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“And how many hours a day did you do lessons?” said Alice, in a
hurry to change the subject.
“Ten hours the first day”, said the Mock Turtle: “nine the next,
and so on.”
“What a curious plan!” exclaimed Alice.
“That’s the reason they’re called lessons”, the Gryphon remarked:
“because they lessen from day to day”.

– Lewis Carroll, in Alice’s Adventures in Wonderland.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit drei Aspekten der Suche nach Gravitationswellen
(GW) mit erdgestützten Detektoren: Detektorcharakterisierung, Datenanalyse und Modellierung
von Quellen. Der erste Teil behandelt die Detektorcharakterisierung und die Entwicklung von
Vetostrategien für die Suche nach transienten unmodellierten GW-Ausbrüchen. Der zweite Teil
enthält Methoden der Datenanalyse, die zur Suche nach GW-Ausbrüchen und verschmelzenden
kompakten Doppelsternsystemen angewendet werden. Der dritte Teil befasst sich mit der Mod-
ellierung von GW, die von kompakten Binärsystemen erzeugt werden, mit post-Newtonschen
(PN) Methoden.

Teil I. Kapitel 2 beschreibt die Charakterisierung der Qualität der Parameterabschätzung des
mHACR Algorithmus für GW-Ausbrüche. In Kapitel 3 wird eine robuste Strategie zum Auss-
chluss bestimmter Klassen von Störimpulsen in interferometrischen GW-Detektoren vorgestellt.
Dabei wurde die Kenntnis der Kopplung verschiedener Untersystemen des Detektors auf das
Ausgangssignal des Interferometers genutzt. Diese Vetomethode wurde durch Einspeisung von
Störimpulsen in das GEO600 Interferometer demonstriert (Kapitel 4). Ein Beispiel der An-
wendung dieser Vetomethode auf die von GEO600 aufgenommenen Daten wird präsentiert.
Kapitel 5 beschreibt eine weitere Vetomethode, basierend auf dem ‘null stream’, der aus den
beiden Ausgangsquadraturen von GEO600 konstruiert wird.

Teil II. Der ‘null stream’, der aus den Ausgängen mehrerer Detektoren konstruiert werden kann,
kann als Veto zur Vermeidung falscher Alarme bei der Suche nach GW-Ausbrüchen verwendet
werden. Die größte Fehlerquelle in der ‘null stream’ Analyse ist durch Kalibrationsfehler der
aufgenommenen Daten gegeben. In Kapitel 6 wird die Einbindung eines ‘null stream’ Vetos in
ein Netzwerk von zwei Detektoren, die sich am selben Ort befinden, vorgestellt. Dazu wird ein
neues Verfahren zur Vermeidung des Einflusses von Kalibrationsfehlern vorgeschlagen. Ausser-
dem wird ein Beispiel der Anwendung auf die Daten des LIGO-Hanford Detektors vorgestellt.
Kapitel 7 beschreibt die Konstruktion einer neuen ‘template bank’, die in der Lage ist, die ‘inspi-
ral’ Phase, die Verschmelzungsphase und die Abklingphase verschmelzender, nicht rotierender
schwarzer Löchern zu modellieren. Dadurch wird es möglich eine kohärente Suche bezüglich
aller drei Phasen eines Binärsystems durchzuführen, die die Suchempfindlichkeit verbessern und
die Ereignisrate der Interferometer steigern wird. Das Kapitel enthält ausserdem eine allge-
meine Prozedur, um interpolierte ‘template banks’ zu erstellen. Dabei werden die Wellenformen
von Doppelsternsystemen aus nicht-rotierenden schwarzen Löchern, wie sie mit Methoden der
numerischen Relativität berechnet werden können, verwendet.

Teil III. In Kapitel 8 wird eine neue vollständig adiabatische Abschätzung für die Berechnung
von GW von kompakten einspiralisierenden Binärsystemen unter Benutzung der PN Theorie
vorgeschlagen. Sie enthält eine konsistente Behandlung der Beschleunigung des Binärsystems bis
zur jeweiligen PN Ordnung, und ihre Ergebnisse liegen deutlich näher an der exakten Wellenform
für den Fall eines Testteilchens, das sich in einer Umlaufbahn um ein Schwarzschild schwarzes
Loch befindet.

Stichworte: Gravitationswellen, Detektorcharakterisierung, Datenanalyse, Quellenmodellierung.
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Abstract

This thesis covers three topics related to the search for gravitational waves (GWs) using ground-
based interferometric detectors — detector characterisation, data analysis and source modelling.
The first part deals with detector characterisation and veto development for the search for
transient, unmodelled GW bursts. The second part is related to data-analysis methods used
in the search for GW bursts and coalescing compact binaries. The third part addresses some
theoretical challenges related to the post-Newtonian (PN) modelling of GWs from inspiralling
compact binaries.

Part I. Chapter 2 describes the studies carried out for characterising the parameter-estimation
quality of the mHACR burst-detection algorithm. Chapter 3 presents a robust strategy to
veto certain classes of instrumental glitches that appear at the output of interferometric GW
detectors, making use of the knowledge of the coupling of different detector subsystems to the
main detector output. This veto method is demonstrated by injecting instrumental glitches in
the hardware of the GEO600 detector (Chapter 4). An example application of the veto method
to the data of GEO600 is also presented. Another instrumental veto method making use of the
null stream constructed from the two output quadratures of GEO600 is described in Chapter 5.

Part II. The null stream constructed from multiple GW detectors can be used as a powerful veto
against spurious instrumental triggers in the search for GW bursts. The biggest source of error
in the null-stream analysis comes from the calibration errors in the data. Chapter 6 presents
an implementation of the null-stream veto in a network of two co-located detectors, proposing
a new formulation to overcome the effect of calibration errors. An example application to the
data of the two LIGO-Hanford detectors is also presented. Chapter 7 constructs a new template
bank which can model the inspiral, merger and ring down stages of the coalescence of non-
spinning binary black holes. This will allow us to coherently search for all the three stages of the
binary black hole coalescence, improving the sensitivity of the search and potentially bringing
remarkable improvement in the event-rate for ground-based interferometers. This Chapter also
prescribes a general procedure to construct interpolated template banks using non-spinning
binary-black-hole waveforms produced by numerical relativity.

Part III. Chapter 8 proposes a new complete adiabatic approximation for the computation of
gravitational waveforms from inspiralling compact binaries using PN theory. This approximation
provides a consistent treatment of the acceleration of the binary up to the respective PN order.
The new approximants are found to be much closer (than the standard adiabatic approximants)
to the exact waveform in the case of a test particle orbiting a Schwarzschild black hole.

Key words: Gravitational waves, detector characterisation, data analysis, source modelling.
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1. Gravitational-wave astronomy:
Opening a new window onto the
Universe

1.1. Introduction

1 General relativity predicts the existence of gravitational waves. In general relativity,
gravity is described as the curvature of spacetime, produced by the mass-energy, stress
and momentum content of the spacetime. Compact concentrations of energy curve
spacetime strongly, and changes in such a concentration can produce a dynamically
changing spacetime curvature that propagates at the speed of light.

The generation of gravitational radiation is analogous to the generation of electromag-
netic radiation by accelerated charges. While electromagnetic radiation, in its leading
order, is produced by the time-varying dipole moment of the charge distribution, the
leading-order gravitational radiation is produced by the time-varying quadrupole mo-
ment of the mass-energy distribution. But, while electromagnetic waves travel through
spacetime, gravitational waves are freely propagating oscillations of the spacetime itself.

Unlike electromagnetic waves, the interaction of gravitational waves with matter is ex-
tremely weak. This is a great advantage for astronomy. This means that gravitational
waves arrive at an observer nearly unaffected by any intervening matter they may have
encountered since being generated. In that sense, gravitational waves carry ‘uncor-
rupted’ information about their sources. But the weak coupling also means that it is
hard to detect them. The existence of gravitational waves is yet to be verified by a direct
observation; though strong indirect evidence of the existence of gravitational waves is
provided by the binary-pulsar observations.

The first evidence for the existence of gravitational waves is provided by the radio
observations from the pulsar PSR 1913+16 [2]. The pulsar is in a binary orbit with
an unseen neutron star. The orbital radius of the binary shrinks as the system loses
energy due to gravitational-wave emission, which in turn, reduces the orbital period.
The change in the orbital period of the pulsar was monitored for several years using
radio observations, and was found to be extremely close to the prediction of general
relativity [3]. Russell Hulse and Joseph Taylor were awarded the Nobel Prize in 1993 for
their discovery of PSR 1913+16. A number of binary-pulsar observations later confirmed

1The title of this chapter is inspired by that of the excellent review by Kip Thorne [1].
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this first result [4]. With the discovery of the first double pulsar [5], much more accurate
tests of general relativity and gravitational-wave emission can be performed [6].

An ongoing worldwide effort aims for the direct detection of gravitational waves. This
will not only provide direct evidence for the existence of gravitational waves, but will also
serve as a powerful probe of the Universe and of the nature of gravity. A number of laser-
interferometric [7, 8, 9, 10] and resonant-bar [11, 12, 13, 14, 15] detectors are operational
around the globe, forming a worldwide network of gravitational-wave detectors. While
these ground-based detectors seek to detect gravitational waves in the frequency band
∼ 10 – 104 Hz, the planned space-borne detector LISA [16] will operate in the frequency
band ∼ 10−4 – 10−1 Hz. These detectors, collectively, cover an incredibly wide frequency
band. These two frequency bands are dominated by different classes of gravitational-
wave sources. Similarly, the experimental and theoretical challenges in the search for
gravitational waves are also in general different in the two bands. This thesis deals
with some issues related to the search for gravitational waves using ground-based laser-
interferometric detectors. In particular, the focus of the thesis will be the search for
gravitational waves from coalescing compact binaries and unmodelled burst sources (see
Section 1.2).

The rest of this Introduction is organised as follows: Section 1.2 furnishes an overview
of the possible sources of gravitational waves for ground-based detectors. Section 1.3
provides a brief introduction to gravitational-wave astronomy. Apart from the astro-
physical and cosmological implications of gravitational-wave observations, some possible
tests of the theories of gravity using gravitational-wave observations are discussed here.
Section 1.4 reviews some aspects of the ongoing search for gravitational waves. After
reviewing some basic ideas of gravitational-wave detection, this section overviews the
present status of the global network of gravitational-wave detectors and summarises
the current observational results. Some challenges in the search for gravitational waves
are also briefly discussed here, introducing the topics covered in the rest of the thesis.
Finally, Section 1.5 provides an overview and summary of this thesis.

1.2. Expected sources of gravitational waves

A worldwide network of gravitational-wave detectors consisting of ground-based inter-
ferometers and resonant-bars has started looking for signatures of gravitational waves
produced by astrophysical and cosmological sources. This section summarises some of
the most promising sources of gravitational waves for such ground-based detectors. Since
this thesis mainly deals with various issues related to the search for gravitational waves
from coalescing compact binaries and unmodelled burst sources, focus will be on these
classes of astrophysical sources.
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1.2 Expected sources of gravitational waves

1.2.1. Coalescing compact binaries

The best understood (and perhaps, the most promising) astrophysical sources of gravi-
tational waves for ground-based interferometers are coalescing compact binaries consist-
ing of black holes and/or neutron stars. Black-hole/neutron-star binary systems result
from the evolution of massive binary stars. Some binary star systems with components
massive enough to produce neutron stars or black holes at the end of their thermonu-
clear evolution may remain bound after two supernova explosions [17]. The binary
components start to spiral towards each other as they lose orbital energy and angular
momentum through gravitational radiation.

The evolution of the compact binaries is conventionally split into three stages: inspi-
ral, merger and ring down. In the inspiral stage, the two compact objects, driven by
radiation reaction, move in quasi-circular orbits. Eccentricity, if present initially, is radi-
ated away quickly. Eventually approaching the ultra-relativistic regime, the two bodies
merge to each other forming a single excited Kerr black hole. In the ring down stage,
the excited black hole loses its energy by gravitational-wave emission and settles into
a Kerr black hole. In the case of neutron-star/neutron-star binaries, a hypermassive
neutron star might form in the merger stage (depending on the total mass of the binary
and the nuclear equation of state), which eventually will collapse to a black hole [18].

As the black holes/neutron stars spiral inward, their waves sweep upward in frequency
and amplitude. The resultant waveform is called a ‘chirp’. The waveforms from the
merger stage can be more complex, depending on the details of the merger, while the
signal from the ring down stage can be decomposed as a superposition of exponentially
damped modes.

What makes this class of sources extremely interesting is the fact that the expected
waveforms can be accurately modelled, and easily parametrized by a few intrinsic pa-
rameters of the binary, like the component masses and spins (see Section 1.4.4 for a
discussion). This allows the data analysts to use the matched filtering technique, which
is the optimal strategy to detect well-modelled signals in Gaussian noise [19], for ex-
tracting the signal buried in the detector noise.

1.2.2. Sources of gravitational-wave bursts

There are other classes of gravitational-wave sources, like core-collapse of massive stars
in supernovae, accretion induced collapse of white dwarfs, Gamma ray bursts etc., for
which the physics is largely unknown, or too complex as yet to allow computation
of detailed gravitational waveforms. These kind of sources are generally classified as
‘unmodelled burst sources’. The astrophysical scenarios and models discussed in this
section are simplified versions of the current understanding on these sources, while the
actual details can be quite complex.

Stars with masses below 8M⊙ end their lives ejecting their envelopes, leaving behind a
white dwarf that gradually cools and fades away [20]. For white dwarfs in binaries, binary
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accretion can reheat the dwarf. If this material burns non-degenerately, the white dwarf
will gain mass. When the mass of the white dwarf exceeds the Chandrasekhar limit, it
will collapse. This can end up in two possible scenarios: (i) the nuclear burning in the
collapsing stellar core will increase the stellar pressure, producing Type Ia supernovae
(ii) if the neutrino emission from electron capture damp this burning until the core
has collapsed too deeply, the result of this collapse is the formation of a neutron star.
During the collapse, emission of gravitational waves will occur if the infall of matter is
aspherical. gravitational waves will also be produced if the collapsing star or neutron
star remnant develops rotational or pulsational instabilities.

Isolated stars more massive than ∼ 8 − 10M⊙ are expected to undergo collapse at
the end of their thermonuclear life cycles [20]. After the core bounces, most of the
material is ejected producing a Type II/Ib/Ic supernova and, if the progenitor star
has a mass . 20M⊙, a neutron star is left behind. On the other hand, if the mass is
& 20M⊙ fall-back accretion increases the mass of the formed protoneutron star, pushing
it above the maximum mass limit, which results in the formation of a black hole [21].
Furthermore, if the progenitor star has a mass of roughly M & 45M⊙, no supernova
explosion is launched and the star collapses directly to a black hole [22]. Gravitational
waves are generated mainly at two stages: The initial signal is emitted due to the
changing axisymmetric quadrupole moment during collapse. In the case of neutron-star
formation, the gravitational collapse is stopped by the stiffening of the equation of state
above nuclear densities, and the core bounces, driving an outwards moving shock. This
excites many normal modes of the newly-formed protoneutron star, and produces the
second part of the gravitational-wave signal, lasting hundreds of oscillation periods. On
the other hand, if a black hole is directly formed, then black hole quasi-normal modes
are excited, which will last only for a few cycles. A combination of neutron star and
black hole oscillations will appear if the protoneutron star is not stable but collapses to
a black hole.

The merger stage of the coalescence of compact binaries consisting of black holes and/or
neutron stars are also sources of ‘burst’ gravitational waves. This is discussed in Sec-
tion 1.2.1. The compact binary mergers can be accompanied by the release of a huge
amount of electromagnetic energy (as gamma rays) in a burst and manifest themselves
as short-duration gamma-ray bursts [17]. Another class of gamma-ray bursts, called
long-duration gamma-ray bursts, are believed to be associated with the Type Ib/c su-
pernovae produced by the core collapse of massive stars. In the former case, gravitational
radiation would result from the inspiral, merger, and ring down phases of the coales-
cence (see Section 1.2.1), while in the latter case, gravitational waves would result from
the collapse of a massive star’s core.

1.2.3. Sources of periodic gravitational waves

Rapidly rotating neutron stars are the most likely sources of continuous gravitational
radiation in the frequency band of ground-based interferometers. These objects may gen-
erate gravitational waves through a variety of mechanisms, including non-axisymmetric
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distortions of the solid part of the star, velocity perturbations in the star’s fluid (r-
modes), and free precession [23]. Regardless of the specific mechanism, the emitted
signal is a quasi-periodic wave whose frequency changes slowly during the observation
time due to energy loss through gravitational wave emission, and possibly other mecha-
nisms. Non-axisymmetric distortions generate continuous gravitational waves with twice
the rotation frequency. Additionally, if the symmetry axis of the neutron star does not
coincide with its rotation axis, this ‘wobble’ will also produce gravitational waves with
a frequency close to the rotation frequency. The r-modes (fluid oscillations dominated
by the Coriolis restoring force) are also proposed as a source of gravitational waves from
newborn neutron stars and from rapidly accreting neutron stars.

A particularly interesting class of continuous-wave sources are low-mass X-ray binaries.
These are fast rotating neutron stars torqued by accreting material from a companion
star. The quadrupole moment of the deformed crust is the source of the emitted gravita-
tional radiation, which slows down the rotation. This is conjectured as the compensating
mechanism against the ‘spin up’ by the accretion [24, 21].

1.2.4. Stochastic gravitational-wave background

Apart from the deterministic astrophysical sources discussed in the previous sections,
a stochastic background of gravitational waves is also expected to be present. This
background can be of either cosmological or astrophysical origin. The cosmological
background can have its origin in primordial gravitational waves from the big bang,
phase transitions in the early Universe, cosmic strings etc. [25, 26]. Alternatively, many
deterministic signals from a number of astrophysical sources can add up to form a seem-
ingly stochastic background. The astrophysical stochastic background can be produced
by a collection of various sources such as rotating neutron stars [27], binary-neutron
stars [28], supernovae [29] or low-mass X-ray binaries [30].

1.3. Gravitational-wave astronomy

Gravitational waves are emitted by coherent, bulk motions of huge amounts of mass-
energy, not by individual atoms or electrons, as is normally the case for electromagnetic
waves. Therefore the information carried by gravitational waves will be completely
different from that carried by electromagnetic waves. Moreover, many of the expected
gravitational-wave sources will not be seen electromagnetically at all. In this sense,
gravitational-wave astronomy will open a new window to the universe providing unique
information about various astrophysical and cosmological phenomena. Gravitational-
wave observations will also provide accurate tests of theories of gravity. This section
provides a brief overview of the theoretical/astrophysical/cosmological implications of
gravitational-wave observations. As in the previous section, the focus will be on what
can be learned from gravitational-wave observations from coalescing compact binaries
and burst sources.
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1.3.1. Testing theories of gravity

Gravitational-wave measurements will allow us to test a number of existing theories
of gravity, including general relativity. For example, any metric theory of gravity, in
general, permits six independent polarisation states for gravitational waves. In gen-
eral relativity, only two polarisation states (expressed as ‘+’ and ‘×’ polarisations) are
present, while scalar-tensor theories predict the existence of an additional ‘breathing
mode’ also. A suitable number of gravitational-wave detectors can extract these po-
larisations and limit the number of modes present in a given gravitational-wave, thus
constraining the validity of certain theories [31]. Additionally, gravitational-wave ob-
servations from coalescing compact binaries can put interesting bounds on the mass of
graviton [31, 32]. Using advanced ground-based and space-based detectors, it will be
possible to detect several quasi-normal modes from the ring down stage of the binary-
black hole coalescence, and test the ‘no hair’ theorem, according to which all modes
are only functions of the black hole’s mass and spin [33, 34, 35, 36, 37]. Tests of post-
Newtonian gravity using gravitational-wave observations are also proposed by various
authors [38, 39, 40, 41].

1.3.2. Astrophysics using gravitational waves

Apart from providing excellent tests of general relativity in the strongly-gravitating re-
gions, gravitational-wave astronomy is expected to provide unique information about
various astrophysical phenomena. For example, gravitational waves produced by a neu-
tron star or a stellar-mass black hole spiraling into a supermassive black hole will provide
a ‘map’ of the spacetime geometry around the larger object [37]. Indeed, the detection of
gravitational waves from a black hole binary itself is an important astrophysical obser-
vation, as this will provide direct evidence for the existence of astrophysical black holes.
Gravitational waves from the tidal disruption of a neutron star by a black hole in the
final coalescence of a neutron-star/black-hole binary will carry detailed information of
the nuclear equation of state [42]. Gravitational-wave observations from merging black
hole binaries can bring very useful insights to the nonlinear dynamics of the spacetime
curvature as the two black holes transform into a single Kerr black hole. Neutron-star
binary merger is the currently favoured model for the progenitor of short gamma-ray
bursts. Observation of an inspiral gravitational-wave signal in association with a short
gamma-ray burst will confirm this model, while not observing the gravitational radia-
tion can constrain such models. Also, it has been pointed out that gravitational-wave
observations from relativistic binaries residing in globular clusters will bring useful in-
formation about the complex stellar dynamics in globular clusters [43].

Gravitational-wave bursts can also bring unique information about their sources. For
example, gravitational waves associated with a gamma ray burst are expected to carry
detailed information about its source, which cannot be probed via electromagnetic obser-
vations. Similarly, correlated neutrino and gravitational-wave observations from a core-
collapse supernova could bring interesting insights into the newborn neutron star/black
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hole in the core of the supernova [44]. In particular, gravitational waves from a pulsating
neutron star formed by a core collapse will carry accurate information about the mass
and radius of the star, thus enabling us to strongly constrain the supranuclear equation
of state [45].

1.3.3. Cosmology using gravitational waves

Gravitational-wave observations will have tremendous impacts on our understanding
of cosmology. Since many of the supermassive binary black hole mergers are likely to
have electromagnetic counterparts, it is possible to constrain the values of cosmological
parameters such as the Hubble constant, the deceleration parameter and the cosmologi-
cal constant by combining the gravitational-wave and electromagnetic observations [46].
In particular, using the distance-redshift relation from many binary black hole ‘stan-
dard sirens’ (analogous to the electromagnetic ‘standard candles’), advanced detectors
like LISA will be able to put interesting constraints on the equation of state of dark
energy [47], thus shedding light on one of the outstanding issues of present-day cosmol-
ogy. It has also been suggested that, by observing a number of compact binary inspiral
signals, ground-based detectors can constrain the values of cosmological parameters
without resorting to the presence of electromagnetic counterparts [48, 49].

The cosmological gravitational-wave background is expected to be produced by pro-
cesses in the very early Universe. The observation of this stochastic background can
provide a picture of the Universe very shortly (∼ 10−21 s) after the big bang, while
the cosmic-microwave background observation can only provide a picture of the Uni-
verse after ∼ 105 years after the big bang [25]. Unfortunately, the expected strength
of this background is too low for the current ground-based detectors (and the planned
space-borne detector LISA) to detect. But these detectors can put interesting upper-
limits on the strength of this background, thus test a number of current speculations
about the very early Universe [25] (see Section 1.4.3 for a summary of current upper-
limits). The proposed big-bang observer mission [50] will make a direct observation of
this background possible.

1.4. The search for gravitational waves

A worldwide network of gravitational-wave detectors consisting of ground-based inter-
ferometers and resonant bars is currently operating with unprecedented sensitivity levels
and bandwidths. Many of them have achieved their design sensitivity goals. A world-
wide community is busy analysing the data gathered by these instruments, and the
search for gravitational waves is going through an exciting period. This section presents
some aspects of this exciting search for gravitational waves. We first review some basics
of gravitational-wave detection. An overview of the present status of the detector net-
work is given next, where we also summarise the current observational results from these
detectors. The last part of the section presents an overview of the various challenges in
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the search for gravitational waves from coalescing compact binaries and burst sources,
some of which will be addressed in the rest of this thesis.

1.4.1. Detecting gravitational waves

In the case of weak gravitational fields, sufficiently far away from the source, the gravi-
tational radiation can be described by the linearised theory of general relativity [51, 52].
In the linearised theory, the metric of the spacetime can be written as a linear perturba-
tion of the background Minkowski metric. In a suitable gauge, the gravitational wave is
completely described by only two (time-dependent) components describing the spacial
part of the metric perturbation. These are the two independent polarisation states of
gravitational waves, called h+(t) and h×(t). See [52] for the formal derivation.

The effect of gravitational waves on a ring of free particles arranged in a plane per-
pendicular to the direction of travel of the wave is to deform them into ellipses. If the
wave is travelling in the z direction, the h+(t) polarisation will ‘stretch’ the ring in the
x direction and ‘squeeze’ it in the y direction in one half-cycle, and vice versa in the
next half-cycle. The effect of h×(t) is similar; but the deformation is along axes which
are aligned 45◦ with the x and y axes. One way of detecting gravitational waves is by
measuring the displacement of ‘freely falling’ test masses by using a Michelson interfer-
ometer. Interferometric gravitational-wave detectors measure tiny differential motions
of the test masses (their end-mirrors, suspended as pendulums) placed long distance
apart, as the spacetime metric gets perturbed when a gravitational wave impinge on the
detector. See [53] for an introduction to interferometric gravitational-wave detectors.

The strength of gravitational waves produced by expected sources is extremely small.
For example, the signals produced by a core-collapse supernova with a 25-M⊙ progenitor
at a distance 10 kpc have amplitude ∼ 10−20 [54]. In order to detect these signals, km-
scale interferometers should be able to measure displacements of ∼ 10−17 m.

1.4.2. Worldwide network of gravitational-wave detectors

A network of six interferometric detectors is operational around the globe. These are
broadband detectors mostly sensitive in a frequency range of around 20 Hz — 3 kHz.
These include three LIGO detectors [7] in Hanford and Livingston in USA, the Virgo
detector [8] (operated by a French-Italian collaboration) in Pisa, Italy, the GEO600
detector [9] (operated by a British-German collaboration) in Hannover, Germany and
the TAMA 300 detector [10] in Tokyo, Japan. Two out of the three LIGO detectors are 4
km-long interferometers and the third detector in Hanford is a 2 km-long interferometer.
The two LIGO interferometers in Hanford are co-located, but have different arm lengths.
This means that the two detectors have identical responses to any gravitational wave
impinging on them. This allows us to perform robust waveform consistency tests between
these detectors (see Chapter 6).
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LIGO, Virgo and TAMA 300 detectors are configured as power-recycled [55] Michelson
interferometers with Fabry-Perot arm cavities. GEO600 does not use Fabry-Perot arm
cavities, but rather a combination of folded arms and dual-recycling (power recycling and
signal recycling [56]). The 4 km LIGO interferometers are currently the most sensitive
detectors in the network. The Virgo detector has 3 km arm length. Owing to the better
seismic isolation system, Virgo is designed to have better low-frequency sensitivity than
the LIGO detectors, and an overall sensitivity comparable to the LIGO detectors. Even
though GEO600 has an arm-length of only 600 m, the advanced technologies (such as
signal recycling) employed in the detector help it to achieve a narrow-band sensitivity
comparable to that of the km-scale instruments. TAMA 300 has an arm-length of 300
m and was the first large-scale interferometer to be operational.

Apart from these broadband interferometers, a number of resonant-bar detectors are also
collecting data. These detectors are sensitive in a narrow-band of frequency (roughly in
the 900 Hz — 920 Hz band). These include the ALLEGRO detector [13] in Louisiana,
USA, the Nautilus detector [12] in Frascati, Italy, The Auriga detector [11] in Padova,
Italy, the Explorer detector [14] in in Geneva, Switzerland and the MiniGRAIL [15] in
Leiden, Netherlands.

As part of the ‘fifth science run’, the LIGO detectors have successfully achieved their
science goal of collecting one year worth of ‘science data’ (in three-detector coincidence)
at design sensitivity [57]. The ‘first science run’ of the Virgo detector coincided with
the last few months of the LIGO’s science run [58]. GEO600 also participated in
the fifth science run with improved sensitivity compared to the earlier science runs [59].
TAMA 300, which has participated in various earlier science runs, is currently undergoing
a rapid commissioning process, and is expected to come on-line in near future with
improved sensitivity and stationarity [60]. Apart from these interferometric detectors,
many resonant bars are continuously taking data; see Refs. [61, 62, 63] for the current
status of some of these detectors.

Currently the LIGO detectors getting upgraded to their enhanced stage, called Enhanced
LIGO [64]. The Enhanced LIGO is expected to come on-line in 2009 with roughly a
factor of two improvement in the sensitivity compared to that of the current LIGO
detectors [65]. The second generation of interferometric detectors, such as Advanced
LIGO [66], Advanced Virgo [67] and GEO-HF [68] are also expected to be operational in
a few years with significantly improved sensitivity. A km-scale cryogenic interferometer,
called LCGT [69], is also being built in Japan.

The LIGO Scientific Collaboration [70] is responsible for analysing the data from the
LIGO and GEO600 detectors, while the Virgo Collaboration [8] is responsible for the
same from the Virgo detector. Starting from early 2007, the two collaborations have an
agreement for data sharing and are working as a single joint collaboration. The LIGO
Scientific Collaboration has performed joint searches with TAMA Collaboration [10],
ALLEGRO Collaboration [13] and Auriga Collaboration [11] in the past science runs.
These observational results will be summarised in the next section.
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1.4.3. Current observational results

This section summarises the current observational results from the ground-based obser-
vatories, starting from the most recent results. No detection of gravitational waves was
made so far. So the observational results mainly involve putting upper limits on the
strength of possible gravitational-wave sources, and in some cases, constraining certain
astrophysical and cosmological models.

Using data from LIGO’s third and fourth science runs, the LIGO Scientific Collaboration
has searched for gravitational-wave signals from the inspiral phase of coalescing com-
pact binaries [71]. The search considered primordial black hole binaries (with component
masses in the range 0.35M⊙ < m1,m2 < 1.0M⊙), neutron-star binaries (in the range
1.0M⊙ < m1,m2 < 3.0M⊙) and stellar-mass black-hole binaries (3.0M⊙ < m1,m2 <
mmax with the additional constraint m1 +m2 < mmax, where mmax = 40.0M⊙ [80.0M⊙]
in the third [fourth] science run). Assuming binary populations with Gaussian distri-
butions around 0.75–0.75M⊙, 1.4–1.4M⊙, and 5.0–5.0M⊙, they derived 90%-confidence
upper limit rates of 4.9 yr−1L−1

10 for primordial black hole binaries, 1.2 yr−1L−1
10 for

binary neutron stars, and 0.5 yr−1L−1
10 for stellar-mass binary black holes, where L10 is

1010 times the blue light luminosity of the Sun.

The collaboration also reported results from an ‘all-sky’ search for gravitational-wave
bursts using the data from the fourth science run of LIGO. Using archetypal burst wave-
forms and making simplifying assumptions on the emission pattern of sources (such as
isotropic gravitational-wave emission), they came up with order-of-magnitude estimates
of the ‘distance reach’ of the search [72]. By performing simulations and subsequent
calculations using core-collapse supernova waveforms involving non-spinning 11-M⊙,
15-M⊙ and 25-M⊙ progenitors, they concluded that the search is sensitive to this class
of sources up to distances of 0.2 kpc, 0.2 kpc and 8 kpc, respectively. Similarly, using
non-spinning binary black hole merger waveforms with total mass 20 M⊙ and 100 M⊙,
the search was estimated to be sensitive up to distances of 1.4 Mpc and 60 Mpc.

LIGO Scientific Collaboration also presented the results of a search for gravitational-
wave bursts associated with 39 gamma-ray bursts detected by gamma-ray satellites
during LIGO’s second, third and fourth science runs [73]. Simulating gravitational-wave
bursts with sine-Gaussian waveforms, they have set upper limits on the gravitational-
wave strain amplitude of such waveforms at the times of the gamma-ray bursts. They
estimated that, in the most favourable cases, the search on the fourth science run was
sensitive to a solar mass-equivalent of radiated gravitational-wave energy to distances
of tens of Mpc. Although the upper limit obtained from these science runs is not
astrophysically important, Advanced LIGO will be able to constrain the validity of
certain models of long-duration gamma-ray bursts.

The collaboration also presented upper limits on the gravitational wave emission from
78 known radio pulsars based on data from the third and fourth science runs of LIGO
and GEO600 [74]. The search included pulsars from binary systems also. The tightest
upper limit on the gravitational-wave strain is 2.6 × 10−25 for PSRJ1603-7202, and the
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equatorial ellipticity of PSRJ2124-3358 is < 10−6. These upper limits are becoming
astrophysically important as the strain upper limit for the Crab pulsar is only 2.2 times
greater than the fiducial spin-down limit.

Using the data from the fourth science run of LIGO, the collaboration also performed
an ‘all-sky’ search for periodic gravitational waves in the range 50 Hz ≤ f ≤ 1000 Hz,
−1 × 10−8 Hz/s ≤ ḟ ≤ 0 (where f is the frequency and ḟ its time derivative) [75].
They reported upper limits on this radiation from isolated rotating neutron stars. The
best population-based upper limit with 95% confidence on the gravitational-wave strain
amplitude, found for simulated sources distributed isotropically across the sky and with
isotropically distributed spin-axes, is 4.28 × 10−24 near f = 140 Hz.

Using data from the LIGO’s fourth science run, the collaboration also placed a limit on
the amplitude of an isotropic stochastic background of gravitational waves [76]. For a
frequency-independent spectrum, they have computed an upper limit of ΩGW < 6.5 ×
10−5 (see Ref. [76] for the exact definition of ΩGW). This result is already exploring the
parameter space of some models of the stochastic GW background, such as cosmic-string
models and pre-big-bang models (see Ref. [76] and references therein). Results from the
fifth science run and the future runs of Advanced LIGO are expected to surpass the
bound set by the big-bang nucleosynthesis.

Another search using the same data set, targeted towards an anisotropic background
of gravitational waves was also reported [77]. They produced upper-limit sky maps
assuming two different power laws for the source strain power spectrum. For an f−3

power law, the upper limits on the source strain power spectrum vary between 1.2 ×
10−48 Hz−1(100 Hz/f)3 and 1.2× 10−47 Hz−1(100 Hz/f)3, depending on the position in
the sky. For a frequency-independent power spectrum, the upper limits vary between
8.5 × 10−49 Hz−1 and 6.1 × 10−48 Hz−1.

Apart from the searches discussed above, a number of searches involving multiple de-
tectors and multiple collaborations were also reported recently. LIGO Scientific Col-
laboration and TAMA Collaboration jointly published the results from searches for
inspiralling neutron-star binaries [78] and gravitational-wave bursts [79] using the data
from LIGO and TAMA 300. A joint search for gravitational-wave bursts using Auriga
and LIGO detectors is reported in [80], while a search for stochastic background using
LIGO and ALLEGRO detectors is reported in [81]. A joint search for gravitational-
wave bursts using the data from the fourth science run of LIGO and GEO600 was also
performed [82]. Apart from this, a number of joint searches using the data from the
fifth science run of LIGO and the first science run of Virgo is currently ongoing (see, for
example, [83, 84, 85]).

1.4.4. Challenges in the search for gravitational waves

This section discusses some of the various challenges in the search for gravitational waves
using ground-based interferometers. Unlike in the previous sections, the focus here will
be entirely on the search for coalescing compact binaries and burst sources.
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Interferometric gravitational-wave detectors aim to measure tiny differential motions
of the test masses. Building instruments that are sensitive to displacements of sub-
nuclear length scales itself is an enormous theoretical and experimental challenge, a
discussion of which is beyond the scope of this thesis. For some excellent discussions,
see Refs. [53, 86, 87]. Instead, what this thesis tries to address are some issues related
to the detection of gravitational-wave signals in the data of these detectors. In general,
any possible gravitational-wave signals produced by an astrophysical or cosmological
source is deeply buried in the detector noise, and to extract these gravitational-wave
signatures from the noise is a nontrivial challenge. This requires accurate models of
the signal waveforms (if these are unavailable, we will have to rely on some generic
properties of the signals; see below), sensitive and efficient data-analysis techniques and
robust methods to reject noise artifacts which mimic gravitational-wave signals. This
section introduces these three topics and reviews the current status of research in these
directions.

Source modelling. As discussed in Section 1.2.1, the coalescence of compact binaries
can be conveniently split into three stages: inspiral, merger and ring down. The
inspiral part of the gravitational waveform is well described by the post-Newtonian
approximation of general relativity. In this approximation, treating the sources as
point particles and assuming slow motion, the Einstein equations are solved in the
near zone (which contains the source) using an expansion in terms of the velocity
(v/c) of the source. In the far zone, the vacuum equations are solved assuming
weak gravitational fields, and these two solutions are matched in the intermediate
region [88, 89, 90]. Presently, the post-Newtonian waveforms have been computed
to a very high order (phase up to (v/c)7 and amplitude up to (v/c)5 beyond the
leading order [91, 92]). But the post-Newtonian approximation becomes less accu-
rate as the binary approaches the merger stage, where the full Einstein equations
need to be solved numerically to extract gravitational waveforms. Recent progress
in numerical relativity [93, 94, 95] has enabled us to compute accurate gravitational
waveforms from the coalescence of black-hole/black-hole binaries. Gravitational
waveforms from the final ring-down stage can also be computed by black-hole
perturbation theory using a perturbation expansion about the background Kerr
metric [96]. Section 8.1 provides some more details of the calculation of gravita-
tional waveforms from inspiralling compact binaries using post-Newtonian theory,
while Section 7.2 briefly discusses the calculation of binary-black-hole waveforms
using numerical relativity.

Computation of accurate gravitational waveforms from binaries involving neutron
stars is a harder challenge, as this requires the solution of the Einstein equations
together with those of general-relativistic (magneto) hydrodynamics. There has
been significant progress in the numerical modelling of the merger of neutron-
star/neutron-star binaries with no magnetic fields [97, 98, 99, 100]. Some prelim-
inary results from the simulations of neutron-star/black-hole binaries were also
reported recently [101]. More progress is expected in the near future in the sim-
ulations of neutron-star binaries with magnetic fields and neutron-star/black-hole
binaries [102].
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Numerical modelling of the collapse of massive stars is also a highly nontrivial
problem, because, in addition to a general-relativistic treatment of their gravity,
an adequate treatment of the nuclear equation of state and the neutrino micro-
physics is crucial for accurate simulations. Although the core-collapse supernova
problem remains unsolved in its full detail, recent simulations have given a lot of
insights into the problem. There is an emerging consensus that the core-collapse
supernova mechanism is essentially aspherical and that instabilities and the break-
ing of spherical symmetry are keys to the explosion [103]. Ref. [104] presented a
new, acoustic mechanism for the explosion. Recent simulations also studied mag-
netohydrodynamic explosion mechanisms with improved accuracy [103]. Recently,
full general-relativistic simulations of rotating stellar collapse have been performed
with an approximate treatment of the microphysics [105, 106]. But gravitational
waveforms computed from the current simulations are not yet robust enough to
be used as waveform templates (see below).

Data analysis. Since the gravitational waveforms from coalescing compact binaries
are well-modelled2, the optimal detection strategy to extract these signals buried
in the noise is the well-known matched filtering [19]. Matched filtering involves
cross-correlating the detector data with the theoretically predicted waveforms, or
templates. Different ways of constructing waveform templates for non-spinning
binaries using post-Newtonian inputs are nicely summarised in Ref. [107]. These
template waveforms are functions of the physical parameters of the binary (such as
the component masses and spins). Since the parameters of the signal that is buried
in the data are not known a priori, the data has to be filtered through a number of
templates with different parameters. An elegant geometrical formalism for laying
down the templates in the parameter space of the binary is presented in Ref. [108].
This formalism, extending the earlier work reported in Ref. [109, 110, 111], allows
us to construct a ‘bank’ of templates discretely spaced in the parameter space in
such a way that the loss of signal-to-noise ratio due to the mismatch between the
signal and the template is restricted to an acceptable amount [108]. Apart from
the ‘physical’ template banks that are constructed from well-motivated physical
models, ‘phenomenological’ template banks can also be used in searches where
there is uncertainty in the signal model [112], or when the parameter space of the
binary is too large to be searched over [113]. See Section 7.3 for an introduction
to the various aspects on the data analysis for coalescing compact binaries.

Unlike coalescing compact binaries, most of the expected sources of gravitational-
wave bursts are poorly modelled. Thus, matched filtering may not be the best
detection strategy in the search for these signals. Instead, a variety of different
search algorithms making use of the generic properties of gravitational-wave bursts
(such as their short-duration) are employed in the searches. Many of them look
for short-lived ‘excess power’ in the data that is unlikely to be associated with
the background noise [114, 115, 116, 117, 118, 119, 120]. Some algorithms, in-
stead, cross-correlate the data with some archetypal ‘burst’ waveforms [121]. See

2In the case of binaries consisting of neutron stars, only the inspiral stage is well-modelled as yet.
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Section 2.1 for a discussion on various burst-detection algorithms.

The existence of a global network of detectors with comparable sensitivities and
bandwidths opens the possibility of performing coherent searches between mul-
tiple detectors. Coherent searches, apart from improving the sensitivity towards
gravitational-wave signals, help to reject spurious signals of instrumental origin.
A novel method for the coherent multi-detector search for well-modelled binary-
inspiral signals is formulated in [122]. Coherent search strategies for unmodelled
burst signals are discussed in [123] and [124], while the authors of [125, 126, 127]
and [128] show how the coherent analysis can be used to reject spurious triggers
in a search for gravitational-wave bursts (see also Chapter 6).

Searches for gravitational waves have to deal with large volumes of data (tens
of terabytes associated with each science run). Many searches, such as the ones
for unknown pulsars and spinning compact binaries, are heavily constrained by
the availability of computational power. For computational efficiency, most of the
search pipelines are designed employing hierarchical algorithms [129, 130]. The
searches also benefit from distributed computing projects like ‘Einstein@Home’ [131].

Detector characterisation and veto development. Since current interferometric detec-
tors are highly complex instruments, the detector data often contains a large num-
ber of noise transients. These noise artifacts can mimic the nature of certain signals
that these algorithms seek to detect, thus producing false alarms. Therefore it is
important to characterise the quality of the detector data and to develop robust
strategies to reject these artifacts. Significant effort by various detector groups has
been put into understanding and characterising the quality of the data. Some of
the data-characterisation efforts by various detector groups in connection with the
recent science runs are summarised in Ref. [132, 133, 134, 135]. Apart from this,
various strategies to reject, or veto, spurious triggers are also formulated. Some
of them are ‘signal-based vetoes’, making use of the known shape of the expected
signals [136, 137]. Another class of ‘physical vetoes’ is based on general properties
of gravitational waves and the knowledge of their coupling to different detector
subsystems [138, 139, 140, 141]. Apart from these, different ‘statistical vetoes’ and
‘event-by-event vetoes’ are also employed in the searches [72, 142, 143, 144, 145].
See Section 3.1 for a detailed discussion.

1.5. Overview and summary of this thesis

The various topics discussed in this thesis are streamlined towards a single, larger aim:
to identify with sufficient confidence a gravitational-wave signal buried in the noisy
detector data. The thesis is organised as containing three parts. The first part deals
with detector characterisation and veto development for ground-based detectors, giving
particular focus to the GEO600 detector. The second part is related to the data-
analysis methods used in the search for unmodelled burst signals and coalescing compact
binaries. Finally, the third part describes some interesting theoretical problems related
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to the modelling of gravitational waves from the inspiral phase of the coalescing compact
binaries using post-Newtonian approximation methods.

Part I of the thesis starts with Chapter 2, presenting a discussion on the mHACR
algorithm. This is a modified algorithm based on the hierarchical algorithm for curves
and ridges, and is used to detect transient-burst events present in the gravitational-
wave data. Simulations performed in order to characterise the quality of the algorithm
in estimating the parameters of the detected burst events are presented in this chapter.
Application of mHACR in the detector characterisation of GEO600 is also briefly
discussed.

Chapter 3 presents a robust strategy to veto certain classes of instrumental glitches that
appear at the output of interferometric gravitational-wave detectors. This veto method
is ‘physical’ in the sense that, in order to veto a burst trigger, we make use of our
knowledge of the coupling of different detector subsystems to the main detector output.
The main idea behind this method is that the noise in an instrumental channel X can
be transferred to the detector output (channel H) using the transfer function from X
to H, provided the noise coupling is linear and the transfer function is unique. If a non-
stationarity in channel H is causally related to one in channel X, the two have to be
consistent with the transfer function. Two methods for testing the consistency between
the burst triggers in channel X and channel H are formulated. One method makes use
of the null stream constructed from channel H and the ‘transferred’ channel X, and the
second involves cross-correlating the two. This chapter also formulates a less-rigorous,
but computationally inexpensive alternative to the above method. Here, the parameters
of the triggers in channel X are compared to the parameters of the triggers in channel
H to see whether a trigger in channel H can be ‘explained’ by a trigger in channel X
and the measured transfer function.

In Chapter 4, the physical instrumental-veto method constructed in Chapter 3 is demon-
strated by injecting instrumental glitches in the hardware of the GEO600 detector. The
veto safety is demonstrated by performing gravitational-wave-like hardware injections.
This chapter also shows an example application of this method using 5 days of data
from GEO600 taken as part of the fifth science run. The method is found to have high
veto efficiency with a low accidental veto rate.

Another instrumental veto method making use of the null stream constructed from the
two output quadratures of the GEO600 detector is described in Chapter 5. This method
makes use of the fact that the two output quadratures of a dual-recycled interferometer,
such as GEO600, when calibrated to strain, will contain the same gravitational-wave
signal but different noises. This allows us to construct a null stream from the two
outputs, in which all the gravitational-wave information will be absent (to the level of
the calibration accuracy). This chapter shows that the null stream can be used as a
powerful veto against certain classes of transient events detected in the output data
stream of GEO600.

Making use of the redundant gravitational-wave information present, the time-series
data from multiple gravitational-wave detectors can also be combined to form a null
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stream. Similar to what described in Chapter 5, this null stream can be used to distin-
guish between actual gravitational-wave triggers and spurious instrumental triggers in
a search for gravitational-wave bursts using a network of detectors. The biggest source
of error in the null-stream analysis comes from the fact that the detector data are not
perfectly calibrated. Chapter 6 presents an implementation of the null-stream veto in
the simplest network of two co-located detectors. The detectors are assumed to have
calibration uncertainties and correlated noise components. This chapter estimates the
effect of calibration uncertainties in the null-stream veto analysis and proposes a new
formulation to overcome this. This new formulation is demonstrated by doing software
injections in Gaussian noise. An example application to the data of the two co-located
LIGO detectors in Hanford is also presented. This chapter is included in the Part II
(dealing with data-analysis methods) of the thesis because the null stream constructed
from a network of detectors is also a powerful tool for coherent searches, enabling us to
solve the so-called ‘inverse problem’ of gravitational-wave bursts [146].

Part II of the thesis continues with Chapter 7, proposing a new template bank which can
model all the three different stages (inspiral, merger and ring down) of the coalescence of
non-spinning binary black holes following quasi-circular inspiral. This template family
is constructed making use of the recent results from numerical relativity and analytical
approximation methods of general relativity, and will allow us to coherently search for
all the three stages of the binary black hole coalescence. This two-dimensional tem-
plate family is explicitly parametrized by the physical parameters of the binary. This
chapter shows that the template family is not only effectual in detecting the signals
from binary black hole coalescences, but also faithful in estimating the parameters of
the binary. The sensitivity of the new search (in the context of different ground-based
interferometers) is compared with other template-based searches which look for individ-
ual stages separately. The proposed search is found to be significantly more sensitive
than other template-based searches over a substantial mass-range, potentially bringing
about remarkable improvement in the event-rate of ground-based interferometers. This
chapter also prescribes a general procedure to construct interpolated template banks
using non-spinning binary-black-hole waveforms produced by numerical relativity.

Part III (source modelling) of the thesis contains Chapter 8 which revisits the adiabatic
approximation used to compute the gravitational waveforms from the inspiral phase of
the coalescing compact binaries. The standard adiabatic approximation to the phasing of
gravitational waves uses the post-Newtonian (PN) expansions of the binding energy and
gravitational wave flux both truncated at the same relative post-Newtonian order. From
the viewpoint of the dynamics of the binary under conservative post-Newtonian forces
and gravitational radiation damping, the standard approximation at leading order is
equivalent to retaining the 0PN and 2.5PN terms in the acceleration and neglecting the
intervening 1PN and 2PN terms. A complete mathematically consistent treatment of the
acceleration at leading order should include all PN terms up to 2.5PN without any gaps.
These define the standard and complete non-adiabatic approximants respectively. This
chapter proposes a new and simple complete adiabatic approximant constructed from
the energy and flux functions. At the leading order it uses the 2PN energy function
rather than the 0PN one in the standard approximation so that in spirit it corresponds
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to the dynamics where there are no missing post-Newtonian terms in the acceleration.
This chapter compares the overlaps of the standard and complete adiabatic approximant
templates with the exact waveform (in the adiabatic approximation) for a test-particle
orbiting a Schwarzschild black hole. The complete adiabatic approximants lead to a
remarkable improvement in the effectualness (i.e. larger overlaps with the exact signal)
at lower PN (< 3PN) orders. However, standard adiabatic approximants of order ≥
3PN are nearly as good as the complete adiabatic approximants for the construction
of effectual templates. In general, faithfulness (i.e. smaller biases in the estimation of
parameters) of complete approximants is also found to be better than that of standard
approximants.
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2. Improving and characterising the
hierarchical algorithm for curves and
ridges

2.1. The burst detection algorithm mHACR

As discussed in Chapter 1, among the most promising sources of gravitational waves
(GWs) for the kilometer-scale interferometric detectors are the transient astrophysical
phenomenon like core-collapse supernovae, binary black hole/neutron star mergers, ac-
cretion induced collapse of white dwarfs, Gamma ray bursts etc., for which the physics
is largely unknown, or too complex to allow computation of detailed gravitational wave-
forms.

In general, any possible GW signal coming from an astrophysical or cosmological source
is ‘buried’ in the detector noise, and to extract these GW signatures from the noise
is a nontrivial data analysis problem. Indeed, if time evolution of the GW phase is
accurately known, the optimal filter for searching for this signal buried in the noise is
the well-known matched filter. But, since matched filtering relies on the prior knowledge
of the signal, it may not be the best detection strategy in the search for unmodelled,
short-lived GW bursts.

One class of search methods that is being employed in the burst data analysis is based
on time-frequency decomposition of detector data. These algorithms construct time-
frequency maps of the time-series data and look for ‘time-frequency regions’ containing
excess power which are statistically unlikely to be associated with the background noise
distribution [114, 115]. Some of these algorithms are based on clustering the ‘time-
frequency pixels’ containing excess power, and applying another threshold on these
clusters of pixels [116]. Time-frequency detection algorithms using basis functions other
than the standard Fourier basis functions are also proposed [117, 121]. Another class
of burst detection algorithms look for slopes or ridges in the time-series data, or in its
time-frequency representation [118, 119, 120]. In general, these methods are claimed to
be robust in detecting short-lived signals with minimum a priori information.

While the optimal filtering technique, along with accurate models of the waveforms,
enables us to accurately estimate the physical parameters (such as masses and spins)
of the GW source, the time-frequency methods, by construction, are unable to accom-
plish this. Instead, these algorithms try to parametrize the underlying gravitational
waveforms using a set of quantities like the characteristic central frequency, duration,
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bandwidth, etc. The detection algorithms implemented in the data analysis pipelines
are usually referred to as event trigger generators (ETGs).

The hierarchical algorithm for curves and ridges (HACR) [147, 148] is a transient-
detection algorithm based on time-frequency detection methods. This algorithm was
first implemented as part of the GEO++ software environment, and was subsequently
modified over time to form the modified HACR (mHACR) algorithm. The mHACR
algorithm provides improved estimation of the parameters associated with the burst
triggers. This chapter describes the improved algorithm and the studies carried out in
characterising the errors in the parameter estimation. The parameter estimation of the
HACR algorithm and its characterisation are described in [147, 148].

Section 2.1.1 reviews the HACR detection algorithm. The improved parameter esti-
mation is described in Section 2.1.2 while the software injections performed to charac-
terise the quality of parameter estimation are discussed in Section 2.2. Applications of
mHACR in the detector characterisation of GEO600 are briefly discussed in Section 2.3.

2.1.1. Detection algorithm

The discretely-sampled time-series data hj is divided into n short segments of length L
and the discrete Fourier transform (DFT) of each segment is computed after multiplying
the time-series data with a suitable window function wj .

h̃kl =

l(L−O)+L−1
∑

j=l(L−O)

hjwj exp (i2πjk/L) , k = 0..L/2, l = 0..n− 1. (2.1)

The length, L, of the segment is chosen according to the time-scale of the burst signals
that we are trying to detect (expected to range from a few milliseconds to a few tens
of milliseconds). Typically, L is chosen to be 32 ms long, and a Hann window is used
to avoid edge effects. Because of the window function, only the data at the centre of
each segment make a significant contribution to the DFT. Therefore sufficient (typically
≥ 75%) overlap, O, is allowed between consecutive segments to make sure that each
sample is ‘properly’ represented in the time-frequency map.

Often we are interested only in detecting non-stationarities appearing within some spe-
cific frequency band (say, where the detector is most sensitive). So, only frequency bins
above a lower cutoff frequency, flow, and below an upper cutoff frequency, fupp, are re-
tained in the constructed time-frequency map. These cutoff frequencies can be specified
as input parameters to mHACR.

The time-frequency representation of the data that we use is called a spectrogram:

ρkl = 2A |h̃kl|2, (2.2)

where A = (fs
∑

j w
2
j )

−1 is a normalisation factor, chosen in such a way that ρkl has
units of power spectral density, and fs is the sampling frequency of the data. One can
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associate a certain Fourier frequency, fk, and time, tl, with each time-frequency pixel,
ρkl, such that

fk = kfs/L ,

tl = [l(L−O) + L/2] f−1
s . (2.3)

These quantities will be used later while estimating the parameters of the burst triggers.

After constructing the time-frequency matrix, ρ, we want to identify time-frequency
pixels, ρkl, which are statistically different from the background noise. We first estimate
the mean, µk, and standard deviation, σk, of each row (frequency bin) of the matrix ρ.
In each frequency bin, a fraction Ω of time-frequency pixels having the highest values
of ρkl is excluded from this estimation. The fraction of outliers, Ω, is specified as an
input parameter to mHACR, and, ideally, should be chosen in such a way that the non-
Gaussian tails of the background noise distribution are excluded from the estimation of
its mean and variance. The significance, skl, of each pixel, ρkl, is then calculated as

skl =
ρkl − µk
σk

. (2.4)

The following ‘colours’ are assigned to each time-frequency pixel, according to the fol-
lowing criteria:

colour(ρkl) =







black, if skl ≥ Tupp

grey, if Tupp > skl ≥ Tlow

white, if skl < Tlow,

where Tupp and Tlow are the upper and lower thresholds chosen for a particular analysis.
Double threshold detection methods are more robust than single threshold methods,
and are commonly used in satellite imaging, astronomy, particle physics etc. (See, for
example, [149, 150]). The neighbouring black and grey pixels are clustered together,
and, if a cluster contains at least two pixels, of which at least one is black, then it
is identified as a burst event. Once the burst events are identified, mHACR proceeds
to parametrise the events in terms of a few parameters. The parameter estimation is
described below.

The input parameters required by mHACR and the values used for the analysis described
in Section 2.2 are summarised in Table 2.1.

2.1.2. Parameter estimation

The total power, Ptot, associated with a burst event is the total signal power in all the
(black and grey) pixels belonging to a burst event. It should be noted that, because
of the overlaps between consecutive data segments, the time-frequency pixels are also
overlapping in time. This redundancy in the power distribution among the pixels is
taken into account when we estimate the total power by summing the signal power in
pixels. The total power is estimated as

Ptot =
∑

k,l

Skl

/

r, (2.5)
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Parameter Description Value used

fs Sampling frequency of the data 16384 Hz
L Number of samples in one segment 512
O Number of overlapping samples 384
flow Low frequency cutoff 128 Hz
fhigh High frequency cutoff 3008 Hz
Ω Fraction of outliers to be excluded in the 0.1

parameter estimation of the noise
Tlow Lower threshold on pixel significance 5
Tupp Upper threshold on pixel significance 20

Table 2.1.: Input parameters required by mHACR and the values used for the analysis de-
scribed in Section 2.2.

where r = L/(L − O) is the redundancy factor due to the overlapping segments, and
the signal power is estimated by subtracting the mean noise power in each frequency
bin from ρkl, i.e., Skl = ρkl−µk. Throughout this section, the indices range over all the
black and grey pixels belonging to a particular event. mHACR also estimates the peak
power of the burst event, as,

Ppeak = max (Skl) . (2.6)

The estimation of the central frequency, f0, and central time, t0, is analogous to the
calculation of the centre-of-mass of an extended body. Here, the signal power, Skl, in
each time-frequency pixel serves as the ‘mass’ term and the time/frequency associated
with each pixel serves as the ‘position’ term. That is,

f0 =
∑

k,l

Skl fk

/

∑

k,l

Skl ,

t0 =
∑

k,l

Skl tl

/

∑

k,l

Skl. (2.7)

The signal-to-noise ratio (SNR), ρ, is defined in a similar way to the total power:

ρ2 =
∑

k,l

Skl
µk

/

r. (2.8)

Finally, the duration, d, and bandwidth, b, of the burst event can be estimated from the
extent of the burst event in the time/frequency plane as

d = max (tl) − min (tl) ,

b = max (fk) − min (fk) . (2.9)

2.2. Quality of the parameter estimation

In this section, the accuracy of the parameter estimation is demonstrated by doing
software injections into Gaussian white noise, and by comparing the parameters of the
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∆â0−µ(∆â0)
σ(∆â0)

Figure 2.1.: Distribution of the errors in estimating the central time, central frequency and RSS
amplitude of the injected sine-Gaussian waveforms. The errors in the frequency
and amplitude estimation are normalised by the injected value of the parameters;
i.e., ∆̂f0 = ∆f0/fcen and ∆̂a = ∆a/hrss. Injections are done with Nine different
values of hrss such that the SNR of the injections ranges from ≃ 5 to ≃ 300 (see
Figure 2.2). Sample mean and standard deviation of each of the 9 populations
are estimated separately. Each error is converted into a reduced normal variable
by subtracting the corresponding sample mean and by normalising by the cor-
responding standard deviation. Also plotted are the probability densities of the
standard normal distributions.

injected waveforms with those estimated by mHACR. The injected waveforms are sine-
Gaussians of the form

h(t) = hrss

(

2f2
cen

π

)1/4

sin [2πfcen(t− tcen)] exp

[−(t− tcen)
2

τ2

]

, (2.10)

where fcen is the central frequency of the waveforms and tcen is the time corresponding
to the peak amplitude. The envelope width is set as τ = 2/fcen. The corresponding
quality factor is Q ≡

√
2πfcenτ = 8.9. The quantity hrss is the root-sum-squared (RSS)

amplitude, given by
[
∫ ∞

−∞
h2(t) dt

]1/2

= hrss. (2.11)

Nine different values of hrss are used for the injections such that the SNR of the injections
ranges from ≃ 5 to ≃ 300, and the central frequency is randomly chosen from the
interval (432, 3008)Hz. Since the injections are done with nine different values of hrss,
we expect the errors in the estimation of each parameter to fall into a multivariate
normal distribution of 9 dimensions. The sample mean and standard deviation of each
of the 9 populations are estimated separately. The errors are converted into standard
normal variables by subtracting the sample mean from each sample and by normalising
by the standard deviation. Distributions of the errors (after subtracting the mean
and normalising by the standard deviation) are plotted in Figure 2.1, along with the
probability density of a normal distribution with mean 0 and variance 1. The figure
shows the error distributions of three parameters – the estimated central frequency f0,
central time t0 and the RSS amplitude a =

√
Ptot. The standard deviation of the errors

in the estimation of these parameters are plotted as a function of the SNR of the triggers
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Figure 2.2.: Standard deviation of the distribution of the errors (fractional errors in the case of
f0 and a) in estimating the parameters of the injected sine-Gaussian waveforms,
plotted as a function of the SNR of the triggers. Also shown are power-law fits to
the data.
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Figure 2.3.: Mean errors (fractional errors in the case of f0 and a) in the parameter estimation,
plotted as a function of the SNR of the triggers.

in Figure 2.2. It can be seen that, to a very good approximation, the errors fall into
normal distributions whose standard deviation is a monotonically decreasing function
of the SNR. Figure 2.3 shows the mean errors in the parameter estimation which are
indications of the systematic biases in the parameter estimation. The left panel shows
a small bias in the estimation of t0. But this is smaller, even, than the sampling period
of the data used in the simulations (≃ 61µs), and can be safely ignored.

2.3. Application of mHACR in the detector characterisation of

GEO600

In GEO600, an online monitoring system is developed in order to routinely track the
instrument status and sensitivity. This is a modified version [132] of the online character-
isation system described in [151]. The first level of the characterisation system consists
of a number of ‘monitor’ algorithms designed for tracking the data quality information,
sensitivity and stationarity of the detector noise etc. The next level is a database sys-
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tem where the results (often called ‘meta data’) acquired by the monitor algorithms are
stored. As a third level, these results are passed through an automated visualization
pipeline to produce online web pages [152] on a regular basis. These reports are gener-
ated three times per day and are of fixed format so as to allow quick comparison between
one report and another. The contents of each summary report include noise-spectral
densities of the calibrated detector outputs, sensitivity of the detector data in detecting
certain prototype binary inspiral systems and some ad-hoc burst waveforms, basic data
quality information such as lock status, maintenance mode, etc., time evolution of the
detector model parameters used for calibration of the data, glitch rates of the main GW
channel as well as many auxiliary channels, reported saturations of data acquisition
channels etc.

Given the sensitivity of GEO600, the most promising source are astrophysical sources of
transient burst signals. Thus the emphasis is given on the characterisation of the data
directed towards burst searches. The stationarity of the data is assessed by looking
at the trigger rates produced by mHACR in the main GW channel. Apart from the
time-frequency plots of the mHACR triggers, histograms of the distribution of various
trigger parameters (like central time, central frequency, SNR etc.) are also produced.
Similar information is extracted from mHACR triggers on a number of auxiliary channels
recording the instrumental and environmental status. This information, apart from
providing the experimentalists some indication on the possible physical origin of these
glitches in the interferometer, help the data analysts to identify potential veto channels.

Several veto methods (see Section 3.1 of Chapter 3 for an overview) are employed in
GEO600 in order to reduce the rate of candidate burst triggers. Each of them makes
use of the mHACR triggers in some way or other. In the physical instrumental veto
method described in Chapters 3 and 4, mHACR triggers coincident in the GW channel
H and an auxiliary channel X are selected for performing the veto analysis. In the
null-stream veto described in Chapter 5, parameters of the mHACR triggers in channel
H and the null-stream channel Hnull are compared in order to see if the triggers are
consistent with the expected coupling of GWs into these channels. In the statistical veto
method described in [143], those mHACR triggers in channels H and X which lie in a
particular coincidence window in the parameter space are vetoed.
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3. Physical instrumental vetoes for
gravitational-wave burst triggers

3.1. The search for transient, unmodelled gravitational-wave bursts

The search for transient, unmodelled gravitational-wave bursts is performed using de-
tection algorithms which are tuned to detect a large morphology of short-lived burst
waveforms. Since current interferometric detectors are highly complex instruments, the
detector output typically contains a large number of noise transients, or ‘glitches’, of
instrumental/environmental origin which cause the detection algorithms to generate
spurious triggers. One of the main challenges in the burst data analysis is to distin-
guish these spurious bursts from actual GW bursts. Since the expected GW signals
are unmodelled, it is practically impossible to distinguish these false alarms from actual
GW bursts based on their signal characteristics. One way of dealing with this issue is
to require that the triggers be coincident (within a time window) in multiple detectors
located at different parts of the world. Although this ‘coincidence requirement’ reduces
the list of candidate triggers by a considerable amount, it does not completely cure
the problem. While coincident instrumental bursts in multiple detectors are highly im-
probable, long data-taking runs using multiple detectors can produce a large number of
random coincidences [72]. It is thus very important to develop robust techniques to dis-
tinguish between true GW bursts and spurious instrumental bursts which are coincident
in different detectors — popularly known as veto techniques.

Since a number of environmental and instrumental noise sources can potentially couple
to the main detector output, many such noise sources are continuously recorded along
with the data from the main detector output. The measurement points for time-series
data within the detector are referred to as ‘channels’. One class of veto methods is based
on identifying triggers in the ‘gravitational-wave channel’ (the main detector output)
which are coincident with triggers in an instrumental/environmental noise channel. The
‘coincidence windows’ are chosen such that the accidental (random) coincidence rate
between the two channels is limited to an acceptable amount. See [72, 142, 143, 144] for
some recent work on such ‘statistical vetoes’. Another class of ‘physical vetoes’ is based
on our understanding of how a GW should, or should not, appear in certain channels
[138, 139, 140]. Moreover, a number of ‘waveform consistency tests’ between multiple
detectors are also employed in the burst searches [128, 126, 125, 123, 127].

In this chapter, we formulate and demonstrate a veto strategy which makes use of our
understanding of the physical coupling of various detector subsystems to the detector
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output. This method is different from the physical veto methods discussed above in the
sense that, here we use the knowledge of the coupling mechanism involved in transporting
glitches from a particular subsystem to the main detector output. The main idea behind
this method is that the noise in an instrumental channel X can be transferred to the
GW channel H 1 using the transfer function from X to H, provided the noise coupling is
linear and the transfer function is unique. If a non-stationarity in channel H is causally
related to one in channel X, the two have to be consistent with the transfer function.
We formulate two methods for testing the consistency between the burst triggers in
channel X and channel H. One method makes use of the null stream constructed from
channel H and the transferred channel X, and the second involves cross-correlating the
two.

3.2. Vetoes using known instrumental couplings

3.2.1. Noise transfer

Let x(t) and h(t) denote the time-series data measured at the input and output of a
linear, time-invariant system. The input and output of the system are related by the
transfer function TXH(s) of the system, defined as [153]

TXH(s) ≡ H(s)

X(s)
, (3.1)

where H(s) and X(s) represent the Laplace transforms of x(t) and h(t), respectively,
and the complex variable s represents a point in the Laplace space. i.e.,

X(s) ≡
∫ ∞

0
x(t) e−st dt,

H(s) ≡
∫ ∞

0
h(t) e−st dt. (3.2)

Although the transfer function TXH(s) is formally defined in the Laplace space, for the
purpose of this method, it is easier to work in the Fourier domain. If x̃(f) and h̃(f)
are the Fourier transforms of x(t) and h(t), respectively, the equivalent relation in the
Fourier domain is given by

TXH(f) ≡ h̃(f)

x̃(f)
. (3.3)

Throughout this thesis, we denote the (Fourier domain) transfer function from a sub-
system X to the detector output H by TXH(f).

Let xi and hi denote the discretely sampled time-series data recorded in the instru-
mental/environmental channel X and the GW channel H, respectively. We denote the

1Throughout this document, channel X refers to the measurement point for time-series data from a
detector subsystem/environmental noise source X, and channel H refers to the main detector output
(the GW channel).
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corresponding discrete Fourier transforms (DFT) by x̃k and h̃k, respectively, where k

indexes the frequency bins. If PXH
k ≡ x̃kh̃

∗
k is the cross-power spectral density of xi

and hi, and PXX
k ≡ x̃kx̃

∗
k is the power spectral density of xi, where the ‘bars’ indicate

ensemble averages, the transfer function TXH
k can be computed as:

TXH
k =

PXH
k

PXX
k

. (3.4)

In practice, the transfer function from the subsystem X to H can be estimated by
injecting noise into X mimicking the way in which the noise in X would couple into
H, and measuring PXH

k and PXX
k simultaneously2 [154]. This is done in such a way

that the injected noise from X completely dominates channel H, so that the noise in
X and H are coherent, and the contributions from other noise sources are negligible.
The measured transfer function represents our phenomenological understanding of the
physical coupling of a detector subsystem to the main detector output. If the coupling
of noise between channel X and H is linear and the transfer function is time-invariant,
the Fourier transform of the noise measured in channel X at any time can be transferred
to channel H, by using the transfer function

x̃′k = x̃k T
XH
k . (3.5)

In the following section, we formulate a method to veto noise transients originating
within the detector subsystems whose coupling to the GW channel can be estimated.

3.2.2. A veto strategy using known instrumental couplings

We can think of x̃k and h̃k as components of two vectors x̃ and h̃ defined in two N -
dimensional linear vector spaces. In the mathematical sense, Eq.(3.5) maps x̃ to the
space of h̃. In the physical sense, this means that if a noise transient originates in X,
one can predict how it will appear in H. If there exists a noise transient in H at the
same time 3, we can compare it with the above prediction. If a noise transient in the
channel H is causally related to one in channel X, the data vectors x̃ and h̃ have to be
consistent with the transfer function. This allows us to formulate a powerful strategy
to veto noise transients originating within a particular detector subsystem.

The basic idea is the following: firstly, we identify time-coincident burst triggers in
channels X and H, allowing a liberal time window for coincidence. We compute the
DFTs of two short segments of data in channels X and H. The length of these segments
(typically a few tens of milliseconds) is chosen so as to encompass only the noise transient
under investigation. If these two noise vectors are consistent with the transfer function,
as given by Eq.(3.4), it is highly likely that the noise transient originates in X, and

2The transfer function can also be computed based on physical models of the systems, provided accurate
and complete models exist.

3The time-coincidence window should be chosen according to the typical time scale of the transients
that we are concerned with. We use a time window of a few tens of milliseconds since the current
searches for GW bursts seek to detect bursts of duration ≪ 1 sec.
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projx̃′h̃

cos−1(r)

δ̃

Figure 3.1.: Schematic diagram of the linear vector space in which the analysis methods are
formulated.

we veto the trigger. On the other hand, if the two noise vectors are inconsistent with
the transfer function, we conclude that this particular noise transient in H does not
have its origin in X. In the following subsections, we construct two different statistics
which can be used to make this decision. One statistic is based on constructing a null
stream between channel H and the ‘transferred’ channel X; i.e., if the noise transient
originates in subsystem X, and is sensed by channel X, it is possible to construct a
linear combination of the two data streams that does not contain any excess power.
The second statistic is based on the cross-correlation of the noise in channel H with the
transferred noise in channel X.

In the following two subsections, we assume that the data streams xi and hi are drawn
from zero-mean Gaussian distributions. Also, we assume that the transfer function from
X to H is accurately measured/calculated and is time-invariant.

The linear vector space in which the analysis methods are formulated is schematically
illustrated in Figure 3.1.

3.2.3. Test statistic: using null-stream

The null-stream between h̃ and x̃′ is the component of the vector h̃ orthogonal to x̃′.
This can be constructed using the Gram-Schmidt orthogonalisation [155]:

δ̃ = h̃ − proj x̃′h̃ , (3.6)

where we define the projection operator as

proj ũṽ ≡ 〈ṽ, ũ〉
〈ũ, ũ〉 ũ . (3.7)

In the above expression 〈ṽ, ũ〉 denotes the inner product between the vectors ṽ and ũ:

〈ṽ, ũ〉 ≡ Re
m+M
∑

k=m

ṽk ũ
∗
k. (3.8)
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3.2 Vetoes using known instrumental couplings

If the noise transient originates inX, it will completely disappear in δ̃. If the components
of x and h are generated by zero-mean Gaussian processes, the real and imaginary parts
of δ̃k in each frequency bin will be distributed according to a Gaussian distribution of
mean zero and variance σ2

k. Following [114], we compute the excess-power statistic from

δ̃:

ǫ =
m+M
∑

k=m

Pk , Pk =
|δ̃k|2
σ2
k

. (3.9)

It can be shown that ǫ will follow a χ2 distribution of 2M degrees of freedom in the case
of a non-windowed DFT. But in the case of a windowed DFT, Pk are not independent
χ2 variables, and hence ǫ will not follow a χ2 distribution [156]. But to a very good
approximation, ǫ will follow a Gamma distribution with scale parameter α and shape
parameter β. These parameters are related to the mean, µǫ, and variance, σ2

ǫ , of the
distribution of ǫ by

α =
(µǫ
σǫ

)2
, β =

σ2
ǫ

µǫ
. (3.10)

In order to estimate the parameters of the Gamma distribution, we generate a popula-
tion of ǫ from stationary data surrounding the burst (using the same DFT-length and
bandwidth). From that population, µǫ and σ2

ǫ can be estimated, and hence α and β.

If ǫ computed from the segment of data containing the burst is less than a threshold, we
veto the trigger. The threshold τ corresponding to a rejection probability (probability
that a ‘causal’ trigger is vetoed) Φ can be found from

Φ =

∫ τ

0
Γ(x;α, β) dx, (3.11)

where Γ(x;α, β) is the probability density of the Gamma distribution with parameters
α and β.

3.2.4. Test statistic: using cross-correlation

In this section, we construct another statistic to test the consistency of the noise vectors
x̃′ and h̃. The linear cross-correlation coefficient between two vectors x̃′ and h̃ is the
cosine of the angle between them:

r = Re

〈

x̃′, h̃
〉

||x̃′|| ||h̃||
, (3.12)

where ||u|| denotes magnitude of the vector u. If the noise transient in channel H
indeed originates in X, x̃′ and h̃ should display a high correlation. On the other hand,
if the noise transient does not originate in X, the vector x̃′ and h̃ will be randomly
oriented, and hence the linear cross-correlation coefficient r will tend to be small in
absolute value. This can be converted to the normally distributed variable z by the
Fisher transformation [157]:

z =
1

2
ln

(

1 + r

1 − r

)

. (3.13)
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The new variable z will be approximately normally distributed with mean zero and
standard deviation 1/

√
M − 3 (see Eq.(3.8) for the definition of M).

If z is greater than, or equal to, a threshold λ, we veto the trigger. The threshold giving
an accidental veto probability (probability that a trigger is accidentally vetoed) of ψ can
be calculated from

ψ =

∫ ∞

λ
f(x;µ, σ2) dx, (3.14)

where f(x;µ, σ2) is the probability density of the normal distribution with mean µ = 0
and variance σ2 = 1/(M − 3).

If the data vectors h̃ and x̃ are computed using windowed DFTs, the variance of the
distribution of z will not be given by σ2 = 1/(M − 3). In order to estimate the variance
of the distribution of z, we generate a population of z from stationary data surrounding
the burst (using the same DFT-length and bandwidth). From that population, σ2 is
estimated, and the veto threshold is computed using Eq.(3.14).

3.2.5. Implementation

Two sets of burst triggers are generated by running an ETG on channels X and H. We
take a set of triggers that are coincident in channels X and H, allowing a liberal time
window for coincidence.

In the case of the null-stream method, the data is divided into a number of segments
of length L. The test statistic, ǫ, is computed from the segment of data containing
the burst. It is well-known that the maximum signal-to-noise ratio (SNR) for the excess
power statistic is achieved when the time-frequency volume used to compute the statistic
is equal to the actual time-frequency volume of the signal [114]. Since the duration and
bandwidth of the burst is estimated by the ETG itself, this information is used to
decide on the length (L) of the data-segment used to compute δ̃ and the bandwidth
over which the integration is carried out in Eq.(6.15). Consequently, the frequency
resolution of the DFT used in the analysis is in general different for each trigger, and
hence, so are the dimension of the vectors h̃ and x̃. It is then required that the discrete
transfer-function vector should also have the same dimension. To achieve this, we store a
high-resolution transfer function and interpolate it to the required frequency resolution.
It was found that the analysis can be sensitive to the errors in the interpolation, since
the interpolation can smear out the detailed features in the transfer function. Since, the
lower the frequency resolution the higher are the errors, we set up a minimum frequency
resolution of 16 Hz for the analysis. In order to achieve this, the minimum length of
the data segment used to compute the DFT is set to be 1/16 s ≃ 60 ms. Parameters
of the Gamma distribution are estimated from segments of data neighboring the one
containing the burst, but excluding that segment. The trigger is vetoed if ǫ ≤ τ ,
where the threshold, τ , giving a particular rejection probability, Φ, is calculated using
Eq.(3.11).
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Figure 3.2.: Transfer function from channel X to channel H used for the simulations.

In the case of the cross-correlation method, a short segment of the data (of length
L) encompassing the burst is used to compute the cross-correlation statistic z. The
rest of the data segments are used to estimate the expected variance, σ2, of z in the
case of random correlation. Again, the time-frequency volume of the data used to
compute the statistics is decided making use of the information supplied by the ETG.
The veto threshold, λ, corresponding to a prescribed accidental veto probability, ψ, can
be calculated using Eq.(3.14).

3.3. Software injections

In the null-stream method, the veto threshold is set based on a specific rejection prob-
ability, while in the cross-correlation method, the threshold corresponds to a specific
accidental veto probability. Since these are different aspects of the veto method, let
us clarify the terminology. The rejection probability is the probability that a trigger
originating from channel X (a ‘causal’ trigger) is vetoed using the method described
above, while the accidental veto probability is the probability that a ‘non-causal’ trigger
in channel H is accidentally vetoed using the method.

In order to demonstrate that the fraction of ‘causal’ and ‘accidental’ coincident triggers
that are vetoed using these methods is consistent with the predictions given by Eqs.
(3.11) and (3.14) we simulate two different populations of bursts in channels X and
H. One set of such software injections is done in such a way that the injected burst
waveforms are consistent with the transfer function from X to H. The second set of
injections is done in such a way that the injected bursts in the two channels have random
parameters (so that the waveforms in channels X and H are, in general, inconsistent
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Figure 3.3.: Amplitude spectral densities of x, x′, h and δ̃ in the presence of a sine-Gaussian
injection. It can be seen that δ̃ contains no trace of the injected signal. The
injected sine-Gaussian has a central frequency of 1715 Hz and SNR of 140 in
channel X.

with the transfer function from X to H). We conveniently term the first set of injections
as ‘causal injections’ and the second set of injections as ‘random injections’.

3.3.1. Causal injections

We generate a data stream of Gaussian white noise and inject Gaussian-modulated
sinusoidal waveforms in to it; this forms our channel X. This data stream is filtered
using a time-domain filter and some extra noise is added to it. This constitutes our
channel H (the ‘extra’ noise being the component of h orthogonal to x′). The frequency
response of the filter is the transfer function from X to H. The transfer function used in
this simulation is shown in Figure 3.2, which is quite similar to one particular transfer
function measured in GEO600. The injected sine-Gaussians are of the form:

s(t) = srss

(

2f2
0

π

)1/4

sin [2πf0(t− t0)] exp
[

−(t− t0)
2/τ2

]

, (3.15)

where f0 is the central frequency of the waveforms and t0 is the time corresponding
to the peak amplitude. We setup the envelope width as τ = 2/f0. The corresponding
quality factor is Q ≡

√
2πf0τ = 8.9 and bandwidth is ∆f = f0/Q ≃ 0.1f0. The quantity

srss is the root-sum-squared (RSS) amplitude:

[
∫ ∞

−∞
s2(t) dt

]1/2

= srss. (3.16)
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The srss is varied so that the SNR 4 of the injections ranges from ≃ 6 to ≃ 500 in channel
X, and the central frequency is randomly chosen from the interval (432 Hz, 3008Hz).

As an illustration, the amplitude spectral densities of x, x′, h and δ̃ in the presence of a
particular sine-Gaussian injection are shown in Figure 3.3. The injected sine-Gaussian
has a central frequency of 1715 Hz and SNR of 140 in channel X. As expected, δ̃
contains no trace of the injected signal.

The fraction of vetoed events among the injections is plotted against the rejection prob-
ability corresponding to the chosen threshold in Figure 3.4 (left). It can be seen that
the fraction of vetoed injections is in very good agreement with the chosen rejection
probability.

3.3.2. Random injections

We inject two populations of sine-Gaussian waveforms with randomly selected parame-
ters into two data streams of white noise, so that the waveforms in channels X and H
are, in general, inconsistent with the transfer function from X to H. We then try to veto
these triggers using the transfer function from X to H after choosing a veto threshold.
The analysis is repeated after choosing different veto thresholds. The fraction of vetoed
injections is plotted against the accidental veto probability corresponding to the chosen
veto threshold in the right hand side of Figure 3.4. It can be seen that the fraction of
vetoed injections is in good agreement with the chosen accidental veto probability.

3.4. An alternative method: ‘trigger mapping’

Although the above described methods are rigorous and make use of the complete in-
formation contained in the data, they can be computationally expensive because they
require reprocessing of the time-series data from the two channels. It may be noted that
the whole data stream is processed by the ETG in the first place and a condensed form
of the information about the burst waveform is stored (which is often known as ‘meta-
data’). In this section, we develop a strategy to veto the spurious triggers in channel
H by comparing them with the set of triggers in channel X, making use of the transfer
function from X to H as well as the information extracted by the ETG. Although this
method is not as rigorous as the previous ones, the advantage is that this does not
require the reprocessing of time-series data and hence is computationally inexpensive.

Let {EX} and {EH} denote the set of burst triggers in channel X and channel H,
respectively. Let us assume that each event, E, is parametrized by its central frequency
Ef , amplitude Ea and time of occurrence Et. It is useful to think of E as a point in
a three-dimensional parameter space with coordinates (Ea, Ef , Et). Using the transfer

4The SNR, ρ, of a burst trigger is defined by ρ2 ≡ 2
R `

|s̃(f)|2/|ñ(f)|2
´

df where s̃(f) and ñ(f) represent
the Fourier transforms of the signal and the underlying noise, respectively, and the integration is
carried out over the bandwidth (positive frequencies) of the burst waveform.
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Figure 3.4.: [Left]: Fraction of causal injections vetoed by the null-stream method, plotted
against the rejection probability corresponding to the chosen threshold. [Right]:
Fraction of random injections vetoed by the cross-correlation method, plotted
against the accidental veto probability corresponding to the chosen threshold.
The dashed lines correspond to the case where the test statistics exactly fall in to
the expected distributions.

function from X to H, we can predict how a certain event EX would appear in H.
In other words, we map the event EX to the space of EH, making use of the transfer
function from X to H. In order to veto an event EH in channel H, we check whether
any of the ‘mapped’ EX triggers are consistent with EH in time of occurrence, central
frequency and amplitude. Indeed, the precise definitions of these parameters depend
upon the ETG, and hence we make use of these definitions in order to map the burst
triggers from one channel to the other.

3.4.1. Mapping the burst triggers

The burst detection algorithm called mHACR [143] is used to generate the burst trig-
gers. mHACR makes a time-frequency map of the data and identifies time-frequency
pixels containing excess power which are statistically unlikely to be associated with the
underlying noise distribution. mHACR then proceeds to cluster the neighboring pixels
containing excess power to form an ‘event’. The central frequency and time of occur-
rence of the burst event are estimated by a weighted averaging of the pixel coordinates.
This is equivalent to the calculation of the center of mass of an extended object where
the signal power in a pixel serves as the ‘mass’ term. mHACR also estimates the total
power contained in all the pixels belonging to a particular event, and the peak power of
the event. The square root of the total power is taken as the characteristic amplitude
EaX of the event.

The ETG does not reproduce the complete morphology of a burst waveform. Instead,
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0

Ea

Ef

Et

Figure 3.5.: A schematic diagram of the parameter space of burst triggers. The cross represents
a trigger in channel H and the circle represents a trigger in channel X, mapped
to channel H. A distance vector w is drawn from one point to another. The
consistency volume chosen to veto the trigger is also shown.

the ETG tries to parametrize the waveform using a set of quantities like the central
frequency, amplitude, bandwidth, duration, etc. Considering the fact that we are mostly
looking at short-lived, band-limited bursts, we approximate the power spectrum of the
underlying burst waveform in channelX to a Gaussian function. For example, the power
spectrum of the waveform associated with a trigger EX is approximated as a Gaussian
function G(f) such that

∫ f2

f1

G(f) df =
(

EaX
)2
, (3.17)

where the limits of integration are defined by bandwidth Eb
X of the burst, i.e., f1 =

EfX−EbX/2 and f2 = EfX +EbX/2. Since the peak power of the burst is also estimated by
the ETG, the ‘spread’ of the Gaussian function can be calculated by solving Eq.(3.17).
The power spectrum is deformed by the transfer function TXH(f) when the glitch makes
its way to channel H; this we denote by

Ĝ(f) = G(f) |TXH(f)|2. (3.18)

Given the transfer function TXH(f), the burst triggers in channel Xcan be mapped to
channel H in the following way:

EaX
′ =

[
∫ f2

f1

Ĝ(f) df

]1/2

, (3.19)

EtX
′ = EtX +

∫ f2
f1
Ĝ(f)λ(f) df
∫ f2
f1
Ĝ(f) df

, (3.20)

EfX
′ =

∫ f2
f1
Ĝ(f) f df

∫ f2
f1
Ĝ(f) df

. (3.21)
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In the above expression, λ(f) is the frequency-normalized phase-delay (time-lag) of the
transfer function TXH(f). i.e.,

λ(f) =
1

2πf
φ
(

TXH(f)
)

. (3.22)

where φ(.) denotes the phase of a complex quantity.

3.4.2. Identifying consistent events

In order to veto a trigger, EH, in channel H, we check whether any of the ‘mapped’
triggers (E′

X) from channel X, are ‘sufficiently close’ to it. To be explicit, we define a
vector, w, connecting the two points in the parameter space of H triggers,

w ≡ EH − E′
X, (3.23)

and require that it has a sufficiently small ‘length’. This length is assigned to the vector
by calculating the fractional volume enclosed by a three-dimensional Gaussian envelope
of width σ(w). This is explained below.

Let ∆E denote the errors in the ETG in the estimation of parameters associated with
the event E. In the absence of any systematic biases, the errors ∆E can be assumed to
be drawn from multivariate Normal distributions of zero mean and standard deviation
σ(∆E), where the standard deviation is an monotonically decreasing function of the
SNR. σ(∆E) can be estimated by injecting known waveforms into the data and com-
paring the trigger parameters estimated by the ETG to the actual parameters of the
injected waveforms.

Once the errors ∆EX associated with EX are estimated, they can be mapped to the
space of H triggers using Eq.(3.19-3.21) by a linear approximation of the error prop-
agation [158]. Then the components of w will be distributed according to Normal
distributions of zero mean and the following variance:

σ2(w) = σ2(∆EH) + σ2
(

∆E′
X), (3.24)

where ∆E′
X denotes the errors ∆EX, mapped to the space of H triggers. Thus the joint

probability density of the vector w comprising the three random variables (wa, wf , wt)
is given by the three-dimensional Gaussian function

f(w) =
1

(2π)3/2 σ(wf )σ(wa)σ(wt)
exp

(

−1

2
wT

C
−1 w

)

, (3.25)

where wT denotes the transpose of w. Assuming that the errors are uncorrelated, we
write the covariance matrix C as,

C =





σ2(wf ) 0 0
0 σ2(wa) 0
0 0 σ2(wt)



 . (3.26)
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Figure 3.6.: The RSS amplitude, Ea, of the burst events plotted against the central frequency,
Ef . Shown in the figure are three population of events: events in channel X (EX);
channel X events mapped to channel H (E′

X); and events in channel H (EH).

This enables us to set a threshold for w for vetoing an event EH. In order to veto an
event, we require that

|w| ≤ τ . (3.27)

The components (τa, τ t, τ f ) of the ‘threshold vector’ τ are related to the rejection prob-
ability Φ by

Φ = 8

∫ τf

0

∫ τa

0

∫ τ t

0
f(w) dwf dwa dwt. (3.28)

It can be seen that, by choosing a particular threshold vector τ , we are defining a
consistency volume around each burst trigger in channelH. If one of the mapped triggers
from channel X falls into this volume, we veto the H trigger. This is schematically
illustrated in Figure 3.5.

The studies performed on the quality of the parameter estimation of mHACR are de-
scribed in Chapter 2. The standard deviation of mHACR errors in estimating the
parameters of the sine-Gaussian waveforms are given there as a function of the SNR of
the triggers.

3.4.3. Software injections

We simulate two populations of bursts in channelX andH, as described in Section 6.2.1.
The two data streams are processed by mHACR and two sets of triggers {EX} and {EH}
are generated. The X triggers are mapped to channel H using the transfer function from
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Figure 3.7.: [Left]: Fraction of ‘causal’ injections vetoed, plotted against the rejection proba-
bility corresponding to the chosen threshold. [Right]: Fraction of ‘random’ injec-
tions vetoed, plotted against the rejection probability corresponding to the chosen
threshold.

X to H. Figure 3.6 shows the characteristic amplitudes Ea of the three population of
triggers (EX,E

′
X and EH) plotted against the central frequency Ef . The injected events

in channel X span 9 different amplitudes. The E′
X triggers and EH triggers can be seen

to fall nicely into the shape of the transfer function.

The veto analysis is repeated with different thresholds. The estimated veto efficiency is
plotted against the rejection probability corresponding to the chosen thresholds in Fig-
ure 3.7. Although the estimated rejection efficiency roughly agrees with the predicted
rejection probability, the effect of relying on a number of assumptions can be immedi-
ately seen. One of possible reason for the discrepancy could be that, contrary to the
assumption, the parameters have a non-zero correlation.

We also make a plausible estimation of the accidental-veto probability by injecting sine-
Gaussian waveforms with random parameters into the two data streams and preforming
the veto analysis. The estimated accidental veto probability is plotted in Figure 3.7
(right) as a function of the rejection probability. This exercise suggests that ∼ 70% of
the causal injections can be vetoed at the cost of an accidental-veto probability ∼ 1%.

3.5. Summary

One of the most challenging problems in the search for unmodelled GW bursts using
ground-based detectors is to distinguish between actual GW bursts and spurious instru-
mental bursts that trigger the detection algorithms. In this chapter, we have presented
a robust strategy to veto certain classes of instrumental glitches that appear at the
output of these detectors. This veto method is ‘physical’ in the sense that, in order to
veto a burst trigger, we make use of our knowledge of the coupling of different detector
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3.5 Summary

subsystems to the main detector output. The main idea behind this method is that the
noise in an instrumental channel X can be transferred to the detector output (channel
H) using the transfer function from X to H, provided the noise coupling is linear and
the transfer function is unique. If a non-stationarity in channel H is causally related
to one in channel X, the two have to be consistent with the transfer function. We
have formulated two methods for testing the consistency between the burst triggers in
channel X and channel H. One method makes use of the null stream constructed from
channel H and the transferred channel X, and the second involves cross-correlating the
two. We have also proposed a less-rigorous, but computationally inexpensive alternative
to the above methods. In this method, the parameters of the triggers in channel X are
compared to the parameters of the triggers in channel H to see whether a trigger in
channel X can explain a trigger in channel H. In order to demonstrate these methods,
we have performed software injections of burst waveforms into Gaussian noise.

The ‘trigger mapping’ veto needs to make certain assumptions about the power spectrum
of the glitch in channel X. The assumption that we made in this chapter, that the power
spectrum can be approximated by a Gaussian function, should be verified against real-
life glitches. It might also be possible to make assumptions which are closer to reality,
using better parametrization of the underlying waveforms.
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4. Physical instrumental vetoes:
application to GEO 600 data

4.1. The ‘real-life’ scenario

In this chapter, we discuss the implementation of the instrumental veto method pro-
posed in the previous chapter in the data characterisation of the GEO600 detector.
Noise in GEO600, like in other present-generation laser interferometric detectors, is
not perfectly Gaussian, and exhibits non-Gaussian tails in the distribution. Also, the
assumption we made in the previous chapter that the transfer function is time invari-
ant is strictly not true. Transfer functions in actual detectors can vary in time. The
slow temporal variation of the transfer function can be taken into account by making
repeated measurements of the transfer function and tracking its evolution by continu-
ously injecting and measuring spectral lines at certain frequencies (see [154]). But the
non-stationarities of the transfer function on short time scales are hard to track.

Considering these ‘real-life’ effects, it may not be wise to use the ‘ideal-case’ relations
given by Eqs.(3.11) and (3.14) to compute the veto thresholds corresponding to a certain
rejection probability/accidental veto probability. For instance, due to the imperfect
transfer function, the null stream δ̃ can contain some ‘residual bursts’, and, as a result,
the excess power statistic computed from δ̃ will not fall into the expected Gamma
distribution.

Here, we demonstrate a more general formulation of the veto method which admits
non-Gaussian tails in the noise distribution and other real-life effects. We also demon-
strate the efficiency of the veto by injecting instrumental glitches in the hardware of the
GEO600 detector. The veto safety is demonstrated by performing GW-like hardware
injections. We also show an example application of this method using 5 days of data
from the fifth science run of GEO600.

4.1.1. Implementation

In the real-life scenario, as discussed earlier, even if the excess power statistic computed
from δ̃ does not fall into the expected distribution, if the glitch actually originates in
subsystem X, we do expect the excess power statistic ǫδ computed from δ̃ to be smaller
than the same (ǫh) computed from h̃. If the ratio s ≡ ǫh/ǫδ is greater than a threshold,
it is likely that the trigger originates in X, and we veto the trigger. The veto threshold
corresponding to a certain accidental veto probability is calculated as described below.
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Figure 4.1.: Block diagram of the veto pipeline.

We time shift xi with respect to hi to destroy the causal relationship between the two
data streams 1. The coincident triggers in the time-shifted data streams are identified
and the ‘excess-power ratio’, s, for each coincident trigger is calculated. n such time
shifts are performed to get better statistics from the data. A threshold, τs, is chosen such
that only an acceptable number of coincident triggers in the time-shifted analysis have
s ≥ τs. This threshold τs is used to veto the triggers in the ‘zero-lag’ analysis (without
time shifting the data). The time-shifted analysis can also be used to calculate the
veto threshold λ for the analysis using the cross-correlation statistic. Here, we choose a
threshold λ such that only an acceptable number of coincident triggers have z ≥ λ in
the time-shifted analysis and use this threshold to do the zero-lag analysis. The veto
pipeline is schematically illustrated in Figure 4.1.

4.1.2. Caveats

It is worth stressing that this veto method relies on the linearity in the coupling of the
noise from the detector subsystem X to the detector output, and can not be used where
the coupling is nonlinear. This method also assumes that the transfer function from X
to H is unique, and channel X accurately senses the disturbances in X. In other words,
this technique can only be applied to systems that exhibit a linear coupling through a set

1Time shift analysis is commonly employed in burst searches in order to estimate the accidental con-
sistency, or ‘background’ rate. See, for example, [72]

46



4.2 Analysis on hardware-injected burst signals

−100 −80 −60 −40 −20 0 20 40 60 80 100

10
0

10
1

10
2

Timeshift (s)

s

 

 

zero−lag

background

Figure 4.2.: Time shift analysis on instrumental-glitch-like hardware injections performed in
the ΦMI channel. The horizontal axis shows the time shift applied between xi

and hi, and the vertical axis shows the excess-power ratio s. The (black) dots
correspond to the coincident triggers in the time-shifted analysis and the (red)
crosses correspond to the ones in the zero-lag analysis.

path, or multiple paths that are fixed. An environmental monitor will often fail to meet
this requirement, unless the sensors are exceptionally well placed, because each local
disturbance could couple differently into the monitor and to the GW channel, meaning
that a different transfer function would be needed for each physical point of origin for
the disturbance.

4.2. Analysis on hardware-injected burst signals

4.2.1. Injections mimicking instrumental bursts

In order to test this veto method, we injected around 300 sine-Gaussian burst signals
over a period of one hour into four subsystems of GEO600, whose couplings to H
were known and well understood; the injections were performed serially, one subsystem
after another. The four subsystems we chose are listed below. These descriptions are
technical and concise. For more information, refer to [159].

Laser amplitude noise (Pref): We make bursts of laser amplitude noise by injecting
glitches into the laser amplitude stabilisation loop. We detect these glitches by mea-
suring the light power reflected from the power-recycling cavity in the data acquisition
system as channel Pref .

Laser frequency noise (Eref): We make bursts of laser frequency noise by adding glitches
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Figure 4.3.: Same as in Figure 4.2, except that the vertical axis shows the cross-correlation
statistic z. The (black) dots correspond to the coincident triggers in the time-
shifted analysis and the (blue) crosses correspond to the ones in the zero-lag anal-
ysis.

to the error-point of the Michelson common-mode control servo which keeps the power-
recycling resonant by adjusting the frequency of the master laser. The recording of this
error-point in the data acquisition system serves as the veto channel, Eref .

Michelson oscillator phase noise (ΦMI): The Michelson differential arm-length in GEO600

is controlled by imposing phase-modulation side-bands on the light entering the inter-
ferometer. A heterodyne readout scheme is then used to derive an error signal which
is fed back to the end mirrors of the Michelson to keep it on a dark fringe. We make
glitches in the phase of the oscillator used to add the modulation sidebands by driving
the voltage-frequency-control input of the crystal oscillator used to create this modula-
tion signal. We phase-lock a reference crystal oscillator to the main crystal oscillator
and the error-point of the phase-locked loop, which is sensitive to phase fluctuations on
both oscillator signals, is recorded in the data acquisition system as ΦMI and serves as a
sensitive measurement of the phase noise on the main Michelson modulation sidebands.

Michelson oscillator amplitude noise (AMI): The amplitude of the the main crystal os-
cillator is also stabilised to a quiet DC reference. We can add signals to the error-point
of this stabilisation servo so as to impose additional amplitude noise on the main Michel-
son modulation signal. We added glitch signals in to this control loop and recorded its
error-point in the data acquisition system as AMI to serve as a veto channel.

Burst triggers in the veto channel and the GW channel are generated using the mHACR [143]
burst detection algorithm. mHACR belongs to the class of time-frequency detection al-
gorithms that make a time-frequency map of the data and identify time-frequency pixels
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containing excess power which are statistically unlikely to be associated with the under-
lying noise distribution. For a detailed description of the algorithm and its performance,
see Chapter 2. However, we remind the reader that the details of the burst detection
algorithm are immaterial as far as this veto method is concerned. The burst ETG is
only used to identify the coincident triggers in the two channels, and any ETG with
proper time estimation of the burst event should serve this purpose.

Coincident triggers in the two channels are identified using a time window of ±10 ms.
The results of the time shift analysis on the hardware injections performed in the ΦMI are
shown in Figures 4.2 and 4.3. The horizontal axis shows the time shift applied between
xi and hi. The vertical axis in Figure 4.2 shows the excess-power ratio s ≡ ǫh/ǫδ. The
(black) dots correspond to the coincident triggers in the time-shifted analysis and the
(red) crosses correspond to the ones in the zero-lag analysis. From this, a veto threshold
of 2.35 is chosen which corresponds to an accidental veto rate of 1 per day. All the
coincident triggers in the zero lag are vetoed using this threshold. The vertical axis
in Figure 4.3 shows the (transformed) cross-correlation statistic z. The (black) dots
correspond to the coincident triggers in the time-shifted analysis and the (blue) crosses
correspond to the ones in the zero-lag analysis. The veto threshold corresponding to an
accidental veto rate of 1 per day is 0.27, which resulted in vetoing 99% of the coincident
triggers in the zero-lag.

The veto analysis is performed on all the four channels in which the hardware injections
are done. Results of the analysis are summarised in Table 4.1. It can be seen that
only ∼ 5% of the coincident triggers in the time-shifted analysis are vetoed, while more
than 90% of the coincident triggers in the zero-lag are vetoed. This implies that the
accidental rate of the veto is only ∼ 5% of that of the standard statistical veto (using a
time window of ±10 ms) for almost the same veto efficiencies.

Veto Threshold Veto fraction
channel τs λ ξ χs χz
Eref 2.51 0.33 4.48 × 10−2 0.90 0.90
Pref 1.94 0.23 5.45 × 10−2 1.00 1.00
ΦMI 2.35 0.27 6.12 × 10−2 1.00 0.99
AMI 1.50 0.26 4.62 × 10−2 0.97 0.97

Table 4.1.: Summary of the veto analysis on hardware injections mimicking instrumental
bursts. τs and λ are the chosen veto thresholds on the excess-power ratio s and the
cross-correlation statistic z, respectively. ξ is the fraction of coincident events that
are vetoed in the time-shifted analysis. The fraction of coincident events vetoed
in the zero-lag using the s statistic is denoted by χs, while the same using the z
statistic is denoted by χz. The chosen thresholds correspond to an accidental veto
rate of 1 per day.
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Figure 4.4.: Time shift analysis on the GW-like hardware injections. Eref is used as the veto
channel. The horizontal axis shows the time shift applied between xi and hi, and
the vertical axis shows the excess-power ratio s. The (black) dots correspond to
the coincident triggers in the time-shifted analysis and the (red) crosses correspond
to the ones in the zero-lag analysis.

4.2.2. Injections mimicking gravitational-wave bursts

Some of the interferometer channels are sensitive to GWs to some non-negligible level.
This raises the question of veto safety while using interferometer channels as veto chan-
nels. i.e., we have to make sure that we do not veto actual GW bursts which are
coincident in the two channels. We argue that, since actual GW bursts are not causally
related to the instrumental channels, the coincident triggers in channels X and H will
not be consistent with the transfer function from X to H and hence, will not be vetoed
using this method. Although the four channels under investigation in this paper are not
expected to show any non-negligible sensitivity to GWs, there can be unexpected cou-
plings, for example, through electrical faults or cross couplings in the data acquisition
system. It is therefore prudent to explicitly demonstrate the safety of this veto method
by doing GW-like hardware injections.

Hardware injections are performed by injecting signals into the electrostatic actuators
used to control the differential-arm-length degree of freedom of GEO600. For the test
described here, around 300 sine-Gaussian bursts were injected with varying amplitudes
and with central frequencies in the range 200 to 1300 Hz.

Figures 4.4 and 4.5 show the results of the veto analysis performed on the GW-like
hardware injections. Eref is used as the veto channel. It can be seen that neither of
the test statistics (s or z) in the zero-lag analysis shows any excess significance over the
corresponding time-shifted analysis. The veto thresholds corresponding to an accidental
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Figure 4.5.: Same as in Figure 4.4, except that the vertical axis shows the cross-correlation
statistic z. The (black) dots correspond to the coincident triggers in the time-
shifted analysis and the (blue) crosses correspond to the ones in the zero-lag anal-
ysis.

rate of 1 per day are τs = 1.64 and λ = 0.35. Using these thresholds, we do not veto
any of the injections.

4.3. An example application

GEO600 participated full time in the Fifth Science Run (S5 run) in coincidence with
the LIGO detectors from May 2006 to October 2006. The first few weeks of H data
contained an additional population of glitches identified as coming from the laser fre-
quency stabilisation control loop. These excess glitches had central frequencies typically
around 2 kHz. In fact, the glitches were broad-band in the frequency stabilisation loop,
but the coupling of frequency noise to H is most prominent around 2 kHz and so this
is where we see the excess noise in H. The identification and repair of the source of
these glitches took several weeks. So we identified an appropriate measure (Eref) of the
frequency-noise glitches that could be used as a veto channel (see Sec. 4.2.1 to see how
this channel is derived).

Veto analysis is performed on 5 days of data from the period described above (in the
frequency range of 400 Hz – 2kHz). Burst triggers in the two channels are generated
by the mHACR burst-detection algorithm. Coincident triggers within the two channels
are identified using a time window of ±10 ms for time-coincidence. Only triggers with
signal-to-noise ratio ≥ 6 are considered for this analysis. Out of 5326 triggers in the GW
channel, 2048 triggers were found to be coincident with the Eref channel. The accidental
rate of the veto is estimated by doing 76 time shifts (from -100s to 100s). Figure 4.6
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Figure 4.6.: Time-shifted analysis on 5 days of data from the Fifth science run of GEO600

using Eref as the veto channel. The horizontal axis shows the time shift applied
between xi and hi, and the vertical axis shows the excess-power ratio s. The black
dots correspond to the coincident triggers in the time-shifted analysis and the red
crosses correspond to the ones in the zero-lag analysis.

shows the excess-power ratio s computed from the coincident triggers plotted against the
applied time shift between the data streams, while Figure 4.7 shows the cross-correlation
statistic z plotted against the time shift. the dots correspond to the coincident triggers
from the time-shifted analysis and the crosses correspond to those from the zero-lag
analysis. We choose an accidental veto rate of 1 per day. The thresholds on the two
statistics are estimated from the time-shifted analysis. This corresponds to a threshold
of τs = 2.25 for the excess-power ratio s and a threshold of λ = 0.54 for the cross-
correlation statistic z. In the analysis using the null-stream, all coincident triggers with
s ≥ τs are vetoed, while in the analysis using the cross-correlation statistic, all triggers
with z ≥ λ are vetoed. It was found that 88% of the coincident triggers are vetoed
using the null-stream method and 92% of the coincident triggers are vetoed using the
cross-correlation method. These correspond to 34% and 35% of the total number of H
triggers in the data.

Histograms of the two test statistics s and z computed from the coincident triggers are
plotted in Figure. 4.8 and 4.9. The plots on the left show the distributions of the test
statistics computed from the time-shifted analysis, normalised by the number of time
shifts applied. These are the expected distributions of s and z in the absence of any
causal relation between triggers in X and H (for the given data set). Histograms on
the right show the distributions of s and z computed from the zero-lag analysis. Two
different populations are clearly visible in these plots. One population (centered around
1 in the histograms of s; centered around zero in the histograms of z) corresponds to
the triggers which are accidentally time-coincident in the channels X and H, while the

52



4.3 An example application

−100 −80 −60 −40 −20 0 20 40 60 80 100

−1

−0.5

0

0.5

1

1.5

2

2.5

Timeshift (s)

z

 

 

zero−lag

background

Figure 4.7.: Same as in Figure 4.6, except that the vertical axis shows the cross-correlation
statistic z. The black dots correspond to the coincident triggers in the time-shifted
analysis and the blue crosses correspond to the ones in the zero-lag analysis.

other population (centered around 6 in the histogram of s; centered around 1.6 in the
histogram of z) corresponds to triggers in H which are causally related to the ones in
X. It is interesting to note that this method is able to distinguish clearly between these
two populations. The reader may note that the number of accidental coincidences in
the time-shifted analysis is ∼ 35% larger than that in the zero-lag analysis. This can
be explained in the following way: the veto analysis has shown that around 35% of the
triggers in channelH are causally related to Eref . These ‘causal’ triggers will fall into the
populations on the right in the zero-lag analysis (centered around 6 in the histograms
of s; centered around 1.6 in the histograms of z). But, since the accidental coincidence
rate is directly proportional to the total number of triggers, the presence of these causal
triggers in the data would increase the coincidence rate in the time-shifted analysis by
∼ 35%, thus explaining the excess-coincidences that we observe.

Figure 4.10 shows a time-frequency plot of the mHACR triggers from 5 days of GEO600

data. The green circles correspond to the coincident triggers (in channel H) which are
vetoed using the null-stream method and the black dots correspond to the ones which are
vetoed using the cross-correlation method. The red crosses correspond to the coincident
triggers which are not vetoed by any of the methods.

A summary of the analyses performed using different accidental veto rates are given
in Table 4.2. Also, in Figure 4.11, we plot the fraction of coincident events that are
vetoed in the zero-lag (a measure of the efficiency of the veto) against the fraction
of the coincident triggers which are vetoed in the time-shifted analysis (a measure of
the accidental veto probability). This plot can be thought of as a receiver operating
characteristic [160] plot for this analysis, and can be used to choose thresholds which
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Figure 4.8.: Histograms of the excess-power ratio s computed from the time-shifted analysis
(left) and the zero-lag analysis (right).
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Figure 4.9.: Histograms of the cross-correlation statistic z computed from the time-shifted
analysis (left) and the zero-lag analysis (right).

correspond to acceptable values of veto efficiency and accidental veto rate/probability.
In the figure, the solid curve corresponds to the analysis using null-stream and the
dashed curve corresponds to the analysis using cross correlation. It can be seen that, for
high values of accidental veto probability, the two methods perform equally well. But
for low values of accidental veto probability (< 2 × 10−2), the curve corresponding to
the null-stream analysis starts to fall off, and the cross-correlation analysis continues to
perform well.

Figure 4.12 provides a rough comparison between the abilities of the two test statistics (s
and z) in vetoing the instrumental glitches. The horizontal axis shows the excess-power
ratio s and the vertical axis shows the cross-correlation statistic z computed from the
coincident triggers. The vertical (red) and horizontal (blue) lines in the plot correspond
to the veto thresholds τs and λ on the two statistics, respectively. Triggers on the right
of the vertical line are vetoed by s, and those above the horizontal line are vetoed by
z. 33.5% of the total number of H triggers are vetoed by both methods. There exists
a small population (∼ 1% of the total number of H triggers) which is vetoed by z; but
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Figure 4.10.: A time-frequency plot of mHACR triggers from 5 days of GEO600 data. The
horizontal axis shows the time and the vertical axis shows the frequency of the the
burst triggers in channel H, as estimated by mHACR. Only those triggers which
are coincident with Eref are plotted. The (green) circles correspond to coincident
triggers which are vetoed using the null-stream method, and the (black) dots
correspond to the ones which are vetoed using the cross-correlation method.
Coincident triggers which are not vetoed by any of the methods are indicated by
(red) crosses. The chosen veto thresholds correspond to one accidental veto per
day.

not by s, which suggests that z is a more sensitive statistic than s. But this may not be
taken as a general indication that the cross-correlation is a more sensitive method than
the null stream. One can construct alternative statistics using the null stream, which
could be more sensitive than s. One possible alternative is ǫδ/ǫopt, where ǫopt is the
excess power statistic computed from the optimal combination [161, 162] of the noise
vectors h̃ and x̃′. We leave this as future work.

4.4. Summary and outlook

We proposed a veto method which makes use of the information on the physical coupling
of different detector subsystems to the main detector output. We also demonstrated this
method using the data of the GEO600 detector. By performing hardware injections
mimicking instrumental glitches, we showed that glitches originating in a detector sub-
system can be vetoed using the transfer function from the subsystem to the detector
output. We also addressed the issue of veto safety by performing hardware injections
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Accidental Threshold Veto fraction
rate τs λ ξ χs χz

day−1 2.25 0.54 1.73 × 10−2 0.88 0.92
week−1 5.09 0.86 2.47 × 10−3 0.45 0.90

month−1 7.40 1.11 5.93 × 10−4 0.23 0.85

Table 4.2.: Summary of the veto analysis on 5 days of data from GEO600. τs and λ are
the chosen veto thresholds on the excess-power ratio s and the cross-correlation
statistic z, respectively. ξ is the fraction of coincident events that are vetoed in the
time-shifted analysis. The fraction of coincident events vetoed in the zero-lag using
the s statistic is denoted by χs, while the same using the z statistic is denoted by
χz. The chosen veto thresholds correspond to the accidental veto rates tabulated
in the first column.

mimicking GW bursts into GEO600, and by showing that such injections are not ve-
toed. Finally, we used this strategy to veto glitches in the data from the fifth science run
of GEO600, using the laser frequency noise channel as the veto channel. The analysis
was performed on 5 days of GEO600 data from the second month of the science run.
Of the 5326 triggers in the GW channel, 35% were vetoed with an accidental rate of 1
per day using the cross-correlation method, while 34% of the triggers were vetoed using
the null-stream method.

The method relies on linearity in the coupling of the noise from a detector subsystem to
the detector output, and the measurability/calculability and uniqueness of the transfer
function. The assumption of linear coupling is valid as far as many detector subsys-
tems in the large-scale interferometers are concerned. Strictly speaking, this method
also requires time-invariant transfer functions. The way to track down slow temporal
variations in the transfer functions is discussed in the literature. The formulation that
we have developed was found to be robust against non-stationarities of short time scales
in the transfer functions, and non-Gaussian tails in the noise distribution.

When possible, using physical information has clear advantages over relying only on
statistical correlations. The method that was proposed here is a fully coherent way of
testing the consistency of the glitches in the GW channel with those in an instrumental
channel. We hope that this will serve as a first step for developing a class of ‘physical
instrumental vetoes’ for present and future detectors.
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Figure 4.11.: Fraction of coincident triggers that are vetoed in the zero-lag plotted against the
fraction of the coincident triggers that are vetoed in the time-shifted analysis.
The solid curve corresponds to the analysis using null-stream and the dashed
curve corresponds to the analysis using cross-correlation. The triangles, the
squares, and the dots correspond to accidental veto rates of 1 per month, 1 per
week, and 1 per day, respectively.
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Figure 4.12.: Excess-power ratio s (horizontal axis) computed from the coincident triggers
plotted against the cross-correlation statistic z (vertical axis). The vertical (red)
and horizontal (blue) lines correspond to the veto thresholds τs and λ on the two
statistics, respectively.
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5. A null-stream veto for GEO 600

5.1. Introduction

The optical layout of the gravitational-wave detector GEO600 is based on a standard
Michelson interferometer with the addition of two mirrors: the power-recycling mirror
and the signal-recycling mirror. This so-called dual-recycled optical scheme is used to
enhance the sensitivity of the detector (see [163] and [164] for details).

The use of signal recycling and a heterodyne readout scheme means that gravitational-
wave signal can be extracted optimally from the detector output only at one frequency
by selecting an appropriate demodulation phase of the output signal. This means that,
for any other frequency, the gravitational-wave information will be spread between two
orthogonal demodulation quadratures of the output.

In GEO600, both output quadratures are calibrated to strain since, in general, the noise
components of each output quadrature are different. This calibration is done in the time-
domain by injecting calibration lines into the differential length-control actuators of the
Michelson interferometer. These calibration lines produce, at least at those frequencies,
known strain signals. From the measurement of these calibration lines in the detector
output, the response function of the detector is determined periodically on-line. The
inverse of this response function is used to compute time-domain filters which are used
to filter the detector outputs, P (t) and Q(t), to produce two estimates of the detected
strain, hP(t) and hQ(t). Details of the calibration method used at GEO600 are given
in [165, 166].

If we consider that both hP(t) and hQ(t) contain the same gravitational wave signal,
h(t), together with different noise components, NP(t) and NQ(t), such that

hP(t) = h(t) +NP(t), (5.1)

hQ(t) = h(t) +NQ(t), (5.2)

then we can recover the best estimate of the underlying signal, h(t), by optimally com-
bining hP(t) and hQ(t). Details of this combining method are given in [162].

We can also construct a null stream from hP(t) and hQ(t) by

hnull(t) = hP(t) − hQ(t), (5.3)

which will yield a data stream that contains no gravitational wave signal to a level
consistent with the relative calibration accuracy of hP(t) and hQ(t).
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Figure 5.1.: Amplitude spectral densities of the h(t) and hnull(t) outputs of GEO600. Cali-
bration lines are marked for the two spectra, and the ratio of the calibration line
amplitudes in h(t) and hnull(t) are indicated in the boxes.

Figure 5.1 shows snapshot amplitude spectral density estimates of both h(t) and hnull(t)
from the same stretch of data; the injected calibration lines are highlighted. We can see
that the calibration lines (and hence any gravitational wave signal), appear significantly
suppressed in the null stream. We can also see that since the amplitude of the calibration
lines is not zero in the null stream, there is a relative error in the calibration of the two
output quadratures of the order of 5% over most of the frequency band.

We can search for burst signals in this null stream, as we do in the h(t) data. If a
coincident signal is found in both the null stream and the h(t) stream, with a relative
amplitude that is inconsistent with it being a gravitational wave signal, then we can veto
it. In this chapter, we develop a strategy which can be used to veto spurious triggers
in the search for transient, unmodelled gravitational-wave bursts. This veto method
is studied in the following sections using software injections into data from GEO600.
The ‘false-veto’ (false-dismissal) probability and veto efficiency is estimated as a func-
tion of an amplitude consistency threshold. The ‘safety’ of the veto is demonstrated
by performing hardware injections mimicking gravitational-wave bursts into GEO600,
and by showing that such injections are vetoed. This method is then applied with a
particular threshold to a long stretch of GEO600 data. It may be noted that, while
the veto strategy proposed in this chapter relies on the physical properties of the grav-
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5.2 Signal injection and detection

Parameter Min Max

hrss 5 × 10−21 5 × 10−20

f0 (Hz) 900 2000
τ (s) 0.01 0.1

Table 5.1.: The ranges of the waveform parameters used in the series of software injections.

itational waves (the way they couple into h(t) and the null stream), it does not make
any assumptions about the model of the waveforms and is, in this sense, very robust.

5.2. Signal injection and detection

In order to study the false-veto probability and efficiency of such a veto method, we used
software injections into the two detector outputs, P (t) and Q(t), prior to the calibration
routine being applied. The signals injected were sine-Gaussians of the form

s(t) = hrss

(

2f2
0

π

)1/4

sin [2πf0(t− t0)] exp

[

−(t− t0)
2

2τ2

]

, (5.4)

where hrss is the root-sum-squared (RSS) amplitude of the waveform such that the total
integrated power in the waveform is equal to h2

rss, f0 is the central frequency of the
waveform, t0 is the time corresponding to the peak amplitude, and τ sets the duration
of the signal.

In order to detect these signals in both the h(t) channel and the null stream, and to
generate lists of transient events, we used the mHACR burst detection algorithm (see
Chapter 2 for more details about this algorithm).

In all of the experiments detailed below (unless stated otherwise), the parameters of
the sine-Gaussian injections were allowed to vary in the ranges shown in Table 5.1.
These parameter ranges lead to injected signals that span a sensible range of signal-to-
noise ratio (SNR) in the detector strain signal: not too small as to be undetectable by
mHACR, and not too big as to be unrealistic. Figure 5.2 shows two examples of injected
events; one showing a typically small SNR injection, and one showing a typically large
SNR injection.

We only apply the veto to events which are coincident events in h(t) and hnull(t). These
coincident events are selected from the two event lists by applying time- and frequency-
consistency windows, ∆t and ∆f , respectively. The size of each of these windows was
selected using software injections into the strain signal. Figure 5.3 shows efficiency-false
alarm curves (see the following discussion) for these two tunable parameters, ∆t and
∆f , generated by comparing the detected events to the injected events from a particular
set of 200 random injections using the parameter ranges indicated in Table 5.1. These
events were injected into the two uncalibrated detector output streams with relative
amplitudes such that the amplitudes in the two calibrated output streams, hP(t) and
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Figure 5.2.: Two example injected events into the data. The amplitude spectral density esti-
mates are computed from 1 second of data with no averaging and using a Hann
window. The parameters of the injected waveform are shown in the legend. The
left plot shows an event with a high SNR; the right plot, one with a low SNR.

hQ(t), are equal. From these injections, 193 were detected by mHACR in the h(t)
stream.

The efficiency of the time/frequency windows is defined as the fraction of triggers in
h(t) that was found to be consistent with the triggers in hnull(t) with a given choice
of time/frequency windows. Similarly, the false alarm probability is the fraction of
h(t) triggers which are found to be accidentally coincident with triggers in hnull(t).
This can be estimated by shifting the time or frequency of hnull(t) triggers by a non-
zero amount and by applying the time and frequency windows on these time/frequency
shifted triggers. In order to make a more precise estimate, one can make a number
of time/frequency shifts and take the mean value of consistent triggers as the false
alarm probability (see, for example, [143]). Since a rough estimation is sufficient for our
purpose, we estimate this by doing a single time/frequency shift. The reader is cautioned
at this point that the efficiency and false alarm probability of the consistency windows
should not be confused with the veto efficiency and false-veto probability, which will be
discussed later.

The curves shown in Figure 5.3 give the false alarm probability and efficiency of the
time and frequency selection of these 193 detected events. The false alarm curve for
each parameter is generated by time or frequency shifting the detected events by 1.1
seconds and 10.2Hz respectively prior to making the time and frequency cut; those that
pass the consistency test are considered a false alarm. From this experiment, we chose
a time consistency window of 40 ms and a frequency consistency of 6 Hz to apply to
the h(t) and hnull(t) event lists when using the mHACR algorithm in the experiments
detailed in the rest of this chapter.
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Figure 5.3.: False alarm and efficiency plots for the time and frequency cuts (∆t and ∆f)
applied to events detected by mHACR. From these plots, a frequency window of
6 Hz and a time window of 40 ms was chosen for the null-stream experiments. Here
‘efficiency’ refers to the percentage of coincident events that are expected to pass
the consistency test; ‘false-alarm’ refers to the percentage of non-coincident events
which are falsely taken to be coincident when applying the consistency test.

5.3. The amplitude consistency test

We compute the ratio of the amplitude of events in h(t) and hnull(t) that are time and
frequency consistent. If the ratio, Ah/Anull, of a particular event is below a certain
threshold, Athresh, then we veto the event.

The value of the threshold, Athresh, can be determined in two ways: a loose condition
can be set by observing the amplitude of the calibration lines in the amplitude spectra
of h(t) and hnull(t). Figure 5.1 shows the ratio of the calibration line amplitudes in h(t)
and hnull(t) as a function of frequency. From this we could set a threshold of around
25 – the mean of the ratios. This is only one of the different ways in which we can set
the threshold. We can determine a much more stringent test by performing software
injections and looking at the efficiency of the veto and the false-veto probability as a
function of the threshold we apply.
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5.3.1. Veto efficiency and false-veto probability studies

Four different sets of injections were performed into the two uncalibrated detector-
output data streams of GEO600 in order to carry out the 4 experiments detailed in
this section. In each set, 200 sine-Gaussian waveforms were injected into 2000 seconds
of data. The time interval between injections was allowed to vary (randomly) between 0
and 10 seconds. The waveform parameters were randomly chosen from the ranges given
in Table 5.1. The mHACR algorithm was then used to detect events in both h(t) and
hnull(t).

In all four experiments, a time and frequency consistency cut (using the windows dis-
cussed above) was applied to these two event lists to preferentially select the injected
events. These two shorter lists were then tested for amplitude consistency for various
values of Athresh.

Strain-like injections. For this experiment, the waveforms were injected with relative
amplitudes consistent with the signals being from a gravitational-wave source. In
other words, the injections into the two uncalibrated data streams were performed
in such a way that they will be identical (up to the level of the calibration accu-
racy) in the calibrated hP(t) and hQ(t) strain outputs. Typical detector response
functions for P and Q were used to generate the signals to add to the two uncali-
brated data streams. These detector response functions are not necessarily those
used to calibrate the P (t) and Q(t) time-series, thus mimicking the possible effects
of calibration errors. In order to detect the injections in the null stream, the range
of amplitudes of the injections had to be increased by a factor 5 compared to the
values given in Table 5.1. From the 200 injections, 197 were detected in the h(t)
stream, and 99 were detected in the hnull(t) stream. From these two lists, 99 events
were found to be time and frequency consistent.

Figure 5.4 shows the result of applying the veto to the two time and frequency
consistent events lists as a function of threshold. Since we expect the vast majority
of the time-frequency consistent events to be GW-like events, any events that are
vetoed are attributed to the false-veto probability of the method for that particular
threshold.

Single output-channel events. One test of the efficiency of the veto method can be done
by performing injections into the two uncalibrated detector outputs that are dis-
crete in time, i.e., injected into either detector output, but not both. This simulates
those real-life events that couple into the two detector outputs after the demodula-
tion process where the two signal paths are separated. Of the 200 injected events,
169 were detected in the h(t) stream, and 178 were detected in the null stream.
Out of these events, 165 were found to be time and frequency consistent.

The efficiency curve for this class of events, generated from these two event lists,
is labeled ‘Single channel events’ in Figure 5.4. Such events always appear in the
null stream with a higher amplitude than in the h(t) stream since the null stream
contains all the signal whereas the h(t) stream gets a share of the power from both
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5.3 The amplitude consistency test

calibrated strain outputs (see [162] for details). Because of this, we expect these
signals to be vetoed with a very high efficiency.

Equal amplitude events. This class of injections are simultaneous and have equal ampli-
tude in both of the uncalibrated detector output signals. Such events could arise
due to a coupling in the data acquisition system where a third channel couples
transient signals into both detector output signals prior to digitization. Of the
200 injected events, 189 were detected in the h(t) stream, and 182 were detected
in the null stream. Out of these events, 172 were found to be time and frequency
consistent.

The efficiency curve for this type of events is labeled ‘Equal events’ in Figure 5.4.
Events such as these should appear slightly stronger in h(t) stream than in the
null stream since the signal in the null stream is reduced by the ratio of the two
optical transfer functions at the frequency of the event. Since this ratio is, for most
frequencies, of the order 2 or less (see [166] for typical optical transfer functions
of GEO600), we would expect to efficiently veto them.

Random amplitude, simultaneous events. The final class of signals studied are simulta-
neous in both uncalibrated detector outputs, but have a random relative amplitude
in each. For these injections, a single waveform was selected at random using the
parameter ranges given in Table 5.1. Two copies of this waveform were then
injected in the the two uncalibrated detector output signals, with each being mul-
tiplied by a different random scaling factor selected from the range 0.1 to 10 prior
to injection.

This type of signal would be symptomatic of a noise source that couples at the
detector output, either before or after the demodulation process, but in a way that
means the ratio of the two coupling paths is arbitrary and may depend on other
external influences. One example of this may be pickup that depends on cable
positions or signal sizes. Of the 200 injected events, 175 were detected in the h(t)
stream, and 178 were detected in the null stream. Of the events of these two lists,
160 were found to be time and frequency consistent. The efficiency curve for this
type of events is labeled ‘Time-consistent events’ in Figure 5.4.

5.3.2. Setting the consistency threshold

From Figure 5.4, we can safely set a threshold for this veto method of Athresh = 5.
The threshold was chosen to be as high as possible (to maximize the efficiency) for a
false-dismissal (false-veto) probability of less than 1 %. From this figure, we can see that
we expect to get a false-veto probability of around 1 % and an efficiency (at least for
the type of signals explored so far) of almost 100 %.
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Figure 5.4.: The false-veto and efficiency curves for the null-stream veto. The efficiency curves
are computed for different cases of signal injection—see text for details.

5.3.3. Demonstrating veto safety: hardware injections

This section once again demonstrates the veto safety by showing that signals consistent
with actual gravitational-wave bursts are not vetoed using this method. This is done by
performing hardware injections into GEO600. Sine-Gaussian waveforms were injected
into the electrostatic actuators used to control the differential-arm-length degree of
freedom of the detector. For the test described here, around 300 sine-Gaussian bursts
were injected with varying amplitudes and with central frequencies in the range 200 to
1300 Hz.

Figure 5.5 shows a time-frequency plot of mHACR triggers in h(t) and hnull(t) channels
at the time of hardware injections. 302 triggers were detected in channel h and 51
triggers were detected in channel hnull. It is evident from the plot that not many
injections are detected in hnull. Only one trigger is found to be coincident between h
and hnull using the time and frequency windows described in Section 5.2. The amplitude
ratio Ah/Anull computed from this set of coincident triggers is 33.9, which is well above
the threshold (Athresh = 5) that we chose to veto the triggers. To summarise, none of
the triggers from the hardware injections are vetoed, which demonstrates the high safety
of the veto.
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Figure 5.5.: Time-frequency plot of mHACR triggers from hardware injections. The (red)
crosses denote burst events in channel h and the (black) dotes denote events in
channel hnull.

5.4. Example application to GEO600 data

The veto method was applied to a long stretch (22 hours) of calibrated data from
GEO600. For the entire duration, the detector was locked and operating normally.

The mHACR algorithm was run on the h(t) and hnull(t) data streams for this time. A
total of 141766 events were found in h(t), 42380 in hnull(t). Of these, 1086 events were
found to be time and frequency consistent using the consistency windows described in
Section 5.2.

The amplitude consistency veto was applied to these two reduced event lists with a
threshold of 5. From this we would expect to falsely veto around 10 events. All 1086 of
the time and frequency consistent events were found to be inconsistent in amplitude for
being a gravitational wave, and were hence vetoed. Figure 5.6 shows a short section of
the events from the 22 hours of data.

We can see immediately that the majority of vetoed events have a central frequency
around 370 Hz; this is true for the entire 22 hour data stretch. At this frequency,
the output noise of the detector is dominated by features which are believed to be
acoustically or seismically driven resonances of some of the optical mounts that steer
the output beam to the main output photo-detector. For such events, the veto method
seems to be very efficient, as the software injections would suggest.
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Figure 5.6.: A time-frequency map of the events detected by mHACR in h(t) and hnull(t) for
a 1 hour data stretch of GEO600. Those events that were found to be time and
frequency consistent between the two lists are marked with boxes; those that were
subsequently vetoed are marked with triangles.

The other (few) events that are vetoed could be false vetoes, although the number of
vetoes out-with 370 Hz band suggests that at least some of them are not. In addition,
the fact that a large concentration of the events around 1 kHz are detected in h(t) but
not in hnull(t) suggests that these instrumental bursts pass through the detector in a
similar way to gravitational waves and hence appear with similar amplitudes in the
two calibrated output streams (most probably frequency noise originating in the laser
subsystem).

5.5. Summary

The null-stream output of GEO600 has been used to generate a list of transient events
that can be used to veto those events detected in the main strain output of GEO600. By
using software injections, an amplitude-ratio threshold has been determined that can be
used to compare the amplitude of events in the h(t) data stream to those events detected
in the null stream. Software injections which are inconsistent with gravitational-wave
bursts are performed, and events that were found to be time and frequency consistent
in the two event lists could be vetoed with ∼ 100 % efficiency for a false-veto probability
of 1 %. The veto safety is demonstrated by performing hardware injections mimicking
actual gravitational-wave bursts into GEO600, and by showing that the injections are
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not vetoed. In addition, this method was applied to a short section of the detector
data and it was possible to veto a significant fraction of events that appeared clustered
around 370 Hz in the detector output.

One possible way to improve the performance of this method would be to have a thresh-
old that is frequency-dependent. Currently, the relative calibration accuracy of the two
detector outputs is different for different frequencies, varying from about 20 % at low
frequencies, to around 5 % at high frequencies. This means that the suppression of grav-
itational wave events in the null stream, and hence the threshold needed to robustly test
them, is also a function of frequency.

While the results presented in this chapter are based on the trigger events produced by
the mHACR algorithm, the principles should apply for any algorithm used to generate
the event lists. However, it is clear that the chosen amplitude consistency threshold may
be different when different trigger generation algorithms are used.
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Part II.

Data analysis for coalescing compact
binaries and unmodelled-burst sources
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6. Null-stream veto for two co-located
detectors

6.1. Introduction

Given the time-series data from a network of gravitational-wave (GW) detectors, one
can find a particular linear combination of the data streams such that it does not contain
any trace of GWs. The idea of this null stream was proposed by Gürsel and Tinto in
their classic work [146]. Gürsel and Tinto proposed that the null stream can be used to
solve the ‘inverse problem’ of GW bursts, i.e., to compute the unknown quantities (two
sky positions and two polarizations) associated with the gravitational waveform from
the responses of three broad-band detectors.

Recently, there has been a lot of interest in the null stream in the GW community. The
main reason for this rejuvenated interest is that the first generation of ground-based in-
terferometric GW detectors [7, 8, 9, 10] have started acquiring scientifically interesting
data. Among the most promising astrophysical sources of GWs for these ground-based
detectors are the transient, unmodelled astrophysical phenomena like supernovae ex-
plosions, Gamma-ray bursts and black hole/neutron star mergers – popularly known
as ‘unmodelled bursts’. Most of the algorithms currently used in burst searches are
time-frequency detection algorithms that look for short-lived excitations of power in
the ‘time-frequency map’ constructed from the data [114, 116, 117]. Since present-day
interferometric GW detectors are highly complex instruments, the data often contains
lots of noise transients which trigger the burst detection algorithms. It is almost im-
possible to distinguish these spurious instrumental bursts from actual GW bursts using
any physical model of the GW bursts. Thus, burst data analysis is usually performed as
a coincidence analysis between multiple detectors. Although this ‘coincidence require-
ment’ considerably reduces the list of candidate burst triggers, one month of data can
potentially produce hundreds of multi-detector random coincidences. So, it becomes
absolutely necessary to have additional ‘waveform consistency tests’ that distinguish
actual GW bursts from noise transients. A cross-correlation statistic that is formulated
in [125] is already being used as a coherent waveform consistency test in the search for
GW bursts in the data of LIGO detectors. This is making use of the fact that all the
LIGO detectors are (approximately) aligned parallel to each other.

Recently, it was proposed by Wen and Schutz [126] that the null stream can be used
to distinguish between actual GW triggers and spurious noise transients in a search
for GW bursts using any general network of detectors. The main idea is that, if the
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coincident triggers correspond to an actual GW burst, the null stream constructed at
the time of the triggers will contain no trace of the burst, and, will fall into an expected
noise distribution. On the other hand, if the coincident triggers correspond to spurious
instrumental bursts, the bursts will not necessarily cancel out in the null stream, and the
null stream will contain some excess power. Many authors have proposed similar, but
non-equivalent ways of implementing this. The veto method described in this chapter is
based on the excess power statistic [114], which was first used by [126] in this context. For
an alternative implementation, see [127]. A similar veto strategy using the null stream
constructed from the two calibrated output quadratures of GEO600 [9] detector is
already being used to veto the burst triggers from GEO600. This is discussed in
Chapter 5 of this thesis.

It was soon realised that the biggest source of error in the null-stream analysis comes
from the fact that the detector data are not perfectly calibrated, for various technical
reasons. In such cases, the null stream constructed from the data containing actual
GW bursts will contain some residual signal and will deviate from the expected noise
distribution. This chapter tries to address such practical issues connected with the
implementation of the null-stream veto in the burst-data-analysis using a network con-
sisting of two co-located interferometric detectors, like the two LIGO detectors [7] in
Hanford, WA, USA. The detectors are assumed to have calibration uncertainties and
correlated noise components. Section 6.2 briefly reviews the veto method in the case
of two co-located detectors. In Section 6.3, we estimate the effect of calibration un-
certainties in the null-stream veto, and in Section 6.3, we lay out and demonstrate a
formulation to overcome this effect. An example application of the veto into the data
of LIGO Hanford detectors is described in Section 6.4 1.

6.2. The null-stream veto

In the case of detectors placed widely apart, the null stream is a function of the an-
tenna patterns, and hence, the source-position [146]. But in the case of two co-located
detectors, the null stream is particularly simple. If h1(t) and h2(t) denote the properly
calibrated time-series data from the two detectors, the null stream is just [126]:

n(t) = h1(t) − h2(t), (6.1)

or, in discrete notation

nj = h1j
− h2j

, (6.2)

where h1j
and h2j

are the discretely sampled versions of h1(t) and h2(t). At the time of

a set of coincident triggers, we construct the null-stream nj . Let Ñk denote the discrete
Fourier transform (DFT) of nj computed using L samples of the data. We assume that
the real and imaginary parts of Ñk are drawn from a multivariate Gaussian distribution

1These results are not fully reviewed by the LIGO Scientific Collaboration.
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of mean zero 2 and variance σ2
k. Following [114, 126], we compute the excess power

statistic from the null-stream:

ǫ =
m+M
∑

k=m

Pk , Pk =
|Ñk|2
σ2
k

. (6.3)

It can be shown that ǫ will follow a χ2 distribution of 2M degrees of freedom in the case
of a non-windowed DFT. But in the case of a windowed DFT, Pk are not independent
χ2 variables, and hence ǫ will not follow a χ2 distribution [156]. But,we note that the
χ2 distribution is a special case of the Gamma distribution. It can be shown that, to
a very good approximation, ǫ will follow a Gamma distribution with scale parameter α
and shape parameter β. These parameters are related to the mean µǫ and variance σ2

ǫ

of the distribution of ǫ by

α =
(µǫ
σǫ

)2
, β =

σ2
ǫ

µǫ
. (6.4)

In order to estimate the parameters of the expected Gamma distribution, we generate
a population of ǫ from stationary data (i.e., data not containing the burst event under
investigation, but surrounding it). To be explicit, we divide the data in to a number
of segments each length L and compute ǫ from each of these segments. From that
population, µǫ and σ2

ǫ can be estimated, and hence α and β.

It is known that the maximum signal-to-noise ratio (SNR) for the excess power statistic
is achieved when the time-frequency volume used to compute the statistic is equal to
the actual time-frequency volume of the signal [114]. Since the duration and bandwidth
of the burst is estimated by the burst detection algorithm itself, this information is used
to decide on the length (L) of the data used to compute Ñk and the bandwidth over
which Pk is summed over.

If the ǫ computed from the segment containing the burst is greater than a threshold, we
veto the trigger. The threshold, τ , giving a false-dismissal (‘false-veto’) probability of γ
can be found from

γ =

∫ ∞

τ
f(x;α, β) dx, (6.5)

where f(x;α, β) is the probability density of the Gamma distribution with parameters
α and β.

6.2.1. Software injections

Let us define some terminology. The false-dismissal probability is the probability of an
actual GW burst being falsely vetoed, and the ‘false-veto fraction’ is the fraction of GW
bursts that are actually vetoed using this method. As a sanity check, we estimate the
false-veto fraction by injecting some prototype gravitational waveforms into two data

2If the real and imaginary parts of Ñk are drawn from a non-zero-mean Gaussian distribution, one
can always convert them to mean-zero Gaussian variables by subtracting the sample mean µk from
them.
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streams of Gaussian white noise and by performing the analysis. If all of our assumptions
are true, the fraction of vetoed events among the injections should be equal to the chosen
false-dismissal probability.

The injected waveforms are Gaussian-modulated sinusoidal waveforms, of the form:

ĥ(t) = ĥrss

(

2f2
0

π

)1/4

sin [2πf0(t− t0)] exp
[

−(t− t0)
2/τ2

]

, (6.6)

where f0 is the central frequency of the waveform (randomly chosen from the set {153,
235, 361, 554, 849, 1053, 1245, 1534, 1856} Hz) and t0 is the time corresponding to the
peak amplitude. We setup the envelope width as τ = 2/f0, which gives durations of
approximately 1-20 ms. The corresponding quality factor is Q ≡

√
2πf0τ = 8.9 and

the bandwidth is ∆f = f0/Q ≃ 0.1f0. The quantity ĥrss is the root-sum-squared (RSS)
amplitude:

[
∫ ∞

−∞
ĥ2(t) dt

]1/2

= ĥrss . (6.7)

The ĥrss is randomly chosen from the logarithmically-spaced interval (5 × 10−22, 1 ×
10−19). The amplitude spectral density (ASD) of the noise in the two data streams is
chosen to be 1× 10−22/

√
Hz and 2× 10−22/

√
Hz 3. We define the combined SNR, ρ, by

ρ2 = ρ2
1 + ρ2

2 , (6.8)

where ρ1 and ρ2 are the optimal SNRs 4 in detecting the bursts in the two data streams,
and quote this quantity while discussing the results.

The veto analysis is performed with different thresholds. The fraction of vetoed events
is plotted against the false-dismissal probability corresponding to the chosen threshold
in Figure 6.1 (left). It can be seen that the estimated false-veto fraction is in very good
agreement with the predicted false-dismissal probability.

6.3. Calibration uncertainties

So far, we have been assuming that the two data streams are perfectly calibrated. But,
due to various limitations in the calibration procedure, the calibration of present-day
interferometers can be subject to uncertainties of a few percent in amplitude and a few
degrees in phase. This means that the null stream constructed from the data containing
actual GW triggers can contain some residual signal, and the computed statistic can vary
from the expected distribution. This will result in a different false-dismissal probability
than the one predicted by the hypothesis test.

3These values roughly correspond to the sensitivities of the two LIGO detectors in Hanford.
4The optimal SNR, ρ, in detecting a signal h(t) buried in the noise is defined by ρ2 =

4
R

∞

0
|H̃(f)|2df/Sn(f) where H̃(f) is the Fourier transform of the signal and Sn(f) is the one-sided

PSD of the detector noise.
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Figure 6.1.: [Left]: Estimated false-veto fraction plotted against the predicted false-dismissal
probability, assuming that the two detectors are perfectly calibrated. [Right]:
Estimated false-veto fraction in the presence of ±10% calibration uncertainty,
plotted against the combined SNR of the injections, for three different values of
the predicted false-dismissal probability (γ). The three dashed lines show the
predicted values of the false-dismissal probability in the absence of calibration
uncertainties.

It can be shown that we see approximately the same residual signal power in the null
stream for both a 10% relative amplitude error and a 10 degree relative phase error;
therefore, in principle, we need to consider both of these effects. However, it is not easy
to conceive of a simple model for the possible relative phase error between two co-located
detectors (since such errors most probably arise due to inaccuracies in the calibration
process and will therefore be frequency dependent) 5. It is, however, easy to think of a
simple model for one possible source of relative amplitude calibration error. Suppose we
know the absolute calibration of each detector to some accuracy. If the two detectors
have identical optical configurations and if they are calibrated using similar methods,
it is quite possible that the relative calibration error between the two detectors will be
independent of frequency. We explore a way to deal with this type of error in the rest
of this chapter.

As a simple model, we assume that the frequency-dependence of the calibration error
is negligible, and that the calibration error is a constant scaling factor over short time-
scales (of the order of seconds). In the context of this analysis, we can assume that one
detector is perfectly calibrated and the other is calibrated with a wrong scaling factor,

5One another possible source of relative phase error would be a time-offset between the two data
streams. Although it is unlikely that such an error exists at any significant level, it would be possible
to include this in the following analysis if necessary.
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Figure 6.2.: The excess-power statistic ǫ′(ξ) constructed from null stream n′(t; ξ) plotted
against the free parameter ξ, for three different values of δ. We assume that
the maximum expected absolute value of δ is 0.1. ǫ′ (−δ/(1 + δ)) for each curve
is marked with a square. It can be seen that the minimum value of ǫ′(ξ) is less
than, or equal to ǫ′(−δ/(1 + δ)).

i.e.,

h1(t) = n1(t) + ĥ(t) ,

h2(t) = n2(t) + (1 + δ) ĥ(t) , (6.9)

where n1(t) and n2(t) are the detector noises in which a gravitational waveform ĥ(t) is
present. δ is the relative calibration error which is assumed to be a real quantity and is
constant over short time-scales.

In order to estimate the effect of calibration error in the false-dismissal probability,
injections are done simulating a relative calibration error of δ = ±0.1 between the two
data streams. The fraction of the vetoed events among the injections is shown in the right
plot of Figure 6.1 as a function of the combined SNR of the injections. Different curves
in the plot represent three different values of the predicted false-dismissal probability
(γ). It can be seen that the estimated false-veto fraction raises to alarmingly high values
for strong signals.

6.3.1. Dealing with calibration uncertainties

In this section we formulate a strategy to reduce the effect of calibration errors in the
false-dismissal probability. We construct the following linear combination of the data
streams by introducing a free parameter, ξ, in the null-stream construction, i.e.,

n′(t; ξ) = h1(t) − (1 + ξ)h2(t) . (6.10)
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6.3 Calibration uncertainties

Substituting for h1(t) and h2(t) from Eq.(6.9) gives,

n′(t; ξ) = n(t; ξ) − (δ + ξ + ξ δ) ĥ(t) , (6.11)

where

n(t; ξ) = n1(t) − (1 + ξ)n2(t) , (6.12)

is the ‘perfect’ null stream. We can ‘tune’ the parameter ξ such that the residual signal
disappears in Eq.(6.11). This is accomplished by minimizing the ‘excess power’ in n′(t; ξ)
by varying ξ over an interval.

As described in Section 6.2, the null stream n(t; ξ) is divided into a number of short
segments and the DFT of each segment is computed. It may be noted that in all
segments except the one containing the burst, n′(t; ξ) = n(t; ξ), because the signal is
absent in these segments. We denote the DFT of n(t; ξ) and n′(t; ξ) by Ñk(ξ) and
Ñ ′
k(ξ), respectively. The mean, µk(ξ), and variance, σ2

k(ξ), of Ñk(ξ) are estimated from
the neighboring segments of the one containing the burst. These are the moments of
the expected distribution of Ñ ′

k(ξ) in the absence of the burst. Ñk(ξ) is converted to a
mean-zero Gaussian variable by subtracting the sample mean µk(ξ) from it. The test
statistic ǫ′(ξ) is computed from the segment of n′(t; ξ) containing the burst:

ǫ′(ξ) =
m+M
∑

k=m

P ′
k(ξ) , P

′
k(ξ) =

|Ñ ′
k(ξ)|2
σ2
k(ξ)

. (6.13)

We minimize ǫ′(ξ) by varying ξ over an interval (ξmin, ξmax)
6. The boundary of the

parameter-space can be fixed as

ξmin =
−δmax

1 + δmax
, ξmax =

δmax

1 − δmax
, (6.14)

were ±δmax is the maximum expected value of the calibration uncertainty. When ξ →
−δ/(1 + δ), the residual signal in the null stream cancels out, and ǫ′(ξ) → ǫ(ξ), where

ǫ(ξ) =
m+M
∑

k=m

Pk(ξ) , Pk(ξ) =
|Ñk(ξ)|2
σ2
k(ξ)

, (6.15)

which falls in to an expected Gamma distribution in the case of GW bursts.

Since ǫ is quadratic in Ñ ′
k, apart from |Ñk|2 and |(δ + ξ + ξ δ) Ĥk|2, it contains also

the cross-terms. This means that the minimum value of ǫ′(ξ) could be less than ǫ(ξ).
This is illustrated in Figure 6.2, for three different values of δ. Thus, the obtained
false-dismissal probability could be less than what is predicted by the hypothesis test.
Since the cross-terms depend upon the actual value of δ, this adds an error-bar to the
false-dismissal probability. But it may be noted that the actual false-dismissal probability
is always less than (or equal to) what is predicted by the hypothesis test.

6It is important to note that we minimise the excess-power, ǫ′(ξ), in the null stream, and not the total

power, n′2(t; ξ). In the later case, if there are correlated noise in h1(t) and h2(t), ξ can take values
which will minimise the correlated noise components in n′(t; ξ) instead of the residual signal.
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Figure 6.3.: [Left]: Estimated false-veto fraction plotted against the predicted false-dismissal

probability. The relative calibration between h1(t) and h2(t) is assumed to be
between −0.1 ≤ δ ≤ 0.1. [Right]: Rejection power of the veto plotted against
the predicted false-dismissal probability. Each curve in the plot corresponds to a
particular range of SNR.

6.3.2. Software injections with simulated calibration errors

We generate two data streams with a simulated relative calibration error δ according
to Eq.(6.9) and perform the veto analysis, assuming that |δmax| = 0.1. The minimisa-
tion of ǫ(ξ) is carried out using an optimised minimisation algorithm. The analysis is
performed for three different values (-0.1, 0, 0.1) of δ and the false-veto fractions cor-
responding to different thresholds are estimated in each case (in all cases, we assumed
that |δmax| = 0.1). The mean value (among the three simulations) of the false-veto frac-
tion corresponding to each threshold is plotted against the corresponding false-dismissal
probability in Figure 6.3 (left). The extremum values corresponding to each threshold
are used to generate the error-bars. It can be seen that the estimated false-veto fraction
is always less than or equal to the predicted false-dismissal probability.

The real figure-of-merit of a veto method is its ability to reject spurious events with a
given false-dismissal probability. But, given that the probability density of the noise
transients are not known a priori, there is no rigorous way of estimating the ‘rejection
power’ of the veto. The best we can do is to estimate the ability of the veto to reject
a given glitch population. As a plausible estimation, we inject a population of sine-
Gaussian waveforms with random parameters into two data streams. We then perform
the veto analysis after choosing different thresholds. The estimated rejection power is
plotted against the false-dismissal probability in Figure 6.3 (right). Since the ‘excess
power’ in the null stream is proportional to the individual SNRs of the bursts in the
two data streams, the rejection power is also proportional to the SNR. Each curve in
the figure corresponds to a particular range of SNR ρ (see Eq.(6.8)). This suggests that
veto efficiencies of ≥ 90 % can be achieved with a false-dismissal probability of ≃ 1%
for spurious noise transients with ρ ≥ 10.
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Figure 6.4.: Cumulative distribution (left) and the probability density (right) of the test statis-
tic ǫ calculated from H1-H2 playground data. Also shown are the cumulative
distribution (left) and probability density (right) of the expected Gamma distri-
bution. These correspond to injections performed with no calibration errors.

6.4. Example application to LIGO data

This section presents an application of the null-stream veto method to the data of the
two co-located LIGO detectors (henceforth, H1 and H2) in Hanford. Data used in
this analysis was taken as part of the Fourth Science Run (S4) of the LIGO detectors.
Software injections performed on the ‘playground data’ in order to verify the method
are presented first. Then we proceed to describe the veto analysis performed on the
triggers generated by the Waveburst event trigger generator [117], and summarize the
main results.

6.4.1. Data conditioning

The h(t) data from the LIGO detectors contains a large amount of low-frequency noise
which can cause a huge amount of spectral leakage when the DFT is computed from short
chunks of data (say, 32 ms). In order to minimize this effect, the data is whitened using
a 6th order high-pass filter before computing the DFT. An Infinite Impulse Response
filter of order 6 is applied to the data with corner frequency 64 Hz. Apart from this, 11
‘notch’ filters are applied in order to suppress strong spectral lines in the data. These
narrow-band filters are applied at frequencies where strong spectral lines are present,
i.e., at 18, 30, 36, 60, 180, 344, 349, 688, 698, 1144 and 1160 Hz.

6.4.2. Software injections

The first set of injections is performed assuming no calibration error, i.e., we assume
that the detector data is perfectly calibrated so that the two data streams contain
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Figure 6.5.: Left panel shows the fraction of vetoed sine-Gaussian injections plotted against
the predicted false-veto probability. Right panel shows the same plot using band-
limited white-noise burst injections. The injections are done simulating a relative
calibration error −0.1 ≤ δ ≤ 0.1.

exactly the same signal. The injections are done in S4 playground data using sine-
Gaussian waveforms and band-limited white-noise bursts (BLWNB). Parameters chosen
for the sine-Gaussian injections are specified in Section 6.2.1. The parameter range of
the central frequency and hrss of the BLWNB injections are chosen to be same as in the
case of sine-Gaussian injections. Duration and bandwidth are chosen to be 2/f0 s and
f0/10 Hz, respectively. For this set of injections, a fixed number of frequency bins (M
in Eq.(6.15)) are used to calculate the excess-power statistic so that the parameters of
the expected Gamma distribution remain the same for all the injections.

Null stream is constructed as per Eq.(6.1) and the excess-power statistic ǫ is computed
using Eq.(6.15). Figure 6.4 shows the cumulative distribution (left) and probability
density (right) of the distribution of ǫ computed from the sine-Gaussian injections. The
cumulative distribution and probability density of the expected Gamma distribution
are overlaid in the plots. This verifies that the test statistic falls into the expected
distribution in the absence of calibration errors.

Now we proceed to do another set of injections mimicking the calibration errors. Two
data streams are generated with a simulated relative calibration error δ according to
Eq.(6.9). Veto analysis described in Section 6.3 is performed assuming a maximum
(unknown) calibration error |δmax| = 0.1. Injections are performed with three different
values (-0.1, 0, 0.1) of δ and the false-veto fractions corresponding to different thresh-
olds are estimated in each case (assuming |δmax| = 0.1 in all cases). The mean value
(among the three set of injections) of the false-veto fraction is plotted against the cor-
responding false-dismissal probability in Figure 6.5. The left panel corresponds to the
sine-Gaussian injections and the right panel corresponds to the band-limited white-noise

82
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burst injections. In each panel, the extremum values (among the three set of injections)
of false-veto fraction corresponding to each threshold are used to generate the error-bars.
This again verifies that the estimated false-veto fraction is always less than or equal to
the predicted false-dismissal probability.

6.4.3. Null-stream veto analysis on Waveburst triggers

Null-stream veto analysis was performed on S4 Waveburst triggers produced in the
LIGO-only search, assuming a relative calibration error of ǫ = ±10% between h1(t) and
h2(t). Only those triggers which are found to be coincident in the time-shifted analysis
were used for the veto analysis (the ‘background ’ triggers). Parameters of the expected
Gamma distribution are estimated from 64 seconds of data around the trigger-centers.
Data conditioning was done as described in Section 6.4.1.

Out of 3659 coincident triggers in the background, 69% was vetoed using the null-stream
method with a false-dismissal probability of 1%. Figure 6.6 makes a rough comparison
of the efficiency of the null-stream veto with the ‘H1-H2 amplitude cut’ [72]. In the latter
method, all the triggers with amplitude ratio hrss 1/hrss 2 greater than 2 or less than 0.5
are vetoed (where hrss 1 and hrss 2 are the RSS amplitudes of the triggers in H1 and H2,
respectively) because they are highly inconsistent with the expectation from actual GW
signals 7. The horizontal axis of Figure 6.6 reports the false-dismissal probability γ with
which the coincident triggers are vetoed using the null-stream method while the vertical
axis reports the H1-H2 amplitude ratio. The (red) dashed vertical line corresponds to
γ = 1%, which means that the triggers on the left of this line can be vetoed with γ < 1%.
The (green) horizontal lines correspond to the amplitude ratios 0.5 and 2. Triggers with
amplitude ratio less than 0.5 and greater than 2 are vetoed using the amplitude cut.
Out of the 3659 coincident triggers, 53% are vetoed using the amplitude cut. 41% of the
triggers are vetoed by both methods and 81% are vetoed by either of these methods.

This preliminary comparison is only done for illustrative purpose. The reader is warned
that the veto efficiencies of the two methods quoted here may not be compared directly.
The amplitude cuts chosen here need not correspond to a false-dismissal probability of
1%, the chosen value for the null-stream analysis.

6.5. Summary

Th null-stream constructed from the data of multiple GW detectors can be used to
distinguish between actual GW triggers and spurious noise transients in the search for
GW bursts using a network of detectors. The biggest source of error in the analysis comes
from the fact that the present-day detectors are subject to calibration uncertainties. In
this chapter we have proposed an implementation of the null-stream veto in the search
for GW bursts in the data of two co-located interferometers. We estimated the effect

7For actual GW signals, we expect that hrss 1/hrss 2 ≃ 1.
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Figure 6.6.: Comparison of the null-stream veto analysis with the H1-H2 amplitude cut. The
horizontal axis shows the false-dismissal probability of the null-stream in vetoing
the coincident triggers, while the vertical axis shows the ratio of the hrss of the
coincident triggers in H1 and H2. The (red) dashed vertical line corresponds to
a false-dismissal probability γ of 1%, and the triggers on the left of this line can
be vetoed with γ < 1%. The (green) horizontal lines correspond to the amplitude
ratios (hrss 1/hrss 2) 0.5 and 2. Triggers with amplitude ratio less than 0.5 and
greater than 2 are vetoed using the amplitude cut.

of calibration uncertainties in the veto analysis by performing software injections in
Gaussian noise with simulated calibration errors. A strategy is proposed to minimize
this effect, assuming a simple model for the amplitude calibration-error and neglecting
the errors in the phase calibration. This is done by introducing an additional free
parameter in the null-stream combination and minimizing the excess-power in the null-
stream. We compared the estimated fraction of falsely-vetoed GW-like injections with
the predicted false-dismissal probability and found that the estimated fraction has a
good agreement with the prediction. We also estimated the rejection power of the veto
as a function of the false-dismissal probability by injecting random waveforms into the
two data streams. Finally, an example application of the veto method to the data of
the two co-located LIGO detectors in Hanford is presented.
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7. A template bank for gravitational
waveforms from coalescing binary
black holes

7.1. Introduction

As discussed in Chapter 1, among the most promising sources detectable by the ground-
based gravitational-wave (GW) observatories are coalescing compact binaries consisting
of black holes (BHs) and/or neutron stars spiraling toward each other as they lose orbital
energy and angular momentum through gravitational-wave emission. The gravitational-
wave signal from coalescing binaries is conventionally split into three parts: inspiral,
merger and ring down. In the first stage, the two compact objects, usually treated as
point masses, move in quasi-circular orbits (eccentricity, if present initially, is quickly
radiated away). This part of the waveform is described very well by the post-Newtonian
(PN) approximation of general relativity. In this approximation the Einstein equations
are solved in the near zone (which contains the source) using an expansion in terms
of the (small) velocity of the point masses. In the far zone, the vacuum equations are
solved assuming weak gravitational fields, and these two solutions are matched in the
intermediate region [88, 89, 90].

The PN approximation breaks down as the two compact objects approach the ultra-
relativistic regime and eventually merge with each other. Although various resum-
mation methods, such as Padé [167] and effective-one-body (EOB) approaches [168],
have been developed to extend the validity of the PN approximation, unambiguous
waveforms in the merger stage must be calculated numerically in full general relativ-
ity. Recent breakthroughs in numerical relativity [93, 94, 95] have allowed many groups
[93, 94, 95, 169, 170, 171, 172, 173] to evolve BH binaries fully numerically for the last
several orbits through the plunge to single BH formation. The field is now rapidly
developing the capability to routinely evolve generic black-hole binary configurations
in the comparable-mass regime, and to accurately extract the gravitational-wave sig-
nal. Important milestones include simulations of unequal-mass binaries and calcula-
tions of the gravitational recoil effect and the evolution of black-hole binaries with spin
[174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184].

Comparisons with post-Newtonian results are essential for data analysis efforts, and
several groups have published results showing good agreement of various aspects of
non-spinning simulations with post-Newtonian predictions (see e.g. [185, 186, 187, 188,
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189, 190, 191, 192]), and first results for certain configurations with spin have also be-
come available [193, 194]. In order to overcome phase inaccuracies in long evolutions,
significant progress has been made by the Caltech-Cornell group using spectral codes
[195, 196], and by the Jena group using higher (sixth) order finite differencing [197].
Methods to reduce the eccentricity to around 10−3 (so far only for equal-mass binaries)
have been presented by the Caltech-Cornell group [196], and the Jena group [198] (using
initial parameters from PN solutions that take into account radiation reaction). Current
numerical waveforms can be generated for the last (. 10) orbits, and these waveforms
can be joined continuously with analytic PN inspiral waveforms to obtain one full signal.
This was done in [187, 189, 190, 199]. Indeed, there are no fundamental obstructions
to generating the whole waveform, including long inspiral over hundreds of orbits, by
solving the full Einstein equations numerically. But, not only would this be computa-
tionally prohibitive with current methods, it is also unnecessary: the PN formalism is
known to work very well in the weak-field regime (when the BHs are well-separated),
and is a low-cost and perfectly adequate substitute to fully general relativistic solutions
in that regime.

The numerically generated part of the gravitational-wave signal from coalescing binaries
also includes the final stage of the coalescence, when a single perturbed black hole is
formed and it rapidly loses its deviations from a Kerr black hole via gravitational waves.
This part of the signal can be decomposed as a superposition of exponentially damped
modes, and is called quasi-normal mode ‘ring down’, by analogy with the vibrations of
a bell. The detectable part of the ring down is rather short and only a few modes (if
not only the dominant one) are expected to be important/detectable by initial ground-
based observatories. This will not be true, however, for the advanced detectors [200]
and certainly it is not the case for LISA, the planned space-borne gravitational-wave
observatory. Indeed, the majority of the signal-to-noise ratio (SNR) comes from the
quasi-normal mode ringing of binary systems with a total mass above a few 106M⊙

[35]. For LISA, and also perhaps for the next generation of ground based detectors, it
will be possible to detect several quasi-normal modes and test the ‘no hair’ theorem,
according to which all modes are functions of a BH’s mass and spin [33, 34, 35].

Joining analytically modeled inspiral with numerically generated merger and ring down
allows us to produce the complete gravitational-wave signal from coalescing binaries,
and to use it in the analysis of detector data. There are several benefits to using the
whole signal in searches. The most obvious one is the increase in SNR in a fully co-
herent matched filtering search. Increase in SNR implies increase in the event rate and
improvement in the parameter estimation. Including the inspiral, merger and ring down
parts in a template waveform also means that the waveform has a more complex struc-
ture. This extra complexity will also bring about some improvement in the parameter
estimation [201] and possibly also a reduction in the false alarm rate in analysis of
the data from the ground-based network of detectors. This is because it is in general
harder for the noise to mimic a complex signal1. For LISA, the detection of inspiralling

1At least we expect this to happen for those binaries for which both the inspiral and the merger
contribute significantly to SNR.
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super-massive black holes is not a problem; the SNR is expected to be so large that we
expect some signals to be visible by eye in LISA data. However, using the full signal for
LISA data analysis is equally important because the full signal is essential in estimating
parameters of the binary with the required accuracy. This is important not only from
the astrophysical point of view, but also because we need to subtract loud signals from
the data in order to detect/analyze other signals. Imperfect signal removal due to er-
rors in the parameter estimation will result in large residuals and will adversely affect
subsequent analyses. Improved parameter estimation will also enable GW observations
(in conjunction with electromagnetic observations) to constrain important cosmological
parameters, most importantly the equation of state of dark energy [202, 201].

7.1.1. Summary and organisation of this chapter

The numerical waveforms described above are still computationally expensive and can-
not be used directly to densely cover the parameter space of the binary BHs that will
be searched over by matched filtering techniques. A promising alternative is to use
the post-Newtonian and numerical-relativity waveforms to construct an analytic model
that sufficiently accurately mimics a true signal [190, 199]. This chapter proposes a
two-parameter family of template waveforms which can match physical signals from
non-spinning binaries in quasi-circular orbits with fitting factors above 99%. These
waveforms are explicitly parametrized by the physical parameters of the binary. This
two-dimensional template family is shown to be not only ‘effectual’ in detecting the sig-
nals from binary BH coalescences, but also ‘faithful’ in estimating the parameters of the
binary. This family of template waveforms can be used to densely cover the parameter
space of the binary, thus avoiding the computational burden of generating numerical
waveforms in each grid point in the parameter space. The effectualness and faithful-
ness (see Section 7.3 for definitions) of the template family are computed in the context
of three different ground-based detectors: namely, Initial LIGO, Virgo and Advanced
LIGO. We also compare the sensitivity of a search which coherently includes all three
(inspiral, merger and ring down) stages of the BH coalescence with other template-based
searches which look for each stage separately.

The ‘target signals’ used in this work are constructed by matching the numerical-
relativity waveforms to a particular family (TaylorT1 approximant [107]) of post-Newtonian
waveforms, but this choice is by no means necessary. Indeed, we expect that more ro-
bust ways of constructing post-Newtonian approximants, such as the effective one-body
approach [168] or Padé resummation approach [167], will give better agreement with
numerical-relativity (NR) waveforms. But the purpose of this work is to explicitly pre-
scribe a general procedure to produce phenomenological waveforms, and to construct
interpolated template banks using these parametrized waveforms. It is shown that, given
the number of numerical wave cycles employed, even a simple PN choice like TaylorT1
leads to very faithful and effectual templates, and significantly increases the possible
range of gravitational-wave searches. The use of improved PN approximants will re-
quire a smaller number of NR cycles, thereby further reducing computational cost for
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template construction.

This chapter is structured as follows. Section 7.2 summarizes the methods of current
numerical-relativity simulations, including a setup of the initial data that allows an un-
ambiguous comparison with post-Newtonian results, and the wave extraction techniques.
Waveform generation using the restricted post-Newtonian approximation is briefly out-
lined in Section 7.3. This section also reviews the main data-analysis techniques and
defines notations that are used in the subsequent sections. A phenomenological template
family parametrized only by the masses of the two individual black holes is constructed in
Section 7.4. First we combine restricted 3.5PN waveforms [91] with results from NR sim-
ulations to construct ‘hybrid’ waveforms for the quasi-circular inspiral of non-spinning
binaries with possibly unequal masses. A phenomenological family of templates is then
introduced in the frequency domain. Initially the template family is parametrized by 10
phenomenological parameters. We then find a unique mapping of these 10 parameters
to the two physical parameters: namely, the total mass M and the symmetric mass
ratio η ≡M1M2/M

2, so that the template family is just two-dimensional. The resulting
templates have remarkably high fitting factors with target waveforms. The faithfulness
of the templates and the bias in the estimation of the parameter of the binary are also
computed here. A comparison of the sensitivity of the search using the proposed tem-
plate family with other existing template-based searches is also presented. Finally, the
main results are summarised in Section 7.5. Some details of the calculations involved
are described in Appendices A and B. Geometrical units are adopted throughout this
chapter: G = c = 1.

7.2. Numerical simulations and wave extraction

Numerical simulations were performed with the BAM [171] and CCATIE [183] codes.
Both codes evolve black-hole binaries using the ‘moving-puncture’ approach [94, 95]. The
method involves setting up initial data containing two black holes via a Brill-Linquist-
like wormhole construction [203], where the additional asymptotically flat end of each
wormhole is compactified to a point, or ‘puncture’. A coordinate singularity exists at
the puncture, but can be stably evolved using standard finite-difference techniques, and
is protected by causality from adversely affecting the physically relevant external space-
time. This prescription allows black holes to be constructed on a 3D Cartesian numerical
grid without recourse to excision techniques, and also provides a simple way to generate
any number of moving, spinning black holes [204, 205]. Given an initial configuration
of two black holes, the data are evolved using a conformal and traceless ‘3+1’ decom-
position of Einstein’s equations [206, 207, 208]. In addition the gauge is evolved using
the ‘1+log’ [209, 210] and ‘Γ-driver’ equations [211, 210] and the coordinate singularity
in the conformal factor is dealt with by evolving either the regular variable χ = ψ−4

[94] (in BAM) or φ = lnψ (in CCATIE), which diverges ‘slowly’ enough so as not lead
to numerical instabilities. The standard moving puncture approach consists of all these
techniques, and causes the ‘punctures’ to quickly assume a cylindrical asymptotics [212],
and allows them to move across the numerical grid. This method has been found to
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allow accurate, stable simulations of black holes over many (> 10) orbits through merger
and ring down.

In the initial data construction we must specify the masses, locations and momenta of
the two black holes (spinning black holes are not considered in this work). The mass of
each black hole, Mi, is specified in terms of the Arnowitt-Deser-Misner (ADM) mass at
each puncture. This corresponds to the mass at the other asymptotically flat end which
is, to a very good approximation, equal to irreducible mass of the apparent-horizon mass
[213, 214, 215]

Mi =

√

Ai
16π

. (7.1)

where Ai is the area of the apparent horizon. We assume that this mass is the same
as the mass used in post-Newtonian formulas. This assumption is really expected to be
true only in the limit where the black holes are infinitely far apart and stationary. As
such we consider any error in this assumption as part of the error due to starting the
simulation at a finite separation. The important point is that a binary with horizon
masses M1 and M2 should be compared with a post-Newtonian system with the same
mass parameters. This allows us to provide the same overall scaleM = M1+M2 for both
numerical and post-Newtonian waveforms, and is crucial for comparison and matching.

The initial momenta of the black holes are chosen to correspond approximately to
quasi-circular (low eccentricity) inspiral. For equal-mass evolutions performed with the
CCATIE code, parameters for quasi-circular orbit were determined by minimizing an
effective potential for the binary [216, 217, 183]. For the unequal-mass simulations per-
formed with the BAM code [175], initial momenta were specified by the 3PN-accurate
quasi-circular formula given in Section VII of [171]. For the longer unequal-mass simu-
lations performed with higher-order spatial finite-difference methods [197] and used for
verification, the initial momenta were taken from a PN prescription that takes radiation
reaction into account to reduce the initial eccentricity to below e ≈ 10−3 [198].

The Einstein equations are solved numerically with standard finite-difference techniques.
Spatial derivatives are calculated at fourth- or sixth-order accuracy, and the time evo-
lution is performed with a fourth-order Runge-Kutta integration. Mesh refinement is
used to achieve high resolution around the punctures and low resolutions far from the
black holes, allowing the outer boundary to be placed very far (at least > 300M) from
the sources. Full details of the numerical methods used in the two codes are given in
[171] for BAM and [183] for CCATIE.

In the wave-zone, sufficiently far away from the source, the spacetime metric can be
accurately described as a perturbation of a flat background metric. Let hab denote the
metric perturbation where a, b denote spacetime indices, and t be the time coordinate
used in the numerical simulation to foliate the spacetime by spatial slices. Working in
the transverse-traceless (TT) gauge, all the information about the radiative degrees of
freedom is contained in the spatial part hij of hab, where i, j denote spatial indices. Let
us use a coordinate system (x, y, z) on a spatial slice so that the z-axis is parallel to
the total angular momentum of the binary system at the starting time. Let ι be the
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inclination angle from the z-axis, and let φ be the phase angle and r the radial distance
coordinates so that (r, ι, φ) are standard spherical coordinates in the wave-zone.

The radiative degrees of freedom in hab can be written in terms of two polarizations h+

and h×:

hij = h+(e+)ij + h×(e×)ij , (7.2)

where e+,× are the basis tensors for transverse-traceless tensors in the wave frame

(e+)ij = ι̂iι̂j − φ̂iφ̂j , and (e×)ij = ι̂iφ̂j + ι̂jφ̂i . (7.3)

Here ι̂ and φ̂ are the unit vectors in the ι and φ directions, respectively, and the wave
propagates in the radial direction.

In our numerical simulations, the gravitational waves are extracted by two distinct
methods. The first one uses the Newman-Penrose Weyl tensor component Ψ4 [218, 219]
which is a measure of the outgoing transverse gravitational radiation in an asymptoti-
cally flat spacetime. In the wave-zone it can be written in terms of the complex strain
h = h+ − ih× as [96],

h = lim
r→∞

∫ t

0
dt′
∫ t′

0
dt′′Ψ4. (7.4)

An alternative method for wave extraction determines the waveform via gauge-invariant
perturbations of a background Schwarzschild spacetime, via the Zerilli-Moncrief formal-
ism (see [220] for a review). In terms of the even (Q+

ℓm) and odd (Q×
ℓm) parity master

functions, the gravitational wave strain amplitude is then given by

h =
1√
2r

∑

ℓ,m

(

Q+
ℓm − i

∫ t

−∞
Q×
ℓm(t′)dt′

)

Y −2
ℓm + O

(

1

r2

)

. (7.5)

Results from the BAM code have used the Weyl tensor component Ψ4 and Eq. (7.4),
with the implementation described in [171]. While the CCATIE code computes wave-
forms with both methods, the AEI-CCT waveforms used here were computed using the
perturbative extraction and Eq. (7.5). Beyond an appropriate extraction radius (that
is, in the wave-zone), the two methods for determining h are found to agree very well
for moving-puncture black-hole evolutions of the type considered here [179].

It is useful to discuss gravitational radiation fields in terms of spin-weighted s = −2
spherical harmonics Y s

ℓm, which represent symmetric tracefree 2-tensors on a sphere,
and in this work we will only consider the dominant ℓ = 2, m = ±2 modes (see [188]
for the higher ℓ contribution in the unequal-mass case), with basis functions

Y −2
2−2 ≡

√

5

64π
(1 − cos ι)2 e−2iφ,

Y −2
22 ≡

√

5

64π
(1 + cos ι)2 e2iφ. (7.6)
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Our ‘input’ numerical relativity waveforms thus correspond to the projections

hℓm ≡ 〈Y −2
ℓm , h〉 =

∫ 2π

0
dφ

∫ π

0
hY −2

ℓm sin θ dθ , (7.7)

of the complex strain h, where the bar denotes complex conjugation. In the cases
considered here, we have equatorial symmetry so that h22 = h2−2, and

h(t) =

√

5

64π
e2iφ

(

(1 + cos ι)2 h22(t) + (1 − cos ι)2 h̄22(t)
)

. (7.8)

In this work, the binary is assumed to be optimally-oriented, so that ι = 0. Thus

h(t) = 4

√

5

64π
h22(t) ≈ 0.6308 h22(t). (7.9)

7.3. Post-Newtonian waveforms and introduction to data-analysis

concepts

This section introduces notation that will be used later in this chapter and describe
briefly the main data-analysis techniques currently used in gravitational-wave astron-
omy.

7.3.1. Restricted post-Newtonian waveforms

We use the restricted PN waveform at mass-quadrupole order, which has a phase equal
to twice the orbital phase up to highest available order in the adiabatic approximation,
and amplitude accurate up to leading order. The corresponding h is given by

h =
ηM

r
v2(t)e2iφ

[

(1 + cos ι)2e−iϕ(t) + (1 − cos ι)2eiϕ(t)
]

(7.10)

where M ≡ M1 + M2 is the total mass, η ≡ M1M2/M
2 is the symmetric mass ratio,

r is the observation radius, ι is the inclination angle; the quantity v(t) is an expansion
parameter, defined by v = (Mϕ̇/2)1/3 with ϕ(t) equal to twice the adiabatic orbital
phase. The waveform seen by the detector is given by

s(t) = 4 η
M

r
Av2(t) cos[ϕ(t) + ϕ0], (7.11)

where, for short-lived signals (i.e., with duration much shorter than the earth rotation
time, as well as de-phasing time scale due to Doppler shifts induced by earth motion
and rotation), A and ϕ0 are numerical constants depending on the relative position
and orientation of the source relative to the detector, as well as the antenna pattern
functions of the detector. In PN theory, the adiabatic phase ϕ(t) is determined by the
following ordinary differential equations (also called the phasing formula):

dϕ

dt
=

2v3

M
,

dv

dt
= − F(v)

ME′(v)
. (7.12)
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In these expressions, E′(v) = dE(v)/dv where E(v) is the binding energy (per unit
mass) of the system, and F(v) is the GW luminosity. E(v) and F(v) are computed as
post-Newtonian expansions in terms of v [221]. Currently, the binding energy function
E(v) has been calculated to v6 (3PN) accuracy by a variety of methods [222, 223, 224,
225, 226, 227, 228, 229]. The flux function F(v), on the other hand, has been calculated
to v7 (3.5PN) accuracy [230, 91] up to now only by the multipolar-post-Minkowskian
method and matching to a post-Newtonian source [221].

The inspiralling phase is usually pushed up to the point where the adiabatic evolution of
circular orbits breaks down due to the lack of further stable circular orbits. In the test-
mass limit, the last (or innermost) stable circular orbit (ISCO) can be computed exactly
(at 6M in Schwarzschild coordinates). For comparable-mass binaries, on the other hand,
the ISCO cannot always arise unambiguously from PN theories. In adiabatic models,
the maximum-binding-energy condition (referred to as MECO, or the maximum binding
energy circular orbit, [231]) can be used in place of the ISCO. This condition is reached
when the derivative of the orbital binding energy with respect to orbital frequency
vanishes. As a consequence, in this work, the waveforms are evolved in time up to
MECO: E′(v) = 0. It may be noted that the ISCO and MECO may not be physically
meaningful beyond the test-mass limit, but they make convenient cutoff criteria. The
appropriate region of validity of PN waveforms can only be determined by comparison
with fully general relativistic results, such as the numerical simulations that we discussed
earlier.

Given E(v) and F(v), one can construct different, but equivalent in terms of accuracy,
approximations to the phasing by choosing to retain the involved functions or to re-
expand them. Indeed, the different PN models which describe the GW signal from
inspiralling binaries agree with each other in the early stages of inspiral; but start to
deviate in the late inspiral. The classification and explicit form of various models is
nicely summarized in [107]. The PN waveforms used in this work are obtained by
numerically solving Eqs. (8.1), called the TaylorT1 approximant.

7.3.2. Introduction to matched filtering

Since we can model the signal reasonably well, it is natural to employ matched filtering
(which is the optimal detection strategy for a signal of known shape in the stationary
Gaussian noise) to search for the gravitational-wave signal. Suppose the detector’s data
x(t) contains noise n(t), and possible signal s(t), i.e., x(t) = n(t) + s(t). Assuming n to
be stationary Gaussian noise, it is convenient to work in the Fourier domain, because
the statistical property of the noise is completely characterized by its power spectral
density Sn(f), which is given by (here we use a single-sided spectrum)

〈ñ(f)ñ∗(f ′)〉 =
1

2
Sn(f) δ(f − f ′) , (7.13)
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where ñ(f) is the Fourier Transform of n(t)

ñ(f) ≡
∫ ∞

−∞
n(t)e−2πift dt , (7.14)

and 〈. . .〉 denotes taking the expectation value. Based on the detector noise spectrum,
we introduce a Hermitian inner product:

(g|h) ≡ 2

∫ ∞

0

g̃∗(f)h̃(f) + g̃(f)h̃∗(f)

Sn(f)
df . (7.15)

For the data x with known signal s, the optimal detection statistic is given by applying
a template h with the same shape as s, or h = αs:

ρopt ≡ (x|h) . (7.16)

The detectability of the signal is then determined by the SNR of ρopt,

S

N
=

(s|h)
√

〈(h|n)(n|h)〉

∣

∣

∣

∣

∣

h=αs

= (s|s)1/2. (7.17)

(Note that the SNR does not depend on the overall normalization of h.) In case the
template h is not exactly of the same shape as s, the SNR will be reduced to

S

N
= (s|s)1/2M , (7.18)

where M ≤ 1 is the match of the template to the signal, given by

M[s, h] ≡ (s|h)
√

(s|s) (h|h)
≡ (ŝ|ĥ) , (7.19)

and where a hat denotes a normalized waveform. For more details, the reader is referred
to Ref. [232].

7.3.3. Template banks, effectualness and faithfulness

We now consider the more realistic problem of attempting to detect a family of wave-
forms s(θ), parametrized by a vector of physical parameters θ ∈ Θ, using a family
of templates h(λ) parametrized by a vector of parameters λ ∈ Λ. We first introduce
the concepts of physical template bank and phenomenological template bank. Roughly
speaking, physical template banks are constructed from well-motivated physical models
(e.g., approximation up to a certain order) [233], while phenomenological banks are con-
structed in an ad-hoc manner to mimic the desired physical signals with high accuracy.
For physical banks, the vectors θ and λ consists of the same set of physical parame-
ters, while for phenomenological banks, the vector λ usually contains phenomenological
parameters, which can be larger or smaller in number than the physical parameters.
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Figure 7.1.: Construction of the phenomenological template bank: (i) mapping physical signals
(solid curve) into a sub-manifold (dashed curve, with example templates marked
by dots) of a larger-dimensional template bank (curved surface), (ii) obtaining a
lower-dimensional phenomenological bank with the same number of parameters
as physical parameters, through interpolation (solid curve on the curved surface,
with example templates marked by triangles), and (iii) Estimating the bias of the
lower-dimensional interpolated bank by mapping physical signals into the bank
(with images of example signals marked by dots).

Two phenomenological template families [112, 113] are used currently in the search for
BH binaries in LIGO data [71, 234]. They each represent a different motivation for
introducing phenomenological banks: (i) when we have uncertainty in the signal model,
we can produce a template bank with larger detection efficiency by introducing extra
(phenomenological) parameters (BCV1, [112]) so that dim(Λ) > dim(Θ); (ii) when the
true signal depends on too many parameters and is too difficult to search over, it is
sometimes possible to come up with a model with fewer (phenomenological) parameters
(dim(Λ) < dim(Θ)) and still high fitting factors (BCV2, [113]).

The detection efficiency of a template bank towards a specific signal s(θ) can be mea-
sured by the threshold SNR above which the detection probability exceeds a certain
minimum (usually 50%), while the false-alarm probability is kept below a certain max-
imum (usually 1% for one-year data). The threshold value depends (logarithmically, in
the case of Gaussian noise) on the number of statistically independent templates, and
(inverse-proportionally) on the fitting factor (FF) [235]:

FF[h;θ] ≡ max
λ

M[s(θ), h(λ)] ≡ M[s(θ), h(λmax)] . (7.20)

A bank with high FF is said to be effectual. Typically, we require that the total mismatch
between the template and true signal (including the effects of both the fitting factor
and the discreteness of the template bank) to not exceed 3%. We shall see that this
requirement is easily met by our template bank.

It is natural to associate every point θ in the physical space Θ with the best matched
point λmax ∈ Λ. This leads to a mapping P : Θ 7→ Λ defined by

P (θ) = λmax . (7.21)
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This mapping will play a key role in the construction of our template bank. We will
assume the mapping P to be single-valued, i.e., given a target signal, the best-matched
template is unique. This mapping is schematically illustrated in the left panel of Fig-
ure 7.1.

For a physical template bank with θ and λ the same set of parameters (which we use
θ to denote), it is most convenient to identify the best-match parameter θmax as the
estimation of the original parameter θ. In general this will lead to a systematic bias

∆θ = θmax − θ = P (θ) − θ . (7.22)

A bank with a small bias (as defined above) is said to be faithful.

However, if we assume no uncertainty in the true waveforms (thereby excluding the case
of BCV1), then as long as P is invertible, a non-faithful physical or phenomenological
bank can always be converted into a faithful bank by the re-parametrization

hfaithful(θ) ≡ h ◦ P (θ) (7.23)

where we have used the standard notation h ◦ P (θ) ≡ h(P (θ)). In other words, each
template λ in the image set of physical signals P (Θ) is labeled by physical parameters
θ = P−1(λ). For this reason, we require P to be invertible. It is quite conceivable that
for physical banks, P should be invertible, if the physical bank does not fail to describe
the true waveforms too dramatically (and of course assuming the true waveform does
contain independent information about the physical parameters θ). In this way, all
reasonable physical banks can be made faithful.

By contrast, if for some phenomenological bank (e.g., BCV2 if we only take into account
the intrinsic parameters of the bank), P is a many-to-one map, with P (θ1) = P (θ2) for
some θ1 6= θ2. Then for a physical signal with parameter θ1, the template bank hfaithful

would achieve the same best match at both θ1 and θ2, making physical parameter
determination non-unique. In this case, we can simply keep using the phenomenological
bank h(λ); once a detection is made with λmax, the a set of parameters P−1(λmax)
would be the best knowledge we have about the physical parameters of the source. (In
practice, statistical uncertainty also applies to λmax.)

7.4. A phenomenological template family for black-hole coalescence

waveforms

7.4.1. Strategy for constructing the phenomenological bank

In our situation, since it is expensive to generate the entire physical bank of templates
using numerical simulations, we first construct a highly effectual 10-dimensional phe-
nomenological bank (motivated by the format of PN waveforms), with effectualness
confirmed by computing its FF with a relatively small number of ‘target signals’. Since
we are considering only non-spinning black holes, the physical parameter space Θ is the

95



A template bank for gravitational waveforms from coalescing binary black holes

set of all masses and symmetric mass ratios (M,η) that we wish to consider. As we shall
see shortly, for our case the phenomenological parameter space Λ is a 10-dimensional
space. Our templates will be denoted by

h(λ) = h10D(λ) . (7.24)

According to the discussion above [Eqs. (7.21)–(7.23)], if the mapping P : Θ 7→ Λ can
indeed be obtained and inverted, then a faithful two-dimensional (2D) phenomenological
bank can be constructed as

hfaithful
2D (θ) = h10D ◦ P (θ) . (7.25)

However, if our aim was to know P exactly, then in principle we would have to calculate
accurate numerical waveforms for every (M,η) and to calculate the corresponding λ in
each case. This is obviously not practical, and we shall instead compute P at a few
chosen points in Θ and interpolate to obtain an approximation to P . The detailed steps
are as follows:

i. While confirming effectualness of the ten-dimensional (10D) bank, we simultaneously
obtain N (a number manageable in terms of computational costs) data points for
the mapping P ,

λ(n)
max = P (θ(n)) , n = 1, 2, . . . , N (7.26)

which gives discrete points on the 2D manifold P (Θ). This is depicted by the left
panel of Figure 7.1.

ii. Using these discrete points, we perform a smooth interpolation of P denoted by Pint.
The form of Pint is motivated by PN waveforms, but with expansion coefficients
determined by interpolation:

Pint(θ) = λint . (7.27)

This gives us a 2D phenomenological bank,

h2D(θ) = h10D ◦ Pint(θ) . (7.28)

This is depicted by the middle panel of Figure 7.1. Due to the discrete choice of
target waveforms, the constrained form of Pint, and numerical errors (in the target
waveforms as well as in searching for best-fit parameters), the interpolation will
have errors, even at the sample points. This means the 2D bank will have slightly
lower effectualness than the 10D bank.

iii. We re-test the effectualness of this 2D bank. Note that there will be a new mapping
P2D which maps the physical parameters to the best fit parameters of this 2D

bank. We therefore find the best-matched parameters λ
(n)
max′ , therefore obtaining

discrete samples of the mapping P2D:

λ
(n)
max′ = P2D(θ(n)) , (7.29)
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yielding a systematic bias of

∆θ(n) = P−1
int (λ

(n)
max′) − θ(n) . (7.30)

This is depicted in the right panel of Figure 7.1.

In this work, we construct the 2D template bank h2D(θ) and estimate the systematic
bias ∆θ(n) in the estimation of parameters θ, as described above. But, it is also possible
to construct an interpolation P2D int from the data points of P2D so that we can construct
a fully faithful (no systematic bias) bank (up to interpolation error)

hfaithful
2D (θ) = h10D ◦ Pint ◦ P2D int(θ). (7.31)

7.4.2. Constructing the ‘target signals’

The ultimate aim of this work is to create a family of analytical waveforms that are very
close to the gravitational waveforms produced by coalescing binary black holes. As a
first step, we need to construct a set of ‘target signals’ containing all the three (inspiral,
merger and ring down) stages of the binary black hole coalescence. Although numerical
relativity, in principle, is able to produce gravitational waveforms containing all these
stages, the numerical simulations are heavily constrained by their high computational
cost. It is therefore necessary, at the present time, to use results from post-Newtonian
theory to extend the waveforms obtained from numerical relativity.

A set of ‘hybrid waveforms’ is produced by matching the PN and NR waveforms in
an overlapping time interval t1 ≤ t < t2. The obvious assumption involved in this
procedure is that such an overlapping region exists and that in it both approaches yield
the correct waveforms. These hybrid waveforms are assumed to be the target signals
that we want to detect in the data of GW detectors.

The NR and PN waveforms are given by Eq. (7.8) and Eq. (7.10), respectively (with
ι = 0). The (complex) time-domain waveform h(t,µ) from a particular system is
parametrized by a set of ‘extrinsic parameters’ µ = {ϕ0, t0}, where ϕ0 is the initial phase
and t0 is the start time of the waveform. The PN waveforms hPN(t,µ) are matched with
the NR waveforms hNR(t,µ) by minimizing the integrated squared absolute difference,
δ, between the two waveforms, i.e.,

δ ≡
∫ t2

t1

∣

∣

∣
h

PN

(t,µ) − a h
NR

(t,µ)
∣

∣

∣

2
dt. (7.32)

The minimization is carried out over the extrinsic parameters µ of the PN waveform
and an amplitude scaling factor a, while keeping the ‘intrinsic parameters’ (M and η) of
both the PN and NR waveforms the same 2. The hybrid waveforms are then produced

2Here the amplitude scaling factor a is introduced because of two reasons. (i) The short NR waveforms
used to construct the phenomenological template family (see the following discussion in this section)
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Figure 7.2.: NR waveforms (thick/red), the ‘best-matched’ 3.5PN waveforms (dashed/black),
and the hybrid waveforms (thin/green) from three binary systems. The top panel
corresponds to η = 0.25 NR waveform produced by the AEI-CCT group. The
second, third and fourth panels, respectively, correspond to η = 0.25, 0.22 and
0.19 NR waveforms from produced by the Jena group. In each case, the matching
region is −750 ≤ t/M ≤ −550 and we plot the real part of the complex strain (the
‘+’ polarization). .
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by combining the ‘best-matched’ PN waveforms and the NR waveforms in the following
way:

h
hyb(t,µ) ≡ a0 τ(t) h

NR(t,µ) + (1 − τ(t)) h
PN(t,µ0) (7.33)

where µ0 and a0 denote the values of µ and a for which δ is minimized, and τ is a
weighting function, defined as

τ(t) ≡























0 if t < t1

t−t1
t2−t1

if t1 ≤ t < t2

1 if t2 ≤ t.

(7.34)

In this work, two families of hybrid waveforms are used. Both are produced by match-
ing 3.5 PN TaylorT1 waveforms with NR waveforms. The first set is constructed by
using long (> 10 inspiral cycles) NR waveforms. This include equal-mass (η = 0.25)
NR waveforms produced by the AEI-CCT group using their CCATIE code employing
fourth-order finite differencing to compute spatial derivatives, and equal and unequal-
mass (η = 0.19, 0.22, 0.25, or M1/M2 = 1, 2, 3) waveforms produced by the Jena group
using their BAM code employing sixth-order finite differencing and PN-motivated initial-
data parameters. The second set of hybrid waveforms is constructed by using NR wave-
forms produced by the Jena group using their BAM code employing fourth-order finite
differencing. These are short waveforms (∼ 4 inspiral cycles) densely covering a wide
parameter range (0.16 ≤ η ≤ 0.25). We use the second set of hybrid waveforms to con-
struct the phenomenological family and to test its efficiency in detecting signals from
black hole coalescences, and use the first set of hybrid waveforms (which are closer to
the actual signals) to verify our results.

The former family of hybrid waveforms is shown in Figure 7.2. The NR waveforms
from three different simulations (η = 0.25, 0.22, 0.19) done by AEI and Jena groups are
matched with 3.5PN inspiral waveforms over the matching region −750 ≤ t/M ≤ −550.
The hybrid waveforms are constructed by combining the above as per Eq. (7.33) and
Eq. (7.34).

The robustness of the matching procedure can be tested by computing the overlaps
between hybrid waveforms constructed with different matching regions. If the overlaps
are very high, this can be taken as an indication of the robustness of the matching
procedure. A more detailed discussion of this will be presented in [236].

were extracted at a finite extraction radius. This introduces some error in the amplitude of the
NR waveforms. (ii) Since the ‘long and accurate’ NR waveforms (see the following discussion) are
extrapolated to an infinite extraction radius, we expect the amplitude of these waveforms to be
correct within numerical accuracy of the simulations. But, it turns out that the restricted PN
waveform has an amplitude which is inconsistent with the NR waveform by roughly constant factor
6 ± 2% in the frequency range we consider here [191]. For simplicity, we take the amplitude of the
restricted PN waveform as the amplitude scale for the hybrid waveforms. It should be noted that,
since we use normalised templates, the errors introduced by this (< 10%) do not affect the fitting
factors or the detection statistic. But the horizon distances computed in Section 7.4.6 can have an
error up to 10% due to this choice.
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Figure 7.3.: Fourier domain magnitude (left) and phase (right) of the (normalized) hybrid
waveforms. For the phase the leading order linear in time part has already been
subtracted. Symmetric mass-ratio η of each waveform is shown in the legends.
These waveforms are constructed by matching 3.5PN waveforms with the long
NR waveforms produced by the Jena group.

Figure 7.3 shows the hybrid waveforms of different mass-ratios in the Fourier domain.
In particular, the panel on the left shows the amplitude of the waveforms in the Fourier
domain, while the panel on the right shows the phase. These waveforms are constructed
by matching 3.5PN waveforms with the long NR waveforms produced by the Jena group.
In the next section, we will try to parametrize these Fourier domain waveforms in terms
of a set of phenomenological parameters.

7.4.3. Parametrizing the hybrid waveforms

We propose a phenomenological parametrization to the hybrid waveforms in the Fourier
domain. Template waveforms in the Fourier domain are of particular preference be-
cause, (i) a search employing Fourier domain templates is computationally inexpensive
compared to one using time domain templates (ii) parametrization of the hybrid wave-
forms is easier in the Fourier domain (iii) the explicit frequency-domain parametrization
makes the subsequent calculation of many useful objects, such as the Fisher information
matrix, much easier.

We take our motivation from the restricted post-Newtonian approximation to model the
amplitude of the inspiral stage of the hybrid waveform, i.e., the amplitude is approx-
imated to leading order as a power law f−7/6 in terms of the Fourier frequency f (as
follows straight from adding leading order radiation reaction to Newtonian dynamics).
The amplitude of the merger stage is empirically approximated as a power law f−2/3

(consistent with the observation of [187]), while the amplitude of the ring down stage is
known to be a Lorentzian function around the quasi-normal mode ring down frequency.
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Figure 7.4.: Fitting factors of the hybrid waveforms with the phenomenological waveform fam-
ily. Horizontal axis shows the symmetric mass ratio of the binary. Fitting factors
are calculated assuming a white noise spectrum, and hence are independent of the
mass of the binary.

Similarly, we take our motivation from the stationary phase approximation (see, for
example, [42]) of the inspiral waveform to write the Fourier domain phase of the hybrid
waveform as a series expansion in powers of f . As we shall see later, this provides an
excellent approximation of the phase of the hybrid waveform.

Phenomenological waveforms

The phenomenological waveforms in the Fourier domain are written as

u(f) ≡ Aeff(f) eiΨeff (f). (7.35)

where Aeff(f) is the amplitude of the waveform in the frequency domain, which is written
in terms of a set of ‘amplitude parameters’ α = {fmerg, fring, σ, fcut} as

Aeff(f) ≡ C



























(f/fmerg)
−7/6 if f < fmerg

(f/fmerg)
−2/3 if fmerg ≤ f < fring

wL(f, fring, σ) if fring ≤ f < fcut

(7.36)

where fcut is the cutoff frequency of the template and fmerg is the frequency at which the
power-law changes from f−7/6 to f−2/3 (as noted previously in [187] for the equal-mass
case). C is a numerical constant whose value depends on the relative orientations of the
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Figure 7.5.: Hybrid waveforms (solid lines) in the frequency domain, and the ‘best-matched’
phenomenological waveforms (dashed lines). The left panel shows the Fourier
domain magnitude, while the right panel shows the phase. For the phase the
leading order linear in time part has already been subtracted. These waveforms
correspond to a binary with η = 0.25, and are constructed from the ‘short’ NR
waveforms produced by the Jena group (see Section 7.4.2). The ‘dip’ in the left
panel at Mf ≃ 2 × 10−2 is due to the small eccentricity present in the first few
cycles of the NR waveform.

interferometer and the binary orbit as well as the physical parameters of the binary (see
below). Also, in the above expression,

L(f, fring, σ) ≡
(

1

2π

)

σ

(f − fring)2 + σ2/4
, (7.37)

represents a Lorentzian function of width σ centered around fring. The normalization
constant w is chosen in such a way that Aeff(f) is continuous across the ‘transition’
frequency fring, i.e.,

w ≡ πσ

2

(

fring

fmerg

)−2/3

. (7.38)

Taking our motivation from the stationary-phase approximation of the gravitational-
wave phase, the effective phase Ψeff(f) is written as an expansion in powers of f ,

Ψeff(f) = 2πft0 + ϕ0 +
7
∑

k=0

ψk f
(k−5)/3 , (7.39)

where t0 is the time of arrival, ϕ0 is the frequency-domain phase offset, and ψ =
{ψ0, ψ2, ψ3, ψ4, ψ6, ψ7} are the ‘phase parameters’, that is the set of phenomenolog-
ical parameters describing the phase of the waveform.

102



7.4 A phenomenological template family for black-hole coalescence waveforms

The numerical constant C in Eq. (7.36) can be determined by comparing the ampli-
tude of the phenomenological waveforms with that of the restricted post-Newtonian
waveforms in the frequency domain.

In the restricted post-Newtonian approximation, the Fourier transform of the gravita-
tional signal from an optimally-oriented binary located at an effective distance d can
be written as in Eq. (B.1). We expect that in the inspiral stage (f < fmerg) of our
phenomenological waveforms the amplitude will be equal to that of the post-Newtonian
waveforms as given in Eq. (B.1). Thus, in the case of an optimally-oriented binary, the
numerical constant C can be computed as

C =
M5/6 f

−7/6
merg

d π2/3

(

5 η

24

)1/2

. (7.40)

This ‘physical’ scaling will be useful when we estimate the sensitivity of a search using
this template family (see Section 7.4.6 and Appendix B).

We now compute the fitting factors of the hybrid waveforms with the family of phe-
nomenological waveforms by maximizing the overlaps over all the parameters, i.e.,
{α,ψ, ϕ0, t0} of the phenomenological waveforms. While doing this, we also find the
parameters, αmax and ψmax, of the ‘best-matched’ phenomenological waveforms. This
calculation is described in detail in Appendix A.

We first take a few (seven) hybrid waveforms coarsely spaced in the parameter range
0.16 ≤ η ≤ 0.25, and compute the fitting factors and the best-matched phenomenological
parameters. These samples in the parameter space are used to construct the interpolated
template bank (see next subsection). We then test the effectualness and faithfulness of
the template bank using all (∼ 30) hybrid waveforms finely spaced in the parameter
space.

The fitting factors are shown in Figure 7.4. These are calculated assuming a white
noise spectrum for the detector noise. It is quite apparent that the fitting factors are
always greater than 0.99, thus underlining the effectiveness of the phenomenological
waveforms in reproducing the hybrid ones. Also, as an example, in Figure 7.5, the
hybrid waveform from η = 0.25 binary is plotted in Fourier domain along with the
‘best-matched’ phenomenological waveform.

From phenomenological to physical parameters

It is possible to parametrize the phenomenological waveforms having the largest overlaps
with the hybrid waveforms in terms of the physical parameters of the hybrid waveforms.
Figure 7.6 shows the amplitude parameters αmax of the best-matched phenomenological
waveforms plotted against the physical parameters of the binary. Similarly, the phase
parameters ψmax of the best-matched phenomenological waveforms are plotted against
the physical parameters of the binary in Figure 7.7.
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Figure 7.6.: Best-matched amplitude parameters αmax in terms of the physical parameters
of the binary (assuming white noise spectrum). The horizontal axis shows the
symmetric mass-ratio of the binary. Quadratic polynomial fits αint to the data
points are also shown.

It can be seen that αmax and ψmax can be written as quadratic polynomials in terms of
the physical parameters (M and η) of the hybrid waveforms as:

αj int =
aj η

2 + bj η + cj
πM

,

ψk int =
xk η

2 + yk η + zk
η (πM)(5−k)/3

, (7.41)

where aj , bj , cj , j = 0...3 and xk, yk, zk, k = 0, 2, 3, 4, 6, 7 are the coefficients of the
quadratic polynomials used to fit the data given in Figures 7.6 and 7.7. These coefficients
are listed in Tables 7.1 and 7.2. It may be noted at this point that Figures 7.6 and 7.7

correspond to the mapping P : θ(n) → λ
(n)
max that we have introduced in Section 7.4.1,

and Eq. (7.41) to the interpolation Pint of P .

Using the empirical relations given in Eq. (7.41), we can rewrite the effective amplitude
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Figure 7.7.: Best-matched phase parameters ψmax in terms of the physical parameters of the
binary (assuming white noise spectrum). The horizontal axis shows the symmetric
mass-ratio of the binary. Quadratic polynomial fits ψint to the data points are
also shown.

and phase of the waveforms in terms of M and η as:

Aeff(f) ≡ C







































(

πMf
a0η2+b0η+c0

)−7/6
if f < a0η2+b0η+c0

πM

(

πMf
a0η2+b0η+c0

)−2/3
if a0η2+b0η+c0

πM ≤ f < a1η2+b1η+c1
πM

wL
(

f, a1η2+b1η+c1
πM , a2η2+b2η+c2

πM

)

if a1η2+b1η+c1
πM ≤ f < a3η2+b3η+c3

πM ,

Ψeff(f) = 2πft0 + ϕ0 +
1

η

7
∑

k=0

(xk η
2 + yk η + zk) (πMf)(k−5)/3 , (7.42)

where the constant C is given by Eq.(7.40). This family of parametrized waveforms
is used to create a two-dimensional template bank of non-spinning waveforms. This
template family can be seen as a two-dimensional sub-manifold (parametrized by M and
η) embedded in a higher dimensional manifold (of the phenomenological waveforms).
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7.4.4. Effectualness and faithfulness

In order to measure the accuracy of our parametrized templates we compute their overlap
with the ‘target signals’ (the hybrid waveform). To check the faithfulness of our phe-
nomenological templates, we compute their overlap with the target signal maximizing it
over the extrinsic parameters (time-of-arrival and the initial phase). The effectualness
of the parametrized waveforms is assessed by computing fitting factors with the target
signals (computing the overlap maximized over both extrinsic and intrinsic parameters).
Faithfulness is a measure of how good the template waveform is in both detecting a sig-
nal and estimating its parameters. However, effectualness is aimed at finding whether
or not an approximate template model is good enough in detecting a signal without
reference to its use in estimating the parameters.

The effectualness and the faithfulness of the template family are computed for three
different noise spectra. The one-sided noise power spectral density (PSD) of the Initial
LIGO detector is given in terms of a dimensionless frequency x = f/f0 by [237]

Sh(f) = 9 × 10−46
[

(4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2
]

, (7.43)

where f0 = 150 Hz; while the same for Virgo reads [237]

Sh(f) = 10.2 × 10−46
[

(7.87x)−4.8 + 6/17x−1 + 1 + x2
]

, (7.44)

where f0 = 500 Hz. For Advanced LIGO [237],

Sh(f) = 10−49

[

x−4.14 − 5x−2 + 111
(1 − x2 + x4/2

1 + x2/2

)

]

, (7.45)

where f0 = 215 Hz.

Faithfulness is computed by maximizing the overlaps over the extrinsic parameters t0 and
ϕ0 only, which can be done trivially [238]. Effectualness is computed by maximizing both
intrinsic and extrinsic parameters of the binary. The maximization over the intrinsic
parameters is performed with the aid of the Nelder-Mead downhill simplex algorithm
[239].

The effectualness of the template waveforms with the hybrid waveforms is plotted in
Figure 7.8 for three different noise spectral densities. The corresponding faithfulness is
plotted in Figure 7.9. It is evident that, having both values always greater than 0.99,
the proposed template family is both effectual and faithful.

We also calculate the systematic bias in the estimation of parameters while maximizing
the overlaps over the intrinsic parameters of the binary. The bias in the estimation of
the parameters θ is defined in Eq.(7.30).

The percentage biases in estimating the total mass M , mass ratio η, and chirp mass
Mc = Mη3/5 of the binary are plotted in Figures 7.10, 7.11, and 7.12, respectively. This
preliminary investigation suggests that the bias in the estimation of M and η using the
proposed template family is < 3%, while the same in estimating Mc is < 6%.
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Figure 7.9.: Same as in Figure 7.8, except that the plots show the faithfulness of the (two-
dimensional) template family.
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Figure 7.11.: Same as in Figure 7.10, except that the plots show the percentage bias |∆η|/η×
100 in the estimation of η.
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Parameter ak bk ck
fmerg 2.9740×10−1 4.4810×10−2 9.5560×10−2

fring 5.9411×10−1 8.9794×10−2 1.9111×10−1

σ 5.0801×10−1 7.7515×10−2 2.2369×10−2

fcut 8.4845×10−1 1.2848×10−1 2.7299×10−1

Table 7.1.: Polynomial coefficients of the best-matched amplitude parameters. The first column
lists the amplitude parameters αint. Eq.(7.41) shows how these parameters are
related to the coefficients ak, bk, ck.

Parameter xk yk zk
ψ0 1.7516×10−1 7.9483×10−2 -7.2390×10−2

ψ2 -5.1571×101 -1.7595×101 1.3253×101

ψ3 6.5866×102 1.7803×102 -1.5972×102

ψ4 -3.9031×103 -7.7493×102 8.8195×102

ψ6 -2.4874×104 -1.4892×103 4.4588×103

ψ7 2.5196×104 3.3970×102 -3.9573×103

Table 7.2.: Polynomial coefficients of the best-matched phase parameters. The first column
lists the phase parameters ψint. Eq.(7.41) shows how these parameters are related
to the coefficients xk, yk, zk.

7.4.5. Verification of the results using more accurate hybrid waveforms

As we have discussed in Section 7.4.2, the hybrid waveforms used for constructing the
template waveforms are produced by matching rather short (∼ 4 inspiral cycles) NR
waveforms with PN waveforms. We have also produced a few hybrid waveforms by
matching PN waveforms with long (> 10 inspiral cycles) and highly accurate (sixth-order
finite differencing and low eccentricity) NR waveforms. This set of hybrid waveforms
(which are closer to the ‘actual signals’) can be used to verify the efficacy of the template
waveforms in reproducing these more accurate signals.

Figure 7.13 shows the fitting factors of the two-dimensional template family with the
‘more accurate’ hybrid waveforms. The fitting factors are computed, as before, using
the Initial LIGO (left), Virgo (middle) and Advanced LIGO (right) noise spectra. The
high fitting factors (although smaller than the same obtained in the previous section)
with the hybrid waveforms once again underline the efficacy of the template waveforms
in reproducing the hybrid ones. It is indeed expected that the template family will
have better overlaps with the hybrid waveforms described in the previous section (those
constructed from ‘short’ NR waveforms), because the polynomial coefficients given in
Tables 7.1 and 7.2 are optimized for these hybrid waveforms. When more ‘long and
accurate’ NR waveforms are available in the future, the polynomial coefficients given
in the tables can be optimized for the corresponding family of ‘more accurate’ hybrid
waveforms. In any case, since the fitting factors are already very high, we don’t expect
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Figure 7.12.: Same as in Figure 7.10, except that the plots show the percentage bias
|∆Mc|/Mc × 100 in the estimation of Mc = Mη3/5.

any significant improvements.

7.4.6. The astrophysical range and comparison with other searches

The template family proposed in this chapter can be used for coherently searching for all
the three stages (inspiral, merger, and ring-down) of the binary black hole coalescence,
thus making this potentially more sensitive than searches which look at the three stages
separately. Figure 7.14 compares the sensitivity of the searches using different template
families. What is plotted here are the distances at which an optimally-oriented, equal-
mass binary would produce an optimal SNR of 8 at the Initial LIGO (left plot), Virgo
(middle plot) and Advanced LIGO (right plot) noise spectra. In each plot, the thin
solid (blue) line corresponds to a search using PN templates truncated at the innermost
stable circular orbit (ISCO) of the Schwarzschild geometry having the same mass as
the total mass M of the binary; the dashed (purple) line to a search using ring-down
templates [240]; the dot-dashed (black) line to a search using effective one body [168]
waveform templates truncated at the light ring of the corresponding Schwarzschild ge-
ometry, and the solid line to a search using all three stages of the binary coalescence
using the template bank proposed here. The computation is described in detail in
Appendix B. The horizontal axis reports the total-mass of the binary, while the ver-
tical axis the distance in Mpc. It is quite evident that, for a substantial range of
total mass (100 . M/M⊙ . 300 for Initial LIGO, 200 . M/M⊙ . 500 for Virgo,
150 .M/M⊙ . 400 for Advanced LIGO), the ‘coherent search’ using the new template
family is significantly more sensitive than any other search considered here.

However, while this looks promising, it is important to treat Figure 7.14 as only a
preliminary assessment; fitting factors are not the only consideration for a practical
search strategy. It is also very important to consider issues which arise when dealing with
real data. For example, false alarms produced by noise artifacts might well determine
the true sensitivity of the search, and these artifacts will inevitably be present in real
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Figure 7.13.: Fitting factor of the (two-dimensional) template family with ‘more accurate’
hybrid waveforms (see Section 7.4.5). The overlaps are computed using three
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the Advanced LIGO noise PSD. The horizontal axis represents the total mass
M (in units of M⊙) and the legends display the symmetric mass ratio η of the
binary.

data. This is however beyond the scope of the present work, and further investigation
is required before we can properly assess the efficacy of our phenomenological template
bank in real-life searches.

7.5. Summary and outlook

Making use of the recent results from numerical relativity a phenomenological wave-
form family is proposed, which can model the inspiral, merger and ring-down stages
of the coalescence of non-spinning binary black holes in quasi-circular orbits. We first
constructed a set of hybrid waveforms by matching the NR waveforms with analytical
PN waveforms. Then, we constructed analytical phenomenological waveforms which ap-
proximated the hybrid waveforms. The proposed family of phenomenological waveforms
was found to have fitting factors larger than 0.99 with the hybrid waveforms. It was also
shown that this phenomenological waveform family can be parametrized solely in terms
of the physical parameters (M and η) of the binary, so that the template bank is, in the
end, two dimensional. We estimated the ‘closeness’ of this two-dimensional template
family with the family of hybrid waveforms in the detection band of three ground-based
GW detectors, namely Initial LIGO, Virgo and Advanced LIGO. We estimated the ef-
fectualness (larger overlaps with the target signals for the purpose of detection) and
faithfulness (smaller biases in the estimation of the parameters of the target signals) of
the template family. Having both types of overlap always greater than 0.99, the two
dimensional template family is found to be both effectual and faithful in the detection
band of these ground-based detectors.

This phenomenological waveform family can be used to densely cover the parameter
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Figure 7.14.: Distance to optimally located and oriented equal-mass binaries which can pro-
duce an optimal SNR of 8 at the Initial LIGO (left plot), Virgo (middle plot)
and Advanced LIGO (right plot) noise spectra. Horizontal axis reports the to-
tal mass of the binary (in units of M⊙) and vertical axis reports the distance
in Mpc. In each plot, the thin solid (blue) line corresponds to a search using
standard PN templates truncated at ISCO, the dotted-dashed (black) line to a
search using effective one body waveform templates truncated at the light ring,
the the dashed (purple) line to a search using ring-down templates, and the thick
solid (red) line to a search using the template family proposed in this chapter.
The ring down horizon distance is computed assuming that ǫ = 0.7% of the black
hole mass is radiated in the ring down stage, while the Kerr parameter a = 0.69
is known from the numerical simulation. Since the value of ǫ has some amount
of uncertainty in it, a shaded region is also included in the plot corresponding to
0.18% ≤ ǫ ≤ 2.7%.
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space of the binary, avoiding the computational cost of generating numerical waveforms
at every grid point in the parameter space. The sensitivity of a search using this template
family is compared with other searches. For a substantial mass-range, the search using
all the three stages of the binary black hole coalescence was found to be significantly
more sensitive than any other template-based searches considered in this work. This
might enable us to do a more sensitive search for intermediate-mass black-hole binaries
using ground-based GW detectors.

A number of practical issues need to be addressed before we can employ this template
family in an actual search for GW signatures. The first issue will be how to construct a
bank of templates sufficiently densely spaced in the parameter space so that the loss in
the event rate because of the mismatch between the signal and template is restricted to
an acceptable amount (say, 10%). The explicit frequency domain parametrization of the
proposed template family makes it easier to adopt the formalism proposed by Owen [108]
in laying down the templates using a metric in the parameter space. Work is ongoing to
compare the metric formalism adopted to the proposed template family and other ways
of laying out the templates, for example a ‘stochastic’ template bank [241]. Also, this
explicit parametrization makes it easier to employ additional signal-based vetoes, such
as the ‘chi-square test’ [136]. This will also be explored in a forthcoming work.

Since this template bank is also a faithful representation of the target signals consid-
ered, we expect that, for a certain mass-range, a search which coherently includes all
three stages of the binary coalescence will bring about remarkable improvement in the
estimation of parameters of the binary. This may be especially important for LISA data
analysis in estimating the parameters of super massive black hole binaries. This is also
being explored in an ongoing work [201].

It is worth pointing out that the family of target signals (the hybrid waveforms) that we
have considered in this chapter is not unique. One can construct alternate families of
hybrid waveforms by matching PN waveforms computed using different approximations
with NR waveforms. Also, owing to the differences in initial data and accuracy of
numerical techniques, the NR waveforms from different simulations can also be slightly
different. Thus, the coefficients listed in Tables 7.1 and 7.2 have a unique meaning only
related to this particular family of target waveforms. But we expect that the general
parametrization that we propose in this work will hold for the whole family of non-
spinning black hole coalescence waveforms from quasi-circular inspiral. As mentioned in
the Introduction, the purpose of this work is to explicitly prescribe a general procedure
to construct interpolated template banks using parametrized waveforms which mimics
actual signals from binary black hole coalescence (as predicted by numerical relativity
and analytical methods).

Nevertheless, it may be noted that most of the PN waveforms constructed using different
approximations are known to be very close to each other (see, for example, [107]). Also,
we expect that NR waveforms from different simulations will converge as the accuracy of
numerical simulations improves (see, for example, [242]). Thus, since different families of
PN and NR waveforms, which are the ‘ingredients’ for constructing our target signals,
are very close to each other, we expect that the phenomenological waveform family
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proposed in this work, in its present form, will be sufficiently close to other families of
target signals for the purpose of detecting these signals. As a preliminary illustration
of this, the fitting factors of the template waveforms with a different family of hybrid
waveforms (constructed from longer and more accurate NR waveforms) are computed,
and was shown to be very high. This will be explored in detail in a forthcoming work.
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8. New class of post-Newtonian
approximants to the waveform
templates of inspiralling compact
binaries

8.1. Introduction

The late-time dynamics of astronomical binaries consisting of neutron stars and/or black
holes is dominated by relativistic motion and nonlinear general relativistic effects. The
component bodies would be accelerated to velocities close to half the speed of light before
they plunge towards each other, resulting in a violent event during which the source
would be most luminous in the gravitational-wave (GW) window. Such events are prime
targets of interferometric GW detectors like LIGO, Virgo, GEO600 and TAMA 300, that
are currently taking data at unprecedented sensitivity levels and bandwidths [243, 244,
245, 246].

Binary coalescences are the end state of a long period of adiabatic dynamics in which
the orbital frequency of the system changes as a result of gravitational radiation back-
reaction, but the change in frequency per orbit is negligible compared to the orbital
frequency itself. This inspiral stage of the coalescing binary is of particular interest to
the GW searches, because the gravitational waveforms from the inspiralling stage can,
in principle, be well-modelled by the post-Newtonian (PN) approximation of general rel-
ativity. This allows the data analysts to use the matched filtering technique to extract
these signals buried in the detector noise. Matched filtering, which can be shown to be
the optimal filter in detecting any known signal buried in the noise, involves cross cor-
relating the data with a template of the signal waveform. The effectiveness of matched
filtering depends on how well the phase evolution of the waveform is known. Thus, for
the purpose of the detection of these signals, it is sufficient to use the so-called restricted
PN approximation to quasi-circular inspiral. This keeps the crucial phase information to
the best order of approximation available, but restricts the amplitude to be Newtonian
and the harmonic to the second harmonic of the orbital frequency.

In the adiabatic approximation of the calculation of GW phasing, the inspiralling orbit is
approximated as an adiabatic perturbation of many quasi-circular orbits with a specific
conserved energy associated with each orbit. The time evolution of the GW phase
is computed from the energy balance argument. i.e., the difference in binding energy
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between consecutive orbits is equated to the energy flux of GWs emitted by the system.
There are different ways of casting the phasing formula – the formula that gives the phase
of the emitted gravitational wave as a function of time and the parameters of the system.
These different approaches make use of the post-Newtonian expansions of the binding
energy and gravitational wave luminosity of the system1. Indeed, the adiabatic inspiral
phase is well-modelled by the post-Newtonian approximation to Einstein’s equations;
but this approximation becomes less accurate close to the merger phase.

8.1.1. Standard approach to phasing formula

In the post-Newtonian approximation, the binding energy and the GW luminosity are
computed as series expansions in terms of v/c, where v is the post-Newtonian expansion
parameter describing the velocity in the system and c is the speed of light. (For the rest
of this chapter we use units in which G = c = 1).

Given the specific gravitational binding energy E(v) (i.e. the binding energy per unit
mass) of the system and its luminosity F(v), the phasing of gravitational waves can be
computed using the following ordinary, coupled differential equations:

dϕ

dt
=

2v3

m
,

dv

dt
= − F(v)

mE′(v)
, (8.1)

where E′(v) = dE(v)/dv and m = m1 +m2 is the total mass of the binary. The phasing
obtained by numerically solving the above set of differential equations is called the
TaylorT1 approximant [247]. If the detector’s motion can be neglected during the period
when the wave passes through its bandwidth then the response of the interferometer to
arbitrarily polarized waves from an inspiralling binary is given by

h(t) =
4Aηm

D
v2(t) cos[ϕ(t) + ϕC ], (8.2)

where ϕ(t) is defined so that it is zero when the binary coalesces at time t = tC , ϕC
is the phase of the signal at tC , η = m1m2/m

2 is the symmetric mass ratio, D is the
distance to the source and A is a numerical constant whose value depends on the relative
orientations of the interferometer and the binary orbit. It suffices to say for the present
purpose that for an optimally oriented source A = 1.

One can compute the Fourier transform H(f) of the waveform given in Eq. (8.2) using
the stationary phase approximation:

H(f) =
4Am2

D

√

5πη

384
v
−7/2
f ei[2πftC−ϕC+ψ(f)−π/4], (8.3)

1In the case of binaries consisting of spinning bodies in eccentric orbit one additionally requires equa-
tions describing the evolution of the individual spins and the orbital angular momentum, but this
complication is unimportant for our purposes.
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where the phase of the Fourier transform obeys a set of differential equations given by

dψ

df
= 2πt,

dt

df
= −πm

2

3v2
f

E′(vf )

F(vf )
. (8.4)

In the above expressions, including the post-Newtonian expansions of the energy and
flux functions, the parameter vf = (πmf)1/3. The waveform Eq.(8.3) computed by
numerically solving the differential equations Eq.(8.4) is called TaylorF1 [247] approxi-
mant.

Before we proceed further, let us recall the notation used in post-Newtonian theory to
identify different orders in the expansion. In the conservative dynamics of the binary,
wherein there is no dissipation, the energy is expressed as a post-Newtonian expansion
in ǫ = (v/c)2, with the dominant order termed Newtonian or 0PN and a correction at
order ǫn = (v/c)2n, n = 1, 2, . . . , called nPN, with the dynamics involving only even
powers of

√
ǫ = (v/c). When dissipation is added to the dynamics, then the equation of

motion will have terms of both odd and even powers of v/c. Thus, a correction of order
(v/c)m is termed as (m/2)PN.

In the adiabatic approximation of a test-particle orbiting a Schwarzschild black hole, the
energy function E(v) is exactly calculable analytically, while the flux function F(v) is
exactly calculable numerically [248, 249, 250, 251]. In addition, F(v) has been calculated
analytically to 5.5PN order [252] by black hole perturbation theory [253]. In contrast, in
the case of a general binary including bodies of comparable masses, the energy function
E(v) has been calculated recently to 3PN accuracy by a variety of methods [222, 254, 255,
223, 224, 225, 226, 256, 227, 228, 229] The flux function F(v), on the other hand, has been
calculated to 3.5PN accuracy [257, 258, 259, 258, 260, 259, 261, 262, 230, 92, 91, 263, 264]
up to now only by the multipolar-post-Minkowskian method and matching to a post-
Newtonian source [221].

The standard approach to the calculation of GW phasing is based on the PN expansions
of the binding energy (energy function) and GW luminosity (flux function) truncated at
the same relative PN order [265]. At the lowest order, it uses only the leading terms in
the energy (Newtonian) and flux (quadrupolar) functions. For higher order phasing, t
he energy and flux functions are retained to the same relative PN orders. For example,
at 3PN phasing, both the energy and flux functions are given to the same relative 3PN
order beyond the leading Newtonian order. We refer to this usual physical treatment of
the phasing of GWs computed in the adiabatic approximation, and used in the current
searches for the radiation from inspiralling compact binaries, as the standard adiabatic
approximation. We will denote the nPN standard adiabatic approximant as T (E[n],Fn),
where [p] denotes the integer part of p.

8.1.2. Complete phasing of the adiabatic inspiral: an alternative

As a prelude to go beyond the standard adiabatic approximation, let us consider the
phasing of the waves in terms of the equations of motion of the system. To this end, it is
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natural to order the PN approximation in terms of its dynamics or acceleration. From
the viewpoint of the dynamics, the leading order standard adiabatic approximation
is equivalent to using the 0PN (corresponding to 0PN conserved energy) and 2.5PN
(corresponding to the Newtonian or 0PN flux) terms in the acceleration ignoring the
intervening 1PN and 2PN terms. A complete, mathematically consistent treatment of
the acceleration, however, should include all PN terms in the acceleration up to 2.5PN,
without any gaps. We refer to the dynamics of the binary, and the resulting waveform,
arising from the latter as the 0PN complete non-adiabatic approximation. In contrast,
the waveform arising from the former choice, with gaps in the acceleration at 1PN and
2PN, is referred to as the 0PN standard non-adiabatic approximation. Extension to
higher-order phasing is obvious. At 1PN the standard non-adiabatic approximation
would involve acceleration terms at orders 0PN, 1PN, 2.5PN and 3.5PN, whereas the
complete non-adiabatic approximation would additionally involve the 2PN and 3PN
acceleration terms.

Finally, we propose a simple extension of the above construction to generate a new class
of approximants in the adiabatic regime. To understand the construction let us examine
the lowest order case. Given the 0PN flux (leading to an acceleration at 2.5PN), one can
choose the energy function at 2PN (equivalent to 2PN conservative dynamics) instead
of the standard choice 0PN (equivalent to 0PN or Newtonian conservative dynamics).
This is the adiabatic analogue of the complete non-adiabatic approximant2. Extension
to higher PN orders follows naturally. For instance, corresponding to the flux function
at 1PN (1.5PN), the dissipative force is at order 3.5PN (4PN), and, therefore, the
conservative dynamics, and the associated energy function, should be specified up to
order 3PN (4PN). In general, given the flux at nPN-order, a corresponding complete
adiabatic approximant is constructed by choosing the energy function at order [n +
2.5]PN, where as mentioned before, [p] denotes the integer part of p. We refer to the
dynamics of the binary and the resulting waveform arising from such considerations,
as the complete adiabatic approximation. We will denote the nPN complete adiabatic
approximant as T (E[n+2.5],Fn).

Before moving ahead the following point is worth emphasizing: The standard adiabatic
phasing is, by construction, consistent in the relative PN order of its constituent energy
and flux functions, and thus unique in its ordering of the PN terms. Consequently,
one can construct different nonequivalent, but consistent, approximations as discussed
in Ref. [247] by choosing to retain the involved functions or re-expand them. The
complete adiabatic phasing, on the other hand, is constructed so that it is consistent in
spirit with the underlying dynamics, or acceleration, rather than with the relative PN
orders of the energy and flux functions. Consequently, it has a unique meaning only
when the associated energy and flux functions are used without any further re-expansions
when working out the phasing formula. As a result, though the complete non-adiabatic
approximant is more consistent than the standard non-adiabatic approximant in treating
the PN accelerations, in the adiabatic case there is no rigorous sense in which one can

2 In this case one may also choose the energy function to 3PN accuracy and construct a complete
approximant leading to 3PN acceleration
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claim that either of the approximants is more consistent than the other. The important
point, as we shall see is that, not only are the two approximants not the same but the
new complete adiabatic approximants are closer to the exact solution than the standard
adiabatic approximants.

These new approximants should be of some interest. They are simple generalizations
of the standard adiabatic approximants coding information of the PN dynamics beyond
the standard approximation without the need for numerical integration of the equations
of motion. They should be appropriate approximants to focus on when one goes beyond
the adiabatic picture and investigates the differences stemming from the use of more
complete equations of motion.

In the case of comparable mass binaries, the energy function is currently known up to
3PN order and hence it would be possible to compute the complete adiabatic phasing
of the waves to only 1PN order. One is thus obliged in practice to follow the standard
adiabatic approximation to obtain the phasing up to 3.5PN order. Consequently, it is
a relevant question to ask how ‘close’ are the complete and standard adiabatic approx-
imants. The standard adiabatic approximation would be justified if we can verify that
it produces in most cases a good lower bound to the mathematically consistent, but
calculationally more demanding, complete adiabatic approximation. In this work, we
compare the standard and complete models by explicitly studying their overlaps with
the exact waveform which can be computed in the adiabatic approximation of a test
mass motion in a Schwarzschild spacetime. The availability, in this case, of the exact
(numerical) and approximate (analytical) waveforms to as high a PN order as v11, al-
lows one to investigate the issue exhaustively, and provides the main motivation for the
present analysis. Assuming that the comparable mass case is qualitatively similar and
a simple η-distortion of the test mass case would then provide a plausible justification
for the standard adiabatic treatment of the GW phasing employed in the literature3.

8.1.3. What this study is about

We will use the effectualness and faithfulness (see below) to quantify how good the vari-
ous approximation schemes are. There are at least three different contexts in which one
can examine the performance of an approximate template family relative to an exact
one. Firstly, one can think of a mathematical family of approximants and examine its
convergence towards some exact limit. Secondly, one can ask whether this mathemat-
ical family of approximants correctly represents the GWs from some physical system.
Thirdly, how does this family of approximate templates converge to the exact solution
in the sensitive bandwidth of a particular GW detector. In the context of GW data
analysis, the third context will be relevant and studied in this chapter. Although there
is no direct application to GW data analysis, equally interesting is the mathematical

3Note, however, that the view that the comparable mass case is just a η-distortion of the test mass
approximation is not universal. In particular, Blanchet [266] has argued that the dynamics of a binary
consisting of two bodies of comparable masses is very different from, and possibly more accurately
described by post-Newtonian expansion than, the test mass case.
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question concerning the behavior of different approximations, and the waveforms they
predict, in the strongly non-linear regime of the dynamics of the binary, which is also
studied in this work. The latter obviously does not require the details of the detector-
sensitivity and it is enough to study the problem assuming a flat power spectral density
(i.e. a white-noise background) for the detector noise.

To summarize, our approach towards the problem will be two-pronged. First, we will
study the problem as a general mathematical question concerning the nature of tem-
plates defined using PN approximation methods. We shall deal with two families of PN
templates – the standard adiabatic and complete adiabatic approximants – and examine
their closeness, defined by using effectualness and faithfulness, to the exact waveform de-
fined in the adiabatic approximation. Since this issue is a general question independent
of the characteristics of a particular GW detector, we first study the problem assuming
the white-noise case. Having these results, we then proceed to see how and which of
these results are applicable to the noise spectra of three detectors, namely the Initial
LIGO, Advanced LIGO, and Virgo. During the course of this study, we also attempt to
assess the relative importance of improving the accuracy of the energy and flux func-
tions by studying the overlaps of the PN templates constructed from different orders of
energy and flux functions with the exact waveform. It should be kept in mind that this
work is solely restricted to the inspiral part of the signal and neglects the plunge and
quasi-normal mode ringing phases of the binary [267, 268, 269, 247, 270, 271, 272].

8.1.4. Effectualness and faithfulness

In order to measure the accuracy of our approximate templates we shall compute their
overlap with a fiducial exact signal. We shall consider two types of overlaps [167, 273,
247, 274]. The first one is the faithfulness which is the overlap of the approximate
template with the exact signal computed by keeping the intrinsic parameters (e.g. the
masses of the two bodies) of both the template and the signal to be the same but
maximizing over the extrinsic (e.g. the time-of-arrival and the phase at that time)
parameters. i.e., if h is the exact signal and u(µ,ν) is a template family parametrised
by a set of intrinsic parameters µ and extrinsic parameters ν, the faithfulness is defined
by

F = maxν
〈h, u(µ,ν)〉

√

〈h, h〉
√

〈u(µ,ν), u(µ,ν)〉
, (8.5)

where the inner product is defined as

〈h, u(µ,ν)〉 = 4 Re

∫ fcut

flow

h̃(f) ũ∗(f ;µ,ν) df

Sh(f)
. (8.6)

In the above expression, h̃(f) and ũ(f ;µ,ν) denote the Fourier transforms of the (time-
domain) exact signal and the template waveform, Sh(f) is the one-sided power spectral
density (PSD) of the detector noise, and, flow and fcut denote the lower and upper cutoff
frequencies of the template waveform.
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The second type of overlap that we consider is the effectualness (also called fitting factor,
FF) which is the overlap of the approximate template with the exact signal computed
by maximizing the overlap over both the intrinsic and extrinsic parameters. i.e.,

FF = maxν,µ
〈h, u(µ,ν)〉

√

〈h, h〉
√

〈u(µ,ν), u(µ,ν)〉
. (8.7)

Faithfulness is a measure of how good is the template waveform in both detecting a signal
and measuring its parameters. However, effectualness is aimed at finding whether or not
an approximate template model is good enough in detecting a signal without reference
to its use in estimating the parameters. As in previous studies, we take overlaps greater
than 96.5% to be indicative of a good approximation.

8.1.5. Noise spectra of the interferometers

The performance of the standard and complete adiabatic approximants are studied us-
ing the noise spectra of three different interferometric detectors, namely Initial LIGO,
Advanced LIGO and Virgo. Analytical fits of the design noise spectra of these inter-
ferometers are given in the literature. We use these analytical fits for our calculations.
These are plotted in Figure 8.1

The one-sided noise PSD (per Hz) of the initial LIGO is given in terms of a dimensionless
frequency x = f/f0 by [247],

Sh(x) = 9 × 10−46
[

(4.49x)−56 + 0.16x−4.52 + 0.52 + 0.32x2
]

, (8.8)

where f0 = 150 Hz and the PSD rises steeply above a lower cut-off fc = 40 Hz. The
one-sided PSD of Virgo is given by [247]

Sh(f) = 3.24 × 10−46
[

(6.23x)−5 + 2x−1 + 1 + x2
]

, (8.9)

where f0 = 500 Hz; while the same for the Advanced LIGO reads [44, 275]

Sh(f) = 10−49

[

x−4.14 − 5x−2 + 111
(1 − x2 + x4/2

1 + x2/2

)

]

, (8.10)

where f0 = 215 Hz.

8.1.6. Organization of this chapter

In the next section we study the test-mass waveforms in the adiabatic approximation.
We discuss the construction of the exact energy and flux functions as well as the respec-
tive T-approximants. The overlaps of various standard adiabatic and complete adiabatic
approximants are also compared in this section. Section 8.3 explores the extension of
the results in the comparable mass case. It presents the energy and flux functions which
are the crucial inputs for the construction of the fiducial ‘exact’ waveform as well as the
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Figure 8.1.: Amplitude noise spectral densities of three ground-based interferometric detectors.

approximate waveforms followed by a discussion of the results. In the last section we
summarize our main conclusions.

One of the main conclusions of this study is that the effectualness of the test-mass ap-
proximants significantly improves in the complete adiabatic approximation at PN orders
below 3PN. However, standard adiabatic approximants of order ≥ 3PN are nearly as
good as the complete adiabatic approximants for the construction of effectual templates.
In the comparable mass case the problem can be only studied at the lowest two PN or-
ders. No strong conclusions can be drawn as in the test mass case. Still, the trends
indicate that the standard adiabatic approximation provides a good lower bound to the
complete adiabatic approximation for the construction of both effectual and faithful
templates at PN orders ≥ 1.5PN. From the detailed study of test-mass templates we
also conclude that, provided the comparable mass case is qualitatively similar to the
test mass case, neither the improvement of the accuracy of energy function from 3PN
to 4PN nor the improvement of the accuracy of flux function from 3.5PN to 4PN will
result in a significant improvement in effectualness in the comparable mass case. As far
as faithfulness is concerned, it is hard to reach any conclusion. To achieve the target
sensitivity of 0.965 in effectualness corresponding to a 10% loss in the event-rate, stan-
dard adiabatic approximants of order 2PN and 3PN are required for the (10M⊙, 10M⊙)
and (1.4M⊙, 1.4M⊙) binaries, respectively, when restricting to only the inspiral phase.
(Be warned that this is not a good approximation in the BH-BH case since the approach
to the plunge and merger lead to significant differences.)
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Figure 8.2.: Various T-approximants of Newton-normalized (v-derivative of) energy function
E′

T(v)/E′
N(v) [left], and flux function FT(v)/FN(v) [right] in the test mass limit

along with the exact functions (denoted by X).

8.2. Test mass waveforms in the adiabatic approximation

Our objective is to compare the effectualness (i.e larger overlaps with the exact sig-
nal) and faithfulness (i.e. smaller bias in the estimation of parameters) of the standard
adiabatic T (E[n],Fn) and complete adiabatic T (E[n+2.5],Fn) approximants. The exact
waveform is constructed by numerically integrating the phasing formula in the time-
domain [TaylorT1 approximant, cf. Eqs. (8.1) and (8.2)]. Both the exact and approxi-
mate waveforms are terminated at vlso = 1/

√
6, which corresponds to Flso ≃ 43 Hz for

the (1M⊙, 100M⊙) binary, Flso ≃ 86 Hz for the (1M⊙, 50M⊙) binary and Flso ≃ 399 Hz
for the (1M⊙, 10M⊙) binary 4. The lower frequency cut-off of the waveforms is chosen
to be Flow = 20 Hz.

In this study, we restrict to approximants TaylorT1 and TaylorF1 since they do not
involve any further re-expansion in the phasing formula and hence there is no ambiguity
when we construct the phasing of the waves using approximants with unequal orders of
the energy and flux functions.

8.2.1. The energy function

In the case of a test-particle m2 moving in circular orbit in the background of a
Schwarzschild black hole of mass m1, where m2/m1 → 0, the energy function E(x)

4Here, vlso is the velocity at the last stable circular orbit of Schwarzschild geometry having the same
mass as the total mass m1 + m2 of the binary, and Flso is the GW frequency corresponding to it.

125



New class of post-Newtonian approximants to the waveform templates of inspiralling compact binaries

in terms of the invariant argument x ≡ v2 is given by

Eexact(x) = η
1 − 2x√
1 − 3x

, (8.11)

The associated v-derivative entering the phasing formula is

E′
exact(v) = 2v

dE(x)

dx

∣

∣

∣

∣

x=v2
= −ηv (1 − 6 v2)

(1 − 3 v2)3/2
. (8.12)

We use the above exact E′(v) to construct the exact waveform in the test-mass case. In
order to construct various approximate PN templates, we Taylor-expand E′

exact(v) and
truncate it at the necessary orders.

E′
7PN (v) = −ηv

[

1 − 3 v2

2
− 81 v4

8
− 675 v6

16
− 19845 v8

128

− 137781 v10

256
− 1852389 v12

1024
− 12196899 v14

2048
+ O(v16)

]

. (8.13)

Different T-approximants of the energy function E′
T (v) along with E′

exact(v) are plotted
in Figure 8.2 [left].

8.2.2. The flux function

In the test-particle limit, the exact gravitational-wave flux has been computed numer-
ically with good accuracy [249]. We will use this flux function (see Figure 8.2 [right]),
along with the energy function given by Eq. (8.12), to construct an exact waveform in
the test-mass case. In the test-particle limit, the GW flux is also known analytically to
5.5PN order from black hole perturbation theory [252] and given by

F(v) =
32

5
η2v10

[

11
∑

k=0

Akv
k +

(

11
∑

m=6

Bmv
m

)

ln v + O (v12)

]

, (8.14)

where the various coefficients Ak and Bk are [252],

A0 = 1 , A1 = 0 , A2 = −1247

336
, A3 = 4π , A4 = −44711

9072
, A5 = −8191π

672
,

A6 =
6643739519

69854400
+

16π2

3
− 1712 γ

105
− 1712 ln 4

105
, A7 = −16285π

504
,

A8 = −323105549467

3178375200
+

232597 γ

4410
− 1369π2

126
+

39931 ln 2

294
− 47385 ln 3

1568
,

A9 =
265978667519π

745113600
− 6848 γ π

105
− 13696π ln 2

105
,

A10 = −2500861660823683

2831932303200
+

916628467 γ

7858620
− 424223π2

6804
− 83217611 ln 2

1122660
+

47385 ln 3

196
,

A11 =
8399309750401π

101708006400
+

177293 γ π

1176
+

8521283π ln 2

17640
− 142155π ln 3

784
,
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Figure 8.3.: The difference, FFC − FFS , in the effectualness of complete adiabatic and stan-
dard adiabatic templates in the test mass limit. Overlaps are calculated assuming
a flat spectrum for the detector noise (white noise). Plots on the left correspond
to TaylorT1 approximants, while plots on the right correspond to TaylorF1 ap-
proximants.
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. (8.15)

We will use the energy and flux functions given by Eq. (8.13) – Eq. (8.15) to construct
various approximate templates by truncating the expansions at the necessary order. The
different T-approximants of the flux function FT(v) along with the (numerical) exact
flux Fexact(v) are plotted in Figure 8.2 [right].

8.2.3. Comparison of standard and complete adiabatic approximants

We present the results of our study in the test mass limit in four parts. In the first part
we discuss our conclusions on the mathematical problem of the closeness of the standard
adiabatic and complete adiabatic template families with the family of exact waveforms
in the adiabatic approximation. In the next part we exhibit our results in the case of
three ground-based detectors. In the third part we compare the relative importance of
improving the accuracy of the energy and flux functions. Finally, in the fourth part we
compare the total number of GW cycles and the number of useful cycles accumulated
by various standard adiabatic and complete adiabatic approximants.

127



New class of post-Newtonian approximants to the waveform templates of inspiralling compact binaries

Table 8.1.: Effectualness of standard (S) and complete (C) adiabatic templates in the test
mass limit. Overlaps are calculated assuming a flat spectrum for the detector noise
(white noise).

TaylorT1 TaylorF1
Order (n) S C S C

(1M⊙, 10M⊙)

0PN 0.6250 0.8980 0.6212 0.8949
1PN 0.4816 0.5119 0.4801 0.5086

1.5PN 0.9562 0.9826 0.9448 0.9592
2PN 0.9685 0.9901 0.9514 0.9624

2.5PN 0.9362 0.9924 0.9298 0.9602
3PN 0.9971 0.9991 0.9677 0.9713

3.5PN 0.9913 0.9996 0.9636 0.9688
4PN 0.9937 0.9973 0.9643 0.9663

4.5PN 0.9980 0.9999 0.9671 0.9690
5PN 0.9968 0.9979 0.9661 0.9667

(1M⊙, 50M⊙)

0PN 0.5809 0.9726 0.5917 0.9644
1PN 0.4913 0.9107 0.4841 0.5871

1.5PN 0.9466 0.9832 0.9370 0.9785
2PN 0.9784 0.9917 0.9719 0.9872

2.5PN 0.7684 0.9833 0.7326 0.9772
3PN 0.9861 0.9946 0.9821 0.9886

3.5PN 0.9902 0.9994 0.9858 0.9914
4PN 0.9975 0.9996 0.9903 0.9914

4.5PN 0.9967 1.0000 0.9902 0.9913
5PN 0.9994 0.9994 0.9913 0.9914

(1M⊙, 100M⊙)

0PN 0.8515 0.9231 0.8318 0.9017
1PN 0.8059 0.9169 0.7874 0.8980

1.5PN 0.8963 0.9981 0.7888 0.9788
2PN 0.9420 0.9993 0.9178 0.9785

2.5PN 0.8819 0.9858 0.8610 0.9730
3PN 0.9965 0.9959 0.9756 0.9792

3.5PN 0.9885 1.0000 0.9690 0.9800
4PN 0.9968 0.9992 0.9769 0.9795

4.5PN 0.9996 1.0000 0.9787 0.9801
5PN 0.9992 0.9991 0.9790 0.9797
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8.2 Test mass waveforms in the adiabatic approximation

Table 8.2.: Faithfulness of standard (S) and complete (C) adiabatic templates in the test mass
limit. Overlaps are calculated assuming a flat spectrum for the detector noise (white
noise).

TaylorT1 TaylorF1
Order (n) S C S C

(1M⊙, 10M⊙)

0PN 0.6124 0.1475 0.6088 0.1446
1PN 0.1322 0.1433 0.1350 0.1461

1.5PN 0.5227 0.4005 0.5241 0.3967
2PN 0.7687 0.5707 0.7680 0.5689

2.5PN 0.4735 0.5268 0.4748 0.5278
3PN 0.8629 0.8165 0.8932 0.8277

3.5PN 0.9309 0.9979 0.9194 0.9609
4PN 0.9174 0.9303 0.9087 0.9176

4.5PN 0.9525 0.9744 0.9330 0.9415
5PN 0.9370 0.9392 0.9225 0.9241

(1M⊙, 50M⊙)

0PN 0.2045 0.4683 0.2104 0.4750
1PN 0.1182 0.1446 0.1236 0.1508

1.5PN 0.3444 0.3947 0.3505 0.3866
2PN 0.5518 0.6871 0.5535 0.6827

2.5PN 0.2874 0.3561 0.2933 0.3625
3PN 0.9420 0.6317 0.9334 0.6222

3.5PN 0.6689 0.9681 0.6695 0.9632
4PN 0.6693 0.7227 0.6701 0.7230

4.5PN 0.7829 0.9242 0.7827 0.9229
5PN 0.7275 0.7417 0.7276 0.7420

(1M⊙, 100M⊙)

0PN 0.2098 0.4534 0.2208 0.4641
1PN 0.1395 0.1901 0.1432 0.1994

1.5PN 0.3260 0.7869 0.3399 0.7700
2PN 0.4377 0.8528 0.4506 0.8486

2.5PN 0.2787 0.4001 0.2918 0.4133
3PN 0.7579 0.8407 0.7570 0.8194

3.5PN 0.5740 0.9425 0.5805 0.9383
4PN 0.6129 0.7112 0.6236 0.7159

4.5PN 0.7286 0.9689 0.7308 0.9632
5PN 0.6972 0.7409 0.7027 0.7500
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Figure 8.4.: The difference, FC − FS , in the faithfulness of complete adiabatic and standard
adiabatic templates in the test mass limit. Overlaps are calculated assuming a
flat spectrum for the detector noise (white noise). Plots on the left correspond to
TaylorT1 approximants, while plots on the right correspond to TaylorF1 approx-
imants.

White-noise case

First, we explore the general question of the closeness of the standard adiabatic and com-
plete adiabatic templates to the exact waveform assuming flat power spectral density
for the detector noise. The effectualness and faithfulness of various standard and com-
plete adiabatic approximants are tabulated in Tables 8.1 and 8.2, respectively. These
values correspond to three archetypal binaries with component masses (1M⊙, 10M⊙),
(1M⊙, 50M⊙) and (1M⊙, 100M⊙). Also, in Figure 8.3, we plot the difference, FFC−FFS ,
in the effectualness between the complete and standard approximants. The difference,
FC − FS , in faithfulness between the complete and standard approximants are plotted
in Figure 8.4.

The central result of this study is that complete adiabatic approximants bring about
a remarkable improvement in the effectualness for all systems at low PN orders (<
3PN). The complete adiabatic approximants converge to the adiabatic exact waveform
at lower PN orders than the standard adiabatic approximants. This indicates that at
these orders general relativistic corrections to the conservative dynamics of the binary are
quite important contrary to the assumption employed in the standard post-Newtonian
treatment of the phasing formula. On the other hand, the difference in effectualness
between the standard and complete adiabatic approximants at orders greater than 3PN
is very small. Thus, if we have a sufficiently accurate (order ≥ 3PN) T-approximant of
the flux function, the standard adiabatic approximation is nearly as good as the complete
adiabatic approximation for construction of effectual templates. But at all orders the
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Figure 8.5.: The difference, FFC − FFS , in the effectualness between complete adiabatic and
standard adiabatic templates in the test mass limit. The plots correspond to
overlaps calculated using three different noise spectra — Initial LIGO (left), Virgo
(middle), and Advanced LIGO (right).

standard adiabatic approximation provides a lower bound to the complete adiabatic
approximation for the construction of effectual templates.

The faithfulness of both the approximants fluctuates as we go from one PN order to
the next and is generally much smaller than our target value of 0.965. The fluctuation
continues all the way up to 5PN order reflecting the oscillatory approach of the flux
function to the exact flux function at different PN orders. It is again interesting to note
that complete adiabatic approximants are generally more faithful than the standard
adiabatic approximants.

Initial LIGO, Virgo and Advanced LIGO studies

Having addressed the general question concerning the closeness of standard adiabatic
and complete adiabatic templates to the exact waveforms, we now compare the overlaps
in the specific cases of three ground-based detectors, namely, Initial LIGO, Virgo and
Advanced LIGO. The effectualness and faithfulness of various standard and complete
adiabatic approximants in the test mass limit are tabulated in Tables 8.3 and 8.4. Also,
the difference, FFC − FFS , in the effectualness between complete adiabatic and stan-
dard adiabatic templates is plotted in Figure 8.5, while the difference FC − FS , in the
faithfulness is plotted in Figure 8.6.

As in the case of white noise, here too we see that standard adiabatic approximants of
order less than 3PN have considerably lower overlaps than the corresponding complete
adiabatic approximants, and that the difference in overlaps between standard adiabatic
and complete adiabatic approximants of order ≥ 3PN is very small. Thus, as in the
white-noise case, if we have a sufficiently accurate (order ≥ 3PN) T-approximant of
the flux function, the standard adiabatic approximation is nearly as good as the com-
plete adiabatic approximation for the construction of effectual templates. Unlike in
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Figure 8.6.: The difference, FC −FS , in the faithfulness between complete adiabatic and stan-
dard adiabatic templates in the test mass limit. The plots correspond to overlaps
calculated using three different noise spectra — Initial LIGO (left), Virgo (middle),
and Advanced LIGO (right).

the white-noise case, in the case of real interferometer noise spectra, the plots and Ta-
ble 8.4 indicate that the faithfulness of PN templates generally improves in the complete
adiabatic treatment, for almost all orders studied. But there are some cases of anoma-
lous behavior. In the next subsection we will try to understand the reason for these
anomalous cases where the complete approximants perform worse than the standard.

We also calculate the bias in the estimation of parameters while maximizing the overlaps
over the intrinsic parameters of the binary. The (percentage) bias in the estimation of
the parameter p is defined as

σp ≡
|pmax − p|

p
× 100 , (8.16)

where pmax is the value of the parameter p which gives the maximum overlap. Along
with the maximized overlaps (effectualness), the bias in the estimation of the parameters
m and η are also quoted in Table 8.3. It can be seen that at lower PN orders (order
< 3PN) the complete adiabatic approximants show significantly lower biases. Even at
higher PN orders complete adiabatic approximants are generally less-biased than the
corresponding standard adiabatic approximants.

Understanding the results

Table 8.5 summarizes the PN orders showing the anomalous behavior (i.e. the complete
approximants being less faithful than the standard approximants) for the different noise
spectra studied by us. The best-sensitivity bandwidth of each detector is shown in
brackets 5. The left-most column in the table shows the flattest noise spectrum and the

5It should be noted that there is no rigorous definition for the ‘best-sensitivity’ bandwidth. We define
it as the bandwidth where the detector’s effective noise amplitude h =

p

fSh(f) is within a factor
of two of its lowest value.
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8.2 Test mass waveforms in the adiabatic approximation

Table 8.3.: Effectualness of standard (S) and complete (C) adiabatic approximants in the test
mass limit. Percentage biases σm and ση in determining parameters m and η are
given in brackets.

Order (1M⊙, 10M⊙) (1M⊙, 50M⊙)
(n) S C S C

Initial LIGO

0PN 0.5910 (12, 5.7) 0.9707 (36, 45) 0.8748 (24, 29) 0.9471 (19, 14)
1PN 0.5232 (22, 105) 0.8397 (125, 69) 0.8101 (28, 104) 0.9392 (19, 40)
1.5PN 0.9688 (52, 51) 0.9887 (8.3, 15) 0.9254 (21, 4.1) 0.9996 (6.7, 20)
2PN 0.9781 (18, 25) 0.9942 (0.4, 0.6) 0.9610 (18, 16) 0.9993 (7.5, 16)
2.5PN 0.9490 (96, 68) 0.9923 (26, 32) 0.9104 (21, 6.9) 0.9940 (8.3, 0.7)
3PN 0.9942 (0.3, 1.1) 0.9989 (3.7, 6.2) 0.9968 (11, 21) 0.9992 (2.6, 10)
3.5PN 0.9940 (6.9, 11) 0.9998 (0.6, 1.4) 0.9923 (13, 19) 0.9997 (2.4, 5.2)
4PN 0.9974 (6.2, 11) 0.9996 (3.9, 6.9) 0.9979 (8.8, 13) 0.9995 (3.5, 4.3)
4.5PN 0.9988 (3.3, 5.5) 1.0000 (0.8, 1.6) 0.9995 (7.1, 14) 1.0000 (0.9, 1.9)
5PN 0.9992 (4.0, 6.9) 0.9997 (3.5, 5.7) 0.9994 (5.2, 7.7) 0.9990 (2.6, 2.4)

Advanced LIGO

0PN 0.4281 (9.2, 2.6) 0.8960 (32, 42) 0.6461 (27, 22) 0.8099 (48, 54)
1PN 0.3498 (28, 8.9) 0.7258 (156, 75) 0.6200 (25, 123) 0.7093 (27, 13)
1.5PN 0.9010 (48, 49) 0.9653 (11, 21) 0.6919 (27, 20) 0.9532 (2.0, 8.7)
2PN 0.9266 (14, 20) 0.9814 (2.6, 4.2) 0.8835 (31, 39) 0.9833 (6.3, 13)
2.5PN 0.8917 (89, 66) 0.9913 (26, 31.7) 0.6720 (26, 6.2) 0.9194 (17, 21)
3PN 0.9913 (0.7, 1.6) 0.9989 (3.9, 7.3) 0.9645 (8.4, 16) 0.9740 (1.4, 1.4)
3.5PN 0.9816 (4.5, 7.4) 0.9994 (0.4, 0.3) 0.9875 (14, 23) 0.9987 (2.0, 3.9)
4PN 0.9895 (4.2, 7.1) 0.9970 (3.0, 5.3) 0.9967 (9.5, 16) 0.9973 (4.4, 6.9)
4.5PN 0.9965 (2.1, 3.6) 0.9999 (0.8, 1.6) 0.9932 (6.1, 11) 1.0000 (0.9, 1.9)
5PN 0.9954 (2.9, 5.2) 0.9977 (2.6, 4.0) 0.9986 (5.7, 9.9) 0.9960 (3.6, 6.2)

Virgo

0PN 0.3894 (42, 41) 0.7256 (0.8, 3.8) 0.6004 (50, 25) 0.8689 (51, 56)
1PN 0.2956 (11, 6.5) 0.6876 (187, 80) 0.5498 (51, 30) 0.7217 (52, 28)
1.5PN 0.8474 (31, 37) 0.9487 (12, 22) 0.7308 (56, 53) 0.9619 (1.1, 6.9)
2PN 0.8933 (9.9, 15) 0.9711 (3.0, 4.6) 0.9291 (34, 43) 0.9854 (5.4, 12)
2.5PN 0.8179 (69, 59) 0.9864 (26, 32) 0.6579 (49, 41) 0.9446 (19, 23)
3PN 0.9845 (0.6, 1.5) 0.9970 (3.8, 7.3) 0.9697 (7.4, 14) 0.9818 (1.5, 1.5)
3.5PN 0.9722 (4.3, 7.2) 0.9991 (0.4, 0.3) 0.9885 (14, 22) 0.9980 (1.9, 3.8)
4PN 0.9829 (4.1, 7.1) 0.9955 (2.9, 5.2) 0.9971 (9.5, 16) 0.9973 (4.4, 6.9)
4.5PN 0.9937 (2.0, 3.5) 0.9999 (0.8, 1.6) 0.9926 (6.0, 11) 1.0000 (0.9, 1.9)
5PN 0.9920 (3.0, 5.3) 0.9967 (2.6, 4.1) 0.9987 (5.7, 10) 0.9960 (3.5, 6.2)
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New class of post-Newtonian approximants to the waveform templates of inspiralling compact binaries

Table 8.4.: Faithfulness of standard (S) and complete (C) adiabatic templates in the test mass
limit.

Order (1M⊙, 10M⊙) (1M⊙, 50M⊙)
(n) S C S C

Initial LIGO

0PN 0.2186 0.6272 0.2134 0.3498
1PN 0.1342 0.1615 0.1511 0.2196

1.5PN 0.3788 0.4492 0.2915 0.9223
2PN 0.7449 0.7633 0.3613 0.8157

2.5PN 0.3115 0.3970 0.2608 0.4233
3PN 0.9633 0.7566 0.7194 0.9686

3.5PN 0.8385 0.9984 0.4941 0.9273
4PN 0.8356 0.8909 0.5960 0.7934

4.5PN 0.9395 0.9851 0.7594 0.9644
5PN 0.8960 0.9129 0.7344 0.8350

Advanced LIGO

0PN 0.1456 0.4915 0.1608 0.2955
1PN 0.0853 0.1041 0.1159 0.1609

1.5PN 0.2711 0.3063 0.2187 0.6735
2PN 0.6998 0.6140 0.2765 0.8403

2.5PN 0.2143 0.2710 0.1961 0.3094
3PN 0.8889 0.5791 0.7252 0.6971

3.5PN 0.7476 0.9985 0.3852 0.9087
4PN 0.7314 0.8144 0.4404 0.5761

4.5PN 0.9001 0.9718 0.5714 0.9078
5PN 0.8273 0.8518 0.5303 0.6166

Virgo

0PN 0.1384 0.3644 0.1265 0.3881
1PN 0.0682 0.0818 0.0887 0.1205

1.5PN 0.2524 0.2348 0.1859 0.5783
2PN 0.7451 0.4617 0.2514 0.8597

2.5PN 0.2003 0.2496 0.1612 0.2420
3PN 0.8339 0.5745 0.7978 0.6210

3.5PN 0.7684 0.9968 0.3821 0.9259
4PN 0.7501 0.7892 0.4024 0.5306

4.5PN 0.8753 0.9595 0.5298 0.9132
5PN 0.8033 0.8232 0.4968 0.5617
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8.2 Test mass waveforms in the adiabatic approximation

Table 8.5.: PN orders showing anomalous behavior in the context of different noise spectra.
The best-sensitivity bandwidth of each detector is shown in brackets. Label A
corresponds to the (1M⊙, 10M⊙) binary and label B to the (1M⊙, 50M⊙) binary.

White-noise Virgo Advanced LIGO Initial LIGO
(50-400 Hz) (60-300 Hz) (80-200 Hz)

A B A B A B A B

0PN
1.5PN 1.5PN
2PN 2PN 2PN
3PN 3PN 3PN 3PN 3PN 3PN 3PN

right-most column shows the narrowest one.

In order to understand the anomalous behavior shown at certain PN orders, we com-
pare the approximants of the F(v)/E′(v) function with the corresponding exact function.
Figure 8.7 shows the standard and complete approximants of F̂(v)/Ê′(v) along with the
exact functions, where a ‘hat’ indicates the corresponding Newton-normalized quantity.
These results show that, while the complete approximants are far superior to the stan-
dard approximants in modelling the late-inspiral, the early inspiral is better modelled by
the standard approximants at these PN orders. In the case of the (1M⊙, 10M⊙) binary,
the 0PN standard approximant is closer to the exact function than the corresponding
complete approximant in the frequency region 20-50 Hz. But, since none of the detec-
tors is sensitive in this frequency band, this effect shows up in the white-noise case only.
Similarly the 1.5PN and 2PN standard approximants are closer to the exact function in
the frequency regions 20-60 Hz and 20-80 Hz, respectively. But the 1.5PN approximant
does not show the anomalous behavior in the case of the Advanced LIGO and Initial
LIGO because the 20-60 Hz region does not fall in the best-sensitivity bandwidth of
these detectors. The anomalous behavior exhibited by the 3PN approximant can be
understood in a similar way. It should be noted that the final stages of the inspiral is
much better modelled by the complete approximants (see the top panel of Figure 8.7).

Accuracy of energy function Vs. flux function

In this section, we study the relative importance of improving the accuracy of the energy
function and the flux function. We take all possible combinations of T-approximants
of energy and flux functions, construct PN templates and calculate the overlap of these
templates with the exact waveform. In all cases, the exact waveform is constructed
as described in the previous section. The effectualness (left) and faithfulness (right)
of various PN approximants corresponding to the (1M⊙, 10M⊙) binary are plotted in
Figure 8.8 while the same quantities corresponding to the (1M⊙, 50M⊙) binary are
plotted in Figure 8.9.
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Figure 8.7.: Top panel shows the approximants of F̂(v)/Ê′(v) plotted as a function of v.
Dashed lines indicate standard approximants and solid lines indicate the corre-
sponding complete approximants. Middle and bottom panels show the same ap-
proximants plotted as a function of the GW frequency F = v3/πm in the case of
the (1M⊙, 10M⊙) binary and the (1M⊙, 50M⊙) binary, respectively.

In most of the cases, TaylorT1 and TaylorF1 templates show trends of smoothly increas-
ing overlaps as the accuracy of the energy function is increased keeping the accuracy of
the flux function constant. This is because the T-approximants of the energy function
smoothly converge to the exact energy as we go to higher orders (see the left plot of Fig-
ure 8.2). On the other hand, if we improve the accuracy of the flux function for a fixed
order of energy, the overlaps do not show such a smoothly converging behavior. This
can be understood in terms of the oscillatory nature of the T-approximants of the flux
function. For example, templates constructed from 1PN and 2.5PN flux functions can
be seen to have considerably lower overlaps than the other ones. This is because of the
poor ability of the 1PN and 2.5PN T-approximants to mimic the behavior of the exact
flux function (see the right plot of Figure 8.2). This inadequacy of the 1PN and 2.5PN
T-approximants is prevalent in both test mass and comparable mass cases. Hence it is
not a good strategy to use the T-approximants at these orders for the construction of
templates. On the other hand, 3.5PN and 4.5PN T-approximants are greatly successful
in following the exact flux function in the test mass case, and consequently lead to larger
overlaps.

We have found that in the test mass case if we improve the accuracy of energy function
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Figure 8.8.: Effectualness (left panels) and faithfulness (right panels) of various test mass Tay-
lorT1 and TaylorF1 templates in detecting a signal from a (1M⊙, 10M⊙), calcu-
lated for the initial LIGO noise PSD. The horizontal axis reports the order [n]
of the energy function, while the legends report the order n of the flux function.
Each line shows how the overlaps are evolving as a function of the accuracy of the
energy function. Standard adiabatic approximants T (E[n],Fn) are marked with
thick dots.

from 3PN to 4PN, keeping the flux function at order 3PN, the increase in effectualness
(respectively, faithfulness) is ≃ 0.36% (−16%). The same improvement in the energy
function for the 3.5PN flux will produce an increase of ≃ 0.36% (13%). On the other
hand, if we improve the accuracy of flux function from 3.5PN to 4PN, keeping the
energy function at order 3PN, the increase in effectualness (respectively, faithfulness)
is ≃ −0.17% (−12%). The values quoted are calculated using the TaylorT1 method
for the (1M⊙, 10M⊙) binary for the initial LIGO noise PSD. The effectualness trends
are similar in the case of the (1M⊙, 50M⊙) binary also. If the comparable mass case is
qualitatively similar to the test mass case, this should imply that neither the improvement
in the accuracy of the energy function from 3PN to 4PN nor the improvement in the
accuracy of the flux function from 3.5PN to 4PN will produce significant improvement
in the effectualness in the comparable mass case. The trends in the faithfulness are
very different for different binaries so that it is hard to make any statement about the
improvement in faithfulness.
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Figure 8.9.: Same as in Figure 8.8 except that the plot correspond to a (1M⊙, 50M⊙) binary.

Number of gravitational wave cycles

The number of GW cycles accumulated by a template is defined as [273]

Ntot ≡
1

2π
(ϕlso − ϕlow) =

∫ F lso

Flow

dF
N(F )

F
, (8.17)

where ϕlso and ϕlow are the GW phases corresponding to the last stable orbit and the
low frequency cut-off, respectively, and N(F ) ≡ F 2/Ḟ is the instantaneous number of
cycles spent near some instantaneous frequency F (as usual, Ḟ is the time derivative of
F ). However, it has been noticed that [273], the large number Ntot is not significant
because the only really useful cycles are those that contribute most to the signal-to-noise
ratio (SNR). The number of useful cycles is defined as [273]

Nuseful ≡
(
∫ F lso

Flow

df

f
w(f)N(f)

)(
∫ F lso

Flow

df

f
w(f)

)−1

, (8.18)

where w(f) ≡ a2(f)/h2
n(f). If Sn(f) is the two-sided PSD of the detector noise, hn(f)

is defined by h2
n(f) ≡ fSn(f), while a(f) is defined by |H(f)| ≃ a(tf )/[Ḟ (tf )]

1/2 where
H(f) is the Fourier transform of the time-domain waveform h(t) (See Eqs.(8.2) and
(8.3)) and tf is the time when the instantaneous frequency F (t) reaches the value f of
the Fourier variable.
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8.2 Test mass waveforms in the adiabatic approximation

The total numbers of GW cycles accumulated by various standard and complete adi-
abatic approximants in the test mass limit are tabulated in Table 8.6 along with the
number of useful cycles calculated for the initial LIGO noise PSD. We use Eq.(8.4) to
calculate Ḟ and numerically evaluate the integrals in Eq.(8.18) to compute the number
of useful cycles. In order to compute the total number of cycles, we numerically evaluate
the integral in Eq.(8.17)

It can be seen that all complete adiabatic approximants accumulate fewer number of
(total and useful) cycles than the corresponding standard adiabatic approximants. This
is because the additional conservative terms in the complete adiabatic approximants add
extra acceleration to the test mass which, in the presence of radiation reaction, would
mean that the test body has to coalesce faster, and therefore such templates accumulate
fewer number of cycles. Notably enough, approximants (like 3PN and 4.5PN) producing
the highest overlaps with the exact waveform, accumulate the closest number of cycles
as accumulated by the exact waveform. This is indicative that the phase evolution of
these approximants is closer to that of the exact waveform. On the other hand, the
fractional absolute difference in the number of cycles of the approximants producing
the lowest overlaps (like 0PN, 1PN and 2.5PN) as compared to the exact waveform is
the largest, which indicates that these templates follow a significantly different phase
evolution.

In order to illustrate the correlation between the number of (total/useful) cycles accu-
mulated by an approximant and its overlap with the exact waveform, we introduce a
quantity δNn = |Nn−Nexact|

Nexact
which is the fractional absolute difference between the num-

ber of (total/useful) cycles accumulated by a template and the exact waveform. Here
Nn and Nexact are the number of (total/useful) cycles accumulated by the nPN approxi-
mant and exact waveform, respectively. In Figure 8.10, we plot δNn of various standard
adiabatic and complete adiabatic approximants against the corresponding overlaps in
the case of a (1M⊙, 10M⊙) binary.

The following points may be noted while comparing the results quoted here for the
number of cycles with those of other works, e.g. Refs. [276, 230, 275]. As emphasized
in Ref. [247] one can get very different results for the phasing depending on whether
one consistently re-expands the constituent energy and flux functions or evaluates them
without re-expansion. In the computation of the number of useful cycles different au-
thors treat the function Ḟ differently, some re-expand and others do not, leading to
differences in the results. The other important feature we would like to comment upon
is a result that appears, at first, very counter-intuitive. It is the fact that in some cases
the number of useful GW cycles is greater than the total number of GW cycles! A
closer examination reveals that while for most cases of interest this does not happen, in
principle its occurrence is determined by the ratio fr ≡ Flow/Flso. To understand this
in more detail let us consider the ratio Nr of the number of useful cycles to the total
number of cycles in the case of white-noise (in a frequency band Flow to Flso) for which

Nr ≡
Nuseful

Ntot
=

5

12
f1/3
r

1 − f
4/3
r

1 − f
1/3
r

. (8.19)
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Table 8.6.: Number of GW cycles accumulated by various standard (S) and complete (C) adi-
abatic approximants in the test mass limit. The number of useful cycles calculated
for the initial LIGO noise PSD is also shown in brackets. The chosen low-frequency
cut-off is 40Hz.

Order (1M⊙, 10M⊙) (1M⊙, 50M⊙) (1M⊙, 100M⊙)
n S C S C S C

0PN 481 (92.3) 424 (74.6) 118 (110) 77.8 (64.4) 13.6 6.7
1PN 560 (117) 526 (102) 180 (186) 124 (104) 25.7 10.6

1.5PN 457 (81.7) 433 (71.8) 88.8 (76.3) 58.5 (38.2) 8.4 2.3
2PN 447 (77.7) 440 (74.0) 77.0 (61.8) 62.5 (41.5) 6.1 2.6

2.5PN 464 (84.5) 454 (79.6) 96.8 (85.5) 74.5 (50.5) 9.7 2.9
3PN 442 (74.7) 440 (73.3) 64.5 (45.2) 58.1 (35.5) 3.4 1.6

3.5PN 445 (76.1) 442 (74.5) 68.7 (49.7) 60.6 (36.8) 4.0 1.4
4PN 445 (75.8) 443 (75.2) 66.4 (45.1) 62.9 (39.0) 2.9 1.6

4.5PN 443 (75.1) 442 (74.5) 63.7 (42.0) 60.0 (35.6) 2.5 1.2
5PN 444 (75.3) 443 (75.0) 63.8 (40.9) 62.2 (37.8) 2.1 1.4
Exact 442 (74.1) 59.1 (34.3) 0.9

For fr ≪ 1, Nr < 1. However, as fr increases to about fr = 0.52, Nr transits from being
less than one to becoming greater than one! Essentially this arises due to the details of
the scaling of the various quantities involved and the point of transition depends on the
PN order and the precise form of the noise PSD. For fr ≃ 1, the calculation of useful
cycles does not make much physical sense. This explains the absence of Nuseful results
for the (1M⊙, 100M⊙) binary in Table 8.6.

8.3. Comparable mass waveforms

Until recently, in the case of comparable mass binaries there was no exact waveform
available. But recently, a series of breakthroughs has occurred in numerical simulations
of binary black hole systems [93, 94, 95] and it has become possible to calculate the grav-
itational waveforms from coalescing binary black holes by exactly solving the Einstein’s
equations. It is possible, in principle, to take these waveforms as the ‘exact’ waveforms,
and to compute the closeness of the standard and complete adiabatic template families
with this family of exact waveforms. But, although several different numerical relativity
groups have come up with binary black hole simulations which produce qualitatively
similar results using independent codes [277, 278, 185, 279, 171, 195, 178, 280], there
are several issues like the accuracy and convergence of numerical simulations that have
to be sorted out before we can use these waveforms as the exact waveforms in our study
(see Chapter 7 for some related discussion). Moreover, the high computational cost
makes it unfeasible, as of now, to produce gravitational waveforms lasting several tens
of orbits, which are required for a study like this. So, what we do here is to compare the
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Figure 8.10.: The fractional absolute difference δNn between the number of cycles accumulated
by various approximants and the exact waveform, plotted against the correspond-
ing overlaps. Standard adiabatic approximants are marked with lighter markers
and complete adiabatic approximants are marked with darker markers. Top pan-
els show δNn for the total number of cycles and bottom panels show δNn for
the number of useful cycles. The number of useful cycles are calculated for the
initial LIGO noise PSD and the low frequency cut-off is chosen to be 40Hz. The
plotted results are for a (1M⊙, 10M⊙) binary.

performance of the standard adiabatic and complete adiabatic templates by studying
their overlaps with a plausible fiducial exact waveform family (see below).

We will consider all possible combinations of the T-approximants of the energy and flux
functions, construct PN templates and calculate the overlaps of these templates with
the fiducial ‘exact’ waveform. In all cases, the fiducial ‘exact’ waveform is constructed
by numerically integrating the phasing formula in the time-domain (TaylorT1 approx-
imant), and terminating both the ‘exact’ and approximate waveforms at vlso = 1/

√
6,

which corresponds to Flso ≃ 1570 Hz for a (1.4M⊙, 1.4M⊙) binary and Flso ≃ 220 Hz
for a (10M⊙, 10M⊙) binary 6. The lower frequency cut-off of the waveforms is chosen
to be Flow = 40 Hz.

6Here also, vlso is the velocity at the last stable circular orbit of the Schwarzschild geometry having
the same mass as the total mass m1 + m2 of the binary. Strictly speaking, in the comparable mass
case, vlso at nPN order should be determined by solving E′

n(v) = 0 where E′

n(v) is the v-derivative
of the nth PN order energy function. Since we found that our results are qualitatively independent
of such considerations, we stick to the choice in the test-mass limit.
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8.3.1. The energy function

In the case of binaries with comparable masses, the energy function E(x; η) has been
computed at present up to 3PN accuracy [222, 254, 255, 223, 224, 225, 226, 256, 227,
228, 229].

E3PN (x; η) = −1

2
η x

[

1 − 1

12
(9 + η)x− 1

8

(

27 − 19η +
η2

3

)

x2

+

(− 675

64
+

(

209323

4032
− 205π2

96
−110λ

9

)

η − 155

96
η2 − 35

5184
η3

)

x3

+ O (x4)

]

, (8.20)

where λ = −1987/3080 ≃ −0.6451 [256, 227, 228, 229]. The corresponding E′(v; η)
appearing in the phasing formula reads,

E′
3PN (v; η) = −η v

[

1 − 1

6
(9 + η) v2 − 3

8

(

27 − 19η +
η2

3

)

v4

+ 4

(− 675

64
+

(

209323
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−110λ
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)

η − 155

96
η2 − 35

5184
η3

)

v6

+ O(v8)

]

. (8.21)

We use this expression truncated at the necessary orders to construct the various ap-
proximate templates. To compute a fiducial ‘exact’ waveform, we use the exact energy
function in the test mass limit supplemented by the finite mass corrections up to 3PN
in the spirit of the hybrid approximation [281, 282]. In other words, the fiducial ‘exact’
energy E′(v; η) will look like

E′
exact(v; η) = −η v

[−E′
exact(v)

η v
− η

6
v2 − 3

8

(

−19 η +
η2

3

)

v4

+ 4

((

209323

4032
− 205π2

96
−110λ

9

)

η − 155

96
η2 − 35

5184
η3

)

v6

]

(8.22)

where E′
exact(v) is the v-derivative of the exact energy function in the test mass limit

given by Eq. (8.12). The T-approximants of the energy function E′
T(v; η) as well as the

fiducial exact energy E′
exact(v; η) are plotted in Figure 8.11 (left). The vlso corresponding

to the fiducial ‘exact’ energy function can be determined by solving E′
exact(v; η) = 0.

This will yield a value v3PN−hybrid
lso ≃ 0.4294 against the vlso ≃ 0.4082 in the test-mass

case (more precisely it is the vMECO [270]). If the η-corrections are included only up to

2PN instead of 3PN, v2PN−hybrid
lso ≃ 0.4113. It is worth pointing that v2PN−Pade

lso ≃ 0.4456
[167] and it is not unreasonable to expect that, with 3PN η-corrections the differences
between various different ways of determining the lso converge. (For the purposes of
our analysis, we have checked that there is no drastic change in our conclusions due to
these differences and hence we use uniformly the value vlso = 0.4082).
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X).

8.3.2. The flux function

The flux function in the case of comparable masses has been calculated up to 3.5PN
accuracy [257, 258, 260, 259, 261, 262, 230], and is given by:

F(v; η) =
32

5
η2v10

[

7
∑

k=0

Ak(η)v
k +B6(η)v

6 ln v + O (v8)

]

, (8.23)

where
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Figure 8.12.: Effectualness of various TaylorT1 templates in the comparable mass case. The
horizontal axis reports the PN order [n] of the energy function, while the legends
report the PN order n of the flux function. Each line shows how the overlaps are
evolving as a function of the accuracy of the energy function. Standard adiabatic
approximants are marked with thick dots. The top panes corresponds to the
(10M⊙, 10M⊙) binary and the bottom panel to the (1.4M⊙, 1.4M⊙) binary.
Overlaps are calculated for the initial LIGO (left plots), Advanced LIGO (middle
plots) and Virgo (right plots) noise spectra.

B6(η) = −1712

105
, (8.24)

and the value of Θ has been recently calculated to be −11831/9240 ≃ −1.28 [91] by
dimensional regularization.

To construct our fiducial ‘exact’ waveform, we will use the energy function given by
Eq. (8.22) and the flux function

Fexact(v; η) =
32

5
η2v10

[

Fexact(v) −
7
∑

k=0

(

Akv
k +B6v

6 ln v
)

+
7
∑

k=0

(

Ak(η)v
k +B6(η)v

6 ln v
)

]

, (8.25)

where Fexact(v) is the Newton-normalized (numerical) exact flux in the test-mass limit.
The expansion coefficients Ak’s and B6 refer to the test-mass case and Ak(η)’s and
B6(η) refer to the comparable mass case. The exact flux function is thus constructed
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Figure 8.13.: Faithfulness of various TaylorT1 templates in the comparable mass case. The
horizontal axis reports the PN order [n] of the energy function, while the legends
report the PN order n of the flux function. Each line shows how the overlaps are
evolving as a function of the accuracy of the energy function. Standard adiabatic
approximants are marked with thick dots. The top panes corresponds to the
(10M⊙, 10M⊙) binary and the bottom panel to the (1.4M⊙, 1.4M⊙) binary.
Overlaps are calculated for the initial LIGO (left plots), Advanced LIGO (middle
plots) and Virgo (right plots) noise spectra.

by superposing all that we know in the test mass case from perturbation methods and
the two body case by post-Newtonian methods. It supplements the exact flux function
in the test body limit by all the η-dependent corrections known up to 3.5PN order in
the comparable mass case. The T-approximants of the flux function FT(v; η) and the
fiducial exact flux Fexact(v; η) are plotted in Figure 8.11 (right).

8.3.3. Comparable mass results in the adiabatic approximation

The effectualness and faithfulness of various PN templates in the case of comparable
mass binaries are plotted in Figure 8.12 and in Figure 8.13, respectively. The overlaps of
the fiducial exact waveform are calculated with the TaylorT1 approximants using three
different noise spectra — Initial LIGO, Advanced LIGO and Virgo. Let us note that
in the case of comparable mass binaries the complete adiabatic approximants can be
calculated, at present, at most up to 1PN order. The effectualness and faithfulness of
various standard and complete adiabatic templates are also tabulated in Tables 8.7 and
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8.8, respectively. From these tables, one can see that the complete adiabatic approxi-
mation generally improves the effectualness of the templates at 0PN and 1PN orders.
But, as far as faithfulness is concerned, it is hard to conclude that one approximation
is better than the other at these PN orders.

Even though complete adiabatic approximants are not calculated for higher PN orders,
the general conclusion one can make from Figures 8.12 and 8.13 is that the complete
adiabatic approximation of the phasing will not result in a significant improvement in
overlaps if we have a flux function of order ≥ 1.5PN. We, thus, conclude that, provided
we have a sufficiently accurate (order ≥ 1.5PN) T-approximant of the flux function,
the standard adiabatic approximation provides a good lower bound to the complete
adiabatic approximation for the construction of both effectual and faithful templates in
the case of comparable mass binaries. It should be kept in mind that unlike the test mass
case where the exact energy and flux functions are known leading to an exact waveform
in the adiabatic approximation, in the comparable mass case we are only talking about
fiducial energy and flux functions constructed from what is known. Probably, the fiducial
waveform in this case has much less to do with the exact waveform predicted by general
relativity.

Table 8.7 indicates that, to achieve the target sensitivity of 0.965 in effectualness corre-
sponding to a 10% loss in the event-rate, standard adiabatic approximants of order 2PN
and 3PN are required for the (10M⊙, 10M⊙) and (1.4M⊙, 1.4M⊙) binaries, respectively,
when restricting to only the inspiral phase.

8.4. Summary and conclusion

The standard adiabatic approximation to the phasing of gravitational waves from inspi-
ralling compact binaries is based on the post-Newtonian expansions of the binding energy
and gravitational wave flux both truncated at the same relative post-Newtonian order.
To go beyond the adiabatic approximation one must view the problem as the dynamics
of a binary under conservative relativistic forces and gravitation radiation damping. In
this viewpoint the standard approximation at leading order is equivalent to considering
the 0PN and 2.5PN terms in the acceleration and neglecting the intermediate 1PN and
2PN terms. A complete treatment of the acceleration at leading order should include
all PN terms up to 2.5PN. These define the standard and complete non-adiabatic ap-
proximants respectively. A new post-Newtonian complete adiabatic approximant based
on energy and flux functions is proposed. At the leading order it uses the 2PN energy
function rather than the 0PN one in the standard approximation so that heuristically,
it does not miss any intermediate post-Newtonian terms in the acceleration. We have
evaluated the performance of the standard adiabatic vis-a-vis complete adiabatic ap-
proximants, in terms of their effectualness (i.e. larger overlaps with the exact signal)
and faithfulness (i.e. smaller bias in estimation of parameters). We restricted our study
only to the inspiral part of the signal neglecting the plunge and quasi-normal mode
ringing phases of the binary [268, 269, 247, 270, 271, 272]. We have studied the problem
in the context of both the white-noise spectrum and real interferometer noise spectra.
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8.4 Summary and conclusion

Table 8.7.: Effectualness of standard (S) and complete (C) adiabatic approximants in the
comparable-mass case. Waveforms are generated using the TaylorT1 method. Per-
centage biases σm and ση in determining parameters m and η are given in brackets.

Order (10M⊙, 10M⊙) (1.4M⊙, 1.4M⊙)
n S C S C

Initial LIGO

0PN 0.8815 (14, 0.2) 0.9515 (3.7, 0.1) 0.8636 (1.4, 0.2) 0.6993 (4.3, 0.2)
1PN 0.8457 (59, 0.1) 0.8957 (45, 12) 0.5398 (5.0, 0.1) 0.5639 (4.3, 0.2)

1.5PN 0.9536 (3.9, 0.3) 0.9516 (0.4, 0.2)
2PN 0.9833 (0.4, 0.2) 0.8751 (0.0, 0.1)

2.5PN 0.8728 (14, 0.1) 0.8517 (0.4, 0.1)
3PN 0.9822 (1.5, 0.0) 0.9955 (0.0, 0.3)

3.5PN 0.9843 (1.4, 0.0) 0.9968 (0.0, 0.3)

Advanced LIGO

0PN 0.7606 (8.5, 0.1) 0.9132 (5.0, 0.3) 0.8347 (1.4, 0.1) 0.5809 (4.3, 0.1)
1PN 0.7110 (57, 0.6) 0.7360 (39, 0.6) 0.3959 (6.1, 0.0) 0.4194 (5.0, 0.1)

1.5PN 0.8741 (2.4, 0.1) 0.9034 (0.0, 0.2)
2PN 0.9803 (0.8, 0.2) 0.8179 (0.4, 0.0)

2.5PN 0.7705 (7.3, 0.1) 0.7826 (0.4, 0.0)
3PN 0.9626 (0.5, 0.0) 0.9981 (0.4, 0.3)

3.5PN 0.9683 (1.3, 1.5) 0.9977 (0.4, 0.3)

Virgo

0PN 0.7009 (5.3, 0.0) 0.9280 (4.7, 0.9) 0.7119 (1.4, 0.1) 0.4405 (5.0, 0.0)
1PN 0.5834 (56, 0.3) 0.6148 (30, 0.2) 0.2808 (3.9, 0.1) 0.2968 (2.9, 0.0)

1.5PN 0.8698 (1.3, 0.0) 0.7724 (0.4, 0.7)
2PN 0.9815 (0.8, 0.2) 0.6420 (0.0, 0.0)

2.5PN 0.7299 (4.8, 0.0) 0.6266 (0.0, 0.1)
3PN 0.9624 (0.5, 0.1) 0.9822 (0.0, 0.3)

3.5PN 0.9627 (0.5, 0.1) 0.9823 (0.0, 0.3)
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Table 8.8.: Faithfulness of the standard (S) and complete (C) adiabatic templates in the
comparable-mass case. The waveforms are generated using the TaylorT1 method.

Order (10M⊙, 10M⊙) (1.4M⊙, 1.4M⊙)
n S C S C

Initial LIGO

0PN 0.5603 0.8560 0.3783 0.1624
1PN 0.3026 0.3491 0.1520 0.1615

1.5PN 0.7949 0.7259
2PN 0.9777 0.5565

2.5PN 0.5687 0.5934
3PN 0.9440 0.9888

3.5PN 0.9522 0.9916

Advanced LIGO

0PN 0.3902 0.7030 0.3731 0.1300
1PN 0.1944 0.2248 0.1054 0.1128

1.5PN 0.6362 0.5735
2PN 0.8895 0.3964

2.5PN 0.4125 0.4407
3PN 0.9117 0.9947

3.5PN 0.9106 0.9952

Virgo

0PN 0.4262 0.5490 0.3138 0.0794
1PN 0.1574 0.1798 0.0686 0.0732

1.5PN 0.5950 0.3986
2PN 0.8120 0.3027

2.5PN 0.3842 0.3726
3PN 0.9169 0.9668

3.5PN 0.9177 0.9686
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8.4 Summary and conclusion

The main result of this study is that the conservative corrections to the dynamics of
a binary that are usually neglected in the standard treatment of the phasing formula
are rather important at low PN orders. At the low PN orders, they lead to significant
improvement in the overlaps between the approximate template and the exact waveform.
In both the cases of white noise and real interferometer noise, we found that at low (<
3PN) PN orders the effectualness of the approximants significantly improves in the
complete adiabatic approximation. However, standard adiabatic approximants of order
≥ 3PN are nearly as good as the complete adiabatic approximants for the construction
of effectual templates.

In the white-noise case, the faithfulness of both the approximants fluctuates as we go
from one PN order to the next and is generally much smaller than our target value
of 0.965. The fluctuation continues all the way up to 5PN order probably reflecting
the oscillatory approach of the flux function to the exact flux function with increas-
ing PN order. Poor faithfulness also means that the parameters extracted using these
approximants will be biased. It is again interesting to note that complete adiabatic
approximants are generally more faithful than the standard adiabatic approximants. In
the case of real interferometer noise spectra on the other hand, the faithfulness of the
complete adiabatic approximants is vastly better at almost all orders.

To the extent possible, we also tried to investigate this problem in the case of compara-
ble mass binaries by studying the overlaps of all the approximants with a fiducial exact
waveform. It is shown that, provided we have a T-approximant of the flux function of
order ≥ 1.5PN, the standard adiabatic approximation provides a good lower bound to
the complete adiabatic approximation for the construction of both effectual and faithful
templates. This result is in contrast with the test mass case where we found that the
complete adiabatic approximation brings about significant improvement in effectualness
up to 2.5PN order and significant improvement in faithfulness at all orders. To achieve
the target sensitivity of 0.965 in effectualness, standard adiabatic approximants of order
2PN and 3PN are required for the (10M⊙, 10M⊙) and (1.4M⊙, 1.4M⊙) binaries, respec-
tively. Whether the complete adiabatic approximant achieves this at an earlier PN order
is an interesting question. It is worth stressing that this result is relevant only for the
family of inspiral waveforms. In the real physical case of BH-BH binaries the inspiral
family may not be adequate because the contributions from the plunge, merger and ring
down phases are also going to be significant [268]. This is an example of the second
variety of questions one can study in this area referred to in our introduction related
to whether a template family indeed represents the GWs from a specific astrophysical
system.

During the course of this study, we also attempted to assess the relative importance of
improving the accuracy of the energy function and the flux function by systematically
studying the approach of the adiabatic PN templates constructed with different orders
of the energy and the flux functions to the exact waveforms. From the study of test-
mass templates we also conclude that, provided the comparable mass case is qualitatively
similar to the test mass case, neither the improvement of the accuracy of energy function
from 3PN to 4PN nor the improvement of the accuracy of flux function from 3.5PN to
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4PN will result in a significant improvement in effectualness in the comparable mass
case.

There is a limitation to our approach which we should point out: complete adiabatic
models can be very well tested in the test mass where both approximate and exact
expressions are available for the various quantities. However, complete models cannot
be worked out to high orders in the comparable mass case since they need the energy
function to be computed to 2.5PN order greater than the flux and currently the energy
function is only known to 3PN accuracy. Also, we have used a fiducial exact waveform
constructed from the approximants themselves. Though, in the present study we have
used the new approximants to construct waveform templates, one can also envisage
applications to discuss the dynamics of the binary using numerical integration of the
equations of motion.
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Appendix A.

Analytical calculation of the fitting
factors

In Section 7.4.3 of Chapter 7, in order to find the fitting factor of our phenomenological
bank to a hybrid waveform, as well as the best-matched parameters (αmax,ψmax), we
need to perform a maximization of the overlap M(α,ψ) in a 12-dimensional space,
which seems a challenging task at first sight, especially due to the oscillatory nature of
the dependence of M(α,ψ) on the components of ψ. However, due to the very high
fitting factor, as well as the linear dependence of Ψeff(ψ; f) on ψ, it is possible to design
an analytic approximation to M(α,ψ) that is highly accurate and can be maximized
over ψ analytically. In describing this approximation, we also include ϕ0 and t0 in ψ,
forming an 8-dimensional vector.

For a target hybrid waveform

h̃(f) = A(f) eiΨ(f) , (A.1)

and a phenomenological template

u(f) = Aeff(α; f) eiΨeff (ψ;f) , (A.2)

the overlap M(α,ψ) can be broken into a product of two terms,

M(α,ψ) = MA(α)MP(α,ψ) (A.3)

with

MA(α) ≡ 1

a

∫ ∞

0

Aeff(α; f)A(f)

Sh(f)
df (A.4)

and

MP(α,ψ) ≡ 1

b

∫ ∞

0

Aeff(α; f)A(f) cos[∆Ψ(f)]

Sh(f)
df (A.5)

where
∆Ψ(f) ≡ Ψ(f) − Ψeff(ψ; f) . (A.6)

In the above expressions, the normalization constants a and b are defined by

a2 ≡
∫ ∞

0

A2(f)

Sh(f)
df

∫ ∞

0

A2
eff(α; f)

Sh(f)
df, (A.7)
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and

b ≡
∫ ∞

0

Aeff(α; f)A(f)

Sh(f)
df . (A.8)

If the phase difference ∆Ψ(f) is small, we can approximate cos ∆Ψ ≈ 1 − ∆Ψ2/2, and
rewrite MP as

MP ≈ M′
P ≡ 1 − 1

2 b

∫ ∞

0

Aeff(α; f)A(f)[∆Ψ(f)]2

Sh(f)
df. (A.9)

Since Ψeff(ψ; f) is a linear function in ψ, minimizing M′
P becomes a least-square fit

with a weighting function

µ(f) ≡ Aeff(α; f)A(f)

Sh(f)
. (A.10)

More specifically, writing Ψeff(ψ; f) as in Eq.(7.39), i.e.,

Ψeff(ψ; f) =
∑

j

ψj f
(5−j)/3 , (A.11)

we have

1 −M′
P =

1

2

[

ψ AψT − 2BψT +D
]

, (A.12)

where we have defined a matrix A, a vector B and a scalar constant D, such that

Aij ≡ 1

b

∫ ∞

0
f (10−i−j)/3 µ(f) df ,

Bj ≡ 1

b

∫ ∞

0
f (5−j)/3Ψ(f)µ(f) df ,

D ≡ 1

b

∫ ∞

0
Ψ2(f)µ(f) df . (A.13)

The maximum of M′
P is then equal to

M′
P max = 1 − 1

2

[

D − BA
−1 B

]

, (A.14)

reached at
ψmax = BA

−1. (A.15)

As a consequence, for each α, we are able to maximize MP(α,ψ), and hence M(α,ψ),
over ψ analytically. The original 12-dimensional maximization is then converted to a
4-dimensional maximization, only over the amplitude parameters, on which the overlap
depends in a non-oscillatory way.
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Appendix B.

Computing the horizon distance

This Appendix details the computation of the horizon distance of different searches
discussed in Section 7.4.6 of Chapter 7.

B.1. Search using post-Newtonian templates

In the restricted post-Newtonian approximation, the Fourier transform of the gravita-
tional signal from an optimally-oriented binary located at an effective distance d can be
written in the following way:

h(f) =
M5/6

d π2/3

(

5 η

24

)1/2

f−7/6 ei[2πft0−ϕ0+ψ(f)−π/4] (B.1)

where M is the total mass, η is the symmetric mass ratio, t0 is the time of arrival
and ϕ0 is the initial phase. The phase ψ(f) is computed using the stationary phase
approximation.

The optimal SNR in detecting a known signal h buried in the noise is given by

ρopt = 2

[
∫ ∞

0
df

h(f)2

Sh(f)

]1/2

, (B.2)

where Sh(f) is the one-sided PSD of the noise. The optimal SNR in detecting the signal
given in Eq.(B.1) can thus be computed as:

ρopt =
M5/6

d π2/3

(

5 η

6

)1/2
[

∫ fupp

flow

df
f−7/3

Sh(f)

]1/2

, (B.3)

where flow is the low-frequency cutoff of the detector noise and fupp is upper frequency
cutoff of the template waveform. The effective distance to a binary which can produce
an optimal SNR ρopt can be computed by inverting the above equation.

The standard post-Newtonian waveforms are truncated at fupp = fISCO, where fISCO =
(63/2πM)−1 is the GW frequency corresponding to the innermost stable circular orbit
(ISCO) of the Schwarzschild geometry with mass equal to the total massM of the binary.
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The effective one body (EOB) waveforms are truncated at fupp = fLR, where fLR =
(33/2πM)−1 is the GW frequency corresponding to the light ring of the Schwarzschild
geometry with massM . Both of these quantities are computed assuming the test particle
limit. It may be noted that, for the EOB waveforms, an analytical Fourier domain
representation is not available. They cannot be expressed in the form given in Eq.(B.1).
But for the purpose of the estimation of the horizon distance, these formulas give a
reasonable approximation.

B.2. Search using ring down templates

The ring down portion of the GW signal from a coalescing binary, considering only
the fundamental quasi-normal mode, corresponds to a damped sinusoid. This can be
written as [283]

hring(t) = Aring exp

[

−πfQNR(t− t0)

Q

]

× cos (−2πfQNR(t− t0) + ϕ0) , (B.4)

where Aring is the amplitude, t0 is the start time of the ring down, ϕ0 the initial phase,
M is the mass of final black hole, fQNR and Q are the central frequency and the quality
factor of the ringing. For the fundamental mode, a good fit to the frequency fQNR and
quality factor Q, within an accuracy of 5%, is given by

fQNR ≈ [1 − 0.63(1 − a)3/10]
1

2πM
, (B.5)

Q ≈ 2(1 − a)−9/20 , (B.6)

where aM2 is the spin angular momentum, and a is the Kerr parameter [283].

To compute the optimal SNR in detecting this signal present in the data, we proceed
as in [284], assuming that for t < t0, hring(t) is identical to t > t0 except for the sign in
the exponential, and dividing by a correcting factor of

√
2 in amplitude to compensate

for the doubling of power:

h̄ring(t) =
Aring√

2
exp

[

−πfQNR |t− t0|
Q

]

× cos (−2πfQNR(t− t0) + ϕ0) . (B.7)

Its Fourier transform then becomes

˜̄hring(f) =
Aring fQNR√

2πQ
ei2πft0

(

eiϕ0

g2 + 4 (f − fQNR)2

+
e−iϕ0

g2 + 4 (f + fQNR)2

)

, (B.8)

where g = fQNR/Q.
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B.3 Search using all the three stages of the binary black-hole coalescence

In general, it is not easy to estimate Aring, or the two polarization amplitudes; they
depend upon the detailed evolution of the merger epoch, as well as variables such as
the orientation of the final merged remnant. A reasonable hypothesis [285, 286, 287]
is that their ratio follows the ratio of the inspiral polarization amplitudes. With this
hypothesis, the overall amplitude of the signal from an optimally located and oriented
binary, requiring that the ring down radiate some fraction ǫ of the system’s total mass,
becomes

Aopt
ring =

√

5ǫ

4π

M

d

2
√

MfQNRQF (Q)
(B.9)

where F (Q) = 1 + 7
24Q2 and d is the distance to the source. The optimal SNR ρ can

now be computed as

ρopt = 2

[

∫ fupp

flow

df
|˜̄hring|2
Sh(f)

]1/2

, (B.10)

where flow and fupp are the lower and upper cutoff frequencies of the detector noise. As
in the previous case, the horizon distance can be computed by inverting this equation.

B.3. Search using all the three stages of the binary black-hole

coalescence

The phenomenological waveforms in the frequency domain are given in Eqs.(7.35– 7.40).
The optimal SNR in detecting this signal can be computed as:

ρopt =
M5/6 f

−7/6
merg

d π2/3

(

5 η

6

)1/2
[

∫ fmerg

flow

df
(f/fmerg)

−7/3

Sh(f)

+

∫ fring

fmerg

df
(f/fmerg)

−4/3

Sh(f)

+

∫ fcut

fring

df
L2(f, fring, σ)

Sh(f)

]1/2

, (B.11)

where L(f, fring, σ) is defined in Eq.(7.37), and fmerg, fring, fcut and σ are given by
Eq.(7.41).

This equation can be inverted to calculate the effective distance to the optimally-oriented
binary which can produce an optimal SNR ρopt.
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massive Recoil Velocities for Binary Black-Hole Mergers with Antialigned Spins,
Phys. Rev. Lett. 98 23, 231101 (2007), gr-qc/0702052.

[181] M. Campanelli, C. O. Lousto, Y. Zlochower and D. Merritt, Large Merger Recoils
and Spin Flips From Generic Black-Hole Binaries, Astrophys. J. 659, L5 (2007),
gr-qc/0701164.

[182] M. Campanelli, C. O. Lousto, Y. Zlochower, B. Krishnan and D. Merritt, Spin
Flips and Precession in Black-Hole-Binary Mergers, Phys. Rev. D75, 064030
(2007), gr-qc/0612076.

[183] D. Pollney et al., Recoil velocities from equal-mass binary black-hole merg-
ers: a systematic investigation of spin-orbit aligned configurations (2007),
arXiv:0707.2559[gr-qc].

[184] L. Rezzolla, E. N. Dorband, C. Reisswig, P. Diener, D. Pollney, E. Schnetter and
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[222] T. Damour, P. Jaranowski and G. Schäfer, Dynamical invariants for general rel-
ativistic two-body systems at the third post-Newtonian approximation, Phys. Rev.
D 62 4, 044024 (2000).

[223] T. Damour, P. Jaranowski and G. Schäfer, Equivalence between the ADM-
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Postscript

“I couldn’t afford to learn it.” said the Mock Turtle with a sigh.
“I only took the regular course.”
“What was that?” inquired Alice.
“Reeling and Writhing, of course, to begin with,” the Mock Turtle
replied; “and then the different branches of Arithmetic– Ambition,
Distraction, Uglification, and Derision.”
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