds
2

= −ρ
(
1 − 2m√

ρ

)
dt

2 − 2ρ dt dφ +
1√
ρ

(
dρ

2
+ dz

2
)
, (10.2)

together with the CS scalar field θ = 2
√
ρ z/3, satisfies the modified field equations but

does not arise in GR as a vacuum solution. The metric in Eq. (10.2) represents BHs in
the mathematical sense only: it exhibits a Killing horizon at

√
ρ = 2m = const., but

it contains unphysical features, such as closed time-like curves that are not screened by
a horizon. The second type of solutions with a non-canonical scalar field arises when
we consider scalar fields whose divergence is a Killing vector. These fields lead to exact
gravitational pp-wave solutions of GR and non-GR type. One particular example that
we shall discuss in in this paper is the ultrarelativistically boosted Kerr BH,

ds
2

= −2du dv − h0δ(u) ln
(
x

2
+ y

2
)
du

2
+ dx

2
+ dy

2
, (10.3)

with the CS scalar field θ = λv, where h0 and λ are constants.
Although we did not find a Kerr analogue by searching for stationary and axisym-

metric solutions, spinning BHs do seem to exist in the theory. This suggestion is fueled
by the existence of two different limits of the Kerr spacetime that are still preserved:
the Schwarzschild limit and the Aichelburg-Sexl limit, Eq. (10.3), which we shall show
persists in CS gravity. These limits, together with the existence of a non-axisymmetric
far-field solution [317], indicate that a spinning BH solution must exist, albeit not with
the standard symmetries of the Kerr spacetime. Unfortunately, spacetimes with only
one or no Killing vector are prohibitively general and their study goes beyond the scope
of this work. Nonetheless, the possibility of constructing such solutions by breaking
stationarity or axisymmetry is discussed and a better understanding of solutions in CS
gravity is developed. Finally, we show how to recover the Kerr solution by postulat-
ing, in an ad-hoc manner, a non-conserved energy momentum-tensor and deduce that it
violates the classical energy conditions.

This paper is organized as follows: Sec. 10.2 reviews some basic features of CS
modified gravity and exploits two alternative formulations of the Pontryagin constraint,
one based upon the spinorial decomposition of the Weyl tensor and one based upon
its electro-magnetic decomposition, to reveal some physical consequences of this con-
straint; Sec. 10.3 revisits the Schwarzschild, Friedmann-Robertson-Walker and Reissner-
Nordström solutions in CS modified gravity and addresses the sensitivity of these solu-
tions to the choice of CS coupling function; Sec. 10.4 studies static, axisymmetric line
elements in great detail, while Sec. 10.5 investigates stationary, axisymmetric metrics and

solution that can represent a spinning BH in CS gravity has already been found in the far-
field [317, 83].
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provides the first non-trivial exact solutions to CS modified gravity, including mathe-
matical BH solutions; Sec. 10.6 addresses metrics that break axisymmetry or stationarity
and concentrates on non-trivial solutions for pp-waves and the Aichelburg-Sexl boosted
Kerr metric; Sec. 10.7 concludes and points to future research.

We use the following conventions in this paper: we work exclusively in four
spacetime dimensions with signature (−,+,+,+) [197], with Latin letters (a, b, . . . , h)
ranging over all spacetime indices; curvature quantities are defined as given in the
MAPLE GRTensorII package [1]; round and square brackets around indices denote
symmetrization and anti-symmetrization respectively, namely T(ab) := 1

2(Tab + Tba) and

T[ab] := 1
2(Tab−Tba); partial derivatives are sometimes denoted by commas, e.g. ∂θ/∂r =

∂rθ = θ,r. The Einstein summation convention is employed unless otherwise specified,

and we use geometrized units where G = c = 1.

10.2 CS modified gravity

10.2.1 ABC of CS

In this section, we summarize the basics of CS modified gravity, following the

formulation of [79]. Let us begin by defining the full action of the theory
4
:

S = κ

∫
d
4
x
√−g

(
R− 1

4
θ

∗
RR

)
+ Smat , (10.4)

where κ = 1/(16π), g is the determinant of the metric, the integral extends over all
spacetime, R is the Ricci scalar, Smat is some unspecified matter action and

∗
RR is the

Pontryagin term. The latter is defined via

∗
RR :=

∗
R

a

b

cd
R

b

acd , (10.5)

where the dual Riemann-tensor is given by

∗
R

a

b

cd
:=

1

2
ǫ
cdef

R
a

bef , (10.6)

with ǫ
cdef

the 4-dimensional Levi-Civita tensor
5
. The Pontryagin term [Eq. (10.5)] can

be expressed as the divergence

∇aK
a

=
1

4

∗
RR (10.7)

4
There is a relative sign difference in the CS correction to the action compared to [79]. This

minus sign is included in order to obtain the same equations of motion as in [79], correcting a
minor typo.

5
We prefer to work with tensors rather than with tensor densities in this paper, so some

expressions might appear to differ by factors of
√−g from [79].
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of the Chern-Simons topological current (Γ is the Christoffel connection),

K
a

:= ǫ
abcd

(
Γ

n

bm∂cΓ
m

dn +
2

3
Γ

n

bmΓ
m

clΓ
l

dn

)
, (10.8)

thus the name “Chern-Simons modified gravity”
6
.

The modified field equations can be obtained by varying the action with respect
to the metric. Exploiting the well-known relations

δR
b

acd = ∇cδΓ
b

ad −∇dδΓ
b

ac (10.9)

and

δΓ
b

ac =
1

2
g

bd (∇aδgdc + ∇cδgad −∇dδgac

)
, (10.10)

the variation of the geometric part of the action leads to

δS − δSmat = κ

∫
d
4
x
√−g

(
Rab −

1

2
gabR+ Cab

)
δg

ab

− κ

4

∫
d
4
x
√−g ∗

RR δθ

+ ΣEH + ΣCS . (10.11)

Here, the tensor Cab stands for a 4-dimensional Cotton-like tensor, which we shall refer

to as the C-tensor
7
, given by

C
ab

:= vcǫ
cde(a∇eR

b)

d + vcd

∗
R

d(ab)c
, (10.12)

where
va := ∇aθ , vab := ∇a∇bθ = ∇(a∇b)θ (10.13)

are the velocity and covariant acceleration of θ, respectively
8
. We shall always assume

that va does not vanish identically, because otherwise the model reduces to GR
9
.

Surface terms are collected in the third line of Eq. (10.11) and arise due to repeated
integration by parts and application of Stokes’ theorem. In particular, ΣEH and ΣCS
arise from variation of the Einstein-Hilbert and CS sector of the action, respectively.

6
If ∇

a
K

a
is converted into 1/

√
g ∂

a
(
√
gK

a
) the results (2.4) and (2.5) of [79] are recovered.

7
In the original work of [79], this tensor was called ’Cotton tensor’ because it shares similarities

with the 3-dimensional Cotton-tensor. However, the notion of a higher-dimensional Cotton tensor
already exists [331] and differs from the definition of C

ab
, which is why we refer to Eq. (10.12)

as a “C-tensor”.
8
The quantity v

a
is sometimes referred to as an embedding coordinate since it embeds the

3-dimensional CS theory into a 4-dimensional spacetime.
9
When v

a
= 0 then θ is constant and the Pontryagin term becomes a topological term not

contributing to the field equations.
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The former expression is well-known, while the latter contains a term with δΓ,

ΣCS = κ

∫
d
4
x
√−g∇d

(
θ
∗
R

abcd
δΓbac

)
+ . . . (10.14)

It is worthwhile pointing out that one cannot just impose Dirichlet boundary conditions
on the induced metric at the boundary by adding the Gibbons-Hawking-York term, as
it is the case in GR [185, 332]. There is no obvious way to cancel the term containing
the variation of the connection, δΓ, in Eq. (10.14), except by imposing suitable fall-off
conditions on the scalar field θ or Dirichlet boundary conditions on the connection. Even
though we shall neglect boundary issues henceforth, we emphasize that these considera-
tions are relevant in many applications, such as BH thermodynamics.

The modified field equations are then given by the first line of Eq. (10.11), provided
the second line vanishes. The vanishing of

∗
RR is the so-called Pontryagin constraint

and we shall study it in Sec. 10.2.2. The modified field equations in the presence of
matter sources are then given by

Gab + Cab = 8πTab, (10.15)

where Gab = Rab − 1
2gabR is the Einstein tensor and Tab is the stress-energy tensor of

the source. In this paper, we are primarily concerned with the vacuum case, Tab = 0, for
which the modified field equations reduce to

Rab + Cab = 0, (10.16)

due to the tracelessness of the C-tensor, C
a
a = 0. Like in GR, vacuum solutions in CS

gravity satisfy
R = 0 . (10.17)

10.2.2 Pontryagin Constraint

Let us now discuss the Pontryagin constraint

∗
RR = 0, (10.18)

which then forces the second line in Eq. (10.11) to vanish. One route to obtain the
Pontryagin constraint is to treat θ as a dynamical field (or rather a Lagrange multiplier).
By varying the action with respect to θ, we obtain the equations of motion for the scalar
field that dynamically enforce the Pontryagin constraint.

Another route to obtain the Pontryagin constraint is to treat θ as an external
quantity. In this case, there are no equations of motion for the scalar field. Nonetheless,
by taking the covariant divergence of the equations of motion and using the contracted
Bianchi identities, one obtains

∇aC
ab

=
1

8
v

b ∗
RR = 8π∇aT

ab
. (10.19)
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Usually, it is desirable to require that the stress-energy be covariantly conserved. How-
ever, in CS modified gravity this need not be the case because a non-vanishing covariant

divergence ∇aT
ab 6= 0 could be balanced by a non-vanishing Pontryagin term – this is, in

fact, how the term arises in some approaches in the first place, cf. [322]. We shall come

back to this issue at the end of Sec. 10.6, but for the time being we shall set T
ab

= 0,
which then leads to the Pontryagin constraint.

The Pontryagin constraint is a necessary condition for any vacuum spacetime that
solves the modified field equations, but what does it mean physically? We shall attempt
to answer this question by providing two alternative formulations of this constraint, but
before doing so, let us discuss some general properties and consequences of Eq. (10.18).
First, notice that setting the

∗
RR term to zero leads to the conserved current K

a

[Eqs. (10.7) and (10.8)], which is topological in nature, and thus implies this quantity
is intrinsically different from typical conserved quantities, such as energy or angular
momentum. Second, when the CS action is studied on-shell [Eq. (10.4) with

∗
RR = 0]

it reduces to the GR action, an issue that is of relevance for stability considerations,
e.g. thermodynamic stability in BH mechanics.

The first physical interpretation of the Pontryagin constraint can be obtained by
considering a spinorial decomposition. Let us then consider the useful relation

∗
RR =

∗
C C , (10.20)

which we prove in appendix H. In Eq. (10.20), C is the Weyl tensor defined in (H.2) and
∗
C its dual, defined in (H.3). This identity allows us to use powerful spinorial methods
to map the Weyl tensor into the Weyl spinor [333], which in turn can be characterized
by the Newman-Penrose (NP) scalars

(
Ψ0,Ψ1,Ψ2,Ψ3,Ψ4

)
. In the notation of [334], the

Pontryagin constraint translates into a reality condition on a quadratic invariant of the
Weyl spinor, I,

ℑ (I) = ℑ
(
Ψ0Ψ4 + 3Ψ

2

2
− 3Ψ1Ψ3

)
= 0 . (10.21)

Such a reality condition is particularly useful for the consideration of algebraically
special spacetimes. For instance, it follows immediately from Eq. (10.21) that spacetimes
of Petrov types III, N and O obey the Pontryagin constraint, since in the latter case
all NP scalars vanish, while in the former cases (in an adapted frame) only Ψ3 or Ψ4
are non-vanishing. Moreover, all spacetimes of Petrov types D, II and I are capable
of violating Eq. (10.21). For example, for spacetimes of Petrov type II one can choose
an adapted tetrad such that Ψ0 = Ψ1 = Ψ3 = 0, which then reduces Eq. (10.21) to the
condition that either the real part or the imaginary part of Ψ2 has to vanish.

The reality condition of Eq. (10.21) can also be useful in applications of BH
perturbation theory. For instance, in the metric reconstruction of the perturbed Kerr
spacetime [104], the NP scalars Ψ1 = Ψ3 = 0 vanish. In this context gravitational
waves are characterized by Ψ4,0, while Ψ2 is in general non-vanishing. In a tetrad that

represents a transverse-traceless frame, these scalars are given by

Ψ4,0 = ḧ+ ∓ iḧ×, (10.22)
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where h+,× are the plus/cross polarization of the waveform, and the overhead dot stands

for partial time derivative [335]. Obviously, Ψ0Ψ4 = (ḧ+)
2

+ (ḧ×)
2

is real, which again

reduces Eq. (10.21) to the condition that either the real part or the imaginary part of Ψ2
has to vanish. Neither of these possibilities is the case for the Kerr BH or perturbations
of it [104].

Another interpretation of the Pontryagin constraint can be obtained by exploiting
the split of the Weyl tensor into electric and magnetic parts (cf. e.g. [336]). Given some
time-like vector field u

a
, normalized so that uau

a
= −1, one can define the electric and

magnetic parts of the Weyl tensor as

(Cabcd +
i

2
ǫabefC

ef

cd)u
b
u

d
= Eac + iBac . (10.23)

Then, the Pontryagin constraint is equivalent to the condition
10

EabB
ab

= 0 . (10.24)

This leads to three possibilities: either the spacetime is purely electric (Bab = 0) or purely
magnetic (Eab = 0) or orthogonal, in the sense that Eq. (10.24) holds. Equation (10.24)

is a perfect analogue to the condition
∗
F F ∝ E · B = 0, which holds for specific

configurations in electro-dynamics, including purely electric (B = 0), purely magnetic
(E = 0) and electromagnetic wave configurations (E 6= 0 6= B, E ·B = 0). This suggests
that there could be single shock-wave solutions in CS gravity compatible with Eq. (10.24),
which we shall indeed encounter in Sec. 10.6. In light of this electro-magnetic analogy,
the Pontryagin constraint can be rephrased as “the gravitational instanton density must
vanish,” since the quantity

∗
F F is sometimes referred to as the “instanton density.”

The electromagnetic decomposition of the Pontryagin constraint also allows for a
physical interpretation in terms of perturbations of the Schwarzschild solution. In BH
perturbation theory (cf. e.g. [135]), the metric perturbation is also decomposed through
the electromagnetic Weyl tensor. The electric and magnetic parts can then be related to
the flux of mass and angular momentum across the horizon. Suffice it to say that for a
binary BH system in the slow-motion/small-hole approximation [135], these tensors are

of order Eab ∼ O(Φ) and Bab ∼ O(vΦ), where the Newtonian potential Φ is of O(v
2
)

via the Virial theorem, with v ≪ 1 the orbital velocity. In this case, the Pontryagin

constraint is satisfied automatically up to terms of O(v
5
). Within the post-Newtonian

(PN) approximation [3], these conclusions imply that the PN metric for non-spinning
point-particles in the quasi-circular approximation violates the Pontryagin constraint at

2.5 PN order [O(v/c)
5
], which is precisely the order at which gravitational waves appear.

Even for non-canonical choices of the scalar field, such as θ = z proposed in [327],
the far field expansion of the Kerr metric does not satisfy the Pontryagin constraint
to all orders. This is so because obviously

∗
RR is independent of θ. In fact, one can

10
One can show that Eq. (10.24) is related to the vanishing of certain derivatives of the Regge-

Wheeler function in the Regge-Wheeler [189] decomposition of the metric perturbation. We are
currently studying how such a condition impacts the ringing of CS BHs elsewhere [337]. The
equivalence between Eqs. (10.21) and (10.24) was shown for the first time in [338].
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show that violations of the constraint for the metric considered in [327] occur already at
second order in the metric perturbation, which renders this metric hopeless as an exact
CS solution. This observation is concurrent with the role the Pontryagin constraint may
play for gravitational waves [339].

Finally, we can employ the electromagnetic analogy to anticipate the answer to
the question we pose in the title of this paper. Namely, we are looking for a “rotating
charge” configuration (where E 6= 0 6= B), which simultaneously is an “electromagnetic
wave” configuration (where E · B = 0). We know that no such solutions exist in elec-

trodynamics, except for two limits
11

: if the rotation (and thus B) approaches zero or if
the charge is infinitely boosted (and thus B becomes orthogonal to E). The first case
corresponds to a static configuration, while the second one to an ultrarelativistic limit.
We shall indeed find below both analogues as solutions of CS modified gravity, but we
stress that the naive analogy with electrodynamics does not yet rule out other possible
spinning configurations in CS modified gravity.

10.2.3 Space of Solutions

Before discussing some specific solutions to the CS modified field equations, let
us classify the space of solutions. Figure 10.1 presents a 2-dimensional depiction of
this space. The set E denotes the Einstein space of solutions, whose members have
a vanishing Ricci tensor, while CS denotes the CS space of solutions, whose members
satisfy the CS modified field equations [Eq. (10.16)], without necessarily being Ricci
flat. The intersection of the Einstein and the CS space defines the Pontryagin space,
denoted by P := E ∩CS, whose members satisfy both the Einstein and the modified field
equations independently. Therefore, solutions that live in P possess a vanishing C-tensor
and automatically satisfy the Pontryagin constraint, while those living in E \ P satisfy
the vaccum Einstein equations but not the Pontryagin constraint. Moreover, solutions
that live in CS \ P are not Ricci-flat but do satisfy the Pontryagin constraint because
they solve the modified field equations. Solutions of class P shall be referred to as GR
solutions, while solutions of class CS \ P shall be referred to as non-GR solutions.

To date, only one non-GR solution has been found perturbatively [317] by as-
suming a far field expansion for point-particle sources in the PN weak-field/slow-motion
approximation. We shall show in the next sections that non-GR solutions exist only in
scenarios with a sufficient degree of generality, but not in highly symmetric cases. In
the language of dynamical systems theory, the P space acts as an “attractor” of highly
symmetric solutions, emptying out the CS space.

In view of this, let us discuss some properties of solutions that live in the P space.
In this space, the C-tensor simplifies to

C
ab|Rab=0 = vcd

∗
R

d(ab)c
= vcd

∗
C

d(ab)c
= 0 , (10.25)

11
Actually there is a third limit, E = 0, which is either trivial (if also B vanishes) or a magnetic

monopole.
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E CS

P

abR   = 0

abC   = 0

R   + C   = 0ab ab

Fig. 10.1. Space of solutions of Einstein gravity E and CS modified gravity CS.

where Cabcd is the Weyl tensor and
∗
C its dual, defined in Eqs. (H.2) and (H.3). Equa-

tion (10.25) leads to three distinct possibilities:

1. The (dual) Weyl tensor vanishes. However, since class P members also have a
vanishing Ricci tensor, this condition reduces all possible solutions to Minkowski
space.

2. The covariant acceleration of θ vanishes. This condition imposes a strong restric-
tion on the geometry (cf. e.g. [334]), which leads to spacetimes that are either flat
or exhibit a null Killing vector.

3. Only the contraction of the covariant acceleration with the dual Weyl tensor van-
ishes.

Moreover, for solutions in P, the vanishing of the Ricci tensor forces the Weyl tensor
to be divergenceless, via the contracted Bianchi identities. These observations are a
clear indication that the solutions inhabiting P must be special – for instance, exhibit a
certain number of Killing vectors. Conversely, one may expect that solutions inhabiting
CS \ P cannot be “too special.” We shall put these expectations on a solid basis and
confirm them in the next sections.

10.3 Persistence of GR solutions

In this section, we study some solutions of GR that are known to persist in CS
gravity [79, 297], using the insight on the Pontryagin constraint gained so far. In the
language of Sec. 10.2.3 we look for solutions that inhabit P, cf. Fig. 10.1.

10.3.1 Schwarzschild Solution

The Schwarzschild solution,

ds
2

= −
(

1 − 2M

r

)
dt

2
+

(
1 − 2M

r

)−1

dr
2
+ r

2
(
dΘ

2
+ sin

2
(Θ)dφ

2
)
,(10.26)
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is also a solution of the CS modified field equations if [79]

θ =
t

µ
→ vµ = [1/µ, 0, 0, 0] . (10.27)

We refer to Eq. (10.27) as the canonical choice of the CS scalar field [79]. In that
case, the C-tensor can be interpreted as a 4-dimensional generalization of the ordinary
3-dimensional Cotton tensor. Moreover, spacetime-dependent reparameterization of the
spatial variables and time translation remain symmetries of the modified action [79].

We investigate now the most general form of θ = θ(t, r,Θ, φ) that will leave the
Schwarzschild metric a solution of the modified theory. The Pontryagin constraint always
holds, regardless of θ, because the spacetime is spherically symmetric, but Cab = 0 yields
non-trivial equations. Since we have chosen the Schwarzschild line element, we cannot
force the (dual) Weyl tensor to vanish (option 1 in Sec. 10.2.3), where the only linearly
independent component is

∗
CtrΘφ =

2M

r
sin Θ . (10.28)

Another possibility is to force the scalar field to have a vanishing covariant acceleration
(option 2 in Sec. 10.2.3). This condition then yields an over-constrained system of partial
differential equations (PDEs), whose only solution for M 6= 0 is the trivial one: constant
θ. We are thus left with the remaining possibility (option 3 in Sec. 10.2.3), namely that
only the contraction of the covariant acceleration with the dual Weyl tensor vanishes.
This possibility yields the following set of PDEs

θ,tΘ = θ,tφ =
∂

∂r

(
θ,Θ

r

)
=

∂

∂r

(
θ,φ

r

)
= 0 , (10.29)

the solution of which is given by

θ = F (t, r) + rG(Θ, φ) . (10.30)

Note that this scalar field possesses a non-vanishing covariant acceleration, namely vtt,
vtr, vrr, vΘΘ, vΘφ and vφφ are non-vanishing, e.g.

vtt = ∂rrF − M

r2

(
1 − 2M

r

)(
∂rF +G

)
. (10.31)

For the choice of θ given in Eq. (10.30) the Schwarzschild solution is always a solution
of the modified theory. Note that Eq. (10.30) reduces to the canonical choice for G = 0
and F = t/µ, for which the only non-vanishing component of the covariant acceleration

is vtr = −M/(r
2
fµ).

This simple calculation of the most general form of the scalar field that respects
the Schwarzschild solution leads to two important consequences:

• The existence of specific solutions depends sensitively on the choice of the scalar
field.
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• The satisfaction of the Pontryagin constraint is a necessary but not a sufficient
condition for the C-tensor to vanish.

In order to illustrate the second point, let us consider the scalar field θ = mCS sin Θ,
with mCS a constant. Then the Pontryagin constraint is still satisfied, but the C-tensor
has one non-vanishing component,

Ctφ =
3MmCS

r4
sin

2
Θ

(
1 − 2M

r

)
, (10.32)

and the Schwarzschild line element [Eq. (10.26)] is no longer a solution to the modified
field equations [Eq. (10.16)].

10.3.2 Spherically symmetric metrics

Let us now pose the question whether there can be non-GR solutions in CS
modified gravity that preserve spherical symmetry. Any line element respecting this
symmetry must be diffeomorphic to (cf. e.g. [340])

ds
2

= gαβ(x
γ
) dx

α
dx

β
+ Φ

2
(x

γ
) dΩ

2

S2 , (10.33)

where gαβ(x
γ
) is a Lorentzian 2-dimensional metric with some coordinates x

γ
, Φ(x

γ
) is

a scalar field (often called “dilaton” or “surface radius”) and dΩ
2

S2 is a line element of

the round 2-sphere, with some coordinates x
i
. For such a line element, one can show

straightforwardly that the Pontryagin constraint is always satisfied (cf. e.g. appendix
A of [341]), and that the only non-vanishing components of the Ricci tensor are Rαβ

and Rij. On the other hand, for the most general scalar field θ, the only non-vanishing

components of the C-tensor are of the form Cαi. Remarkably, the C-tensor and the Ricci
tensor decouple and both have to vanish independently as a consequence of the modified
field equations. In other words, for spherically symmetric line elements there cannot be
solutions that live in CS \ P. Instead all solutions are pushed to P, which then uniquely

leads to the Schwarzschild solution by virtue of the Birkhoff theorem
12

.
We have just shown that for all spherically symmetric situations the vacuum

solutions to the CS modified field equations live in P, and therefore are given uniquely
by the Schwarzschild solution. For non-vacuum solutions with the same symmetries,
similar conclusions hold, since the field equations still decouple into non-vacuum Einstein
equations and the vanishing of the C-tensor. Therefore, all solutions are again pushed
to P and spherically symmetric solutions of GR (such as the Reissner-Nordström BH or
Friedmann-Robertson-Walker spacetimes) persist in CS modified gravity, provided θ is
of the form

θ = F (x
γ
) + Φ(x

γ
)G(x

i
) . (10.34)

12
The persistence of Birkhoff’s theorem in CS modified gravity was first proved by one of us

(NY) in collaboration with C. Sopuerta [337].
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This result is completely analog to Eq. (10.30). In all spherically symmetric scenarios, the
solutions to the CS modified field equations live in P and the expectations of Sec. 10.2.3
hold.

10.3.3 Losing the Kerr solution

As an example of a relevant GR solution that does not persist in the modified
theory we consider the Kerr solution. The Kerr metric yields a non-vanishing Pontryagin

term
13

, which in Boyer-Lindquist coordinates

ds
2

= −∆ − a
2
sin

2
Θ

Σ
dt

2 − 4aMr sin
2
Θ

Σ
dtdφ (10.35)

+
(r

2
+ a

2
)
2 − a

2
∆ sin

2
Θ

Σ
sin

2
Θdφ

2
+

Σ

∆
dr

2
+ ΣdΘ

2
(10.36)

can be written as

∗
RR = 96

aM
2
r

Σ6 cos Θ
(
r
2 − 3a

2
cos

2
Θ
)(

3r
2 − a

2
cos

2
Θ
)
, (10.37)

with Σ = r
2
+ a

2
cos

2
Θ and ∆ = r

2
+ a

2 − 2Mr. In light of the physical interpretations
of Sec. 10.2.2, one would expect this result since the Kerr spacetime possesses a complex
Newman-Penrose scalar Ψ2.

The Pontryagin constraint is satisfied in certain limits. For example, as the Kerr
parameter goes to zero, a→ 0, the Schwarzschild solution is recovered and the right-hand
side of Eq. (10.37) vanishes. Similarly, in the limit as the mass goes to zero, M → 0,
the right-hand side of Eq. (10.37) also vanishes. However, for any finite a and M the
Pontryagin term is non-vanishing and, thus, the Kerr spacetime cannot be a solution to
the CS modified field equations [327].

What line element then replaces the Kerr solution in the modified theory? A
reasonable attempt to construct a spinning BH in CS gravity is to consider axisymmetric
and either static or stationary line elements, which we shall investigate in the next
sections.

10.4 Static, axisymmetric solutions

Before embarking on a tour de force through stationary and axisymmetric
14

solutions, we shall first consider the simpler case of static and axisymmetric solutions.
Following [342], the most general static and axisymmetric line element is diffeomorphic

13
Similar conclusions hold for the Kerr-Newman and Kerr-NUT spacetimes.

14
Stationarity and axisymmetry require not only the existence of two Killing vectors, but also

additional conditions, some of which can be considered optional. In the present work we employ
stationarity and axisymmetry in the strictest sense possible. In particular, we always impose the
integrability conditions ξ

a
R

a[bξcψd] = ψ
a
R

a[bξcψd] = 0. For further discussion of these issues

cf. e.g. [334].
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to
ds

2
= −V dt2 + V

−1
ρ
2
dφ

2
+ Ω

2
(
dρ

2
+ Λdz

2
)
, (10.38)

where we have three undetermined functions of two coordinates: V (ρ, z), Ω(ρ, z) and

Λ(ρ, z). The two commuting Killing fields, ξ
a

=
(
∂t

)a
and ψ

a
=
(
∂φ

)
a
, are associated

with stationarity and axisymmetry respectively. However, since there is no cross-term
dtdφ, the line element of Eq. (10.38) is not just stationary but also static. The compo-
nents of its Ricci tensor are given by

Rtφ = Rtρ = Rtz = Rφρ = Rφz = 0 , (10.39)

Rtt =
1

2Ω2


V,ρρ +

V,zz

Λ
+
V,ρ

ρ
−
V

2

,ρ

V
−

V
2

,z

V Λ

+
V,ρΛ,ρ

2Λ
−
V,zΛ,z

2Λ2

]
, (10.40)

Rφφ =
1

2Ω2


ρ

2
V,ρρ

V 2 +
ρ
2
V,zz

V 2Λ
+
ρV,ρ

V 2 −
ρ
2
V

2

,ρ

V 3 −
ρ
2
V

2

,z

V 3Λ

−
ρΛ,ρ

V Λ
+
ρ
2
Λ,ρV,ρ

2V 2Λ
−
ρ
2
Λ,zV,z

2V 2

]
, (10.41)

Rρρ =
V,ρ

ρV
−

V
2

,ρ

2V 2 −
Ω,ρρ

Ω
−

Ω,zz

ΛΩ
+

Ω,ρ

ρΩ
+

Ω
2

,ρ

Ω2 +
Ω

2

,z

ΛΩ2

−
Λ,ρρ

2Λ
+

Λ
2

,ρ

4Λ2 −
Ω,ρΛ,ρ

2ΛΩ
+

Ω,zΛ,z

2Λ2Ω
, (10.42)

Rzz = −
V

2

,z

2V 2 −
ΛΩ,ρρ

Ω
−

Ω,zz

Ω
−

Ω,ρΛ

ρΩ
+

Ω
2

,ρ
Λ

Ω2 +
Ω

2

,z

Ω2

−
Λ,ρρ

2
−

Λ,ρ

2ρ
+

Λ
2

,ρ

4Λ
−

Ω,ρΛ,ρ

2Ω
+

Ω,zΛ,z

2ΩΛ
, (10.43)

Rρz = −
V,zV,ρ

2V 2 +
V,z

2ρV
+

Ω,z

ρΩ
, (10.44)

and exhibit only five non-vanishing components. With the canonical choice of the CS
scalar field [Eq. (10.27)] it is now straightforward to check that the five corresponding
components of the C-tensor vanish,

Ctt = Cφφ = Cρρ = Czz = Cρz = 0 . (10.45)

As in the spherically symmetric case, we are faced with the remarkable consequence that
the field equations [Eq. (10.16)] decouple into the vacuum Einstein equations plus the
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vanishing of the C-tensor, viz.

Rab = 0 , Cab = 0 . (10.46)

In other words, using the classification of Sec. 10.2.3, all static and axisymmetric solutions
live in P, which again confirms previous expectations.

With these considerations in mind, we can now simplify the line element of
Eq. (10.38). From [342], the function Λ can be chosen to be constant, e.g. Λ = 1,
and therefore the line-element reduces to the Weyl class,

ds
2

= −e2U
dt

2
+ e

−2U
[
e
2k

(dρ
2
+ dz

2
) + ρ

2
dφ

2
]
. (10.47)

The vacuum Einstein equations then simplify to

∆U = 0 , k,ρ = ρ(U
2

,ρ
− U

2

,z
) , k,z = 2ρU,ρU,z , (10.48)

where ∆ = ∂
2
/∂ρ

2
+ 1/ρ∂/∂ρ + ∂

2
/∂z

2
is the flat space Laplacian in cylindrical coor-

dinates. The function U thus solves a Laplace equation, and for any such solution the
function k can be determined by a line integral [334].

The Pontryagin constraint is fulfilled automatically for all line elements diffeo-
morphic to Eq. (10.47), but as we have seen in the previous sections, this is not sufficient
to achieve Cab = 0. For example, with the choices [343, 344] (m is constant)

U = − m√
ρ2 + z2

, k = − m
2
ρ
2

2(ρ2 + z2)2
, (10.49)

the vacuum Einstein equations hold and the Pontryagin constraint is fulfilled, but the
C-tensor has the non-vanishing components

Cρφ =
2m

4
ρ
3
z

µ
(
ρ2 + z2

)5 exp

[
m

2
ρ
2

(
ρ2 + z2

)2

]
, Czφ =

1

2ρz
Cρφ . (10.50)

Since the C-tensor must vanish independently from the Einstein equations, once
more we are faced with three distinct possibilities, identical to those described in Sec. 10.2.3.
The first possibility (option 1 in Sec. 10.2.3) is to demand that the Weyl tensor vanishes,
but since also the Ricci tensor vanishes, the spacetime would have to be flat. The sec-
ond possibility (option 2 in Sec. 10.2.3) is to demand that the covariant acceleration of
θ vanishes, i.e., ∇aθ is a covariantly constant vector. However, as we have mentioned
already, a vacuum solution with a covariantly constant vector field must be either flat,
or the vector must be a null-vector. The first alternative is trivial, while the second one
is not particularly interesting in the context of static axisymmetric spacetimes. We shall
discuss the latter possibility further in Sec. 10.6.1.

The only remaining possibility (option 3 in Sec. 10.2.3) is for the contraction of
the covariant acceleration and the dual Weyl tensor to vanish. The C-tensor can then
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be simplified to

C
ab ∝ Γ

t

ρt

∗
C

t(ab)ρ
+ Γ

t

zt

∗
C

t(ab)z
= 0 , (10.51)

which has only two non-vanishing components. Using the Einstein equations to simplify
these expressions we obtain a set of nonlinear PDEs,

U,ρzU,ρ + U,zzU,z = 2ρ
(
U

3

,z
U,ρ + U

3

,ρ
U,z

)
− 2

ρ
U,ρU,z ,

U,ρzU,z − U,zzU,ρ = ρ
(
U

4

,ρ
− U

4

,z

)
− 1

ρ
U

2

,ρ
. (10.52)

We used Maple to obtain some solutions to these PDEs. The Schwarzschild solution

U =
1

2
ln

√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 − 2M

√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2 + 2M

(10.53)

of course solves these PDEs. Some other simple solutions are U = U0, U = U0± ln ρ and

U = U0 + ln (
√
ρ2 + z2 + z)/2, where U0 is a constant. Not only do these solution yield

a vanishing Ricci tensor, but they also yield a vanishing Riemann tensor, which shows
they are Minkowski spacetime in disguise. In addition to these trivial solutions, there
exist exactly two more:

ds
2

= −1

z
dt

2
+ zdz

2
+ z

2
(dρ

2
+ ρ

2
dφ

2
) (10.54)

and

ds
2

= −
(

2m

z
− 1

)
dt

2
+

(
2m

z
− 1

)−1

dz
2

+ z
2
(dρ

2
+ sinh

2
ρ dφ

2
) (10.55)

While these solutions certainly are non-trivial, neither the first [Eq. (10.54)] nor the
second [Eq. (10.55)] solution is physically relevant. The former has a naked singularity
at z = 0, while the latter, whose singularity at z = 0 is screened by a Killing horizon at
z = 2m = const., possesses a Killing vector k

a
= (∂t)

a
that is spacelike in the “outside”

region z > 2m, i.e. gabk
a
k

b
= 1 − 2m/z > 0.

Let us now prove that these are the only solutions to the modified field equations.
The crucial observation is that the spatial part of the C-tensor for static, axisymmetric
spacetimes reduces to the 3-dimensional Cotton tensor [79]. This tensor vanishes if
and only if the corresponding 3-dimensional space (spatial sector of the 4-dimensional
metric) is conformally flat, i.e. gij = Φδij , where the conformal factor Φ is a function

of the coordinates and δij is the spatial part of the Minkowski metric. We may then

exploit a result by Lukács and Perjés [345] that the line elements of Eqs. (10.54), (10.55)
and (10.26) are the only static and axisymmetric solutions that are spatially conformally
flat. Therefore, it follows that these equations are the only solutions to the modified
field equations.
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The above considerations also apply to more general CS scalar fields. All sim-
plifications hinge on the decoupling of the modified field equations, which occurs if and
only if θ,tφ = 0. We can solve this PDE to obtain

θ = θ1(t, ρ, z) + θ2(ρ, z, φ). (10.56)

For all scalar fields of this form, the modified field equations decouple and the C-tensor
has five non-vanishing components, which define a system of PDEs for one of the two
arbitrary functions k or U . However, we do not expect more solutions to arise in this way,
since this case leads to the same constraints as the canonical one, plus three extra PDEs,
which essentially compensate the freedom to tinker with the two arbitrary functions in
Eq. (10.56).

The most general CS scalar field, however, does not allow for a decoupling of
the type described above. If the scalar field has θ,tφ 6= 0, then the (ρ, ρ), (ρ, z) and

(z, z) components of the modified field equations do not decouple. However, the (t, t)
and (φ, φ) components still do decouple because the corresponding C-tensor components
vanish. The equation

R
t

t +R
φ

φ = −1

2

Λ,ρ

Λρ2Ω2 = 0, (10.57)

forces Λ to be a function of z alone. Through a diffeomorphism, this function can be set
to unity, as argued in [342].

The modified field equations are too difficult to solve analytically with Maple, so in
order to study solutions that do not lead to a decoupling of the modified field equations,
we shall assume for simplicity θ = θ̃(t, φ). From the Ricci sector of the field equations
(Rtt = 0 = Rφφ) we find that U is again a solution of ∆U = 0. We can use this relation

to simplify the C-tensor, and the ensuing equations Ctφ = Ctρ = Ctz = Cφρ = Cφz = 0

lead to a system of second order PDEs for θ and k. We investigated this system with
Maple and found that solutions exist if and only if θ is a function of only one variable,
i.e. θ = θ(t) or θ = θ(φ). These results indicate that there are no solutions of the
modified field equations if θ is bivariate.

In summary, we have shown in this section that the field equations decouple if
the CS scalar field solves θ,tφ = 0, and their solution is the Schwarzschild BH and two

additional (unphysical) solutions [Eqs. (10.54) and (10.55)]. For CS fields that satisfy
θ,tφ 6= 0, the modified field equations do not seem to have a solution. Therefore, there

are no static and axisymmetric solutions in CS gravity, apart from the Schwarzschild BH
and some unphysical solutions, irrespective of the CS scalar field.

10.5 Stationary, axisymmetric solutions

10.5.1 General line elements

Equipped with the tools from the previous section, we drop the requirement of
staticity and replace it by the weaker one of stationarity. In essence, this means that we
shall allow the gravitomagnetic sector of the metric to be different from zero. The most
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general, stationary and axisymmetric line-element is diffeomorphic to [334]

ds
2

= −V (dt− wdφ)
2
+ V

−1
ρ
2
dφ

2
+ Ω

2
(
dρ

2
+ Λdz

2
)
, (10.58)

where the functions V , w, Ω and Λ depend on ρ and z, only. This line element is
identical to Eq. (10.38) as w → 0. In GR, the function w can be identified with the

angular velocity. The Ricci tensor for this line element is similar to R
static

ab
[Eqs. (10.39)-

(10.44)] and its components are

Rtρ = Rtz = Rφρ = Rφz = 0 , (10.59)

Rtt = R
static

tt
+
(
w

2

,ρ
+
w

2

,z

Λ

) V
3

2ρ2Ω2 , (10.60)

Rtφ =
w

2Ω2


−V,ρρ −

V,zz

Λ
−
V,ρ

ρ
+
V

2

,ρ

V
+
V

2

,z

V Λ
− 2

V,ρw,ρ

w
− 2

V,zw,z

wΛ
−
w,ρρV

w

−
w,zzV

wΛ
+
w,ρV

ρw
−
w

2

,ρ
V

3

ρ2 −
w

2

,z
V

3

ρ2Λ
−

Λ,ρV,ρ

2Λ
+

Λ,zV,z

2Λ2 −
Λ,ρw,ρV

2wΛ

+
Λ,zw,zV

2wΛ2

]
, (10.61)

Rρρ = R
static

ρρ
+ w

2

,ρ

V
2

2ρ2 , (10.62)

Rzz = R
static

zz
+ w

2

,z

V
2

2ρ2 , (10.63)

Rρz = R
static

ρz
+ w,ρw,z

V
2

2ρ2 , (10.64)

R = R
static

+
(
w

2

,ρ
+

1

Λ
w

2

,z

) V
2

2ρ2Ω2 . (10.65)

The somewhat lengthy component Rφφ can be deduced from R and the other compo-

nents. The quantity R
static

,

R
static

=
1

2Ω2


2

Vρ

V Λ
−
V

2

ρ

V 2 −
V

2

z

V 2Λ
− 4

Ωρρ

Ω
− 4

Ωzz

ΛΩ
+ 4

Ω
2

ρ

Ω2 + 4
Ω

2

z

ΛΩ2

− 2
Λρρ

Λ
− 2

Λρ

ρΛ
+

Λ
2

ρ

Λ2 − 2
ΛρΩρ

ΛΩ
+ 2

ΛzΩz

Λ2Ω


 , (10.66)

is the trace of Eqs. (10.39)-(10.44).
As before, let us begin with the canonical choice for the CS scalar field, namely

Eq. (10.27). Then the only non-zero components of the C-tensor are Cρt, Czt, Cρφ and
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Czφ. As in the previous cases, there is a decoupling of the field equations that allows us

to set Λ = 1 and to consider the slightly simpler line element (Lewis-Papapetrou-Weyl
metric)

ds
2

= −e2U
(dt− wdφ)

2
+ e

−2U
[
e
2k

(dρ
2
+ dz

2
) + ρ

2
dφ

2
]
, (10.67)

where again the functions U , k and w depend on the coordinates ρ and z only. With
this line element, the last lines vanish in the multi-line expressions for the Ricci tensor,
Eqs. (10.40)-(10.43), (10.61) and (10.66), because Λ = 1. The vacuum Einstein equations
simplify considerably with Λ = 1. Essentially, they are similar to Eq. (10.48) but with a
complicated source and an additional equation for w. Even within GR, explicit solution
to this set of PDEs can only be found in certain special cases [334].

The Pontryagin constraint for the line element of Eq. (10.67) is not satisfied in
general. This constraint yields a complicated second order PDE for w, U and k, presented
in appendix I, which of course is trivially satisfied as w → 0. Certain solutions to the

PDE in appendix I can be obtained, e.g. (w̄ := e
2U
w)

k = k(ρ, z) w̄ = c1e
2U
, U = U(ρ, z) , (10.68a)

k = k(ρ, z) w̄ = ±ρ , U = U(ρ, z) , (10.68b)

k = ln(ρ) + k̃(z) , w̄ = w̃(z)ρ , U =
1

2
ln(ρ) + c1 , (10.68c)

k = k(ρ) , w̄ = w̄(ρ) , U = U(ρ) , (10.68d)

where c1 is a constant. The first line reduces to static solutions upon redefining t
′
=

t − c1φ. The second line leads to metrics of Petrov type II, the so-called van Stockum
class, which we shall discuss in Sec. 10.5.2. The third line of Eq. (10.68) cannot be made
to solve the modified field equations. The last line implies cylindrical symmetry, which
again via the field equations leads to flat spacetime. We have thus been unable to find

non-trivial solutions either by hand or using symbolic manipulation software
15

.
Unlike the previous section, we cannot provide here a truly exhaustive discussion

of all solutions of the decoupled field equations. This is because Cab = 0 does not
necessarily imply spatial conformal flatness for the stationary case. Based on the evidence
found so far, it seems unlikely that there are other non-trivial and physically interesting
solutions besides the static ones. This is because the vacuum Einstein equations [Rab = 0]
already determine the function k uniquely up to an integration constant, and also impose
strong restrictions on the functions U and w [334]. The constraints Cab = 0 impose four
additional conditions on these functions that can be found in [346]. Since the system of
partial differential equations is over-constrained, it is unlikely that additional solutions
exist. Therefore, whenever the field equations decouple into Rab = 0 = Cab we do not
expect physically relevant solutions besides the Schwarzschild one and its flat space limit.

The decoupling exhibited by the modified field equations does not occur only for
the canonical choice of the CS scalar field. In order for such a decoupling to occur, the

15
We were able to find additional solutions with Maple, but upon imposing the field equations

they reduced to previously studied or trivial spacetimes.
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following system of PDEs must be satisfied:

θ,tt = θ,φφ = θ,tφ = θ,ρ = θ,z = 0 , (10.69)

which yields the solution

θ =
t

µ
+
φ

ν
, (10.70)

with constant µ, ν. The canonical choice is recovered as ν → ∞.
But what if the scalar field is not of the form of Eq. (10.70)? In this case, the

field equations do not decouple and solving the entire system is much more complicated.
However, we can deduce from Eq. (10.59) that still the four C-tensor components Cρt,

Czt, Cρφ and Czφ have to vanish. Therefore, even though no decoupling occurs, the

same issue of an over-constrained system of equations does arise, analogous to the one
in Sec. 10.5.1. Even with this generalization, it is still quite difficult to find solutions to
the coupled system. In general, one might be able to find solutions both of class P and
class CS \ P because non-canonical CS fields allow for general θ, which entails a new
degree of freedom. We shall see in Sec. 10.5.2 that for a simplified subclass of stationary
and axisymmetric line elements, which automatically satisfy the Pontryagin constraint,
solutions can indeed be found, including mathematical BHs.

10.5.2 Van Stockum line element

We study now a slightly less general line element that still is stationary and
axisymmetric, namely the van Stockum line element [334]

ds
2

= ρΩdt
2 − 2ρdtdφ+

1√
ρ

(
dρ

2
+ dz

2
)
, (10.71)

where the only arbitrary function is Ω = Ω(ρ, z). The metric is different from that

considered in Eq. (10.67) since it does not possess a dφ
2

component. The only non-
vanishing component of the Ricci tensor for such a spacetime is

Rtt = −ρ
3/2

2
∆Ω , (10.72)

where again ∆ is the flat space Laplacian in cylindrical coordinates.
The Pontryagin constraint is automatically satisfied for the van Stockum line

element even though it is of Petrov type II, precisely because of the vanishing dφ
2

term.
The tt component of the modified equations then determines Ω, and this forces all other
components of the C-tensor to vanish, except for Ctφ and Cφφ that are automatically

zero. These constraints act as a system of PDEs for the scalar field, whose unique
solution is θ = θ(ρ, z). Note that the canonical choice for θ is not compatible with the
van Stockum line element. The remaining PDE Rtt +Ctt = 0 can be solved for θ and Ω,
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where Ctt now simplifies to

Ctt =
ρ
2

2

[
(θ,ρρ − θ,zz)

(
Ω,ρz +

3

4ρ
Ω,z

)
+ θ,ρ

(
Ω,zzz + Ω,ρρz +

3

2ρ
Ω,ρz +

3

8ρ2 Ω,z

)

− θ,z

(
Ω,ρρρ + Ω,ρzz +

9

4ρ
Ω,ρρ +

3

4ρ
Ω,zz +

3

8ρ2 Ω,ρ

)
− θ,ρz

(
Ω,ρρ − Ω,zz +

3

2ρ
Ω,ρ

)]
.

(10.73)

Combining this with Rtt from Eq. (10.72) we find two simple solutions of Eq. (10.16):

Ω = c, θ = θ(ρ, z), (10.74)

where c is a constant and

Ω = c+
d√
ρ
, θ =

2

3

√
ρ z + θ̃(ρ), (10.75)

where c and d are constants
16

. Equation (10.74) leads to zero Ricci and C-tensor
separately and it is thus a GR solution that belongs to the subspace P. The ensuing
metric is exceptional in that it has a third Killing vector, t∂t − φ∂φ + ct∂φ. Some of the

non-vanishing Riemann tensor components for this geometry are

Rtρtρ =
c

8ρ
, Rtρρφ =

1

8ρ
, Rtφtφ =

1

4

√
ρ . (10.76)

On the other hand, Eq. (10.75) is perhaps even more interesting since it is not Ricci-flat,
but has one non-vanishing component of the Ricci tensor,

Rtt = − d

8ρ
= −Ctt . (10.77)

This solution is thus a non-GR solution and it belongs to the subspace CS \ P. Some of
the non-vanishing components of the Riemann tensor for this solution are

Rtρtρ =
d+ 2c

√
ρ

16ρ3/2
, Rtρρφ =

1

8ρ
, Rtφtφ =

1

4

√
ρ . (10.78)

Notice that such a solution can represent a mathematical BH, provided Ω vanishes for
some ρ, i.e. a Killing horizon emerges. We call these configurations “mathematical
BHs” because they are physically not very relevant: the Killing vector generating axial
symmetry is light-like, as evident from (10.71), and the spacetime admits closed timelike
curves which are not screened by a horizon [334]. For c = 1 and d = −2m we recover
(10.2).

16
There is a straightforward generalization of Eq. (10.75), namely Ω = c + d/ρ

α
, θ = β

√
ρ z,

where α is an arbitrary constant and β = 8α/(8α
2
+ 2α+ 3).
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Let us then summarize the most important conclusions of this section. We have
investigated stationary and axisymmetric solutions to the modified field equations. We
found that, for the canonical choice of θ, it is unlikely that solutions can be found that
differ from Minkowski and Schwarzschild. Nonetheless, for non-canonical choices of this
scalar, solutions must exist. This conclusion derives from the investigation of a slightly
less general stationary and axisymmetric metric, namely that of van Stockum. For this
line element we found a solution to the modified field equations that lives in P and a
family of solutions that live in CS \ P, both with non-canonical CS scalar fields. To
our knowledge, this is the first time an exact non-GR solution is found for CS modified
gravity, which in particular can represent mathematical BH configurations.

10.6 Beyond the canon

We have failed in finding an exact, stationary and axisymmetric solution to the
CS modified field equations representing a physical spinning BH. A solution, however,
already exists for a similar line element, albeit in a perturbative sense. In [317] and later
in [83], a far-field solution to the CS modified field equations with a canonical CS scalar
field was found in the weak-field/slow-motion approximation. This solution is identical
to the far-field expansion of the Kerr solution, except for the addition of two new compo-
nents in the gravitomagnetic sector of the metric g0i. These components vanish in GR,
since only one component is required and it is aligned with the angular momentum of
the spinning source. In CS gravity, the remaining components of g0i are proportional to
the curl of the spin angular momentum, thus breaking axisymmetry but preserving sta-
tionarity. Such a stationary, but non-axisymmetric BH will not emit gravitational waves,
but it might possess a non-trivial multipolar structure, with probably more than just
two non-vanishing multipoles. Such a far-field structure suggests that perhaps the only
way to obtain an analog to the Kerr solution in CS gravity is to relax either the assump-
tion of axisymmetry or stationarity or to drop the integrability conditions mentioned in
footnote [99].

Alternatively, the van Stockum example suggests that another possibility is to
allow for a general CS scalar field. In this case, however, the line element must signifi-

cantly differ from the Kerr metric such that it satisfies the Pontryagin constraint
17

. We
shall explore these possibilities in this section.

10.6.1 Killing embedding

We study now the possibility that the ’embedding coordinate’, i.e., the velocity
of the CS scalar field θ, is a Killing vector. Then, va is covariantly conserved because
of the Killing equation (∇(avb) = 0) and the fact that the connection is torsion-free

17
We attempted to solve the modified field equations with a line element equal to Kerr plus

a stationary and axisymmetric contribution and an arbitrary CS scalar field. No solution could
be found exactly, while perturbatively such an Ansatz leads to non-asymptotically flat solu-
tions [327].
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(∇[avb] = ∇[a∇b]θ = 0). This puts a strong restriction on spacetime, which for a time-

like va yields line elements that are diffeomorphic to

ds
2

= −dt2 + gij(x
k
)dx

i
dx

j
, (10.79)

where i and j range over all coordinates except time. Actually, Eq. (10.79) describes
a special class of static spacetimes. When studying static solutions to the CS modified
field equations with timelike va in Sec. 10.4, we found no physically relevant solution
besides Schwarzschild. The same conclusions hold here, except that we do not even
recover Schwarzschild, so this route is not a promising one. A similar discussion applies
to spacelike Killing vectors.

A more interesting situation arises if the vector field v
a

is a null Killing vector,
v

a
va = ∇(avb) = 0. In this case, we get in an adapted coordinate system the line element

ds
2

= −2dvdx
1

+ gij(x
k
)dx

i
dx

j
(10.80)

Once again, the Pontryagin constraint is immediately satisfied, the Ricci tensor has non-
vanishing Rij components, but no components of the C-tensor vanish. Even when we

pick a simple null Killing embedding, e.g. va = (0, χ, 0, 0) with χ = const., the C-tensor
has complicated spatial non-vanishing components and the modified field equations are
too difficult to solve in full generality. Therefore, we focus instead on an interesting
special case in the next subsection.

10.6.2 pp-waves and boosted black holes

As suggested at the end of Sec. 10.2.2, it might be possible to find solutions to the
modified field equations if one considers line elements that represent exact gravitational
wave solutions (pp-waves [347]). The line element for these waves is

ds
2

= −2dvdu−H(u, x, y)du
2

+ dx
2
+ dy

2
, (10.81)

which is simply a special case of the line elements considered in the previous subsection
[Eq. (10.80)]. Particular examples of physical scenarios that are well-represented by
Eq. (10.81) are the Aichelburg-Sexl limits [348] of various BHs. In essence, this limit is
an ultrarelativistic boost that keeps the energy of the BH finite by taking a limit where
its mass vanishes while the boost velocity approaches the speed of light. In particular,
Eq. (10.81) can be used to represent ultrarelativistic boosts of the Kerr BH [349, 350].

Is it conceivable that a Kerr BH that moves ultrarelativistically solves the modified
field equations, even though the Kerr BH does not? One of the main problems with the
Kerr metric is that it does not satisfy the Pontryagin constraint, cf. Eq. (10.37), but that
constraint is trivially satisfied as M → 0. Nonetheless, the satisfaction of the Pontryagin
constraint is only a necessary condition, but not a sufficient one, to guarantee that the
modified field equations are also satisfied.

In order to study this issue, let us find the appropriate expressions for the Ricci
and C-tensors. The only non-vanishing component of the Ricci tensor for the line element
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of Eq. (10.81) is given by

Ruu = ∆H , ∆ :=
∂

2

∂x2 +
∂

2

∂y2 . (10.82)

In general, the components Cux, Cuy, Cxx, Cyy, Cxy are all non-vanishing and form a

system of PDEs for H and θ. The Cxx, Cyy and Cxy components are given by

Cyy = −Cxx = θ,vvH,xy , Cxy =
1

2
θ,vv

(
H,xx −H,yy

)
. (10.83)

Let us first look for GR-solutions of class P, such that Rab = 0 and Cab = 0
independently. Since Cab = 0, there are two possibilities here: either θ,vv = 0 or H,xy =

0 = H,xx −H,yy. In the latter case, H is constrained to

H =
1

2

(
x

2
+ y

2
)
A(u) + xB(u) + y C(u) +D(u) , (10.84)

which also forces Cux and Cuy to vanish. The only component of the field equations left

is (u, u), which upon simplification with Eq. (10.84) yields Cuu = 0 and Ruu = 2A(u),
so that A(u) = 0. We have then found the solution

H = xB(u) + y C(u) +D(u) , θ = θ(u, v, x, y) , (10.85)

to the modified field equations. However, this solution is nothing but flat space in
disguise.

Another possibility to find GR-solutions is to pick θ such that Cxx, Cyy and Cxy

vanish, i.e. θ,vv = 0. This condition leads to

θ = λ(u, x, y)v + θ̃(u, x, y) , (10.86)

The remaining non-(u, u) components of the C-tensor lead to

Cux = 0 → λ,xH,xy = λ,yH,yy (10.87)

Cuy = 0 → λ,xH,yy = λ,yH,xx (10.88)

where we have used Ruu = 0. The solution to this system of PDEs leads either to flat
spacetime or to

λ(u, x, y) = λ(u). (10.89)

Choosing Eq. (10.89), the remaining modified field equation [the (u, u) component] be-
comes

∆H = 0 , (10.90)

2H,yyθ̃,xy = H,xy(θ̃,yy − θ̃,xx) . (10.91)

For some H that solves the Einstein equations [i.e. the Laplace equation in Eq. (10.90)],

the C-tensor yields a PDE for θ̃ [Eq. (10.91)]. Thus we conclude that we can lift any
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pp-wave solution of the vacuum Einstein equations to a pp-wave solution of CS modified
gravity (of class P) by choosing θ such that Eqs. (10.86), (10.89)-(10.91) hold.

Let us give an example of this method to generate CS solutions by studying
ultrarelativistically boosted Kerr BHs, for which

H = h0δ(u) ln
(
x

2
+ y

2
)

(10.92)

satisfies Eq. (10.90). In Eq. (10.92), δ(u) is the Dirac delta function and h0 is a constant.
Inserting this H into Eq. (10.91) we find

θ̃ = xα
(y
x

)
+ β

(
x

2
+ y

2
)
, (10.93)

where α and β are arbitrary functions of their respective arguments (y/x) and (x
2
+y

2
).

Equation (10.93), together with Eq. (10.86) and (10.89), give the full solution for the CS
scalar field. We have therefore lifted the boosted Kerr BH to a solution of the modified
field equations of class P by choosing the CS scalar field appropriately. For θ = λv we
recover Eq. (10.3).

Let us now search for non-GR solutions to the modified field equations. Since
all equations decouple except for the (u, u) component, we must enforce that the non
(u, u)-components of the C-tensor vanish, i.e. θ,v = 0, which leads to

θ = θ̃(u, x, y) . (10.94)

With Eq. (10.94), the only component of the modified field equations left is again the
(u, u) one, which simplifies to a linear third order PDE:

(1 + θ̃,y∂,x − θ̃,x∂,y)∆H = (θ̃,xx − θ̃,yy)H,xy − (H,xx −H,yy)θ̃,xy . (10.95)

For simplicity, we choose
θ̃ = a(u)x+ b(u)y + c(u) , (10.96)

and Eq. (10.95) reduces to the poisson equation

∆H = f . (10.97)

The source term f solves a linear first order PDE

bf,x − af,y − f = 0 , (10.98)

whose general solution [assuming b(u) 6= 0]

f(u, x, y) = e
x/b(u)

φ [a(u)x+ b(u)y] (10.99)

contains one arbitrary function φ of the argument a(u)x + b(u)y. We shall assume this
function to be non-vanishing so that Rab 6= 0. We can now insert Eq. (10.99) into the
poisson equation and solve forH(x, y, u). We need two boundary conditions to determine
H from the poisson equation [Eq. (10.97)] and another one to determine the arbitrary
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function φ in Eq. (10.99). Let us then provide an example by assuming that b(u) < 0
and φ remains bounded. In this case, we must restrict the range of the coordinates
to the half-plane, 0 ≤ x < ∞, −∞ < y < ∞. We impose a boundary condition
H0(u, y) := H(u, 0, y) and appropriate fall-off behavior for |y| → ∞. We then obtain the
particular solution

H(u, x, y) =
1

π

∞∫

−∞

xH0(u, η)dη

x2 + (y − η)2
− 1

4π

∞∫

0

∞∫

−∞

e
−ξ/|b(u)|

φ [a(u)ξ + b(u)η]

× ln

[
(x+ ξ)

2
+ (y − η)

2

(x− ξ)2 + (y − η)2

]
dξdη (10.100)

where the double integral extends over the half-plane.
The exponential behavior in Eq. (10.99) is particularly interesting, since it resem-

bles the gravitational wave solutions found in Refs. [79, 316, 277, 272]. Moreover, as
x→ ±∞ [depending on the sign of b(u)] the source term in Eq. (10.97) diverges, indicat-
ing a possible instability. Since we were mainly concerned with the existence of solutions
we have not attempted to construct solutions for more general θ than Eq. (10.96).

10.6.3 Weakening axisymmetry/stationarity

From the analysis so far, it is clear that stationary and axisymmetric solutions in
CS gravity do not seem to be capable of describing physical spinning BHs. The far-field
solution has guided us to weaken some of the requirements necessary for axisymmetry and
stationarity. One possibility is to keep two Killing vectors (one time-like and one space-
like), but to drop all additional requirements (in particular the integrability conditions
mentioned in footnote [99]). The most general line-element compatible with two Killing
vectors

ds
2

= gαβdx
α
dx

β
+Aαidx

α
dx

i
+ gijdx

i
dx

j
(10.101)

contains two 2-metrics, gαβ(x
k
) and gij(x

k
), and cross-terms parameterized by Aαi(x

k
).

Here {α, β} = {0, 1} are the Killing coordinates and {i, j, k} = {2, 3} are the non-Killing
coordinates. Alternatively we could conceive of losing stationarity or axisymmetry by
dropping the (∂t)

a
or ∂φ

a
Killing vector, respectively. The general idea is then that

by losing one Killing vector we gain new undetermined metric components that could
allow for a physical spinning BH solution in CS gravity. However, our attempts have not
revealed any interesting exact solution corresponding to a spinning BH, so we confine
ourselves to a couple of general remarks.

Spinning BHs that break axisymmetry or stationarity would be radically different
from those considered in GR. On the one hand, non-axisymmetric spinning objects would
have an intrinsic precession rate that would not allow the identification of an axis of
rotation. Such precession would possibly also lead to solutions with more than two
non-zero multipole moments, thus violating the no-hair theorem. On the other hand,
non-stationary spinning objects would unavoidably lead to the emission of gravitational
radiation, even if the BH is isolated. These considerations could be flipped if we take
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them as predictions of the theory, thus leading to new possible tests of CS gravity. Work
along these lines is currently underway. The results of [351] for the Pontryagin constraint
may be helpful here.

10.6.4 Adding matter

The inclusion of matter sources is of relevance in the present context for several
reasons. First, the Kerr BH has a distributional energy momentum tensor [352], so we
need not set the stress-energy tensor strictly to zero to construct a Kerr-like solution.
Second, in Ref. [73] the Pontryagin-term in the action arises from matter currents, so
the inclusion of the latter would actually be mandatory within that framework.

Two conceptually different approaches are possible to the problem of finding exact
solutions of the modified field equations in the presence of matter. These approaches
essentially depend on whether we require the energy-momentum tensor to be covariantly

conserved, ∇aT
ab

= 0, or not. If this tensor is conserved, then the Pontryagin constraint
must be satisfied and the Kerr BH cannot be a solution. Basically, this route leads to
only a slight generalization of the discussion presented so far, with solutions of class P,

Rab −
1

2
gabR = 8πTab , Cab = 0 , (10.102)

and solutions of class CS \ P that solve Eq. (10.15). Relaxing covariant conservation of
the stress-energy tensor, we can promote the Kerr BH to a solution of the modified field
equations, provided that

Rab −
1

2
gabR = 8πT

dist

ab
, Cab = 8πT

ind

ab
. (10.103)

Here T
dist

ab
= 0 except for the usual distributional contributions for Kerr [352], while T

ind

ab
provides the non-conserved matter flux. The induced matter fluxes for the Kerr BH are
given by

T
ind

tr
=

am
2

4πµΣ5∆
cos Θ

(
r
2 − a

2
cos

2
Θ
)

×
[
a

2
cos

2
Θ
(
11r

2 − a
2
)

+ r
2
(
3r

2 − 9a
2
)]

, (10.104)

T
ind

tΘ
= − am

2
r

4πµΣ5 sin Θ

×
[
3r

4 − 12r
2
a

2
cos

2
Θ + a

4
cos

4
Θ
]
, (10.105)

T
ind

φr
= − a

2
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4πµΣ5∆
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2
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[
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(
a
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2
)
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2
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(
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2
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2
)
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4
a

2 − 3r
6
]
, (10.106)

T
ind

φΘ
= −a sin

2
ΘT

ind

tΘ
. (10.107)
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Of course, with such a method any GR solution can be promoted to a solution of the
modified field equations.

The crucial issue here is whether or not the induced matter flux can be regarded
as physically acceptable. In order to shed light on this issue, we analyzed if the induced
stress-energy given by Eqs. (10.104)-(10.107) obeys the energy conditions of GR [353].

Because T
ind

ab
is always traceless, the strong and weak energy conditions are equivalent

and reduce to the statement that T
ind

ab
ξ
a
ξ
b ≥ 0 for any timelike vector ξ

a
. This, however,

is not the case, as we can show by considering for instance ξ
t

=
√

2, ξ
r

= 1, which is

timelike for sufficiently large r: ξ
a
ξ
b
gab = −1 + 6m/r + O(m/r)

2
. The only relevant

component of T
ind

ab
is given by Eq. (10.104), but since T

ind

tr
is proportional to cos Θ, this

quantity is negative in half of the spacetime, and thus the weak energy condition is
violated. While this might be tolerated close to the horizon, we stress that this violation
arises also in the asymptotic region. This violation is somewhat attenuated by the fall-off

behavior of T
ind

ab
, where its components decay at least as 1/r

5
and the scalar invariant

T
ind

ab
T

ab ind
as 1/r

12
as r → ∞. Thus, if ordinary matter is added then the induced exotic

fluxes might not be detectable after all for a far-field observer.
There is another approach capable of circumventing the Pontryagin constraint

that also relies on new matter sources. Namely, if the field θ is considered a dynami-
cal field, instead of an external field, it is natural to study more general actions than
Eq. (10.4) with Smat = 0, such as [83]

S = κ

∫
d
4
x
√−g

(
R+

1

2
(∇θ)2 − V (θ) − 1

α
θ

∗
RR

)
. (10.108)

Then the Pontryagin constraint (10.18) is replaced by

∗
RR = −α[�θ + V

′
(θ)] , (10.109)

where α is a constant. This provides a natural generalization of the model considered
in our paper. However, it also introduces an amount of arbitrariness, since V is a
free function and, in fact, more general couplings between θ and curvature might be
considered.

We conclude that allowing GR solutions to be also CS solutions by inducing
a stress-energy tensor via Eq. (10.103) can lead to unphysical energy distributions. In
particular, the Kerr solution induces an energy momentum tensor given by Eqs. (10.104)-
(10.107), which violates all energy conditions, even in the asymptotic region. The alter-
native approach described above lifts θ to a genuine dynamical field with a kinetic term
and possibly self-interactions, at the cost of introducing an arbitrary potential.

10.7 Conclusions and discussion

No exact solution has yet been found that could possibly represent a spinning BH
in CS modified gravity. In particular, the Kerr solution is found to be incompatible with
the constraints imposed by the modified field equations. Previously, only perturbative
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solutions of CS gravity had been considered, which might represent the exterior of a
BH. The first study was carried out by Alexander and Yunes [277, 317], who performed
a weak-field parameterized post-Newtonian analysis to find a non-axisymmetric Kerr-
like solution. This study was later extended by Smith, et. al. [83] to non-point like
sources, finding that the Israel junction conditions are effectively modified by the C-
tensor. Another study was carried out by Konno, et. al. [327], but this analysis was
restricted to a limited class of perturbations that did not allow for the breakage of
stationarity or axisymmetry. Within that restricted perturbative framework, a Kerr-
like solution was found only for non-canonical choices of θ, concluding that BHs cannot
rotate in the modified theory for canonical θ. This conclusion of Konno et. al. is at odds
with both the results of Alexander and Yunes and Smith et. al.

In order to address these issues, in the current paper we attempted to determine
what replaces the Kerr solution in CS modified gravity. We thus studied exact solu-
tions of the modified theory, comprising spherically symmetric, static-axisymmetric, and
stationary-axisymmetric vacuum configurations, as well as some generalizations thereof.

We began our analysis in Sec. 10.2.1 by considering the CS action in detail and
rederiving the equations of motion, together with the resultant surface integral terms.
We continued in Sec. 10.2.2 by rederiving the Pontryagin constraint from the equations
of motion and providing two alternative interpretations of it. One of them [Eq. (10.21)]
is a reality condition on a quadratic curvature invariant of the Weyl tensor, while the
other [Eq. (10.24)] is a null condition on the contraction of the electric and magnetic
parts of the Weyl tensor. Before considering specific line elements, in Sec. 10.2.3 we
classified all solutions into two groups: GR-type (class P), which contains solutions of
both the vacuum Einstein equations and the modified field equations; non-GR type (class
CS \ P), which contains solutions of CS gravity that are not solutions of the vacuum
Einstein equations (cf. Fig. 10.1).

After these general considerations, we began a systematic study of line elements,
starting with general spherically symmetric metrics in Sec. 10.3. This class of line
elements [Eq. (10.33)] is particularly important since it contains the Schwarzschild,
Friedmann-Robertson-Walker and Reissner-Nordström solutions. We showed that, for
the canonical choice of the CS scalar field [Eq. (10.27)] and more general choices [Eq. (10.34)],
the modified field equations decouple and any possible solution is forced to be of class
P.

We continued in Sec. 10.4 with an analysis of static and axisymmetric metrics
[Eq. (10.38)]. We showed that, for the canonical choice of the CS scalar field and more
general choices [Eq. (10.56)], the modified equations decouple once more. We also showed
that any static and axisymmetric line element is forced to become spatially conformally
flat, provided the field equations decouple. Exploiting this result, we found three different
solutions [Eqs. (10.26), (10.54) and (10.55)], only one of which was physically relevant,
namely the Schwarzschild solution. For the most general CS scalar field, however, the
field equations do not decouple, but we have shown that fields with such generality do not
seem to allow for a solution to the field equations apart from trivial ones. Thus, we may
conclude that CS gravity does not allow for static and axisymmetric solutions, apart
from flat space, the Schwarzschild solution and two additional (unphysical) solutions,
irrespective of the choice of the CS scalar field.
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Static line elements then gave way to the central point of this paper: stationary
and axisymmetric solutions of CS gravity, discussed in Sec. 10.5. As in the previous
cases, we showed that, for the canonical choice of the CS scalar field and slightly more
general choices [Eq. (10.70)], the field equations again decouple. In this case, however, the
Pontryagin constraint does not hold automatically and we used it to constrain the class
of possible metric functions, cf. appendix I. In essence, the decoupling requires not only
that solutions must obey the Einstein equations, but also the fulfillment of additional
constraints (cf. Ref. [346]), which leads to an overdetermined system of PDEs. Therefore,
we concluded that non-trivial stationary and axisymmetric solutions do not seem to exist
for canonical CS fields.

When a completely generic CS scalar field is considered, the modified field equa-
tions do not decouple and solutions are not easy to find, even with the simplifications
derived from the Pontryagin constraint. However, generic CS fields increase the de-
grees of freedom of the problem and thus might allow for stationary and axisymmetric
solutions. We proved this statement by providing an example in Sec. 10.5.2, through
a sub-class of stationary and axisymmetric metrics [Eq. (10.71)], belonging to the van
Stockum class. In that case, we showed that the only possible CS field compatible with
the field equations excludes the canonical choice. Moreover, we found both, non-flat so-
lutions of class P [Eq. (10.74)] as well as non-flat solutions of class CS \ P [Eq. (10.75)]
To the best of our knowledge, this is the first time an exact solution in CS modified grav-
ity is constructed that is not also a solution of GR. One of these solutions [Eq. (10.75)]
represents mathematical BHs, in the sense that although they exhibit a Killing horizon,
they are not physically relevant, because the Killing vector generating the ’axial’ sym-
metry is light-like and closed timelike curves arise. We concluded that it is unlikely that
stationary, axisymmetric solutions exist that represent a spinning physical BH.

Finally, in Sec. 10.6 we considered the possibility of constructing solutions beyond
the set of stationary and axisymmetric spacetimes. We began in Sec. 10.6.1 by consid-
ering CS scalar fields whose velocity is a Killing vector of the spacetime and found that
the only interesting case arises if that vector is null. Naturally, such considerations led to
exact gravitational shock-wave spacetimes [Eq. (10.81)]. Within this pp-wave scenario,
in Sec. 10.6.2 we constructed a generating method through which any pp-wave solution
of GR can be lifted to a solution of CS modified gravity with an appropriate choice of
the CS scalar field. We also built a solution of class CS \ P [Eq. (10.100)] that is not a
GR pp-wave solution but does satisfy the CS modified field equations.

Through this detailed study of solutions in CS gravity we have ascertained that
at least two different limits of the Kerr BH are solutions to the modified field equations,
even though the Kerr BH is not: the Schwarzschild limit and the Aichelburg-Sexl limit.
The former was already known to be a solution to the CS modified field equations, but
the latter, which includes ultrarelativistically boosted BHs, was not. The existence of
these solutions concurs with the naive expectations expressed at the end of Sec. 10.2.2.
Moreover, such expectations, together with the input from the far-field solution, point to
the existence of a physical spinning BH solution in CS gravity, provided the conditions
of stationarity and/or axisymmetry are weakened. We addressed this possibility briefly
in Sec. 10.6.3, but unfortunately such spacetimes are so general that the modified field



292

equations become prohibitively difficult, even with the use of symbolic manipulation
software.

Other possibilities of bypassing the Pontryagin constraint were discussed in Sec.
10.6.4, since this constraint is in essence responsible for the absence of interesting sta-
tionary and axisymmetric solutions. First, we stated that obviously any (GR or non-GR)
solution formally can be lifted to a solution of the modified field equations by allowing for
arbitrary matter sources, and we demonstrated the nature of these matter sources for the
Kerr BH. We found that the induced energy momentum tensor [Eqs. (10.104)-(10.107)]
is exotic even in the asymptotic region, but drops off rapidly with the radial coordinate.
Second, we mentioned the possibility that the CS scalar field θ might acquire a kinetic
term and self-interactions. In this case, the Pontryagin constraint ceases to hold and
is replaced by a dynamical condition [Eq. (10.109)], relating the gravitational instanton
density to the (generalized) Klein-Gordon operator acting on θ.

We now conclude with a list of possible directions for future research to which
our current work may provide the basis.

• The number of physical degrees of freedom in CS modified gravity is not known
yet. Various considerations appear to lead to contradictory expectations. On the
one hand, the appearance of higher order derivatives in the action [Eq. (10.1)]
suggests that additional degrees of freedom should emerge. On the other hand,
the appearance of an additional constraint [Eq. (10.68)] suggests that fewer de-
grees of freedom should arise. Actually, the linearization procedure suggests that
these competing effects cancel each other and that there are two polarizations of
gravitons, just like in GR, albeit with properties that differ from GR [79, 272].

• The role of boundary terms induced in CS gravity for BH thermodynamics could
be investigated more thoroughly [354]. Also here general considerations lead to
contradictory expectations. On the one hand, new boundary terms that arise in
CS gravity [Eq. (10.14)] differ qualitatively from those that arise in GR or in scalar
tensor theories. Such boundary terms suggest modifications of BH thermodynam-
ics, even for solutions whose line elements coincide with GR solutions, like the
Schwarzschild spacetime. On the other hand, the Pontryagin constraint eliminates
the CS contribution [Eq. (10.1)] to the on-shell action, which suggests that BH
thermodynamics is left unchanged, at least in the classical approximation.

• Both previous issues can be addressed by a thorough Hamiltonian analysis, which
is also of interest by itself and for exhibiting the canonical structure as well as
the classical constraint algebra. Such a study would also be useful for numerical
evolutions of BH binary spacetimes in CS gravity, which is currently being carried
out [355].

• While our discussion of stationary and axisymmetric solutions was quite compre-
hensive, a few issues are still open, which may be an interesting topic for mathe-
matical relativists. For instance, while we were able to provide a proof that there
are only three types of solutions for static and axisymmetric spacetimes (with the
canonical choice for the CS scalar field), we could only provide good evidence,
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but no mathematical proof, that no further solutions exist for spacetimes that are
stationary and axisymmetric.

• Combining the evidence found in this paper with the far field solutions found
previously, we concluded that spinning BHs should weaken the requirements of
stationarity and/or axisymmetry in CS modified gravity. Perturbations away from
axisymmetry were neglected in [327], although non-axisymmetric solutions can
still represent spinning BHs, albeit with an inherent precession induced by the CS
modification. Therefore, future work could focus on finding exact spacetimes with
a smaller amount of symmetries or dropping the integrability conditions starting
from (10.101).

• A manageable implementation of the Pontryagin constraint could be useful in many
CS gravity applications. The brute force methods that led us to the formulas in
appendix I will render any generalization unintelligible. The considerations pre-
sented in Ref. [351] provide such an implementation, but it has not been exploited
so far in the construction of explicit solutions.

• Far-field solutions of CS gravity that break stationarity could also be studied.
These solutions could then be used as tests of the modified theory, through com-
parisons with gravitational-wave and astrophysical observations [356].

• Perhaps it is feasible to apply the method of matched asymptotic expansion for
caged BHs [357, 358] to the construction of spinning BH solutions in the present
context. To this end, one would need an asymptotic expansion and a near horizon
expansion of that BH. The former exists already, so it remains to construct the
latter and perform the asymptotic matching.

• Finally, it is worthwhile to consider not just vacuum solutions, but also solutions
with matter sources, as outlined briefly in Sec. 10.6.4.

Certainly the range of issues that can be addressed has been extended in a non-negligible
way. Only through a better understanding of the consequences and predictions of CS
gravity will we be able to determine the viability of the modified theory.
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Chapter 11

Perturbations of Schwarzschild Black Holes

in Chern-Simons Modified Gravity

We study perturbations of a Schwarzschild black hole in Chern-Simons mod-
ified gravity. We begin by showing that Birkhoff’s theorem holds for a wide
family of Chern-Simons coupling functions, a scalar field present in the theory
that controls the strength of the Chern-Simons correction to the Einstein-
Hilbert action. After decomposing the perturbations in spherical harmonics,
we study the linearized modified field equations and find that axial and po-
lar modes are coupled, in contrast to general relativity. The divergence
of the modified equations leads to the Pontryagin constraint, which forces
the vanishing of the Cunningham-Price-Moncrief master function associated
with axial modes. We analyze the structure of these equations and find
that the appearance of the Pontryagin constraint yields an overconstrained
system that does not allow for generic black hole oscillations. We illustrate
this situation by studying the case characterized by a canonical choice of
the coupling function and pure-parity perturbative modes. We end with a
discussion of how to extend Chern-Simons modified gravity to bypass the
Pontryagin constraint and the suppression of perturbations.

11.1 Introduction

Extensions of general relativity (GR) are inherently interesting because they hold

the promise to address unresolved problems in cosmology and astrophysics
1
. One such

extension is Chern-Simons (CS) modified gravity [273], which has recently been used
to propose an explanation to the cosmic baryon asymmetry [73] and polarization in the
cosmic microwave background (CMB) [75]. This extension has also attracted some recent
interest because it might allow for a test of a wide class of string theories [272].

CS modified gravity introduces a well-motivated correction to the Einstein-Hilbert

action: the product of a parity-violating, Pontryagin term
2

and a scalar field or CS cou-
pling function that controls the strength of the correction. Such a modification has deep
roots in the standard model, since chiral, gauge and gravitational anomalies possess
Pontryagin-like structures. CS modified gravity is also motivated by string theory and

1
This chapter is based on the following papers: N. Yunes and C. F. Sopuerta, submitted to

Phys. Rev. D (2007)
2
See [359] for a discussion of this term and some physical interpretations
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loop quantum gravity [360]. In the former, it arises through the Green-Schwarz mecha-
nism [276], as an anomaly-canceling term. In fact, the CS term is a requirement of all
model-independent extension of 4-dimensional compactifications of string theory [275].

Some theoretical aspects of CS modified gravity have recently been investigated.
Cosmological studies have been carried out in [75, 76, 77] in connection with the Cosmic
Microwave Background radiation and in [73, 74] in the context of leptogenesis. Gravita-
tional wave solutions have also been studied in [273, 316, 277, 317], where they were found
to possess amplitude birefringence, possibly leading to a test of the theory [272]. Weak-
field solutions for spinning objects in CS modified gravity have been studied in [277, 317],
leading to a prediction of gyromagnetic precession that differs from GR, and later to a
constraint on the magnitude of the CS correction [83]. Further discussion on these issues
and others related can be found in [318, 319, 316, 320, 321, 323, 324, 325, 77, 326, 282,
297, 317, 327, 83, 328, 329, 351] and references therein.

Solutions to the CS modified field equations that represent interesting physi-
cal configurations have also attracted attention. Apart from first formalizing the the-
ory, Jackiw and Pi [273] also showed that the Schwarzschild and gravitational plane-
wave spacetimes remain solutions in CS modified gravity. The Reissner-Nordstrom and
Friedman-Robertson-Walker metrics were also found to persist in the theory [297]. On
the perturbative front, [277, 317] found a weak-field solution for orbiting, spinning ob-
jects, while [327] showed that the weak-field limit of the Kerr metric remained a CS
solution to first order in the metric perturbation for a specific choice non-canonical of
the CS coupling. Exact solutions that represent spinning objects in CS modified gravity
have so far only been studied in [359], where it was suggested that these exist provided
the gravitomagnetic sector of the metric is non-vanishing or that stationarity is broken.

In this paper, we study perturbations of a Schwarzschild black hole (BH) in CS

modified gravity
3
. We begin by showing that Birkhoff’s theorem –the statement that the

Schwarzschild solution is the only vacuum, spherically-symmetric solution of the theory–
persists in the modified theory for a wide class of coupling functions. After decom-
posing the metric perturbations in spherical harmonics, we find equations that govern
the behaviour of each harmonic. In GR, the divergence of the field equations (both at
the perturbative and non-perturbative levels) implies energy-momentum conservation
and, in the absence of matter, it becomes an identity that ensures diffeomorphism in-
variance. In CS gravity, however, the divergence of the field equations (again at the
perturbative and non-perturbative levels) leads to a constraint, the so-called Pontryagin
constraint, which ensures that the theory remains diffeomorphic invariant and that the
Strong Equivalence Principle holds. This constraint imposes a restriction on the class
of metrics that can be solutions of the theory, specially in vacuum [359]. At the pertur-
bative level, the Pontryagin constraint is automatically satisfied for a flat background,
but we show that for a BH background it forces the Cunningham-Price-Moncrief (CPM)
master function, associated with axial perturbations (perturbations of odd parity), to

3
The term“CS modified gravity” stands for the formulation introduced in [273]. Extensions

of this formulation have been considered in [83, 359] and we shall discuss how these affect the
analysis of this paper in the last section.
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vanish. Such a strong restriction on the possible perturbative modes a BH is allowed to
possess is a distinctive feature of CS gravity.

After investigating these preliminary issues, we concentrate on the study of general

perturbations of a Schwarzschild spacetime
4
. We find that the CS modification intro-

duces new terms into the field equations that results in a mixing of polar and axial parity
modes. Therefore, in CS modified gravity modes with different parity do not decouple,
as is the case in GR. Moreover, the new terms contain third-order derivatives that change
the basic structure of the partial differential equations that describe the behavior of the
metric perturbations. In particular, the Pontryagin constraint constitutes a new equa-
tion for the metric perturbations, which in general leads to an overdetermined system.
A priori, it remains unclear whether this system has non-trivial solutions, i.e. whether
the entire set of field equations is compatible. This paper shows that at least a wide
class of BH oscillation modes are forbidden in the modified theory for a large family of
CS coupling functions. More specifically, we show that it is not possible to have either
pure axial or pure polar oscillations of a BH in CS gravity for a wide class of coupling
functions.

We end with a discussion of possible routes to extend CS modified gravity such
that generic BH oscillations are allowed. A promising route is to allow the CS coupling
function to be a dynamical quantity. In this case, the Pontryagin constraint is balanced
by the equation of motion of the scalar field, thus preventing the CPM function to
identically vanish. Moreover, the field equations are modified by the introduction of a
stress-energy tensor for the CS scalar field and by terms describing perturbations of the
scalar field. The extended set of field equations, which has a certain ambiguity encoded
in the potential of the CS scalar field, is no longer overdetermined, and hence, it provides
a suitable framework to study the modified dynamics of BH oscillations.

This paper is divided as follows: Sec. 11.2 describes the basics of CS modified
gravity; Sec. 11.3 establishes Birkhoff’s theorem for a family of CS coupling functions;
Sec. 11.4 begins by describing the basics of Schwarzschild BH perturbation theory, and
then discusses the consequences of the linearized Pontryagin constraint and the structure
of the modified field equations; Sec. 11.5 investigates perturbations of canonical CS grav-
ity, including the impossibility of having either purely polar or purely axial perturbative
modes; Sec. 11.6 points to directions in which the theory could be extended to bypass the
Pontryagin constraint and allow for generic oscillations of a Schwarzschild BH; Sec. 11.7
concludes and points to future work.

We use the following conventions throughout this work. Greek letters and a
semicolon are used to denote indices and covariant differentiation respectively on the
4-dimensional spacetime. In some cases, we denote covariant differentiation with respect
to a Schwarzschild background metric by ∇̄

µ
. Partial differentiation of a quantity Q

with respect to the coordinate x
µ

is denoted as ∂
xµ
Q or Q

,µ
. Symmetrization and

antisymmetrization is denoted with parenthesis and square brackets around the indices

4
BH perturbations were previously studied in [327], but only perturbative modes that resemble

the weak-field limit of the Kerr metric were considered. In this paper, we consider the most
general perturbations in a Schwarzschild background.
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respectively, such as A
(ab)

:= [A
ab

+A
ba

]/2 and A
[ab]

:= [A
ab
−A

ba
]/2. We use the metric

signature (−,+,+,+) and geometric units in which G = c = 1.

11.2 Introduction to Chern-Simons Modified Gravity

In this section we describe the basics of CS modified gravity as it was introduced
by Jackiw and Pi [273]. (more details can be found in [273, 73, 359] and references
therein). In this paper, we shall be mainly concerned with this formulation [273], but
we will also discuss possible extensions later on.

The CS extension of the GR action is given by [83]

S
CS

:= κ

∫
d
4
x
√−g

[
R+ Lmat −

1

4
θ
∗
RR

]
, (11.1)

where κ = 1/(16π), g is the determinant of the spacetime metric g
µν

, R stands for the

Ricci scalar and L
mat

is the Lagrangian density of the matter fields. We recognize the

first two terms as the Einstein-Hilbert action in the presence of matter, while the last
term is the CS modification, defined via

∗
RR := R

αβγδ

∗
R

αβγδ
=

1

2
R

αβγδ
η

αβµν
R

γδ

µν
, (11.2)

where the asterisk denotes the dual tensor, constructed using the 4-dimensional Levi-

Civita tensor η
αβµν 5

. The strength of the CS correction is controlled by the scalar field
θ, which we shall refer to as the CS coupling function or CS scalar field . The so-called
canonical choice of θ corresponds to [273]

θcan := [t/µ, 0, 0, 0] , (11.3)

where µ is a dimensional parameter.
As usual, we obtain the (modified) field equations by varying the action with

respect to the metric, yielding

G
µν

+ C
µν

= 8πT
mat

µν
, (11.4)

where T
mat

µν
is the matter stress-energy tensor. We shall refer to the quantity C

µν
as the

C-tensor, defined as

Cµν := C
(1)

µν
+ C

(2)

µν
, (11.5)

5
In non-vacuum spacetimes, the dual of the Riemann tensor with respect to the first pair of

indices does not coincide with the dual with respect to the second pair of indices. In this paper
we use the second type of dual, but the results of this paper are independent of this choice. This
can also be seen from the condition

∗

RR =
∗

CC [361]



299

where

C
(1)

µν
:= θ

;σ
η

σ

(µ

αβ
R

ν)β;α
, (11.6)

C
(2)

µν
= θ

;στ

∗
R

σ

(µ

τ

ν) . (11.7)

The spatial sector of the C-tensor reduces to the 3-dimensional Cotton tensor in some

symmetric cases
6
. For this reason, the quantity v

µ
:= θ

;µ
is sometimes referred to as the

embedding coordinate, since it embeds the 3-dimensional CS theory into a 4-dimensional
spacetime.

Diffeomorphism invariance is preserved provided an additional equation is sat-
isfied. This equation can be obtained by computing the covariant divergence of the
modified field equations

Cµν;

µ
=

1

8
vν

∗
RR = 8πT

mat;µ

µν
(11.8)

In vacuum, T
mat

µν
= 0 and thus we are left with the so-called Pontryagin constraint

∗
RR = 0 , (11.9)

which is an additional equation that the metric tensor has to satisfy.

11.3 Birkhoff’s Theorem in Chern-Simons Modified Gravity

Birkhoff’s theorem states that the most general, spherically symmetric solution
to the vacuum Einstein equations is the Schwarzschild metric. In CS modified gravity,
this is not necessarily the case because the C-tensor modifies the field equations. In [273]
it was shown that the Schwarzschild solution persists in CS modified gravity, but this
does not necessarily imply that Birkhoff’s theorem holds. Let us then study Birkhoff’s
theorem in CS modified gravity in more detail.

The line element of a general, spherically-symmetric spacetime can be written
as a warped product of two 2-dimensional metrics [181, 182]: a Lorentzian one, g

AB
(A,B, . . . ,H = t, r), and the unit two-sphere metric, Ω

ab
(a, b, . . . , h = θ, φ). This line

element takes the following 2 + 2 form:

g
µν
dx

µ
dx

ν
= g

AB
(x

C
)dx

A
dx

B
+ r

2
(x

A
)Ω

ab
(x

c
)dx

a
dx

b
, (11.10)

where the warped factor is the square of the area radial coordinate r. Covariant differen-
tiation on the Lorentzian manifold is denoted by a bar while on the 2-sphere is denoted
by a colon. The case of the Schwarzschild metric in Schwarzschild coordinates in given

6
In [273], C

µν
was identified with the ’Cotton tensor’ because it reduces to its 3-dimensional

counterpart in certain symmetric cases. However, a higher-dimensional Cotton tensor already
exists [331], and its definition is different from that of Eq. (11.5). To avoid confusion, we refer
to C

µν
as the C-tensor instead of the Cotton tensor.
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by:

g
AB
dx

A
dx

B
= −fdt2 + f

−1
dr

2
, f = 1 − 2M

r
, (11.11)

where M is the BH mass.
The Cotton tensor associated with this metric vanishes identically if the scalar

field has the following form
7
:

θ = θ̄(x
A
) + r(x

A
)Θ(x

a
) . (11.12)

This functional form is invariant under coordinate changes that leave the 2+2 structure of

the metric [Eq. (11.10)] invariant, i.e. coordinate transformations: x
A → x̃

A
= x̃

A
(x

B
) ,

x
a → x̃

a
= x̃

a
(x

b
) , and transformations on the unit two-sphere. Moreover, one can show

that the two pieces of the C-tensor shown in Eqs. (11.6) and (11.7) vanish independently
for the family of scalar fields given in Eq. (11.12). For most of this paper, we will consider
the particular case in which the scalar field also respects the spherical symmetry of the
background:

θ = θ̄(x
A
) . (11.13)

Let us comment some more on this result and place it in context. The CS scalar
field θ is usually assumed to depend only on cosmic time, θ = θ(t). This assumption

has its roots in the work of Jackiw and Pi [273], who further imposed that θ̇ = dθ/dt
be constant, such that time-translation symmetry and space-time reparameterization of
the spatial variables be preserved. With these assumptions, they showed that CS gravity
can be interpreted as a 4-dimensional generalization of 3-dimensional Cotton gravity, and
that the Schwarzschild and Friedman-Robertson-Walker solutions persist in the modified
theory. Later on, Smith, et. al. [83] argued that the CS scalar field could represent some
quintessence field that enforces the arrow of time associated with cosmic expansion. In
this paper we have considered the most general spherically-symmetric spacetime and we
have written its line element in the 2 + 2 form that follows from its warped geometric
structure. This form of the metric is invariant under general coordinate transformations
in the two 2-dimensional manifolds, associated with this 2 +2 structure. Therefore, it is
not too surprising that if Birkhoff’s theorem is satisfied for the canonical choice of CS
scalar field, it is also satisfied for fields that depend arbitrarily on t and r.

11.4 Perturbations of a Schwarzschild Black Hole

11.4.1 Basics

We begin with a short summary of the basics of metric perturbations about a
Schwarzschild background. The spacetime metric of a perturbed BH can be written in
the form

g
µν

= ḡ
µν

+ h
µν
, (11.14)

7
A similar result is found in [359]
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where ḡ
µν

is the background Schwarzschild metric (geometric objects associated with it

will have an overbar) and h
µν

is a generic metric perturbation. Thanks to the spherical

symmetry of the background, we can expand the metric perturbations in (tensor) spher-
ical harmonics. In this way, we can separate the angular dependence in the perturbative
equations, which yields a much more simple system of equations: a system of 1+1 partial
differential equations (PDEs) in time and in the radial area coordinate r. In addition,

we can distinguish between harmonics with polar and axial parity
8
, also called even

and odd parity modes respectively. In GR, the perturbative field equations decouple for
modes of different parity, but this may not be the case for alternative theories.

Let us then split the metric perturbation h
µν

into polar and axial perturbations,

hµν = h
a
µν

+ h
p
µν

, and each of these into (tensor) spherical harmonics via

h
a

µν
=
∑

ℓ,m

h
a,ℓm

µν
, h

p

µν
=
∑

ℓ,m

h
p,ℓm

µν
, (11.15)

where

h
a,ℓm

µν
=




0 h
ℓm

A
S

ℓm

a

∗ H
ℓm
S

ℓm

ab


 , (11.16)

h
p,ℓm

µν
=




h
ℓm

AB
Y

ℓm
p

ℓm

A
Y

ℓm

a

∗ r
2
(K

ℓm
Y

ℓm

ab
+G

ℓm
Z

ℓm

ab
)


 , (11.17)

and where asterisks denote components given by symmetry. The quantity Y
ℓm

refers to

the standard scalar spherical harmonics [see [139] for conventions], while Y
ℓm

a
and S

ℓm

a
are polar and axial, vector spherical harmonics, defined only for ℓ ≥ 1 via

Y
ℓm

a
≡ Y

ℓm

:a
, S

ℓm

a
≡ η

a

b
Y

ℓm

b
. (11.18)

Similarly, Y
ℓm

ab
and Z

ℓm

ab
are polar, and S

ℓm

ab
axial, symmetric tensor spherical harmonics,

defined only for ℓ ≥ 2 via

Y
ℓm

ab
≡ Y

ℓm
Ω

ab
, Z

ℓm

ab
≡ Y

ℓm

:ab
+
ℓ(ℓ+ 1)

2
Y

ℓm
Ωab , (11.19)

S
ℓm

ab
≡ S

ℓm

(a:b)
. (11.20)

8
Polar and axial modes as those which, under a parity transformation, acquire a factor of

(−1)
l
and (−1)

l+1
respectively.



302

The sign convention for the Levi-Civita tensor of the 2-sphere is: η
θϕ

= sin θ. All metric

perturbations, scalar (h
ℓm

AB
), vectorial (p

ℓm

A
and q

ℓm

A
), and tensorial (K

ℓm
, G

ℓm
, and

q
ℓm

2
), are functions of t and r only.

In GR, the Einstein equations can be decoupled in terms of complex master func-
tions that obey wave-like master equations. Once the master functions are constructed
we can recover all remaining metric perturbations from them. For axial modes, we can
use the Cunningham-Price-Moncrief (CPM) master function [193], defined by

Ψ
ℓm

CPM
= − r

λ
ℓ

(
h

ℓm

r,t
− h

ℓm

t,r
+

2

r
h

ℓm

t

)
, (11.21)

whereas for polar modes we can use the Zerilli-Moncrief (ZM) master function [190, 191]

Ψ
ℓm

ZM
=

r

1 + λ
ℓ

{
K

ℓm
+ (1 + λ

ℓ
)G

ℓm

+
f

Λ
ℓ

[
fh

ℓm

rr
− rK

ℓm

,r
− 2

r
(1 + λ

ℓ
)p

ℓm

r

]}
, (11.22)

where λ
ℓ
= (ℓ+ 2)(ℓ − 1)/2 and Λ

ℓ
= λ

ℓ
+ 3M/r. These two complex master functions

are gauge invariant. In order to simplify our analysis we shall here fix the gauge by
setting the following metric perturbations to zero (Regge-Wheeler gauge):

H
ℓm

= 0 , (11.23)

G
ℓm

= p
ℓm

t
= p

ℓm

r
= 0 . (11.24)

The master equations for the master functions, in the case of perturbations without
matter sources, have the following wave-like structure:

[
−∂2

t2
+ ∂

2

r2

⋆

− V
Polar/Axial

ℓ
(r)

]
Ψ

ℓm

CPM/ZM
= 0 , (11.25)

where r
⋆
is the tortoise coordinate r

⋆
= r+2M ln [r/(2M) − 1]. The quantity V

Polar/Axial

ℓ
(r)

is a potential that depends on the parity and harmonic number ℓ (its precise form can
be found elsewhere. To follow our notation, see [139]).

When the master functions are known, one can use them to construct the plus
and cross-polarized gravitational waveforms via

h
+
− ih

×
=

1

2r

∑

ℓ≥2,m

√
(ℓ+ 2)!

(ℓ− 2)!

(
Ψ

ℓm

ZM
+ iΨ

ℓm

CPM

)
−2
Y

ℓm
, (11.26)

where
−2
Y

ℓm
denotes spherical harmonics of spin weight −2 [198]. One can also compute

the fluxes of energy and angular momentum emitted toward infinity and also into the
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BH horizon in terms of the master functions. These fluxes are evaluated using a short-
wavelength approximation in the radiation zone, where we can introduce a well-defined
gauge-invariant energy-momentum tensor for gravitational radiation [195, 196, 197].
However, the expression for this effective energy-momentum tensor depends on the struc-
ture of the field equations. In the case of CS modified gravity, given that the modification
in the field equations is additive, the form of these fluxes will be the same as in GR but
with extra terms proportional to the CS scalar field and its derivatives. That is,

Ė
GW

=
1

64π

∑

ℓ≥2,m

(ℓ+ 2)!

(ℓ− 2)!

(
|Ψ̇ℓm

CPM
|2 + |Ψ̇ℓm

ZM
|2
)

+ O(∂θ, ∂
2
θ) , (11.27)

L̇
GW

=
1

64π

∑

ℓ≥2,m

im
(ℓ+ 2)!

(ℓ− 2)!

(
Ψ̄

ℓm

CPM
Ψ̇

ℓm

CPM
+ Ψ̄

ℓm

ZM
Ψ̇

ℓm

ZM

)

+ O(∂θ, ∂
2
θ) , (11.28)

where the dots here denote time differentiation.

11.4.2 Pontryagin Constraint

We have seen that diffeomorphism invariance requires an extra condition, the
Pontryagin constraint [Eqs. (11.2)-(11.9)]. This condition is automatically satisfied not
only by the most general spherically symmetric metric (its C-tensor vanishes), but also
for linear perturbations of Minkowski spacetime. Nonetheless, this condition is not
satisfied for generic perturbations of a Schwarzschild BH. In this case, at first-order, the
Pontryagin constraint becomes

∗
RR =

96M

r6

[
h

ℓm

t
+
r

2

(
h

ℓm

r,t
− h

ℓm

t,r

)]
ℓ (ℓ+ 1)Y

ℓm
. (11.29)

Remarkably, the Pontryagin constraint involves only axial modes, which is a conse-
quence of the appearance of the Levi-Civita tensor (a completely antisymmetric tensor)
in the modification of the gravitational sector of the action. Perhaps even more remark-
ably, this specific combination of axial modes corresponds exactly to the Cunningham-
Price-Moncrief master function [193] [eq. (11.21)], which appears in the metric wave-
forms [Eq. (11.26)] and in the fluxes of energy and angular momentum [Eq. (11.27)
and (11.28)]. We can thus rewrite Eq. (11.29) as

∗
RR = −24M

r6
(ℓ+ 2)!

(ℓ− 2)!
Ψ

ℓm

CPM
Y

ℓm
. (11.30)

Then, the Pontryagin constraint forces the CPM function to vanish for all harmonics
with ℓ ≥ 2. Such a restriction does not imply that all axial perturbations necessarily
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vanish in CS modified gravity, but it does require that these modes satisfy the relation

h
ℓm

r,t
= h

ℓm

t,r
− 2

r
h

ℓm

t
. (11.31)

Such a condition seems to reduce the set of possible solutions of the perturbative vacuum
field equations, which might lead to an overconstrained system. For the choice of θ in
Eq. (11.13), we shall see in Sec. 11.5.1 that this is indeed the case.

11.4.3 Structure of the Modified Field Equations

The CS modified dynamics of linear perturbations about a Schwarzschild back-
ground can be studied by expanding the metric perturbations into spherical harmonics,
Eqs. (11.15)-(11.17). After introducing these expansions into the field equations

G
µν

= −C
µν
. (11.32)

we can extract individual evolution equations for each harmonic.
The choice of the CS scalar field will determine the form of the right-hand side

in Eq. (11.32). Since we are considering perturbations about a Schwarzschild spacetime,
we must choose θ such that Birkhoff’s theorem holds. In Sec. 11.3, we determined that
scalar fields of the form of Eq. (11.12) would indeed allow Birkhoff’s theorem to persist
in CS modified gravity. We shall here choose θ as in Eq. (11.13), such that this field
agrees with the symmetries of the background, namely

θ = θ̄(t, r) , (11.33)

where t and r are here the Schwarzschild time and radial coordinates. This family of CS
coupling functions encompasses the canonical choice: θ̄ = t/µ.

The structure of the linearized field equations is analyzed by first looking at the
harmonic decomposition of the Einstein tensor and the C-tensor. The structure of the
former is well-known from the study of perturbations of non-rotating BHs in GR, and is
given by

G
ℓm

AB
= Gℓm

AB
[U

ℓm

Polar
]Y

ℓm
, (11.34)

G
ℓm

Aa
= Gℓm

A
[U

ℓm

Polar
]Y

ℓm

a
+ Hℓm

A
[U

ℓm

Axial
]S

ℓm

a
, (11.35)

G
ℓm

ab
= Gℓm

[U
ℓm

Polar
]Y

ℓm

ab
+ Hℓm

[U
ℓm

Polar
]Z

ℓm

ab
+ Iℓm

[U
ℓm

Axial
]S

ℓm

ab
, (11.36)

where U
ℓm

Polar
denotes the set of (ℓ,m)-polar perturbations

U
ℓm

Polar
= (h

ℓm

AB
, p

ℓm

A
,K

ℓm
, G

ℓm
) , (11.37)

and U
ℓm

Axial
denotes the set of (ℓ,m)-axial perturbations

U
ℓm

Axial
= (h

ℓm

A
,H

ℓm
) . (11.38)



305

Expressions for the coefficients Gℓm

AB
, Gℓm

A
, Gℓm

, Hℓm

A
, Hℓm

, and Iℓm
are given in Ap-

pendix J. Clearly, polar spherical harmonics have functional coefficients that depend
only on polar metric perturbations, while axial spherical harmonics have functional coef-
ficients that depend only on axial metric perturbations. On the other hand, the harmonic
structure of the C-tensor is given by

C
ℓm

AB
= Cℓm

AB
[U

ℓm

Axial
]Y

ℓm
, (11.39)

C
ℓm

Aa
= Cℓm

A
[U

ℓm

Axial
]Y

ℓm

a
+ Dℓm

A
[U

ℓm

Polar
]S

ℓm

a
, (11.40)

C
ℓm

ab
= Cℓm

[U
ℓm

Axial
]Y

ℓm

ab
+ Dℓm

[U
ℓm

Axial
]Z

ℓm

ab
+ Eℓm

[U
ℓm

Polar
]S

ℓm

ab
, (11.41)

where explicit expressions for the coefficients Cℓm

AB
, Cℓm

A
, Cℓm

, Dℓm

A
, Dℓm

, and Eℓm
are also

given in Appendix J. In this case, polar spherical harmonics have functional coefficients
that depend on axial perturbations, while axial spherical harmonics have functional
coefficients that depend on polar perturbations. The main consequence of this fact is
that in CS modified gravity modes with different parity are coupled, and hence, in general
they cannot be treated separately.

The linearized field equations, after harmonic decomposition, become

Gℓm

AB
= −Cℓm

AB
, Gℓm

A
= −Cℓm

A
, (11.42)

Gℓm
= −Cℓm

, Hℓm
= −Dℓm

, (11.43)

Hℓm

A
= −Dℓm

A
, Iℓm

= −Eℓm
. (11.44)

We can view these equations as the standard Einstein equations, linearized about a
Schwarzschild background, with “source terms” that depend linearly on metric per-
turbations of opposite parity and their derivatives. Such a coupling between different
parity modes is analogous to what occurs to gravitational-wave perturbations about a
Minkowski background, where left- and right-polarized perturbations mix [273, 73, 274].
The intrinsic decoupling of the modified field equations into polar and axial sectors is
thus lost.

11.5 Black Hole Perturbation Theory with a Canonical Embedding

In order to understand the dynamics of the perturbations that derives from this
theory and, in particular, the role and consequences of the Pontryagin constraint, we shall
concentrate on the special case of a canonical CS coupling function, i.e. θ̄ = t/µ. This
canonical coupling function leads to the canonical timelike embedding v

µ
= [1/µ, 0, 0, 0]

and its acceleration v
µ;ν

= Γ
σ

µν
v
σ
.

11.5.1 One-handed Perturbations

To begin with, we concentrate on perturbations with a single handedness, i.e. purely
polar or purely axial perturbations. We shall analyze these cases separately.
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11.5.1.1 Pure Axial Perturbations

We begin with pure axial metric perturbations, that is

h
ℓm

AB
= p

ℓm

A
= K

ℓm
= G

ℓm
= 0 . (11.45)

This conditions imply

Gℓm

AB
= Gℓm

A
= Gℓm

= Hℓm
= 0 , (11.46)

Dℓm

A
= Eℓm

= 0 , (11.47)

and hence the field equations reduce to:

Hℓm

A
= 0 , Iℓm

= 0 , (11.48)

Cℓm

AB
= 0 , Cℓm

A
= 0 , (11.49)

Cℓm
= 0 , Dℓm

= 0 . (11.50)

Looking at the expressions of Cℓm
and Cℓm

rr
(see Appendix J) we see that both of

them are proportional to the metric perturbation h
ℓm

r
. Therefore, using Eqs. (11.49)-

(11.50) we conclude that

h
ℓm

r
= 0 . (11.51)

Similarly, Cℓm

tr
is proportional to h

ℓm

t
, and thus, using Eq. (11.50)

h
ℓm

t
= 0 . (11.52)

Since H
ℓm

is zero in the Regge-Wheeler gauge, we conclude that all axial perturbations
must vanish. In summary, the Pontryagin constraint together with the coupling of
opposite parity modes in the modified field equations, forbids the existence of purely axial
oscillations of a Schwarzschild BH in CS modified gravity with a canonical embedding.

11.5.1.2 Pure Polar Perturbations

Let us now study pure polar perturbations by setting all axial modes to zero:

h
ℓm

A
= 0 . (11.53)

The immediate consequences are

Hℓm

A
= Iℓm

= 0 , (11.54)

Cℓm

AB
= Cℓm

A
= Cℓm

= Dℓm
= 0 , (11.55)
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and the field equations become

Gℓm

AB
= Gℓm

A
= Gℓm

= Hℓm
= 0 , (11.56)

Dℓm

A
= Eℓm

= 0 . (11.57)

From Hℓm
= 0 we find that (see Appendix J)

h
ℓm

tt
= f

2
h

ℓm

rr
, (11.58)

while, from equations Gℓm

A
= 0 = Gℓm

AB
we find expressions for all first and second

derivatives ofK
ℓm

in terms of h
ℓm

rr
, h

ℓm

tr
and its derivatives. Substituting these expressions

into Eℓm
= 0 leads to

h
ℓm

rr
= 0 , (11.59)

which combined with Eq. (11.58) implies

h
ℓm

tt
= 0 . (11.60)

There are now only two non-zero metric perturbations: K
ℓm

and h
ℓm

tr
. Inserting the

expressions for the derivatives of K
ℓm

into Dℓm

A
= 0, we can solve the resulting equations

for h
ℓm

tr,rr
and h

ℓm

tr,tr
. Using all the information we have collected so far in Gℓm

= 0, one

can show by direct evaluation that this equation requires that h
ℓm

tr,t
= 0. Such a result,

in combination with the previously found expression for h
ℓm

tr,tr
, leads to

K
ℓm

= 0 . (11.61)

Returning to the previous expressions for derivatives of K
ℓm

we obtain

h
ℓm

tr
= 0 . (11.62)

We have then found that all polar perturbations vanish. We conclude that purely polar
oscillations of a Schwarzschild BH are not allowed in CS modified gravity with a canonical
embedding.

The results obtained for single-parity oscillations are quite surprising and raise
questions about its robustness. In other words, can we expect the same conclusion if
we repeat the analysis for other CS coupling functions? We have repeated this analysis
for different CS coupling functions within the class θ = θ̄(t, r). The algebra involved
is significantly more complicated and it requires intensive use of symbolic manipulation
software [1]. In all studied cases, we have arrived at the same conclusion: CS modified
gravity does not allow for single-parity BH oscillations.
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11.5.1.3 General Perturbations

General perturbations are significantly more difficult to analyze, since we cannot
separately study the components of the Einstein and C-tensors, as was the case for single
parity oscillations, due to the particular structure of these tensors [Eqs. (11.42)-(11.44)].
Nonetheless, we can still make some general comments about the consequences of the
Pontryagin constraint on general oscillations and the extent to which these are restricted.

The Pontryagin constraint unavoidingly adds an extra equation to the modified
field equations, i.e. Eq. (11.31). Since this equation only involves axial perturbations,
one may a priori think that polar modes are unaffected. The modified field equations,
however, mix polar and axial modes, and thus, polar modes are also affected and re-
stricted by the Pontryagin constraint. This situation has been clearly illustrated by the
study of single-parity oscillations in the previous subsection.

The coupling of polar and axial metric perturbations in the modified field equa-
tions, together with the extra condition imposed by the Pontryagin constraint, lead to
new conditions on the metric perturbations. In other words, these new conditions con-
stitute new equations for the metric perturbations that are independent of the previous

ones. For example, the components of Cℓm

AB
in Eq. (11.39) are linear combinations of the

axial metric perturbations h
ℓm

A
(see Appendix J), which can be combined to reconstruct

the CPM master function, leading to an additional equation for polar modes. Similarly,

the components of Hℓm

A
[Eq. (11.35)] can also be combined to construct the CPM master

function, and hence find another constraint on polar modes. Again, due to the mixing
of different parity modes, these constraints on polar modes can in turn produce new
constraints on axial modes. It is unclear where this chain of new constraints on the
metric perturbations ends, but it is very likely that they will severely restrict the set of
allowed BH oscillations.

One may think that choosing the CS coupling function θ appropriately, namely

choosing θ̄(x
A
) and Θ(x

a
) in Eq. (11.12), may end this chain of new constraints through

cancellations in the generation of new equations. In the case θ = θ̄(x
A
), if such cancella-

tions were to occur for a certain harmonic number ℓ, they could not happen for other ℓ,
as the equations depend on the harmonic number. Moreover, such cancellations would
have to occur in different ways, associated with the different combinations of equations
that produce new constraints, discussed in the previous paragraph. Adding the term
Θ(x

a
) to the CS scalar field only complicates the field equations further by inducing a

coupling between perturbations with different harmonic number. Even in this case, given
that the functional coefficient of Θ(x

a
) is fixed (it is just r) and ℓ-independent, it seems

unlikely that the coupling of harmonic modes will lead to the cancellations necessary to
avoid new equations for the metric perturbations.

Our analysis suggests that the present structure of CS modified gravity does not
seem to allow for generic BH oscillations. In particular, we have shown that for certain
choices of the CS scalar field, single-parity perturbations are not allowed. For general
perturbations, and with the help of computer algebra, we have analyzed the equations
as discussed above and found that cancellations in the generation of new conditions on
the metric perturbations are very unlikely. Therefore, the present set up for CS modified
gravity does not seem to allow for the study of generic oscillations of non-rotating BHs.
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Such a result is reminiscent to that found in GR when additional restrictions are imposed
on the metric tensor. An example of this can be found in the study of relativistic
cosmological dynamics [362, 363]

Although the modified theory seems too restrictive, it is possible to develop an
extension where the aforementioned constraints are avoided, while keeping the main
characteristics of the modified theory untouched. Two distinctive features of the non-
extended theory are the coupling of different parity modes and the Pontryagin constraint.
While the former can be preserved by extensions of the modified theory, the latter must
be relaxed to prevent the vanishing of the CPM master function. Since, by assumption,
any extension should introduce small modifications to CS gravity, the CPM master
function would be forced to be small but not quite zero. If this is the case, such extensions
would have strong implications in the energy flux and, in particular, in the angular
momentum flux of gravitational waves [Eqs. (11.27) and (11.28)]. These arguments
motivate the study of BH oscillations in extensions of CS modified gravity, which we
shall explore in the next section.

11.6 Beyond the Cannon

The strong restrictions obtained on the dynamics of BH oscillations thus far can
be bypassed provided we considered extensions of CS modified gravity beyond the canon.
One such possibility is to consider a more general CS coupling function that, for example,
is not spherically symmetric. However, as we have argued before, it does not seem likely
that such a modification would avoid the generation of new restrictions on the metric
perturbations. Another more interesting possibility is to extend the action of Eq. (11.1)
to allow for the dynamical evolution of the CS scalar field. Such a route is particularly
promising because it weakens the Pontryagin constraint, as we shall see in this section.
However, a certain amount of arbitrariness is inherent to such a route, encoded in the
choice of the scalar field action and, in particular, its potential. We shall discuss this
and other issues in the remaining of this section.

11.6.1 Extended CS Modified Gravity

Until now, we have treated the CS coupling function as a non-dynamical quantity.
Recently, Smith, et. al. [83] added a kinetic and a potential term to the action, which
they found did not contribute to their weak-field analysis. These additional terms are of
the form

S
ext

= S
CS

+ κ

∫
d
4
x
√−g

[
1

2
θ,µθ

,µ − V (θ)

]
, (11.63)

where V (θ) is some potential for the CS scalar field.
The variation of the extended action with respect to the metric and scalar field

yields the equations of motion of the extended theory

Gµν + Cµν = 8π
(
T

mat

µν
+ T

θ

µν

)
, (11.64)

�θ = −dV
dθ

− 1

4

∗
RR , (11.65)
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where the D’Alambertian of any scalar can be computed from

�θ =
1√−g

[√−g gµν
θ,ν

]

,µ
, (11.66)

and where the stress-energy tensor of the scalar field is [364]

T
θ

µν
= θ,µθ,ν −

1

2
gµνθ;σθ

σ

;
− gµνV (θ) . (11.67)

In this extension of CS modified gravity, the Pontryagin constraint is replaced by an
equation of motion for the CS scalar field, Eq. (11.65), where the quadratic curvature
scalar

∗
RR plays the role of a driving force. Moreover, looking at the field equations

for the metric, we realize that they are not only sourced by the matter fields but also
by the CS scalar field through its energy-momentum content. In the next subsection we
shall study what consequences this modification imposes on the satisfaction of Birkhoff’s
theorem and the Pontryagin constraint.

11.6.2 Birkhoff’s Theorem in the Extended Theory

The simple derivation of Birkhoff’s theorem in Sec. 11.3 is now modified by the
extended action. For a CS scalar field of the form of Eq. (11.12) and the line element of
Eq. (11.10), the C-tensor vanishes, which now leads to

Gµν = 8πT
θ

µν
. (11.68)

If the metric of Eq. (11.10) is a solution to Einstein’s equations, as is the case for
the Schwarzschild metric, the stress-energy tensor of the scalar field must vanish. For
the choice of θ in Eq. (11.33) and the Schwarzschild metric, this implies the following
conditions:

0 = θ,tθ,r,

0 =
1

2
θ
2

,t
+
f

2

2
θ
2

,r
± fV (θ), (11.69)

where f is given in Eq. (11.11). The only solution to this system is the trivial one:
V = 0 and θ = const., which reduces CS theory to GR. However, if we treat θ as a small
quantity, as it is suggested by the different physical scenarios that motivate CS modified

gravity, then Birkhoff’s theorem holds to O(θ
2
) provided V is at least of the same order.

An example of such a potential is a mass term V = mθ
2
, typical of scalar interactions.

The results of this subsection also apply to more general CS coupling functions
and background metrics. In fact, these results hold for any line element that represents
a general, spherically symmetric spacetime, i.e. Eq. (11.10). Moreover, they also hold
for the most general CS field that leads to a vanishing C-tensor, i.e. Eq. (11.12), because

the kinetic sector of T
(θ)

µν
is always quadratic in θ.
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11.6.3 BH perturbations in the Extended Theory and the Pontryagin con-
straint

In the extended theory, the Pontryagin constraint is replaced by a dynamical
equation for the CS scalar field with a purely gravitational driving term. Since now
there is no Pontryagin constraint, there is no a priori reason for the equations to disallow
general BH oscillations. In fact, as we shall see in this subsection, the extended theory
leads to a system of 11 PDEs for 11 dynamical variables (θ, hµν).

But can we treat θ as a perturbation? As we have just seen, Birkhoff’s theorem
holds only to linear order in θ, for a wide class of potentials V (θ). On the one hand,
in most string-theory scenarios that necessitate the CS correction [74, 282, 83], the
scalar field θ is proportional to the string scale. In such cases, θ is much smaller than
any metric perturbation and Birkhoff’s theorem holds. Nonetheless, even within such
frameworks, the CS correction could be enhanced by couplings to non-perturbative,
string theoretical degrees of freedom (i.e. gravitational instantons) [283]. Moreover,
there are some theoretical frameworks where the string coupling gs vanishes at late
times [284, 285, 286, 287, 288, 290, 291, 292, 293, 294], in which case a larger coupling
is permissible.

From this discussion, we cannot necessarily assume that the magnitude of the
scalar field is smaller or of the same order as the metric perturbations. In fact, these
perturbations and the scalar field act on completely independent scales. Therefore, all
we can assume is that θ and |hab| are both independently smaller than the background,
which is enough to justify the use of perturbation theory.

We shall thus consider a two-parameter (bivariate) perturbative expansion of CS
gravity. One perturbative parameter shall be associated with the metric perturbations,
ǫ, and the other with the scalar field, τ . The metric in Eq. (11.14) and the scalar field
can then be rewritten as

g
µν

= ḡ
µν

+ ǫ h
µν
, (11.70)

θ = τ(θ̄ + ǫ δθ) = τ θ̄ + τǫ
∑

ℓ≥1,m

θ̃
ℓm
Y

ℓm
, (11.71)

where θ̄ satisfies Birkhoff’s theorem [Eq. (11.12)] and respects the spherical symmetry

of the background. The quantities θ̃
ℓm

= θ̃
ℓm

(x
A
) are harmonic coefficients of the scalar

field perturbations, associated with the BH oscillations. There are no ℓ = 0 modes in
the sum of Eq. (11.71) because they can always be absorbed in the monopole term θ̄.

The equations of motion for the metric perturbation and the scalar field now
become formal bivariate expansions in ǫ ≪ 1 as well as τ ≪ 1. The modified field
equations to zeroth order in ǫ are simply equations for the background metric, which are
automatically satisfied to this order by Birkhoff’s theorem. The equation of motion for
the scalar field to the same order becomes

τ �̄θ = τ ḡ
µν∇̄µ∇̄νθ = 0 . (11.72)
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In Eq. (11.72), and in all remaining equations, the overhead bars on any quantity are
to remind us that these quantities are to be evaluated with respect to the background
metric ḡµν . Moreover, in Eq. (11.72) and henceforth, we shall neglect the contribution of

the potential, by assuming that it is at least of O(τ
2
). As discussed earlier, the potential

encodes a certain arbitrariness in the extension of the CS modification, which is why we
have chosen to neglect it.

The first-order equations govern the dynamics of the metric perturbation and the
perturbations of the scalar field. The equation of motion for the scalar field to O(ǫ) is
given by

ǫ
1

4
δ(

∗
RR) = ǫτ

{
�̄δθ −

[
θ̄
,µν

+
(
ln

√−ḡ
)
,µ
θ̄
,ν

]
h

µν

− θ̄
,µ
h

µν

,ν
+

1

2
h,µḡ

µν
θ̄,ν

}
. (11.73)

In Eq. (11.73), δ(
∗
RR) is the functional coefficient of

∗
RR to O(ǫ) [Eq. (11.30)] and

h = g
µν
hµν = ḡ

µν
hµν . Equation (11.73) is harmonically decomposed in the Regge-

Wheeler gauge in Eq. (K.3) of Appendix K.
Similarly, the equations of motion for the metric perturbation to O(ǫ) reduce to

O(τ
2
) = ǫδG

µν
+ ǫτ

[
θ̄

,σ
η̄

σαβ

(µ
∇̄αδRν)β

+
(
∇̄τ θ̄,σ

)
δ
∗
R

σ

(µ

τ

ν)
+
(
∇̄τδθ,σ

− θ̄
,ρ
δΓ

ρ

στ

) ∗
R̄

σ

(µ

τ

ν)

]
. (11.74)

In Eq. (11.74), δGµν is the functional coefficient of Gµν to O(ǫ) (see Appendix J), and

all other δA
αβ...

χζ... stands for the coefficient to O(ǫ) of any tensor A
αβ...

χζ.... In fact,

Eq. (11.74) is the formal covariant expression of the perturbation of the Einstein and
C-tensors to O(ǫ), which we computed in Appendix J for the CS coupling function in
Eq. (11.33), with the exception of the term proportional to δθ. The quadratic terms
on the right-hand side of Eq. (11.74) come from the energy-momentum tensor of the
scalar field θ [see Eq. (11.64)]. When taking the divergence of this equation, we recover
Eq. (11.73) only when quadratic terms in τ are taken into account because functional
differentiation with respect to θ reduces the order in τ of the resulting expression by
unity.

Equations (11.73) and (11.74) govern the dynamics of BH oscillations in this
extended version of CS modified gravity, but how do we solve them? Although it would be
useful to decouple these equations in terms of master functions as done in GR, this is not
an easy task. In addition to the mixing of parity modes and the fact that the Pontryagin
constraint can no longer be used to simplify equations, there is now additional terms in
the modified field equations due to the perturbations of the scalar field. Moreover, these
perturbations possess their own dynamics, and hence, any decoupling should involve the

whole set of perturbative variables, i.e. (θ̃
ℓm
, h

ℓm

µν
).
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Nonetheless, it should be possible to numerically solve the perturbative field equa-
tions of the extended modified theory in an iterative way with τ ≪ 1. One such possible
iterative procedure is as follows. To zeroth order in τ , the equations reduce to those of
GR, which can be decoupled and solved numerically with standard methods. The numer-
ical result can then be reinserted in the field equations to first order in τ . These equations
can now be decoupled in exactly the same way and will contain source terms determined
by the zeroth order solution. This problem will be tackled in a future publication.

Before concluding, let us make some general remarks about the consequences of
extending CS modified gravity through such kinetic terms. Equation (11.73) shows that
the Pontryagin constraint has become an evolution equation for the perturbations of the
scalar field, δθ. Together with Eq. (11.74), this evolution equation constitutes a system

of PDEs for the perturbative variables (θ̃
ℓm
, h

ℓm

µν
) that could in principle allow for generic

oscillations. However, since τ ≪ 1, the magnitude of the CPM master function is forced
to be small [of O(τ)]. Otherwise, the scalar field would lead to an amplification of the
CS correction to levels forbidden by solar system tests [83]. The extended theory thus
relaxes the vanishing of the CPM function and replaces it by somewhat of a suppression
of radiative axial modes.

Such an effect may lead to important observational consequences. In particular,
the dynamics of astrophysical systems, where axial modes contribute significantly to
the gravitational-wave emission, would be greatly modified. In such cases, Eqs. (11.27)
and (11.28) suggest that the flux of energy emitted would be dominated by polar modes
and the flux of angular momentum would be very small, since it would be linear in
τ . Such a flux suppression is in contrast to predictions of GR, where the gravitational
wave emission of angular momentum is known to be large (approximately 14% of the
initial ADM angular momentum for quasi-circular BH mergers [36]). Consequently, the
dynamics of gravitational wave sources in the radiation-reaction dominated phase should
be quite different in CS modified gravity relative to GR, thus allowing for gravitational
wave tests of the extended theory.

11.7 Conclusions

We have studied Schwarzschild BH perturbation theory in CS modified gravity.
We began by showing that Birkhoff’s theorem (the statement that the Schwarzschild
solution is the only vacuum, spherically-symmetric solution of the theory) holds in the
modified theory for a wide class of CS coupling functions. We then decomposed the met-
ric perturbations into tensor spherical harmonics and found the linearized modified field
equations that determine their behavior. The divergence of these equations led to the lin-
earized Pontryagin constraint, which imposes a restriction on axial metric perturbations
–the CPM master function has to vanish.

Once these preliminary issues were studied, we focused on the general structure of
the metric perturbations in CS modified gravity. We found that the modified theory adds
new terms to the field equations that couple perturbations with polar and axial parity.
Moreover, due to the restrictions imposed by the Pontryagin constraint, we find that in
general the system of equations is overdetermined. Whether the entire set of equations
is compatible remains unclear, but for a wide class of initial physical conditions, we
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found that linear BH oscillations are not allowed in CS modified gravity. Specifically,
we showed that pure axial or pure polar oscillations are disallowed for a wide class of
coupling functions.

Possible extensions of the modified theory that would allow for generic BH os-
cillations were also discussed. In particular, we investigated the possibility of providing
the CS coupling function with dynamics. In other words, the inclusion of a kinetic and
potential term in the action led to the replacement of the Pontryagin constraint with
an equation of motion for the coupling function. This route then lifts the vanishing
restriction of the Pontryagin constraint and imposes a smallness condition on the CPM
function.

The extended CS modified framework thus allows for generic BH oscillations but
it imposes an important smallness restriction on axial perturbation that could lead to
astrophysical observables. In particular, we saw that such a suppression of axial modes
would lead to a significant decrease in the magnitude of energy, linear and angular
momentum carried by gravitational radiation relative to GR. Such a decrease in gravi-
tational wave intensity would have important consequences in the dynamics of compact
object inspirals, specially in the radiation-reaction dominated phase.

Future observations of the ringdown signal in binary BH mergers could be used
to test and constrain CS modified gravity. For such studies, the results found in this
paper would be critical in order to determine the quasi-normal frequency spectrum of
perturbations. Future work could concentrate on such a spectrum, by numerically study-
ing the linearized and harmonically-decoupled field equations presented here. Moreover,
semi-analytic studies might also be possible through the close-limit approximation. Only
through detailed studies of all aspects of the modified theory and its links to experimental
observations will we be able to determine its viability.

Acknowledgments

We would like to thank Eric Poisson and Jorge Pullin for encouragement to study
perturbations of black holes in the context of CS gravity. We would also like to thank Ted
Jacobson, Stephon Alexander, Daniel Grumiller, Ben Owen, and Richard O’Shaughnessy
for discussions. Most of our calculations used the computer algebra systems MAPLE
v.11 in combination with the GRTensorII package [1].

NY would also like to thank Ben Owen for his ongoing support. CFS acknowl-
edges support from the Natural Sciences and Engineering Research Council of Canada
during the first stages of this work. Presently, he is supported by the Ramon y Cajal
Programme of the Ministry of Education and Science of Spain and by a Marie Curie
International Reintegration Grant (MIRG-CT-2007-205005/PHY) within the 7th Euro-
pean Community Framework Programme. NY acknowledges the support of the Center
for Gravitational Wave Physics funded by the National Science Foundation under Co-
operative Agreement PHY-01-14375, support from NSF grant PHY-05-55-628, and the
University of Guelph for hospitality during a visit in which this work was started.



315

Chapter 12

A gravitational-wave probe of effective quantum gravity

The Green-Schwarz anomaly-cancelling mechanism in string theories re-
quires a Chern-Simons term in the Einstein-Hilbert action, which leads to
an amplitude birefringence of spacetime for the propagation of gravitational
waves. While the degree of birefringence may be intrinsically small, its effects
on a gravitational wave will accumulate as the wave propagates. The pro-
posed Laser Interferometer Space Antenna (LISA) will be sensitive enough to
observe the gravitational waves from sources at cosmological distances great
enough that interesting bounds on the Chern-Simons may be found. Here we
evaluate the effect of a Chern-Simons induced spacetime birefringence to the
propagation of gravitational waves from such systems. We find that grav-
itational waves from in coalescing binary black hole system are imprinted
with a signature of Chern-Simons gravity. This signature appears as a time-
dependent change in the apparent orientation of the binary’s orbital angular
momentum with respect to the observer line-of-sight, with the change magni-
tude reflecting the integrated history of the Chern-Simons coupling over the
worldline of a radiation wavefront. While spin-orbit coupling in the binary
system will also lead to an evolution of the system’s orbital angular momen-
tum, the time dependence and other details of this real effect are different
than the apparent effect produced by Chern-Simons birefringence, allowing
the two effects to be separately identified. In this way gravitational wave
observations with LISA may thus provide our first and only opportunity to
probe the quantum structure of spacetime over cosmological distances.

12.1 Introduction

“Gravitational wave” is the name we give to a short-wavelength feature of the

structure of spacetime, the arena within which all other phenomena play-out their roles
1
.

As such, the direct observation of gravitational waves offers an unprecedented opportu-
nity to explore the environment that both enables and constrains the action of the
broader phenomena of nature. Here we describe an observational probe of quantum
gravity made possible by the forthcoming generation of space-based gravitational wave
detectors.

1
This chapter is based on the following papers: S. Alexander, L. S. Finn and N. Yunes,

submitted to Phys. Rev. D (2007)
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In most corners of the perturbative string theory moduli space (i.e. Type IIB,
I, Heterotic) in four-dimensional compactifications, the addition of a parity-violating

Chern-Simons term to the Einstein-Hilbert is required for mathematical consistency
2
.

Furthermore in the presence of the Ramond-Ramond scalar (D-instanton charge), the
Chern-Simons term is induced in all string theories due to duality symmetries [275, 74].
The Chern-Simons term is not unique to string theory, but in fact it could also arise in
Loop Quantum Gravity, where the coupling is not necessarily limited to small values. In
the strong gravity sector of this framework, this term arises to ensure invariance under
large gauge transformations of the Ashtekar connection variables [78]. This correction
plays the same role in string theory that an analogous anomaly-canceling correction to
the quantum-chromodynamics path integral plays in the Standard Model [314]. While
the anomaly-cancelling field in the Standard Model case interacts with photons, lead-
ing to significant observational constraints on its coupling, the anomaly canceling term
considered here only affects the gravitational sector of the theory and is mostly uncon-
strained by observation [277, 317, 83].

The Chern-Simons correction to the Einstein-Hilbert action, Chern-Simons grav-
ity [273], has been recently studied in connection with tests both in the cosmologi-
cal [75, 76, 77, 74] and the weak-gravitational contexts [277, 317, 83]. In the context
of gravitational wave theory, Chern-Simons gravity leads to an amplitude birefringence
of spacetime for gravitational wave propagation [273, 74, 274]: i.e., a polarization de-
pendent amplification/attenuation of wave amplitude with distance propagated. Obser-
vation of gravitational waves that have propagated over cosmological distances, such as
will be possible with the Laser Interferometer Gravitational Wave Observatory (LISA)
[365, 366, 367], provide the opportunity to measure or bound the magnitude of the
birefringence and, correspondingly, provide the first experimental constraints on string
theory models of gravity.

Gravitational wave observations have long been recognized as a tool for testing
our understanding of gravity (see [60] for a recent review). Eardley and collaborators
[61, 62] first proposed a far-field test of all metric theories of gravity through gravitational
wave observations. Finn [63], and later Cutler and Lindblom [64], proposed a means
of realizing these measurements using a space-based detector in a circumsolar orbit
observing solar oscillations in the far-zone field. Ryan [65] argued that observations of the
phase evolution of the gravitational waves emitted during the gravitational-wave driven
inspiral of, e.g., a neutron star or stellar mass black hole into a supermassive black hole
could be used to “map-out” the spacetime metric in the vicinity of the black hole horizon,
testing the predictions of general relativity in the regime of strong-fields. There have been
several proposals describing different ways in which gravitational wave observations could
be used to place bounds on the graviton Compton-wavelength [66, 67, 68, 69, 70, 71],
the existence of a scalar component to the gravitational interaction [72, 69, 70, 71], and
the existence of other corrections to general relativity as manifest in some fundamental,

2
In the case of string theory, the absence of a Chern-Simons term leads to the Green-Schwarz

anomaly. Quantum consistency requires cancellation of this anomaly. In order to eliminate the
anomaly, the introduction of a Chern-Simons term is essential. Heterotic M-theory makes use of
an anomaly inflow, which also leads to the same requirement.
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dimensionful length scale [368, 369]. The measurements we propose here are, we believe,
the first example of a direct model-independent probe of string theory and quantum
gravity with gravitational waves.

In section 12.2 we review Chern-Simons modified gravity, focusing attention on the
scale of the Chern-Simons term and its effect on the propagation of gravitational waves in
a cosmological background. In section 12.3 we evaluate the observational consequences
of the Chern-Simons term in the context of ground- and space-based gravitational wave
detectors. In section 12.5 we summarize our conclusions and discuss avenues of future
research.

Conventions used in relativity work and conventions used in quantum field theory
work are often at odds. We follow the relativity conventions Misner, Thorne and Wheeler
[197] in this work: in particular,

• Our metric has signature − + + + ;

• We label indices on spacetime tensors with greek characters and use latin indices
to label indices on tensors defined on spacelike slices;

• We use a semicolon in an index list to denote a covariant derivative (i.e., ∇
V
U

becomes V
ν
Uµ;ν) and a comma to denote ordinary partial derivatives;

• Except where explicitly noted we work in geometric units, wherein G = c = 1 for
Newtonian gravitational constant G speed of light c.

Note that in geometric units, units of mass and length are interchangeable (i.e., G/c
2

has units of (length)/(mass)). This is in contrast to Planck units (~ = c = 1), where
units of mass and units of inverse length are interchangeable (i.e., ~/c has units of
(mass) × (length)).

12.2 Chern-Simons Modified Gravity

12.2.1 Brief Review

In this subsection we review the modification to classical General Relativity by
the inclusion of a Chern-Simons term, based on [273, 274]. All four dimensional compact-
ifications of string theory lead, via the Green-Schwarz anomaly canceling mechanism, to
the presence of a four dimensional gravitational Chern-Simons term [275]. Chern-Simons
forms are formally defined for odd dimensions, with the 3-form of particular interest for
gauge theories. By introducing an embedding coordinate, which may be dynamical,
Jackiw and Yi [273] described a Chern-Simons correction to the Einstein-Hilbert action:

SCS =
1

64π

∫
d
4
x θR

∗
R (12.1)

where θ is (a functional of) the embedding coordinate,

R
∗
R =

1

2
Rαβγδǫ

αβµν
R

γδ

µν , (12.2)
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and ǫ
αβγδ

is the Levi-Civita tensor density. The variation with respect to the metric of
this contribution to the total action (which includes the Einstein-Hilbert action plus the
action corresponding to any additional matter fields) yields [273]

δSCS = − 1

16π

∫
d
4
x
√−g Cαβ δg

αβ
, (12.3)

where g is the determinant of the metric and C
ab

is the C-tensor
3
,

C
αβ

= − 1√−g
[
θ,ǫǫ

ǫγδ(α∇γR
β)

δ −∇δθ,γ ǫ
µνγ(α

R
β)δ

µν

]
, (12.4)

and the parenthesis in the superscript stand for symmetrization. The variation of SCS,
the usual Einstein-Hilbert action, and the action of other matter fields leads to the
equations of motion of Chern-Simons modified gravity:

Gαβ + Cαβ = 8πTαβ , (12.5)

where Gab is the Einstein tensor (i.e., the trace-reversed Ricci tensor) and Tab is the
stress-energy tensor of the matter fields.

By construction the divergence of the Einstein tensor Gαβ vanishes. If θ is treated

as a fixed, external quantity then general covariance, which requires ∇ · T = 0, leads
to the constraint ∇ · C = 0, which is shown in [273] to be equivalent to R

∗
R = 0.

Alternatively, if θ is a dynamical field, then variation of the action with respect to θ
will lead to the same constraint on R

∗
R. Here we are interested in the propagation of

gravitational waves in vacuum, where T = 0 and the constraint ∇ · C = 0 is satisfied
regardless of whether we view θ as a dynamical field or a fixed, externally-specified
quantity.

12.2.2 Linearized Chern-Simons gravitational waves

Focus attention on gravitational wave perturbations to a Friedmann-Robertson-
Walker (FRW) cosmological background in Chern-Simons gravity. Following [274], we
can write the perturbed FRW line element as

ds
2

= a
2
(η)
[
−dη2

+
(
δij + hij

)
dχ

i
dχ

j
]

(12.6)

where η is conformal time, χ
i

are comoving spatial coordinates, δij is the Euclidean

metric, and hij is the metric perturbation, which — for gravitational wave solutions —

we can take to be transverse and traceless
4
. Introducing this perturbation into the field

3
In [273], C

ab
was defined as a 4-dimensional generalization of the 3-dimensional Cotton

tensor. However, such a generalization already exists [331] and differs from that introduced in
[273]. Therefore, we shall here refer to this quantity as the C-tensor.

4
One can show that a transverse-traceless gauge exists in Chern-Simons gravity, following the

same steps as in classical general relativity [197]
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equations [Eq. (12.5)] leads to

�gh
j

i = − 1

a2 ǫ
pjk
[(
θ
′′ − 2Hθ′

)
∂ph

′
ki

+ θ
′
∂p�ghki

]
, (12.7)

where we have introduced the notation

′
= ∂η (12.8)

�g = ∂
2

η
− ∂i∂jγ

ij
+ 2H∂η (12.9)

H = a
′
/a. (12.10)

Conformal time η is related to proper time measured by an observer at rest with respect
to the cosmological fluid via

dt = a(η)dη; (12.11)

correspondingly, the conformal Hubble function H is related to the Hubble function H
measured by an observer at rest with respect to slices of homogeneity via

H ≡ ȧ

a
=

1

a
H, (12.12)

where we have use dots to stand for derivatives with respect to cosmic time t.
Focus attention on plane-wave solutions to the wave equation [Eq. (12.7)]. With

the ansatz

hlm(η, χ
l
) =

Alm

a(η)
e
−i

h

φ(η)−κnkχ
k

i

, (12.13)

where the amplitude Alm, the unit vector in the direction of wave propagation nk and
the conformal wavenumber κ > 0 are all constant, we find that φ, κ and Aij must satisfy

DAij = −a−2
ǫ
pjk
npAki

[(
θ
′′ − 2Hθ′

)(
φ
′ − iH

)
κ+ iθ

′
κD
]

(12.14)

where

D = −iφ′′ −
(
φ
′)2 −H′ −H2

+ κ
2
. (12.15)

Since the Chern-Simons correction breaks parity, it is convenient to resolve Aij

into definite parity states, corresponding to radiation amplitude in the right- and left-

handed polarizations e
R

ij
and e

L

ij
:

Aij = ARe
R

ij
+ ALe

L

ij
(12.16a)

where

e
R

kl
=

1√
2

(
e
+

kl
+ ie

×
kl

)
(12.16b)

e
L

kl
=

1√
2

(
e
+

kl
− ie

×
kl

)
(12.16c)
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and e
+,×
kl

are the usual linear polarization tensors [197]. It is straightforward to show

that

niǫ
ijk
e
R,L

kl
= iλR,L

(
e
j

l

)
R,L

, (12.17a)

where

λR = +1 (12.17b)

λL = −1. (12.17c)

With this substitution equation (12.14) becomes two decoupled equations, one for right-
hand polarized waves and one for left-hand polarized waves:

iφ
′′
R,L

+
(
φ
′
R,L

)
2
+ H′

+ H2 − κ
2

=
iλR,L

(
θ
′′ − 2Hθ′

)(
φ
′ − iH

)
κ/a

2

(
1 − λR,Lκθ

′/a2
) (12.18)

The terms on the right-hand side of equation (12.18) are the Chern-Simons cor-
rections to gravitational plane-wave propagation in a FRW spacetime. To understand
the relative scale of these terms, we rewrite the equation in terms of the ratio φ

′
/κ:

y
′

κ
+ i
(
1 − γ

2
Γ

2 − δ∆ − y
2
)

=
λR,L (ǫE − 2γζΓZ)

1 − λR,LζZ
(y − iγΓ) (12.19a)

where

y =
φ
′

κ
(12.19b)

γ =
H0

κ
and Γ =

H
H0

(12.19c)

δ =
H′

0

κ2 and ∆ =
H′

H′
0

(12.19d)

ǫ =
θ
′′
0

a2

0

and E =
θ
′′

a2ǫ
(12.19e)

ζ =
κθ

′
0

a2

0

and Z =
κθ

′

a2ζ
(12.19f)

and a subscript 0 indicates the present-day value of the functions θ
′
, θ

′′
, H, H′

and a.
If we assume that θ and H evolve on cosmological timescales (i.e., f

′ ∼ Hf) then

ǫ
2 ∼ (γζ)

2 ≪ γ
2 ∼ |δ| . (12.20)

Treating the terms in ǫ and γζ as perturbations, write the solution to equa-
tion (12.19a) as

y = y0 + ǫy0,1 + γζy1,0 + . . . (12.21)
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where y0 = φ
′
0
/κ is the solution to the unperturbed equation [i.e., the dispersion relation

in an FRW cosmology, given by equation (12.19a) with vanishing right-hand side]. The
first corrections y0,1 and y1,0 owing to the Chern-Simons terms satisfy

y
′
0,1

− 2iκy0y0,1 = λR,LκEy0 (12.22a)

y
′
1,0

− 2iκy0y1,0 = −2λR,LκΓZy0. (12.22b)

Requiring that the perturbation vanish at some initial (conformal) time ηi the pertur-
bations y0,1 and y1,0 satisfy

y0,1(η) = λR,LY[E](η) (12.23a)

y1,0(η) = −2λR,LY[ΓZ](η) (12.23b)

where

Y[g](η) = κe
2iφ0(η)

∫
η

ηi

dx e
−2iφ0(x)

y0(x)g(x). (12.23c)

Finally, the Chern-Simons correction to the accumulated phase as the plane-wave prop-
agates from ηi to η is

δφR,L = κλR,L

∫
η

ηi

dη {ǫY[E](η) − 2γζ Y[ΓZ](η)} (12.24)

When γ ≪ 1, i.e., k0 is very much greater than the Hubble constant H0, the
rescaled frequency |y0| ∼ 1. In this limit we can use integration by parts to find an
asymptotic expansion for Y[g]:

Y[g](η) ∼ ie
2iφ0(η)

2

[
e
−2iφ0

n∑

ℓ=0

(
1

2iκ

)
ℓ
(

1

y0

d

dη

)
ℓ

g

]
η

ηi

+ O
(

1

2iκ

)
n+1

(12.25)

In the next section we explore the observational consequences of gravitational
wave propagation in Chern-Simons gravity.

12.3 Observational consequences

12.3.1 Birefringence in a Matter-Dominated Cosmology

Current and proposed ground-based gravitational wave detectors are sensitive to
gravitational waves in the 10 Hz – 1 KHz band [370, 371, 372, 373]. Detectable sources in
this band are expected to have redshifts z . 1. Space-based gravitational wave detectors
like LISA [365] will be sensitive to gravitational waves in the 0.1 – 100 mHz band and,
in this band, be sensitive enough to observe the gravitational waves from the inspiral of

several ∼ 10
6
M⊙ black hole binary systems at z . 30: i.e., anywhere in the universe
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they are expected [374, 366]. For sources in the band of these detectors

γ = 3.7 × 10
−19

(
h100

0.72

)(
1Hz

kc/2π

)
≪ 1 (12.26)

where

h100 =
H0

100 km s−1Mpc−1 . (12.27)

Additionally, for redshitfs z . 30 the universe is well described by a matter-dominated
FRW cosmological model. In this section we evaluate the effect that the Chern-Simons
corrections described above have on propagation of gravitational plane-waves through a
matter-dominated FRW model.

In a matter-dominated FRW model the scale factor a(t) satisfies [197]

a(η)

a0

= η
2

=
1

1 + z
(12.28a)

where, by convention, η = 1 at the present epoch. In this model and with this convention

H =
2

η
= 2

√
1 + z and H0 = 2, (12.28b)

γ =
2

κ
and Γ = η

−1
=

√
1 + z, (12.28c)

δ = − 2

κ2 and ∆ = η
−2

= 1 + z, (12.28d)

ǫ =
H

2

0

4
θ
′′
0

and E =
1

η4

θ
′′

θ′′
0

, (12.28e)

ζ =
H0k

2
θ
′
0

and Z =
1

η4

θ
′

θ′
0

, (12.28f)

(12.28g)

Additionally,

E =
1

η4

θ
′′

θ′′
0

(12.28h)

Z =
1

η4

θ
′

θ′
0

(12.28i)

a0 =
H0

H0

=
2

H0

. (12.28j)
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With the γ and Γ parameters for a matter-dominated FRW cosmological model,
the unperturbed equation for y0 has solutions of the form

y0 = − i

κη

(
1 + Cκη − κ

2
η

2
)

cos (κη) −
(
C − κη − Cκ

2
η

2
)

sin (κη)

(1 + Cκη) cos (κη) − (C − κη) sin (κη)
, (12.29)

where C is a constant of the integration. In the limit of large κ the evolution of κ
should decouple from the universal expansion; thus, we are led to choose C = ±i, which
eliminates the oscillatory terms in our general solution for y0:

y0 =
±κ3

η
3 − i

κη
(
1 + κ2η2

) (12.30)

Consistent with our ansatz [cf. Eq. (12.13)] we choose the solution with positive ℜ(y0):

i.e., C = +i. Solving this equation for the phase φ
′
0

= κy0 we find

∆φ0(η) = φ0 (1) − φ0 (η) (12.31a)

=

[
κ (1 − η) − arctan

κ (1 − η)

1 + κ2η

]
− i

2
ln

[
1 + κ

2
η

2

η2
(
1 + κ2

)
]

(12.31b)

=

[
2

γ

√
1 + z − 1√

1 + z
− arctan

2γ
(√

1 + z − 1
)

4 + γ2
√

1 + z

]
− i

2
ln

[
1 +

γ
2
z

4 + γ2

]
.(12.31c)

In the absence of the Chern-Simons correction an observer at rest with respect to slices
of (cosmological) homogeneity will observe a passing gravitational plane-wave to undergo
a change in phase ∆φ0(η) between cosmological time η and the present epoch.

With y0 and equations (12.23) we can evaluate the Chern-Simons contribution to
the phase change owing to propagation from cosmological time η0. Making use of the
asymptotic expansions for y0,1 and y1,0 [Eq. (12.25)] we find

y0,1(R,L) ∼
iλR,L

2

[
E(η) −E(η0)e

−2i[∆φ0(η0)−∆φ0(η)]
]

+ O(γ) (12.32a)

y1,0(R,L) ∼ −iλR,L

[
Γ(η)Z(η) − Γ(η0)Z(η0)e

−2i[∆φ0(η0)−∆φ0(η)]
]

+ O(γ),

(12.32b)

which may be integrated to find ∆φ1(R,L):

∆φ1(R,L) = iλR,L

κ

2

∫
1

η

[
ǫ

1

η4

θ
′′
(η)

θ′′
0

− 2γζ
1

η5

θ
′
(η)

θ′
0

]
dη + O(γ), (12.33a)

= iλR,L

k0

H0

ξ(η). (12.33b)
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It is convenient to rewrite ξ as a function of z:

ξ(z) = αA(z) + βB(z), (12.33c)

where

A(z) =

∫
z

0

dz (1 + z)
5/2 dθ/dz

(dθ/dz)0
(12.33d)

B(z) =

∫
z

0

dz (1 + z)
7/2 d

2
θ/dz

2

(d2θ/dz2)0
(12.33e)

α = −γζ +
3ǫ

2

(dθ/dz)0
2
(
d2θ/dz2

)
0
+ 3 (dθ/dz)0

, (12.33f)

β =
ǫ
(
d
2
θ/dz

2
)

0

2(d2θ/dz2)0 + 3(dθ/dz)0
, (12.33g)

and the subscript zero denotes present-day values of the subscripted quantities. The
leading order Chern-Simons correction to the accumulated phase is thus pure imagi-
nary, corresponding to an attenuation of one circular polarization state and an equal
amplification of the other. The attenuation/amplification is linearly dependent on the
wavenumber. The function ξ(z) may be thought of as a “form-factor” that probes the
past history of the coupling θ.

12.3.2 Binary Inspiral at Cosmological Distances

The proposed LISA gravitational wave detector is capable of observing coalescing
binary black hole systems at cosmological distances: for example, the gravitational waves

associated with a pair of 10
6
M⊙ black holes will be observable at redshifts z approaching

30. Over the year leading up to the merger of two such black holes the binary’s period
will decrease by two orders of magnitude, leading to a corresponding decrease in the
radiation wavelength and increase in the magnitude of the Chern-Simons correction. The
time-dependent relationship between the radiation amplitude in the two polarization
states thus carries with it the signature of Chern-Simons gravity and can be used to
characterize the functional θ that describes the Chern-Simons correction to classical
General Relativity.

To calculate the signature left by the Chern-Simons correction on the gravitational
waves from a coalescing binary system at redshift z, we begin with the radiation near
the source. Treating, as before, the Chern-Simons correction as a perturbation, the
quadrupole approximation to the radiation from the binary system in the neighborhood
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of the source is given by

ĥ = ℜ
[
ĥ+ e+ + ĥ× e×

]
(12.34a)

ĥ+ =
2M̂
d

[
1 + χ̂

2
] [

M̂k̂(t̂)/2
]
2/3

exp
[
−i
(
Φ̂(t̂) − k̂(t̂)d

)]
, (12.34b)

ĥ× =
4iM̂
d

χ̂
[
M̂k̂(t̂)/2

]
2/3

exp
[
−i
(
Φ̂(t̂) − k̂(t̂)d

)]
, (12.34c)

where d is the proper distance to the source and

Φ̂(t̂) = −2

(
T̂ − t̂

5M̂

)
5/8

+ δ̂, (12.35)

k̂(t̂) =
2

M̂

(
5

256

M̂
T̂ − t̂

)
3/8

. (12.36)

The constants T̂ and δ̂, which determine when coalescence occurs and the phase of
the gravitational wave signal at some fiducial instant, are set by initial conditions. The

quantities M̂ and χ̂ are constants that depend on the binary system’s component masses
(m1, m2) and orientation with respect to the observer:

χ̂ =

(
cosine-angle between the orbital angular
momentum and the observer line-of-sight

)
(12.37a)

M̂ =
m

3/5

1
m

3/5

2(
m1 +m2

)
1/5

= (“chirp” mass) . (12.37b)

We “hat” all these quantities to remind us that, as expressed above, they are appro-
priate descriptions only in the neighborhood of the source where the Chern-Simons and
cosmological corrections to the propagation of the waves may be neglected.

To describe the radiation after it has propagated to the detector we first describe
the near-source radiation in terms of circular polarization states

ĥ = ℜ
[
ĥR eR + ĥL eL

]
, (12.38a)

ĥR,L =
√

2
M̂
d

(
M̂k

2

)
2/3 (

1 + λR,Lχ̂
)

2
exp

[
−i
(
Φ̂(t̂) − k̂(t̂)d

)]
. (12.38b)

We are interested in the radiation incident on our detector today (z = 0, η = 1) from a
source at redshift z. Matching the near-source description of the radiation [Eq. (12.38))
to our ansatz [Eq. (12.13)] we find the description of the radiation after propagating to
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the detector from a redshift z:

h = ℜ
[
ĥR eR + ĥL eL

]
, (12.39a)

hR,L =
√

2
M
dL

(Mk0

2

)
2/3 (

1 + λR,Lχ̂
)

2
exp

[
−i
(
Φ0(t) − κ (1 − η)

+ ∆φ0(t) + ∆φ1(R,L)(t)
)]

(12.39b)

where

Φ0(t) = −2

(
T − t

5M

)
5/8

+ δ, (12.39c)

k0(t) =
2

M

(
5

256

M
T − t

)
3/8

(12.39d)

dL = a0η(1 + z) = (Luminosity distance to source) (12.39e)

M = (1 + z)M̂ (12.39f)

∆φ0 =
2
(√

1 + z − 1
)

H0

√
1 + z

k0(t) − arctan 2γ(t)

√
1 + z − 1

4 +
√

1 + zγ2(t)

− i

2
ln

[
1 + γ

2
(t)

z

4 + γ2(t)

]
(12.39g)

γ(t) =
H0

k0(t)
, (12.39h)

and ∆φ1(R,L) given by equations (12.33) above. Here t is proper time as measured by a

detector at rest with respect to the cosmological fluid at the present epoch (η = 1), k0(t)
is the instantaneous wavenumber of the wavefront passing the detector at observer time
t, and T and δ are, as before, constants of the integration. The correction ∆φ0, which is
the same for all polarizations, embodies O(k0/H0) corrections to the wave phase owing
to the wave propagation through the time-dependent cosmological background. The
correction ∆φ1(R,L) is of opposite character for the two polarization states and embodies

the (first-order) corrections to wave propagation owing to the Chern-Simons corrections
to the Einstein Field Equations.

Focus attention on the argument of the exponential in equation (12.39b). The
term κ (1 − η) cancels the first term in equation (12.39g) for ∆φ0, leading to

hR,L =
√

2
M
dL

(Mk0

2

)
2/3 (

1 + λR,Lχ̂
)

2
exp

[
−i
(
Φ0(t)

− γ(t)

2

(√
1 + z − 1

)
+ ∆φ1(R,L)(t)

)]
(12.40)
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The observational effect of the Chern-Simons is readily identified by looking at the ratio
of the polarization amplitudes hR and hL:

hR

hL

=
(1 + χ̂)

(1 − χ̂)
exp

[
2k(t)ξ(z)

H0

]
(12.41)

=
1 + x

1 − x
(12.42)

where ξ is given by equations (12.33) and x may be interpreted as the apparent incli-
nation cosine-angle. The effect of the Chern-Simons correction on gravitational wave
propagation is to confound the identification between polarization amplitude ratios and
binary orbit inclination cosine-angle. In the same way that we say that the curvature of
spacetime “bends” light passing close to strongly gravitating body we may say that the
effect of the Chern-Simons correction is to “rotate” the apparent inclination angle of the
binary system’s orbital angular momentum axis either toward or away from us.

12.4 Discussion

12.4.1 What can be measured?

Over the course of a year-long observation the LISA spacecraft constellation will
measure the radiation in both polarizations of an incident gravitational wave train asso-
ciated with an inspiraling coalescing binary system. The relative amplitude of the two
polarization will be determined by the orientation of the binary systems orbital plane
to the observer line-of-sight and the form factor ξ(z). A non-vanishing ξ leads to a
time-varying apparent inclination angle that, by nature of its time dependence, can (in
principle) be measured directly from the apparent inclination angle’s time variation.

Other properties of an inspiraling binary can lead to an evolution of the (appar-
ent) inclination cos-angle. Spin-orbit coupling leads to a real precession of the binary’s
orbital plane and a corresponding time-dependence in the actual inclination cos-angle
χ̂. Referring to equation (12.39b), it is apparent that for small |χ̂| ∼ 0 an incremental
change µ in χ̂ will lead to changes in hR,L that are indistinguishable from an increment

in x associated with ξ. Following Vecchio [375, eq. 27–31] we note that, at first non-
vanishing post-Newtonian order, spin-orbit interactions in an inspiraling binary system
lead to (

dχ̂

dt

)

so

∝ k
2/3

0
(t). (12.43)

This is a different dependence on k0 than the O(k0) dependence associated with ξ. Thus,
it remains in principle possible to distinguish the signature of Chern-Simons gravity in
the signal from cosmologically distant coalescing binary black hole systems. The accuracy
with which such a measurement can be made is the topic of the next subsection.
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12.4.2 How accurately can ξ be measured?

The most general astrophysical black hole binary system can be described by
eleven independent parameters, which may be counted as two component masses; com-
ponent spins and their orientation (six parameters); orbital eccentricity; orbital phase;
and a a reference time when the phase, spins and eccentricity are measured. The gravi-
tational wave signal in any particular polarization will depend on the description of the
binary and six additional parameters that describe the binary’s orientation with respect
to the detector. These six additional parameters may be counted as orbital plane ori-
entation (two angles); source location with respect to the detector (distance and two

position angles); orbit orientation in orbital plane (one angle)
5
. To these seventeen

parameters we now add ξ, which describes the effect of propagation through the bire-
fringent Chern-Simons spacetime, for a total of eighteen parameters that are required to
describe the signal from a coalescing binary system.

To-date, all analyses of expected parameter estimation errors have been made with
under a set of approximations that focus attention on the measurement of component
masses, source location (both distance and angular position), and the expected time
of binary coalescence. Even the most sophisticated of these analysis ignore all but
the leading-order contribution to the gravitational wave signal amplitude at twice the

orbital frequency
6

and assume that the orbital eccentricity is known to vanish. These
approximations are quite appropriate for their purpose (estimation of component masses,
source location and expected time of coalescence); however, by ignoring all but the
leading order contribution to the signal magnitude they are inadequate starting points
for exploring the accuracy with which ξ, which affects only the signal amplitude in the

different polarizations, can be bounded
7
. Evaluating and presenting the errors associated

with the measurement of ξ via a full co-variance matrix analysis is thus a formidable
enterprise, to be addressed in a future work.

Nevertheless, through a series of plausible approximations it is possible to make
a crude estimate of the accuracy with which ξ can be determined. To begin, assume we
have two gravitational wave detectors such that, via a linear combination of observations
made at each, we can can synthesize two other detectors with one exclusively sensitive
to hR and and one exclusively sensitive to hL. Write the scalar detector response of each
of these detectors as

mR,L(t) = exp
[
µR,L(t) + iψR,L(t)

]
, (12.44)

for real µR,L and ψR,L. Next, note that the parameters that describe a coalescing binary

system can be divided into two groups: those that principally affect only the signal
amplitude (i.e., µ(t)) and those that affect only or principally the real part of the signal

5
This parameterization, while convenient for counting, is not the most appropriate for de-

scribing a coalescing binary, where spins, eccentricity, and orbital plane orientation all evolve
with time.

6
See [376] for an analysis that relaxes this approximation

7
This applies also to the assumption of zero eccentricity: if, as is likely, the estimation errors

associated with eccentricity and ξ are correlated it will be necessary to include an eccentricity-
like parameter in the analysis in order to avoid under-estimating the errors associated with the
measurement of ξ.
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phase (i.e., ψ(t)). The first group includes distance, source orientation with respect
to the observer line-of-sight, and ξ. The second group includes the orbital phase, sky
location (through its affect on the Doppler correction to the signal phase as the detector
orbits about the sun), the instantaneous binary period at some fiducial moment, and the

parameters associated with spin and orbital angular momentum
8
. If we approximate

each detectors’ noise as white with one-sided noise power spectral density S0 then the
elements of the inverse covariance matrix Γ — the so-called Fisher matrix — are given
by [378, 4]

Γij =
∑

k=R,L

2

S0

∫
tf

ti

ℜ
(
∂mk

∂xi

)
ℜ
(
∂mk

∂xj

)
dt (12.45)

where the integration is over the observation period (ti, tf ) and the x
i
are the parameters

that characterize the incident gravitational wave, which we have divided into two groups.

Matrix elements Γij where x
i
and x

j
belong to different groups will be much smaller than

elements where x
i
and x

j
belong to the same group. Setting the cross-group elements to

zero we obtain an approximate Γ that is block diagonal, with one block corresponding

to Γij with (x
i
, x

j
) drawn from the first group and the other block corresponding to Γij

with (x
i
, x

j
) drawn from the second group. Estimation uncertainties of parameters in

either group can now be determined independently of the parameters in the other group.
Focus attention now on those parameters that affect only µ(t), the signals am-

plitude evolution. The leading order dependence of the amplitude |hR,L| on the binary

systems parameters is given by

AR,L = |hR,L| =
(
1 + λR,Lχ̂0

)
2 2M
dL

[
k0(t)M

2

]2/3

exp

(
λR,Lξ

k0(t)

H0

)
(12.46)

where M is assumed known. Setting aside the antenna pattern factors associated with
the projection of the signal onto the LISA detector (which depend only on the known
source sky position and the LISA orbital ephemeris), assuming that there is no real
precession in the binary system under observation (i.e., χ̂0), and that k(t) is given by
equation (12.36) the inverse of the covariance matrix — the so-called Fisher matrix, Γ —

8
This approximation is weakest for the spin and orbital angular momentum parameters: see

[377].
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associated with the amplitude measurements is a symmetric 3× 3 matrix with elements

ΓDD =
1

S0

∫
tf

ti

(
A

2

R
+A

2

L

)
dt ≃ 8

(
1 + 6χ̂

2

0
+ χ̂

4

0

)(M
dL

)
2

I + O(ξ) (12.47a)

ΓDχ̂0
=

1

S0

∫
tf

ti

[
2

1 − χ̂0

A
2

L
− 2

1 + χ̂0

A
2

R

]
dt ≃ −16χ̂0

(
3 + χ̂

2

0

)(M
dL

)
2

I + O(ξ)

(12.47b)

ΓDξ =
1

S0

∫
tf

ti

k0(t)

H0

(
A

2

L
−A

2

R

)
dt ≃ −

64χ̂0

(
1 + χ̂

2

0

)

MH0

(M
dL

)
2

J + O(ξ) (12.47c)

Γχ̂0χ̂0
=

1

S0

∫
tf

ti




4A
2

R(
1 + χ̂0

)
2 +

4A
2

L(
1 − χ̂0

)
2


 dt ≃ 32

(
1 + χ̂

2

0

)(M
dL

)
2

I + O(ξ)

(12.47d)

Γχ̂0ξ =
1

S0

∫
tf

ti

2k0(t)

H0




A
2

R

1 + χ̂0

+
A

2

L

1 − χ̂0


 dt ≃

32
(
1 + 3χ̂

2

0

)

MH0

(M
dL

)
2

J + O(ξ)

(12.47e)

Γξξ =
1

S0

∫
tf

ti

k
2

0
(t)

H2

0

(
A

2

R
+A

2

L

)
dt ≃

32
(
1 + 6χ̂

2

0
+ χ̂

4

0

)

(
MH0

)
2

(M
dL

)
2

K + O(ξ)

(12.47f)

where

D = ln dL (12.47g)

I =

∫
tf

ti

(
k0(t)M

2

)4/3 dt

S0

=
5

192

∫
kmax

kmin

(
kM
2

)−7/3 M2
dk

S0

= −2
1/3M
S0

5

64
(kM)

−4/3
∣∣∣
kmax

kmin

(12.47h)

J =

∫
tf

ti

(
k0(t)M

2

)7/3 dt

S0

=
5

192

∫
kmax

kmin

(
kM
2

)−4/3 M2
dk

S0

= −2
1/3M
S0

5

32
(kM)

−1/3
∣∣∣
kmax

kmin

(12.47i)

K =

∫
tf

ti

(
k0(t)M

2

)10/3 dt

S0

=
5

192

∫
kmax

kmin

(
kM
2

)−1/3 M2
dk

S0

=
2
1/3M
S0

5

128
(kM)

2/3
∣∣∣
kmax

kmin

. (12.47j)

and we have taken advantage of the fact that for inspiraling compact binary systems in
the quadrupole approximation k(t) is monotonic in t to re-express the integrals over the
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interval (ti, tf ) as integrals over [k(ti), k(tf )] = (kmin, kmax). In the particular case of a

binary seen plane-on (χ̂0 = 0), the (Dχ̂0) and (Dξ) blocks of Γ are diagonal, leading to

νχ̂0χ̂0
=

1

4ρ2

KI
IK − J 2 (12.48a)

νξξ =

(
MH0

)2

4ρ2

I2

IK − J 2 (12.48b)

where νij is the ensemble average co-variance

νij =
(
xi − xi

) (
xj − xj

)
=
(
Γ
−1
)

ij
(12.48c)

and we have expressed the νij in terms of the ensemble average amplitude-squared signal-

to-noise ratio ρ
2

ρ
2

=
1

S0

∫
tf

ti

dt
(
A

2

R
+A

2

L

)
(12.48d)

Focus attention on a binary system of two black holes at redshift z, each with mass

M = 10
6
M⊙ (1 + z)

−1
. Over the final year before coalescence the radiation wavelength

2π/k observed at the detector will range from c
(
10

−4
Hz
)−1

to c
(
10

−2
Hz
)−1

. For such

a system,

ρ =
10

5
h100

1 + z −
√

1 + z

(
10

−40
Hz

−1

S0

)
1/2

(12.49)

νξξ = 3.1 × 10
−40

(
S0

10−40 Hz−1

)(
1 + z −

√
1 + z

)2
(12.50)

Observation of binary systems like these at z = 15 by LISA will be capable of placing a

“1-sigma” upper bound on ξ of order 10
−19

.

12.4.3 How large might ξ be?

To estimate ξ [cf. Eq. (12.33c)] we must invoke a theoretical model for the func-
tional θ[φ(z)]. As described in the introduction, perturbative string theory requires a

Chern-Simons correction to the Einstein-Hilbert action
9
. Here we describe a different

mechanism, that can also lead to the presence of a Chern-Simons correction. Consider
the back-reaction of a N = 1 supersymmetric Yang-Mills theory in a curved background
(cf. [282, Appendix A]) with action

SCS =
1

16π

∫
d
4
x F1(S)

(
R

⋆
R
)
, (12.51)

9
Other theories, such as loop quantum gravity, may also possess a similar correction in the

low-energy limit; however, no effective Hamiltonian has yet been found in the full theory of
loop quantum gravity and cosmology, which prevents further speculation as to whether such an
extension of general relativity requires a Chern-Simons modification.
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where S is the glueball superfield and F1(S), which plays the role of θ in equation (12.1),
can be exactly evaluated by using perturbative matrix model technology developed
in [379]. Within this Yang-Mills framework, θ is a functional θ[ϕ] of some pseudo-
scalar field ϕ, the gravitational axion, that depends only on conformal time [274]. The
functional θ[ϕ] can be expressed as

θ[ϕ] =
N ℓ

2

Pl

2π

ϕ

MPl

, (12.52)

where ℓPl =
(
~G/c

3
)

1/2
is the Planck length, MPl = (ℓPl

√
8π)

−1
is the reduced Planck

mass and N is a dimensionless constant. Through use of the low-energy effective 4-
dimensional heterotic string action the constant N can be evaluated in terms of the ten-
dimensional fundamental string energy scale Ms and the dimensionless string coupling
gs,

N =

(
MPl

Ms

)
2 1
√
gs
, (12.53)

leading to

θ[ϕ] =
1

16π2M2

Pl

ϕ

Ms

MPl

Ms

√
g
s

. (12.54)

Assuming that ϕ, which has units of inverse length, evolves with the Hubble parameter

H ∝ η
−3

we have

A(z) = B(z) = − 2

11

[
(1 + z)

11/2 − 1
]

(12.55)

and

ξ = − 1

11

[
(1 + z)

11/2 − 1
]
(ǫ− 2γζ) (12.56)

with (ǫ− γζ) of the order of

ǫ− 2γζ ≃

(
1.8 + 3.5h

2

100

)
× 10

−120

√
gs

(
ϕ0

Ms

)(
10

16
GeV

Ms

)
. (12.57a)

The size of ξ thus depends on the present value of the field ϕ0, the fundamental string
energy scale Ms and the string coupling gs, none of which are constrained by present-day
theory.

The lesson to draw from the discussion of this scenario is that the magnitude
of any Chern-Simons correction depends strongly on the external theoretical framework
that prescribes the functional θ[ϕ]. For non-vanishing string coupling in the perturbative
string theory scenario the Chern-Simons correction seems undetectable owing to the
Planck scale suppression of the decay constant of the universal gravitational axion field
ϕ. However, this model and the associated expected scale of ǫ− 2γζ applies only to the
perturbative sector of string theory and, in particular, when Ramond-Ramond charges are
turned off. If present these additional degrees of freedom do couple and source the Chern-
Simons correction, leading to a larger decay constant (e.g, D3 branes always excite the
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Chern-Simons interaction in four dimensions). In a recent work, Svrcek [380] noted that,
due to non-perturbative gravitational instanton corrections, the Chern-Simons coupling
in the non-perturbative sector is currently incalculable. Even within the perturbative
framework there are theoretical frameworks where ξ could become significant: e.g., if
the string coupling gs vanishes at late times [284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294]. Therefore, within the full string theory framework, a larger coupling, which
would push the stringy Chern-Simons correction into the observational window, is not
excluded and bounding it places a constraint on string theory motivated corrections to
classical general relativity.

Setting aside string theory for a moment, other theoretical frameworks lead to
a Chern-Simons correction to the Einstein-Hilbert action. Jackiw and Pi [273] showed
that the embedding of the 3-dimensional Chern-Simons action into 4-dimensional Gen-
eral Relativity leads to Chern-Simons gravity as described by equation (12.1). Quantum
mechanically, the Chern-Simons correction encodes information about the Immirzi pa-
rameter in loop quantum gravity and is also related to torsion. In this case, the Chern-
Simons term is required to ensure invariance under large gauge transformations [78]. In
both these classical and quantum mechanical scenarios the coupling of the Chern-Simons
term to the Einstein-Hilbert action is theoretically unconstrained and is consistent with
a coupling of order unity. Observations of gravitational waves from inspiraling binary
black hole systems can thus be used to probe the strong gravity sector of quantum
gravity.

12.5 Conclusions

Chern-Simons type corrections to the Einstein-Hilbert action are strongly mo-
tivated by string theory, loop quantum gravity, and other scenarios. In all cases these
corrections lead to an amplitude birefringence for gravitational wave propagating through
space time. We have evaluated the correction to the gravitational wave amplitude
for waves propagating over cosmological distances in a matter-dominated Friedmann-
Robertson-Walker cosmology. In the case of the gravitational waves from inspiraling
binary black hole systems the effect of the spacetime birefringence is an apparent time-
dependent change in the inclination angle between the binary system’s orbital angular
momentum and the line-of-sight to the detector. (This change is apparent in the same
sense that light is “bent” upon passage nearby a strongly gravitating object.) Suffi-
ciently long observations of a binary system will enable this apparent rotation to be
distinguished from the real rotation caused by spin-orbit and spin-spin angular momen-
tum interactions in the binary system. Observations of just this kind will be possible
using the LISA gravitational wave detector [365, 366, 367], which will be able to observe
the inspiral of massive black hole binaries at redshifts approaching 30 for periods of a year
or more. Gravitational wave observations of these systems with LISA may thus provide
the first test of string theory or other quantum theories of gravity: yet another way in
which gravitational wave observations can act a unique tool for probing the fundamental
nature of the universe.
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Appendix A

Coordinate transformation from Kerr to Kerr-Schild

In this appendix we provide explicit formula for the transformation from Kerr
coordinates to Kerr-Schild coordinate. This transformation can be found in Refs. [118,
364, 381] and is given by

x = sin θ (r cosφ− a sinφ) ,

y = sin θ (r sinφ+ a cos φ) .

z = r cos θ. (A.1)

The inverse transformation is given by

r =

√
R2 − a2 +w

2
,

w =

√
(R2 − a2)2 + 4a2z2,

θ = arccos
z

r
,

φ = arctan
ry − ax

rx+ ay
. (A.2)

Other useful relations are

sin θ =

(
x

2
+ y

2

r2 + a2

)
1/2

,

sinφ =
ry − ax

[
(r2 + a2)(x2 + y2)

]1/2
,

cosφ =
rx+ ay

[
(r2 + a2)(x2 + y2)

]1/2
. (A.3)

Note that these transformation reduce to the usual transformation from spherical polar
coordinates to Cartesian coordinates in the limit a→ 0.
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The Jacobian of the transformation, Λ
a
b = ∂x

a
/∂x

b
, is given explicitly by

Λ
r

x =
x

2r

(
1 +

R
2 − a

2

w

)
,

Λ
r

y =
y

2r

(
1 +

R
2 − a

2

w

)
,

Λ
r

z =
z

2r

(
1 +

R
2
+ a

2

w

)
,

Λ
θ

x =
zx

2r2

(
1 +

R
2 − a

2

w

)(
r
2 − z

2
)−1/2

,

Λ
θ

y =
zy

2r2

(
1 +

R
2 − a

2

w

)(
r
2 − z

2
)−1/2

,

Λ
θ

z = −
(
r
2 − z

2
)−1/2

[
1 − z

2

2r2

(
1 +

R
2
+ a

2

w

)]
,

Λ
φ

x =
rx+ ay

(r2 + a2)(x2 + y2)

[(
y − x

ry − ax

rx+ ay

)
(1

+
R

2 − a
2

w

)
x

2r
− a− r

ry − ax

rx+ ay

]
,

Λ
φ

y =
rx+ ay

(r2 + a2)(x2 + y2)

[(
y − x

ry − ax

rx+ ay
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(1

+
R

2 − a
2

w

)
y

2r
+ r − a

ry − ax

rx+ ay

]
,

Λ
φ

z =
rx+ ay

(r2 + a2)(x2 + y2)

[(
y − x

ry − ax

rx+ ay

)
(1

+
R

2
+ a

2

w

)
z

2r

]
.

(A.4)

Note that this Jacobian reduces to the standard Jacobian of the transformation between
spherical polar and Cartesian coordinates in the limit a → 0. There is a more elegant



337

way to write this Jacobian in tensor notation as

Λ
r

a =
1

2r

{
δaix

i
+

1

w

[
δiax

i
(
R

2 − a
2
)

+ 2a
2
zδaz

]}
,

Λ
θ

a =
z

r
(
r2 − a2

)1/2
Λ

r

a,

Λ
φ

a =
rx+ ay

(r2 + a2)(x2 + y2)

[
Λ

r

a

(
y − ry − ax

rx+ ay
x

)
(A.5)

+

(
r − ry − ax

rx+ ay
a

)
δya −

(
a+

ry − ax

rx+ ay
r

)
δxa

]
.

With this Jacobian, the metric in Kerr-Schild coordinates is given by

gab = ga′b′Λ
a
′

aΛ
b
′

b, (A.6)

where here the primed indices refer to spherical coordinates and the unprimed indices
to Cartesian coordinates.
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Appendix B

Conventions for special functions

In this appendix, we describe the conventions we use for the special functions
presented in this paper, and we also present some important properties of such functions.

B.1 Special polynomials

The expression for the associated Legendre polynomials that we are using in this
paper is the following

P
m

ℓ
(x) =

(−1)
ℓ+m

2ℓ ℓ!
(1 − x

2
)
m/2 d

ℓ+m

dxℓ+m
(1 − x

2
)
ℓ
, (B.1)

where ℓ is a non-negative integer and m is an integer restricted to the following range:
m ∈ (−ℓ ,−(ℓ− 1) , . . . , ℓ− 1 , ℓ).

Gegenbauer polynomials, also known as ultraspherical harmonics [188], are gen-
eralization of Legendre polynomial for higher dimensional spaces. They can be written
in terms of other special functions, as in

C
(λ)

n
=

Γ(λ+ 1/2)

Γ(2λ)

Γ(n+ 2λ)

Γ(n+ λ+ 1/2)
P

(λ−1/2,λ−1/2)

n
, (B.2)

where λ is a real number, n is a positive integer, Γ is the Gamma function, and P
(λ

1
,λ

2
)

n
are the Jacobi polynomials [188]. There are also recursion relations for these polynomials,
but we will not present them here. Instead, we will provide the first few Gegenbauer
polynomials

C
(λ)

0
(x) = 1 , (B.3)

C
(λ)

1
(x) = 2λx , (B.4)

C
(λ)

2
(x) = −λ

[
1 − 2(1 + λ)x

2
]
, (B.5)

C
(λ)

3
(x) = −2λ(1 + λ)x

[
1 − 2

3
(2 + λ)x

2
]
. (B.6)

These polynomials allow for the far field expansion of potentials that scale as |~x− ~x0|
−α

to arbitrary order.
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B.2 Spherical harmonics

The scalar spherical harmonics are solutions of the eigenvalue problem described
by the following equation

Ω
ab
Y

ℓm

:ab
+ ℓ(ℓ+ 1)Y

ℓm
= 0 , (B.7)

where (ℓ,m) have the same range of values as in the associated Legendre polynomials
above. In this paper we use the conventions of [382, 205] to define specify the solutions
of Eq. (B.7). The precise expression is given by

Y
ℓm

(θ, ϕ) =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
P

m

ℓ
(cos θ)e

imϕ
. (B.8)

The scalar spherical harmonics form an orthonormal basis on the two-sphere, that is

∫

S2
dΩY

ℓm
Ȳ

ℓ
′
m

′

= δ
ℓℓ

′

δ
mm

′

, (B.9)

where δ
ab

denotes the Kronecker delta. The vector spherical harmonics are defined in
terms of the scalar ones as in Eq. (6.37), and from this definition we can derive the
following orthogonality relations:

∫

S2
dΩ Ω

ab
Y

ℓm

a
Ȳ

ℓ′m′

b
= ℓ(ℓ+ 1)δ

ℓℓ′

δ
mm′

, (B.10)

∫

S2
dΩ Ω

ab
S

ℓm

a
S̄

ℓ
′
m

′

b
= ℓ(ℓ+ 1)δ

ℓℓ
′

δ
mm

′

, (B.11)

∫

S2
dΩ Ω

ab
Y

ℓm

a
S̄

ℓ
′
m

′

b
= 0 . (B.12)

The (symmetric) tensor spherical harmonics used in this paper are also constructed from
the scalar ones by means of Eqs. (6.38) and (6.39), from where the following orthogonality
relations can be deduced:

∫

S2
dΩ Ω

ac
Ω

bd
Y

ℓm

ab
Ȳ

ℓ
′
m

′

cd
= 2δ

ℓℓ
′

δ
mm

′

, (B.13)

∫

S2
dΩ Ω

ac
Ω

bd
Z

ℓm

ab
Z̄

ℓ
′
m

′

cd
=

(ℓ+ 2)!

2(ℓ− 2)!
δ
ℓℓ

′

δ
mm

′

, (B.14)

∫

S2
dΩ Ω

ac
Ω

bd
S

ℓm

ab
S̄

ℓ
′
m

′

cd
=

(ℓ+ 2)!

2(ℓ− 2)!
δ
ℓℓ

′

δ
mm

′

, (B.15)

∫

S2
dΩ Ω

ac
Ω

bd
Z

ℓm

ab
S̄

ℓ
′
m

′

cd
= 0 , (B.16)

and

Ω
ac

Ω
bd
Z

ℓm

ab
Y

ℓ
′
m

′

cd
= Ω

ac
Ω

bd
S

ℓm

ab
Y

ℓ
′
m

′

cd
= 0 . (B.17)



340

B.3 Spin-weighted scalar spherical harmonics

Spin-weighted scalar spherical harmonics are another basis to expand functions
on the 2-sphere. They can be defined by the following general formula [383]

s
Y

lm
(θ, ϕ) =





[
(l−s)!
(l+s)!

]
1/2

∂̂
s
Y

lm
, 0 < s < l,

(−1)
s
[

(l+s)!
(l−s)!

]
1/2

∂̌
−s
Y

lm
, −l < s < 0,

0, l < |s|,
(B.18)

where ∂̂ (∂̌) is a ladder operator, usually called the edth operator, that raises (lowers)
in a unity the spin weight of any quantity. Its action on a scalar Q can be expressed in
the following way [383, 384]

∂̂Q = m
a
∂

a
Q− s

2
(m̄

a
m

b∇
b
m

a
)Q , (B.19)

∂̌Q = m̄
a
∂

a
Q+

s

2
(m

a
m̄

b∇bm̄a)Q , (B.20)

where s is the spin weight of Q and (m
a
, m̄

a
) is a null complex basis on the 2-sphere

(Ω
ab
m

a
m

b
= 0 , Ω

ab
m

a
m̄

b
= 1). It is worth noting that the action of the edth depends

explicitly on the spin weight of the quantity on which it acts. Taking m
a

= 1√
2

[
1, i

sin θ

]
,

we can write the edth-operator as [384]

∂̂ =
1√
2

[
∂

θ
+

i

sin θ
∂

ϕ
− s

2

cos θ

sin θ

]
(B.21)

∂̌ =
1√
2

[
∂

θ
− i

sin θ
∂

ϕ
+
s

2

cos θ

sin θ

]
(B.22)

It is important to mention that these definitions are applicable only to integer powers of
the spin-weight. A generalized definition for half-integer powers of s exists but will not
be discussed here (see [383]).

In this paper we are interested in the s = −2 case, for which the definition of the
spin-weighted spherical harmonics reduces to [385]

−2
Y

ℓm
= 2

√
(ℓ− 2)!

(ℓ+ 2)!
Z

ℓm

ab
m̄

a
m̄

b
. (B.23)
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Appendix C

Regge-Wheeler parameterization

For the sake of completeness, we give here the relations between our parameter-
ization of the metric perturbations and the one used by Regge and Wheeler [189]. For
polar modes (our notation is on the left column and the one of Regge and Wheeler is on
the right one) we have

(h
ℓm

AB
) ↔

(
fH

ℓm

0
H

ℓm

1

∗ f
−1
H

ℓm

2

)
, (C.1)

p
ℓm

A
↔

(
h

ℓm

t
, h

ℓm

r

)
, (C.2)

K
ℓm ↔ K

ℓm − ℓ(ℓ+ 1)

2
G

ℓm
, (C.3)

G
ℓm ↔ G

ℓm
. (C.4)

and for axial modes

(h
ℓm

A
) ↔ −(h

ℓm

0
, h

ℓm

1
) , (C.5)

H
ℓm ↔ −hℓm

2
. (C.6)

The expressions for the master functions, in Schwarzschild coordinates, in terms
of the parameterization of Regge and Wheeler are:

Ψ
ℓm

ZM
=

r

1 + λ
ℓ

[
K

ℓm
+

f

Λ
ℓ

(
H

ℓm

2
− r∂

r
K

ℓm
)]

− 2f

Λ
ℓ

(
h

ℓm

1
− r

2

2
∂

r
G

ℓm

)
, (C.7)

Ψ
ℓm

RW
=

f

r

(
h

ℓm

1
− 1

2
∂

r
h

ℓm

2
+

1

r
h

ℓm

2

)
, (C.8)

Ψ
ℓm

CPM
=

r

λ
ℓ

(
ḣ

ℓm

1
− ∂

r
h

ℓm

0
+

2

r
h

ℓm

0

)
. (C.9)
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Appendix D

Derivation of the linear momentum flux

In order to obtain Eqs. (6.57)-(6.59) from Eq. (6.55) we need to use the decompo-
sitions of products of spherical harmonics in single harmonics typical of problems that
deal with angular momentum coupling (for accounts dealing with this problem see [59],
where multipole expansions of gravitational radiation in different sets of harmonics are
described; see [386] for a recent systematic treatment of higher-order perturbation theory
where these issues are also treated).

Introducing Eq. (6.54) into Eq. (6.55), using that any spherical harmonic Sℓm
has

the property Sℓ,−m
= (−1)

mS̄ℓm
, and the fact that Z

ℓm

ab
is symmetric and traceless we

get

Ṗ
k

GW
=

1

32π

∑

ℓ≥2,m

ℓ′≥2,m′
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Ψ̇
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˙̄Ψ
ℓ
′
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+ Ψ̇
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˙̄Ψ
ℓ
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m

′

CPM

)∫
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dΩ r̂

k

obs
Z

ℓm

ab
Z̄

ℓ
′
m

′

cd
Ω

ac
Ω

bd

− 1

32π

∑

ℓ≥2,m

ℓ′≥2,m′

(
Ψ̇

ℓm

CPM

˙̄Ψ
ℓ′m′

ZM
− Ψ̇

ℓm

ZM

˙̄Ψ
ℓ′m′

CPM

)∫

S2
dΩ r̂

k

obs
Z

ℓm

ab
Z̄

ℓ′m′

cd
Ω

ac
ǫ
bd
.(D.1)

At this point everything reduces to evaluating the integrals on the 2-sphere. To that
end, the starting point is the well-known formula [387]

Y
ℓm
Y

ℓ
′
m

′

=
∑

L,M

√
(2ℓ+ 1)(2ℓ′ + 1)(2L + 1)

4π

(
ℓ ℓ

′
L

m m
′
M

)(
ℓ ℓ

′
L

0 0 0

)
Ȳ

LM
,(D.2)

where the objects with the round brackets are the 3j-Wigner symbols, which are related
to the Clebsch-Gordon coefficients. They are subject to certain selection rules, namely,
(ℓ,m) , (ℓ

′
,m

′
), and (L,M) are integers with the usual ranges of values; m+m

′
+M = 0 ;

and the triangular inequality |ℓ− ℓ
′| ≤ L ≤ ℓ+ ℓ

′
. By using (D.2) and the definition of

Z
ℓm

ab
[Eq. (6.38)] we find the following relationship

Z
ℓm

ab
Z̄

ℓ′m′

cd
Ω

ac
Ω

bd
=

∑

L,M

C(ℓ, ℓ
′
, L)

√
(2ℓ+ 1)(2ℓ′ + 1)(2L + 1)

4π

(
ℓ ℓ

′
L

m m
′
M

)

×
(
ℓ ℓ

′
L

0 0 0

)
Ȳ

LM
. (D.3)
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where C(ℓ, ℓ
′
, L) is a constant given by

C(ℓ, ℓ
′
, L) =

1

4

{
L

2
(L+ 1)

2
+ ℓ

2
(ℓ+ 1)

2
+ ℓ

′2
(ℓ

′
+ 1)

2

+ 2L(L+ 1) − 2
[
ℓ(ℓ+ 1) + ℓ

′
(ℓ

′
+ 1)

]
[L(L+ 1) + 1]

}
. (D.4)

A similar formula can be found for the second term in (D.1). Then, since the components

of r̂
k

obs
are linear in Y

1,m
, the integral that appears in Eq. (D.1) is now straightforward.

In order to get Eqs. (6.57)-(6.59) we just need to use the selection rules of the 3 − j
Wigner symbols and the following additional properties:

(
j1 j2 j1 + j2
m1 m2 −M

)
= (−1)

j1−j2+M
[

(2j1)!(2j2)!

(2j1 + 2j2 + 1)!

× (j1 + j2 +M)!(j1 + j2 −M)!

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

]1/2

, (D.5)

(
j1 j2 j
0 0 0

)
=





(−1)
g
[

(2g−2j1)!(2g−2j2)!(2g−2j)!
(2g+1)!

]
1/2

× g!
(g−j1)!(g−j2)!(g−j)! , if J = 2g ,

0, if J = 2g + 1 ,

(D.6)

where J = j1 + j2 + j .
Alternatively, one can use the following relation for the integral of three spin-

weighted spherical harmonics:

∫

S2
dΩ

S
Y

LM

s
Y

ℓm

s′
Y

ℓ
′
m

′

=

√
(2L+ 1)(2ℓ + 1)(2ℓ′ + 1)

4π

(
L ℓ ℓ

′

−S −s −s′
)

×
(

L ℓ ℓ
′

M m m
′

)
. (D.7)
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Appendix E

Extremal surfaces in Brill-Lindquist data

We are interested in finding the location of the extremal surfaces that surround
the individual holes in the BL binary black hole initial data that we are using in this
paper. When the holes are separated enough these surfaces form the apparent horizon of
the initial data (since we are neglecting the extrinsic curvature the data is time symmet-
ric). If we put the two holes close enough, another maximal surface enclosing the two
holes appears and becomes the apparent horizon, and then, the two individual maximal
surfaces are called marginally trapped surfaces.

Following Bishop [388, 389], in order to look for maximal surfaces in the BL data it
is very convenient to exploit the cylindrical symmetry of the configuration by expressing
the metric in cylindrical coordinates (for coherence with the conventions of the paper we
choose the axis of symmetry to be the X axis): x = x , y = ρ cos ϑ , z = ρ sinϑ . Then,
the line element of Eq. (6.2) becomes:

ds
2

= Φ
4
(ρ, x)

(
dρ

2
+ ρ

2
dϑ

2
+ dx

2
)
, (E.1)

where now

Φ = 1 +
m

1

2
√
ρ2 + (x−X

1
)2

+
m

2

2
√
ρ2 + (x−X

2
)2
. (E.2)

Moreover, the problem of finding the extremal surfaces reduces to that of finding a path
(ρ(λ) , x(λ)) in the subspace (ρ , x). The area of a surface with cylindrical symmetry can
be written as

A = 2π

∫
λ
2

λ
1

ρΦ
4
√
ρ̇2 + ẋ2 dλ , (E.3)

where the dots denote differentiation along the path, that is d/dλ , and (λ
1
, λ

2
) are

the intersections of the surface with the symmetry axis X . The equations for the path
(ρ(λ) , x(λ)) is found by extremizing the area, δA = 0 , Bishop [388, 389] took λ to be an
affine parameter, that is, such that A = 2π (λ

2
−λ

1
) . We have fixed λ in such a way the

ordinary differential equations for (ρ(λ) , x(λ)) are simple and amenable for numerical
computations. In particular, we have chosen λ so that

√
ρ̇2 + ẋ2 = ρΦ

4
, (E.4)
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which is a constraint preserved by the Euler-Lagrange equations that we obtain from
δA = 0:

ρ̈ = −∂
ρ
V , (E.5)

ẍ = −∂
x
V , (E.6)

where the potential V is given by

V(ρ, x) =
1

2
ρ
2
Φ

8
. (E.7)
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Appendix F

PPN Potentials

In this appendix, we present explicit expressions for the PPN potentials used to
parameterize the metric in Eq. (9.5). These potentials are the following:

U ≡
∫

ρ

|x− x′|d
3
x
′
,

Vi ≡
∫ ρ

′
v
′
i

|x− x′|d
3
x
′
,

Wi ≡
∫ ρ

′
v
′
j
(x− x

′
)
j
(x− x

′
)i

|x − x′|3
d
3
x
′
,

ΦW ≡
∫
ρ
′
ρ
′′ (x− x

′
)
i

|x − x′|3

(
(x

′ − x
′′
)i

|x − x′′| − (x− x
′′
)i

|x′ − x′′|

)
d
3
x
′
d
3
x
′′
,

Φ1 ≡
∫

ρ
′
v
′2

|x− x′|d
3
x
′
, Φ2 ≡

∫
ρ
′
U

′

|x− x′|d
3
x
′
,

Φ3 ≡
∫

ρ
′
Π

′

|x− x′|d
3
x
′
, Φ4 ≡

∫
p
′

|x− x′|d
3
x
′
,

A ≡
∫ ρ

′
[
v
′
i

(
x− x

′
)

i
]2

|x− x′| d
3
x
′
,

X ≡
∫
ρ
′|x − x

′|d3
x
′
. (F.1)

These potentials satisfy the following relations

∇2
U = −4πρ, ∇2

Vi = −4πρvi,

∇2
Φ1 = −4πρv

2
, ∇2

Φ2 = −4πρU,

∇2
Φ3 = −4πρΠ, ∇2

Φ4 = −4πp,

∇2
X = −2U (F.2)

The potential X is sometimes referred to as the super-potential because it acts as a
potential for the Newtonian potential.
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Appendix G

Linearization of the Cotton Tensor

In this appendix, we present some more details on the derivation of the linearized
Cotton tensor to second order. We begin with the definition of the Cotton tensor [273]
in terms of the symmetrization operator, namely

C
µν

= − 1√−g
[(
Dσf

)
ǫ
σαβ(µ

DαR
ν)

β +
(
Dστf

)⋆
R

τ(µ|σ|ν)
]
. (G.1)

Using the symmetries of the Levi-Civita and Riemann tensor, as well as the fact that f
depends only on time, we can simplify the Cotton tensor to

C
µν

= (−g)−1
ḟ
[
ǫ̃
0αβ(µ

R
ν)

β,α + ǫ̃
0αβ(µ

Γ
ν)

λα
R

λ

β

+
1

2
Γ

0

στ
ǫ̃
σαβ(µ

R
ν)τ

αβ

]
. (G.2)

Noting that the determinant of the metric is simply g = −1+h, so that (−g)−1
= 1+h,

we can identify four terms in the Cotton tensor

C
µν

A
= ḟ ǫ̃

0αβ(µ
[
L̂R

ν)

β,α

]
,

C
µν

B
= ḟ ǫ̃

0αβ(µ
hρρ

[
L̂R

ν)

β,α

]
,

C
µν

C
= ḟ ǫ̃

0αβ(µ
[
L̂Γ

ν)

λα

] [
L̂R

λ

β

]
,

C
µν

D
=

ḟ

2
ǫ̃
σαβ(µ

[
L̂Γ

0

στ

] [
L̂R

ν)τ

αβ

]
,

C
µν

E
= ḟ ǫ̃

0αβ(µ
[
Q̂R

ν)

β,α

]
, (G.3)

where the L̂ operator stands for the linear part of its operand, while the Q̂ operator
isolates the quadratic part of its operand. For example, if we act L̂ and Q̂ on (1 + h)

n
,

where n is some integer, we obtain

[
L̂(1 + h)

n
]

= nh,
[
Q̂(1 + h)

n
]

=
n(n− 1)

2
h

2
. (G.4)
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Let us now compute each of these terms separately. The first four terms are given
by

C
µν

A
= − ḟ

2
ǫ̃
0αβ(µ

(
�ηh

ν)

β,α − hσβ,

ν

ασ

)
,

C
µν

B
= − ḟ

2
hǫ̃

0αβ(µ
(
�ηh

ν)

β,α − hσβ,

ν

ασ

)
,

C
µν

C
= − ḟ

4
ǫ̃
0αβ(µ

(
h

ν)

λ,α + h
ν

α,λ − hλα,

ν)
)

×
(
�ηh

λ

β − hσ

λ

,β

σ − hσβ,

λσ
+ h,

λ

β

)
,

C
µν

D
=

ḟ

4
ǫ̃
σαβ(µ

(
2h

0

(σ,τ) − hστ,

0
)(

h
τ

[β,α]

ν − h
ν

[β,α]

τ
)
.

(G.5)

The last term of the Cotton tensor is simply the derivative of the Ricci tensor which we
already calculated to second order in Eq. (9.21). In order to avoid notation clutter, we
shall not present it again here, but instead we combine all the Cotton tensor pieces to
obtain

C
µν

= − ḟ
2
ǫ̃
0αβ(µ

(
�ηh

ν)

β,α − hσβ,α

σν)
)
− ḟ

2
ǫ̃
0αβ(µ

[
h
(
�ηh

ν)

β,α − hσβ,α

σν)
)
(G.6)

+
1

2

(
2h

ν)

(λ,α) − hλα,

ν)
)(

�ηh
λ

β − 2hσ

(λ

,β)

σ
+ h,β

λ
)
− 2Q̂R

ν)

β,α

]

+
ḟ

4
ǫ̃
σαβ(µ

(
2h

0

(σ,τ) − hστ,

0
)(

h
τ

[β,α]

ν) − h
ν)

[β,α]

τ
)

+ O(h)
3

(G.7)

where its covariant form is

Cµν = − ḟ
2
ǫ̃
0αβ

(µ

(
�ηhν)β,α − hσβ,αν)

σ
)
− ḟ

2
ǫ̃
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[
h
(
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σ
)

+
1

2

(
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)(
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λ

β − 2hσ

(λ

,β)

σ
+ h,β

λ
)
− 2Q̂Rν)β,α + hνλ

×
(
�ηh

λ)

β,α − hσβ,α

σλ)
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+
ḟ

4
ǫ̃
σαβ

(µ

(
2h

0

(σ,τ) − hστ,

0
)(

h
τ

[β,α]ν) − hν)[β,α]

τ
)

− ḟ

2
hµλ ǫ̃

0αβ(λ
(
�ηhν)β,α − hσβ,αν)

σ
)

+ O(h)
3
. (G.8)

For the PPN mapping of CS modified gravity, only the 00 component of the metric

is needed to second order, which implies we only need C00 to O(h)
2
. This component is

given by

C00 =
ḟ

4
ǫ̃
ijk

0

(
2h

0

(i,ℓ) − hiℓ,

0
)(

h
ℓ

[k,j]0 − h0[k,j]

ℓ
)

− ḟ

2
h0ℓǫ̃

0jk(ℓ
(
�ηh0k,j − hik,j0

i
)

+ O(h)
3
, (G.9)
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where in fact the last term vanishes due to the PPN gauge condition. Note that this
term is automatically of O(6), which is well beyond the required order we need in h00.
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Appendix H

Proof of
∗
R R =

∗
C C

The equality
∗
RR =

∗
C C (H.1)

relates the Pontryagin term expressed as in Eq. (10.5) to the Weyl tensor

C
ab

cd := R
ab

cd − 2δ
[a

[c
R

b]

d]
+

1

3
δ
a

[c
δ
b

d]
R (H.2)

and its dual
∗
C

a

b

cd
:=

1

2
ǫ
cdef

C
a

bef . (H.3)

Equation (H.1) is quite simple to prove, but not entirely obvious. Indeed, we were not
able to find it in any of the standard textbooks, review articles or papers on CS modified
gravity. Therefore, we provide here a proof by straightforward calculation.

Let us begin by inserting the definitions (10.5), (H.2) and (H.3) into (H.1),

∗
RR =

∗
R

a

b

cd
R

b

acd =
∗
C

a

b

cd
C

b

acd + ∆ . (H.4)

where ∆ is precisely the violation of Eq. (H.1). Thus, if we can show that ∆ vanishes
in Eq. (H.4) we have proven Eq. (H.1). The quantity ∆ contains eight terms. Four of
them are linear in the Weyl tensor. Two of these terms are proportional to Ccdef and

two are proportional to Ccdeb. Since

ǫ
cdef

Ccdef = ǫ
cdef

Ccdeb = 0, (H.5)

these terms vanish. Each of the remaining four terms contains at least two Kronecker
δ. These terms always lead to a contraction of the Levi-Civita tensor, e.g. of the form

ǫ
cd

c
f

= 0. Therefore, also these four terms vanish and establish

∆ = 0 . (H.6)

q. e. d.
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Appendix I

Pontryagin constraint

For the line element Eq. (10.67) the Pontryagin constraint Eq. (10.18) is given by

(w̄ := e
−2U

w)

0 = A0w̄ +A1w̄
3
+A2w̄,ρ +A3w̄

2
w̄,ρ +A4w̄

2

,ρ
+A5w̄,z +A6w̄

2
w̄,z +A7w̄

2

,z

+ A8w̄,ρw̄,z +A9w̄,ρz +A10(w̄,ρρ − w̄,zz), (I.1)

with

A0 = −ρ2
A1 + 2 ρ

2[
2U,ρzk,ρ − (U,ρρ − U,zz)k,z − 2U,ρρU,z + 2U,ρzU,ρ

+ 4U,z(U
2

,ρ
+ U

2

,z
) + U,z(k,ρρ + k,zz) + 8U,ρU,zk,ρ − 6U

2

,ρ
k,z + 2U

2

,z
k,z

− 2U,z(k
2

,ρ
+ k

2

,z
)
]
+ 2 ρ

(
U,ρk,z − U,zk,ρ + 2U,zU,ρ

)
(I.2)

A1 = 8ρ
[
U,ρU,z(Uzz − Uρρ) + U,ρz(U

2

,ρ
− U

2

,z
) − U

3

,ρ
k,z + U

3

,z
k,ρ

+ U,ρU,z(U,ρk,ρ − U,zk,z)
]
+ 8U,z

(
U

2

,ρ
+ U

2

,z

)
(I.3)

A2 = 2 ρ
3[

2U,zzU,z + 2U,ρzU,ρ + 4U
2

,ρ
U,z + 4U

3

,z
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A3 = 4 ρ
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3U

2
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(I.6)
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2
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)
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A6 = 4 ρU,ρ(U,ρρ − U,zz) + 8 ρU,zU,ρz − 4U
2

,ρ
− 12U

2

,z
+ 4 ρ

[
4U,ρ(U

2

,ρ
+ U

2

,z
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− U
2

,ρ
k,ρ + 2U,zU,ρk,z − 3U

2
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(I.8)

A7 = w̄
(
6U,z − 2 ρU,ρz − 12 ρU,zU,ρ − 2 ρU,ρk,z + 6 ρU,zk,ρ
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+ w̄,z ρ
(
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)
− 2 ρ
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)
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A10 = 2 ρ
3(
U,ρz + 2U,ρU,z − U,ρk,z − U,zk,ρ

)
+ ρ

2
k,z + 4w̄

2
ρU,ρU,z

− 2w̄w̄,ρ ρU,z − 2w̄w̄,z ρU,ρ + w̄,ρw̄,z ρ. (I.12)
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Appendix J

Explicit expressions

for the perturbed C- and Einstein tensors

Here we provide explicit expressions in Schwarzschild coordinates for the coeffi-
cients of the expansion in spherical harmonics of the Einstein and C-tensors. In these
expressions, the Pontryagin constraint [Eq. (11.9)] has been used. For simplicity we
omit the superscripts (ℓ ,m). The components of the harmonically decomposed Einstein
tensor read

G
tt

= −f2
K,rr − f

(
f
′

2
+

3f

r

)
K,r +

(ℓ+ 2)(ℓ − 1)f

2r2
K +

f
3

r
h

rr,r

+
f

2

r2

[
ℓ(ℓ+ 1)

2
+ f + 2rf

′
]
h

rr
, (J.1)

G
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= −K,tr +
1
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(
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)
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r
h

rr,t
+
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, (J.2)

G
rr

= − 1
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+
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′
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+
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+
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2r2
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H
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2r2
h

r
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while the components of the harmonically decomposed C-tensor read
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Appendix K

Equations of the extended CS theory

in the Regge-Wheeler gauge

The equation for the background component of the scalar field, Eq. (11.72), is
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(r θ̄) = 0 , (K.1)

The divergence of the field equations, which in the non-extended theory leads
to the Pontryagin constraint, now leads to the equations of motion for the scalar field.
To leading order in ǫ, this equation reduces to Eq. (11.73), which when harmonically
decomposed becomes
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