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10.8 Modelatge de les dades de diagnòstic tèrmic . . . . . . . . . . . . . . . . . . . . . . 206
10.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

VI Appendix 211

A GRS View factor 213

B Wu’s theory of thermal transpiration 215

C Temperature distribution in a sphere

subject to a fluctuating thermal bath 219

C.1 The general solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.2 Isotropic conditions to the spherical problem . . . . . . . . . . . . . . . . . . . . . 222

D Frequency domain solution of multiple layer spherical insulator 225

E Binary Maximum Length Sequence:

Generation and properties 229

Bibliography 233

vi
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iguals dosis d’il·lusió i perplexitat com un servidor se les va empescant per sortir-se’n amb la seva.
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Chapter 1
Introduction

In the following pages we shall focus our attention in a very specific problem, namely how to
deal with thermal related noise in a space borne low frequency gravitational wave detector. Before
entering into detail, it is expedient to give an introduction on the gravitational wave subject, which
will help to put the work in a proper context.

Although the main part of this thesis is devoted to thermal issues, the background scientific
motivation behind the technical discussion is sound: the detection of gravitational waves is the
last of Einstein’s Theory of General Relativity classical predictions to be experimentally measured
directly. Although gravitational wave effects were first measured in 1974 by R.A. Hulse and J.H.
Taylor in the decrease of the period of the binary system PSR 1913+16 [43] (this work merited
them the 1993 Nobel Prize), a direct detection of this phenomena has never been achieved despite
the efforts being devoted. A direct detection of this phenomena would imply the starting point of
gravitational wave astronomy and, as such, a step forward to a wider look into our universe.

This step forward requires a technological development which is of scientific interest in its own.
From laser stabilisation to the drag-free technology improvements or high stability temperature
measurements at ∼ 1 mHz frequency band, there are a wide variety of matters of ongoing scientific
research to achieve the final and difficult goal of building an efficient gravitational wave detection.

As previously stated, this work will focus on some of them, related with thermal diagnostics.
The current chapter is however intended as a brief introduction to some aspects of the gravitational
wave detection paradigm.

1.1 Gravitational waves

Gravitational waves were introduced by Albert Einstein in his theory of General Relativity as a
consequence of the finite velocity of propagation of gravitational interaction [30]. Einstein was
able to show that, analogously to electromagnetic waves in Maxwell’s theory, the equations of the
gravitational field accepted radiative solutions. It was immediately evident, for Einstein himself,

5



CHAPTER 1. INTRODUCTION

the weakness of these waves and the consequent impossibility of detection at that time.

Gravitational radiation kept as a matter of theoretical discussion until the arrival of the pi-
oneering work of Joseph Weber, who set up the first gravitational wave detector experiment at
the University of Maryland: a 1.2 ton aluminium bar at room temperature, whose vibrations were
monitored with the aid of piezoelectric transducers. A second bar at the Argonne National Labo-
ratory (Chicago) allowed coincidence experiments between both detectors separated by 1000 km.
The announcement of positive results in 1969 [103] raised great excitement which encouraged the
construction of other cylindrical gravitational wave detectors by other groups. The negative result
of the rest of experiments, together with the limits set by astronomical data was the starting point
of technological improvements and the appearance of the second generation experiments together
with the interferometric detection alternative.

Before entering in the description of the current experiments, following the seminal work of
Weber, we will briefly discuss the General Relativity (GR) framework needed to correctly describe
the gravitational wave phenomena.

1.1.1 Gravitational Waves in General Relativity

The context to introduce gravitational waves is Einstein’s General Relativity (GR). This theory
relates the motion of masses in space with the matter distribution in its surroundings. The rela-
tionship between both arises from the dependence of spacetime geometry in a given region with the
matter content in that region. In the following, a brief introduction to the matter will be expound.
A more thorough description can be found in classical GR textbooks [63, 90, 104].

General Relativity framework

General Relativity (GR) is expressed in the language of differential geometry. In this context, we
can write in general the interval between two events1 xα and xα + dxα in an arbitrary geometric
system as

ds2 = gµν dx
µdxν (1.1)

where gµν is the metric tensor defining the relation space-time geometry in our particular
coordinate system. This geometric entity is the one that will be affected by the matter distribution
and thus, by virtue of equation (1.1), will turn into a particular motion law for a massive body
travelling through this region. The interdependence between geometry and matter content is a
particular property of the gravitational interaction introduced by General Relativity that is clearly
stated in Einstein’s equations

Gµν = 8πGTµν (1.2)

1Since we will be dealing with a four dimensional space, we need refer to events in the spacetime instead of
points in the space.

6



1.1. GRAVITATIONAL WAVES

where the lhs is known as the Einstein tensor and is a purely geometric entity, defined in terms
of the Ricci scalar R and the Ricci tensor Rµν , both contraction of the Riemann tensor Rαβµν

Gµν = Rµν −
1
2
gRµν , Rµν ≡ Rβµβν , Rµν ≡ gαβgµνRαβµν (1.3)

The rhs in (1.2) is the stress-energy tensor and gathers the information of matter content,
for instance Tµν = 0 in vacuum. For our purpose, a crucial property of the set of nonlinear
partial differential equations in (1.2) is that they accept wave solutions. The most common way of
obtaining a wave-like solution of the Einstein’s equation is to work in the weak field approximation,
that is to assume a flat background but using the GR equations in the same way to deal with the
small variations. In this framework the metric can be expressed as

gµν = ηµν + hµν , |hµν | � 1 (1.4)

where ηµν is the flat metric (ηµν = {−1, 1, 1, 1}) and hµν ≡ hµν(x, t) describes small perturba-
tions of the metric.

If this assumptions are used to describe the metric perturbation in vacuum, it can be shown
that the propagation is described by wave equations

�h̄µν =
(
− ∂

∂t2
+∇2

)
h̄µν = 0 (1.5a)

where

h̄µν = hµν −
1
2
hηµν

h ≡ hαα (1.5b)

The simplest solution is the monochromatic, plane wave solution,

h̄µν = Re [Aµν exp(ikαxα)] (1.6a)

where the following condition hold

kα k
α = 0 (null vector) (1.6b)

Aµα k
α = 0 (orthogonality) (1.6c)

being Aµν the amplitude and kα the wave vector. However, the plane wave solution of equa-
tion (1.6) has too many degrees of freedom (10 coming from Aµν minus the four orthogonality
constraints in (1.6c)) to represent the gravitational field, which can be shown to have only two
of them by suitable choice of coordinates. The most common convention to use these degrees of
freedom is the Transverse Traceless gauge, that is to impose
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Figure 1.1: The “+“ and “×“ polarisation of a gravitational wave. The dotted lines indicate the
test particles’ position in the absence of gravitational wave signal. The phase of the wave is labelled
on top.

Aµνu
ν = 0 (transverse wave) (1.7)

Aµµ = 0 (traceless) (1.8)

where uν is the 4-velocity of the observer. In this representation and considering a wave
propagating in the z direction, the metric perturbation hµν acquires the canonical representation

hµν(x, t) =


0 0 0 0
0 h+(x, t) h×(x, t) 0
0 h×(x, t) −h+(x, t) 0
0 0 0 0

 (1.9)

where h+ and h× are the commonly known as plus and cross polarisation amplitudes of the
gravitational wave.

Sources of Gravitational Waves

When massive bodies move with respect to one another, gravitational waves can be generated and
propagate through the surrounding space. If multipoles are used to describe the mass distribution
of the body, one finds that the first contribution to the gravitational field must be the quadrupole
moment of the source, since the dipole one vanishes due to the conservation of momentum2. In
analogy with the electromagnetic case, the luminosity that a given source radiates can be calculated.

2The source’s dipole moment d second derivative is the momentum derivative that is conserved if no external
force is introduced in the system, d̈ = ṗ = 0 [63].
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1.1. GRAVITATIONAL WAVES

As it turns out, it is given by the quadrupolar formula [63] in the far field approximation

L =
1

5 c3
<

...
-I jk

...
-I jk >, [L] =

erg
s

-Ijk ≡
∫
d3x ρ

(
xjxk −

1
3
δjkr

2

)
(1.10)

where -Ijk are the reduced quadrupole moments. To get an order of magnitude of the energy
released due to this mechanism by massive bodies, a very rough estimate would give us that the
Earth in its orbit around the Sun radiates ∼ 10−20 W via gravitational waves.

It is clear that the expected detectable sources of gravitational waves must be found in extremely
massive environments and this yields directly to an astrophysical context. Gravitational wave
sources have been historically split into the high frequency and low frequency classification, being
the ∼ 10 Hz region dividing both groups. As explained below, this is due to the seismic noise
cut-off that limits the ground based detectors performance.

High frequency sources Among the first class of sources, one of the candidates to be detected
by ground based detectors are rotating neutron stars. These objects can generate gravitational
waves due to small ellipticities in their structure. Being highly massive objects spinning at mil-
lisecond periods, they appear as suitable sources for ground based detectors. The last upper limit
for the detection of this kind of sources is set at S1/2

h ≤ 5.28 × 10−24 Hz−1/2 at f ' 140 Hz [1],
where S1/2

h is the strain (h ≡ ∆`/`) rms power spectral density.

Massive objects like binary systems of neutron stars or black holes can also produce gravitational
waves in the high frequency range. In such systems, the loss of energy due to gravitational radiation
implies the shrinkage of the distance between both bodies. The last epoch of this inspiral process
can be particularly bright in terms of gravitational energy released, and thus searches for these
signals have been pursued using current detectors data. Results for this search are given as upper
values for the rates of these sytems assuming a particular population of binaries. Depending on
the source considered these upper rates go from 0.5 yr−1 × 10−10 L�,b to 4.9 yr−1 × 10−10 L�,b
where L�,b is the blue light luminosity of the Sun [3].

Another kind of astrophysical objects suitable for gravitational wave searches in ground based
detectors are those where large amounts of matter are displaced in a very short time; typical
examples of these processes are supernova explosions. A search for these sources in the lastest
scientific data run in the Laser Interferometer Gravitational Wave Observatory (LIGO) detector
yielded an upper value of S1/2

h ≤ 1.3× 10−21 Hz−1/2 at f = 153 Hz, which could be related to the
equivalent of 8× 10−8M� converted into gravitational radiation at a distance of 10 kpc [4].

There exist a fourth kind of detectable signal at high frequencies due to a Stochastic Grav-
itational Wave Background (SGWB). Various physical mechanisms have been proposed for this
gravitational equivalent to the Cosmic Microwave Background (CMB): from an amplification of
quantum vacuum fluctuations during inflation to phase transition in the early universe, or cosmic
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Figure 1.2: Assured sources for Laser Interferometer Space Antenna (LISA)

strings. On the other hand, a large enough population of unresolved continuous signals, like neu-
tron star binaries, would be also detected as a stochastic background. Searches of a background
signal implies the study of the cross correlation between two or more gravitational wave detectors.
As an example, a collaboration between the LIGO and the ALLEGRO detectors set an upper value
for a background signal to 1.5× 10−23 Hz−1/2 at f = 915 Hz [2].

Low frequency sources The proposed low frequency gravitational frequency detector LISA has
fostered interest in the exploration of gravitational wave sources in the frequency band 0.1 mHz <
f < 1 Hz. Actually, one of the most relevant properties of the space borne detector LISA is that
it has a list of guaranteed binary systems to be detected if the design performance is achieved
—these are the verification binaries [95]. Among the binary systems, white dwarf binaries are not
only expected to contribute as individual sources but the large amount of detectable systems of
this kind in our galaxy is expected to produce a background confusion noise around 3− 8 mHz [17]
—see Figure 1.6 (dashed line).

Beyond these white dwarf binary systems, a low frequency gravitational wave observatory like
LISA would be able to detect several other more exotic and less understood systems. For instance,
Super Massive Black Hole (SMBH) are expected to produce a clear signal in the LISA bandwith.

10
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The detection of such systems would imply the measurement of the black hole parameters to an
unprecedent resolution. The foreseen strong signal, together with the low interaction of gravita-
tional waves with the media could allow the measurement of the reduced mass up to ∼ 1% for a
(106 + 106)M� binary at redshift z = 10 [18].

This same massive objects could also contribute to another kind of signal in the gravitational
wave sky. We refer to the so called Extreme Mass Ratio Inspiral (EMRI), i.e. a stellar black
hole object in an inspiral orbit around a massive black hole, e.g. a 106M� object. The detection
of gravitational waves coming from an EMRI would allow the mapping of the spacetime around
the massive object and therefore the study of the strong gravitational field regime. Estimates of
the event rates set an order of magnitude of 102 yr−1 expected for LISA, detecting objects up to
z = 1 [35].

Finally, the low frequency region of the gravitational wave observation band can also be thought
as a testing region for the detection of a SGWB. However, current predictions set an upper value
below the capabilities of LISA and, if the background is expected to present a flat spectra, the most
sensitive ground based observatories will have better probabilities of detecting this cosmological
signal.

Gravitational wave detection

The best way to represent equation (1.9) is to consider its effect between two free falling test
particles. General Relativity (GR) tells us that, being in free fall, the test particles will follow
geodesic curves in the Riemann manifold describing the spacetime. A gravitational wave will
perturb this motion as described by the geodesic deviation equation [90]

d2

dτ2
ξα = Rαµνβ U

µUν ξβ (1.11)

where Uµ = dxµ/dτ is the 4-velocity of either of the two particles, τ the proper time and ξα a
4-vector connecting both particles.

Now, if we recover the description of the gravitational wave that led us to equation (1.9), it
can be shown that the test particles motion can be readily described with the expression [50]

`(t) = `0

[
1 +

1
2

[h+(t) cos(2φ) + h×(t) sin(2φ)] sin2(θ)
]

(1.12)

where (θ, φ) is the orientation of the vector joining both test masses in the gravitational wave
frame, `(t) = ξµξµ the distance between both particles and `0 their initial relative distance. The
corresponding motion is shown in Figure 1.1.

Two experimental approaches have been followed in order to detect the geodesic deviation ex-
pressed in equation (1.12): Acoustic detectors and interferometers. Although differing in detection
techniques, both methods share a common limit in the lowest part of their frequency band. Seismic
noise degrades the sensitivity of any ground based gravitational wave detector around ∼ 10 Hz.
This frequency band separates the ’high frequency’ and ’low frequency’ bands in gravitational wave
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Figure 1.3: The acoustic detection concept. A gravitational wave perpendicular to the spring
drives the two masses M at its ends to oscillate at the wave frequency. Resonance amplification is
obtained when the latter equals the spring’s characteristic frequency, Ω. In a real solid body, the
Ω characteristic frequency is replaced by a full resonance spectra.

detection.

Acoustic detectors Historically, the first one implemented by J. Weber was the acoustic de-
tector approach. The concept behind these detectors is that the tide induced by a gravitational
wave impinging on a solid activates certain oscillating modes of the acoustic spectrum of the body.
These resonances can be enhanced and detected using high sensitivity devices, as for instance a
Superconducting Quantum Interference Device (SQUID). The main limitation of this technology
is that the detection band is limited and therefore acoustic detectors are implicitly narrowbanded
detectors with a detection bandwith achieving ∼ 100 Hz working at ∼ 1 kHz region.

There is an important representation of this detection technique in different projects worldwide:
ALLEGRO [62] in the USA and AURIGA [25], EXPLORER [13], NAUTILUS [14] in Italy. To put
some numbers as an example, the NAUTILUS detector consists of a 2300 kg cylindrical Aluminium
bar of 3 m long refrigerated to 0.1 K. Its resonance frequencies are at 908 and 924 Hz and the
detector maximum burst amplitude sensitivity is of the order h ∼ 10−19. All the previous detectors
use a solid body of cylindrical shape. There are however ongoing projects developing the same
concept for the spherical shape which has, among others, the distinctive property of being an
omnidirectional detector [50]. Examples of spherical detectors can be found in The Netherlands
(MINIGRAIL [29]) and in Brazil (MARIO SCHENBERG [7]).

Interferometric detectors A second approach to detect gravitational waves is to use an inter-
ferometer that measures the relative distance between three masses in a Michelson configuration as
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Figure 1.4: Interferometric concept to detect gravitational waves. The incoming wave causes the
end masses M1 and M2 to oscillate in phase opposition with respect M0.

shown in Figure 1.4. A gravitational wave crossing the interferometer plane with its propagation
vector perpendicular to this plane can be measured as a relative displacement of one mass with
respect the other. This approach, although lacking of an omnidirectional sensitivity as a solid
sphere would have, presents an important improvement with respect the acoustic detectors, i.e. a
broader detection bandwith. It is worth mentioning that the effect measured by an interferometer
can not be näıvely assigned to the stretching of one arm with respect the other since the geometric
variation caused by the gravitational waves will affect both the interferometer arm and the laser
beam, leading to a cancellation of the effect. If the interaction between the electromagnetic field
and the gravitational wave is studied [49], it appears that the interferometric signal must rather
be assigned to the fact that gravitational wave affects the spacetime and thus the laser beam, with
spatial and temporal components, feels the gravitational wave differently from the interferometer
arm, only with spatial components. This results in measurable phase shifts, and can be thought
as an alternative description to the usual geodesic deviation one.

There are currently various interferometers working in the data acquisition phase, these are:
the two LIGO [5] in the USA of 4 and 2 km, VIRGO [19] in Italy with an armlength around 3 km,
and also GEO600 [105] in Germany and TAMA [9] in Japan with smaller armlengths of 600 and
300 m respectively.

Although sharing the same design concept, each collaboration has contributed to the field with
different techniques. For instance, VIRGO incorporated in the design improved seismic attenuators
with respect LIGO that should allow a noise reduction in the low frequency band ∼ 1 Hz. The
Anglo-German collaboration has focused on the development of new techniques that could be
applied in the larger detectors to increase its sensitivity, an example of this could be the signal
recycling technique. The TAMA detector is also designed as a technology demonstrator that
will pave the way to a future cryogenic kilometer-sized detector, known as Large scale Cryogenic
Gravitational wave Telescope (LCGT).
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Figure 1.5: LISA orbit scheme

1.2 LISA and LISA Pathfinder

We now focus on the low frequency gravitational observatory Laser Interferometer Space Antenna
(LISA). This project is the framework where the present thesis is developed. Actually, it is
basically related to the technology probe mission aimed to test the key technologies for LISA. This
mission is the LISA PathFinder (LPF) and its main characteristics will also be described in the
following.

1.2.1 Gravitational waves detection in space

LISA is a joint ESA-NASA mission, designed as a gravitational wave detector with top sensitivity
in the milliHertz band. The main concept behind LISA are three spacecraft hosting two free
falling test masses each, and separated from each other 5 × 106 km. Each spacecraft is linked to
the other two by means of an infrared (1064 nm) laser beam that allows the precise monitoring of
the displacement between test masses at each spacecraft. The cubic test masses act as end mirrors
of the interferometer.

The interferometry required for the LISA project implies certain challenges which are worth
mentioning. The laser source in one of the spacecraft provides a 1 W laser beam which is sent via
a 30 cm telescope to a second spacecraft. Although the laser power is precisely focused, the long
way to each second spacecraft provokes the spread of the laser beam in a spot of several kilometers
in diameter, and hence the power received by the second spacecraft gets reduced to the 10−10 W
level. Such a low power is too weak to be returned to the original spacecraft, and thus the solution
adopted is to lock the frequency of the local oscillator to the incoming light and send a new laser
beam mimicking the one arriving, but using the available 1 W power.

In order to detect gravitational waves, the test masses must be in free fall on board the three
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spacecraft. This condition must be met at the same time that the distance between spacecraft is
maintained, implying that the spacecraft orbits must be carefully defined. The current baseline
is shown in Figure 1.5: the barycentre of the triangle formed by the three spacecraft follows the
ecliptic 20◦ behind the Earth; the plane of the triangle is inclined 60◦ with respect the ecliptic
plane and each of the three spacecraft revolve around the Sun in a nearly circular orbit, while
following at the same time a counterclockwise rotation of the whole triangular configuration.

A crucial issue regarding the LISA orbits is stability. Interferometer arms in LISA are subjected
to fluctuations of the order of 1% of their total length, i.e 5 × 104 km. This difference between
armlengths could considerably degrade the instrument performance since this large distance causes
an enourmous coupling of laser frequency noise into the interferometric length measurement. How-
ever, a technique has been proposed to use the arm’s length as a reference length [91]. This is a
standard method in ground based detectors, however the 30 s delay due to the photon round-trip
introduces a challenge for the control loop that has been proved to be overcome with this new
approach [58]. We can also name here a second procedure to reduce the phase noise, this is the
Time Delay Interferometry (TDI) [97]: a postprocessing technique that uses independent signals
of single interferometers conforming a constellation, like in the LISA case, to cancel phase noise in
unequal arms interferometers.

The geodesic free fall of the test masses inside the spacecraft must be guaranteed by the so
called Gravitational Reference Sensor (GRS). This is conformed by a set of capacitative sensors
surrounding the free floating test mass that senses its relative displacements based on a capacitive
measurement [23] that can act both as a sensor or an actuator. The motion of the test mass sensed
in this way is used to apply microNewton corrections to the spacecraft by means of Field Emision
Electric Propulsion (FEEP) thrusters3. This system minimises the disturbances acting directly on
the test mass, as for instance cosmic ray showers, as well as those forces applied on the spacecraft,
e.g. solar radiation pressure. The required acceleration noise for the LISA mission is set at [17]

S
1/2
∆a,LISA(ω) ≤ 3×10−15

[
1 +

(
ω/2π

3 mHz

)2]
m s−2/

√
Hz (1.13)

in the frequency range 0.1 mHz ≤ ω/2π ≤ 100 mHz. This particular noise budget will be the
one that the LPF mission is devoted to study, as explained below.

Summing up, the final sensitivity curve of LISA will be defined by contributions arising from
very different physical mechanisms, in brief: the low frequency range will be dominated by spurious
forces affecting the test mass motion and thus the GRS performance will have a decisive role in this
region. On the other hand, either the local interferometric measurement inside each spacecraft or
the spacecraft-to-spacecraft interferometry will set the higher part of the sensitivity curve. Figure
1.6 shows these dependences by observing how the sensitivity curve varies as a function of some of
the LISA design parameters.

3This option is however under study
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Figure 1.6: LISA baseline sensitivity compared to the sensitivity of the same design reducing a
factor of 10 the arm’s length (in green) or increasing the acceleration noise (in blue) or the position
noise (in red) by a factor of 10 also. The latter acceleration noise budget is the one required for the
LPF mission —see section § 1.2.2. Sensitivities are compared to the expected white dwarf confusion
noise [17] (dashed lines). Curves were obtained with the Sensitivity Curve Generator [92].

1.2.2 The LISA Pathfinder mission

The demanding requirements needed for LISA forced the testing of some of its key technologies
previous to the final mission approval. The testing mission was born as the SMART-2 mission
although it was later renamed as LISA PathFinder (LPF) since only LISA technology was part of
the payload. The starting concept contained two independent experiments: the European LISA
Technology Package (LTP) and the American Disturbance Reduction System (DRS), though the
latter was dropped from the design leaving only the thrusters and the control software.

The requirement for the LTP experiment is directly derived from the acceleration noise budget
for LISA, equation (1.13), relaxing an order of magnitude both the amplitude and the bandwith,
giving an acceleration noise requirement [10]

S
1/2
a,LPF(ω) ≤ 3×10−14

[
1 +

(
ω/2π

3 mHz

)2]
m s−2/

√
Hz (1.14)

in the frequency range 1 mHz ≤ ω/2π ≤ 30 mHz. The main concept to achieve an experimental
test of this sensitivity is to squeeze one of LISA’s arms to 30 cm length and reproduce the geodesic
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Figure 1.7: The drag free principle. The spacecraft (M) shields the test mass (m) from external
forces (Fext). To keep centred around the free falling test mass the spacecraft is equipped with
position sensors that feed the spacecraft thrusters in a control loop with gain ω2

DF . Sources
of disturbances in the control loop are: the sensor displacement noise xn, position independent
(stray) forces fstr and the test mass-to-spacecraft residual coupling provoked by any DC force
gradient

experiment in a unique spacecraft. In doing so, two of the main concepts of LISA are put to
test, namely the drag-free control loop performed by the GRS and also the spacecraft-to-test mass
interferometry. The spacecraft-to-spacecraft measurement is the one that the LPF mission will not
test. Another differences with respect LISA is that since both test masses will be aligned on the
same spacecraft, LPF will not be able to follow both test masses in all the sensitive axis.

We can now take a closer look on the implications of equation (1.14) in terms of the LTP
working principle. If one considers a spacecraft (mass M) shielding a free floating test mass (m)
that, by means of a set of sensors, measures the relative distance between test mass and spacecraft
and, at the same time, uses this signal to keep it centred around the free falling test mass, it can
be shown that the accelerations on the test mass can be expressed as [42]

a =
fstr
m

+ ω2
p

(
xn +

Fext
M ω2

DF

)
=
fstr
m

+ ω2
p∆x (1.15)

where

• Fext are forces applied on the spacecraft (thrusters noise also enters this group).

• fstr is any stray force (position independent) applied on the test mass. This can be due to
unshielded forces (e.g. cosmic rays) but also from the spacecraft itself (e.g. thermal forces).

• xn is the position sensor noise.

• ωp is the parasitic stiffness per unit mass that couples the test mass to the spacecraft.

17



CHAPTER 1. INTRODUCTION

Returning to the mission final goal, the demanding condition (1.14) imposes restrictions on the
spectral noise density in all variables appearing in (1.15): from stray forces fstr to the parasitic
stiffness ωp between spacecraft and test mass or the position sensor noise xn, all these variables
are required to achieve upper limit values in order to reach the LTP acceleration noise require-
ment [100]. As we will see in next chapter, this will be also true for the requirement on the thermal
environment inside the LTP. Since thermal gradients will turn into forces on the test masses, the
limit set on fstr will directly translate into a requirement for the thermal stability in the LTP.

We will in the following review the basic working principles of the subsystems involved in the
LTP measurement: the Gravitational Reference Sensor (GRS), the Optical Metrology Subsystem
(OMS) and the Data and Diagnostics Subsystem (DDS).

Gravitational Reference Sensor

The GRS on board the LPF mission is the central part of the drag-free control loop in the LTP.
Its conceptual design is based on a capacitive measurement of the distance between a freely falling
cubic test mass and a set of electrodes surrounding it, rigidly attached to the spacecraft structure.
We will first briefly describe the GRS main components to subsequently be able to understand the
working principle.

Test Mass The role of the Test Mass (TM), acting as end-mirror of the interferometer is foreseen
to be played by a 46 mm Gold-Platinum alloy cube4. The reason behind the material selection
must be found in the stringent requirement for the total magnetic moment of the TM, which is of
|−→m| ≤ 2 × 10−8Am2. The high density obtained with this alloy, around 20 g m−3, has also been
considered an advantage when choosing a suitable material.

Increasing the TM size will always improve the sensitivity measurements both because its
greater mass and its higher area available for sensing electrodes — see next section. In the LTP
application, requirements on the mass budget come from the caging mechanism5 which requires
the TM not to exceed roughly 2 kg.

Electrode Housing The position sensor is based on a capacitive measurement which allow
readout and actuation. For the moment, we will describe the structure and composition of the
sensor to then address the working principle.

The central part of the position sensor is the previously described TM, this is surrounded by an
array of six pairs of electrodes, each one entering in a capacitive-inductive read-out circuit which
allows a detailed monitoring of the TM motion both in its displacement and rotational degrees of

4Pioneering drag-free satellites, like TRIAD [15], used spherical bodies as TM, however best spheres can only
achieve this shape with departures of 100 nm [99] which would translate into a position uncertainty of the same order
of magnitude. This error can be reduced if a spherical spinning TM is considered in the design, as for instance in the
GP-B mission [93]. Although suppressing surface irregularities, rotation introduces stability and control problems
and also electromagnetic effects if the mass is a conducting one (GP-B uses a superconducting sphere).

5The caging mechanism is the responsible of holding the test mass during launch and release it in appropiate
conditions to allow the drag-free control to acquire control of it.
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Density Specific heat Thermal conductivity CTE
ρ [kg m−3] C [J kg−1 K−1] K [W m−1 K−1] α [10−6 K−1]

Molybdenum 10200 251 138 5.3
Sapphire 3980 750 37.5 5 - 6.7
Gold 19300 128 318 8
Platinum 21400 134 69 8.9

Zerodur 821 2530 1.64 0.1-0.02
Optical Window glass 3670 720 0.599 10
CFRP 1600 1200 30 5.5-8.4
Titanium (Ti6Al4V) 4430 526.3 6.7 8.6

Table 1.1: Thermal properties for LTP materials.

freedom. The structure where the electrodes are placed is the Electrode Housing, and consists of a
hollow cube of approximately 70 mm edge surrounding the TM.

Materials conforming the Inertial Sensor are selected to have a high thermal conductivity in
order to prevent thermal gradients. These are the main source of thermal induced noise in the
measurement as will be later described. For this reason a metal-ceramic high thermal conductance
composite structure has been selected as the choice for the Electrode Housing. Besides thermal
reasons, this choice provides also great mechanical reliability, particularly relevant when considering
the launch phase, and also for its handling and machining properties. The materials selected for the
GRS structure are Molybdenum for electric conducting parts and Sapphire for electrical insulators.
In order to avoid thermal induced stress that may perturb the capacitive measurement, thermal
expansion coefficients are required to match those materials used in the GRS. This condition is
well fulfilled by the Mo-Sapphire couple as shown in Table 1.1.

Bottom panel of Figure 1.8 also shows a characteristic of the Electrode Housing: the guard
rings are surfaces between different electrodes grounded with the objective to minimise the effect
of electric field lines closing onto the neighbour electrode, introducing cross-talk effects. It must
be stressed that all sensing and injecting electrodes as well as guard rings will be Au-coated to
enhance electrostatic homogeneity.

Capacitive measurement As previously stated, the TM is surrounded by an array of six pairs
of electrodes in a capacitive-inductive resonant circuit. By linear combinations of the six readout
channels, this geometrical configuration provides the information of all six degrees of freedom of
the test mass, allowing also electrostatic actuation on it. The TM is biased at 100 kHz by means
of six injection electrodes distributed by pairs: 2 pairs in the z faces and 1 in the y face —see
Figure 1.8. Being opposite electrodes part of the same resonant circuit, the TM motion produces
a modulation of the capacitances as a consequence of the dependence of these capacitances with
the distance separating the electrodes and the TM. This induces a difference of the current flowing
through both arms of the bridge —see Figure 1.9, being this one the final signal describing the
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Figure 1.8: Top: Electrode housing configuration. Sensing electrodes appear in green and injecting
electrodes in red. Bottom: Injection electrodes are placed in a recessed configuration which reduces
the electrostatic stiffness . Extracted from [99]

TM motion. Along each axis, the sum of the currents produced by the two sensors provides the
translational displacement of the test mass with respect to the centre of the electrode housing,
while the difference provides the information about the test mass rotation. Moreover, the same
scheme can be used to act on the TM by applying voltage differences between the electrodes and
TM faces if a correcting force is needed in order to generate a TM motion.

The working principle of the capacitive sensor is based on the dependence of the capacitances
of two parallel plates with respect the distance between them. If one plate moves from its position,
a force proportional to the displacement appears between both. Being a displacement proportional
force (F = −k x), the constant of proportionality of the force, k, is usually termed stiffness, and
it can be shown [99] to be described by

kj = −(Vm − Vj)2Ajε0
d3
j

(1.16)

where Vm is the equivalent AC TM voltage taking into account the injection electrodes applied
voltage and the equivalent capacitance of the system composed by the test mass and the surround-
ing electrodes, Vj is the voltage at electrode j, Aj is the overlapping area between electrode and
TM, dj the equilibrium distance between electrode and TM.
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Figure 1.9: Parametric bridge motion readout and actuation. Vac is the ac generator to bias the
TM through the purple injection (bias) electrode. Csens are the capacitances between the sensing
electrodes and the TM. The capacitances Cp that also includes parasitic capacitances of electrodes
to ground are used to set the bridge to resonance. The transformer is a differential transformer
coupled to a low noise amplifier used as a current amplifier. VACT represents the force actuation
signals (at ≈ 1 kHz, amplitude modulated between 0 and ≈ 1 Hz). Extracted from [99]

There are numerous possible effects able to affect the capacitive measurement such as patch
charges, magnetic impurities, surface imperfections, interaction with test mass charging and other
unmodeled effects that can act as potential sources of stiffness and stray forces [20]. Because most
of these effects fall off rapidly with the distance, a 4 mm gap in the most sensitive axes is selected
compared to the 2.9 mm in the y direction and 3.5 mm in the z direction. The counterpart of
this option appears as the necessity to increase the bias to maintain high position sensitivity once
a larger gap is introduced between the electrode and the TM. On the other end, the limit in
increasing the gap is set by the caging mechanism. The size of the indentation in the z faces must
be twice the sensing gap in order to allow for self-centring of the TM during recaging. This sets a
limit of 4 mm for all gaps [99].

Among the different possible configurations to distribute sensing electrodes in the housing, the
selected design is graphically presented in Figure 1.8. Clearly, x direction sensitivity is maximised
placing all injecting electrodes on other directions since the voltage difference between this surfaces
and the TM implies a related stiffness increase which diminishes the sensitivity.

Optical Metrology Subsystem

The LTP experiment has a high sensitivity metrology subsystem designed to monitor at picometer
resolution the distance between two test masses. Comparison studies between different designs
left as a baseline choice, being now implemented, the non-polarising heterodyne Mach-Zender
interferometer [37, 99] which we briefly describe in the following.
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Figure 1.10: Heterodyne interferometry. In the modulation bench the laser beam is split and each
resulting beam is frequency-shifted by the AOMs at f1 and f2, the recombined beams will produce
the signal at the heterodyne frequency, fhet = f2 − f1.

The laser beam has a wavelength of 1064 nm and the power is approximately of 25 mW at
the end of the optical fiber. The non-polarising choice avoids errors caused for polarised optical
elements, for instance polarisation changing due to thermal stress-induced birefringence [99]. The
interferometric measurement is based on the Mach-Zender design which differs from the classical
Michelson interferometer in that the beams do not double back on themselves at the mirrors and
therefore both arms of the interferometer are completely independent. Moreover, this configuration
uses two detectors instead of one, as is the case in the Michelson interferometer.

The laser signal generated at the modulation bench applies the principle of heterodyne interfer-
ometry, based on the generation of a signal at a given frequency, fhet, from two other signals that
are tuned to differ precisely this fhet amount. To do so, in the LTP the laser beam is split into
two beams, each of which is frequency-shifted by an Acousto-Optical Modulator (AOM)6. The
driving frequencies of the two AOM, differ by 1 kHz (1.6 kHz in the Engineering Model, in the AEI-
Hannover). When both beams are made to interfere at a beam splitter the resulting photocurrent
in a photodiode shows a strong component at the heterodyne frequency.

The measurement principle is thus based in that any pathlength difference between both beams
will show up as a phase variation of that heterodyne signal. This phase is measured against a
reference beam that is (ideally) not subject to any pathlength variation. Being the relevant signal
generated by the subtraction between the perturbed and the reference beam, all common phase-
shifting effects that occur in the generation of the two beams (related to fibers, to the AOMs,
etc) are suppressed due to this measurement principle. To keep the interferometric measurement

6These devices introduce a frequency shift in the incoming light by means of sound waves generated in a material.
These waves are generated by a piezoelectric transducer attached to a material such as glass. An oscillating electric
signal drives the transducer to vibrate, which creates sound waves in the glass. The periodic pattern created by
these waves produces a diffraction effect in the incoming laser light which allows, by adjusting the oscillating electric
signal, to control the exiting light frequency shift.

22



1.2. LISA AND LISA PATHFINDER

Figure 1.11: From left to right, top to bottom: x1−x2 interferometer, x1 interferometer, Reference
interferometer and Frequency interferometer. See text for details.

clean when measuring relevant pathlength variations, i.e. those appearing due to the TM motion,
elements conforming the optical bench where the Mach-Zender design is implemented are bonded
to the optical bench substrate, made of Zerodur [37].

The technique used to create a monolithic optical bench is the Hydroxide-catalysis tech-
nique [31], also known as ’silicate’ bonding technique. This method has been previously used
in the GP-B mission for the purpose of joining the fused silica pieces forming the star-tracking
telescope assembly.

The Optical Bench design appears in Figure 1.11. Four separate interferometers participate in
the interferometric measurement: The main scientific measurement corresponds to the pathlength
difference measured by the (1) x1 − x2 interferometer, i.e. the distance between both test masses.
The (2) x1 interferometer provides the distance of one test mass with respect the optical bench
and the alignment of that test mass. Both measurements are based, as previously commented,
on the substraction of the respective pathlength with respect the (3) Reference interferometer
and, finally, the (4) Frequency interferometer, with intentionally unequal pathlengths in order to
measure the error introduced by frequency fluctuations, allowing also the subsequential correction.

A point to note is that the laser beatnote is finally measured, in each interferometer, using
quadrant photodiodes. Analogously to the GRS situation with the set of electrodes surrounding
the test mass, we can take advantage of the configuration to obtain not only distance information
but also information regarding the spatial orientation of the test mass.

The final step in the interferometer measuring chain is the phasemeter [38] which samples the
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heterodyne signal fhet ≡ 1 kHz with an output rate of f ≡ 100 Hz which is delivered to the Data
Management Unit (DMU) for the final processing step. This data treatment will be performed in
the flight model by a dedicated hardware (FPGA) [101].
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Figure 1.12: The Optical Bench Engineering Model lateral (top) and top (bottom) view. The
latter shows the optical layout on the Optical Bench together with the fiber injectors (top right
part of the Optical Bench) and two photodiodes at their left. The golden circle on the right is the
mirror acting as a dummy test mass. Courtesy of A.F. Garćıa Maŕın
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Diagnostics

The LTP is designed as a technology readiness mission with the main scope of probing the drag
free technology required for LISA and is thus an experiment from which information that will be
needed to achieve the more demanding LISA goal can be extracted.

The Diagnostics Subsystem has a very important role in this last part since it is designed to
identify and characterise those noise sources that affect the main scientific measurement. The list
of items conforming the DDS is

1. Diagnostics items. These are a number of sensors, with their associated electronics, which
are intended to monitor various disturbances happening inside the LPF

• Temperature Sensors. There are 23 distributed trough the LTP Core Assembly (LCA)

• Heaters. There are 14, distributed in the Electrode Housing, the Optical Window and
the suspension struts.

• Magnetometers. There are 4 of fluxgate type surrounding the LTP, outside of the
thermal shield.

• Coils. There are 2, each one attached to one vacuum tank and both aligned with the
line joining the test masses.

• Radiation Monitor. Only one, attached to the spacecraft’s shear walls.

2. Data Management Unit (DMU) [73]. The LTP computer. It is responsible for driving and
control of the diagnostics items, and for the acquisition and onboard processing of phasemeter
data. It has three main components, each one duplicated as a resource against failure.

• Power Distribution Unit (PDU)

• Data Acquisition Unit (DAU)

• Data Processing Unit (DPU)

We will now overview the main characteristics of the Diagnostics items, a more detailed de-
scription can be found in [12, 52].

Magnetic diagnostics The test masses onboard the LPF are two 1.96 kg cubes of an Au-Pt
alloy. The reason behind this choice is, as previously commented, a compromise between weak
magnetic properties and mechanical resistance. The trade-off between both criteria leads to a
pair of cubic masses with very low magnetic response (the expected values for the test masses are
|χ| < 10−5 and |m| < 10−8 Am2). Even the foreseen suppression of the magnetic characteristics,
the LTP acceleration noise requirement, equation (1.14), imposes a rather demanding magnetic
cleanliness for the LTP environment —see Table 1.2.

The role of the magnetic diagnostics is to monitor the magnetic field by means of the magne-
tometers array onboard the LTP and extrapolate the value of the magnetic field and magnetic field

26



1.2. LISA AND LISA PATHFINDER

Magnitude Requirement

DC Magnetic field 10µT
DC Magnetic field gradient 5µT/m
Magnetic field fluctuations 650 nT/

√
Hz

Magnetic field gradient fluctuations 250 (nT/m)/
√

Hz

Table 1.2: LTP magnetic requirements

gradient at the test masses locations in order to be able to evaluate the magnetic noise contribution
to the test mass acceleration. It is precisely the distance between magnetometer and test mass that
makes the diagnostics task specially hard since the magnetic field is generated by a long list of mag-
netic sources inside the spacecraft (50 approx.), and only 4 fluxgate magnetometers are available.
Several analysis techniques are been studied to solve this problem, see for instance [11, 61].

The magnetic subsystem will also provide a pair of magnetic coils to be attached to the LTP
vacuum chambers enclosing the test mass. These devices will be able to apply high Signal-to-Noise
Ratio (SNR) magnetic signals that will be used to determine in-flight the magnetic properties of
the test mass.

Figure 1.13: Radiation Monitor scheme. Two PIN diodes in telescopic configuration inside a
shielding structure.

Radiation Monitor Because of the capacitive measurement used to sense the test mass motion,
the GRS is sensitive to charge variations of the test masses. In the Lagrange point 1 (L1) where
the experiment will take place there are two envisaged sources of charging on the test masses:
Galactic Cosmic Rays (GCR) and Solar Energetic Particles (SEP). Both are composed mainly by
protons and a smaller fraction of He nuclei and heavier nuclei respectively, but differ in its energy
spectra. Therefore, the LTP needs a particle counter in order to characterise the particle shower
contribution to the noise performance of the experiment. A property needed for the Radiation
Monitor is the capability to distinguish GCR from SEP, implying that is must be able to evaluate
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the energy spectra of the incoming shower. A second condition to be fulfilled is that the detector
must characterise the particles arriving in the test mass which, due to the spacecraft shielding, are
those with energies above ∼ 100 MeV.

The concept of the particle counter designed to reach the above conditions is based on two
PIN diodes, each of which can count individual particle hits. Photons are absorbed while protons
and heavier nuclei can exit through the opposite side of the diode. A telescopic configuration of
these diodes allows the discrimination of the energies of the incident particles based on their energy
deposition. The particle counter is placed inside a metallic box which has an equivalent stopping
power as the one of the spacecraft with respect the test mass —see Figure 1.13.

Thermal diagnostics This thesis is devoted to this subject. The reader is referred to the next
chapter for a description of the Thermal Diagnostics Subsystem onboard the LTP and the rest of
the chapters for related topics.
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Figure 1.14: Layout of the LTP Core Assembly, as of 13-October-2006.
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Chapter 2
Thermal Diagnostics

The LISA Pathfinder mission is devoted to pave the way to gravitational wave astronomy in space
or, in more specific terms, to low frequency gravitational wave detection. In order to reach this
objective, it must develop some technologies at a given sensitivity level where the scientific case
assures that the detection will be undoubtedly achieved. However, the detection of gravitational
waves refers to the LISA project which aims to reproduce the same geodesic deviation measurement
that the LPF will undergo but separating both masses 5 · 106 km. The LTP experiment on board
the LPF will reach, roughly in order of magnitude, the requirement in terms of acceleration but a
much lower value when considering strain sensitivity, precisely due to the squeezing of the LISA
arms. The LTP must therefore be considered as a null-type experiment, i.e., an experiment where
the no detection of signal or, in better terms, the suppression of all perturbing agents is considered
the main priority.

If we thus assume this framework, noise will immediately appear as the main interesting process
to understand and characterise. In our particular case, we will be referring to noise as a stochastic
process represented in a time series which will be our instrument output datastream.

The scope of the experiment requires to deal with the noise figure of the experiment and
compare it with the design figure, the one that must be achieved based on the design being
followed. Therefore, in a null-type experiment, the design phase builds up also a noise model
which sets the experiment limits to be reached a posteriori. The noise model may be based, as this
is the case in the LTP case, in previous experimental experience which helps to define the processes
setting the floor noise and to parametrise it by means of proper characterisation experiments.

Among the different kinds of noise sources we will distinguish those intrinsically related to the
experiment dynamics from those intrinsically related to an external agent. An example of the
former would be the shot noise taking place at the photodiodes while test mass displacements due
to the magnetic field will enter in the second class. Under this classification the noise model can
be expressed as
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S(ω) =
∑
i

Si(ω) +
∑
k

|hk(ω)|2 S(ext)
k (ω) + (cross terms) (2.1)

where the first term gathers instrumental noise and the second disturbances contributions.
The latter has been split into the noise term S

(ext)
k (ω) as measured by the diagnostics items and

the transfer functions, |hk(ω)|2, translating the external agent noise to noise contribution to the
experimental main datastream.

When running the experiment this noise model is put to test and thus the main output stream
(interferometric in our case) is required to measure the noise level, but the disturbances (those
related with external agents) need also be monitored in order to fully reproduce the noise model
and probe its validity. At this point the diagnostics1 acquires its relevance. In the LTP the
main disturbing forces arises from magnetics, thermal and charged particles showers, and thus the
corresponding sensors are distributed across the LTP.

A first step for the diagnostics is thus to translate its measurements into equivalent noise on
the main measurement via the noise model. Despite of the monitoring process just described, the
diagnostics can acquire an active part in the experiment as testers of the noise model. The main
problem with the noise investigations is that contributions coming from different agents can not
be distinguished. Since these processes are setting the noise floor level, there is no possibility for
our instrument to measure it separately. The adopted solution is to include diagnostic apparatus
(heaters and coils in the LTP) able to actively increase the power of a particular noise agent.
Because we are measuring in general small effects, we will consider that the coupling factor relating
the disturbance with the measurement is independent of the applied power and thus with an
applied stronger signal we will clearly determine the relation between both. This way, we are
taking advantage of the diagnostics items to determine the noise model, reducing the uncertainty
of its parameters.

The framework used to evaluate the noise model will be the system approach. The methodology
is based on the description of the problem in terms of an input/output relation expressed as a
transfer function that gathers the dynamics of the system under study. This function translates a
given input time series into an output time series as well. The system approach will be thoroughly
considered in Chapter 8 where it will be directly applied to a real data set.

In this chapter we will be mainly focusing on the description of those instruments affected
by temperature disturbances, also describing which are the relevant effects to be considered by
the noise model. From this set of parameters conforming the noise model we will be able to
derive a requirement for the temperature stability inside the experiment that must guarantee
that temperature fluctuations will not spoil the main scientific goal. At the same time, this will
translate in a noise level to be reached by our temperature sensors, which need to have a margin
in its working range wide enough to sense any deviation from the requirement. The achievement
of this sensitivity level will be the scope of Chapter 5.

1from the Greek διαγνωστικóς [diagnostikós], able to distinguish
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2.1. THERMAL EFFECTS

2.1 Thermal effects

As previously stated, thermal diagnostics are built upon a noise model which must take into account
all those disturbance effects that may couple temperature into displacement noise either via direct
displacement of the test mass or via fake signals registered at the phasemeter due to thermoptical
effects. Although not always being the case, disturbances in the GRS are usually related to effects
from the first kind whereas thermal effects affecting the OMS will be always of the second kind.

The spurious accelerations generated by these effects will be finally compared with the LPF
acceleration requirement, equation (1.14), that we rewrite here

S
1/2
a,LPF(ω) ≤ 3×10−14

[
1 +

(
ω/2π

3 mHz

)2]
m s−2/

√
Hz (2.2)

in the frequency range 1 mHz ≤ ω/2π ≤ 30 mHz.

2.1.1 Noise effects inside the Gravitational Reference Sensor

Temperature differences between the walls of the electrode housing cause differential pressures on
opposite faces of the test masses, which in turn result in net forces on them, hence in noise in the
drag-free measurement.

Three different mechanisms have been identified whereby temperature fluctuations distort the
LTP readout: radiation pressure, radiometer effect and outgassing. We will give a quantitatively
estimate of their respective contributions to temperature fluctuation noise, together with a brief
description of other temperature related effects that can perturb the drag-free measurement.

Radiation pressure

A body at any (absolute) temperature T emits thermal radiation. This exerts pressure on any
surfaces the radiation hits. According to standard electromagnetic theory, such pressure is given
by

pe.m. =
4
3
σ

c
T 4 (2.3)

where σ= 5.67×10−8 Wm−2K−4 is the Stefan-Boltzmann constant, and c is the speed of light.
Thus, if there are temperature fluctuations around the test mass, a noisy net force will appear
on it —see Figure 2.1 for a graphical display. The effect can be easily quantified making use of
equation (2.3):

∆pe.m. =
16σ
3 c

αe.m. T
3∆T (2.4)

where ∆p, ∆T make reference to differences of pressure and temperature between the sides of
the test mass and αe.m. is the view factor parameter which takes into account the geometry of
the problem. Appendix A shows the computation of this value which, for the case of interaction
between test mass and electrode housing walls, is estimated to be αe.m. ' 0.68 . Associated
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Electrode housing

Test mass

Figure 2.1: Electrode Housing scheme

acceleration noise is hence obtained multiplying the above by the test mass surface area, ATM and
dividing by its mass mTM

2:

∆ae.m. =
16ATMσ

3mTMc
αe.m. T

3∆T (2.5)

Radiometer effect

The radiometer effect has widely appeared in discussions related to experiments aiming to test the
Equivalence Principle [66, 65, 81] such as the STEP [106] or the MICROSCOPE [98] missions.

The radiometer effect takes its name from the Crookes’s lightmill radiometer 3. This effect
happens in rarefied gas atmospheres, where the gas particles have a mean free path well in excess
of the dimensions of the containing vessel, so that equilibrium conditions do not happen when
pressure is uniform, but rather when the ratios of pressure to square root of temperature equal one
another.

This can be better understood if we consider two vessels at different temperatures TA and TB

connected through a hole, a flow of gas molecules from the hotter to the colder receptacle will be
established until equilibrium is reached. We can thus consider equilibrium will be achieved when

2A factor 2 reduction in equation (2.4), as well as in equation (2.10), can be found in other works [21] if the test
mass is assumed to be isothermal and at the average temperature between the two walls (T1 and T2 in Figure 2.1).

3“It was Reynolds in 1879 who first proposed the right explanation after a first proposal of Maxwell who was
delighted to see a demonstration of the radiation pressure as predicted by his theory of electromagnetism. However,
radiation pressure should make the lightmill turn in wrong way, opposite to the radiometer effect. Maxwell refereed
Reynolds paper and submitted a paper to the Royal Society giving credit to Reynolds explanation but criticising
his mathematical treatment. Reynolds was greatly incensed to view how Maxwell paper criticising his work was
published even before his own work but Maxwell’s death that same year ended with the controversy.” From [36].
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the number of molecules per unit time passing from A to B is the same as the rate going from B
to A,

nA v̄A = nB v̄B (2.6)

where n is the number of particles per unit volume and v the average speed of the gas molecules,
expressed in terms of the gas molar mass m and the pressure p as

ni =
pi

KB Ti

vi =

√
3KB T

m
(2.7)

Replacing these expressions in (2.6), we can obtain the pressure dependence in terms of tem-
perature [47]

p1√
T1

=
p2√
T2

(2.8)

Taking the derivatives at both sides, the effect can be expressed as

∆p =
1
2

∆T
T
p (2.9)

Returning now to the LTP conditions, the test mass acceleration associated with the radiometer
effect can be, in a first approximation, related to the gradient between opposite faces obtaining
the following expression

∆aradiometer =
1
2
pATM

mTM

∆T
T

(2.10)

This is the basic equation of the radiometer usually considered to describe the radiometer effect
in the LTP case. However, as in the radiation pressure case, the original expression lacks from
a geometrical factor taking into account the particular distribution of interacting surfaces in the
GRS. The previous derivation of the effect considered two vessel at different temperature and the
condition to achieve equilibrium between both, a more detailed description would have to include
angular dependences. The reader can find a brief description of a theory for the radiometer effect
containing angular dependences in Appendix B.

Outgassing

In high vacuum conditions, the interaction of molecules with the walls of the containing vessel plays
an important role in the level of vacuum which can be achieved. The rarefied conditions where
the bouncing takes place implies that the process does not statistically follow an elastic collision.
The group of interactions in which the gas is retained by the solid (or liquid) receives the name of
sorption and includes two mechanism: adsorption and absorption. The opposite mechanism, i.e.
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when the gas molecules are released from the material, are consequently known as desorption or
outgassing [80].

In order to understand the difficulties that outgassing poses on the GRS subsystem it will
be useful to briefly describe the phenomena taking place during these processes. The adsorption
process is an activation mechanism. Thus, a molecule impinging on the surface can assume an
equilibrium energy at the lowest potential state of the potential energy if an energy barrier is
overcome. Since the forces are attractive, work is done in adsorbing molecules and heat is generated,
being thus an exothermic process. The amount of heat differs depending on the process. If
the adsorption is purely physical it involves Van der Waals forces and the maximum attainable
adsorption energy is approximately 0.3 eV/molecule. However, if chemical processes take place the
adsorption similar to the formation of a chemical compound with transfer of electrons and the
energy of adsorption can be much greater ≈ 12 eV/molecule. If the molecule finally enters the
material in much the same manner as a gas dissolving in a liquid, the molecule is considered to be
absorbed.

Outgassing process is therefore dependent on pressure, the shape of the material, the kind of
surface and, the most important for this study, on temperature. If the temperature raises in one
side of the Electrode Housing, molecules from that side will have more energy to overcome the
potential barrier and a net flux will be established, pushing the test mass to the colder face of the
electrode housing. Moreover, an important consequence of the outgassing process is that it affects
the global pressure level and therefore the radiometer effect which is directly proportional to the
pressure. It is therefore of great interest to model and parametrise this contribution.

However, the outgassing process is harder to evaluate in terms of well established principles
as the previous effects. The usual way to model outgassing is to consider it as an the activation
process, therefore the outgassing rate Q can be expressed as [80, 81]

Q(T ) = Q0 e
−Eact/KB T = Q0 e

−Θ/T , [Q] =
Pa m

s
(2.11)

where Q0 is a constant factor and Θ is the activation temperature strongly depending on the
gas and the host material but considered to be allocated on the range [3000 K, 30000 K] producing
thus a strong temperature dependence.

As before, we can take advantage of equation (2.11) to derive a relation describing the outgassing
effects in the GRS environment with respect to temperature gradients between both faces of the
electrode housing. This can be shown to be expressed by [21]

∆aout =
Q(T )ATM

Ceff mTM

Θ
T 2

∆T (2.12)

where now the geometric dependence is included in the Ceff factor, which stands for the
effective conductance of the molecular flow path around the test mass and through the holes in the
GRS.

Once the expression for the pressure difference is found, we now face the materials properties
question. Materials are parametrised in what respects outgassing using three parameters:
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• Total Mass Loss (TML) measures the difference of weight of the sample before and after a
baking process.

• Collected Volatile Condensed Materials (CVCM) measures the difference between the weight
of a clean collector and of the collector having condensed materials after the baking of the
sample, providing the mass of condensables.

• Water Vapor Regained (WVR) this value is the amount of water readsorbed/reabsorbed in
24 hours while the sample is exposed to 25 ℃, and 50% relative humidity. It is given as a
percentage of the starting mass.

A complete list of materials used in space applications classified in terms of these parameters
is freely provided by NASA [64].

The issue has also attracted attention of people from other space missions [65, 66], and further
experimental work appears to be necessary to reliably assess the impact of this phenomenon.
Partial evidence has however been gathered that outgassing might be in practice the dominant
thermal effect in the LTP [21].

Thermal distortion

Thermal distortions of the electrode housing due to thermal expansion are sources of noise to be
considered in the design of the GRS. The effect to be considered in this case is twofold since
the expansion of an electrode will obviously affect the relative distance between test mass and
electrode, i.e., converting into equivalent displacement noise but it will also induce a change in the
capacitance between test mass an electrode, i.e. converting into effective acceleration noise in the
sensor [27, 99].

The effect is complex due to the dependence on the geometry of the spacecraft and on materials
used. A detailed study of this effect requires a dedicated thermal and structural model [76].
However, first estimations seem to show that this noise source has a negligible effect. For instance,
assuming a temperature stability S

1/2
T ' 2 × 10−4 K/

√
Hz, a 1 kg test mass, 5 cm of distance to

the test mass and a thermal expansion coefficient of 2× 10−5 K−1 the acceleration noise obtained
is 2× 10−16 m s−2/

√
Hz [89, 94], below the noise budget requirement (2.2).

Residual gas impacts

Residual gas inside the GRS can induce noisy motion of the test masses. The effect is however
driven by the pressure or temperature average value instead of thermal fluctuations as the rest of
effects treated in this section. Being however a thermal related effect, we name it here for the sake
of completeness.

To get a rough estimate of the effect of random impacts of molecules in the test mass, we
consider an acceleration described as [89]
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a = (number density) · (impact rate) · (average velocity)

= n ·
(
n v̄ ATM

3

)
· v̄ (2.13a)

where the molecules average mean velocity, v̄, and the number density n are

v̄ =

√
3KB T

m
(2.13b)

n =
p

KB T
(2.13c)

Substituting these expressions in equation (2.13a), the following expression for acceleration
noise due to residual gas impacts is obtained.

a =
(
pATM
m2
TM

)1/2

(3KBT m)1/4 (2.14)

As expected, the effect is not dependent on temperature gradients across the electrode housing
but on global magnitudes such as temperature or pressure in the GRS environment. The allocated
budget for this noise effect is S1/2

a ∼ 1 · 10−15(m/s2)/
√

Hz

Total temperature fluctuation noise in the GRS

Having enumerated the thermal processes that may couple temperature disturbances to test mass
motion in the GRS we can now proceed to set a limit on temperature gradient which ensures this
forces to be below the acceleration goal or, more precisely, set a limit ensuring that these forces do
not exceed the allocated noise budget.

Outgassing, the radiometer effect and radiation pressure fluctuations are of course totally cor-
related and hence the spectral densities of acceleration and temperature in the GRS are related
by

S
1/2
a, tf GRS(ω) =

ATM
mTM

[
αe.m.

16
3
σ

c
T 3 + αradio

1
2
p

T
+
Q(T )
Ceff

Θ
T 2

]
S

1/2
∆T, GRS(ω) (2.15)

Nominal conditions in the LTP are the following 4:

ATM = 4.6× 10−2 m Θ = 3× 104

mTM = 1.96 kg Q(T=293 K) = 1.4 nJ/s
T = 293 K Ceff |GRS = 4.3× 10−2 m3/s
p = 10−5 Pa

which give
4Numerical values for the outgassing parameters are extracted from on ground results in the torsion pendu-

lum [21]. These values could change for the flight model since the foreseen baking process is expected reduce the
outgassing flow coming from the walls of the Electrode Housing.
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S
1/2
a, tf GRS(ω) = (arad + aradio + aout)S

1/2
∆T, GRS (2.16)

' [18 + 9 + 40]× 10−12S
1/2
∆T, GRS(ω) ms−2/

√
Hz (2.17)

the thermal feedtrough factor is thus in the order of magnitude ∼ 100 pN/K [21]. It must be
noted that, as previously stated, these effects are matter of current research and that the precisely
determination of the related coupling factors is to be done in flight in the final LTP experiment
conditions.

2.1.2 Noise effects inside the OMS

Temperature disturbances affecting the OMS will induce pathlength variations on the interferom-
eter that will appear on the final interferometric readout as fake test mass displacements. The
requirement for the OMS performance is set to [100]

S
1/2
x,laser ≤ 9× 10−12

[
1 +

(
f

3 mHz

)−4
]1/2

m√
Hz

(2.18)

It is thus necessary to ensure that any thermal related effect does not translate into a contri-
bution exceeding (2.18). While it is not difficult to characterise how individual components are
influenced by thermal effects, to assess the behaviour of the fully integrated optical metrology is
a more complicated task. We will therefore first consider the physical temperature related effects
affecting the OMS and then proceed to estimate its contributions to the interferometer readout
taking into account those locations on the OMS that are envisaged to be sensitive to thermal
changes.

Physical effects

The first effect we can expect from temperature gradients in an interferometer is that thermal
expansion affects differentially to both interferometer arms. The effect is readily explained with
the expression

dx = LαdT (2.19)

where L is the nominal length of the interferometer arm and α = 1
L
dL
dT is the thermal expansion

coefficient. Although expression (2.19) is simple, the evaluation of the effect can become a com-
plicated task because of the complex geometry covered by the laser beam or by the temperature
gradient profile that may cause differential expansions at different points.

A second effect to be considered is the imprint that temperature fluctuations may cause on
individual optical elements. In this case not only the thermal expansion mechanism needs to be
considered but also proper optical effects may disturb the laser pathlength. In order to quantita-
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tively understand this mechanism, let’s consider a laser beam impinging on a plate of thickness L
and refractive index n. The pathlength variation that this optical element adds to the laser beam
can be computed as the difference between the pathlength with and without the slab. If, for the
sake of simplicity, normal incidence is assumed the resulting pathlength difference can be written
down as

s = n · L− L (2.20)

where the pathlength without the slab is considered to be L since n = 1. Taking the derivative
with respect the temperature in (2.20) will show which are the dependences that we shall take care
of for the OMS thermal diagnostics,

ds

dT
= L

(
dn

dT
+ α(n− 1)

)
(2.21)

where α = 1
L
dL
dT is the coefficient of thermal expansion. Moreover, it is convenient to translate

pathlength variations to phase since this will be our final goal. Taking into account the relation
between the phase measured and the pathlength

φ =
2π
λ
s (2.22)

where λ is the laser wavelength, we get [57]

dφ

dT
=

2π L
λ

(
dn

dT
+ α(n− 1)

)
(2.23)

This is thus the figure of merit to be evaluated in those OMS locations sensitive to temperature
disturbances. From equation (2.23) it appears that there are two thermal effects that will couple
the interferometric readout to temperature gradients inside the LTP. These are:

• Index of refraction dependence with temperature of optical components depends on temper-
ature.

• Temperature changes cause dilatation (and contractions) of optical elements, which in turn
cause light’s optical path to change accordingly. If an optical element is in contact with a
material with different thermal expansion coefficient, then stress effects can induce pathlength
differences as well.

These effects need to be evaluated separately depending on the location since materials and
the interaction with the laser beam differs for each compound.

OMS critical locations

Optical Bench The optical elements attached to the bench form the four interferometers on
which the metrology subsystem of the LTP is based. At the same time, the bench has ten pho-
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todiodes that will be dissipating ≈ 5 mW. These are, apart from the diagnostics items, the only
thermal active parts inside the LCA.

However, the material selected for the optical bench manufacturing, Zerodur, ensures that
power fluctuations of the photodiodes will not be detected by the interferometer given its low
Coefficient of Thermal Expansion (CTE) — see values from Table 1.1. For instance, a quick
analysis shows that the dissipated power of one photodiode in the optical bench will increase its
temperature ≈ 1× 10−7 K, i.e. a negligible amount [99] when measured as pathlength difference.

Even so, first estimations seem to point out that temperature related effects can be neglected
if a temperature stability of S1/2

T ≤ 10−4 K/
√

Hz can be ensured [27].

Optical Window Is the interface between the test masses and the Optical Bench: laser beams
must bounce off the test masses to monitor their positions by precision interferometry, hence a
transparent window is necessary for the light to make it to the interior of the VE.

The OW is a plane-parallel plate and is therefore a potential source of noise: random variations
of its optical properties may result in corresponding optical path fluctuations, which distort the
laser light phase, hence the optical Metrology readout. Great care must be taken when manufactur-
ing this critical component of the LTP and, once manufactured, characterisation of its behaviour
duly performed.

The Optical Window is subjected to both thermal effects previously enumerated. Thermal
gradients will change the pathlength of the laser beam going through it but at the same time this
optical element has a peculiar property which differences it from the rest: is the only non bonded
optical element. The glass separating the vacuum enclosure from the optical bench will be clamped
into a Titanium ring and therefore thermal fluctuations on the metal could induce more disturbing
effects

We will treat in detail the Optical Window problem in Chapter 8 but, before that, we can
make a fast estimate of the effect of the coupling of the laser beam with thermal fluctuations
on the optical window based on the properties of the glass, being this the OHARA S-PHM52

glass. If the data-sheet properties are used to calculate the thermal related path-length variations
in the optical window glass due to changes in the refractive index, the result is that dφ/dT is
∼ 21× 10−3 mrad/K [57].

From this coupling coefficients, a first estimation on the temperature stability requirement can
be obtained. If the optical layout in Figure 1.11 is taken into account, we must consider that the
laser beam passes four times through an optical window (two times for each window in its path
from the Optical Bench to the Test Mass and viceversa) and thus the overall coefficient becomes
≈ 4×21×10−3 rad/K. As an example, a budget of 9 pm/

√
Hz (≈ 50µrad/

√
Hz) of equation (2.18)

would lead to a required thermal stability of S1/2
T ≤ 6× 10−4 K/

√
Hz in the measurement band.

Struts The LCA is connected to the thermal shield by means of 8 Carbon Fiber Reinforced
Plastic (CFRP) struts. Being the only conductive link to the external temperature environment,
they are considered as critical items in the thermal design.
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Although not being directly part of the OMS subsystem, temperature leaks through the struts
could be sensed by the interferometer as displacements due to stress on the optical bench which
makes it to be considered as a part of the OMS thermal diagnostic subsystem. Due to the complex
coupling between temperature evolution, structural properties and interferometric sensing it is
difficult to predict the response of the interferometer readout to these disturbances. As before,
the low expansion coefficient of the material puts a hard limit on the possible effects of thermal
dilatation due to struts.

Total temperature fluctuation noise in the OMS

Significant progress has been made since the early design proposals —see reference [10] and follow-
ing articles in that issue of Classical and Quantum Gravity—, and improved materials and designs
are now available. Altogether, it appears that

S
1/2
T, OMS ' 10−4 K/

√
Hz (2.24)

is a sensible requirement which should comfortably guarantee the performance of the optical bench
against temperature fluctuations in flight —see [99], Chapter 12, and [16]. Like before, the noise
level (2.24) is estimated to account for about 10 % of the total LTP acceleration noise, equa-
tion (2.25).

2.2 Total temperature fluctuation noise budget for the LTP

Random temperature fluctuations in the LTP introduce noise in the system through various chan-
nels and mechanisms, as we describe and quantitatively assess in this section. Proper characteri-
sation of these effects will help us set the limits of temperature fluctuations compatible with LTP
full science performance.

As a rule of thumb, the total contribution of temperature fluctuation noise to the total accel-
eration noise, equation (2.2), should not exceed 10 %. We thus require that

S
1/2
a,T (ω) ≤ 3×10−15

[
1 +

(
ω/2π

3 mHz

)2]
m s−2/

√
Hz (2.25)

for frequencies within the LTP MBW. This assumption is in fact somewhat conservative, as the
Project Engineers have estimated that more than twice this value is actually compliant with the
overall LTP noise budget [102]. We shall however adopt equation (2.25) as reference to ensure we
are playing on the safe side.

Estimates so far indicate that both GRS and OMS noise are very accurately in the order of

S
1/2
T (ω) ≤ 10−4 K/

√
Hz , 1 mHz ≤ ω/2π ≤ 30 mHz (2.26)

Noise in the GRS should be mostly uncorrelated with noise in the OMS, and they are of
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a different nature, anyway: while temperature gradient fluctuations across the test masses are
responsible for GRS thermal disturbances, local temperature fluctuations affect the OMS.

The above argument does not however preclude the fact that GRS and OMS temperature
fluctuations will each contribute to the total LTP noise budget —this is often termed noise ap-
portioning in the technical jargon [100]. The zero-correlation hypothesis means that both kinds of
noise add quadratically. We are thus reassured that equation (8.13) is a sensible requirement for
the temperature fluctuations which can be tolerated in the LTP. Let us however stress that we
still can count with some margin, as acceleration noise due to temperature fluctuations has been
taken as a conservative 10 % of the total acceleration noise.

2.3 Temperature diagnostics items distribution

Temperature diagnostics items have to be distributed through the LCA. Figures 2.2 to 2.3 show
the current baseline distribution of temperature sensors and heaters in the LTP experiment.

This distribution takes into account the thermal effects above described. For instance, four
sensors in couples of two in each x axes faces of the GRS allows the detection and characterisation of
gradients in this direction where the capacitive sensors maximise its sensitivity. The same number
of heaters guarantees the application of the diagnostics philosophy described, i.e., applying high
Signal-to-Noise ratio thermal signals to enhance the test mass motion due to thermal effects. It
must be pointed out that although physically independent, both heaters on the same GRS face are
jointly connected and thus can not be switched on separately.

Thermal disturbances in the Optical Window will be characterised by a set of three sensors,
two lateral and one a the top together with two lateral heaters following with the same diagnostic
philosophy.

Possible thermal leaks arriving at the LCA through the struts will be sensed by temperature
sensors attached to them. However, not all of them will be sensed since the initial structure of the
LTP had only six struts and thus six sensor and heater pairs were allocated. The addition of two
more struts left short of sensors and heaters in two of the eight struts.

Finally four sensors are distributed on the Optical Bench. In this case there is no heater
to induce shocks, the reason being the high power required to induce a thermal response in the
Zerodur.
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Figure 2.2: Top: Scheme of the distribution of thermal diagnostics items through on the Optical
Bench. This proposal has been modified, the current baseline is to displace these sensors to
the lateral sides of the Optical Bench to prevent any interaction of the sensors’ wiring with the
laser beam. Bottom: Scheme of the distribution of thermal diagnostics items in the Vacuum
Tank enclosing the Test Mass. Three sensors (in red) and two heaters (in green) are distributed
surrounding the Optical Window.
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Figure 2.3: Scheme of the distribution of thermal diagnostics items in the LCA struts. Due to the
isometric view, only those Struts with thermal diagnostics items are shown. There are however
two more of them not shown in the figure.
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Chapter 3
Thermal analysis tools

We will start this Chapter reviewing a standard technique in engineering when dealing with thermal
problems, namely the thermal analogy to electrical circuits. This methodology is of standard use in
thermal design. It allows a clear and fast idea of the thermal magnitudes involved in the problem.
Since we will be facing the thermal design problem in Chapter 4, where we will be interested in
describing the properties of a thermal insulator, it will be useful to first briefly describe some
concepts not only to recover it from the literature [44] but also to fix a nomenclature which usually
leads to misunderstandings.

We will therefore sequentially pass from the simplest assumption to increasing levels of com-
plexity in resolving thermal problems. Our final step will be the resolution of the full Fourier’s
equation in frequency domain to obtain a thermal transfer function describing the thermal fluctu-
ations inside a given volume once fixed the initial and boundary conditions. This result will be of
particular interest in Chapter 4 when designing a thermal insulator in the low frequency regime.

3.1 Thermal resistance overview

In most applications, the thermal analysis to be performed on a system is basically restricted to
its steady state approximation. Under this condition, we are not interested in the non-stationary
evolution of the thermal process, the assumption is made that the system has gone through a first
transient regime and has finally reach a steady solution.

We will herein consider the steady state approximation in order to obtain thermal expressions
describing the thermal resistance of a given system. The electrical analogy will show to be specially
fruitful in these cases and therefore we will take profit of it to study thermal phenomena. This will
be better understood following an example.

Let’s consider a slab where a constant heat flux, Q̇, is established between its two edges at a
distance L. We will assume that all the flux flows in the x direction confined to an area A. In
these conditions, Fourier’s law relates flux and temperature gradient in the following manner,
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Q̇ = −k A dT

dx
(3.1)

Straightforward integration leads to

Q̇ =
T1 − T2

L/k A
(3.2)

where T1 and T2 refer to temperatures at both edges. A simple analogy can be traced from this
expression with Ohm’s law I = V/R considering the temperature difference as a driving potential
in the same way voltage acts in the electric case. We can therefore define a thermal resistance as
R ≡ L/K A.

The usefullness of this parameter is clearly found when considering more complex or composite
structures. If we, for instance, apply the same reasoning previously followed to a system composed
of two adjacent slabs and compute the temperature gradient the relation that appears can be split
into two terms, each one with a clear analogy in electrical terms.

Q̇ =
T1 − T3

LA/KAA+ LB/KB A

=
∆T

RA +RB
(3.3)

As shown in Figure 3.1 the relation between heat flux and temperature gradient in the steady
regime can be easily written down if we consider the thermal resistances in series in the electric
analogy. This approach leads directly to the second expression in equation (3.3), with all the
geometric information included in the thermal resistance parameter, R.

Once derived this result, most of the thermal steady state problems can be split up in simple
geometries and solved by means of the analog thermal circuit, these are the so called thermal
networks [44]. Table (3.1) summarises thermal resistance expressions for simple common geometries
which can be used for this purpose. Naturally, different geometries imply different dependence of
the thermal resistance with the geometrical variable: from proportional to the length in the slab
case to the difference of inverse length in the hollow sphere case. In the cylinder and the sphere
case, hollow objects had to be considered in order to impose the constant temperature condition
in the inner face.

3.1.1 The lumped capacitance method

The thermal resistance concept shows to be a useful concept in thermal design. However, its main
limitations reside in the steady state condition, i.e., the time independent behaviour. Because we
will finally be interested in thermal fluctuations and its power spectra representation we will in
this section go through the next step in thermal analysis which is to introduce time dependencies.

Following the same previous electrical analogy we will need to introduce a thermal capacitance
which enables a time dependent analysis. The standard method to do so in thermal engineering
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Figure 3.1: Graphical representation of the electrical analogy to thermal problems.

is the lumped capacitance method. The main hypothesis on which this method is based is that the
temperature in the solid is spatially uniform at all times, which directly implies the suppression
of temperature gradients across the volume. This may be the case if thermal resistance inside the
body is lower than the resistance between the body and its surroundings. Although this may not
be the case in our final application, we will consider it as valid here to work out the expressions.

In this framework we can not consider Fourier’s law because the uniform temperature condi-
tion will imply infinite thermal conductivity. Instead, an energy balance equation is used in this
approach, this relation can be generally expressed as

− hA(T (t)− T |t→∞) = ρV C
dT

dt
(3.4)

where h is the heat transfer coefficient [Wm−2K−1], A the area crossed by the heat flux, ρ the
density, V the volume and C the heat capacity. In equation (3.4) the rhs is the energy stored
by the body whereas the lhs is the energy being supplied by the media. As a consequence of the
uniform temperature assumption, no spatial dependencies appear in the equation and the time
dependence can be easily solved leading to

θ(t) = θ(0) exp
[
−
(
hA

ρV C

)
t

]
(3.5)

where θ(t) = T (t) − T |t→∞.C Now, expression (3.5) defines a time constant for the thermal
process which, recovering the electrical analogy, can be interpreted as a discharging time constant
of a RC circuit
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Geometry Thermal resistance [K/W]

Slab
(length L, section A)

L

K A

Hollow cylinder
(length L, radius r2 > r1)

ln(r2/r1)
2πLK

Hollow sphere

(radius r2 > r1)

1
4πK

(
1
r1
− 1
r2

)

Table 3.1: Steady thermal conduction resistances for common geometries

τT = RTCT =
(

1
hA

)
(ρV C) (3.6)

The capacitance here introduced provides an information of the thermal inertia of the solid.
The response of the system to thermal inputs becomes faster reducing either the capacitance (the
mass or heat capacity) or the thermal resistance (inversely related to contact conductivity). An
increase of either parameter will result in a longer timescale to reach the thermal equilibrium.

A noteworthy point to introduce here is to consider the implication of the electrical analogy
when switching to frequency domain analysis. This must be our final goal so it is interesting to
start tracing some consequences with this first simple model.

If the capacitor analog is taken in full consideration, we can try to translate also its frequency
domain interpretation to the thermal case. In doing so, we would have a low-pass filter with time
constant τc = R·C, hence meaning that thermal changes with timescale τ < τc entering this system
will be suppressed (more suppressed as τ gets shorter) as well as variations of longer periods than
the cut-off, τ > τc, will survive through the system. This interpretation will be greatly clarified in
the following sections and we will be finally using it as a thermal insulator design tool (cf. § 4.1.4).

The lumped capacitance approximation is therefore a good description as far as we consider
the uniform temperature condition acceptable. There is however a condition which sets the limit
where this approximation is valid, the standard methodology to quantify the viability of the lumped
capacitance method is to introduce the dimensionless Biot number which can be understood as
the ratio of the body thermal resistance and the contact thermal resistance from body to the
environment. The Biot number is defined as the ratio of thermal conductance resistance inside the
solid to thermal contact resistance to the environment, which can be expressed as [44]

Bi ≡ hL

K
=
L/KA

1/hA
=
Rcond
Rcont

(3.7)

where Bi is the Biot number. The uniform temperature condition can thus be considered to
be fulfilled for situations where Bi � 1, in other terms, where the body thermal resistance is
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much lower than the contact resistance. The threshold to divide both regimes is usually taken in
the literature [44] as Bi = 0.1. If this condition does not apply we are forced to face the spatial
gradient term of the Fourier equation, as we will see in next section.

3.2 Thermal transfer function

After exploring the steady state condition and the uniform temperature condition we need now to
consider a more general analysis. The model herein studied will be based in the assumption that
heat flows through the body only by thermal conduction. Being our final application a solid body,
convection or radiation mechanisms are not considered to be relevant for the problem. No other
special conditions are imposed on the solution. Under such general framework we must deal with
the Fourier heat equation.

We will present two different approaches to solve this problem. Our first attempt will be to
solve the Fourier equation in time domain and study the solution properties and then compare
it to the solution obtained by considering the Fourier equation in the frequency domain. As we
will see, the latter approach will show advantages with respect to the technical complexity, leading
with less effort to the type of solution we will be interested in.

Our main problem will turn out to be the boundary condition defining the geometry of the
problem which we will consider in a first attempt to be a spherical monolithic body. This seems
to be the easiest choice that we shall use to go through the method without being worried about
technical complexities that may arise in other geometries. After comparing both solutions, the
time and the frequency domain one, this constraint will be relaxed in order to obtain solutions to
a variety of geometries.

The time dependent solution will allow a description of great interest for our application: the
evolution of temperature disturbances inside the body. However, it will turn out that fluctuations
around an equilibrium state will be better described in terms of the Fourier transform and, as
we will see, this will lead to the transfer function approach, where transfer function must be
understood as the relation between temperature fluctuations in a given point of the body with
respect to the environmental temperature fluctuations.

3.2.1 Spherical time domain solutions

Let then T (x, t) be the temperature at time t of a point positioned at vector x1 relative to the
centre of the sphere. Fourier’s partial differential equation reads

ρC ∂tT (x, t) = ∇ · [K∇T (x, t)] (3.8)

where ρ, C, K are the density, the specific heat and thermal conductivity, respectively. The
problem needs specific initial and boundary conditions that will uniquely determine the solution.

1Through all this chapter we will be dealing with three dimensional functions. The notation convention adopted
will be to denote by the vectors with bolded variable, i.e. x=(x, y, z).
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These are chosen to be

Boundary conditions : T (x = xc, t) < ∞ (3.9a)

T (x = xb, t) = T0(x = xb, t) (3.9b)

Initial conditions : T (x, t0 = 0) = 0 (3.9c)

An analyticity condition is imposed at the centre and the temperature at the surface of this
body is assumed to be known, T0(x = xb, t). Because we will be mainly interested in fluctuations
around an equilibrium value, a zero initial condition is fixed considering this initial moment as an
arbitrary time after a first transient behaviour is overcome, we are thus assuming that t0 � τ in
equation (3.9c), where τ refers to the system transient timescale.

The boundary condition can be described in terms of a series of spherical harmonics as follows

T0(a, t) =
∑
l,m

blm(t)Ylm(θ, φ) (3.10)

where bl,m(t) are the multipole components of T0(a, t). The solution of this problem is exposed
in Appendix C.1 in terms of the Sturm-Liouville orthogonal function theory. The expression for
the temperature evolution on a given point x of the sphere is given by

T (x, t) =
∑
n,l,m

QnlXnlm(x)
1
τnl

∫
dt′ e−(t−t′)/τnl blm(t′) (3.11)

where

• Qnl are coefficients depending on the radius and the physical properties ρ, C,K

• Xnlm(x) is a set of orthonormal eigenfunctions in the sphere, solutions to the Sturm-Liouville
problem

K

ρC
∇2Xnlm(x) = − 1

τnl
Xnlm(x) (3.12)

with homogeneous boundary conditions. They can be factorised as

Xnlm(x) = Rnl(r)Ylm(θ, φ) (3.13)

splitting the dependencies into radial and the spherical harmonics contribution.

• τnl are characteristic time constants determined by the eigenvalue equation (3.12) and the
boundary condition, equations (3.9).

A remarkable property of (3.11) is that the sphere acts as a series of low-pass filters applied
on the temperature fluctuations acting on the surface on the sphere. Each multipole component
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blm(t) is weighted by the impulse response function Knl(t) = τ−1
nl e

−t/τnl , i.e., a linear low-pass
filter with time constant τnl. This is more clearly seen in the frequency domain representation,
Fourier-transforming equation (3.11),

T̃ (x, ω) =
∑
n,l,m

QnlXnlm(x)
1
τnl

b̃lm(ω)
1 + i ω τnl

(3.14)

The external perturbation is thus suppressed by a series of low-pass filters with increasing time
constant [53]. We can define a cut-off frequency for this filter considering its lowest frequency
contribution, the first order frequency is —see equation (C.17) in Appendix C.1,

ωc =
π2K

ρCa2
(3.15)

which relate all geometric values and material properties into a characteristic factor of the
insulator. As expected, a higher degree of attenuation to external temperature perturbations
requires either increasing the radius, the density or the thermal capacity of the material used or,
alternatively reducing the thermal conductivity.

This way, we recover the frequency domain insight we first sketched in § 3.1. In this framework
we naturally obtain a set of timescales τnl describing the properties of a solid volume as a thermal
low-pass filter. We must therefore consider a solid volume not as a simple RC low-pass filter but
as an infinite sum of them with decreasing time constants.

The comparison with the lumped capacitance approach leads us to interpret this infinite sum
of filters as the consequence of the inclusion in the analysis of the spatial derivative, since the
lumped capacitance method was based on the assumption that temperature was homogeneously
distributed in the solid, meaning ~∇T = 0. As seen when studying this case, this approximation
yields directly to a unique time constant in the problem. However, as shown in equation (3.14) this
characteristic parameter splits up into an infinite series when the spatial derivative is considered.

At this point, the series of τnl time constants acting as filter poles appears as the eigenvalues
of the equation (3.12). When dealing with frequency domain expression we will find more concise
expressions relating these series of parameters with the geometry of the problem.

Isotropic boundary conditions

Until now we have obtained a solution for the general spherical problem. In order to work out
explicitly the expression previously derived, we will fix our attention in a less general problem.
Let’s consider the sphere in an isotropic temperature bath,

T0(r = a, t) = B(t) (3.16)

which directly translates into only monopole fluctuations in the harmonic expansion

blm(t) =
√

4πB(t) δl0 δm0 (3.17)
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Figure 3.2: The isotropic real solution of the thermal transfer function is compared to a first order
filter of equivalent time constant.

leading to the following temperature distribution

T̃ (x, ω) = 2
∞∑
n=1

(−1)n
sin(nπr/a)
nπr/a

B̃(ω)
1 + i ωτ

n2π2

(3.18)

This Fourier series is better analysed if the action of the spherical body contribution is sepa-
rated from the external temperature dependence. If we write the previous relation as T̃ (x, ω) =
K̃(x, ω) B̃(ω) all the relevant information about the thermal suppression is contained in K̃(x, ω)
to which we shall refer as transfer function because it relates the input thermal signal from the
environment —B̃(ω)— to the thermal response inside the body —T̃ (x, ω). Following Appendix
C.2, we can express the K̃(x, ω) function at the centre of the sphere as

K̃(0, ω) =
(1 + i)β

sinh(β) cos(β) + i cosh(β) sin(β)
, β ≡

∣∣∣ωτ
2

∣∣∣1/2 (3.19)

A closed transfer function expression is finally obtained for the monolithic spherical body. The
methodology has however allowed us only to solve it in closed form at the centre of the geometry
and some analytical development has been necessary. Figure 3.2 shows how this solution differ
from a first order filter of equivalent time constant, the exponential decay makes the real filter to
suppress much more efficiently thermal fluctuations at the filter tails. This fact is clearly understood
as a consequence of the superposition of an infinite number of linear filters with decreasing time
constant values.
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3.2.2 Spherical frequency domain solutions

With the time domain we have been able to describe temperature fluctuations inside an spherical
insulation body. The solution explicitly described in Appendix C.1 requires to solve a Sturm-
Liouville problem. This should not be a problem if we are able to cope with the resulting Fourier
series. For instance, in the spherical insulator the sum of the resulting Fourier series came up as a
limit of an analytical equality (cf. Appendix C.2). However, this fortunate match may turn into
an impossible task when facing more complex problems. This may be the case for the next level in
complexity situations we will find interesting to solve, as multiple layer objects and non-spherical
geometries.

An alternative procedure to solve this problem is through integral transforms. In § 3.2.1, we
found the Fourier representation to be very useful in order to understand the physical meaning
of the solution. We can now go a step further and use the frequency domain representation as
the most natural choice to solve our problem. Since our final goal is the description of thermal
fluctuations inside the insulator body and to set a limit for the expected fluctuations coming from
external disturbances in the Measuring BandWidth (MBW), the integral transform method to
solve Partial Differential Equations (PDE) will show suitable for this purpose.

Integral transform methods allow to deal with PDE algebraically switching to a new domain,
frequency in our case, where partial derivatives acquire generally simpler dependences. The main
disadvantage when working out PDE solutions with the integral transform method is to antitrans-
form the solution to obtain the time dependent expressions. We can, however, get through this
difficulty by realising that the transformed solution is in fact our final solution since it describes
the filter properties of our insulator body and therefore we do not need to antitransform to extract
the relevant information. As shown below, this will make easier the solving procedure and hence
provide a method to solve geometries of increasing complexity.

We will compare this methodology solving the heat equation in a spherical monolithic body
with a known external temperature bath, equations (3.8) and (3.9a-3.9c). Fourier transforming
the heat equation we obtain

iωρC T̃ (x, ω) = ∇ · [K∇T̂ (x, ω)] (3.20)

If we consider a single layer of a material with constant conductivity, equation (3.20) can be
recast in the form

(∇2 + q2)T̃ (x, ω) = 0 (3.21)

where the initial condition (3.9c) has been used to remove the initial value appearing as a result
of the Fourier transform of the time derivative. Equation (3.21) is of the Helmholtz kind with its
characteristic parameter q defined in terms of the properties of the material.

q2 = −iω ρC
K

(3.22)
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Now, we can write down the general solution for this equation taking into account the spher-
ical symmetry of the problem which sets the eigenfunctions to be used, i.e., the spherical Bessel
functions, jl(z) and yl(z), for the radial equation and the spherical harmonics Ylm(θ, φ) for the
angular solution —see [6], leading to

T̃ (x, ω) =
∑
lm

[Alm(ω) jl(q r) +Blm(ω)yl(q r)]Ylm(θ, φ) (3.23a)

where the radial functions are defined as

jl(z) = zl
(
−1
z

d

dz

)l sin z
z

, yl(z) = −zl
(
−1
z

d

dz

)l cos z
z

(3.23b)

The determination of the expansion coefficients is straightforward for the case being studied
since convergence of the solution at the centre of the sphere, condition (3.9a), requires Blm = 0
due to the divergence of l(z) at x = 0. The second boundary condition, equation (3.9b), fixes
the environment temperature and hence sets an expression for the Alm coefficient. Recalling the
spherical expansion of the surface temperature, equation (3.10), now in the frequency domain

T̃0(r = a, ω) =
∑
l,m

b̃lm(ω)Ylm(θ, φ) (3.24)

leads to the following simple identification valid at all orders in the spherical decomposition

Alm(ω) =
b̃lm(ω)
jl(q a)

(3.25)

If we now, as previously stated, define the transfer function as the expression relating the
temperature disturbance inside the body to the environmetal temperature fluctuations, T̃ (x, ω) =∑
lm K̃l(x, ω)̃blm(ω) we end with a concise description of the sphere’s thermal behaviour,

K̃l(r, ω) =
jl(q r)
jl(q a)

(3.26)

which expresses the information first obtained in the time domain solution in (3.14). With
this direct method however we are able to evaluate the transfer function at any point inside the
body whereas the cumbersome series we faced in the time domain could only be solved in the limit
x→ 0.

We will naturally recover equation (3.19) when evaluating the transfer functions at the centre
for the case of isotropic thermal perturbations as shown next.

Isotropic boundary conditions at the surface

The conditions simplifying the problem which help us find an analytical solution for K̃(0, ω) will
be recast here in order to prove the identity of both solutions if the same situations are considered.
Indeed, at the centre of the sphere equation (3.26) translates into
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K̃l(0, ω) =
1

jl(q a)
(3.27)

Isotropic disturbances need now to be considered. As a result of this approximation, we only
need to consider the monopole term of the series leading to

K̃0(0, ω) =
1

j0(q a)

=
q a

sin(q a)
(3.28)

if we now expand the solution taking into account the complex number nature of the parameter
q defined in equation (3.22) we finally obtain the original expression for the transfer function at
the centre of the sphere subjected to an isotropic thermal bath, equation (3.19), which we recover
here

K̃(0, ω) =
(1 + i)β

sinh(β) cos(β) + i cosh(β) sin(β)
, β ≡

∣∣∣ωτ
2

∣∣∣1/2 (3.29)

A noteworthy corollary of this method is obtained if we compare both methodologies. In
Appendix C.2 , K̃(0, ω) was derived as the limit of a Fourier series given that a closed expression
could not be easily obtained by analytically summing the expression. Once we now the solution
derived directly in the frequency domain we can recover the generic form of the sum and find a
closed solution for the sum by identifying both results, this will lead to the following solution —the
full series is treated in (C.32),

2
∞∑
n=1

(−1)n
sin(nπr/a)
nπr/a

1
1 + i ωτ

n2π2

=
j0(q r)
j0(q a)

, q =
(1 + i)

2

√
ω
ρC

K
(3.30)

This identification can be of particular interest when considering complex geometries or even
in the case when non-isotropic disturbances are taken into account.

3.2.3 Multilayer insulation

In many cases a simple geometry as the one previously studied is not of interest because it does not
reflect a real situation. In particular, following the electrical analogy to thermal problems, thermal
insulators are often designed as a RC low pass circuit. In order to stress the insulation effect,
two different bodies are used to build the insulator: a low conductivity material (R-contribution)
to isolate, and a massive body contributing to the thermal capacitance (C-contribution). Or, in
other terms, if a massive body is inserted inside a thermal low-conductivity shell, the external
heat arriving at the core will clearly imply lower temperature increases if these are described as
∆T = Q · (mC)−1, thus inversely proportional to the thermal capacitance, mC.

Two comments are in order at this point. First, both materials in the previous description
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have their own R and C contribution but their global behaviour as a unique body can be easily
understood if we neglect the resistance of the massive body and the mass of the low conductivity
material as made above. In second place, it must be also noticed that the RC model is a simplified
model to provide guide but it does not describe the filter tails, as seen in §3.2.1.

In a more practical sense, an inner massive core is even desirable for manufacturing or for
handling reasons. If we consider the insulator being constructed in this way as a thermal bench
to perform calibration and characterisation experiments we shall stress two properties of the inner
massive core that will be interesting for our purpose: 1) homogenise the temperature inside the
insulator and 2) prevent from self-heating effects which could be of relevance if the sensor used in
the test were attached to a low conductivity material.

A multilayer body can pose a difficult mathematical problem if one seeks to obtain a time
domain solution for the temperature field inside the insulator body, even of considerable difficulty
if only restricting ourselves to the isotropic solution at the centre. We will thus herein describe
which are the main advantages of the frequency approach which can make easier this task.

Let’s consider a multilayer thermal insulator; we can imagine an n-shell spherical configuration
of different materials having n−1 interfaces at the fixed radii a1, a2, . . . an−1. The general solution
is a function defined at each of the n regions

T (x, ω) =
∑
k

T (k)(x, ω)[θ(r − ak−1)− θ(r − ak)] (3.31)

with θ(x) the step function. Each T (k)(x, ω) function acquires the form of the general spherical
solution at each of these spherical shells

T̃ (k)(x, ω) =
∑
lm

[
A

(k)
lm (ω) jl(qk r) +B

(k)
lm (ω)yl(qk r)

]
Ylm(θ, φ) (3.32)

We will need to solve Fourier’s equation in each shell. This set of equations can be abbreviated
as

(
∇2 + q2

k

)
T̃ (k)(x, ω) = 0 , ak−1 ≤ r ≤ ak (3.33)

We must therefore determine the coefficients of the expansion based on the boundary coeffi-
cients which determine the problem. For the case under study both equations fixing the outer
temperature field (3.9a) and imposing convergence of the solution at the centre (3.9b) first used
in the homogeneous problem are conserved, and we will add the corresponding interface matching
conditions. Continuity of the temperature field and temperature gradient are thus imposed at each
interface k,

T̃ (k−1)(r = ak, ω) = T̃ (k)(r = ak, ω) (3.34)

Kk−1
∂T̃ (k−1)

∂r
(r = ak, ω) = Kk

∂T̃ (k)

∂r
(r = ak, ω) (3.35)
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whence a linear system of equations is defined. The number of coefficients to be determined
is 2n for each (l,m) pair, where n is the number of layers. We can thus proceed to evaluate the
2n× 2n system of equations,

M ·C = E (3.36)

where C is the vector of coefficients to be determined, C = {A(1)
lm , B

(1)
lm , . . . , A

(n)
lm , B

(n)
lm }, E

gathers the boundary condition which in our case is zero except for the last layer, where the
external temperature fluctuation is imposed E = {0, 0, . . . , B(ω)} and M is the 2n× 2n matrix



jl(q1 r) yl(q1 r) 0 0 · · · 0
K1 ∂rjl(q1 r) K1 ∂ryl(q1 r) −K2 ∂rjl(q2 r) −K2 ∂ryl(q2 r) · · · 0

0 0 jl(q2 r) yl(q2 r) · · · 0
0 0 K2 ∂rjl(q2 r) K2 ∂ryl(q2 r) · · · 0

0 0
...

...
. . . 0

0 0 0 · · · jl(qn r) yl(qn r)


(3.37)

where the first and the last equations represent conditions (3.9a) and (3.9b) referring to the
conditions imposing convergence at the center of the body and fixing the external temperature
fluctuations respectively. We have thus reduced a complicated PDE problem to the resolution
of an algebraic system of equations affordable by the standard Cramer’s rule. The solution is
described by the coefficients which can be generally written as

A
(k)
lm =

η
(k)
l

∆l
k = 1, . . . , n (3.38a)

B
(k)
lm =

ν
(k)
l

∆l
k = 1, . . . , n (3.38b)

being η
(k)
l and ν

(k)
l the characteristic determinants corresponding to each coefficient and ∆l the

determinant of the system of equations.

Although being a simple methodology, the resolution of the transfer function directly in fre-
quency domain leads to a complex analytical solution which can be hardly interpreted without
simplifications. In these conditions this method shows its great convenience if we notice that the
time domain solution will imply the Fourier antitransform of the expression just derived. Indeed,
to finally recover a time domain solution we are forced to evaluate the integral
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T (x, t) =
1

2π

∫ ∞
−∞

dω e+i ω t T̃ (x, ω)

=
∑
k

1
2π

∫ ∞
−∞

dω e+i ω t
∑
lm

η
(k)
l

∆l
jl(qk r) +

ν
(k)
l

∆l
yl(qk r) (3.39)

The residue theorem [24] is usually invoked in order to evaluate this expression. In doing so
we will find that our solution is described as a sum over the poles of the function, i.e, those ones
defined by the solutions in equation (3.38), but we are now in situation to write down this series
since we know explicitly its analytical form. The time domain solution will be thus defined as a
sum over the values fulfilling the equation ∆l = 0 which from equation (3.37) can clearly be a
difficult series from where to extract zeros in a precise manner. The frequency domain approach
is therefore an elegant way to work out this complicated problem.

3.2.4 Application to Cartesian coordinates

The method previously discussed has shown to be a useful solution and we have been able to
find an expression for the transfer function of a homogeneous sphere. Our next step will be to
consider other simple geometries which can help us to analyse simple thermal problems in terms
of its corresponding transfer functions. In particular we will centre our attention into Cartesian
coordinates to see how this solution differs from the spherical case.

Naturally, the main argument developed in § 3.2 is not changed here, the only variation we
need to introduce refers to equation (3.23a) where we chose a general solution according to the
geometry of the problem. Before that, we will briefly summarise the starting point which will be
the same regardless of the system of coordinates, we refer obviously to Fourier’s equation,

ρC ∂tT (x, t) = ∇ · [K∇T (x, t)] (3.40)

which we aim to solve considering, for the sake of simplicity, considering a cubic geometry
surrounded by an isotropic bath, expressed in the cartesian coordinate system as

Boundary conditions :T (x = 0, t) = T (x = L, t) = T0(t) (3.41a)

T (y = 0, t) = T (y = L, t) = T0(t) (3.41b)

T (z = 0, t) = T (z = L, t) = T0(t) (3.41c)

Initial conditions : T (x, t0 = 0) = 0 (3.41d)

taking advantage of the symmetry of the problem, we can split the solution in three equivalent
problems from which we will can build the final solution by virtue of the superposition principle.
Each of this will be composed by a cube with two opposite faces at temperature T0(t) and the rest
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maintained at zero.

In order to solve each of this split problems we will switch to the frequency domain to take
advantage of the algebraic simplicity gained with the Fourier transform. Assuming an homogeneous
and isotropic thermal conductivity through the medium, we can write down Fourier’s equation as

(∇2 + q2)T̃ (x, ω) = 0, q2 = −i ω ρC
K

(3.42)

this must be solved with the boundary conditions correspondent to one of the three subproblems
into which we have reduced our initial problem. For instance, we consider the cube with y and z

faces at zero and x faces at T0(t),

Boundary conditions : T̃ (x = 0, ω) = T̃ (x = L, ω) = T̃0(ω) (3.43a)

T̃ (y = 0, ω) = T̃ (y = L, ω) = 0 (3.43b)

T̃ (z = 0, ω) = T̃ (z = L, ω) = 0 (3.43c)

Initial conditions : T (x, t0 = 0) = 0 (3.43d)

Equation (3.42) with the previous conditions (3.43) has the solution (cf. § 15.11 in [24])

T̃x(x, ω) =
16T0(ω)
π2

∞∑
n=0

∞∑
m=0

sinh(l(L− x)) + sinh(lx)
sinh(lL)

sin((2m+ 1)πy/L)
(2m+ 1)

sin((2n+ 1)πz/L)
(2n+ 1)

(3.44a)

with

l2 =
(2n+ 1)2π2

L2
+

(2m+ 1)2π2

L2
+ q2 (3.44b)

If we now add the three equivalent solutions that solve the same problem for x, y and z axes
(which are easily obtained applying condition (3.43a) to the y and z axes respectively) we will end
with the full solution

T̃ (x, ω) = T̃x(x, ω) + T̃y(x, ω) + T̃z(x, ω) (3.45)

and from this the transfer function, defined as T̃ (x, ω) = H(x, ω)T̃0(x, ω), of thermal pertur-
bations inside a cubic insulator is readily obtained
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H(x, ω) =
16
π2

∞∑
n=0

∞∑
m=0

sinh(l(L− x)) + sinh(lx)
sinh(lL)

sin((2m+ 1)πy/L)
(2m+ 1)

sin((2n+ 1)πz/L)
(2n+ 1)

+
sinh(l(L− y)) + sinh(ly)

sinh(lL)
sin((2m+ 1)πz/L)

(2m+ 1)
sin((2n+ 1)πx/L)

(2n+ 1)

+
sinh(l(L− z)) + sinh(lz)

sinh(lL)
sin((2m+ 1)πy/L)

(2m+ 1)
sin((2n+ 1)πx/L)

(2n+ 1)
(3.46a)

with

l2 =
(2n+ 1)2π2

L2
+

(2m+ 1)2π2

L2
+ q2, q2 = −i ω ρC

K
(3.46b)

We have here reproduced the maximal symmetric problem, extensions to parallelepiped can be
easily obtained from the current solution.

3.3 Thermal frequency sweep

We have previously analytically derived a thermal transfer function describing the relation between
the inner temperature fluctuations with respect to the fluctuations of the external layer of an
insulator body. The problem has been solved for simple geometries where we can take advantage
of the body symmetries to solve the equations. This can be a major drawback in most real cases
if complex geometries take part in the design.

In this section we provide a more flexible analysis tool to solve geometrical complex problems.
The method is based on a numerically evaluation of the thermal response of a given body for
a fixed frequency value [69]. By repeating this procedure for successive frequencies, a complete
description of the system through the MBW is afforded.

3.3.1 Theoretical motivation

Our previous analytical study showed how a thermal insulator can be treated as thermal low-pass
filter when analysing the problem in the frequency domain. We will now be interested to switch to
time domain in order to compare to numerical simulations. However, our final purpose remains to
be the frequency domain description and thus to evaluate the transfer function. This implies that
the best suited input signal to test the system in our numerical simulations is a sinusoidal signal
at a fixed frequency ω0 because in such a case we will be exciting a unique frequency mode in the
Fourier picture.

In order to express this concept, we can generally describe a system by the relation between
the output response with respect to a given input. In the digital processing terminology we could
use the notation [78]

y[n] = h[z]x[n] (3.47)
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where x[n] and y[n] are the input and output digital values respectively and h[z] the transfer
function collecting the dynamic information of the system, the later is described as an operator
in the z variable where the convention z−1x[n] = x[n− 1] is assumed. We thus decide to test the
system with a sinusoidal input starting at some point n = 0, the input signal becomes

x[n] = Aei ω0 t n n ≥ 0 (3.48)

Systems subjected to finite duration input signals show two different behaviours: a transient
response, ytrs[n] that decays at long time scales and a steady-state signal, yss[n] that can be
understood as the input sinusoidal signal with a reduced amplitude given by the transfer function
value at the test frequency H(ω0),

y[n] = yss[n] + ytrs[n]

= H(ω0)Aei ω0 ts n + ytrs[n] (3.49)

A remarkable property of the output obtained in this operation is that the steady-state response
do not change the frequency with respect to the input applied. As an example, the first order
difference equation

y[n] = ay[n− 1] + x[n] (3.50)

shows a response of the type (§ 4.4.2 in [78])

y[n] =
A

1− a e−i ω0 ts
ei ω0 ts n︸ ︷︷ ︸

yss[n]

+ an+1y(−1)− Aan+1e−i ω0 ts(n+1)

1− a e−i ω0 ts
ei ω0 ts n︸ ︷︷ ︸

ytr[n]

(3.51)

when the input signal is as in (3.48). Here, we have split the steady and the transient response
as in equation (3.49) to show both terms contributing to the response. The transfer function can
be directly obtained from this expression as

H(ω0) =
1

1− a e−i ω0 ts
(3.52)

Now, from these results we notice that if we are interested in determining the transfer function
of this system from a thermal simulation of its response, we need to test the system with a sinusoidal
input at long time scales (long enough to overcome the transient phase). In this region t� τ , the
transfer function at the frequency of the input signal H(ω0) can be obtained as the amplitude of
the y[n] response signal multiplied by the amplitude of the input signal — see first term in (3.51).

A systematic way to deal with this problem is to fit the response to a function able to extract this
parameters from the thermal evolution obtained from the thermal simulation. The trial function
used in our case is defined as follows
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Figure 3.3: Graphical representation of the response of a first-order difference equation to a sinu-
soidal input —equation (3.51)— considering different values for the difference equation parameter.
The fit to get the steady amplitude of the response is also shown, see text for details.

y[n] = p1 + p2e
−n ts/p3 (3.53)

and in order to obtain the amplitude we need to apply it to the peak values of the response
obtained as shown in Figure 3.3. This way, the p1 parameter retrieved from the fit can be directly
associated with the transfer function since it contains the value of the amplitude at t→∞, i.e.

p1 = yss[n→∞]|max = AH(ω0) (3.54)

The interpretation of the p2 is not straightforward and will be generally related to a complicated
expression depending on the equation behind the process. Finally, the p3 can not be related
explicitly to a parameter in the analytic expression but it gives us the information of the timescale
of the process and thus can be considered and effective time constant.

3.3.2 Methodology

If we now assume the previous properties derived from the output as valid for all type of low-pass
thermal systems excited by a sinusoidal thermal signal of fixed frequency we can therefore define a
method to evaluate its transfer function from the obtained output. The methodology will be thus

i) Create a finite elements model of our system under study
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ii) Apply a sinusoidal signal of fixed frequency ω0 and amplitude T = 1 K to the selected node
J

TJ [t] = 1 · sin(ω0 t) (3.55)

iii) Fit results on different node (K) peak values

TK,max[t] = p1 + p2e
−t/p3 (3.56)

iv) Get transfer function of node K with respect temperature fluctuations at frequency ω0 at
the input node, J

GKJ(ω0) = p1 (3.57)

This method will be applied in § 4.1.2 to complement the analytical approach in the design of a
thermal insulator, and is also currently being applied to the LCA thermal model with the purpose
of obtaining thermal transfer function between different points of the model.

67



CHAPTER 3. THERMAL ANALYSIS TOOLS

68



Chapter 4
Thermal test bench design

The DDS on board the LPF mission must provide information to help understand the performance
of the LTP experiment in its scientific run case. Several diagnostics items conform the DDS but
all them share a common objective, i.e., the noise apportioning. To this end, two independent
measurements are required: First, a controlled disturbance that enhances the coupling of a given
noise source with what we will consider the main scientific data stream, interferometer phase for
instance. With a suitable data analysis, this experiment must provide a good functional dependence
of the noise source with the main scientific data.

Once this noise relation is known, the diagnostics sensors set needs to monitor the environmental
variables not only to prevent from possible non-valid data streams due to an excess of disturbances
taking place, but also to determine which is the contribution to the total noise budget coming from
different sensors.

In this chapter we will focus our attention on the monitoring phase of the procedure. The
foreseen noise related physical phenomena has been reviewed in Chapter 2, and we will herein
consider the thermal sensitivity requirement for the thermal Front-End Electronics (FEE) derived
there as the goal to be reached by the temperature subsystem, assuming that the achievement of
this condition will imply that the noise contribution due to thermal effects will be, accordingly to
the mission budget, roughly a 10% of the total noise budget.

The full FEE prototype will be put to test in a second design phase in Chapter 5. The scope
will be to demonstrate the fulfilment of the temperature requirements. However, a major problem
appears since to evaluate noise contributions arising from temperature FEE, but not related with
environmental perturbations, requires a thermal test bench able to isolate the temperature mea-
surement devices to a noise level below our measurement goal. Being below our measurement noise
level, our temperature floor noise can not be directly measured so we will need to base our design
in a strong thermal analysis of the insulator both analytically and numerically and, afterwards, in
a suitable testing of the insulator, reporting the fulfilment of the desired properties.
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4.1 Thermal test bench design

Besides noise related to temperature, random fluctuations can also enter the measurement process
due to sensors or electronics effects. The test to be performed must guarantee that any hardware
related fluctuation in the temperature read out process will be below a Power Spectral Density
(PSD) level which is the one we are interested to measure. This level has been previously defined
to be the temperature PSD of 10−4K/

√
Hz (cf. § 2.2) in the MBW and this leads consequently

to the requirement for the temperature FEE considering a prescription of an order of magnitude
reduction of the noise floor in order to be able to clearly discriminate related fluctuations. We
rewrite here the following requirement for the noise level fluctuations associated FEE,

S
1/2
T,FEE (ω) ≤ 10−5 K/

√
Hz 1 mHz ≤ ω/ 2π ≤ 30mHz (4.1)

But if the FEE is to be put to test we now face the same problem of setting an acceptance
criteria for the thermal cleanliness of the test environment. It seems logical to apply the same
solution as before and require a minimum of an order of magnitude decrease of environmental
temperature fluctuations in the test bench location. Hence, we will need a thermal insulator able
to screen temperature fluctuations to a level given by

S
1/2
T,Bench (ω) ≤ 10−6 K/

√
Hz 1 mHz ≤ ω/ 2π ≤ 30mHz (4.2)

The test must provide a sufficiently stable bench, able to prevent the temperature gauges in
the temperature subsystem from any possible environmental thermal fluctuations. Achieving this
quiet environment will be the unique manner to guarantee that the thermal sensing subsystem
is not introducing random fluctuations by its own, above the proper environmental temperature
fluctuations.

The concept idea of the insulator is displayed in figure 4.1: an interior metal core of good
thermal conductivity is surrounded by a thick layer of a poorly conductive material. The inner
block ensures thermal stability of the sensors attached to it, while the surrounding substrate
efficiently shields them from external temperature. The concept behind the design is clearly a
thermal RC low pass filter if we consider the external layer acting as the R (low conductivity)
and the inner core representing the C contribution (high density). In the following, the thermal
transfer function formalism will be applied to this specific problem.

4.1.1 Insulator transfer function

Once the problem has been posed we now proceed to the design phase, our interest will be focused
on the definition of the thermal insulator taking advantage of the formalism to arrive to a specific
solution which must guarantee (4.2). The free parameters which must therefore be fixed by the
analysis are the dimensions and the materials to be used.

Based on the methodology described in section 3.2, an analytical expression for our proposed
insulator can be fully obtained in the frequency domain. For the sake of conciseness, the compu-
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Figure 4.1: Thermal insulator design concept. Left: diagram, including sensor placement principle.
Right: cut view, with notation convention.

tation of the thermal fluctuations inside a double layer spherical body is reported in Appendix D
where the reader can find the algebraic derivation in full detail. We will stick here to the isotropic
case, hence the transfer function takes only into account the monopole contribution, l = 0 and
m = 0, which leads to equation (D.23) rewritten here

H(r, ω) =

 ξ0(ω) j0(q1r) , 0 ≤ r ≤ a1

η0(ω) j0(q2r) + ζ0(ω) y0(q2r) , a1 ≤ r ≤ a2

(4.3)

where

qj =
(
ω
ρj Cj
2Kj

)1/2
(1− i), [q] = m−1, i =

√
−1 (4.4)

This is a low-pass filter transfer function —even though the cumbersome frequency dependencies
involved in the expressions above do not make it immediately obvious. The 3 dB cut-off angular
frequency for this filter defines a time constant τ by 1/τ ≡ωcut−off , which correspondingly is a
complicated function of the insulator’s physical and geometrical properties.

In order to gain some insight into the equations, we can work out the solution at the centre of
the body. This way, we get rid off the radial dependence and obtain an expression as a function of
dimensions and materials properties, as was our first intention.

Hc(ω) =
K2 a1 a2 q1 q2

K1 sinh(q2 (a2 − a1))F1(a1) +K2 sinh(q1 a1)F2(a2)
(4.5a)

where qj has previously been defined in (4.4) and the functions F1(r) and F2(r) are given by,
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Figure 4.2: Frequency response at the centre (r= 0) of a spherical thermal insulator —as given
in equation (4.5)—, along with the frequency response of a low-pass filter of order one and same
frequency cut-off, ωcut−off = 1/τ

F1(r) = r q1 cosh(q1 r)− sinh(q1 r) (4.5b)

F2(r) = a1 q2 cosh(q2 (r − a1)) + sinh(q2 (r − a1)) (4.5c)

Despite the cumbersome aspect of expression (4.5) to describe a thermal problem, the same
equation can be found in classical thermal literature – see [24], as a mid step solution when applying
the Laplace Transform to solve thermal problems. In our case, however, equation (4.5) contains
all the relevant information and therefore the costly antitransformation is not necessary.

Figure 4.2 shows graphically the situation: the solid curve plots the square modulus of H(r =
0, ω), where the cut-off 1/τ is shown as the 3 dB abscissa. For comparison, the figure also
shows (broken curve) a low-pass filter of the first order with the same frequency cut-off, i.e.,
|H1st order(ω)|2 = (1 + ω2τ2)−1.

The high frequency roll-off of the real filter (in red) is seen to drop below the first order coun-
terpart (in blue): the latter clearly has a slow slope at high frequencies, |H1st order(ω)| ∼ (ωτ)−1,
while the former can be shown to follow a much steeper, exponential curve. Given that

j0(z) =
sin z
z

, y0(z) = −cos z
z

(4.6)

for any complex argument z, and that q has equal real and imaginary parts, according to (4.4)
it is easy to verify that, at high frequencies, H(r, ω) has exponential roll-off tails:

72



4.1. THERMAL TEST BENCH DESIGN

Density Specific heat Thermal conductivity Cut-off frequency
ρ [kg m−3] C [J kg−1 K−1] K [W m−1 K−1] ωc [Hz]

Aluminium 2700 900 250 10−3

Copper 8920 385 401 1.2×10−3

Dry Air 1.16 1012 0.02 1.6×10−4

Polyurethane 35 1000 0.04 1.1×10−5

Nylon 1500 1000 0.25 1.6×10−6

Teflon 2000 1000 0.25 1.2×10−6

Concrete 2300 837 1.8 9.2×10−6

Wood 420 2720 0.15 1.3×10−6

Glass 2800 800 0.81 3.6×10−6

Water 1000 4186 0.58 1.3×10−6

Table 4.1: Thermal properties for some common materials with its correspondent frequency as
defined in (3.15) if they were used in a 1 m radius spherical insulator. Materials are split into
conductors, insulators and common building materials for comparison.

|H(0, ω)| ∼ ωτ e−
√
ωτ when ωτ � 1 (4.7)

As already mentioned in this section, to test the temperature sensors and electronics we need
a very strong noise suppression factor in the LTP frequency band. Inspection of figure 4.2 and
equation (4.5) readily shows that high damping factors require such frequency band to lie in the
filter’s tails. The thermal insulator should therefore be designed in such a way that its time
constant are high enough compared to (2πτ)−1. The exponential roll-off in the transfer function
shown by (4.7) makes the filter actually feasible with moderate dimensions.

4.1.2 Numerical analysis

In this section we consider the application of the Thermal sweep formalism (cf. §3.3) to obtain
useful numbers for the implementation of a real insulator device which complies with the needs of
the experiment.

There are a wide range of selectable materials for our purpose, Table 4.1 shows the thermal
properties for some of them. As previously stated, the insulator requires a core which shall provide
the massive part and an outer low conductivity material to screen environmental temperature
fluctuations. The final selection: an Aluminium core surrounded by a layer of polyurethane was
made based mainly in cost and handling terms1.

Aluminium is a good heat conductor and is easy to work with in the laboratory; polyurethane

1It is worth mentioning the peculiar properties that water offers under these considerations. Provided its high
thermal capacitance, an insulator with an inner core of water would allow a low cut-off frequency and therefore, a high
suppression factor at high frequencies. Nonetheless, handling would introduce many more problems than working
with a metal and the liquid medium could induce errors and uncontrolled disturbances to the final temperature
measurement, which is the final goal.
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Figure 4.3: Map of the amplitude suppression of an external thermal fluctuation inside a double
layer spherical insulator built as an Aluminium core surrounded by a polyurethane layer. The
suppression is expressed in terms of the dimensions of both layers. Lines show steps of 10−5 in
amplitude suppression.

is a good insulator and is also convenient to handle, as it can be foamed to any desired shape from
canned liquid. Other alternatives are certainly possible, but this appears sufficiently good and we
shall therefore stick to this specific choice.

The choice of dimensions for the insulating body must of course ensure that the minimum
requirement, equation (4.2), is met. For this to be reached, a primary consideration is the size
of the ambient temperature fluctuations in the site where the experiment is made. Dedicated
measurements in our laboratory showed that [54]

S
1/2
T, room(ω) ' 10−1 K/

√
Hz , 1 mHz ≤ ω/2π ≤ 30 mHz (4.8)

We therefore need to implement a device such that |H(r < a1, ω)| ≤ 10−5 throughout the MBW.
Dimensions for both the Aluminium core and the polyurethane layer fulfilling this purpose can be
obtained by replacing the materials properties in expression (4.5).

The figure of merit is graphically expressed in Figure 4.3 as a function of both dimensions a1

and a2 at the lower end of the LTP frequency band (i.e., 1 mHz). Given the requirement (4.2) and
the environmental condition (4.8), we have labelled the region Hc(10−3 Hz) ≤ 10−5 as the allowed
region, meaning that any two points (a1,a2) of this region represents a valid solution for our scope.
Although sensors are implanted for test on the surface of the aluminium core, evaluating the
transfer function at the centre is a useful choice because temperature gradients in the Aluminium
core are highly suppressed. We can thus take Hc(ω) as good indicator of the thermal screening
at the sensors location —this will be better shown in § 4.1.4 when plotting the insulator thermal
transfer function. It is also a simplifying assumption to take the transfer function value at 1 mHz,
but it turns out that at higher frequencies the thermal damping is stronger —see Figure 4.2—
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which clearly sets Hc(1 mHz) as the limiting value for our design guideline. Figure 4.3 also shows a
remarkable property of the insulator concept. If one fixes a given polyurethane layer and increases
the inner metal core the insulation capability decreases, the maximum efficiency of the design is
found when following the maximum gradient line in Figure 4.3, thus increasing the polyurethane
while decreasing the metal core, without exceeding a given minimum, seems the optimal criterion
to reach a maximum suppression.

However, we still need to include another consideration referring possible contribution to ther-
mal noise of the wires connecting FEE with the sensors inside the Aluminium core to finally set
the insulators dimensions, this will be clarified in § 4.1.4. However, before this discussion we will
move to the comparison of the analytical results just derived to the results of thermal simulations
applying the methodology described in § 3.3, which may help not to demonstrate, which would
require experimental input, but to test our design before the implementation phase.

4.1.3 Simulation comparison

The methodology followed in this section will be that described in § 3.3 in order to sample the ther-
mal transfer function at different points in frequency domain. We will herein apply this evaluation
procedure to the insulator design just solved analytically. This cross-check will allow to confront
both methods solving an easy problem. A coincidence in the result will give us confidence about
the numerical methodology.

Geometrical design and mesh generation of the insulator has been developed using the FEM-
LAB [26] software which is based in Finite Elements Method (FEM) for the numerical resolution
and allows also for post processing after the thermal analysis is done. The resolution is performed
in a model which consists in an inner core of aluminium surrounded by an insulator material as
shown in Figure 4.4. The total amount of elements used for the simulation was 9272. Given the
low gradients which we will be applying to the problem and the easy geometric design, a higher
resolution mesh will not be necessary in our application.

The numerical approach requires to stick to a fixed dimensions choice regardless of our final
decision about the final dimensions. Here we will consider a solution which fits in the allowed
region in Figure 4.3, that is the case for

a1 = 125 mm

a2 = 300 mm (4.9)

where we are considering Aluminium and polyurethane as the components of the insulator. As
motivated in § 3.3, after the meshing process is done, a sinusoidal fluctuation is applied to external
boundary of the polyurethane. Using this fluctuation as a input for our system, we can evaluate
the transfer function by plotting how this sinusoidal behaviour is suppressed into the insulator at
different frequencies.
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Figure 4.4: Left: Geometrical design of the insulator. Right: Generated mesh.

For a given external fluctuation, the insulator will suppress that external input by a factor that
will depend on the frequency of the signal applied. Higher frequencies will be suppressed more
efficiently than lower ones producing a low-pass filter effect for thermal fluctuations. If we compute
this effect at different frequencies for a unitary input we will directly obtain the transfer function
for this system, i.e., the relation between the system’s output and the input applied.

Moreover, we can also obtain information not only from the temporal stationary zone but also
from the initial steps of our simulation, which contains the transient regime. The insulator design
studied here behaves as a low-pass filter which can be mainly characterised by the dimensions and
the thermal properties of the materials being used. By fitting the initial transient behaviour to
a typical exponential law we can obtain the system time constant. This parameter characterises
insulator in the same way that an electrical low-pass circuit is characterised by the ratio τ = RC,
where R is resistance and C capacity.

In order to determine these parameters 6 FEM models with different frequency input have been
evaluated. The data obtained for each one is fitted using a typical decay exponential law:

T (t) = A+B · e−t/C (4.10)

where T (t) is the temperature at the centre of the geometry and A,B and C the parameters to
be fitted. Given the sinusoidal behaviour of our signal, only the maximal values for each period
are fitted to the curve. With this choice, the A parameter on the fitting function acquires the
significance of temperature fluctuations suppression on the asymptotic limit and hence it can be
directly associated with the system transfer function for the input frequency applied (only when
a unitary input is applied as it is in our case). This identification has other advantages. First, it
allows us to evaluate the transfer function even though the time series obtained from the simulation
may not arrive to the stationary regime. Thus, a lot of computation effort can be saved using this
approach. And finally, by applying fit equation we can also evaluate the amplitude suppression
high frequency models where the sinusoidal will be hardly observed and the main part corresponds
to the transient behaviour.
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Figure 4.5: Complete cycle for a 1 K perturbation of applied in a frequency 10µHz. The com-
plete sequence lasts for 27 hours. Temperature range is [-1,1] in order to observe the external
perturbation full period.
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Fit constants Value Fit constants Value

MODEL f = 1µHz MODEL f = 0.4 mHz
A 0.644± 10−3 A 8.83× 10−5 ± 3× 10−7

B 0.504± 10−3 B 0.00216056± 8× 10−7

C 188220± 1 C 188529± 100

MODEL f = 10µHz MODEL f = 1 mHz
A 0.083± 4× 10−3 A 2.0520× 10−6 ± 10−10

B 0.084± 1 · 10−3 B 0.000865835± (2× 10−10)
C 186888± 5000 C 188230± 0.1

MODEL f = 0.1 mHz MODEL f = 2 mHz
A 0.00375± 10−5 A 4× 10−8 ± 10−8

B 0.00865± 3× 10−5 B 4× 10−4 ± 10−8

C 188246± 1 C 188321± 10

Table 4.2: Fit values of the thermal response for different models.

Figure 4.5 shows a sequence of a complete cycle of the external perturbation for a given fre-
quency fluctuation of 10 µHz, and a temperature variation amplitude of ∆T = 1 K. Aluminium
core fluctuations are not observed in this sequence due to the long temperature scale range used,
which in this case is 2 K, fixed by the external air shell fluctuation . However, if only the aluminium
core is plotted, one can observe its fluctuations with an amplitude given by the A parameter.

The time constant will be determined by the C fitting parameter and the B parameter its
a contribution to the initial temperature value which has no relevant information in our study.
Results for this set of models are shown in Table 4.2 from where we can extract the envisaged
parameters.

Before facing the interpretation of results, some care must be taken on the origin or parameter
errors. There are two main error sources for our set of parameters. The first one arising in the
simulation process and controlled by the convergence factor parameter of the simulation. Clearly, if
we are to claim a given amplitude suppression coefficient we need at least the equivalent simulation
precision if we do not want our results to be dominated by numerical error. Secondly, model
parameters appear after an exponential fit process and hence parameters will be assigned an error
value. The latter will be the one driving the parameter error given that we will consider that in
each simulation the convergence factor is set below the required precision compute the suppression
factor.

It appears from Table 4.2 that the C parameter converges for all the models and thus gives
us some confidence that the parameter is well determined following this approach. The statistical
mean of the different models for this parameter is

C = 188100± 800 s (4.11)
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Figure 4.6: Transfer function derived by means of thermal simulation compared with the analytical
solution. Errorbars for the former are of the size of the marker.

which gives as the typical response time of the insulator. A high value, as the one obtained,
must be expected if we take into account that the response time is directly related in a standard
low pass filter with the pole position of the transfer function. Since we are designing a filter with
high suppression factor at low frequencies, a high settling time needs also to be expected.

The parameter B can not be directly related to a physical magnitude because it is generally
related to a complicated function depending on the material and geometry under study. Contrarily,
after our analysis the A parameter seems to be well defined and, as expected, shows a low pass filter
behaviour when plotted as a function of the frequency. As a consistency check, we have plotted
in Figure 4.6 the comparison of the filter derived from the thermal simulations with the analytical
solution for an Aluminium-polyurethane two layer sphere, equation (4.5), with dimension given by
(4.9).

The matching between both filters derived in analytical and numerical form reassures us about
both methodologies applied on the thermal design. It lacks however an experimental verification
which finally probes in first place the approach followed until this point for the thermal design and
which will also serve as a verification test for the temperature diagnostic subsystem.

Before considering the experimental setup we need to include a possible source of tempera-
ture noise in our test bench, i.e., thermal leakage reaching the temperature sensors through the
connecting wires. We come to this point next.
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Figure 4.7: Wires thermal noise contribution scheme

4.1.4 Thermal leakage

A point to take into account in the design of a suitable test bench for thermal diagnostics is
not only to assure a good enough thermal isolation at the MBW but also to prevent the design
from thermal leaks. Based on the thermal insulator design previous discussed, the main path
of temperature fluctuations from the environment to reach the inner part of the insulator are
through the electric wires connecting the temperature sensors. Given its high conductivity, special
care must be addressed to these wires which may degrade the high stability conditions which the
insulator is designed to reach.

We can however find an upper value for the thermal contribution of sensors’ wires deriving a
transfer function which translates external temperature fluctuations to temperature fluctuations
of the inner block [72]. The simple model herein described is based on the assumption that all the
heat flux generated by the temperature difference at both edges of the wire is effectively used to
increase the inner mass temperature, i.e., no lateral flux losses are considered. The high insulation
material surrounding the inner core, where the wires will be nested, reinforces that this condition
may be accomplished. Moreover, in the derivation we will suppress any spatial derivative in the
temperature equations, the approximation will consequently lead to a lumped capacitance method
like description, implying a linear filter (cf. § 3.1.1). As we know from the analytical solution for
the insulator, this is not the case for thermal real problems and the approximation is only valid
if a low thermal gradient is assumed. A more detailed model will require a full resolution of the
thermal equations subjected to the wire geometry.

To derive this simplified model, let’s consider a mass ρV of the insulator being continuously
heated by a wire of length L and section A, as the one shown in Figure 4.7. The mass will therefore
increase its temperature following the law

q = ρC V
dT

dt
(4.12)

where C stands for the specific heat of the body being heated and V refers to its volume.
Since we are interested to characterise the insulator in the frequency domain, we will rewrite this
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Figure 4.8: Wires temperature noise contribution Bode diagram per unit of wire’s length and
number of wires used.

expression as

S1/2
q = ρC V S

1/2
T ω (4.13)

On the other hand, this heat flux is related to the difference of temperatures at both ends of
the wire by Fourier’s law,

q = K
A

L
(T2 − T1) (4.14)

where K is the conductivity of the material composing the wires. Following the same scheme
as before, this expression becomes

S1/2
q = K

A

L

√
ST2 + ST1 (4.15)

We can now rearrange both equations, equations (4.13) and (4.15), to obtain an expression
relating temperature fluctuations in the mass provoked by temperature fluctuations arising at the
external end of the wire. Assuming that the temperature fluctuations at the external end of the
wire are much greater than fluctuations at the inner end, S1/2

T2
� S

1/2
T1

, this relation reads

S
1/2
Tin

=
π

ω

r2
wKw

Lw (ρC CC VC)
S

1/2
Tout

(4.16)

where rω is the radius of the wire. In equation (4.16) subindex C refers to properties of the body
and subindex w refers to properties of the wire. As clearly seen from this expression, temperature
noise contribution from wiring can be avoided increasing the inner body mass or, alternatively, by
lengthening the wires if the mass of the inner body is fixed.

Another factor rescaling the transfer function appears when more than one wire is considered.
In this case, we will consider all noisy contributions from N different cables totally correlated. If
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equation (4.16) is expressed as S1/2
Tin

= Hw(f)S1/2
Tout

, we end with

Hw(f) =
N

2 i f
r2
wKw

Lw (ρC CC VC)
(4.17)

Although this might not be the case for all situations, the hypothesis must be considered a
worst case description since temperature contributions are, under this assumption, linearly added.

Application to the insulator case

Equation (4.17) is plotted as a Bode diagram in Figure 4.8, where the f−1 slope is clearly seen and
the phase plot shows a constant −π/2 delay through all the band. We can thus proceed with this
analytical solution in the same way that lead us in § 4.1.2 to the definition of suitable dimensions
for the insulator. Analogously to the definition of suitable dimensions for the insulator we can
reproduce a two dimensional map of fluctuations amplitude suppression in terms of the wires’
length and inner core volume. If we recover the external temperature condition, equation (4.2)
and the environmental condition (4.8), we will clearly require again the suppression level given by
|H(a1, ω)| ≤ 10−5 and thus define the allowed region for a given wires’ length once we have fixed
the inner core volume

L
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Figure 4.9: Map of the amplitude suppression for a given external thermal fluctuation inside a
Aluminium volume due to temperature fluctuations heating the volume through 40 thin Copper
wires. Map suppression is given in terms of wires’ length and volume of the Aluminium body.
Lines show steps of 10−5 in amplitude suppression.

Typical parameters are used for the numerical evaluation. We have considered the case of
an Aluminium core linked to the external perturbation by means of a Copper wire. Materials
properties for both can be found in Table 4.1. With this prescription the only parameters needed
to evaluate expression (4.17) are the radius of the wire, taken to be rw = 0.1 mm, and the number
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of wires arriving in the inner core which is N = 40, taking in care our particular setup, described
in § 5.5.

Figure 4.3 shows this fluctuations amplitude suppression map when sampling the dimensions
parameter space. As expected, increasing the wires’ length or the inner core volume in our design
implies a suppression of temperature fluctuations inside the Aluminium core. With all these
elements at hand we can now define our thermal test bench.

4.2 Thermal bench description

The step towards the final test requires now to specify suitable dimensions for the bench. These
must be extracted from analytical expressions once provided a requirement to be reached. This
information must be therefore implemented carefully because of the stringent requirement needed
to correctly test the temperature subsystem. This section is devoted to both design and imple-
mentation phase, leaving the results analysis for the next section.

4.2.1 Design

With the previous design conditions at hand a conservative choice was taken. To ensure a sufficient
thermal suppression inside the volume an overdimensioned insulator was chosen. Also, due to
manufacturing reasons, the spherical shape was replaced by the more common cubic geometry.
This fact shall not change our design baseline since the main properties and screen capability of
the insulator is set by its mass rather than by geometric properties. We thus will work with the
spherical description previously derived using as dimension parameters the equivalent radius that
a sphere will need to have in order to occupy the same volume as the cubic solution used.

The solution adopted was finally an inner core composed of three Aluminium slabs (260mm×
260mm×80mm each) surrounded with polyurethane layer of 330 mm width —details can be found
in § 4.2.2. The equivalent spherical shape will be formed with two layer with its respective radius
given by

a1 = 15.7 cm a2 = 57 cm (4.18)

Figure 4.10 shows different insulators configurations in what respects thermal disturbance sup-
pression. The thermal insulation achieved by the polyurethane is clearly seen as a decreasing
line in the loglog diagram extending all through the outer polyurethane region. The inner core is
distinguished by a plateau of nearly constant amplitude suppression driven by the high thermal
conductivity of the Aluminium which tends to homogenise all this region to a fixed HAl(ω) value.
An outstanding detail appearing in the profile is the sharp decay at the interface Aluminium-
polyurethane. The reason of this behaviour may be found in the thermal gradients that are
established between both materials if the perturbation reaching this interface has power enough
to raise a gradient between both. Since both upper panels in Figure 4.10 are evaluated for an
external perturbation at 1 mHz, the cause of the sharp cut at the interface between both materials
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Figure 4.10: Thermal insulator transfer function profiles a) Fixing the outer polyurethane layer to
20 cm, the inner core is expanded in 5 cm steps. The profile of temperature suppression is shown at
f = 1 mHz b) Fixing the inner Aluminium core to 15 cm the outer layer is expanded in 5 cm steps,
also at 1 mHz. In both panels a) and b), the blue line represents the solution for an homogeneous,
i.e. one layer, insulator. c) Setting the dimensions to (15 cm, 20 cm), the thermal bench suppression
temperature profile is evaluated for different environmental temperature frequencies.

is better understood considering Figure 4.10 c), where the transfer function is evaluated for fixed
dimension values at different frequencies.

As previously seen in Figure 4.3, the final level of suppression can both be achieved by means of
enlarging either the inner or the outer component. Both panels 4.10 a) and 4.10 b) seems to show
a similar scaling of H(ω) in the plateau reached at the inner Aluminium when either increasing
the inner core dimension or the outer layer.

Finally, we must take into account the wires’ contribution to build the final insulator thermal
transfer function. To minimise this contribution, it was decided to lengthen the path from the
external face to the final connection with the sensors attached to the Aluminium core. Setting a
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Figure 4.11: Insulator thermal transfer function. The required suppression factor in the MBW
appears in red.

wires length lw ' 50 cm should place our design, following Figure 4.3, in a situation able to reach
the required level of temperature fluctuations in the inner Aluminium core. This is shown in Figure
4.11 where the final predicted thermal transfer function for this design is shown. The comparison
with the required suppression factor leads us to conclude the viability of the selected design.

4.2.2 Implementation

The design process led to a definition of the insulator to be used. The next step was to implement
the design in a thermal test bench including the temperature sensors to be put to test. The
manufacturing of the thermal test bench was performed in NTE2 premises during July 2004. To
ensure the achievement of the insulation goal, a monolithic design was followed, i.e., the insulator
could not be opened after being built. Thus, the set of sensors introduced in it could not be
replaced, the bench is designed hence as a destructive test. A second non-destructive design is now
being used to test the Flight Model sensors [85].

The inner body of the insulator and the one providing the main mass is composed by three
stacked Aluminium slabs (260mm× 260mm× 80mm each) as the ones shown in figure 4.12. Eight
holes were drilled on the middle slab: 7 holes of 3.5 mm and 8 mm depth and an eighth of 9 mm and
8 mm depth, the latter to be used for the reference resistor. Thermal grease (Dow Corning 340)
was used to ensure good thermal contact between the sensors and the Aluminium body. Also to
prevent from stresses that could take out place the sensors, its wires were fixed with glue (Araldit)

2http://www.nte.es
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a) b)

c) d)

Figure 4.12: a) Two of the three Aluminium slabs used to compose the inner mass of the insulator.
b) Distribution of temperature sensors on a side slab. NTC sensors occupy odd-numbered holes
whereas Platinum sensors were inserted in even-numbered holes. Position #1 is left for the reference
sensor. c) The inner Aluminium core inside the mould. d) The final insulator covered with plastic
film.

to the Aluminium.
An Aluminium L-shaped cover glued to the Aluminium block protected the wiring and sensors

from possible damages during the polyurethane grow up. All three blocks were stacked intro-
ducing thermal grease between them to facilitate thermal conduction. A Copper tape bracing
the Aluminium core provide grounding to the lateral blocks. Finally, slings were used to avoid
displacements of the blocks during the polyurethane grow up.

The polyurethane shell covering the Aluminium block was implemented as a first 330 mm layer
where the metallic core was accommodated. Polyurethane was grown in a wood box acting as
a mould. After this first layer, the metallic core was placed in the middle to be finally covered
with polyurethane filling the mould. Figure 4.12 shows a mid step and the final appearance of the
thermal bench when the wood box is removed and the outer surface is protected with plastic.
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Chapter 5
Experimental qualification test

The present Chapter is devoted to the description of the qualification test of the temperature FEE
once all the suitable thermal analysis tools have been developed and applied to the definition of test
bench that ensures, at least from an analytical point of view, the achievement of the requirements.

Our first step goes through the design of an accurate electronics, able to theoretically reach
the level of sensitivity taking into account not only the low level of temperature disturbances that
needs to be monitored in flight but also that the mission MBW sets a technological challenge which
requires testing electronics down to very low frequency band, where 1/f noise usually dominates
the instrumental behaviour. At the same time, the selection of suitable sensors requires a trade-off
between sensitivity and stability to reach the required instrumental noise level during long time
periods.

First, a brief description of the thermal FEE will be given in order to stress some of the
design clues on which it is based. We will then directly pass to the implementation of the test.
Once the insulator has been fully described in Chapter 4 we will just need to describe the final
implementation to then proceed with the results and corresponding data analysis.

5.1 Temperature subsystem description

The temperature subsystem on board the LTP plays a central role in what respects the demon-
stration of the drag-free technology, especially if we take into account the low frequency regime
where the experiment is designed to work. Temperature disturbances can exert forces on the test
mass, or in other temperature sensitive positions, with relaxation times long enough to enter in
the MBW. On the other hand, thermal forces affecting the test mass will be surface forces whereas
any magnetic or charged related disturbance applied on the test mass will affect the whole body.
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5.2 Requirements

The temperature requirement budget is set by the LTP goal noise budget [100], rewritten here

S
1/2
∆a,LTP (ω) ≤ 3× 10−14

[
1 +

(
ω/ 2π
3 mHz

)2
]
ms−2/

√
Hz (5.1)

in the frequency range 1 mHz ≤ ω/ 2π ≤ 30mHz. This expression gives the global noise
budget from which an apportioning has distributed its affordable contributions to different LTP
subsystems [99]. This is translated into a temperature noise level delimited by

S
1/2
T,LTP (ω) ≤ 10−4 K/

√
Hz 1 mHz ≤ ω/ 2π ≤ 30mHz (5.2)

Although this requirement is partly design-given, the thermal contributions of different effects
to the total noise budget can be outlined on the basis of the expected effects affecting the metrology
measurement. We refer the reader to Chapter 2 for a description of such effects and their implication
in the temperature stability requirement onboard the LTP.

We now pose the question: which is the level of noise we can accept in the temperature measure-
ment system —which includes sensors, wires and electronics— if we are to diagnose temperature
variations below the level (5.2)? Clearly, the answer to that question depends on how accurately
those fluctuations are to be measured. The stability requirement equation (5.2) is already rather
demanding of itself, so we do not expect thermal fluctuations to be much smaller. With this in
mind, to request the measuring system to be about one order of magnitude less noisy than the
maximum noise level to measure seems a sensible option:

S
1/2
T,FEE (ω) ≤ 10−5 K/

√
Hz 1 mHz ≤ ω/ 2π ≤ 30mHz (5.3)

This has in fact become a mission top level requirement —see [100], section 6.2. There are two
groups of reasons which support it:

• Equation (5.2) defines the maximum acceptable level of temperature noise in the LTP. If this
is satisfied, which of course must, then actual fluctuations will be less than that. Require-
ment (5.3) then sets a 10 % discrimination capability for the measuring device, a standard
approach which is certainly compatible with better performance.

• LISA is more demanding than LPF as regards thermal stability. Actually, LISA requires an
order of magnitude less temperature fluctuation noise than LTP [99]. If we require (5.3) for
LTP then we are in a position where analysis of thermal sources of noise of relevance for
LISA can be identified and tagged for improvement, at least in the overlapping frequency
band of both missions. This prospect is in line with the very concept of LPF as a precursor
mission.
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Absolute versus differential temperature measurements in flight

The above arguments, and specially the first, can perhaps be criticised in terms of: why not perform
differential measurements? This might relax the very demanding requirement in equation (5.3), in
the sense that it would only apply to differential rather than absolute temperature measurements
in flight.

While it is true that certain thermal disturbances depend on temperature gradients across the
test masses —like the radiometer effect and radiation pressure gradients— there are others which
do not —mostly those related to the optics. One could accordingly split up the temperature gauges
into two classes, but this does not seem a particularly sensible choice, since the best device would
obviously be the one to use in all cases, anyway.

A space mission like LPF does not allow to fix hardware design inefficiencies once it has been
launched. The choice of making applicable the requirement stated in equation (5.3) to all tem-
perature measurements, whether differential or absolute, seems thus not advisable to relax: some
margin is necessary to cope with unforeseen sources of error.

5.3 Sensors

In this section the available thermal devices identified as previously interesting candidates for the
LTP diagnostic temperature subsystem are briefly described. A wide variety of technologies is
available as temperature sensors, however the selection performed in [82] took into account which
among those solutions are suitable for our application.

A major difficulty to choose a particular technological solution is to assure that a space-qualified
analog device is manufactured, this restriction is considered for any component being integrated on
the spacecraft but is particularly restrictive for temperature sensors since these devices are usually
used as diagnostics but not at the precision level required for this application. The space-qualified
list of products sets a first important sieve that will be complemented by stability and precision
reasoning, leading to a final solution reached after experimental testing.

The temperature sensors herein described are Resistance Temperature Detector (RTD) and
Negative Temperature Coefficient (NTC) sensors.

5.3.1 Resistance Temperature Detectors

Temperature variations can be detected using materials which change their resistivity when sub-
jected to temperature variations. This are called RTD but since the most common material used
for this application is Platinum, they are also usually know as Platinium Resistance Thermometer
(PRT). The variation on the electrical resistance of the conductor is not related to an increase of
the number of electrons available for conduction but based on the vibrations of the atoms around
their lattice equilibrium positions. A temperature raise in these bodies translates into an increase
of the random thermal vibrations of the atoms around its equilibrium positions, reducing the mean
free path of the electrons and consequently increasing its electrical resistance.
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Platinum Copper Nickel Molybdenum

α [K−1] 3.85× 10−3 4.3× 10−3 6.81× 10−3 3.79× 10−3

Range [oC] [-200,850] [-200,260] [-80,320] [-200,200]

Table 5.1: Characteristics of RTD sensors for different constitutive materials.

The following phenomenological description is usually adopted

R(T ) = R0(1 + α1 T + α2 T
2 + · · ·+ αn T

n) (5.4)

where R0 is the resistance at the reference temperature and T is the variation with respect
this reference value. Typical values for this coefficients [74] are α1 ≈ 3.9 × 10−3 K−1 and α2 ≈
−5.8 × 10−7K−1 from where the standard relation α1/α2 ≈ 103 can be deduced. Indeed, RTD
sensors are generally treated as linear thence using only the first two terms in (5.4).

There are different materials used as RTD such as Platinum, Copper, Nickel and Molybdenum.
Among these the most sensitive are the Nickel sensors but their working range is shorter than
the rest. The ones showing better performance are the Platinum sensors, among which the 100 Ω
sensor (Pt100) is one of the most commonly used. In these sensors tolerance in the nominal value
of the resistance is of the order 0.1% to 1%.

5.3.2 Thermistor

Thermistors is the abbreviation for ”thermally sensitive resistor“. As the RTD, thermistors are
resistive materials with a dependence of their resistive value with temperature, however this depen-
dence is of a different nature as the one arising in the RTD since thermistors are not conductors
but semiconductors. The temperature dependence appears here due to the dependence on the
number of electrical carriers with the temperature. When temperature increases there are more
carriers available and therefore the resistivity decreases, yielding a negative temperature coefficient
of the sensor. This property can be tuned by means of doping techniques, highly doped materi-
als can acquire metallic properties with a positive temperature coefficient (Positive Temperature
Coefficient (PTC)) in a limited temperature range.

Thermistors are manufactured mixing and synthesising oxides doped with metals, the most
commonly used are Manganese, Nickel, Cobalt, Iron and Copper. The resistive element is inserted,
after the synthesis, into an epoxy or glass shell.

This device exhibits an exponential dependence of its resistance with temperature, the most
commonly used law expressing this dependence is the Steinhart-Hart equation [74]

1
T

= A + B ln(R) + C (ln(R))3 (5.5)

where R is the resistance value of the thermistor at a temperature T ; the parameters A,B and
C are constants coefficients characterising the thermistor. An approximate error around 0.01 ℃ in
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a 100 ℃ range can be achieved using equation (5.5).

Their high sensitivity makes thermistors a good option but the main disadvantage that these
devices suppose is their repeatability. Given that the semiconductors are subjected to artificial
ageing process to increase their stability, they can show an important dispersion when using differ-
ent NTC to sense a same value. It will not be a major drawback for our application if the sensor
is not accurate in the determination of the nominal temperature value since the hard requirement
of the LTP thermal diagnostics fall on the fluctuating behaviour of the sensor and electronics at
low frequencies. However, if the sensor shows dispersion in the spectral domain we will need to
ensure that the sensitivity plus the dispersion region falls below the requirement, equation (5.3).

5.4 Temperature Front End Electronics

The stringent requirements assumed for the LTP thermal diagnostics set an important challenge
for the design of the FEE. Not only the acquisition by means of suitable electronics circuitry needs
to be designed and tested accordingly but any device used in the design has to be qualified for space
use. Moreover, power and mass are always crucial parameters in space applications, susceptible to
be reduced. Hence the design must be optimal in these parameters.

Temperature sensors will be distributed through the LCA as previously described in section
2.3. The criterion to distribute the thermal items is, in general, to locate them in thermal sensitive
locations which can introduce noisy measurements via thermal effects. Therefore the inclusion of
the sensors must be carefully addressed. A requirement is set for this reason to the power dissipated
by the sensors [51]

P ≤ 10µW (5.6a)

A collaboration UPC-IEEC has been working in the design of a FEE able to fulfil the noise
temperature requirements level with the limiting conditions previously sketched. The final de-
scription of the system can be found in [79, 86]. We will in the following briefly describe the main
characteristics of the chosen solution.

The signal conditioning circuit is divided in three main blocks: the bridge circuit, the Multiplexer
(MUX) and Instrumental Amplifier (IA), and the Programmable Gain Amplifier (PGA) and low
pass filter, Figure 5.1.

A Wheatstone bridge is used as the signal conditioning circuit. For each sensor, four different
resistors form the bridge, one branch defined by Rref and Rref,i, and the second branch conformed
by Rref and Rsens,n(T ), being the later the sensing element. The resultant output voltage is

v0(T ) = Vbridge

(
Rref,i

Rref,i +Rref
− Rsens,n(T )

Rsens,n(T) + Rref

)
, i = 1, . . . 6 n = 1, . . . 4 (5.7)

As an interesting feature of the Wheatstone bridge, it allows centring the zero output for
different temperature scale configurations. This is the so called deflection method [74] which leads
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Figure 5.1: Block diagram of the signal conditioning circuit. Two multiplexers select the two
branches of the Wheatstone bridge: MUX-A chooses a given sensor and MUX-B fixes one of the
possible references that defines the temperature scale. The design also allows to measure differential
temperatures between two sensors replacing the reference resistance by a second temperature
sensor.

in our application to six scales centred at: 12, 15, 20, 22.5, 25 and 27.5 oC. The adoption of these
scales is directly related to the high sensitivity and resolution needed, and to maintain the output
of the bridge as close to zero as possible to minimise the effect of gain errors along the measurement
chain. Each scale is related to a Rref value which is selected by one MUX.

As previously stated, the bridge is powered with an AC square signal. The bridge with the
sensor to measure is selected with two multiplexers (MUX-A and MUX-B) connected to the IA
inputs. The signal is amplified with a constant gain by the IA and an additional programmable
amplifier allows selecting two different gains. After amplifying, the signal is low-pass filtered to
reduce the noise bandwidth below to a half of the Analog-to-Digital Converter (A/D) sampling
frequency.

The bridge is continuously powered to prevent from variable errors in the self heating term, the
selected feeding signal is an AC square bridge, the reason being that 1) the AC signal reduces the
offset voltages at the bridge output and 2) the square shape implies a constant power applied to
the sensor which reduces the second harmonic signal in the output spectrum due to self-heating.

The monitoring of the temperature environment on board the LTP, and specifically in those
places where high temperature couplings are expected, requires a total amount of 24 sensing devices
distributed through the LCA [51]. A dedicated FEE for each sensor is an unreliable solution due to
mass and power limitations hence a solution of a FEE for four sensors was established introducing
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Component Model

Reference resistance Vishay
Multiplexer DG408 1:8

IA AD624

Table 5.2: Components used in the FEE design

the second MUX switching between four different sensors, RTS(T ).

Each branch of the Wheatstone bridge is connected to a input of the IA, therefore we get an
amplification of the bridge output by a constant factor, fixed at 200.

After the amplification, a low-pass filtering is implemented in the sampling procedure to prevent
from aliasing effects. There exists however a constraint on the cut-off frequency of the filter because
of the settling time it imposes on the sampling process. Each time the polarity of the bridge
is changed or another channel is selected the filter has to settle to a new value. The shorter
the bandwidth we are considering, the longer the settling time will be. Thus, it is necessary to
introduce a delay after a change in the input to acquire the signal sampled by the A/D. After
the sampling, the output signal will be integrated to reduce the noise. A trade-off between a
shorter bandwidth and more samples acquired in the A/D yields to a cut-off frequency of 500 Hz
and a 10 ms of settling time. It can be shown [79] that with the referred setting time the error is
minimised to the pK range.

The signal digital processing enters once the A/D samples the signal. The sampling frequency
is 38.4 kHz. Each sample at the end of the chain consists of M = 3456 samples of which only
N = 3072 are averaged and translated into A/D counts.

These parameters yield to an integrating time of 80 ms with zeros at each 12.5 Hz (the 50 Hz
interference and its harmonics are zeroed) and an equivalent resolution of 27.5 bits (16 log2 N).

After the integration the signal is downsampled a factor M changing the polarity of the bridge
circuit every M inputs. The final signal is obtained averaging the difference between two con-
secutive samples. This operation is represented by a transfer function that suppresses the noise
contribution at DC, which is the frequency domain expression of the frequency transposition by
the bridge’s square modulation.

5.4.1 Noise analysis

Temperature fluctuations can enter in the data acquisition chain in many steps of the process.
We will herein summarise the expected dependencies of the FEE blocks just described. The
temperature coupling of each device is one of the most important coefficients to take into account
in the design. It is here generally termed as Temperature Coefficient (TC) and labelled with the
symbol α ([α] = K−1 ). Hence αX is the coupling factor of the given device X to temperature.
This convention is also applied to temperature sensors, defining what its sensitivity or TC as
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Block Noise Dependence TC limiting value [K−1] Solution Used [K−1]

S
1/2
T,b (T, ω)

S1/2
vo

(T,ω)
R2

R2+RT S(T ) αT S(T )[PT SRT S(T )]1/2
αR ≤ 2× 10−6 αR = 0.6× 10−6

S
1/2
T,IA(T, ω) αIA S

1/2
vo (T, ω) αGIA

≤ 3.5× 10−6 αGIA
= 3.5× 10−6

S
1/2
T,MUX Nc – Nc = 4

S
1/2
T,A/D(T, ω) ∆

216 FS
1√
fs/2

1
GIA sb(T ) αGA/D

≤ 35× 10−6 αGA/D
= 7× 10−6

Table 5.3: Temperature FEE noise contributions

α =
1

RTS(T )
dRTS(T )

dT
(5.8)

Table 5.3 gathers the expressions for the FEE noise contributions [86]. A common rule can be
used applying this expressions to define upper values for the TC of each of those devices conforming
the FEE: it must be always satisfied that

αX(T )
sb(T )

S
1/2
T,FEE ≤ S

1/2
T,system (5.9)

Considering S1/2
T,FEE ≤ 10−5 K/

√
Hz yields to the limiting parameters appearing in Table 5.3

which were driving factors for the design and component selection. From these, some interesting
conclusions can be extracted from the bridge noise contribution S

1/2
T,b (T, ω):

• the greater the dissipated power in the sensor the lower the temperature spectral noise density.

• the greater the relative sensor sensitivity the lower the temperature spectral noise density.

• changing the nominal value of the sensor does not reduce or increase the temperature spectral
noise density.

These rules, among other considerations, has been considered in the designing process of the
Thermal FEE.

5.5 Experiment setup

In this section we describe the details of the experimental setup used to test the LTP temperature
FEE. In the previous chapter we showed how the internal core was drilled to allocate a total amount
of 16 sensors. Figure 5.2 shows which is the distribution of the sensors inside the Aluminium core.
Since the test bench was built as a destructive probe, both kind of sensors, RTD and NTC, were
decided to be included in the same bench. Both types were distributed homogeneously through the
holes to prevent from differences in the measurements that could be assigned to their position more
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Figure 5.2: Distribution of sensors inside the insulator. Two different possibilities are shown
labelled in black and grey wires depending if the sensors being tested are RTD or NTC sensors
respectively.

than differences in the sensors themselves. Besides the sensors put to test inside the Aluminium,
two reference probe were introduced in the Aluminium core. The role of these resistances, which
are not temperature dependent, is to monitor fluctuations that are induced by the temperature
FEE itself, setting the noise floor level. Because temperature fluctuations can not affect them,
with these sensors inside the aluminium we are able to disentangle temperature related noise with
any other sources arising at some point of the measurement chain. Furthermore, there are two
more reference sensors, one of each type, sensing external environmental perturbations that will
help understand the screening power of the insulator.

Two possible setup configurations share the same thermal test bench. We will refer to Config-
uration 1 when measuring with the NTC and Configuration 2 the one using the RTD sensors. If
we thus summarise all the temperature items conforming the test, we end with:

• CONFIGURATION 1

– 7 NTC sensors (YSI44006)

– 1 Reference sensor (Vishay S102J 10 kΩ)

– 1 Environmental sensor (Betatherm 10K3A5421)

• CONFIGURATION 2
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Figure 5.3: Setup for the performance test experiment.

– 7 RTD sensors (4 LabFacility DM507 and 3 IST P1K0.520.7W.B.010 )

– 1 Reference sensor (Vishay S102J 1 kΩ)

– 1 Environmental sensor

The procedure to perform the temperature test needs to be split in two different runs due to
the setup design just described above [54]. In the first run, Test 1, 4 NTC-type sensors1 were
measured in addition to the 10 kΩ reference sensor also placed in the Aluminium block. The
environmental sensor was a NTC-type sensor measured by an Agilent multimeter. The diagram
for this experiment is shown in Figure 5.3

In the second run, Configuration 2, 4 RTD-type sensors were measured in addition to the 1 kΩ
reference resistor. Data from the environmental sensors were acquired by the Agilent multime-
ter. RTD-type sensors were measured using 3 wires, except for the outside one where a 4-wires
connection was used.

1The reason to use only four channels of the FEE must be found in the final FEE design. Although the prototype
allows to multiplex a total amount of 8 channels, the final design sets a maximum of four channels. See for instance
[79]
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5.6 Results

The experiment was expected to provide two different outputs. First, to ensure that the thermal
insulator was correctly described by the analytical transfer function previously derived – see § 4.1.4.
Once the required thermal stability was ensured inside the insulator, the performance of the FEE
could be tested and the fitness of NTC or RTD sensors for our final purpose could be experimentally
discussed.

Both experiments required opposite environmental conditions and therefore they were under-
took in very different conditions. The thermal insulator characterisation requires a strongly per-
turbed environment in order to be able to clearly bring out the transfer function provoked by the
insulator whereas the performance test demands a quiet and stable environment. Data used for the
first test was acquired in the NTE clean room and the later was instead tested at the Universitat
Politècnica de Catalunya (UPC) Faraday chamber.

5.6.1 Insulator test

A low frequency thermally perturbed environment is hardly found in other situation than leaving
the test bench subjected to daily and human related perturbations, i.e. placing the test bench in
an office with direct solar light contact. However, contrary to what was expected it turned out
that NTE clean room had even more disturbance power in the MBW than if it had been exposed
to daily trends, the reason was the active temperature control that ensured the room thermal
stability. In order to establish the temperature to a given value, the activation cycle driving this
control produced a strong ripple of about 1 ℃ in 45min scale time, thus generating important
disturbances in the low frequency band. Initial performance test campaigns at this location ended
with non-compliant temperature noise level in the MBW [56].

An example of the data acquired in the clean room appear in Figure 5.4, in this case a five days
time series starting with an abrupt temperature step followed by the active temperature control
ripple is shown. The high suppression inside the insulator is also clearly seen. If this data set is
analysed in the Fourier domain, the dynamics of this temperature fluctuations can be extracted in
a more suitable framework and therefore its physical cause can be better understood. Figure 5.4
compares the analytical prediction of equation (4.5) with two experimental runs: the black curve
corresponds precisely to a five days time series showed previously and the grey curve represents a
data stream a month long with largely varying thermal conditions outside the insulator [55]. These
curves are relatively clean below 10−4 Hz but they tend to approach unity at higher frequencies,
which is an indication that electronics noise is dominant in that band: indeed, system readouts
inside and outside the insulator tend to equal each other (transfer function nearing unity) while
real temperature fluctuations obviously do not.

Thicker lines are fits to the data in the lower frequency band, the solid is the exact prediction
of the model, while the dotted is a first order filter fit, and the dashed one is a second order filter
fit. The last two are provided as examples that the data can also be adjusted by simpler models
in restricted data regions yet indicating that the actual behaviour of the insulator follows a trend
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Figure 5.4: Results for the insulator test. Details can be found in the text.

with steeper negative slope towards higher frequencies.

Because the scope of these test runs was precisely to evaluate the response of the insulator
against a strong perturbative background, the LTP MBW, being above 10−3, is not covered by
these data. However the fact that the models predictions are followed quite well at low frequencies
is reassuring, in that we can expect filter suppression factors of 106 and more in the MBW. This is
simply because we do not expect the transfer function to bounce back up again at high frequencies.

With this results we are thus quite confident about our test bench design, the next step is
to place the insulator in a quite and stable environment which will give us some insight about
temperature fluctuations in the MBW.

5.6.2 Front End Electronics performance test

A suitable environment to test the FEE performance was found in the Faraday chamber, located
in a underground at UPC premises. No active temperature control was considered in this test in
order to achieve the required temperature stability.

Temperature was measured in two different and sequential runs. Configuration 1 and Con-
figuration 2 previously described were used to undertake the experiment and thus to compare
both technologic available solutions for the FEE temperature sensors. The detailed data analysis
treatment of the performance test can be found in [87].

Configuration 1 results are shown in Figure 5.5. The black line corresponds to the PSD of the
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Figure 5.5: Configuration 1 performance test results

sensor measuring environmental temperature fluctuations. From this noise level we can consider
the Faraday chamber as a good enough thermal environment for the performance test purpose
since the temperature fluctuations noise level is of S1/2

T ' 0.1 K/
√

Hz at 1 mHz and decreasing at
higher frequencies. The blue curve corresponds to electronics noise since it is obtained as the PSD
of the data stream acquired from the reference sensor inside the insulator.

Finally, the rest of curves trace the sensors measurements inside the Aluminium block. A first
remarkable property is a considerable variance between different NTC sensors. The reason of this
uncertainty must be found in the manufacturing processes – see 5.3.2, in particular the ageing
processes to which the semiconductors are subjected. However, the main problem that this data
set seems to pose refers to the low frequency behaviour of the sensors. As clearly seen in Figure
5.5, despite the variance of the thermistors, the noise level at the low end of the MBW can be set
into the interval S1/2

T = [1.2, 4.1] × 10−5 K/
√

Hz. Measurements are therefore slightly above the
FEE temperature requirement

A systematic spurious contribution adding noise to the readout in the MBW was identified
being the 16-bit A/D the origin of the problem, in particular due to quantification errors induced
mainly by the Integrated NonLinearity (INL) problems of the A/D — see [79], section 2.2.1.2. This
error source is directly related to the numerical value of the data being acquired, in our particular
case the noisy term decreases for decreasing values of the temperature slope and thus, in the worst
case, can be prevented setting a acceptable maximum slope as a requirement. However, this is not
considered a baseline approach and technologic solutions exists for this problem, for instance: a
Sigma-Delta A/D (these devices do not show INL problems) or including a dithering voltage at
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Figure 5.6: Configuration 2 performance test results

the A/D input.
Configuration 2 results are shown in Figure 5.6. The black line corresponds to the PSD of the

sensor measuring environmental temperature fluctuations. The floor noise clearly gets worse using
this data set: S1/2

T ' 7×10−5 K/
√

Hz, the reason being the linear dependence of Platinum sensors
to temperature changes compared to the more drastic exponential of the NTC’s. On the other
hand, RTD sensors show a flat spectrum all along the MBW proving a high long term stability,
even at the milihertz scale and even more important, the repeatability of the measurement is
highly increased with this sensors. Contrary to the first set of measurements performed with the
Configuration 1 setup, RTD sensors put to test show a minimum variance in its noise levels, as
shown in Figure 5.6.

Although sharing the same electronic measurement chain, the INL problems related to the A/D
do not appear in Figure 5.6. Indeed, when measuring temperature fluctuations at the required
sensitivity of tens of microkelvin, the Johnson noise appears as the dominant contribution. Con-
sequently, those effects present in the case of the NTC’s can not be appreciated since we are now
at higher noise levels, as clearly seen when comparing Figure 5.5 and Figure 5.6 floor noise levels.
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Chapter 6
Thermal diagnostics experiments

description

An experimental approach is clearly needed for the diagnostics purposes. In Chapter 5 the thermal
Front End Electronics was experimentally tested focusing on the evaluation on the sensitivity
performance of the device. In that case, we were not facing a diagnostic experiment, the final
scope was rather to probe the thermal sensitivity goal, ST = 10−5 K/

√
Hz in the MBW. Thus, it

must rather be considered an instrumentation qualification, as we named then, than a diagnostic
experiment.

On the contrary, we will in this Chapter address the problem of thermal diagnostics and its
experimental realisation. Unfortunately, the description will not be comprehensive since we could
only thermally characterise the Optical Metrology Subsystem, and therefore we will stick to this
subsystem. The experiments consist in the simultaneous measurement of both phase and tempera-
ture with the aim of reproducing the mission conditions in the most trustworthy way possible. This
includes, for instance, attaching methods of thermal items to its locations or the use of different
acquisition systems in parallel.

In Chapter 2 we reviewed some of the identified thermal effects expected to induce thermal noise
in various locations of the LTP. There are three relevant parts affecting the Optical Metrology
Subsystem with respect to its coupling to thermal disturbances: the Optical Bench, the LCA
Struts and the Optical Window. The first could be directly studied by means of the Optical Bench
Engineering Model. Although the Engineering Model has not any strut which allows to study
effects of a heat shock applied on it, the heat loads were applied to the Optical Bench flanges, i.e
the mechanical part linking the Zerodur of the Optical Bench to the Struts — see below for more
details. This way, some of the effects taking place in the interferometer phase due to thermal leaks
from the outer environment could be reproduced and enhanced with the heaters.

Finally, three Optical Window prototypes were also subjected to thermal pulses. The signif-
icance of this part of the LTP design together with the relative ignorance of the effects that a
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glass clamped into Aluminium braces could induce in the measurement led to a more systematic
and deep study of this part during the campaign. The representative amount of data obtained
with these experiments allowed a careful data analysis process yielding a system identification
methodology that will be described in Chapter 8.

The aim of this Chapter will be to provide the experimental details as well as a phenomenological
description of the results obtained. The processing of these results, either to extract information
regarding the heater sizing and characterisation or related with data analysis and noise model
determination will be left for Chapter 7 and Chapter 8 respectively.

6.1 Setup description

A crucial element for the characterisation was the conditioning of the interferometric signal. The
heterodyne signal was produced in an optical bench, as described in § 1.2.2 [37, 38]. The optical
fibers collecting the light of the two outputs were directed to a vacuum tank flange, whence directly
connected to the Engineering Model fiber injectors.

The vacuum tank had a cylindrical shape with an approximate volume of 950 l. The vacuum
system lied in two independent vacuum pumps and a sensor, the models used for the experiment
were:

• Scroll Pump Franklin Electric Mod.1301007453. Power: 3/4 hp

• Turbo Pump Pfeiffer Typ. TPH170. Volume flow rate: 170 l/s

• Vacuum Sensor Leybold Vakuum GmbH Typ. ITR90, Nr.12094.

both vacuum pumps acting on the tank were connected in series. On the bottom plate there
were two fiber-optical feedthroughs and about 100 electrical feedthroughs.

Light arriving at the photodiodes on the Engineering Model optical bench was acquired via a
phasemeter fulfilling the sampling properties to be accomplished by the final flight model [38]. The
second acquisition subsystem, the one in charge of the temperature sensors, was the temperature
FEE described in Chapter 4. This way, we are not only reproducing the experiment in the best
way we can but we are also obtaining the data as much in the same format as possible and thus we
will need to face some data conditioning problems, e.g. resampling, that will necessarily appear in
the final experiment.

In what respects the thermal diagnostics items used for the test were, equally as for the above
test equipment, those models resembling the ones to be used in-flight. After the experiments
reported in Chapter 5, the baseline sensor selection has been the NTC sensors. Among the different
models, a glass encapsulated model has been chosen for its enhanced stability. Moreover, the
selected sensor has a surface probe shape which facilitates the attaching process, guaranteeing
better temperature monitoring.

In the heaters side, the best choice found in the market for an application as the one required for
our purpose, which require low power but a certain flexibility to be attached to different surfaces
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Figure 6.1: Left: 5.3 Ω MINCO heaters. Right: Glass encapsulated Betatherm sensor

with different shapes, was the Kapton (or polyamide like) heaters. Different sizes, implying different
resistances, were used in the experiments depending on the allocation

Heaters’ experiments stood out two setup problems: first, the thermal radiation of the heater
was, in our first experiments, clearly visible through the sensors located at different points. This
raised up the need of a screening of these effects in order to clearly calibrate the heat effect on
the interferometer due to thermal conduction. A radiation screening layer was achieved using
Aluminium foil tape around the heater. In second place, the attaching method of the heater
needed to be also carefully examined since it had to fulfil both thermal and vacuum requirements.
The solution was found in the Pressure Sensitive Adhesive (PSA) film, which entered into the list
of materials space qualified with a low outgassing rate1.

Next list summarises the main items used for the tests:

• Heaters:MINCO HK5565R5.3L12AU (5.3 Ω ), MINCO HK5303R70.2L12A (70.2 Ω )

• Sensor: BetaTherm G10K4D853 Glass Encapsulated NTC Thermistor (10 kΩ nominal re-
sistance)

• PSA film: 3M Adhesive Transfer Tape

• Aluminium tape: 3M Aluminium Foil tape

Figure 6.1 shows some of the items used for the thermal test performed on the Engineering
Model and the Optical Window prototype.

6.2 The Optical Bench Engineering Model

The Optical Bench holds the interferometer layout on board the LTP, it is built based on the silicate
bonding technique [31] which allows the construction of a monolithic interferometer. The main

1http://outgassing.nasa.gov
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Figure 6.2: Left: Outside view of the vacuum tank with the optical test bench inside. Right: EM
inside the vacuum tank on the bottom part below the optical test bench.

characteristic of this bench were already discussed in § 1.2.2 and references therein. We will in the
following do not enter in more technical detail about the operation of the interferometer and try to
describe the setup upon which the experiments were performed. A final point to stress is that the
Engineering Model had successfully passed, before the thermal campaign, a performance test [39]
and therefore must be considered a reliable model. This ensures that thermal data obtained on
it are representative of the final experiment, if not in environmental conditions, at least in the
structural ones.

6.2.1 Optical Bench heating

A set of four heaters are envisaged to be attached to the Optical Bench as a part of the thermal
diagnostic subsystem. Although they were initially planned to be attached on the four corners,
the current baseline is to attach them to the lateral sides to prevent from possible interactions of
the sensors with the laser beam or any of the elements of the interferometric setup.

Contrary to the rest of locations, Optical Bench sensors do not have nearly heaters to enhance
the thermal signal in that location. The extremely stable properties of the Zerodur seem to
point out that thermal disturbances will hardly introduce noise effects in the phasemeter readout.
However, the lack of heat input in these locations will make more difficult their related data
analysis, the reason being that without a clear heat input we do not have a direct way to establish
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Figure 6.3: Scheme of diagnostics items distribution in the Optical Bench test configuration. Red
squares mark heater position and blue dots sensor position.

a relationship between the temperature at a given point and the interferometric behaviour, i.e. a
transfer function. Even if the related thermal effects are easy to understand since they are basically
related to the coefficient of thermal expansion of the Zerodur, the complex geometry traced by
the laser beams makes it difficult to understand the whole effect. The results reported here must
be therefore considered a qualitative description of the effects that could take place in the Optical
Bench due to thermal stresses.

A global scheme of the Optical Bench with the laser beam layout is shown in Figure 6.3, in
the same picture the sensors and the heaters, in blue and red respectively, used in the experiment
are schematically distributed through the Engineering Model as they were in the experiment. The
heaters used for this test were the 5.3 Ω heaters, which are shown in Figure 6.1, left panel. In
Figure 6.4 a detail of the configuration is shown. The NTC appears on top of the Bench, each
one near a photodiode. Heaters attached to the lateral side can not directly seen because of the
Aluminium tape covering them.

Test results

There a two kind of results that can be derived from the described setup. In first place, the
measured data allow us to thermally characterise the Optical Bench by simply comparing the
input power with the temperature increase achieved, regardless of the interferometric output. In
second place, we can consider the interferometric output in order to try to determine any correlation
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Figure 6.4: Detail of the Optical Bench test setup. Left: Two electrode and heater couple are
shown attached to both corners of the Optical Bench. Right: A heater and sensor couple in one
corner. The former is covered by Aluminium tape. The sensor is attached between a beamsplitter
and one of the photodiodes.

between temperature and phase increase.

By applying heat pulses and measuring temperature increments on the closest sensor to the
heater one can obtain a thermal response characterisation for the OB. Given the low conductivity
of the OB plate, these values can only be used to estimate temperature increase for local heat
impact.

Table 6.1 reports on typical values obtained from the experiment. As shown there, we can
extract a thermal resistance, Rth, factor relating heat input with the obtained temperature increase.
This should be defined as

∆T = Rth P (6.1)

However, as was shown in § 3.1, the thermal resistance defined in this way can only be applied
in the steady state and it can be used, under this condition, to characterise the thermal behaviour
of the system. In our case, equilibrium is not reached so the ratio between power and temperature
increase does not achieve a constant value. Instead, the constant parameter characterising the
system should be defined in this case as the thermal response per unit time,

∆T = Qth P ∆t (6.2)

where we have labelled this parameter as Qth. If values on Table 6.1 are substituted in the
equation and the statistical mean is computed, the result obtained is

Qth = (3± 1)× 10−3 K W−1s−1 (6.3)

This parameter thus describes the temperature rise in a temperature sensor on the Optical
Bench provided the duration of the pulse and the power applied in the closest heater.
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Figure 6.5: Optical Bench interferometric response to a 1 W heat pulses during 50 s applied on
KS1 location —see Figure 6.3. The x1 and x12 interferometers are labeled and the rest of curves
correspond to sensors on the Optical Bench. The red curve is the sensor closest to the heater
source.

As previously stated, a second class of conclusions can be obtained with our experimental
results if now the interferometric readout is taken into account. Figure 6.5 and 6.6 show the phase
evolution for the same heat shock on three different locations, corresponding to KS1, KS2 and
KS4 heaters on Figure 6.3, on all cases a 50 s pulse of 1 W was applied. The first evident result
that we obtain by inspection of Figures 6.5 and 6.6 is that the interferometer responds differently
depending on the heat application point. When heating the Bench, the complex geometry drawn
by the laser beam shows up in different responses of the laser readout depending on the heat
location point. Moreover, it is difficult to disentangle the thermal contribution from the phase
response since the four interferometers conforming the Optical Bench can be affected by the thermal
shock. As an example, Figures 6.5 and 6.6 show the evolution of the interferometer measuring the
distance between the Optical Bench and the test mass 1 (interferometer x1) and the interferometer
measuring the difference between both test masses (interferometer x12), the latter being linearly
dependent on the former.

As clearly seen in these panels, the phases of both interferometers can appear completely
correlated as in Figure 6.5, which probably means that the interferometer being affected is x1 and
this dependence is being transmitted to the x12 interferometers. But they can also show different
behaviours which may be difficult to correlate one with the other, as in Figure 6.6.

Also, a relevant property to be considered for data analysis purposes is the long time scale
responses shown by the Optical Bench system. A marked decorrelation in time is clearly observed
between the phase response and the temperature sensor located closest to the heat source — see
for instance the 500 s peak delay between purple and black curve in Figure 6.6 (top).
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Figure 6.6: Optical Bench interferometric response to a 1 W heat pulses applied during 50 s on KS2
(top) and KS4 (bottom) case —see Figure 6.3. Responses of both interferometers x1 and x12 are
labelled, the rest of curves correspond to temperature sensors distributed as in Figure 6.3. Only
the sensor closest to the heater being activated (purple and blue line respectively) shows a clear
response to the heat pulse, the rest of sensors show the usual linear trend.
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Heater Power [W] Heating time [s] Phase maximum [mrad] ∆T Peak delay [s]

0.5 50 0.24 0.048 248.49
1 50 0.30 0.092 208.12

KS1 2 50 3.03 0.176 275.04
0.5 100 1.38 0.088 243.97
0.5 200 2.31 0.167 166.36

0.5 50 1.31 0.040 257.16
1 50 1.47 0.083 255.68

KS2 2 50 3.23 0.159 256.64
0.5 100 1.44 0.079 223.75
0.5 200 2.00 0.152 145.53

0.5 50 4.23 0.045 283.73
1 50 11.25 0.094 283.8

KS4 2 50 20.31 0.180 281.42
0.5 100 9.80 0.089 247.92
0.5 200 17.40 0.168 173.36

Table 6.1: Optical Bench phase and interferometric response

The observed behaviour endorses the conclusion that the heat shock is affecting the Optical
Bench in a different region from the one being monitored by the sensor and thus, if the interactions
is to be modeled, long timescale correlations between the temperature and the laser beam through
the Zerodur must be considered.

The correct characterisation of the OB interferometer output in terms of temperatures gradients
generated along the bench requires a detailed data modelling able to extract the physical relevant
parameters from the data delivered by the experiment. Some methodologies for this purpose will
be treated in Chapter 8.

A first order of magnitude estimation of the impact on the interferometric output can only
be derived by a peak comparison of both temperature and phase evolution, taking into account
the temperature of the sensor closest to the heater being used. Table 6.1 gathers these values
for different heating profiles. A time delay between phase and temperature peak is also added
to emphasise the fact that both peak values are decorrelated and thus the rad/K factor obtained
by means of the ratio between both parameters can not be directly associated with a physical
mechanism but must be considered, we recall, a first estimate of the thermal sensitivity of the
Bench.

From the previous table a different thermal sensitivity can be observed at different locations
on the OB, when applying heat pulses the temperature peaks remain on the same range for each
heater but the phase response shows significant variations. Differences between each location are
stressed when comparing the statistical mean of the data in Table 6.1. The heater located in the
diagonally opposite corner with respect the fiber injectors — KS4 in the notation displayed in
Figure 6.3, shows an enhanced influence on the interferometer. These differences are summarised
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Heater Coupling factor [mrad/K] Thermal response [K/W s]

KS1 10± 6 1.7± 0.2
KS2 20± 7 1.6± 0.5
KS4 100± 10 1.8± 0.7

Table 6.2: Optical Bench thermal coupling factors.

in Table 6.2.
The different coupling coefficient must not be related to differences in temperature increase as

registered by the sensors since, as seen in Table 6.1, sensors in different locations on the Bench
response equally to a heat pulse of identical characteristics. The cause of the discrepancies must
be rather found in the particular geometry conformed by the optical elements distributed through
the Bench. If, for instance, thermal dilatation is considered to be the only effect responsible of
the behaviour observed, a unique parameter would be driving the effect, this should be the CTE
(α ' 0.1 ·10−6 K−1 for the Zerodur) and thus values in Table 6.2 would mean that we are observing
the same effect taking place at different distances with respect the temperature sensor registering
the temperature evolution. In order to translate this interaction via the Zerodur’s CTE to a
coupling factor we can rearrange the equation of thermal dilatation in the following manner,

∆L
∆T

=
(

2π
1064× 10−7cm

)
α · L = 0.006

[
L

1 cm

]
mrad/K (6.4)

In this order of magnitude estimation, Table 6.2 could be understood as the effect of thermal
dilatation at different lengths. However, our assumption has been to consider that the effect is
uniquely determined by the thermal dilatation of the bench between two fixed points. It might
also be the case that the effect is the sum of different dilatation effects between various points or
even that other effects than the thermal dilatation applies. For these reasons, our estimation in
equation (6.4) must be considered merely a rule of thumb description of the effect.

Another point that shall be stressed from the current available results is that only the closest
sensor to the heater is able to sense the heat shock. This evidence, that is basically showing the low
thermal conductivity of the Zerodur, implies that temperature sensors on the Bench will hardly
map the temperature around its location. This is not case, for instance, for the Electrode Housing
sensors which rapidly sense temperature disturbance at other points of the housing given the high
conductivity of the structure. Figure 6.5 and 6.6 show this property plotting all the sensors used
in the setup, the initial value of each curve is subtracted from all points to get a common origin.

Finally, a few words can be added about a small effect detected during the experiments. As
shown in Figure 6.7, the phase shows a fast bounce at the beginning of the heating sequence.
This is not related to a temperature effect as sensed by the temperature sensors since the closest
sensor to the heater does not show a similar behaviour, it is just starting to feel the effect of the
heat shock when the phase appears to bounce up and down. However, this small effect is directly
proportional in time to the pulse heat applied —Figure 6.7, see zoomed plot. This dependence
seems to point out a possible relation with thermal radiation
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Figure 6.7: Optical Bench interferometric response to heat pulses. Top: Phase response. Bottom:
Temperature as measured by the closest sensor to the location where heat is applied.

Even though the heaters were covered to prevent these effects, the Aluminium tape used must
be only considered a first protective layer since this will also radiate once it is heated. The main
problem raised by the thermal radiation is to find which optical element, responsible for the phase
bouncing mechanism, is being heated. In our setup, the most probable candidate seems to be the
mirror acting as dummy test mass in the Engineering Model. This is directly facing the heaters
since the latter are attached to the Optical Bench lateral side. An order of magnitude estimation
of the temperature gradient required for this effect to be undertook on the mirror could help us
to discern the reliability of this effect to explain the phase bouncing. Substituting approximate
values of the mirror on the Engineering Model (α ' 5× 10−6 K−1, L ' 2 cm for the mirror width
) and the phase shift observed in Figure 6.7 (∆φ ' 0.7 mrad) in the thermal dilatation equation
we can find

∆T =
1064 nm

2π
∆φ
α · L

' 1.2 mK (6.5)

The required thermal gradient is thus attainable based on the heat power applied ∼ 1 W and
the considerably short distance between heater and mirror, of a few centimetres. Without probing
our hypothesis, the result in equation 6.5 gives us some confidence on thermal radiation as an
explanation of the observed bouncing effect.

We can not go further from the estimation in what respects the thermal radiation hypothesis
for the phase effect of Figure 6.7. The confirmation would be good news for the LTP because it
will directly rule out this noise source for the experiment since, in the final experiment, the role
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Figure 6.8: Flange test configuration. Red squares mark heater position and blue dots sensor
position

played by the dummy mirror is carried out by the test mass inside the vacuum enclosure.

It could be argued that radiation coming from heaters attached to the Optical Bench will not
be a problem because these heaters are not part of the final design, as explained before. However,
this same effect is also present in experiments carried out at the Optical Bench flange, near the
struts location where a set of heaters will be located. Even though experiments in the Bench may
not be relevant for the mission, it can give some pieces of information to analyse experiments in
other locations which will be part of the LTP diagnostic operations as is the case of the Optical
Bench flange, discussed next.

6.2.2 Flange heating

The Optical Bench Engineering Model allowed various configurations of heaters and sensors dis-
tributed through it. We took advantage of this possibility to explore the effect of an induced
thermal disturbance applied in the flange of the Optical Bench. These parts, four in total, will be
the only conductive path thermally linking the LTP experiment with the thermal shield surround-
ing the LTP Core Assembly and, by extension, to the outer environment.

During the mission flight, the connection between the thermal shield enclosing the LCA and the
flanges of the Optical Bench is done by means of the so called struts. These are CFRP cylinders
subjecting the experiment to the inner walls of the thermal shield. In the current baseline there
are eight of these subjections, although in the previous structural design six of these were planned
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Figure 6.9: Left: Heaters attached to upper part on flange. Right: Heaters attached to upper part
on flange (with red wires) covered with aluminium tape and sensor on the lower part of flange
(black wires).

in order to generate an isostatic subjection. However, in the current design, it seems preferable
a harder subjection system than an isostatic one though the later may introduce some undesired
structural stresses.

The diagnostics subsystem provides six sensors and six heaters, according to the initial baseline.
The principle of actuation being the same as the rest of locations where heaters are foreseen to be
attached, i.e. to estimate a transfer function due to thermal effects by applying high Signal-to-Noise
Ratio thermal pulses and also to monitor the thermal environment during science mode, when no
controlled disturbance is applied and the instrument is working in the most stable environment
that the spacecraft can provide.

As stated at the beginning of the section, the Optical Bench Engineering Model offered a unique
opportunity to study possible effects of a thermal disturbance in the flange. It must be noticed,
however, that the results obtained in this manner can not be directly translated to the LTP because
of the fact that the heaters in the LTP will be located on the struts, not in the flange. The approach
must be thus to use the Engineering Model to describe the phase response to a given heat pulse.
The translation of the heat power applied on the flange to the equivalent heat power to be applied
on the struts is a problem delimited within the framework of the LCA thermal model, described
in Chapter 7.

A detail of the setup used during the experiment is shown in Figure 6.9. Kapton heaters
were used in this location in the same way as in the Optical Bench setup, described in the last
section. The only difference is that heaters used in the new experiment will be of greater resistance
(70.2 Ω), thus allowing the application of a greater power. To reduce possible thermal radiation
effects, heaters were covered with Aluminium tape as shown in Figure 6.9, right panel. Temperature
sensors were attached to the lower part of the flange.

Temperatures were monitored using the LTP temperature Front-End Electronics described in
section § 5.4. Sensors chosen were surface type NTC, both heaters and sensors were fixed by means
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of PSA film. All measurements were performed at P ' 10−3 mbar vacuum level.

Test results

As before, results can be split into temperature and phase responses to heat pulses. The former
does not add any information different than the one that could be obtained with the thermal
model. Table 6.3 gathers some of the values obtained during the experiments. In order to compute
the temperature peak time (∆t), the initial time t = 0 is considered to be at the start of the heat
pulse.

Power [W] Heating time [s] Temperature peak time [s] ∆T [K]

1 50 565 0.12
1 100 582 0.24
2 100 571 0.32
2 200 634 0.62
2 500 832 1.49

Table 6.3: Thermal values obtained applying heat pulses to the flange.

In this case, the fact that the flange is a metallic piece turns into a faster response than when
dealing with the Optical Bench, as seen in Figure 6.10. The steady state is not reach due to the
short duration of the pulses but we can define the same parameter as in the Optical Bench case,
equation (6.2), collecting the information in Table 6.3, which leads to

Qeq = (1.9± 0.4)× 10−3 K W−1 s−1 (6.6)

From this number, a first conclusion can be stated. If compared with the same value charac-
terising the Optical Bench, equation (6.3), it shows a very similar result with the one obtained in
(6.6). Since both values refers to very different systems in what respects their thermal behaviour
the similitude of both parameters needs to be associated with the setup conditions: whereas the
sensors in the Optical Bench plate is near the heat application point — Figure 6.4, the flange setup
experiment sensors were located in the lower flange part and the heaters in the upper part which
turned out into a bad characterisation, even the high thermal conductivity of the itanium flange.

Table 6.3 summarises some results of different runs related to the thermal response of the
Engineering Model flange when heat pulses were applied, to a better characterisation of the thermal
response the maximum temperature increase time is also given. Here, we can not proceed in the
same way as in the Optical Bench experiment. As seen in Figure 6.8, the setup provides us with
only a temperature sensor in one flange, therefore we will take this characterisation as a pattern
and we will assume that it is valid for the rest flanges.
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Figure 6.10: Top: Temperature increase in flanges when applying heat loads. Bottom: Phase
response when heating in the four Engineering Model Flanges.
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Heater Power [W] Heating time [s] Phase maximum [mrad]

1 50 -3
1 100 -12

KS5 1 200 -11
2 100 -11
2 200 -27
2 500 -57

2 100 59
KB4 2 200 100

2 500 114

1 50 25
1 100 44
1 250 98

KB5 1 500 136
2 100 58
2 500 171

KB3 2 100 7

Table 6.4: Optical Bench phase and interferometric response.

The results of the phase response under the same experiments can be included in the similar
reasoning considered in the last section but with some changes. For instance, a difference in the
phase response is also observed depending on the heat source location, as when dealing with heat
pulses on the Optical Bench. This suggests that we could identify the same physical process in
both situations, i.e. if we were considering that the location-dependent responses in the Bench are
due to the complex laser beam path, we could also consider this effect to happen in the current
discussion. However, this can not be proved from our data and may be difficult to argue since
temperature sensors distributed on the Bench do not sense the heat pulse.

Another piece of evidence of the underlying physics appears when comparing the features of
the phase response for both cases: the Optical Bench and the flange. Whereas the former showed
a small sharp fast response during the heat pulse and a smoothed delayed second response —see
Figure 6.5 and 6.6, in the second case the response is a faster and sharper one but the main
difference is that the phase is highly sensitive to the thermal shock. That is, for instance, the case
in Figure 6.10 where heat pulses of 2 W are seen to induce a ∼ 60 mrad response. In the Optical
Bench a ∼ 10 mrad was hardly achieved with a heat pulse of the same duration and power applied.
This fact seems to rule out the possibility of explaining the effects of the phase response in both
the Optical Bench and flanges under a unique physical mechanism.

In the same line of reasoning, if we first detected a small bounce during the heater activation
time in the Optical Bench case, we observe now that the measured response of the laser happens
exactly during this activations time. To stress the effect, in Figure 6.11 the phase increase is shown
with the temperature increase and the heat applied in the strut, the correlation between the phase
and the heat pulse is clearly displayed. In fact, phase appears to be correlated with the heat pulse
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Figure 6.11: Interferometric response to heat pulses applied on KB3 location —see Figure 6.8.
Top: Interferometer output at different powers. Bottom: Temperature increase as measured by
the sensor in the Flange. Heat input is also displayed as coloured steps.

more than with the temperature response.
This high sensitivity response of the flanges to thermal shocks can be appreciated in Table 6.5.

It must be taken into account that, from the previous discussion on the Qth parameter the rad/K
factor might be corrected because of the underestimation of the temperature increase. A correction
factor of ∼ 20 (cf. § 7.3) should be applied if we consider results in the LCA thermal model. This
factor smooths the problem but, on the basis of current data, struts still remain to be a possible
source of thermal induced noise.

Heater Coupling factor [mrad/K]

KS5 −30± 10
KB4 110± 50
KB5 180± 60
KB3 21

Table 6.5: Flange coupling factor.

6.3 The Optical Window

The current baseline of LISA Pathfinder and LISA includes vacuum tanks containing the test
masses which act as end mirrors for the interferometer. Presence of such tanks, or vacuum enclo-
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Figure 6.12: Schematic of the interferometric measurement concept.

sures (VE), force the inclusion of a transmissive element interfacing between the interior of the VE
and the optical bench outside. This optical element is the Optical Window.

In the experiment two different prototype OWs were tested. Both were manufactured following
the same baseline as the one to be applied in the final LTP flight model. The main element of
the window is a very low thermal expansion coefficient glass, chosen in order to minimise thermal
related losses and fluctuations. The glass used is the OHARA S-PHM52 and is clamped between
two titanium rings, fastened by means of titanium bolts. Two Helicoflex sealings prevent gas
leakage in space conditions.

The OW is expected to induce thermal related noise in the Metrology subsystem. In order
to quantify its contribution to the total noise budget a set of thermal diagnostics items were
attached to the Optical Window prototypes. They are shown in Figure 6.13, left panel: two Kapton
heaters attached to the titanium flange lateral surface, and four glass encapsulated thermistors
attached in pairs to the titanium flange and on the athermal glass surface, for precision temperature
measurements. These diagnostics items were all glued to their attachment points with Pressure
Sensitive Adhesive (PSA) tape, of similar characteristics to the one to be used in flight. The
temperature sensors on the glass will actually not fly with the LTP. They will however provide
relevant information to implement real mission data analysis procedures and methods, for which
only the titanium temperature data will be available.

During the experiment, the window was leaning vertically on a PVC two-rail structure —see
Figure 6.13, right panel—, which impeded any high conductivity thermal contact with the rest of
the hardware. Although not directly affecting the thermo-optical interaction studied here, the OW
will be part of the VE in the real LTP, thus a higher thermal conductance is to be expected, and
therefore a faster suppression of thermal gradients is foreseen during mission operations.
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Figure 6.13: The OW (left), with the plane-parallel plate inside the titanium flange, heaters on the
lateral surface of the latter (pale brown foils) and two pairs of NTC temperature sensors (black
beads with wires). On the right, mounting of the OW on rails for measurements. Note heaters are
covered with aluminium foils: this is to prevent undesired heating of other components by heaters’
emission of thermal radiation.

The complete set-up (i.e., the glass plus its mounting structure and the just mentioned di-
agnostics items) was inserted as a transmissive element in a dedicated optical bench, as seen in
Figure 6.12. The heaters were covered with aluminium foil to reduce thermal radiation effects
(Figure 6.13, right). For the same reason, the window was introduced in a copper box leaving
only a narrow opening for the laser beam to go through. As seen in the schematic of Figure 6.12,
the beam traverses the OW only once. This will not be the case in the real LTP, where the laser
will go twice through each window, instead, but the one passage configuration used here simplifies
the OW thermal characterisation without information losses. All the experiments were performed
under low pressure conditions at a P ' 10−3 Pa vacuum level.

The Optical Window was subject to various heat pulses comprising a wide range of duration
length and powers in order to calibrate the required power for the thermal test to be performed in-
flight. The data here reported gather 25 experiment runs on two different prototypes, applying heat
pulses from 100 mW to 2 W ranging from 10 s to 100 s of application time. All experiments were
performed at room temperature, which falls within the expected range of working temperatures
of the LTP experiment during operations, required to be between 10 oC and 30 oC. Figure 6.14
shows a typical response data plot, with indication of the temperature sensor readings and the
interferometrically registered phase shifts corresponding to a specific heat signal input —see the
figure caption for the details.

Two different data acquisition systems were used in the experiment: the interferometric data
were acquired via the LTP phasemeter prototype [38], whereas the thermal diagnostics data were
acquired using the LTP FEE prototype [56, 79]. Both acquisition systems had previously success-
fully passed tests of compliance with mission noise budgets.
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Figure 6.14: Phase (black curve) and various temperature sensors’ responses (coloured curves) to a
2 Watt heat pulse applied during 100 seconds. Legend indications correspond to the thermometers
shown in Figure 6.13.

Test results

Plot in Figure 6.14 shows a typical response of the interferometer when a heat pulse is applied to
the Optical Window. The setup allows the characterisation of the window using data from four
different temperature sensors. This time, all of them show the imprint of the heat shock.

Contrary to some effects we have found in other locations, the response here observed clearly
relates to the temperature as registered in the sensors distributed through the window and among
the different sensors, specifically to the one close to the heater being switched on. Naturally, this
should be our first guess if we restrict our criterion to the correlation of peak values of the phase
with the peak values registered by the temperature sensors.

Following the same scheme applied in the rest of heaters locations, we provide in Table 6.6
a sample of the results obtained during the experiments. The degree of freedom that our setup
allowed to change was to heat the Optical Window from either of the two heaters attached at the
laterals sides of the window or to switch both at a time. Results are then split in this way. As
expected, both unilateral heating show a similar response and the one using both heaters roughly
showed a doubled response with respect the first case.

Both parameters describing the thermal response —we have previously defined it as Qth— and
the coupling between temperature and the phase — the rad/K factor— can be computed here as
well. Table 6.7 gathers the statistical mean of the collected values.

In what respects the thermal response, the one obtained from the Optical Window is approx-
imately one order of magnitude greater than the obtained in other locations, reflecting the fast
response and the good thermal link between the heater and the sensor on the titanium ring. This
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Heater Power Heating Phase ∆TTi

[W] time [s] maximum [rad] [K]

2 10 -0.007 0.218
2 50 -0.033 1.074

H.left 2 100 -0.064 2.090
1 10 -0.004 0.110
1 50 -0.018 0.539
1 100 -0.034 1.045

2 10 -0.007 0.218
2 50 -0.035 1.070

H.right 2 100 -0.066 2.090
1 10 -0.005 0.114
1 50 -0.019 0.553
1 100 -0.035 1.074

1+1 10 -0.008 0.156
1+1 50 -0.036 0.730
1+1 100 -0.067 1.450

H.left+H.right 0.1+0.1 1000 -0.016 0.584
0.5+0.5 10 -0.005 0.066
0.5+0.5 50 -0.018 0.325
0.5+0.5 100 -0.034 0.655

0.05+0.05 1000 -0.015 0.696

Table 6.6: Thermal and optical response for different heating pulses on the Optical Window.

value, though a good setup characterisation, can hardly be extrapolated to the final flight exper-
iment. As described in the last section, the Optical Window prototypes were standing on top of
two PVC rails and therefore thermal conductivity links of the Optical Window to the environment
were highly suppressed. The opposite situation will indeed happen onboard the satellite. Being the
Optical Window a part of the vacuum enclosure, it will be clamped to the titanium components
and thus any thermal gradient will be rapidly propagated and therefore suppressed.

Regarding the rad/K coupling factor, the thermal load applied on the Window is likely to
produce two kind of pathlength variations: those induced by purely thermal effects and those
related to stress effects. Among the first ones, we will need to consider, for instance, the change
of the refraction index with temperature and the pathlength increase due to the glass thermal
expansion. On the stress side, forces acting on the glass are able to induce pathlength variations
due to various effects which are hard to model and even more difficult to understand since they
will always appear disguised by thermal effects. The only parameter provided by the manufacturer
quantifying the interaction between stress and pathlength interaction is the photoelastic coefficient
β. However, it must be noticed that β does not describe the change in the refraction index due
to stress, dn/dσ, but the appearance of birefringence due to stress, that is the change of the
propagation velocity of light in the different axes of the material. Although not being directly
related, both parameters range in the same order of magnitude [57] and the latter is usually used
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Heater Coupling factor [rad/K] Thermal response [K/W·s]

H.left (−32± 2)× 10−3 (10.7± 0.2)× 10−3

H.right (−34± 5)× 10−3 (10.7± 0.3)× 10−3

H.left + H.right (−47± 16)× 10−3 (13± 3)× 10−3

Table 6.7: Thermal and optical response statistical mean.

for order of magnitude estimations of this effect.
A thorough analysis of the Window has been undertaken in the framework of the Data Analysis

methodology to be applied to the LTP Diagnostics Data. As a result of these studies, which took
the Optical Window as the central system under study, the modelling of the Window phase re-
sponse to thermal disturbances has been developed and this process has led to a careful estimation
of the previously announced effects taking into account all the involved physical parameters. This
description is linked to the Data Analysis methodology and uses concepts developed in that frame-
work, for instance differences of the coupling parameter with respect to frequency, that do not fit
in the current phenomenological approach. The reader is referred to Chapter 8 for an estimation
of these effects in a more rigorous context.
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Chapter 7
Heaters sizing

In this chapter we will focus our attention on the thermal diagnostic elements that the LTP
experiment will use during in flight operations to test and investigate thermal effects in different
locations of the LCA.

We have already discussed in previous chapters the purpose of this thermal shocks and the
reasons to choose the selected locations of the heaters, we will here leave these arguments apart
and centre ourselves on the technical problem. We will need to address, in first place, the required
power that these items must deliver to a given specific thermal sensitive place in order to produce
a high enough response of either the OMS or the GRS, depending on the location. In fact, an even
more relevant question to solve in terms of design purposes and the one driving the study herein
developed is the question of the maximum power to be supplied by these heaters, which really sets
a limiting criterion for the process of hardware selection.

Our starting point in doing so is the Top Level requirements [100] which set a required value
for the thermal gradients to be established in these locations.

Location Requirement

Optical Window 10 mK
Inertial Sensors 100 mK

Struts 100 mK

Table 7.1: Top Level requirements for the controlled thermal disturbances induced by heaters in
the LTP

These requirements are based on an estimation of the interaction between the locations in table
7.1 and the thermal gradient. These could be readily translated to power requirements by means
of the thermal response parameter that we have been computing in Chapter 6 from experimental
data.

However, our approach has been to base our criterion in the Signal-to-Noise ratio induced by
the thermal signal in the interferometer data. The main advantage of using this criterion is that we
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are considering the whole effect taking place due to thermal disturbance, and we do not need even
to understand it in detail although this will be our final goal. On the other hand, if experimental
data is not available we need to base our sizing computation in a model of the interaction where
we must introduce the undergoing physics.

Both approaches will be applied in the following section. We will take advantage of the exper-
iments on the Optical Bench and the Optical Window, performed in the AEI, to size the heaters
in these locations. The case of the Inertial Sensor will need to be studied by means of simulations
on the LCA thermal model.

Finally, with the heaters of each location being characterised we will be able to address their
hardware implementation. A few words will be said about the hardware solution adopted in each
case, as well as some problems detected when considering its interaction with the satellite, such as
for instance gluing or magnetic cleanliness.

7.1 LTP thermal model

In the following chapter we will be referring to the LTP thermal model. Before entering those
particular applications where thermal simulations are required, we will need to sketch the main
properties and principles of work of our simulation tool. Although we might refer to it in the
following as the LTP thermal model, the software we will be dealing with only models those items
inside the thermal shield in the LTP, i.e. the scientific instrument, which is known as LCA [34].

7.1.1 Thermal simulation principles

Solving thermal problems in complex geometries requires the use of numerical techniques which
enable the transformation of the continuous partial differential equation into a discrete problem
that can be afforded by means of numerical techniques by nowadays computers. This discretising
process is based on the so called Lumped Parameter Method —see § 3.1. This methodology has its
conceptual origin in the electrical analogy of thermal problems in which temperature equates to
voltage and heat flow to current flow.

Mathematically, the lumped parameter method can be seen as a means of deriving a first-order
finite-difference approximation to the governing differential equation. The power of the method
lies in replacing the spatial partial derivative of the PDE by a set of discrete nodes that will be
used to compute finite differences. With this transformation the problem will be best suited to
be solved numerically. The lumped parameter is thus appropriate to solve thermal problems in
complex geometries, where other methods may be inappropriate.

We can state the general equation for a lumped parameter problem by applying heat balance
to a given node i. If we suppose a network of n nodes N1, N2, · · ·Nn where the temperature of the
node Ni is Ti, its capacity Ci and contains an internal heat source Qi, the heat balance can be
expressed as
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Ci
dTi
dt

=
∑
i6=j

Kij (Tj − Ti) +
∑
i 6=j

Rij(T 4
j − T 4

i ) +Qi (7.1)

where Kij is the linear conductance between nodes i and j (which may represent conduction,
convection or other process commonly considered as linear, like evaporation or condensation) and
Rij is the radiative exchange constant. Equation (7.1) reduces to

0 =
∑
i 6=j

Kij (Tj − Ti) +
∑
i6=j

Rij(T 4
j − T 4

i ) +Qi (7.2)

in the steady state. This is therefore the system of equations to be solved by means of iteration
methods [8] which differs depending on the definition of the problem as steady state or transient
and also in stability and speed criterion.

7.1.2 Software implementation

The software used is the standard European Space Agency thermal analysis tool used to support
the design and the verification of space thermal control systems: ESATAN (ESA Thermal Analysis
Network tool) is a software package for the prediction of temperature distribution in engineering
components and systems using the thermal network analysis technique. It enables the user to spec-
ify his problem in the thermal network quantities of nodes, conductances and material properties,
together with the sequences of solutions required to obtain the steady-state or transient tempera-
ture distributions. It also has a batch edit facility which permits previously defined network models
to be incorporated into a model and changes to be carried out if required.

ESATAN is written entirely in Fortran 77, the user is thus able to introduce Fortran routines in
the code but the usual way to work in ESATAN is the Mortran language, a superset of Fortran, in
which the main functions and definition statements are implemented. The structure of an ESATAN
model is split into Data Blocks, containing the definition of the model, topology, parameters and
properties; and the Operations Blocks which gather the information about the operations to be
performed on the model defined in the Data Blocks during the solution.

The information about the thermal model in the Data Blocks consists mainly in the definition
of nodes and conductors. The former contains all the properties relevant to the thermal problem
needed to define a node entity, i.e. density, conductivity, capacity and volume among others, while
the conductors establish the relation between two different entities, this can be due to conduction
or to radiation, for instance. The information about the geometry of the problem is included in
the conductors definition since the thermal resistance concept used in the thermal networks takes
into account in its definition the geometry of the body (cf. § 3.1).

We can get a more deep understanding of ESATAN by describing the definition of its thermal
conductances, providing specific definitions for the parameters Kij and Rij in equation (7.1). We
will describe the definitions of linear conductors and radiation conductors. ESATAN however is
able to define a third class of conductors used for fluid simulation where the temperature changes
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are also driven by the mass displacement. These will not be reviewed here.

GL conductance In the ESATAN nomenclature, conduction is parametrised by the GL conduc-
tors, which can also account for other linear couplings, e.g. convection. These conductors represent
the rate of heat transfer Qij between nodes i and j at temperatures Ti and Tj

Qij = h (Ti − Tj) (7.3)

where h is the GL conductance.

GR conductance The radiative conductors represent the rate of heat transfer Qij between
nodes i and j at temperatures Ti and Tj

Qij = σεi αj Ai Fij(T 4
i − T 4

j ) = σ h (T 4
i − T 4

j ) (7.4)

where σ is the Stefan-Boltzmann constant, εi is the emissivity of node i, αj is the absorptivity
of node j, Ai is the area of node i and Fij is the view factor from node i to node j. The value of
the GR conductor is h = εi αj Ai Fij .

It should be recognised that ESATAN does not derive network models from specified geometries:
that task must be performed by the user. The role of ESATAN is to handle, check, and solve
the network models that the user has devised to represent his problem. In current case, the
geometry definition is developed by Carlo Gavazzi Space (CGS) with the Thermica1 software. As
an example, in Figure 7.1, some details of the model with those parts where thermal diagnostics
elements modelled are displayed.

7.2 Inertial sensor

As commented in previous chapters, the thermal diagnostic subsystem on board the LTP foresees
to introduce controlled thermal disturbances in the GRS subsystem. To this end, four heaters are
planned to be attached to the electrode housing as schematically showed in Figure 7.3.

The role of the heaters in the electrode housing is to generate temperature gradients through
the housing structure. As reviewed in Chapter 6, there exists a considerable amount of thermal
effects that can perturb the test mass geodesic motion in these conditions. These effects will be
directly related to the temperature gradient between opposite sides of the electrode housing and
hence, in this case, a thermal modelling has been used to set the required power as well as to
evaluate possible heating strategies.

It is important to note that in developing this study our conclusion will be based on the foot
of two assumptions:

1http://www.sinda.com/thermica home.htm
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Figure 7.1: Details of some of the locations of the LCA thermal model where thermal items are
introduced in the model. From top to bottom, left to right: the Optical Window, the Electrode
Housing, the Optical Bench and the Struts. Red arrows show locations were heaters are introduced
in the model while blue arrows show temperature sensors locations in version 8.0.
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• The LCA thermal model reproduces reliably the temperature behaviour through the housing

• Temperature gradients are translated into force on the test mass by means of feedthrough
coefficients, related with various thermal effects.

Clear enough, any change in any of these features would rescale the numbers obtained below. In
fact, this has been exactly the case for both of them. The precise measurement of the feedthrough
coefficients are matter of current experimental research and will also be part of the experimental
schedule of the LTP mission. Because of its relevance with respect the performance of the LISA
mission there exist a considerable amount of literature dealing with the evaluation of these param-
eters, both from an analytical point of view [89, 94] or with an experimental approach [22, 21, 77],
not always showing good agreement.

Regarding the second assumption in what we will base our study, i.e. the reliability of the
thermal model, it may be helpful to give a brief historical description of the development of the
thermal model with respect the thermal diagnostics modelling.

HEATER
NODE

ELECTRODE HOUSING
NODES

THERMAL 
CONTACT 
RESISTANCE

Rct [K/W] 333.3

C [J/kg/K] 950

Heater mass [g] 1.0

Contact area [cm2] 0.52

Figure 7.2: Heater modelling scheme with the parameters used in the simulation

The starting point is the version 6.0 of the LCA thermal model. Results in this version led to
first results which seemed to point out a long transient response on the thermal gradient suppres-
sion [67]. However, these turned out to be related to the software modelling and in the version 6.1
the thermal gradients disappeared at long timescales, as first expected [33].

Moreover, since the thermal model did not include any of the thermal items it was necessary
to introduce them in the model. The straightforward way to introduce thermal shocks was to heat
preexisting nodes, however this was not suitable for our main interest since the thermal properties of
the heater and its interaction with the attaching surface (the attaching area, the thermal contact
resistance, etc.) played an important role in the heaters sizing. The solution adopted was to
introduce independent thermal nodes acting as diagnostics items [68]. This way, a more realistic
modelling was achieved since the heat source was linked to the electrode housing wall by means of
a parameter including the information about the contact area and the thermal resistance contact
between the heater and the surface —Figure 7.2 shows typical parameters used for the modelling.
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Figure 7.3: Scheme of diagnostics items on the electrode housing

This approach was finally included as a part of the thermal model in version 8.0 [34], the available
one at the time of writing.

In order to fix the required power and pulse duration, as in the previous case, a SNR study can
be performed. In general, a higher SNR is expected for higher powers and longer pulse duration
(lower frequencies), however the lower limit of the MBW sets a maximum of 500s for the pulse
duration. The reason being that, as explained before, a full period of the triangular signal comprises
a sequential activation of heaters at both sides of the EH.

In conclusion, due to the dependence on the thermal model just described the methodology
used to characterise the heaters on the Inertial Sensor has thus been necessary, as far as possible,
model independent in order to incorporate each new model income in a flexible way. We will
describe this methodology in the following sections.

7.2.1 Activation schemes

Thermal coupling between the test mass and the surrounding electrodes is tested by applying a
train of heat pulses to those positions of the electrode housing previously defined. Given that the
thermal coupling must be characterised in the MBW, a suitable activation period will lead to a
periodic force applied on the test mass with the main frequency inside the MBW.

To take advantage of the four heaters and in order to optimise the power required to produce
an observable, heaters are switched on in pairs. This choice allows two different configurations
depending on the set of heaters switched on at any given time. We describe both in the following
although only the first will be really of interest for the mission, the second one is considered since
it allows a direct comparison with results with the torsion pendulum [22].

• Activation scheme 1 (Net force) if heaters on the same face of the electrode housing are
switched on at the same time then a gradient between opposite faces of the electrode housing
is generated.

• Activation scheme 2 (Net torque) alternate switching on of heaters placed diagonally
opposite positions will produce a net torque on the test mass, observable by the GRS.

133



CHAPTER 7. HEATERS SIZING

Figure 7.4: Electrode housing heaters activation schemes

The described activation scheme implies two heaters to be switched on at a time. To prevent
from possible confusion each independent heater is called physical heater, whereas each pair of
heaters switched on at a time are called logical heater, i.e, physical heaters H1 and H3 in Figure
7.3 are considered as a unique logical heater in activation scheme 1. When not specified otherwise,
the term heater refers to a physical heater throughout this section.

When testing these activation schemes in the LCA thermal model, temperature evaluated on
an electrode shows a constant slope increase during the time that the heater associated with its
electrode, e.g. electrode T1 with heater H1 in Figure 7.3, is switched on. An important feature of
this response is that the slope of the temperature increase appears to be linear with respect the
power applied. This property will be used below when defining the heater efficiency, we shall for
the moment stick to the linear trend that the heater action induces on the electrode temperature,
regardless of its relation to the power applied.

Since the thermal effects are mainly dependent on the ∆T variable, we will take it as the figure of
merit characterising our heating scheme. Either computed as ∆T = T1−T2 or as ∆T = T3−T4, the
final result will be the same in Activation scheme 1 given the symmetry of this heating procedure.
Based on previous studies [67], our choice was to use ∆Tl = (T1 + T3) − (T2 + T4) since this
parametrisation contains the whole information about the full set of heaters.

Moreover, defined in this way, ∆Tl is proportional to the longitudinal displacement of the test
mass due to thermal effects. For instance, if computed with the Activation scheme 2, ∆Tl vanishes.
We would have therefore to use a different parametrisation to characterise the torque applied to
the test mass under this heating scheme. This will be given by ∆Tt = (T1 +T4)−(T2 +T3), directly
proportional to torque forces as can be easily recognised in Figure 7.3

It must be noted, however, that the discussed heating schemes and the data analysis described
below are not intended to set a diagnostic analysis procedure. The scope is, on the contrary,
more focused in the design of an efficient diagnostic subsystem. Diagnostic analysis requires more
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Figure 7.5: Top: Electrodes temperature for a complete heaters cycle. Bottom: Difference between
opposite electrodes. Labels follow schema on Figure 7.3

complex considerations about data, such as those included in Chapter 8.

7.2.2 Analytical approach: triangular signal

Let’s now turn to the ∆Tl signal defined above. The LCA thermal model allows us to compute this
value from the thermal nodes describing the electrodes on the GRS. According to results displayed
in Figure 7.5, the subtraction just described in the previous section leads to a nearly triangular
signal. The temperature rippling on the electrodes due to heaters alternation is accentuated when
subtracting temperature on both sides, leading to a clearer signal.

In order to reach a flexible methodology we will take advantage of this particular feature of
the thermal signal in the Inertial Sensor. If we assume our signal to be a triangular signal, we can
switch to an analytical approach and build a table of SNR values. Making use of an analytical
description we are able to parametrise the thermal signal in a set of values describing its frequency,
amplitude and total duration. These parameters will be the unique link to the thermal model or the
feedthrough coefficients variation. This way, any change in any of those will be easily introduced
in the computation to obtain an updated SNR table.

The signal describing the forced impinged on the test mass, ∆Tl(t) is described, in this frame-
work, by a sum of triangular shape signals
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Figure 7.6: Thermal signal in the frequency domain as computed with equation (7.6). The ampli-
tude of the signal is fixed at A = 10 mK.

∆Tl(t) =
N∑
k=1

∆Tk(t) (7.5a)

where
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2 ) τ < t < k τ
(7.5b)

where A and τ are peak-to-peak amplitude and the period of the signal, respectively. The
Fourier transform for this signal can readily be obtained from the above expression

|∆T̃ (ω)|2 =
A2

τ2ω4
sin2

(
N τ ω

2

)[
τ ω − 4 tan

(τω
4

)]2
(7.6)

which will be useful for numerical integration. Figure 7.6 shows the signal in frequency domain
considering different parameters. As graphically represented in this panel, if we fix the total
integration time, low frequency signals have a broader spectrum and therefore a higher SNR when
integrated.

A feature which can be easily incorporated into the description is a linear trend increase of the
temperature gradient.
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∆T (t) = α t+
N∑
k=1

∆Tk(t) (7.7)

This can show to be useful in thermal systems where large time constants can induce long
transients in the temperature evolution. In such a case, if a constant gradient is established between
both electrode housing sides, a net DC force would be applied upon the test mass and this clearly
will be transformed into a higher power at low frequencies in the spectrum representation [67].
This must, however, not be the case for the GRS, since it is designed to efficiently smear out any
temperature gradient.

7.2.3 Computing signal to noise ratio

In order to set the required power for the heaters we need a criterion to make our selection. The
standard choice to size the input signal applied into a system is to take into account the effect
produced on it by means of the induced signal. In the case under study, our input signal is the
temperature increase, and the system response we are interested to provoke is the displacement of
the test mass by means of thermal effects. We shall thus consider the force that we are producing
on the test mass as the figure of merit to size the effect of the heaters.

To go ahead with this procedure requires to use the feedthrough coefficients related to the
thermal effects described in Chapter 2. The most relevant turned out to be the radiation pressure,
the radiometer effect and the outgassing coming from the electrode housing walls. Experiments
have shown that the overall feedthrough coefficient is given by [21]

∆F
∆T

=
∆Fe.m.

∆T
+

∆Fradio
∆T

+
∆Foutgas.

∆T
≈ 100 pN/K (7.8)

where the force differences are from side to side of the test mass and ∆T is defined as the
difference between the temperature of two opposite electrodes. Here we are following the opposite
way than in the diagnostic analysis problem — for instance in Chapter 6 — since parameters in
equation (7.8), or an equivalent description, are those we aim to determine via the diagnostics
items. However, we are taking it as previously determined in order to evaluate the required power
to test this thermal signals in-flight.

The above translates into a force signal

|F̃ (ω)|2 = (100 pN/K) |T̃ (ω)|2 (7.9)

We must now compare this signal to the background noise expected on the LTP, which can be
evaluated by the requirement on acceleration noise, translated to force [100]
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SF (ω) = m2
TM · Sa(ω)

= m2
TM ·

[
2.8× 10−14

[
1 +

(
f

3 mHz

)2
]]2

N2/Hz (7.10)

This will allow us to evaluate the required power to achieve a given Signal-to-Noise ratio in the
sensing signal. We recall here the expression

(SNR)2 =
∫
MBW

dω

2π
|∆F̃ (ω)|2

SF (ω)
(7.11)

where ∆F̃ (ω) contains the dependence in the power applied with the heaters, as previously
seen. Hence, we will find the heaters power by requiring on expression (7.11) that SNR > 50.

Substituting equations (7.9) and (7.10) in equation (7.11) we can compute a grid of SNR values
selecting plausible values for the amplitude of the signal applied and the expected integration time.

N · τ = 3000 s N · τ = 6000 s

∆T [ mK ] τ = 100 s τ = 500 s τ = 1000 s τ = 100 s τ = 500 s τ = 1000 s

1 0 7 4 0 8 6
5 1 28 26 4 39 37
10 7 56 52 9 78 74
20 13 113 104 17 156 145
40 26 223 206 37 314 291

Table 7.2: SNR for signals of different peak to peak amplitude ( ∆T ) and period ( τ ), N · τ
meaning the total integration time.

Values in Table 7.2 are expressed in terms of peak to peak value of the thermal gradient signal.
The translation of these values in terms of heaters power depends on thermal modelling and it is
mainly characterised by the heaters efficiency considered next.

7.2.4 Power to temperature efficiency

Once the criterion has been fixed and the table of possible values built, our next step needs to
be the translation of the temperature increases into heater’s power since this is our final control
parameter. To this end, we will use a property previously sketched. As shown in § 7.2.2, the action
of the heater applied on the housing is a constant slope increase of the temperature in the electrode
close to the heater being switched on. But even more relevant for our purpose is the fact that
there exists a linear relation between the power and this contant slope, we have already used this
relation from temperature to power in Chapter 6 where we called it the thermal response, Q.

Applied to the problem of the Inertial sensor, this parameter has a twofold importance. In first
place, it allows the translation of the temperature gradients into heater’s power and consequently
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Power [ mW ] Physical heater efficiency [ µK/s ]

5 74
20 302
40 604
100 1520

Table 7.3: Physical heater efficiency on the electrode housing

can be used to pass from an applied heater power to a SNR obtained as sensed by the GRS or the
OMS. But, on the modelling side, this parameter tells us about the thermal model and can be
used, following our methodology, to detect variations between different version of the LCA thermal
model.

The thermal response is defined by means of the relationship between power applied and the
temperature increase slope, which can be expressed as

∆T
∆t

= QP, [Q] =
K/s
W

= K/J (7.12)

Q is the thermal response and clearly allows us to characterise the thermal response of the GRS
regardless of the geometry. We will determine the Q parameter in the Inertial Sensor by means
of thermal simulations varying the power applied to each of them. The following values for the
temperature slope in the electrode close to the heater are obtained in the LCA thermal model,
from which the Q factor can be derived, fitting these values with equation (7.12)

Q = 15× 10−3 K
s W

(7.13)

This value thermally characterises the interaction between the EH and the heaters. It depends
on geometrical and material properties as well as the way EH heaters are modeled in the thermal
model. Any change on these parameters will have an impact on this value and therefore in the
relation SNR to heaters power. For instance, first results from the thermal model lead to an
overestimation of the power required for the heaters due to a software related error [67]. The
amendment of this error was easily carried out thanks to a direct comparison of the Q value using
both models. Indeed, the correction of this value, which was of three orders of magnitude, was
directly translated into a reduction in the same amount of the required power to be applied to the
electrode housing, yielding the actual reported values.

In order to achieve a SNR of 50 when applying 500 s heat pulses, a 10 mK peak to peak gradient
signal is required, see Table 7.2. Following equation (7.12), this gradient can be produced with
1.3 mW per heater. However, the maximum power required is established by fixing the same peak
to peak gradient at higher frequencies, i.e., a 10 mK peak to peak gradient between electrodes
with a 30s period will require, following (7.12), 22 mW per physical heater (∼ 50 mW per logical
heater). Although this value should be the one required to be the maximum power for the heaters
in the Electrode Housing, the definition of this value was done with a different estimation of
the feedthrough factor. In that case, the effect of outgassing was considered to be negligible
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Figure 7.7: SNR curves. Dashed lines correspond to doubling the integration time. The black
dashed line sets the required SNR to be reached with the induced thermal signal.

compared to the radiometer effect and the radiation pressure leading to a feedthrough factor
∆F/∆T ' 50 pN/K, roughly a half of the one now considered in equation (7.8). As a consequence
a higher power was needed to get the same SNR thus resulting in the required 45 mW per physical
heater (90 mW per logical heater) appearing in the DDS industrial document specification [45].

This same relation but in terms of the temperature gradient between electrodes is shown in
Figure 7.7. Given a temperature gradient —∆T— and a duration of the pulse —∆t— fixed, the
SNR is computed for two integration times: 3000 s and 6000 s. From these results, it appears that
with the chosen parameters a signal of ∆t = 100 s does not fulfil the SNR = 50 requirement for
any of the values of ∆T (meaning also heater power) displayed in the graph. The requirement
is however reached for ∆T ' 8 mK for the ∆t = 500 s and an application time of 6000 s or with
∆T ' 10 mK if the total application time is set to 3000 s.

Power [ mW ] SNR

0.13 9
0.65 39
1.3 78
2.6 156
5.2 315

Table 7.4: SNR in terms of physical heater power for 500 s heater activation time and an integration
time of 6000 s. The total power applied is 2× Power, being two heaters switched on each time.
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7.2.5 Radiation view factor

The LCA model can also be used for other kinds of studies around the Inertial Sensor. We can use
the thermal model not only to simulate thermal evolution of the thermal network if a heat input
is applied, as we have been doing to this point, but we can also extract from the model relevant
physical parameters.

Specifically, we can obtain from the thermal model an estimation of the radiation pressure to
which the test mass will be subjected during the heating experiments. This is of particular interest
since we can take advantage of the geometry and the information about the materials introduced
in the model to evaluate the radiation that the enclosing environment will emit to the test mass.
This contribution is what we have been referring to as the thermal radiation feedthrough coefficient
and, to date, the best estimate sets a value for this specific contribution of [21]

∆F
∆T
|rad ' 9 pN/K (7.14)

which corresponds to a nominal contribution of the effect considered to be of ∆F
∆T |rad ' 27 pN/K

which needs to be corrected by factors taking into account the geometry and material absorptivity,
given by κRP ' 0.32.

The LCA thermal model is therefore a unique tool to evaluate thermal effects in the flight
model. On the other hand, it must be noticed that we will be dealing with a modelling subject to
eventual future changes. As commented above we shall focus on the methodology to extract this
information that can be applied regardless of the modelling details and changes.

In order to evaluate the radiation pressure contribution we will take advantage of the GR
conductors defined in the ESATAN LCA model. To review the meaning of these parameters, they
are defined between two nodes i and j of a thermal network as

GR = εi αj Ai Fij (7.15)

where εi is the emissivity of node i, αj is the absorptivity of node j, Ai is the area of node i
and Fij is the view factor from node i to node j. Nodes i and j need obviously to be radiatively
linked in the model and, in such a case, the GR conductor gathers all the information regarding the
geometry and the materials involved. These parameters can be internally computed by ESATAN
once all the information regarding geometry and materials properties have been introduced.

Our approach to estimate the radiation pressure will be to evaluate the heat flux interchange
between nodes on one of the surfaces of the test mass with respect each node facing this surface
on the inner surface of the electrode housing, including the electrodes and the guard rings. For
each couple of nodes we will compute the flux as

Qij = GRij σ (T 4
j − T 4

i ) (7.16)

and from this value the pressure as
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Figure 7.8: ESATAN LCA thermal model is used to compute radiative conductances from the
electrode plates and the guard rings to the test mass surface facing them.

Pij =
4

3 c
Qij (7.17)

We can naturally proceed in the same manner for the opposite side of the test mass and then
sum both terms contributing to the test mass motion. In doing so, we are evaluating thermal
radiation in a differential way, i.e. considering temperature gradients across the surface of the
Electrode Housing. Instead of applying a unique feedthrough factor we are taking into account
the contributions from each node which do not only depend on geometric factors but also on the
temperature of the node at each time.

The comparison of the results obtained following this methodology and the ones based on
experimental results obtained in the torsion pendulum [21] leads to a discrepancy of roughly an
order of magnitude which will imply that the effective feedthrough as derived by the thermal model
would be ∆F

∆T |rad ' 0.4 pN/K, compared to the ∆F
∆T |rad ' 9 pN/K measured in [21].

As stated above, several factors among the modelling issues could be responsible of this discrep-
ancy. On the other hand, the experimental study leading to the result in equation (7.14) considers
a geometrical correction factor that includes the effect of radiation coming from Y and Z walls and
also the shear effect of photons impinging on the lateral sides. These effects, not considered in our
study, could explain a few per cent of the discrepancy between both values. It is however unlikely
that these lateral effects could explain the main discrepancy between both values.

7.3 Struts

The optical ench and the LTP experiment will be subject to the thermal shield enclosing them
by means of eight CFRP struts. These are considered thermal sensitive elements among the
experiment design since they are the only conductive link connecting the experiment with the
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external environment. Any heat flux crossing them could produce thermal induced stresses or
other effects that may degrade the experiment performance.

The diagnostics subsystem provides six heaters and six temperature sensors for this location in
order to characterise and monitor any effect related with temperature fluctuations in the struts.
We have previously seen in § 6.2.2 some experimental test that showed indeed certain dependence
of the interferometer with respect thermal shocks applied, not in the struts which were not part of
the Engineering Model being tested, but on the Optical Bench flanges. However, as discussed there,
with the current available data we can not relate the observed effect with a determined physical
effect and thus is rather difficult to translate these results to the final flight model. Furthermore,
the most probable effect we were able to assign was thermal radiation and, if that was the case,
those results will not be applicable in the flight experiment.

In these conditions we must stick to the most basic heater’s requirement, which is established
in [100] and has been quoted at the beginning of this chapter in Table 7.1, that is: heaters attached
must be able to induce a heat shock of 100 mK as sensed by the closest sensor. This requirement
is shown to be fulfilled with the current design in the top panel of Figure 7.9, where the thermal
model is used to evaluate the effect of the heaters in the struts. Temperature increases an order
of magnitude above the requirement are easily achieved with typical values for the heaters power.

Temperature gradients in the Optical Bench can be also computed from the thermal model,
this can be of interest to evaluate possible thermal induced stresses in the Bench which could be
detected by the interferometer. Bottom panel of Figure 7.9 refers to this issue and, as shown there,
the expected effects are of few millikelvins from side to side of the Bench and the timescale of the
thermal response is of ∼ 7000 s.

In order to obtain these curves, a simulation without any heat input is first computed. We
then subtract this zero contribution to the results of the simulations where heaters are switched
on. This way, we are confident that the gradients observed are provoked by the heaters action and
are not due to the effect of other sources like the photodiodes in the Bench, which are also modeled
and represent a constant heat input.

We can take advantage of the thermal model to compare the temperature evolution curves
obtained from simulations with the experimental results acquired in the Engineering Model. To
this end, we need to induce a thermal shock not in the strut but on the Optical Bench flange and
evaluate the temperature increase in this location. This is done in Figure 7.10 for two different
heat pulses. A factor ∼ 2 discrepancy is obtained between experimental and simulation results.

Finally, a last correction factor can also be studied with the model. If we assume the inter-
ferometric response observed in § 6.2.2 as a valid description for the flight model, we might be
interested to connect the results obtained when heating the Optical Bench flange with those that
the heat applied on the struts may produce. The only piece of information we need to know is
how much is suppressed a thermal increase in the flange with respect the one on the struts if the
heat input is applied in this last location. Figure 7.11 represents this situation and the rough value
obtained for this temperature suppression is ∼ 20, meaning that, according to the LCA model, a
heat shock inducing a 1 K temperature increase in the strut will turn into a ∼ 50 mK increase in

143



CHAPTER 7. HEATERS SIZING

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

time [ s ]

∆ 
T

 [ 
K

 ]

Strut end
Heat appl. node
Strut end

0 0.5 1 1.5 2

x 10
4

0

1

2

3

4

5

6
x 10

−3

time [ s ]

∆ 
T

 [ 
K

 ]

OB corner X+Y+

OB corner X+Y−

OB corner X−Y+

OB corner X−Y−

Figure 7.9: LCA thermal model simulation of the temperature increase due to heaters on the struts.
Top: Temperature increase in the struts for a 50 s pulse of 2 W (solid lines) and 1 W (dashed lines).
The two strut ends and the node where the heater is attached to are plotted to observe thermal
gradients appearing in the struts. Bottom: Temperature increase in the four Optical Bench corners
when heating a strut. Solid and dashed lines represents respectively a 50 s pulse of 2 W and 1 W,
as before.

the flange. Naturally, this coefficient depends on the duration of the heat pulse, the value here
reported corresponds to the range of heat pulses’ duration around 50 s.

Even the strong suppression that such a value implies, the power assigned to heaters’ struts has
shown to be well above the requirements. Temperature increases as the ones observed in § 6.2.2
could be obtained, according to these results, by means of heat shocks in the struts. However, we
can not assure that the interferometric response will be the same that the ones obtained experi-
mentally since, as explained above, we lack a reliable physical interpretation of the experimental

144



7.4. OPTICAL WINDOW

0 2000 4000 6000 8000 10000
−0.2

0

0.2

0.4

0.6

0.8

time [ s ]

∆ 
T

 [ 
K

 ]

P = 2W, ∆ t = 100s
P = 1W, ∆ t = 100s

Figure 7.10: Comparison between experimental results (solid lines) and thermal simulations
(dashed lines) when heating the Optical Bench flanges.
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Figure 7.11: Comparison between temperature increase in the Optical Bench flange (dashed lines)
and the struts (solid lines) when heating the latter.

results obtained.

7.4 Optical window

The Optical window is the optical interface between the inertial sensor inside the vacuum enclosure
and the Optical Bench. Being the only non-bonded optical element fixed on a metallic structure,
temperature fluctuations could produce a significant noise contribution to the interferometric read
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Figure 7.12: Top: Thermal signals FFTs compared to noise budgets. Bottom: Correlation between
phase and temperature for different heating times

out, which needs to be identified for a subsequent removal.
For this reason a set of diagnostics items attached to this location are envisaged to be part of

the LTP thermal diagnostics subsystem. This set consists of two heaters attached to the lateral
sides and three sensors attached to the front side, facing the Optical Bench. More details on the
thermal items distributions can be found in § 2.3.

In this case we can take advantage of the experimental results obtained at the laboratory, this
save us having to use feedthrough coefficients as in the GRS case. Indeed, the effects we are here
considering are those ones coupling temperature to phase variations, as reviewed in § 2.1.2.

The experiment setup, detailed in § 6.3, uses Optical Window prototypes manufactured by CGS
using the same techniques to be used in the flight model. Two Kapton heaters are attached at both
lateral sides of the window and four sensors are attached at the front side, two on the titanium
ring and two in the glass surface. All items are symmetrically distributed on the window in order
to perform the experiments in a redundant setup.

7.4.1 Signal-to-Noise ratio analysis

For the Optical Window heater’s sizing problem we can recover the Signal-to-Noise ratio procedure
in § 7.2.3. To evaluate the SNR we recover the expression (7.11) and also expression (7.10) remains
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unchanged for the noise curve S(ω) of the instrument. However, we do not have, in the Optical
Window case, an analytical representation of the signal provoked by the heaters as was the case for
the GRS. Since now we are following an empirical approach, the SNR integral must be numerically
evaluated using the interferometric signals obtained from the window as the input signal.

With this purpose, a systematic heating scheme was followed when dealing with the Optical
Window prototype. This led to a wide set of data, good enough to enable the reconstruction of a
SNR table as the one showed in the GRS case, Table 7.5.

The first step was necessarily to Fourier transform the interferometric data obtained when
heating the window with different power step signals, and also with different duration lengths,
as shown in Figure 7.12. Once both contributions, the one coming from the signal and the one
arising from the noisy behaviour, are taken into account in equation (7.11) the SNR values are
obtained for each case. Values in Table 7.5 are averaged over different runs and using different
OW breadboards in order to give a full representative value.

P [ W ] Pulse duration [ s ]

10 50 100

2 36± 5 140± 20 260± 30
1 23± 9 66± 2 123± 7

1+1 32± 8 122± 18 262± 50
0.5+0.5 17± 2 65± 1 121± 7

Table 7.5: SNR values averaged over different heating pulse profiles applied on the OW

The set of values obtained in this way are shown in Figure 7.13 as a function of the power
applied. If the duration length of the thermal shocks remains fixed and the power applied is
changed, the SNR values obtained seem to point to a linear relation between SNR and power, as
shown in Figure 7.13. The established relation allows us to determine the SNR that will be obtained
if any other power, in this limited range, is applied to the heater. SNR lines built in this way set
our required power if one traces a horizontal line at SNR = 50. We have also extended the analysis
to the error bars that appear due to the averaging we have previously done to different runs. They
show the dispersion of our values which tend to increase at higher power values, probably due
to the fact that in this region thermal effects are emphasised and different contributions could
be mixed in the SNR computation. Analogously, we can extrapolate the SNR curves for longer
applications times, this is shown in Figure 7.13 in purple.

From the analysis above, we can set an upper value for the required power to get a signal with
SNR > 50. This condition can be reached with a 0.4 W signal lasting 100 s. It is important to
note that, as in the GRS case, periodic signal like a pulse train, could also be applied. Hence, the
signal pulse just described must be considered the maximum required for the diagnostic purpose,
provided that periodical application would lead to the same SNR but requiring less power.
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Figure 7.13: Optical SNR values for heat pulses applied on the OW. Red lines show the best fit to
average values whereas coloured lines extrapolate the error bars.

7.4.2 Thermal modelling

Thermal modelling has in this case a double purpose. First, we must take into account the
differences between the laboratory experiment realisation and the final LTP experiment on board
the LTP. The main drawback of the results obtained on the laboratory experiment is that the
Optical Window was there nearly thermally isolated, the only conductive contact being its PVC
support, while the final window will be mounted in the titanium structure conforming the vacuum
enclosure. Thermal simulations were performed in the LCA thermal model to obtain a comparison
with the final design concept. An example of the results is shown in Figure 7.14.

A second test that the thermal model can help us to check is the possible effect of the heat
pulse on the Optical Window on other sensitive locations. The higher powers that we are now
considering are, by orders of magnitude, the heaviest thermal loads on the LCA and thus care must
be taken for the thermal behaviour of a so highly stable environment as the LCA will be. Moreover,
non controlled thermal effects on other locations would clearly spoil the thermal test experiment
since the relation between the heaters input and the observed output would not be due only to the
particular location being heated but other contributions will appear and thus our transfer function
estimation will be contaminated with effects arising in other locations of the spacecraft.

To take into account these effects, we computed the ∆Tl —defined in § 7.2.1— on the electrodes
once a high power thermal shock was applied on the Optical Window. Results show that the
expected gradient between electrodes is well below acceptable values. As seen in Figure 7.14, there
is a factor 10−4 suppression which implies that, according to § 7.2.3, the induced electrode housing
(EH) signal will not cause a disturbing contribution. Even more, this spurious effect will be delayed
with respect to the original one, i.e, the one applied on the Optical Window, and therefore even if
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Figure 7.14: Optical Window heating impact on Inertial Sensor

heating the Optical Window affects the test mass motion, both effects could be easily disentangled.

7.5 Heaters on the LTP

From the previous studies we end with a table of values defining a power requirement that must
be supplied by the diagnostic heaters in various locations through the LCA. Table 7.6 summarises
the previous discussion

Location Power [W] Attaching surface

Inertial Sensor 0.045 Molybdenum
Optical Window 1 titanium

Struts 2 CFRP

Table 7.6: Heaters power summary

The power values derived from this study are the ones assumed as requirements for the hardware
implementation [45]. We have also added the information regarding the attaching surface since
this is of relevance when choosing a hardware model and, as we shall see, it will have implication
when considering the attaching glue.

In the following we will focus on hardware related issues. Apart from the one just commented
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Figure 7.15: Thermal model for the thermal contact resistance

about the attaching glue, magnetic cleanliness or the selection of a suitable heater given the
environmental conditions will also be treated.

Glue contact resistance

A problem related with the heating process is the selection of a suitable glueing material. Since
we are facing the characterisation of heat sinks, the selected glue must fulfil high conductivity
properties. This is not a demanding requirement given that a thermal conductive glue is a standard
product in engineering. But we must also ensure that this material has a low outgassing profile,
has undergone a space qualification process and, at the same time, is a thermal conductive material
to prevent from charging processes that may disturb the GRS capacitive-based measurement.

In order to estimate the correct thermal interface between thermal diagnostic items and at-
taching points the simplified model described in Figure 7.15 can be considered. In the steady-state
condition, Figure 7.15 can be translated in terms of Fourier’s law,

Q =
∆T

Rth1 +Rct +Rth2
(7.18)

where Q is the heat flux, Rth stands for the usual thermal resistance (in [K/W]) dependent
on material thermal properties (Rth = L

K A for a slab of conductivity K, area A and length L )
and Rct is the thermal contact resistance related to the conditions of the experiment set-up, i.e.
surface flatness, surface roughness, material thickness or attaching pressure. It is defined as [40]

Rct =
1

hc A
(7.19)

where A is the area of contact and hc is the contact coefficient (in [W/K ·m2]). From equation
(7.18) an upper value can be derived for the thermal contact resistance if the assumption is made
that this factor must be negligible with respect to the other terms in (7.18)

Rct � Rth1 + Rth2 (7.20)

This is the general expression which must be ensured in any case. However, more specific
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ADHESIVE TML CVCM CURE CURE WVR
TIME TEMP.[◦C]

C-868-1 ONE COMPONENT 0.08 0.00 1 h 170 0.07
silver filled epoxy/f

DUPONT 5504A 0.05 0.00 1 h 160 –
silver filled epoxy

TECKNIT 72-00002 0.02 0.00 48 h 121 –
silver filled silicone

UNISET C-940-1 0.06 0.00 10 min 170 0.05
silver filled polyimide

UNISET C-940-1 0.02 0.00 1 h 170 0.01
silver filled polyimide

UNISET C-940-4 ONE COMPONENT 0.08 0.00 10 min 170 0.05
silver filled polyimide

Table 7.7: products fulfiling outgassing requirements of the LTP experiment.

values can be obtained if the application is better determined. For instance, if the sensor/heater
is attached to a highly conductive material (as in the IS or OW case), its thermal resistance will
be smaller than the sensor/heater, Rth1 > Rth2, and hence (7.20) can be simplified to

Rct � Rth1 (7.21)

If now, the sensor thermal resistance measured in [84], Rth1 ' 100 K/W, and the contact area
of the thermistor, A = 11.3× 10−5 m2 are considered as standard values, the requirement can be
translated into

1
hc
� 11.3× 10−3 m2 K

W
(7.22)

However, this value is only representative of the OW and IS cases, where thermal diagnostic
items are attached to metal surfaces with high thermal conductivity. When considering low thermal
conductivity materials, as in the OB case, expression (7.20) must be applied.

In what respects the outgassing properties, we can take advantage of the low outgassing mate-
rials list provided by National Aeronautics and Space Administration (NASA)2 to create a table
of products fulfilling our vacuum requirements [88]. These are presented in Table 7.7.

Magnetic cleanliness

The LTP is highly sensitive to magnetic disturbances and therefore strong magnetic requirements
are imposed on any item that enters in the design. Any magnetic field exceeding the requirement
could affect the test mass motion and therefore spoil the experiment.

2http://outgassing.nasa.gov

151



CHAPTER 7. HEATERS SIZING

−0.1 −0.05 0 0.05 0.1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

µ
0
 H [ T ]

M
 [ 

A
 m

2  /k
g 

]

Figure 7.16: Magnetisation curve for a sample of the heater electrical circuit material

Heaters fully enter the category of items that might be considered problematic for the magnetic
cleanliness. There are two characteristics that support the classification in these terms: First, they
are located near the test mass and second, the heaters are usually built from an electrical circuit
that dissipates power as a function of the applied voltage and its internal resistance. Unfortunately,
the most common materials used to build electrical circuits have ferromagnetic properties, e.g iron
or nickel, which obviously implies a high risk for our purpose. Indeed, a solution of these charac-
teristics can not be considered for the electrode housing (not only due to magnetic considerations
but also due to vacuum conditions, heaters as the ones used in section § 6.1 can not be accepted).
An alternative achieving both vacuum and magnetic requirements has been explored and will be
discussed in next section.

The next location in order of demanding conditions are the Optical Window heaters. These
are outside the vacuum enclosure and therefore conditions on the vacuum are relaxed, allowing
to consider the possibility of polyamide heaters. Moreover, if we can prove that the magnetic
requirement is fulfilled in this position we can safely assume that the requirement will also be
achieved at the last location were heaters are to be attached, the struts.

Heaters used for space applications are not usually magnetically characterised or, at least, not
at the level of precision required for the LTP. In order to base our decision on a solid criterion,
heaters of the same kind as the ones foreseen to be used in the flight model were subject to
magnetic characterisation. The process undertaken was to extract a sample of the heater electrical
circuit and measure its magnetic moment at room temperature. The equipment used to this end
was the Quantum Design MPMS XL SQUID magnetometer of the Serveis Cientificotècnics de la
Universitat de Barcelona, managed by Dra. N. Clos.

Results of the measurement, using a ∼ 17 mg sample, are shown in Figure 7.16. The sample
showed two different behaviours in the region |H| < 5 mT and |H| > 5 mT respectively. Whereas
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the latter is a typical paramagnetic curve, the former, which is really the one of our interest
shows a soft ferromagnetic response with the typical enhanced susceptibility of these materials.
Given the mass of the sample, the remnant magnetic moment can be found to be of the order
m ' 1.7× 10−8Am2. If the simple dipole approximation is used to compute the magnetic field in
the test mass a B ∼ 0.1 nT is obtained, some orders of magnitude below the magnetic requirement
on the test mass location [100]. However, a detailed evaluation of this effect is needed to confirm
the fulfilment of magnetic requirements not only on the magnetic field but also on the magnetic
field gradient.

Hardware implementation

After describing some of the problems to be considered in the heaters selection process we are now
in conditions to finally summarise the characteristics of the heaters on the LTP.

• Optical Window: heaters on the Optical Window will be of polyamide type with a resistance
of 45 Ω and a maximum power of 1 W.

• Struts: heaters on the Struts will be of polyamide type with a resistance of 44 Ω and a
maximum power of 2 W.

• Inertial Sensor: heat will be induced in the Inertial Sensor by means of thermistor acting as
heaters [84]. Maximum power in this location will be of 45 mW.

Another point to be taken into account when considering hardware issues is the connection
layout. Given that diagnostics items are connected to the DMU via the DAUs, all diagnostics
items need to be grouped in sets of four. This is not a major problem in its own but the limitation
that makes the wiring crucial is that the DAUs are not redundant. We need thus to distribute the
diagnostic items among the DAUs minimising the loss of information available in case of failure.
Two possibilities can be adopted a priori : to maximise the information in one Inertial Sensor,
meaning to group items around test mass 1 and test mass 2 in different DAUs or, on the other
hand, to maintain control on items characterising the thermal environment around both test masses
but with a limited capability. The latter has been finally adopted for the LTP and the derived
wiring scheme can be found in [83].

Another characteristic of the diagnostic subsystem is that when heaters are switched on the
power arriving at any location will not be a strictly continuous signal but it will be multiplexed
at high frequencies. This will allow to use both independent logical heaters in each Inertial Sensor
in order to heat the whole electrode housing homogeneously. This may be suitable if, for instance,
thermal experiments are to be performed at different nominal temperatures in order to distinguish
thermal effects that have a different dependence on the absolute temperature.

Simulations on the thermal model applying discontinuous heat input showed a decrease of the
SNR proportional to the duty cycle assumed for the input cycle. For instance, a duty cycle of 50
leads to a SNR decrease of a factor 2 since half of the energy is not being supplied to the system.
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Chapter 8
Diagnostics Data modelling

In this last section our aim will be to focus on the methodology that we shall use to analyse
the thermal diagnostics data during in flight operations of the LPF mission. Far from being an
exhaustive treatment of the different subsystems, our guideline to build this methodology has been
an extensive data set of thermal test runs on a single location: the Optical Window.

However, the only part of the analysis which is clearly related to this specific location is the
discussion of the physical interpretation of the results (cf. § 8.5), the rest of the chapter refers to
the methodology to deal with diagnostic data in general and, in this sense, the chapter represents
an end-to-end simulation of the diagnostics data analysis problem: from the data acquisition and
conditioning to the noise apportioning.

As previously commented, diagnostics have both to estimate as precisely as possible the pa-
rameters of the noise model and determine the contribution of the noise sources to the instrument
noise curve. The first scope requires a brief overview of parameter estimation theory which will also
help to set a notation for the rest of the chapter. Next, a data-based noise model will be built and
subsequently, its contribution to the noise curve established. With the data-based nomenclature
we mean that results reported herein have been derived from the experimental data to the physical
interpretation of the model and the effects involved in it, not the opposite way. The fact that the
methodology starts from the data and has allowed us to, in principle, arrive to a physical model
endorses the idea that this procedure may also be suitable to deal with diagnostics data in other
locations.

8.1 Thermal diagnostics estimation problem

The diagnostic data analysis problem in the LTP naturally fits into a parameter estimation prob-
lem. In general terms, the starting point is a set of data points XK = {x1[1], x1[2], . . . x1[N ];
x2[1], x2[2], . . . x2[N ] . . . xK [N ]} representing input data acquired by diagnostic items, in this case,
K temperature sensors distributed across the LCA. A second set of data YR = {y1[1], y1[2], . . . y1[N ];
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y2[1], y2[2], . . . y2[N ] . . . yK [N ]} is also obtained in the diagnostic process, which corresponds to the
response of the system being characterised. This is also considered to be a multiple set of R dif-
ferent datastreams, although we will be working in this Chapter with a unique output variable,
i.e. the phase data coming from the optical metrology subsystem. In this situation we will be
interested in a set of parameters ΘM = {θ1, θ2, . . . θM} that relates the two previous data sets
given a proposed model,

YR = H (XK; ΘM) (8.1)

where H (XK; ΘM) is the noise model containing the information of the contribution of different
noise sources to the instrument performance. In general, it will be a function of the input data
and the parameters we wish to estimate.

The diagnostic problem can be stated as to estimate the Θ̂M parameters

Θ̂M = G (YR; XK;H (XK; ΘM)) (8.2)

These parameters will depend on the data set under study but they will also acquire different
numerical values depending on the noise model being evaluated. We need then to consider both
the data and the modelling as equally relevant for the diagnostic purpose.

8.1.1 Least Squares

The Least Squares approach is a standard methodology used in estimation problems. In the
following we briefly describe this approach and how it is implemented in the case of a linear model.
If the dependence of the model in the parameters is non-linear, iterative numerical techniques are
required to solve the problem.

Expression for Linear Least Squares

A situation of particular interest is when the dependence with the Θ parameters can be assumed
to be linear. In such a case the Least Square Estimator can be computed analytically. Since we
will be applying this expressions in the following sections we will show here the main equations.

The Least Squares Estimator is found minimising

χ2(Θ) =
N∑
n=1

M∑
k=1

(y[n]− θk xk[n])2 (8.3)

or, in matrix notation

χ2(Θ) = (Y −H Θ)T (Y −H Θ) (8.4)

If we consider one output variable composed by N values, K input variables with the same
length and a model with M parameters to be determined, then Y is a 1 ×N vector, Θ a 1 ×M
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vector and H, sometimes known as observation matrix [46], contains all the input data, i.e a K×N
matrix.

Now, minimising the Least Squares error

∂χ2(Θ)
∂Θ

= −2HTY + 2HTHΘ (8.5)

the normal equations are found

HTHΘ = HTY (8.6)

and the estimator is directly derived

Θ̂ = (HTH)−1HTY (8.7)

As previously stated, there is no statistical description of Θ̂ since no statistical assumption has
been made on the data. The goodness in data description is solely described by the χ2(Θ) of which
the minimum value will be given by

χ2(Θ)|min = χ2(Θ̂) = YT (Y −HΘ̂) (8.8)

Least Squares estimator is completely described by equations (8.3) and (8.7), in particular the
latter defining the estimator will be the one used in the following approaches.

Numerical estimation

When the model being evaluated by the least squares approach is non-linear or, in general, can not
be solved by analytical expression the function χ2(Θ) must be minimised by means of numerical
methods. This is usually done according to

Θ̂i+1 = Θ̂i + α f(i) (8.9)

There are various methods implementing this process whose main difference is the function
selected as the minimising direction f(i). For instance, one widely applied criterion is to use the
function

f(i) =
∂2χ2(Θ)
∂Θ2

(8.10)

where ∂2
Θχ

2(Θ) is the Hessian matrix. These are the so called Newton methods and there
are also various subclasses which differ in the way the Hessian matrix is estimated. For a more
thorough description we refer to [48] and the MATLAB System Identification Toolbox which will
be the tool that we shall use when dealing with these problems.
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8.2 Fitting the data to models

The data set upon which the analysis will be developed consists in 25 data runs performed on two
different Optical Window prototypes. Heat pulses from 100 mW to 2 W, ranging from 10 s to 100 s
of application time were applied to this optical element. As described in § 6.3, four sensors were
simmetrically attached to the window: two in the glass and two in the titanium flange.

Once the data set is chosen we can adapt our previous nomenclature to our particular setup.
The variables involved will be

Y = {φ(t)}

X = {TGl,L(t), TGl,R(t), TTi,L(t), TTi,R(t)} (8.11)

where the subindex Gl/T i refers to the temperature acquired by sensors attached to Glass
/Titanium and L/R indicates whether they were attached to the Left/Right side, respectively.
This will be the nomenclature followed from now on. As previously commented, we will base our
analysis on a unique output variable: the interferometer phase, φ(t).

The main purpose of this section is to give account of the measured interferometer output
data in terms of the also measured temperature data. While in this experiment both are of
course ultimately caused by the heaters’ signal, our interest focuses on the temperature vs. phase
relationship, as we need to quantify the magnitude of temperature fluctuations noise during science
operations in flight [51].

To serve this purpose, we adopt model fitting techniques. Two approaches will be proposed,
and discussed in the ensuing section: a direct linear regression fit of the interferometric data to the
temperature read-out coming from sensors on the titanium flange and those on the OW glass itself,
and an ARMA model using only temperature readout from the titanium temperature sensors. The
latter is of particular interest, since it is not foreseen that temperature sensors be attached to the
glass surface in the real LTP.

8.2.1 Data conditioning

Before we attempt to fit the data to a useful model, some data pre-processing is required.
The temperature and phase acquisition data systems reside on different hardware and software,

and deliver the respective time series data for analysis at sample rates which are different as well:
temperature data are sampled at fs,T = 0.65 Hz, whereas phase data are sampled at fs,φ = 32.4 Hz,
instead. Downsampling and resampling thus needs to be applied to the latter in order to make
meaningful sense of data fitting algorithms. To avoid aliasing effects at downsampling phase,
suitable low pass filters are applied. This is however not enough to have matched sampling times in
both time series, so an additional interpolation algorithm is used for properly matched resampling.

In addition, each data segment is de-trended prior to model fitting. The removed trend is
evaluated from the first 500 seconds previous to the heat input signal begins. This way we get rid
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of environmental drifts and spurious trending effects.

8.2.2 Direct Linear Regression

Our first attempt to model the Optical Window will be to explore a linear model which relates
proportionally the phase response to the available temperature information, we will call it Direct
Linear Regression (DLR).

φ(t) = p1 TTi(t) + p2 TGl(t) (8.12)

where TTi(t) is the temperature read by the thermometer on the titanium flange closest to the
activated heater, and TGl(t) that of a thermometer on the OW glass. The parameters p1 and p2

are to be estimated by a least squares algorithm, which was shown in § 8.1.1 to have an analytical
solution for the case under study. Substituting the model (8.12) into the least square expression
(8.3), we get

χ(p1, p2)2 =
N∑
n=1

{φ[n]− p1 TTi[n]− p2 TGl[n]}2 (8.13)

Here, φ[n] is the n-th sample of the measured phase, and TTi[n] and TGl[n] the corresponding
temperature samples. Thus, for example,

φ[n] ≡ φ(n∆t) , TTi[n] ≡ TTi(n∆t) , (8.14)

etc., where the sampling time ∆t has been set to ∆t≡ 1/fs,T , as discussed in § 8.2.1 above. Finally,
N is the number of analysed samples of each read-out.

The minimisation of equation (8.13) will give us the least squares estimates p̂1 and p̂2 of the
parameters p1 and p2, respectively. An example of this procedure is shown in Figure (8.1). We
report on the results of this analysis in § 8.3.

8.2.3 ARMA model fit

Although the linear regression method shows to perform quite acceptably well, there is a clear
motivation to find a model able to fit the data independently of the glass temperature readings,
since the latter will not be available in flight.

In this section we take a different approach to fit phase data to titanium only temperature
readings. We shall now assume that the relationship between these magnitudes can be expressed
by a dynamical equation [70]. The main concept behind this hypothesis is, in some sense, to
try to evaluate the information that the glass temperature is carrying by means of the titanium
temperature only. This implies that we must provide the model with some flexibility in order to
include this new degree of freedom.

To serve this purpose, our approach will be based in the system identification methodology [28,
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Figure 8.1: Example of fit results for two different models.

32, 48]. In this framework the system under study is represented as a black box between an input
and an output variable, TTi(t) and φ(t) respectively in our case. In the more general situation, a
white noise variable e(t) is introduced in the model with the intention of characterise an eventual
noisy contribution. If all the contributions are taken into account, the following description is
obtained

φ[n] = G(q,θG)TTi[n] +H(q,θH)e[t] (8.15)

where q represents the shift operator :

q x[n] = x[n+ 1] , q−1 x[n] = x[n− 1] (8.16)

and with G(q,θG) and H(q,θH) being the transfer functions that contain the dynamical de-
scription of the model. These transfer functions are usually represented as rational functions of
polynomials

G(q,θG) =
α0 + α1 q

−1 + · · ·+ αr q
−r

1 + β1 q−1 + · · ·βs q−s
(8.17a)

H(q,θH) =
γ0 + γ1 q

−1 + · · ·+ γp q
−p

1 + ψ1 q−1 + · · ·ψs q−s
(8.17b)
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Different models can be implemented following this procedure [48]: ARX, ARMAX1, OE

(Output-Error) or BJ (Box-Jenkins) are some of the typical implementation of this structure.
The difference between them is the relation between the polynomials defining the transfer func-
tion. For instance, in the ARX model the denominators of both rational functions G(q,θG) and
H(q,θH) are equal, i.e. ψi = βi in equation (8.17).

In this system identification context, our particular application would fall into the OE (Output-

Error) models, which merely implies to assume H(q,θH) = 1 and therefore, that no modelling
is applied to the noisy part. Since this construction does not add any dynamical information to
the model we will omit it and refer the model as an ARMA model because indeed it has both the
Autoregressive and the Moving Average part. Thus, our model becomes

φ[n] = G(q,θ)TTi[n] (8.18)

were θ is an abbreviation for the vector of r+ s+1 ARMA parameters α0, . . . , αr, β1, . . . , βs.
System identification in this approach is again based on a least squares criterion, for which a
suitably defined square error needs to be defined

χ2(θ) =
N∑
n=1

{φ[n]−G(q,θ)TTi[n]}2 (8.19)

The estimates θ̂ of the parameters θ are those which cause χ2(θ) to be minimum. Al-
gorithms to find them are more robust if the additional hypothesis holds that the residuals
{φ[n]−G(q,θ)TTi[n]}, where φ[n] and TTi[n] are the actually recorded data, are a white noise
sequence [48]. Reassuringly, this is quite accurately true for our data. Two examples of the fit are
shown in Figure 8.1, blue and red curve.

8.3 Numerical results

As stated in § 8.2, up to 25 rounds of measurements were carried through during the experiment.
This is a considerable number which enables us to check the consistency of the fitting models just
described. The methodology we have adopted is the following: for each run, we de-trend the data
and then fit them to both the Direct Linear Regression (DLR) and the ARMA models. Parameter
estimates are then filed for further analysis, as we now describe. An observation on the ARMA fit
is however in order before we proceed.

Indeed, in the ARMA fit we also need to make a choice of order of the process, i.e., we need
to set the number of α’s and β’s in equation (8.17a). Our selection criterion was based not only
in the goodness of fit —the minimisation of χ2(θ), but also in the minimisation of the dispersion
of the model parameters. If the model is able to reproduce the time evolution for different runs
but it acquires different numerical values for the ARMA model parameters we will not be able to

1the X appearing in the ARX or ARMAX model comes from the exogenous, that is to say external, variable
added in these models with respect the AR or ARMA counterparts.
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Figure 8.2: Histograms of the estimated parameters for the ARMA(3,2), evaluated on the Optical
Window data set.

find a physical interpretation for these values and the model will not be a reliable one. This is
the case for models with increasing number of degree of freedom. For instance, in Figure 8.1, the
ARMA(3,2)2 is shown to be the best choice to describe the phase behaviour. However, when we

2The notation ARMA(p, q) refers to the order of the numerator (p) and the denominator (q) of the ARMA
transfer function.
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Figure 8.3: Histograms of the estimated parameters for the two fitting models described in the
text. Top: ARMA(2,1), with α≡α0 and β≡β1. Bottom: DLR.

take a look at the histogram of the parameters’ numerical values for this model, Figure 8.2, we
find a wide range of values which implies a high uncertainty.

A reduction in the parameter space leads to the ARMA(2,1) model, defined as

G(q,θ) =
α0 + α1 q

−1

1 + β1 q−1
(8.20)

which describes the phase with discrepancies of the same order as the ones found with the
DLR model but with a greater accuracy in the determination of the parameters —see Figure 8.3,
top panels. When testing this model against the data set we find a systematic relation between
both MA parameters i.e. −α1 ' α0. However, both parameters are not numerically equal and
the difference between them will be of great interest since the quantity δ ≡ α0 + α1 will acquire
a concrete meaning when discussing the physical interpretation of the model in § 8.5. Another
problem to be tackled in § 8.4.2 is the fact that the difference between α0 and α1 is much less than
their variances.

A comparison between the ARMA(2,1) and the DLR models brings out some relevant aspects
that are worth stressing. First, a relation can be established between the MA coefficients and the
α0 parameter. This numerical relation, shown in Table 8.3, is given by −α1 ' α0 ' p1. The latter
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DLR ARMA(2,1)

p1 = (−38± 4)× 10−3 rad/K α0 = (39.6± 3)× 10−3 rad/K
p2 = (65± 20)× 10−3 rad/K α1 = (−39.5± 3)× 10−3 rad/K

β1 = −0.996± 0.001

Table 8.1: Mean values and rms variances of parameter estimates

gave us, in the DLR model, the coupling between the phase response and the titanium temperature
increase. In the ARMA(2,1) model, this numerical equivalence implies that the output phase data
is related to the time derivative of the titanium temperature —we come back to this in § 8.4.1.

Another important consideration must be stressed from the statistical study performed on the
data set: β1 is strongly peaked at a nominal value, with only 0.1 % relative tolerance whereas p2 is
much more disperse, with almost 30 % variability. Regardless of the meaning of both parameters,
the comparison does point out that the ARMA(2,1) is a more robust model.

8.4 Developing the ARMA model

Once the ARMA(2,1) parametrisation has proved to be useful we will now deal with some open
issues we have left in the last section.

A major advantage of the ARMA models is that they represent a difference equation relating
its variables. We will use this property to explore the dynamics of the model but we will also take
advantage of it to translate the model into a transfer function in frequency domain, which is clearly
an interesting application for the particular problem of noise diagnostics in the LTP. Finally, we
also need to address the problem of error estimation in the ARMA parameters.

8.4.1 The ARMA(2,1) transfer function

We start transcribing the ARMA model into frequency domain. In view of the numerical results
and the relations found between parameters, it is expedient to rewrite the ARMA(2,1) model in
terms of the following parameters:

α ≡ −α1 , δ ≡ α0 + α1 , β ≡ β1 (8.21)

Hence,

G(z, α, β, δ) = α
1− z−1

1 + βz−1
+

δ

1 + βz−1
(8.22)

is the z-transform of the process transfer function —we have replaced the shift operator q by the
complex variable z [46]. It is also expedient to emphasise the structure of this formula as follows:

G(z, α, β, δ) = αGHP(z, β) + δ GLP(z, β) (8.23)
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with
GHP(z, β) ≡ 1− z−1

1 + βz−1
, GLP(z, β) ≡ 1

1 + βz−1
(8.24)

We now find discrete Fourier transforms (DFT) by the substitution

z = exp(iω∆t) (8.25)

where ∆t is the sampling time of the time series data. The following obtains:

|G̃HP(ω, β)|2 =
4 sin2(ω∆t/2)

1 + 2β cos(ω∆t) + β2
(8.26)

|G̃LP(ω, β)|2 =
1

1 + 2β cos(ω∆t) + β2
(8.27)

|G̃(ω, α, β, δ)|2 =
δ2 + 4α(α+ δ) sin2(ω∆t/2)

1 + 2β cos(ω∆t) + β2
(8.28)

We thus see that the transfer function G is the sum of a high pass term, GHP, and a low pass
term, GLP. The effect of the latter is naturally dominant at low frequencies, while the high pass
term dominates at high frequencies. The concepts of low and high frequencies can be made precise
by means of some intermediate frequency fb where the gains of GHP and GLP are equal. This is
easily calculated:

fb '
∣∣∣∣ δα
∣∣∣∣ 1

2π∆t
(8.29)

and has a numerical value of fb' 0.2 mHz, which means the high pass effect dominates throughout
the LTP bandwidth. We may not however neglect the relevance of the low pass at lower frequencies,
as it contributes extremely valuable information for LISA.

A Bode diagram representation for the transfer functions is shown in Figure 8.4. The filter
modulus is characterised by a plateau of |G̃| ∼ 40× 10−3 rad/K across the entire LTP measuring
bandwidth. Temperature fluctuations at frequencies below this bandwidth are also suppressed
but following a different behaviour, related to the low frequency response of the optical window.
The figure also shows the phase behaviour of the filter, and indicates increasing delays for high
frequency perturbations.

The DC gain of the filter is

|G̃(ω = 0, α, β, δ)| =
∣∣∣∣ δ

1 + β

∣∣∣∣ (8.30)

If the estimated parameters are substituted in this expression then the following is obtained:

|G̃(ω = 0, α, β, δ)| = (25± 4)× 10−3 rad/K (8.31)

Before analysing the physical meaning of the model, we will shortly describe how errors in the
parameters are propagated to the ARMA model.
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Figure 8.4: Bode diagram for the optical window ARMA(2,1) transfer function estimate using the
values from Table 8.3. Left panel: its modulus; dashed lines show the 1σ confidence region. Note
that this confidence region has been extrapolated below ∼0.4 mHz, as actual experimental data
were actually not available in that band. Right panel: phase of the transfer function.

8.4.2 Errors on the ARMA parameters

Since the criterion with which we have discriminated our models is a statistical study on a sample
of different runs, the parameters and the errors associated with them must be derived accordingly
to this approach. But even more relevant is how this uncertainties are transferred to the transfer
function. In § 8.3 we found that the parameter defined in (8.21) as δ ≡ α0 + α1 can be poorly
determined because both errors in the MA parameters ∆α0 = ∆α1 ' 3 × 10−3 are greater than
the nominal value of δ ' 10−4. We found at the same time that both MA parameters were highly
correlated through the whole data set. Our error treatment will need to include all these issues to
correctly represent the uncertainty in the transfer function.

To this end, we will compute the variance of the transfer function G̃(ω, α, β, δ) defined as

γ2
G =< G2 > − < G >2 (8.32)

where < > is the expected value and we have redefined G ≡ G̃(ω, α, β, δ). We can Taylor
expand this function with respect the model parameters

G = G0 + ∂α0G0 δα0 + ∂α1G0 δα1 + ∂βG0 δβ ,

(
∂xG0 ≡

∂G0

∂x

)
(8.33)

where G0 ≡ G̃(ω, α̂, β̂, δ̂). Then, substituting (8.33) in (8.32) and after some algebra we arrive
to the following expression for the variance of the transfer function
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γ2
G = (∂α0G0)2 σα0α0 + (∂α1G0)2 σα1α1 + (∂βG0)2 σββ

+ ∂α0G0 ∂α1G0 σα0α1 + ∂α0G0 ∂βG0 σα0β + ∂α1G0 ∂βG0 σα1β (8.34)

where the covariance matrix σ comes into play. The elements of this matrix are defined as

σ2
ij =< (θi − θ̂i)(θj − θ̂j) > (8.35)

For the case of the set of runs we are working with and given the parameters {α0, α1, β},the
covariance matrix obtained is

σ2 =

 0.16× 10−4 −0.16× 10−4 −0.03× 10−4

0.16× 10−4 0.01× 10−4

0.03× 10−4

 (8.36)

The diagonal elements are the squared errors of the parameters and the non-diagonal terms
contain the information about the correlation between parameters. It is thus clear from this result
that α0 and α1 are strongly dependent on one another and also, that the much lower error in β

has also a dependence on α0. However, for our final purpose, which is the computation of the
function γ2

G, the most relevant result is the former, i.e. σα0α1 = −0.16× 10−4. This negative value
contributes to equation (8.34) reducing the variance of the transfer function G̃(ω, α, β, δ) and,
even if the δ value is poorly determined from the data, the correlation of both MA parameters
reduces the uncertainty of the transfer function at low frequencies to the level shown in Figure 8.4,
where the 1σ confidence region has been determined taking into account all the contribution in
expression (8.34) and hence, this confidence region is much lower than if the non-diagonal terms
of the covariance matrix had not been included in the analysis.

Pseudorandom noise input signals

Our estimation problem has as a distinctive characteristic the capability to control our input signal,
i.e. we can choose the profile of the injection signal we will be using to test our system. A key
point in this situation will be thus to minimise the variance of the estimated parameters.

In order to understand how this signal can be chosen to minimise the components of the
covariance matrix we can consider a simplified MA model,

y[n] =
M−1∑
k=0

h[k]u[n− k] n = 0, 1, ..., N − 1 (8.37)

the observation matrix is therefore defined as

[HTH]ij =
N∑
n=1

u[n− i] u[n− j] i = 0, 1, ...,M ; j = 0, 1, ...,M (8.38)
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Figure 8.5: Thermal and interferometric response of the Optical Window to a BMLS signal applied
to the left side heater. The signal applied were 3 sequential 6th order BMLS with 0.5 W of power
applied and 20 s of minimum time step —see Appendix E for details.

which for large N becomes

[HTH]ij ≈
N−1−|i−j|∑

n=1

u[n] u[n+ k] k = 0, 1, ...,M

= ruu[i+ j] (8.39)

where ruu is the autocorrelation function of u[n]. It can be shown that the minimum variance
for the parameters estimate Θ is only attained if u[n] is chosen accordingly to make the matrix
HTH diagonal [46], i.e.

ruu = 0 i 6= j (8.40)

This property can be achieved by using the Pseudo-Random Noise (PRN) series, which are easily
implemented as a Binary Maximum Length Sequence (BMLS). An overview of the generation and
properties of these test signals is provided in Appendix E.

This methodology was also considered when studying the Optical Window. However, it was
only applied in few data runs and therefore we can not follow the statistical approach that led
us to the determination of the parameters in the ARMA(2,1) case. We will only show it here for
completeness but a more detailed analysis in this subject is required in order to get a well based
conclusion.
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Figure 8.5 shows temperature and phase evolution when applying a BMLS and the fit obtained
with the ARMA(2,1) model described in the previous sections. As before, only the closest sensor to
the heater is being used for the ARMA model and, as shown in the panel, the fit reasonably agrees
with the phase curve. Another characteristic to be mentioned is that the long pulses required to
cover the low frequency band with a BMLS signal imply important temperature increases, ∼ 4 K
in Figure 8.5. Since a simple heat pulses does not reach this temperature raise, this consequence
could be considered a drawback for the selection of this particular signals as a diagnostic tool.

The parameters retrieved by the fit are slightly different than the ones set by the statistical
analysis in Table 8.3, though in the same order of magnitude of the ones obtained: α0 = −α1 '
22 × 10−3 rad/K and β1 ' −1. In what respects the parameter’s error, the comparison of the
covariance matrix obtained with the BMLS input signal, matrix (8.41), compared with the one
obtained with the data set of pulses, matrix (8.36), shows a decrease of the values of the former, i.e.
a decrease on the error of the parameters of the ARMA(2,1) when evaluated with a pseudorandom
input.

σ2 =

 0.8× 10−6 −0.8× 10−6 0.1× 10−8

0.8× 10−6 −0.1× 10−8

0.01× 10−8

 (8.41)

A worth mentioning characteristic is that the error in the β1 parameter is two orders of mag-
nitude lower than the errors in α0 or α1, contrary to what happened when applying a pulse where
the error was of the same order of magnitude —see matrix (8.36). This seems to show that a
BMLS input signal is indeed able to disentangle the information contained in each of ARMA(2,1)
parameters. Being a pseudorandom signal, its auto correlation is minimised and this translates
into a minimisation of the off-diagonal elements in the covariance matrix. On the other hand, the
off-diagonal element of the covariance matrix linking parameters α0 and α1 has the same value of
the error of both parameters, implying thus that the correlation comes not from the input signal
but from a physical underlying reason, as previously proposed in section § 8.4.1

As stated before, a final conclusion about the possible use of BMLS signals as diagnostic tools
in the LTP would require a statistical analysis, equivalent as the one performed in section § 8.3.

8.4.3 The continuous time ARMA

On account of the empirical results reported in § 8.2, and of the remarkable accuracy with which both
DLR and ARMA models fit the experimental data —notwithstanding their completely different
nature—, we now try to shed some light into the kind of processes which take place in the system.

For this, we attempt to picture the ARMA(2,1) model relating the phase readout of the inter-
ferometer φ[n] and the temperature at the titanium flange TTi[n] as the digital implementation of
some analog physical process. The starting point is of course the digital algorithm, equation (8.20),

169



CHAPTER 8. DIAGNOSTICS DATA MODELLING

which in this case is given by

G(q, α, β, δ) = α
1− q−1

1 + βq−1
+

δ

1 + βq−1
(8.42)

where q is the shift operator of equation (8.16). The recursive form of the process thus defined is
therefore

φ[n] + βφ[n− 1] = α {TTi[n]− TTi[n− 1]}+ δ TTi[n] (8.43)

and can be regarded as the digital implementation of a first order continuous time filter, governed
by a first order differential equation:

φ̇(t) + τ−1 φ(t) = A ṪTi(t) +B TTi(t) ,
(̇
≡ d

dt

)
(8.44)

where τ is the characteristic time constant of the analog filter, and A and B are scale factors, re-
spectively weighing the contributions of the temperature’s time variation rate and the temperature
itself to the phase shift effect. We have assumed the TTi(t) dependence in the rhs of (8.44) in line
with the fit result expressed by the rhs of (8.43).

If the time constant τ is much larger than the sampling time ∆t implicit in equation (8.43)
then we can approximate time derivatives by

φ̇(t) ' φ(t)− φ(t−∆t)
∆t

(8.45)

and, mutatis mutandi, the same for TTi(t). Taking t=n∆t for the timing of the n-th sample, and
using the natural notation φ[n]≡φ(n∆t), equation (8.44) is approximated by

φ[n]−
(

1 +
∆t
τ

)−1

φ[n− 1] = A

(
1 +

∆t
τ

)−1

{TTi[n]− TTi[n− 1]}

+ B∆t
(

1 +
∆t
τ

)−1

TTi[n] (8.46)

This can be readily compared to equation (8.43) to obtain

β = −
(

1 +
∆t
τ

)−1

, α = A

(
1 +

∆t
τ

)−1

, δ = B∆t
(

1 +
∆t
τ

)−1

(8.47)

β is seen to have a value very close to −1 (Table 8.3), or β=−(1−η) with η < 10−2 comfortably
in all cases. Hence τ '∆t/η, i.e., τ�∆t, which a posteriori justifies the approximation leading
to equation (8.46).

The formal solution to equation (8.44) can be easily written down. After initial transients die
out, the phase is given by

φ(t) = ATTi(t) + (B −A) τ−1

∫ t

0

e−(t−t′)/τ TTi(t′) dt′ (8.48)
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The meaning of this filter equation is better understood if we recast it in frequency domain:

φ̃(ω) =
[
A

iωτ

1 + iωτ
+B

τ

1 + iωτ

]
T̃Ti(ω) (8.49)

This equation shows again that the analog process is also the superposition of two contributions:
a high-pass filter proportional to A, and a low-pass contribution proportional to B: the first arises
in equation (8.43) due to the titanium temperature derivative, while the second appears related
to the term proportional to the titanium absolute temperature. This split dependence of the OW
response to temperature pulses points to two different physical thermal processes affecting the
glass, as will be discussed in § 8.5.

We can now make use of equations (8.47) to identify the coefficients A and B in terms of the fit
parameter values of Table 8.3. Taking ∆t/τ� 1, we find that A ' α, and B ' δ/∆t. In addition,
we can take advantage of the relationship α ' p1 between the auto-regressive and the DLR model
parameters to obtain an expression relating both models. Accordingly, equation (8.48) can be
rewritten as

φ(t) ' p1 TTi(t) + (δ/∆t− p1) τ−1

∫ t

0

e−(t−t′)/τ TTi(t′) dt′ (8.50)

If we go back to the DLR fit formula, equation (8.12), the following expression ensues:

TGlass(t) ' −
p1

p2
τ−1

∫ t

0

e−(t−t′)/τ TTi(t′) dt′ (8.51)

after the term δ/∆t has been been safely neglected in front of p1. We thus see that temperatures
in the titanium flange and in the OW glass are related by a low-pass filter with a time constant,
τ , of a few hundred seconds —note that p1 and p2 have different signs, Table 8.3.

It must be recalled that this relationship emerges out of the good quality of the fits by both
DLR and ARMA(2,1) models, and is key to understanding why only the titanium gauge is required
to make a good prediction of the OW response to temperature variations, as will be required in
flight. The physical reason for the observed relationship between temperatures is to be sought in
the properties of the interface between the titanium and the glass in the OW.

8.5 Physics of the ARMA process

Two different kinds of thermal effects have been identified as sources of changes in the optical
path-length of a light beam traversing a plane-parallel piece of glass:

i. Temperature dependent changes of the refraction index

ii. Mechanical stress induced changes of the refraction index

We briefly describe below how these effects can be approximately evaluated.
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8.5.1 Temperature dependent changes of the refraction index

The first effect, which is found under stress free conditions, is quantified by the formula [57]

dφ

dT

∣∣∣∣
free

= 2π
L

λ

[
dn

dT
+ (n− 1)αE

]
(8.52)

where φ is the phase shift suffered by a beam of light traversing a glass slab of thickness L and
(nominal) index of refraction n; λ is the wavelength of the used light, and αE is the linear thermal
expansion factor of the glass, αE =L−1 dL/dT .

The dφ/dT |free effect is most prominent at very low frequencies and DC. The reason is that it
happens even if the temperature of the glass is homogeneous, and without mechanical stresses. It
has been measured on naked glass samples in the laboratory, free of any pressure or tension, with the
result that it is 25 mrad/K [60], a figure very well matching the one given by equation (8.31). One
however needs to consider that the latter was obtained from data of a real window, i.e., including
metal flange. This consequently means that the stress contribution dφ/dσ must be comparatively
small at very low frequencies.

The same result is endorsed by another independent evidence. If data-sheet properties of the
OHARA S-PHM52 glass used in the experiment are used to calculate the thermal related path-
length variations in the optical window glass due to changes in the refractive index, the result is
that dφ/dT |free is ∼21 mrad/K, again in good agreement with equation (8.31).

8.5.2 Mechanical stress induced changes of the refraction index

This second effect is relevant to our experiment because the glass, clamped by titanium flanges
to the ISH structure, is under stress due to differing thermal expansion coefficients in glass and
metal. Mechanical stress also induces pathlength changes which are difficult to model. From the
datasheet, the only parameter provided by the manufacturer which can be used to quantify these
interactions is the photoelastic coefficient, β. However, it must be noticed that β does not describe
the change in the refraction index due to stress, dn/dσ, but the appearance of birefringence due
to stress, i.e., the change of the velocity of light along different axes of the material. Although not
directly related, both parameters range in the same order of magnitude [57], and we shall thus use
the photoelastic coefficient here for our order of magnitude estimate, described in the following.

Under this simplyfying assumption, the photoelastic coefficient can be related to a pathlength
variation by

∆sstress = β σ d (8.53)

where β= 10−5 nm cm−1 Pa−1, d is the glass thickness (d= 0.6 cm for the Optical Window), and
σ is the applied stress, having dimensions of pressure.

In this case, the stress on the glass is due to differential thermal dilatation of the titanium
flange and the OW glass itself. The situation is illustrated graphically in Figure 8.6. Because the
coefficient of thermal expansion of the glass is larger than that of the titanium flange embracing it,
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the latter expands less when submitted to the same temperature rise, and hence the glass is com-
pressed radially along the rim. The opposite happens if the temperature decreases, i.e., the glass
is in this case stretched outwards by the radial pull of the titanium. The contraction/expansion
forces acting on glass and titanium reach an equilibrium state which determines the radii of the
contracted/expanded pieces of titanium and glass. The equilibrium position thus happens when

[δρT + δρσ]Ti = [δρT − δρσ]Glass (8.54)

where δρT and δρσ refers to changes in radius caused by temperature changes and by stresses,
respectively. The above formula holds even if temperature changes in titanium and glass are
unequal. On the other hand, we are not considering in our description possible effects coming from
the Helicoflex ring between the titanium and the glass. As stated above, we are here trying to get
an order of magnitude of the effect based on a simplified mechanical model, and interface effects
are thus not included.

The contributions appearing in equation (8.54) are given by [96]

δρT = ρα∆T and δρσ =
p ρ2

`E
(8.55)

where ρ is the radius of the interface between titanium and the glass, ` stands for the width of
the body, E is the Young modulus, α the thermal expansion coefficient and p the lateral pressure.
Combining equations (8.54) and (8.55), and following the notation of Figure 8.6, we find the lateral
pressure on the glass:

p =
αTi∆TTi − αGlass∆TGlass

(r/h)E−1
Ti + E−1

Glass

(8.56)

The strain on the glass lateral surface is given by σGlass = prd/(r d) = p, where d is the thickness
of the window glass —see [96]. Hence,

σGlass =
αTi∆TTi − αGlass∆TGlass

E−1
Ti + (h/r)E−1

Glass

(8.57)

We can consider two different regimes here: the low frequency (LF) regime and the high fre-
quency (HF) regime. The first corresponds to long duration heat pulses applied on the titanium
flange, actually long enough that the temperatures of the glass and the titanium equal each other,
or ∆TTi = ∆TGlass≡∆T . In this case

σGlass =
αTi − αGlass

E−1
Ti + (h/r)E−1

Glass

∆T , low frequency (8.58)

On the other hand, if short heat pulses are applied on the titanium then the glass does not
have time to respond, and in this we can assume ∆TGlass = 0 and ∆TTi≡∆T . Thus,

σGlass =
αTi

E−1
Ti + (h/r)E−1

Glass

∆T , high frequency (8.59)
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Figure 8.6: Schematics of the dilatation of the OW glass and the clamping titanium flange: the
right part zooms in the profiles acquired by the interface (red) when the temperature of the block
increases by ∆T . Should either the glass or the titanium be let expand freely, the boundaries
would be placed as also represented. Dashed line is the interface position before heating.

We can use the above formulas in combination with (8.53) to obtain

dφ

dT

∣∣∣∣
Stress

=


β

2πd
λlaser

αTi − αGlass

E−1
Ti + (h/r)E−1

Glass

, low frequency

β
2πd
λlaser

αTi

E−1
Ti + (h/r)E−1

Glass

, high frequency
(8.60)

It is recalled that ∆φ= 2π∆s/λlaser, where λlaser is the laser wavelength. We put numbers here:

β = 10−3 × 10−9 Pa−1

d = 6× 10−3 m
λlaser = 1.064× 10−6 m

αTi = 8.6× 10−6 K−1

ETi = 11.6× 1010 N m−2

h = 0.02 m

αGlass = 10× 10−6 K−1

EGlass = 7.15× 1010 N m−2

r = 0.015 m

to obtain
dφ

dT

∣∣∣∣
Stress

=

 2.5× 10−3 rad K−1 , low frequency

15× 10−3 rad K−1 , high frequency
(8.61)
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Discussion of the results

The total thermal effect is the sum of the above two effects, i.e., optical pathlength changes induced
by pure thermal expansion and by mechanical stress. The former gives a value of 21×10−3 rad K−1

throughout the frequency band, as extracted from datasheet values — see § 8.5.1 above. We can
thus summarise the results as shown in Table 8.2:

ARMA Analytic

LF range 25 ± 4 23.5
HF range 40 36

Nude glass — 21

Table 8.2: dφ/dT , units in mrad K−1.

The agreement between the results produced by our simplified model and the ARMA fit is
quite good. Even though the model is not fully comprehensive of all the physical effects happening
in the OW, it can be considered rather satisfactory from a purely empirical point of view, hence
very useful for practical purposes. Work is currently in progress for a more thorough approach,
and we shall report on new results in due course.

We conclude from this discussion that the low pass component of the transfer function is almost
exclusively related to the dφ/dT |free effect, while the stress effects only show up significantly in the
higher frequency band. This makes sense, as stresses applied along the glass rim quickly propagate
inwards throughout the glass piece.

Although the LTP spectrum is only above 1 mHz, an analysis at frequencies below this one,
down to 10−4 Hz and even further, must be considered of high interest, as the latter frequency
band will be important for LISA. The experimental data reported in this paper can be improved
to access the lower LISA band, since they typically consist in one hour long runs. This is a strong
suggestion for the LTP experiment plan.

8.6 Noise projection

One of the main scientific objectives of the diagnostics system in the LTP is to measure identi-
fied environmental disturbances [100], and to provide the data and analysis tools to estimate the
contribution of those disturbances to the overall mission noise budget. In practice this means the
LTP Data and Diagnostics Subsystem (DDS) must be able to provide suitable transfer functions
to convert measured disturbance noise into test mass acceleration noise. This section is devoted to
describe this procedure in the case of temperature fluctuation noise in the OW, and to show how
it works in an on-ground laboratory experiment —to be extrapolated to a space-borne one.

We will use the results derived in the previous analysis to obtain an estimation for the thermal
contribution to the interferometer performance. We shall naturally limit ourselves to ARMA

model, since it is the one making sense for real mission purposes, as already discussed.
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Figure 8.7: Temperature fluctuations spectrum (left) measured during the performance experiment
compared to the LTP temperature requirement and the lower limit set by the front end electronics
sensitivity limit. Phase fluctuations (blue curve, right panel) during the same run are compared to
the optical window thermal contribution (magenta curve, right panel), as derived with the ARMA
transfer functions given by equations (8.63) and (8.28). The 1σ confidence region is also included
for the latter.

The basic idea is that the OW transfer function, as determined from high SNR system response,
also applies when there is only (weaker) noise in the window [51]. For this we shall use the one in
equation (8.22), i.e.,

G(z, α, β, δ) = α
1− z−1

1 + βz−1
+

δ

1 + βz−1
(8.62)

We now show which procedures must be applied to address the problem of finding the con-
tribution of temperature fluctuations noise in the OW to the total OW noise. To this end we
consider data of temperature and phase noise generated in a different experiment, and apply to it
the methodology just sketched.

The laboratory setup and the experimental details can be found in reference [59]. In this
experiment, the optical window is not part of a testing Optical Bench (OB), but is glued in a
lateral side of the LTP OB Engineering Model, instead. This way, a double beam pass across
the window is forced: the laser light travels from the optical bench through the OW to a dummy
mirror, faking a test mass; there, it is reflected, sent back again across the OW and out to the
OB. Such setup proved to be compliant with the interferometer noise budget, showing that the
inclusion of the OW does not degrade the interferometer performance. Two temperature sensors
in the titanium flange and one in the glass were left in place to measure temperature values during
long term runs.

No thermal disturbances were deliberately introduced, so the thermometers only read environ-
mental temperature fluctuations. We use equation (8.28) to convert the temperature fluctuations
spectral density, S1/2

T (ω), into a phasemeter spectral density, S1/2
φ,T (ω). Thus,

S
1/2
φ,T (ω) = 2 |G̃(ω, α, β, δ)| S1/2

T (ω) (8.63)
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where the numerical factor 2 is required to account for the double passage of the laser beam through
the window in this case. We assume both passages are completely correlated, given the extremely
small time scale of their occurrence compared to thermal reaction times. Spectral densities are
therefore linearly added.

Results obtained in a typical run with that setup are plotted in Figure 8.7 (noise figures obtained
with the LTP Data Analysis MATLAB Package3 can be found in [71]). The left panel shows
temperature fluctuations measured in the titanium flange. As can be seen, these reach the front
end electronics (FEE) floor noise in the higher frequency region of the measuring bandwidth, while
keeping slightly above the LTP maximum temperature fluctuations requirements limit in the lower
frequencies, around 1 mHz [55]. This is in fact a worst case condition, since the temperature power
spectrum decreases as frequency increases, and thus if the LTP temperature requirement is reached
at the lower frequency range then the rest of the spectrum will naturally follow a descending curve
like the one shown in Figure 8.7.

The phasemeter fluctuations spectrum is however below the required noise level, as we can see
in the blue curve of the right panel. The temperature fluctuations spectral data in the left panel
are then submitted to the algorithm, equation (8.63), and the result is the magenta curve displayed
in the right panel.

The low coupling to thermal disturbances implied by G̃(ω, α, β, δ) causes the thermal contri-
bution to only represent 5 % of the phasemeter noise at 1 mHz, and about 0.5 % of the LTP goal.
We thus feel reassured that there is still considerable margin here.

3http://www.lisa.uni-hannover.de/ltpda
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Chapter 9
Conclusions

In this study we have been dealing with some aspects around the thermal diagnostics on the LISA
Technology Package (LTP) experiment on board the LISA PathFinder (LPF) mission. We conclude
herein some of the main results and possible extensions of some of the problems we addressed in
the previous chapters.

In order to build a stable thermal insulator at low frequencies, we have derived analytical
solutions of thermal transfer functions for simple geometries. These are defined as the ratio of
temperature fluctuation in a given point inside a body with respect the temperature disturbance
around it. Because our final scope is the characterisation of a temperature acquisition system in the
frequency band 1 mHz ≤ ω ≤ 30 mHz, we performed this analysis directly in the frequency domain
which turns out to be easier than dealing with the correspondent Sturm-Liouville problem for the
time domain solution. In addition we also explored the numerical evaluation of thermal transfer
functions by means of thermal simulation and found a method to obtain a transfer function for
a given geometry. The methodology is based on the frequency sweep procedure, usually applied
to electronic systems, translated to the thermal case. The analytical expression derived, together
with extensions to other geometries or the numerical methodology proposed can be applied to a
wide variety of thermal problems as far as, in our case, the interesting results lies in the frequency
domain behaviour of the system.

As previously stated, the transfer function formalism was developed to design a thermal test
bench required to test the thermal data acquisition subsystem. The insulator finally implemented
was based on a two layer scheme of a insulator material shell nesting a metallic core where the
sensors were attached. Results obtained with this thermal bench showed a good agreement with
the transfer function derived, both analytically and by numerical simulation, reassuring the validity
of this approach. In what respects the thermal FEE performance results, although first results
showed a slight noise excess in the low frequency band ∼ 1 mHz, the noise source was detected to be
mainly due to non-linearities in the A/D and solutions for this effect were faced and are currently
under development. Another point which may need further development is the treatment of the
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heat leaks through the wires. Our approach considered all the heat flux generated from end to end
of the wire as heating up the whole metallic core, however thermal contact or self-heating effects
could induce different behaviours than the first order response that we found and consequently
used to size this disturbance.

The analytical expressions obtained for the design of thermal insulators, validated with the
experimental results with the thermal FEE, allowed the design and construction of two more
insulators, this time with an opening mechanism and therefore being a non-destructive test, which
are currently being used for the evaluation of temperature sensors performance after these devices
undergo a baking process.

Once the thermal FEE was characterised we addressed thermal problems related more closely
with the LTP experiment. A first step was to size the heaters that will fly on board the mission.
To this end the LCA thermal model developed by CGS was used to evaluate the temperature
evolution of heat inputs in a extremely thermal stable environment as the LTP will be. Moreover,
the thermal model can be thought not only as an evaluation tool to perform the previous studies
on heaters’ sizing but also a tool to obtain relevant scientific information in itself. As an example,
we examined the possibility of evaluating the radiation view factor of the test mass to the electrode
housing with the thermal model. This factor scales the thermal coupling of the test mass motion
with thermal disturbances and is therefore of scientific interest for the mission. Our results are
in the same order of magnitude as the ones obtained experimentally but are, obviously, strongly
dependent on the modelling. Other relevant information can be obtained from the LCA model:
we are currently working on the application of the thermal frequency sweep methodology to the
thermal model in order to obtain thermal transfer functions from point to point of the LCA; also
a thermal mapping tool able to predict temperature values in the LCA based on the data acquired
by the sensors distributed through the experiment is also being studied, based on the information
gathered in the thermal model.

Together with the results of the simulations in the thermal model, we could also perform thermal
experiments in the Optical Bench Engineering Model, and with an Optical Window prototype in
collaboration with the AEI-Hannover. Both simulation and experimental data were used to define
a maximum power required for the heaters on board the mission. The values derived in this work
were translated into a DDS requirement to be implemented by the industrial partner. Moreover, the
definition of a required power has a direct impact on the technological solution to be implemented
in the flight model given the very restrictive conditions on board the satellite.

The experimental campaign on the Optical Bench allowed the determination of some coupling
values between the temperature increase on the Optical Bench and the flanges and the response
of the interferometer. The physical mechanism behind these factors could not be clearly enough
determined and thus these factors must be considered as a phenomenological approximation to the
problem which requires a more thorough analysis.

In the Optical Window case, an extensive thermal test campaign yielded a good enough data
set to perform a more detailed study of the data analysis techniques required to deal with the
diagnostic problem. The data analysis methodology described in the previous chapters of this
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thesis has allowed the description of the interferometric response of a laser beam going through
the Optical Window to a heat input in terms of an ARMA digital filter. The dynamics described
by the difference equation behind the ARMA has proved to be very useful to understand the
physical effects contributing to the thermal noise. Moreover, the ARMA filter can be directly
translated into a transfer function in the frequency domain which gives us the information of the
noise contribution in the measuring bandwidth, which is the final scope of the diagnostics.

It is worth mentioning that the ARMA noise model for the Optical Window sets a parametri-
sation that can be useful for the LTP experiment during in-flight operations. In this sense, the
current work provides a methodology to deal with the data but, at the same time, a strong recom-
mendation to include data runs long enough to correctly evaluate the low frequency region of the
ARMA filter which is of relevance not only for the LPF mission but also for the proposed gravi-
tational wave detector LISA. In the same line of reasoning it is also necessary to stress the good
results obtained, in terms of parameter error, with the BMLS signal. Although we do not provide
conclusive results, we think that the pseudorandom signal could be considered an important data
analysis tool to evaluate noise contributions in the LTP experiment.

These properties are general enough to be applied in the thermal data analysis on different
locations in the LTP experiment. To confirm this approach, more data analysis on real experimental
data needs to be afforded in order to test the methodology with the response of other subsystems
to thermal shocks, clearly the most interesting being the GRS. On the other hand, a key point
which needs improvement is the analysis of MIMO (Multiple Input-Multiple Output ) data sets,
which is usually the case in gravitational wave detectors. In the present work we have focused
on the ARMA filter in a SISO (Single Input-Single Output) example which has helped us to gain
physical insight, however a real implementation of this methodology will imply the description of
a MIMO experiment and its associated problems.

The discussion and implementation of this technique must undergo in the framework of the
current LTP Data Analysis Toolbox development, a current taskforce inside the LTP collaboration
in charge of the definition and implementation of a data analysis MATLAB toolbox for the analysis
of the LTP experiment data.
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És desfer-les, després, el que dóna ànsia. ”
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Chapter 10
Resum

L’objectiu d’aquesta tesi és l’estudi i caracterització dels fenòmens tèrmics que actuen com a fonts
de soroll en un detector d’ones gravitatòries espacial. Dintre d’aquest camp, que engloba diferents
disciplines i metodologies, el present treball estudia diferents aspectes al voltant d’aquest tema:
des del disseny d’un äıllant tèrmic a baixes freqüències fins a la simulació de polsos tèrmics per a
diagnòstic tèrmic, aix́ı com també l’estudi d’algoritmes d’anàlisi de dades que puguin caracteritzar
de forma eficient el soroll tèrmic a bord del satèl·lit.

Aquest succint caṕıtol intenta destacar-ne els resultats més significatius, mantenint una co-
herència en la presentació. A continuació, i per tal de posar aquest estudi en el context adient,
passem a revisar breument les principals caracteŕıstiques de les ones gravitatòries i la problemàtica
associada a la seva detecció.

10.1 Introducció

Les ones gravitatòries van ser introdüıdes per Albert Einstein en la seva Teoria de la Relativitat
General com a conseqüència de la velocitat finita de propagació de la interacció gravitatòria [30].
Einstein va mostrar que les equacions regint la interacció gravitatòria acceptaven solucions radiants,
tal com també succëıa amb les lleis de l’electromagnetisme de Maxwell. Tot i això, l’extrema
debilitat de la interacció gravitatòria ha fet que, tot i els esforços dedicats, a dia d’avui aquesta
radiació no hagi pogut ser detectada.

Malgrat això, existeixen proves experimentals de l’existència d’aquesta radiació. Aix́ı, l’any
1974 els astrònoms R.A. Hulse i J.H. Taylor van poder mesurar com el sistema binari PSR 1913+16
redüıa progressivament el seu peŕıode de rotació [43], exactament segons la predicció que feia la
Relativitat General tenint en compte que el sistema estava radiant ones gravitatòries. L’any 1993
ambdós van rebre el Premi Nobel de F́ısica per aquest descobriment.

La recerca per tal d’obtenir una mesura directa d’aquesta radiació comença amb el treball de
J.Weber qui, a la dècada dels 60, va dissenyar els primers detectors. Molts grups van seguir les idees
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de Weber, les quals es basaven en els coneguts com a detectors acústics, mentre que d’altres van
desenvolupar la tecnologia que resultaria en els que avui coneixem com a detectors interferomètrics.
Els primers basen el seu principi de detecció en la ressonància que es produeix en un cos sòlid quan
aquest interacciona amb una ona gravitatòria, la qual hem d’entendre en aquest context com una
pertorbació del camp gravitatori que es propaga en el temps. L’efecte doncs serà el d’una marea
gravitatòria que establirà gradients de força entre punts separats del sòlid activant-ne els modes
de ressonància. El segon mètode es basa en la detecció del desplaçament relatiu entre dues masses
que actuen com a miralls en un interferòmetre Michelson. A continuació es llisten els principals
experiments que han posat en pràctica aquestes tècniques:

• Detectors acústics que podem subdividir per la seva forma entre les barres ciĺındriques
ALLEGRO [62] als EUA; AURIGA [25], EXPLORER [13] i NAUTILUS [14] a Itàlia i els
detectors esfèrics MINIGRAIL [29] a Holanda i MARIO SCHENBERG [7] a Brasil. A t́ıtol
d’exemple el detector NAUTILUS consisteix en un cilindre de 2300 kg d’alumini de 3 m de
llarg el qual es manté a una temperatura de 0.1 K. Les seves freqüències de ressonància, on
es maximitza la possibilitat de detecció, es troben a 908 i 924 Hz.

• Detectors interferomètrics entre els que trobem els dos detectors LIGO [5] als EUA, de
4 i 2 km de longitud de braç de l’interferòmetre; VIRGO [19] a Itàlia amb 3 km de longitud
i GEO600 [105] a Alemanya i TAMA [9] a Japó amb 600 m i 300 m respectivament.

La sensibilitat d’aquests instruments es mesura en unitats de tensió (“strain”) h ≡ ∆L/L.
En el cas, per exemple, de l’experiment LIGO s’ha assolit una sensibilitat en l’ordre de magnitud
S1/2 ∼ 10−23 Hz−1/2 expressat en termes de densitat espectral de la tensió en la banda de freqüència
∼ 100 Hz. L’anàlisi de les dades obtingudes amb aquesta sensibilitat ha permès establir cotes
màximes en la detecció d’ones gravitatòries provinents de sistemes astrof́ısics en els que es preveu la
generació d’aquesta radiació tals com: supernoves, estrelles de neutrons, sistemes binaris d’estrelles
de neutrons i sistemes binaris de forats negres. També s’han establert cotes superiors per a un
possible fons d’ones gravitatòries d’origen cosmològic.

Els detectors d’ones gravitatòries veuen limitada la seva sensibilitat en la banda de freqüències
inferior a ∼ 10 Hz degut al soroll d’origen śısmic i al degut a activitats humanes. És per aquesta
raó que es va idear la missió Laser Interferometer Space Antenna (LISA) que pretén situar un
observatori d’ones gravitatòries en òrbita al voltant del Sol.

10.1.1 LISA i LISA Pathfinder

LISA és una missió conjunta ESA-NASA, dissenyada com un detector d’ones gravitatòries amb
sensibilitat màxima a la banda del mil·lihertz. El disseny de LISA es basa en tres naus cadascuna
de les quals conté una massa (massa de test) en caiguda lliure, separades una respecte l’altre
5 × 106 km. Cada nau està connectada a les altres dues mitjançant un làser infraroig que permet
observar el desplaçament relatiu entre cada parell de masses. D’aquesta manera aquestes masses
actuen com a miralls de l’interferòmetre.
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Figure 10.1: Esquema de l’òrbita de LISA

Per tal de mantenir les masses en caiguda lliure a l’interior de les naus s’utilitzen sensors
capacitatius capaços de mesurar la posició de la massa test respecte de la nau fins a la resolució
del nanòmetre sense necessitat d’establir contacte f́ısic i sense pertorbar la caiguda lliure. Les
mesures d’aquests sensors s’acoblen a uns propulsors que permeten corregir de forma controlada
la trajectòria de la nau aplicant forces de micronewtons. El llaç de control que s’estableix entre el
sensor capacitatiu i els propulsors s’anomena control drag-free.

Els requeriments que ha d’assolir el làser per tal de detectar ones gravitatòries en LISA són,
al igual que en el cas del drag-free, extremadament exigents. Cal tenir en compte que la font de
làser en cada nau és d’1 W de potència i que després de travessar els 5 × 106 km (que tarda en
recórrer 30 s) arriba a la segona nau amb una potència d’uns 10−12 W i dispersada en una àrea
d’uns quants quilòmetres. Aquest feix làser és el que en la segona nau es fa interferir amb un làser
local per tal de determinar la posició relativa entre les dues masses de test.

La detecció d’ones gravitatòries a l’espai requereix certs desenvolupaments tecnològics sense els
quals la missió LISA no és possible. Aquesta és la principal raó que condúı a la proposta d’una
missió prèvia per tal de testejar aquesta tecnologia: aquesta és la missió LISA Pathfinder (LPF),
en el seu inici anomenada SMART-2, que a dia d’avui té data de llançament l’any 2010. Aquesta
missió consta de dos experiments que persegueixen el mateix objectiu: l’europeu LISA Technology
Package (LTP) i l’americà Disturbance Reduction System (DRS).

El concepte darrera la missió LISA Pathfinder és el d’escurçar un braç de LISA dels 5×106 km
als 30 cm. Aix́ı, la missió consta de dues masses de test situades en una mateixa nau, el sistema de
control drag-free permet mantenir aquestes masses en caiguda lliure (no pot però seguir les dues
masses de test alhora en totes les direccions) a l’interior del satèl·lit protegint-les de forces externes
i de pertorbacions que afecten el seu moviment que provenen de la mateixa nau. Al mateix temps
un interferòmetre s’encarrega de mesurar la distància relativa entre les dues masses fins a una
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Figure 10.2: El principi de funcionament del drag free. La nau (M) protegeix la massa de test
(m) de forces externes (Fext). Per tal de mantenir-se centrada al voltant de la massa de test, la
nau està equipada amb sensors de posició el senyal dels quals alimenta els propulsors en un llaç
de control amb guany ω2

DF . Possibles fonts de soroll són: el soroll de desplaçament del sensor xn,
forces errants fstr i l’acoblament de la nau a la massa de test degut a qualsevol gradient de força
en DC.

resolució picomètrica.
El requeriment cient́ıfic d’aquesta missió s’escriu en termes de la densitat espectral de l’acceleració

relativa entre les dues masses, l’objectiu és per tant [10]

S
1/2
a,LPF(ω) ≤ 3×10−14

[
1 +

(
ω/2π

3 mHz

)2]
m s−2/

√
Hz (10.1)

en el rang de freqüències 1 mHz ≤ ω/2π ≤ 30 mHz. Es considera que l’assoliment d’aquest objectiu
demostra la viabilitat de LISA, en la qual el requeriment anterior és 10 vegades més exigent tant
en la magnitud de l’acceleració com en la banda de freqüències.

Si hom considera una nau de massa M protegint una massa (m) en caiguda lliure i que,
mitjançant un conjunt de sensors, mesura la distància relativa entre la nau i la massa al mateix
temps que utilitza aquest senyal per mantenir-se centrada al voltant de la massa, es demostra que
l’acceleració sobre aquesta massa test ve donada per [42]

a =
fstr
m

+ ω2
p

(
xn +

Fext
M ω2

DF

)
=
fstr
m

+ ω2
p∆x (10.2)

on

• Fext són les forces aplicades sobre la nau.

• fstr és qualsevol força errant (“stray force”) que s’aplica sobre la massa de test, tan provinent
del satèl·lit mateix (p.ex. tèrmiques) com de l’exterior (p.ex. raigs còsmics).
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Figure 10.3: Disseny de la part central de l’experiment LTP a dia 13 d’octubre de 2006.

• xn és el soroll del sensor de posició.

• ωp és la rigidesa paràsita (“parasitic stiffness”) per unitat de massa que acobla el moviment
del satèl·lit a la massa de test.

L’exigent objectiu (10.1) estableix requeriments en cadascun dels paràmetres de l’equació ante-
rior [100]. Aquests requeriments tenen implicacions per a tots els subsistemes del LTP que són el
Sensor de Referència Gravitatòria GRS (sigles de l’acrònim anglès), el Subsistema de Metrologia
Òptica OMS i el Subsistema de Diagnòstic i Dades DDS. En particular el ĺımit que s’estableix per
a fstr té una repercussió directa en l’estabilitat tèrmica que s’ha d’assolir en el satèl·lit. Essent
l’estudi dels fenòmens tèrmics l’objectiu principal d’aquesta tesi descriurem de forma abreujada
quins són els efectes tèrmics que poden ser font de soroll en la mesura en el LTP i quins són els
ginys de diagnòstic tèrmic dintre el DDS encarregats de caracteritzar aquesta contribució.

10.2 Diagnòstic tèrmic

L’objectiu del sistema de diagnòstic tèrmic a bord del LTP és el de poder mesurar i caracteritzar
la contribució tèrmica al soroll de la mesura de l’acceleració relativa entre les dues masses de test
de l’experiment. Aquesta contribució és la conseqüència de diferents mecanismes que provoquen
l’acoblament de pertorbacions tèrmiques que es puguin produir en diferents punts amb la mesura
de l’acceleració, ja sigui via efectes que pertorben l’interferòmetre o efectes que pertorben la mesura
del sensor capacitatiu.

191



CHAPTER 10. RESUM

10.2.1 Efectes tèrmics

A continuació es descriuen els principals efectes d’acoblament tèrmic, distingint-los segons els
subsistemes que afecten.

Efectes tèrmics en el GRS

Els principals efectes que poden afectar el Sistema Inercial són aquells que impliquen un de-
splaçament de la massa de test deguts a pertorbacions tèrmiques. Entre ells destaquen:

• Pressió per radiació: diferències en la temperatura a banda i banda de la carcassa que
envolta la massa de test i suporta els elèctrodes que formen el detector capacitatiu (“elec-
trode housing”) poden provocar diferències en la radiació tèrmica que el sensor pot detectar.
L’acceleració que introdueix aquest fenomen es descriu com

∆ae.m. =
16A2

TMσ

3mTMc
αe.m. T

3∆T (10.3)

on ATM i mTM són l’àrea encarada als elèctrodes i la massa de la massa de test, i αe.m. un
factor de correcció geomètric.

• Efecte radiomètric: En ambients de baixa pressió, les diferències de temperatura en el gas
es tradueixen en diferències de pressió que poden tardar a equilibrar-se degut a les condicions
rarificades. Aquesta contribució es descriu segons l’expressió següent

∆aradiometer =
1
2
pATM

mTM

∆T
T

(10.4)

• Outgassing: En condicions de buit, les interaccions de les molècules amb les parets poden
tenir un comportament estad́ıstic força allunyat del de la simple interacció elàstica. El procés
d’outgassing és el que experimenten les molècules en aquestes superf́ıcies quan, en certes
condicions, poden alliberar-se del lligam que els uneix a la superf́ıcie. L’efecte depèn tant de
la pressió i la temperatura com de la geometria o els materials emprats. Aquesta contribució
a l’acceleració de la massa de test pot expressar-se com:

∆aout =
Q(T )ATM

Ceff mTM

Θ
T 2

∆T (10.5)

on Q(T ) és la taxa d’outgassing, Ceff és la conductància efectiva i conté dependències
geomètriques i Θ és una temperatura d’activació.

D’altres efectes que també es poden considerar en aquest apartat poden ser p.ex. les distorsions
tèrmiques de la carcassa dels elèctrodes que podrien afectar la mesura capacitativa o la col·lisió
aleatòria de molècules sobre la massa de test.
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Les estimacions quantitatives d’aquest fenomen són encara objecte d’estudi experimental; dels
últims resultats en podem treure que el factor d’acoblament entre pertorbacions tèrmiques a la
carcassa dels elèctrodes i acceleració sobre la massa de test és ∼ 100 pN/K [21].

Efectes tèrmics a l’OMS

Els efectes en el cas del Subsistema de Metrologia Òptica poden afectar la mesura en diferents
posicions. En general, l’efecte que cal considerar són dilatacions tèrmiques tot i que depenent de la
posició on es produeixin poden produir efectes diferents. Aix́ı, gradients tèrmics en el banc òptic
es poden traduir en desplaçaments que l’interferòmetre es capaç de mesurar. El mateix succeeix
en el cas de pertorbacions tèrmiques en els puntals (“struts”) que subjecten l’experiment dintre
l’escut tèrmic en el satèl·lit, tot i que en aquest cas també podrien produir-se tensions mecàniques
degut a diferències en el coeficient d’expansió tèrmica dels diferents materials.

Un últim objecte on aquests efectes poden ser rellevants és la finestra òptica que el làser ha
de travessar des del banc òptic per arribar a la massa de test dins el tanc de buit. Essent l’únic
component òptic que es troba fixat en una estructura metàl·lica és susceptible d’introduir soroll
en la mesura. Aquesta contribució es discutirà extensament més endavant. Podem esmentar
però aqúı una primera estimació d’aquest efecte basant-nos en el full d’especificacions del material
utilitzat en la finestra òptica, que implicaria una contribució de l’ordre ≈ 4 × 21 × 10−3 rad/K.
Si es volgués assolir un soroll interferomètric de 9 pm/

√
Hz (≈ 50µrad/

√
Hz), això requeriria en

aquestes condicions una estabilitat tèrmica S1/2
T ≤ 6× 10−4 K/

√
Hz en la banda de mesura.

Requeriment tèrmic a l’LTP

El requeriment per a la contribució total del soroll en l’acceleració es considera grosso modo que
ha de representar un màxim del 10% de l’objectiu final de la missió i que per tant es pot escriure
com:

S
1/2
a,T (ω) ≤ 3×10−15

[
1 +

(
ω/2π

3 mHz

)2]
m s−2/

√
Hz (10.6)

Sumant totes les contribucions breument exposades fins aqúı es considera que la contribució
del soroll tèrmic compleix l’especificació anterior si es manté una estabilitat tèrmica a bord del
satèl·lit que compleixi

S
1/2
T (ω) ≤ 10−4 K/

√
Hz , 1 mHz ≤ ω/2π ≤ 30 mHz (10.7)

en la banda de mesura.

10.2.2 Ginys tèrmics

Per tal de mesurar l’estabilitat tèrmica i caracteritzar els efectes que s’han descrit, l’experiment
LTP comptarà amb 23 sensors de temperatura de precisió, juntament amb un conjunt de 14
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escalfadors situats en punts que es consideren cŕıtics pel que fa a la seva sensibilitat tèrmica. Amb
aquest subsistema tèrmic es pretén mesurar de forma cont́ınua l’ambient en el satèl·lit aix́ı com
les pertorbacions en la banda de mesura fins a la resolució marcada pel requeriment (10.7). De la
mateixa manera els escalfadors permetran realitzar experiments on la contribució tèrmica al soroll
de mesura es potenciarà per tal de poder-la caracteritzar i comprendre.

10.3 Eines d’anàlisi tèrmica

Per tal d’estudiar certs aspectes del diagnòstic tèrmic ha sigut necessari desenvolupar metodologies
espećıfiques d’anàlisi tèrmica que descrivim a continuació. L’objectiu és el de fer una primera
descripció concisa per tal de passar amb posterioritat a l’aplicació en casos concrets.

10.3.1 Funcions de transferència tèrmiques

Sovint en problemes d’anàlisi tèrmica és necessari poder determinar quina és la capacitat d’äıllament
tèrmic que permet un cert material o també quina és la configuració més adient per a obtenir una
determinada estabilitat tèrmica. Aquest serà el nostre cas d’aplicació més endavant i amb aquesta
finalitat s’han desenvolupat en aquesta tesi eines per poder afrontar aquest problemes.

L’anàlisi que es duu a terme normalment en l’enginyeria és el de les resistències tèrmiques, el
qual es basa en una analogia del problema tèrmic amb l’elèctric i permet una anàlisi ràpida i senzilla
dels paràmetres involucrats en el problema. L’extensió evident d’aquest esquema es troba en la
metodologia dels paràmetres agrupats (“lumped parameters”) que inclou en l’anàlisi la dependència
temporal fonamentada en aproximacions no sempre vàlides, com ara que els gradients tèrmics a
l’interior del cos estudiat són negligibles.

La manera com s’ha abordat aquest problema en el nostre estudi és el de resoldre l’equació de
calor de Fourier a l’interior del sòlid. Aquesta s’escriu com

ρC ∂tT (x, t) = ∇ · [K∇T (x, t)] (10.8)

on ρ, C, K són la densitat, la calor espećıfica i la conductivitat tèrmica, respectivament.
Donat que els requeriments en la missió LISA Pathfinder vénen definits en una determinada

banda de freqüències baixes com hem vist a (10.1), una particularitat del nostre problema és
que estarem interessats en el comportament d’un äıllant tèrmic en aquesta banda. La solució
desenvolupada en aquesta tesi que s’ha demostrat més pràctica a l’hora de resoldre aquest problema
ha sigut la de resoldre aquestes equacions en el domini de la freqüència. D’aquesta manera es pot
obtenir anaĺıticament el que es coneix com a funció de transferència, és a dir, quina és la relació
entre les fluctuacions de temperatura a l’exterior i a qualsevol punt de l’interior del sòlid que ens
interessa.

En el cas concret d’una esfera homogènia sotmesa a un bany tèrmic isòtrop, es demostra que
la funció de transferència en el centre es pot obtenir de forma senzilla amb aquest mètode i es pot
escriure de forma concisa com
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Figure 10.4: Representació gràfica de la resposta d’una equació en diferències de primer ordre a
una entrada sinusöıdal considerant diferents valors per als paràmetres de l’equació en diferències.
També es mostra l’ajust per obtenir l’amplitud en el cas estacionari.

K̃0(0, ω) =
q a

sin(q a)
, q2 = −iω ρC

K
(10.9)

que es pot expandir tenint en compte les dues components de la variables complexa q per
obtenir

K̃(0, ω) =
(1 + i)β

sinh(β) cos(β) + i cosh(β) sin(β)
, β ≡

∣∣∣ωτ
2

∣∣∣1/2 (10.10)

Aquesta metodologia s’ha estès a l’aplicació en altres geometries aix́ı com en casos de múltiples
capes d’äıllament, la qual cosa serà d’especial interès més endavant.

10.3.2 Anàlisi d’escombrat tèrmic

La metodologia anterior ens dóna molta informació sobre el comportament tèrmic d’un sòlid en una
certa zona de l’espai de freqüències sempre i quan puguem resoldre l’equació amb les condicions
de contorn adients. Aquest últim pas no és sempre fàcil donat que la majoria de casos rellevants
impliquen geometries que dificulten la solució anaĺıtica. Per aquesta raó és interessant desenvolupar
una metodologia basada en un procediment numèric que ens permeti obtenir resultats mitjançant
simulacions tèrmiques.

La metodologia que es descriu a continuació es basa en el que usualment es coneix com escombrat
de freqüències en l’anàlisi de sistemes electrònics. En aquest mètode s’aplica una ona sinusöıdal
a l’entrada del sistema i s’observa la seva resposta, repetint l’operació amb sinusöıdals a diferents
freqüències es pot obtenir la funció de transferència del sistema en qüestió.
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De la mateixa manera podem utilitzar en el nostre cas simulacions tèrmiques que ens permetin
avaluar la resposta d’un determinat sistema a impulsos tèrmics sinusöıdals a diferents freqüències.
Donat que la resposta d’un sistema la podem escriure de forma general com una resposta transitòria
i una estacionària

y[n] = yss[n] + ytrs[n]

= H(ω0)Aei ω0 n + ytrs[n] (10.11)

ajustant adequadament l’amplitud de la resposta a temps llargs podrem determinar la funció
de transferència a la freqüència a la que estem aplicant l’ona sinusöıdal, que en l’equació (10.11)
apareix indicada com H(ω0).

La Figura 10.4 mostra un exemple d’aplicació d’aquest procediment.

10.4 Disseny del banc de proves tèrmic

Les eines prèviament descrites s’han posat a prova amb l’objectiu de dissenyar un äıllant tèrmic
capaç d’atènyer el nivell d’estabilitat tèrmica necessari per demostrar que el subsistema de mesura
tèrmica dissenyat per una col·laboració IEEC-UPC complia amb els requeriments necessaris.

Aquest requeriment es deriva del ja esmentat referent a l’estabilitat tèrmica en el satèl·lit,
equació (10.7). Bàsicament es tracta d’assegurar que el conjunt que formen l’electrònica de mesura
i els sensors de temperatura poden mesurar variacions tèrmiques fins a una estabilitat 10 vegades
millor que l’estabilitat que hi haurà (nominalment) al satèl·lit. Evidentment, és necessari que la
sensibilitat de l’aparell de mesures tèrmiques estigui per sota del nivell del soroll ambiental si volem
estar segurs que s’ha assolit el nivell de soroll ambiental desitjat. El requeriment a complir per
l’electrònica de mesures tèrmiques és

S
1/2
T,FEE (ω) ≤ 10−5 K

√
Hz 1 mHz ≤ ω/ 2π ≤ 30mHz (10.12)

Precisament seguint el mateix raonament si ara hem d’imposar quin ha de ser el nivell d’estabilitat
que caldrà per demostrar el requeriment anterior és lògic aplicar la mateixa recepta i demanar una
millora d’un ordre de magnitud en estabilitat tèrmica. Aix́ı tindrem que es fa necessari un ambient
on sigui possible l’estabilitat donada per

S
1/2
T,Bench (ω) ≤ 10−6 K

√
Hz 1 mHz ≤ ω/ 2π ≤ 30mHz (10.13)

Donat que aquest valor es troba per sota del nivell de soroll del nostre aparell de mesura no
podrem validar-lo experimentalment i caldrà basar-nos en una sòlid estudi anaĺıtic del sistema
analitzat com a äıllant.

El concepte de l’äıllant dissenyat es troba a la Figura 10.5 i es tracta senzillament de dues capes,
una interior de metall que aporta inèrcia tèrmica i una d’exterior feta d’un mal conductor tèrmic,
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Figure 10.5: Concepte de l’äıllant tèrmic. Esquerra: diagrama amb la posició dels sensors a
l’interior. Dreta: secció, amb la notació utilitzada.

que atenua les fluctuacions de l’exterior. La geometria esfèrica es considera per tal de simplificar
l’anàlisi.

10.4.1 Funció de transferència de l’äıllant

De la metodologia prèviament descrita en podem obtenir una funció de transferència per a l’äıllant
que ara ens ocupa. Es pot demostrar que en condicions d’un bany isòtrop, la funció de transferència
ve donada per l’expressió

Hc(ω) =
K2 a1 a2 q1 q2

K1 sinh(q2 (a2 − a1))F1(a1) +K2 sinh(q1 a1)F2(a2)
(10.14a)

on q2 = −iωρC/K, i F1(r) i F2(r) vénen donades per

F1(r) = r q1 cosh(q1 r)− sinh(q1 r) (10.14b)

F2(r) = a1 q2 cosh(q2 (r − a1)) + sinh(q2 (r − a1)) (10.14c)

A partir d’aquesta equació, i seleccionant els materials oportuns (alumini i poliuretà en el nostre
cas), podem obtenir quines són les dimensions a partir de les quals es complirà el requeriment que
ens hem imposat, equació (10.13), les quals vénen donades per

a1 = 15.7 cm a2 = 57 cm (10.15)
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Figure 10.6: Mapa de la supressió de l’amplitud de la fluctuació tèrmica a l’interior d’un äıllant
format per una capa d’alumini a l’interior d’una closca de poliuretà. la supressió es mostra com a
funció dels radis de les dues capes. Les ĺınies mostren salts de 10−5.

Val a dir que les prediccions del model anaĺıtic s’ajusten perfectament a les que s’obtenen d’un
model tèrmic on hem aplicat la metodologia de l’escombrat tèrmic. Obtenim aix́ı un acord complet
entre els dos mètodes proposats en la secció anterior.

Aquestes equacions ens permeten generar un mapa com el de la Figura 10.6, on fixant els
materials de l’äıllant podem veure quines són les dimensions necessàries que ha de tenir el disseny
per assolir la supressió tèrmica requerida.

10.4.2 Contribució del cablejat

Un dels principals problemes que podem trobar en aquesta configuració són causats per les pertor-
bacions tèrmiques provinents de l’exterior entrant a l’interior de l’äıllant a través dels fils metàl·lics
que connecten els sensors amb l’electrònica.

En el present treball hem establert un model senzill per a l’avaluació d’aquest efecte. Aquest
es basa en la suposició que tot el flux de calor que es genera degut al gradient de punta a punta
del cable es dedica completament a augmentar la temperatura del bloc intern. Les pèrdues laterals
o en les interf́ıcies entre diferents materials no es contemplen en aquesta aproximació i podrien
introduir-se en una versió millorada.

Es pot demostrar que sota les aproximacions anteriors la funció de transferència que tradueix
les fluctuacions de la temperatura exterior a fluctuacions en la temperatura del bloc intern pot
escriure’s com

Hw(f) =
N

2 i f
r2
wKw

Lw (ρC CC VC)
(10.16)

on N és el nombre de cables emprats; rw i Lw el radi i la longitud d’aquests cables; Kw la
conductivitat tèrmica del material del cable, i ρC , CC i VC la densitat, la capacitat caloŕıfica i el
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Figure 10.7: Mapa de la supressió de temperatura a l’interior d’un volum d’alumini degut a les
fluctuacions tèrmiques que arriben a aquest bloc a través de 40 cables de coure. El mapa apareix
com a funció de la longitud del cable i el volum d’alumini. Les ĺınies mostren salts de 10−5.

volum del material que forma el nucli interior de l’äıllant.

Anàlogament al procediment seguit amb les dimensions de l’äıllant, podem utilitzar l’equació
(10.16) per generar un mapa que descrigui quin són els paràmetres òptims per al nostre disseny,
tal com es descriu en la Figura 10.7.

10.4.3 Construcció de l’äıllant

L’estudi portat a terme va permetre la definició d’un äıllant capaç de complir les nostres especifica-
cions. La construcció d’aquest disseny es va portar a terme el juliol del 2004 a NTE. El nucli intern
està format per tres plaques d’alumini, cadascuna de 260 mm × 260 mm × 80 mm. Un d’aquests
blocs es va foradar per tal d’incloure-hi els sensors i les resistències de referència, 8 forats a banda
i banda. Aquests aparells es van introduir i els orificis es van cobrir amb grassa tèrmica per tal
d’assegurar un bon contacte tèrmic.

La capa de poliuretà envoltant el nucli metàl·lic es va implementar mitjançant un motlle de
fusta on s’hi introdúı el nucli metàl·lic per després abocar-hi el poliuretà en estat ĺıquid. Més
detalls a la Figura 10.8.

Val a dir que aquest disseny és una prova destructiva ja que els sensors no es poden recuperar
una vegada introdüıts. Per tal de poder mesurar l’estabilitat tèrmica utilitzant diferents remeses de
sensors, en l’actualitat s’utilitzen versions millorades d’aquest disseny amb possibilitat d’obertura.
Les eines utilitzades pel disseny han estat les presentades en aquesta tesi.
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a) b)

c) d)

Figure 10.8: a) Dos dels tres blocs que composen la massa interna de l’äıllant. b) Distribució de
sensors en el bloc. c) El nucli d’alumini dins el motlle. d) L’äıllant cobert amb plàstic.

10.5 Test experimental de qualificació

Una vegada finalitzada l’etapa de disseny és possible procedir a la validació experimental del nostre
subsistema de mesures tèrmiques que, ho recordem, ha d’acomplir el nivell de sensibilitat següent

S
1/2
T,FEE (ω) ≤ 10−5 K

√
Hz 1 mHz ≤ ω/ 2π ≤ 30mHz (10.17)

Per a aquesta finalitat una col·laboració IEEC-UPC va dissenyar un sistema de mesura, el
prototip del qual es va testejar en el banc tèrmic prèviament descrit i que, després de superar amb
èxit el test, es troba avui en dia en fase d’implementació final per tal de ser integrat en el satèl·lit
LISA Pathfinder.

No entrarem en detall en la descripció d’aquest sistema de mesures, els detalls referents a
aquest instrument es poden trobar a [86]. Śı val la pena però comentar que els experiments es van
aprofitar per mesurar el funcionament del sistema de mesura mitjançant termistors (NTC en les
sigles en anglès) i sensors de plat́ı. Tot i ser els darrers més estables, les proves van mostrar que
els primers eren més apropiats per al nostre cas donat que podien assolir valors més elevats en la
sensibilitat (la resistència d’aquests sensors canvia exponencialment amb la temperatura mentre
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10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

frequency [Hz]

|H
(ω

)|

0 100 200 300 400

22

24

26

28

time [ks]

te
m

pe
ra

tu
re

 [o C
]

ambient
aluminium

1st order
experimental (II)

2nd order
experimental (I)
analytic

Figure 10.9: Resultats del test tèrmic. Les mesures de la funció de transferència s’ajusten a la
predicció basada en un model anaĺıtic.

que en els sensors de plat́ı ho fa linealment).
L’experiment va permetre obtenir resultats en dues direccions complementàries. D’una banda,

el primer que va ser necessari verificar és el correcte disseny de l’äıllant, és a dir que el seu comporta-
ment s’ajustés a aquell predit anaĺıticament. En segon lloc, i una vegada conegut el comportament
de l’äıllant, va ser possible l’anàlisi de l’estabilitat de l’electrònica de mesura.

Per al primer objectiu el sistema es va sotmetre a variacions apreciables de temperatura, les
quals eren provocades pel sistema de control tèrmic de la sala climàtica de NTE. El fet que les
variacions de temperatura es trobessin en el domini de freqüències del nostre interès va permetre
testejar la capacitat de supressió tèrmica de l’äıllant, verificant la predicció de la nostra funció de
transferència —veure Figura (10.9).

En segon lloc es va procedir a l’anàlisi de la sensibilitat tèrmica de l’instrument de mesures
pròpiament. Com ja s’ha avançat, els resultats mostren que els sensors NTC permeten atènyer
una millor sensibilitat tot i que mostren una major dispersió en la mesura efectuada per difer-
ents sensors, molt probablement degut als processos d’envelliment als que es sotmeten aquests
dispositius.

L’especificació requerida a (10.17) s’assoleix a tota la banda de mesura excepte en la part més
baixa ≈ 1 mHz —Figura 10.10—on el valor mesurat excedeix lleugerament el requerit. Aquest
efecte ha estat estudiat i s’ha conclòs que es degut a no-linealitats en el A/D, solucions a aquest
problema es troben actualment sota estudi.
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Figure 10.10: Resultats de les proves de sensibilitat de l’aparell de mesures tèrmiques amb sensors
NTC.

10.6 Descripció dels experiments de diagnòstic tèrmic

Una col·laboració amb l’AEI-Hannover va permetre analitzar el comportament del model d’enginyeria
del banc òptic de l’experiment LTP quan aquest és sotmès a polsos tèrmics. D’aquesta manera
es van poder establir unes primeres estimacions fenomenològiques dels efectes tèrmics que podien
afectar la interferometria quan el punt d’entrada de calor es trobava en el banc òptic.

Aquestes proves van encaminades a estimar l’efecte dels escalfadors que formen part del sub-
sistema tèrmic en el satèl·lit. En el cas del banc òptic això no és cert perquè no es comptarà amb
escalfadors en aquest punt.

Proves al banc òptic

Un total de 4 escalfadors i 5 sensors es varen distribuir en el banc òptic. Els polsos aplicats amb
aquesta configuració mostren que la interferometria és poc sensible a aquests polsos degut a la baixa
conductivitat i coeficient d’expansió tèrmica del material que forma el banc, és a dir el Zerodur.
La taula 10.1 resumeix els factors d’acoblament que s’han trobat

Els resultats mostren igualment la diferència de la resposta de l’interferòmetre en funció del
punt d’aplicació del calor, molt probablement degut al complex traçat de l’interferòmetre sobre el
banc òptic.
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Figure 10.11: Detall del muntatge en el banc òptic. Esquerra: Dos escalfadors a la vora de dos
elèctrodes. Dreta: Un sensor i un escalfador en un racó del banc òptic, el primer cobert amb paper
d’alumini per disminuir la radiació tèrmica.

Heater Coupling factor [mrad/K] Thermal response [K/W s]

KS1 10± 6 1.7± 0.2
KS2 20± 7 1.6± 0.5
KS4 100± 10 1.8± 0.7

Table 10.1: Factors d’acoblament al banc òptic.

Proves a les pestanyes

Anomenem pestanyes (“flanges“) als punts on l’experiment LTP es subjecta als puntals que el
posen en contacte amb l’escut tèrmic que el protegeix de l’ambient exterior. Essent un punt on es
poden establir fluxos de calor és necessari caracteritzar-lo i per aquesta raó el subsistema tèrmic
comptarà amb sensors i escalfadors en aquest punt. La Taula 10.2 recull els resultats més rellevants
en aquest punt.

Heater Coupling factor [mrad/K]

KS5 −30± 10
KB4 110± 50
KB5 180± 60
KB3 21

Table 10.2: Paràmetre d’acoblament en el banc òptic.

Igual que en el cas anterior la dependència canvia de punt a punt. Els efectes observats mostren
una dependència important de la resposta de la fase amb el gradient de temperatures que, en cas
de confirmar-se, podria ser una font de soroll en el satèl·lit.
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Figure 10.12: La finestra òptica (esquerra) a l’interior de l’anell de Titani. Enganxats als laterals
es poden veure els escalfadors i a la superf́ıcie dos parells de sensors de temperatura. A la dreta,
el muntatge experimental per mesurar l’acoblament tèrmic de la finestra.

Proves a la finestra òptica

La finestra òptica és l’únic element del subsistema òptic que no està unit a la resta d’elements
mitjançant la tècnica del ”silicate bonding”. Aquest vidre es troba agafat dins una peça de titani
que l’envolta i, per tant, les fluctuacions tèrmiques poden fàcilment propagar-se al seu interior i
afectar la mesura interferomètrica. Per aquesta raó tres sensors i dos escalfadors s’encarregaran de
caracteritzar aquesta contribució una vegada l’instrument estigui en vol.

La finestra òptica serà objecte d’un estudi més detallat en l’última secció d’aquest resum.
De moment, però, ens limitem a resumir en una taula els mateixos valors que hem utilitzat per
caracteritzar les posicions anteriors.

Heater Coupling factor [rad/K] Thermal response [K/W·s]

H.left (−32± 2)× 10−3 (10.7± 0.2)× 10−3

H.right (−34± 5)× 10−3 (10.7± 0.3)× 10−3

H.left + H.right (−47± 16)× 10−3 (13± 3)× 10−3

Table 10.3: Mitjanes estad́ıstiques de les respostes tèrmiques i òptiques.

10.7 Estudi de la potència dels escalfadors

Per tal d’aprofundir en l’estudi dels gradients que hauran de generar els 14 escalfadors que formen
part dels subsistema tèrmic, l’evolució de la temperatura en el satèl·lit quan s’aplica calor en
determinats punts es va estudiar mitjançant el model tèrmic de l’experiment LTP desenvolupat per
Carlo Gavazzi Space (CGS). Aquesta eina, desenvolupada en el marc del programa d’anàlisi tèrmica
de l’Agència Espacial Europea (ESATAN), resol les equacions tèrmiques en la regió estudiada
mitjançant el mètode d’elements finits. D’aquesta manera la geometria pot ser convenientment
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modelitzada i es poden incloure efectes dif́ıcils d’analitzar de qualsevol altra forma, com pot ser el
cas de la radiació tèrmica.

Hem utilitzat el model tèrmic amb diferent finalitat depenent de la regió estudiada. Aix́ı,
aquesta eina ha sigut d’especial utilitat en l’estudi dels escalfadors en el Sensor Inercial d’on no en
teńıem mesures experimentals. En el cas dels puntals i la finestra òptica, n’hem pogut comparar
els resultats amb mesures prèviament obtingudes.

Paral·lelament també s’ha realitzat un treball de caracterització dels ginys que caldrà utilitzar
en la missió com a escalfadors. L’estudi ha tractat d’establir una primera selecció de les coles
que poden ser útils en el nostre context aix́ı com també una caracterització magnètica, mitjançant
mesures de magnetometria SQUID, del material que forma aquests escalfadors.

Simulacions en el Sensor Inercial

El model tèrmic de CGS ha estat especialment útil en aquest cas. Per mitjà d’aquest programari ha
sigut possible establir quin és l’efecte que l’activació alternativa dels escalfadors en la carcassa dels
elèctrodes produiria en el moviment de la massa de test i, a més, definir quines són les potències
necessàries per produir un senyal observable.

El procediment que hem presentat en aquest estudi per obtenir els paràmetres d’activació dels
escalfadors es basa en suposar que el senyal al que és sensible el moviment de la massa de test
(la diferència de temperatures a banda i banda de la carcassa d’elèctrodes) es pot modelar com
un senyal triangular. Assumint el nivell de soroll fixat per les especificacions, podem obtenir una
taula de valors del SNR esperat — Taula 10.4 — donada una determinada amplitud i freqüència
del senyal tèrmic.

El factor que ens permet passar de variacions tèrmiques a variacions de força el prendrem de
les mesures obtingudes experimentalment en la referència [21] en la qual es fixa en ≈ 100 pN/K.

N · τ = 3000s N · τ = 6000s

∆T [ mK ] τ = 100s τ = 500s τ = 1000s τ = 100s τ = 500s τ = 1000s

1 0 7 4 0 8 6
5 1 28 26 4 39 37
10 7 56 52 9 78 74
20 13 113 104 17 156 145
40 26 223 206 37 314 291

Table 10.4: SNR per a senyals de diferent amplitud ( ∆T ) i peŕıode ( τ ), on N · τ és el peŕıode
d’integració.

D’aquesta taula és possible fixar quin és el gradient necessari per aconseguir un senyal que
compleixi SNR > 50. Juntament amb el pas de gradient a potència aplicada que podem obtenir
fàcilment de les simulacions podem definir una potència mı́nima requerida per als escalfadors.
Aquesta està definida com a 45 mW basant-nos en el nostre estudi.
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Simulacions en els puntals

El subsistema tèrmic comptarà amb escalfadors i sensors a 6 dels 8 puntals que subjecten l’experiment
LTP a l’escut tèrmic dins el satèl·lit. Les simulacions tèrmiques en aquests punts poden ser
dif́ıcilment comparades amb resultats experimentals ja que el model d’enginyeria no comptava
amb puntals. De totes maneres, hem pogut comparar els resultats amb els valors dels gradients
obtinguts experimentalment a les pestanyes i la comparació entre ambdós concorda dintre d’un
factor ≈ 2 de marge. Com a valor màxim s’ha establert una potència de 2 W per a aquests
escalfadors.

Simulacions en la finestra òptica

Els valors que defineixen els paràmetres d’activació dels escalfadors a la finestra òptica han estat
definits basant-nos en les mesures experimentals, ja que en aquest cas el conjunt de dades era
suficient per a aquesta finalitat. Amb aquestes dades s’ha pogut establir la Taula 10.5 de valors.

P [ W ] Pulse duration [ s ]

10 50 100

2 36± 5 140± 20 260± 30
1 23± 9 66± 2 123± 7

1+1 32± 8 122± 18 262± 50
0.5+0.5 17± 2 65± 1 121± 7

Table 10.5: valors mitjans de SNR per a diferents seqüències d’activació dels escalfadors en la
finestra òptica.

Aquests càlculs han permès fixar un valor de 1 W com a potència màxima en aquesta local-
ització.

10.8 Modelatge de les dades de diagnòstic tèrmic

La darrera part d’aquest estudi es centra en l’ús de les dades tèrmiques per a l’anàlisi i diagnòstic
a bord de la missió LISA Pathfinder. En particular hem centrat l’anàlisi en el conjunt de dades
obtinguts en la finestra òptica per tal de validar la metodologia.

El muntatge experimental en aquest cas es basava en fer passar la llum del feix làser per l’interior
d’un prototip de finestra òptica, el qual s’escalfava mitjançant escalfadors. Comparant un conjunt
de 25 mesures on la finestra s’escalfava aplicant polsos de diferent duració hem sigut capaços de
determinar un model que reprodueix la fase mesurada a partir de la temperatura mesurada també
amb sensors a la finestra. El model reprodueix les caracteŕıstiques dinàmiques d’una equació en
diferències de primer grau i es pot escriure com

G(q,θ) =
α0 + α1 q

−1

1 + β1 q−1
(10.18)
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DLR ARMA(2,1)

p1 = (−38± 4)× 10−3 rad/K α0 = (39.6± 3)× 10−3 rad/K
p2 = (65± 20)× 10−3 rad/K α1 = (−39.5± 3)× 10−3 rad/K

β1 = −0.996± 0.001

Table 10.6: Valor mig i dispersions del paràmetres per a dos models. Un ajust lineal utilitzant
les temperatures del titani i el vidre i el model ARMA(2,1), que només utilitza les mesures en el
titani.

en el que s’anomena un procés ARMA(2,1). L’estad́ıstica portada a terme sobre el conjunt
de mesures ha permès determinar aquesta estructura com la més adient per descriure les nostres
dades. A més, n’ha permès determinar els paràmetres tal com es mostra a la Taula 10.6.

L’estudi del model ARMA ens ha permès aprofundir en els efectes f́ısics que causen la pertor-
bació en la fase. En aquest sentit, el model sembla recolzar l’explicació que fonamentalment la
resposta del làser que travessa la finestra ve condicionada per canvis en l’́ındex de refracció del
vidre degut a variacions tèrmiques i forces de tensió mecàniques principalment causades per les
diferències entre els coeficients d’expansió tèrmic del vidre i el titani. La interpretació dels resultats
obtinguts que hem portat a terme en aquesta tesi diferencia la contribució d’aquests dos efectes en
les bandes d’altes i baixes freqüències, dominant la primera l’efecte de la tensió mecànica (associat
a escales de temps curtes) i la segona els canvis en el vidre deguts a pertorbacions tèrmiques.

Una de les propietats més útils per al nostre estudi del model ARMA és la seva fàcil traducció
en una funció de transferència en l’espai de freqüències. Donat que el nostre interès es centra pre-
cisament en la caracterització de l’instrument en la banda de mesures del LTP, aquesta descripció
del model —veure la Figura 10.13— ens serà particularment útil.

Un exercici que hem pogut portar a terme és el de determinar quin és la contribució tèrmica
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Figure 10.13: Diagrama de Bode per al model ARMA(2,1) de la finestra òptica emprant els valors
de la taula 10.6. En el panell esquerra, el seu mòdul; la ĺınia discont́ınua marca l’interval de
confiança d’1σ. A la dreta, la fase de la funció de transferència.
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Figure 10.14: L’espectre de fluctuacions tèrmiques (esquerra) mesurat durant l’experiment com-
parat amb el requeriment de temperatura ambient a l’LTP i el ĺımit inferior fixat per la sensitivitat
de l’electrònica. Les fluctuacions de fase (traç blau, panell dret) es comparen amb la contribució
tèrmica al soroll de la fase (traç magenta) estimada a partir del model ARMA de la finestra òptica
amb els paràmetres de la Taula 10.6. L’interval de confiança d’1σ s’inclou per al darrer.

al soroll de l’interferòmetre basant-nos en el modelatge que acabem de descriure. Aquesta anàlisi
s’ha fet utilitzant dades d’experiments on la mesura no era pertorbada per polsos tèrmics i el làser
assolia la sensibilitat requerida. En aquestes condicions i mesurant al mateix temps les fluctuacions
tèrmiques hem pogut establir quina és la contribució tèrmica al soroll del làser tal i com es mostra
en la Figura 10.14.

10.9 Conclusions

En aquesta tesi hem portat a terme un estudi sobre diferents fenòmens tèrmics que poden afectar
la sensibilitat d’un detector d’ones gravitatòries a l’espai; en concret, la nostra feina s’ha centrat en
el marc de la futura missió LISA Pathfinder (LPF). L’estudi ha recorregut diferents metodologies
per tal de resoldre la varietat de problemes associats al nostre objectiu inicial.

La primera fase del treball exposat es centra en l’estudi anaĺıtic de funcions de transferència
tèrmiques per a volums senzills. Les solucions trobades han permès amb posterioritat dissenyar i
construir un äıllant tèrmic a baixes freqüències amb el qual testejar un prototipus d’electrònica de
mesures tèrmiques per al subsistema de diagnòstic tèrmic de la missió. Els test portats a terme en
aquesta campanya han permès demostrar l’adequació del disseny proposat per a l’assoliment dels
objectius del sistema de mesura tèrmica.

El diagnòstic tèrmic a bord de la missió LPF comptarà també amb un conjunt de 14 escalfadors
els quals estaran encarregats d’introduir pertorbacions controlades que permetin caracteritzar la
contribució tèrmica al soroll de l’experiment. La definició d’aquests aparells portada a terme
en aquesta tesi ha requerit no solament l’ús de models tèrmics del satèl·lit on portar a terme les
simulacions corresponent sinó també l’estudi experimental dels possibles efectes, el qual es va portar
a terme en col·laboració amb l’AEI-Hannover. Aquest estudi ha permès definir les potències que
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els escalfadors hauran de subministrar per tal d’extreure’n els paràmetres cient́ıficament rellevants,
els quals han passat ha formar part del document d’especificacions industrials de la missió.

Finalment, l’extensa serie de dades obtingudes en el cas de la finestra òptica ens ha permès
aprofundir en l’estudi d’aquesta, proposant una metodologia d’anàlisi de dades per tal d’assolir un
diagnòstic eficient una vegada la missió es trobi en òrbita. Aquest mètode, basat en l’ús de models
dinàmics ARMA ha permès identificar les causes f́ısiques de la contribució tèrmica al soroll en la
finestra òptica a bord del LPF i fer una projecció de la contribució de soroll en el cas on no hi ha
font de calor aplicada. En aquest sentit, l’estudi realitzat estableix un primer pas per a l’estudi de
les dades del sistema de diagnòstic d’aquest satèl·lit una vegada aquest es trobi operatiu al punt
de Lagrange L1.
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Appendix A
GRS View factor

Figure A.1: Geometry used to compute the test mass-to-electrode housing view factor.

The view factor between two differential surfaces arbitrarily oriented is defined, in general, as

dFd1−d2 =
cos θ1 cos θ2

πS2
dA2 (A.1)

With the definitions
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APPENDIX A. GRS VIEW FACTOR

A =
a

c

B =
b

a
X = A (1 +B)

Y = A (1−B)

The view factor of two finite parallel rectangular surfaces is given by [41]

F =
1

πA2
(ln

(A2(1 +B2) + 2)2

(Y 2 + 2)(X2 + 2)

+ (Y 2 + 4)1/2

(
Y tan−1 Y

(Y 2 + 4)1/2
−X tan−1 X

(Y 2 + 4)1/2

)
+ (X2 + 4)1/2

(
X tan−1 X

(X2 + 4)1/2
− Y tan−1 Y

(X2 + 4)1/2

)
) (A.2)

If we now assume typical numerical values of the GRS

a = 54 mm

b = 46 mm

c = 4 mm

The view factor obtained is

F = 0.68 (A.3)
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Appendix B
Wu’s theory of thermal transpiration

In this Appendix we briefly describe an extension of the theory used to derive the radiometer effect
which takes into account anisotropies in the flow of gas molecules.

In § 2.1.1 it was described how the pressure of a rarefied gas in two different vessels at temper-
ature T1 and T2 connected through a duct were related as

p1√
T1

=
p2√
T2

(B.1)

The invariant for the radiometer effect holds however based on the assumption of a Maxwellian
distribution function for the gas. This assumption breaks down in situations where an anisotropy
occurs, as for instance between two parallel plates at different temperatures. The solution to this
problem must be found by introducing the angular dependence of the distribution function in the
Boltzmann equation and work out the flux of particles coming from a given point at a point in
space (θ, φ) which has a temperature Tθ,φ. In this new approach a new invariant is obtained given
by [107]

p(x1) I(x1)√
T (x1)

=
p(x2) I(x2)√

T (x2)
(B.2)

where I(x) is called the isotropy function, 0 < I(x) < 1, being the case I = 1 the one we have
treated in § 2.1.1, i.e., without angular dependence. The isotropy function is defined as [75]

I(x) = 4π
1[s

dφ dθ T
1/2
θ,φ sin(φ)×

s
dφ dθ T

−1/2
θ,φ sin(φ)

]1/2 (B.3)

and T (x) can be expressed as

T (x) =

s
dφ dθ T

1/2
θ,φ sin(φ)

s
dφ dθ T

−1/2
θ,φ sin(φ)

(B.4)
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Figure B.1: Scheme of the geometry under study. The test mass at temperature T2 is in the middle
of two electrode housing walls at T1 and T3.

where Tθ,φ stands for the temperature of the gas molecules coming from the (θ, φ) direction.

If we now are interested in a geometry such as the one in the GRS, three temperatures are to
be considered: electrodes at T1 and T3 and the test mass at T2. Compared to a point x0 outside
the electrode housing, a point x1 between electrode E1 and the test mass will have a pressure given
by

p(x1) =
I(x0)
I(x1)

√
T (x1)
T (x0)

p(x0) (B.5)

and consequently the pressure at point x2 between electrode E3 and the test mass will be be
given by

p(x2) =
I(x0)
I(x2)

√
T (x2)
T (x0)

p(x0) (B.6)

In order to evaluate equations (B.5) and (B.6), we will follow the procedure also applied in [75].
To do so, we consider two noninteracting streams in the region between the surfaces to represent
temperatures of the gas molecules emerging from the surfaces. These can be expressed in terms of
their respective accomodation factor1. In the case of point x1 the gas streams temperatures are
defined as

1The accomodation factor is a measure for the amount of energy transfer between a molecule and a surface. A
molecule will reflect on a surface when the accommodation coefficient during a collision is zero.
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Figure B.2: Contour map of the force in the x direction being applied on the test mass at T2 = 293 K
by the flow of gas molecules coming from the electrodes’ walls E1 and E3 —see Figure B— at
T1 = 293 K and T3 = 294 K respectively. The point (a1 = 0.4, a2 = 0.4) is at F ' 30 pN.

T ′1 =
a1 T1 + a2(1− a2)T2

a1 + a2 + a1 a2

T ′2 =
a2 T2 + a1(1− a1)T1

a1 + a2 + a1 a2
(B.7)

From these, together with the corresponding equations in the point x1 we can now return to
equations (B.3) and (B.4), which can now be rewritten as

I(x1) =
2 (T ′1 T

′
2)1/4√

T ′1 +
√
T ′2

T (x1) =
√
T ′1 T

′
2 (B.8)

which can be readily translated to the point x2

I(x2) =
2 (T ′2 T

′
3)1/4√

T ′2 +
√
T ′3

T (x2) =
√
T ′2 T

′
3 (B.9)

Expression in the point x0 reduces to I(x0) = 1 and p(x0) = p0.
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The force per unit surface F exerted on the test mass can be now described in terms of the
previous expressions

F = [p(x1)− p(x2)]

=

[
I(x0)
I(x1)

√
T (x1)
T (x0)

p(x0)− I(x0)
I(x2)

√
T (x2)
T (x0)

p(x0)

]
=

p0√
T0

[√
T ′1 −

√
T ′3

]
=

p0√
T0

√a1 T1 + a2 (1− a1)T2

a1 + a2 − a1a2
−

√
a3 T3 + a2 (1− a3)T2

a2 + a3 − a2a3

 (B.10)

Equation B.10 allows to describe the problem in terms of temperatures both on both sides of
the electrodes T1 and T3 but also in the test mass T2. It also takes into account the accommodation
factor of all the surfaces. As an example, Figure B shows a contour map of the force applied on
the test mass as a function of the parameters a1 and a2. It is however difficult to compare these
results without an estimation of the accommodation factors for our particular case, in the GRS.

218



Appendix C
Temperature distribution in a sphere

subject to a fluctuating thermal bath

C.1 The general solution

The problem we aim to solve herein is to analitically describe the temperature field inside a massive
body with a known temperature distribution affecting its outer layer. We will therefore need to
solve the heat flow equation,

ρC ∂tT (x, t) = ∇ · [K∇T (x, t)] (C.1)

with boundary conditions

Boundary conditions : T (x = xc, t) < ∞

T (x = xb, t) = T0(x = xb, t)

Initial conditions : T (x, t = 0) = 0 (C.2)

For the sake of simplicity, the chosen geometry is the spherical one, with radius a, which allows
to define the problem with a unique boundary condition.

In order to solve the problem it will be expedient to split up the unknown contribution as the
sum of two terms

T (x, t) = U(x, t) + V (x, t) (C.3)

where U(x, t) will be taken such that it equals the temperature on the boundary of the sphere
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SUBJECT TO A FLUCTUATING THERMAL BATH

U(a, t) = T0(a, t) (C.4)

plus an additional condition that it must be a harmonic function finite at the origin

∇2U(x, t) = 0 |U(0, t)| <∞ (C.5)

We can then solve equation (C.1) for V (x, t) which accordingly read

(∂t − α2∇2)V (x, t) = −∂tU(x, t) , α2 ≡ K

ρC

Initial conditions : V (x, 0) = 0

Boundary conditions : |V (0, t)| <∞ , V (a, t) = 0 (C.6)

If we now consider the eigenvalue equation

∇2X(x) = −k2X(x) (C.7a)

|X(0)| <∞ , X(a) = 0 (C.7b)

which has the solutions

Xnlm(x) = Nnlm jl(knl r)Ylm(θ, φ) , jl(knl a) = 0 (C.8)

where

jl(ξ) = (ξ)l
(
−1
ξ

d

dξ

)l sin(ξ)
ξ

(C.9)

The normalisation constants Nnlm will be chosen so that∫
V

d3xX∗n′l′m′(x)Xnlm(x) =
a3

2
δnn′δll′δmm′ (C.10)

This ensures that Xnlm are dimensionless functions, which will be convenient for clarity later
on. Making use of the formula

2
∫ ξnl

0

dξjl(ξ)ξ2 = ξ3
nlj

2
l+1(ξnl) (C.11)

we easily determine the normalisation factor

Xnlm(x) =
1

jl+1(ξnl)
jl(knl r)Ylm(θ, φ) (C.12)

where ξnl is the n-th zero of jl(ξ)

220



C.1. THE GENERAL SOLUTION

jl(ξnl) = 0 , n = 1, 2, 3 . . . l = 1, 2, 3 . . . (C.13)

We will now take advantage of the fact that Xnlm is a complete set of basis functions inside
the sphere to make the expansions

U(x, t) =
∑
n,l,m

unlm(t)Xnlm(x) (C.14)

V (x, t) =
∑
n,l,m

vnlm(t)Xnlm(x) (C.15)

Replacing these expressions into the equation (C.6) and taking into account the completeness
properties of the set Xnlm(x) we readily find

v̇nlm(t) +
1
τnl

vnlm(t) = −u̇nlm(t) (C.16)

where

τ−1
nl ≡ α

2k2
nl = ξ2

nlτ
−1 , τ ≡ a2

α2
(C.17)

Because V (x, 0) = 0, we infer vnlm(0) = 0; hence the solution to (C.16) is

vnlm(t) = −
∫ t

0

dt′e−(t−t′)/τnl u̇nlm(t′) (C.18)

Also, because U(x, 0) = 0, unlm(0) = 0; integrating by parts in C.19 we now find

vnlm(t) = unlm(t) +
1
τnl

∫ t

0

dt′e−(t−t′)/τnlunlm(t′) (C.19)

Inserting this into (C.15) and using also (C.14),

V (x, t) = −U(x, t) +
∑
n,l,m

Xnlm(x)
1
τnl

∫ t

0

e−(t−t′)/τnlunlm(t′) (C.20)

which we can finally replace in (C.3) to recover an expression for the temperature

T (x, t) = −U(x, t) +
∑
n,l,m

Xnlm(x)
1
τnl

∫ t

0

dt′e−(t−t′)/τnlunlm(t′) (C.21)

We must now specify unlm(t) in terms of the actual boundary temperature T0(a, t). To this
end, we expand T0(a, t) into its multipole components

T0(a, t) =
∑
lm

blm(t)Ylm(θ, φ) (C.22)
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Clearly, the function U(x, t) which verifies (C.4) and (C.5) is

U(x, t) =
∑
lm

blm(t)
( r
a

)l
Ylm(θ, φ) (C.23)

Recovering now (C.14) and the orthogonality conditions (C.10),

unlm(t) =
2
a3

∫
V

d3X∗nlm(x)U(x, t)

=
2
a3

blm(t)
jl+1(ξnl)

∫ a

0

dr
( r
a

)l
jl(knl r)r2

= blm(t)
2

ξl+3
nl jl+1(ξnl)

∫ ξnl

0

dξξl+2jl(ξ) (C.24)

We now need the following identity

ξl+2jl(ξ) =
d

dξ
[ξl+2jl+1(ξ)] (C.25)

which imediately leads to

unlm(t) =
2
ξnl

blm(t) (C.26)

The final formal solution to the proposed problem will be thus

T (x, t) = 2
∑
n,l,m

ξ−1
nl Xnlm(x)

1
τnl

∫ t

0

dt′e−(t−t′)/τnlblm(t′) (C.27)

The meaning of this expression is clearly seen in terms of its Fourier transform

T̃ (x, ω) = 2
∑
n,l,m

ξ−1
nl Xnlm(x)

b̃lm(ω)
1 + iω τnl

(C.28)

The sphere acts as a sum of linear low-pass filters of progressively higher cut-off frequencies,
1/τnl = ξ2

nl/τ . Therefore the net effect is best characterised by the lowest of these frequencies

ωcut−off ≤
π2

τ
=

π2K

ρCpa2
(C.29)

where the ≤ sign is implied by the fact that successive filters will further damp lower frequency
amplitudes; on the other hand, the π2 comes from the fact that ξ10 = π is the lowest of all zeroes
ξnl.

C.2 Isotropic conditions to the spherical problem

We can now consider the solution if isotropic boundary conditions are imposed,
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T (x = xb, t) = B(t) (C.30)

which translates into a multipole expansion with coefficients

bml(t) =
√

4πB(t) δn0δm0 (C.31)

and the temperature ditribution becomes

T̃ (x, ω) = 2
∞∑
n=1

(−1)n
sin(nπr/a)
nπr/a

B̃(ω)
1 + i ωτ

n2π2

(C.32)

we will however be interested in a recipe to sum the series to obtain a final, more synthetic
expression. In particular, the expression is simplified if one considers temperature fluctuations
in the centre of the spherical body. If we recast equation (C.32) as T̃ (x, ω) = K̃(x, ω)B̃(ω), the
equation reads

K̃(0, ω) = 2
∞∑
n=1

(
1 + i

ωτ

n2π2

)−1

(C.33)

Although the strange expressions derived seems not to yield to what one would expect for this
thermal insulator behaviour, the meaning of both equations can be grasped as limits of uniformly
convergent series. To this end, let’s consider the following Fourier expansion

f(x) ≡ eµx =
2 sinh(πµ)

π

[
1

2µ
+
∞∑
n=1

(−1)n
µ cos(nx)− n sin(nx)

µ2 + n2

]
, −π < x < π (C.34)

This expression is perfectly well behaved at x = 0 and the rhs evaluates to f(0) = 1. The
derivation of this expression leads to

f ′(x) = µeµx =
2 sinh(πµ)

π

[
1

2µ
+
∞∑
n=1

(−1)n−1n
2 cos(nx) + µn sin(nx)

µ2 + n2

]
(C.35)

Setting x = 0 in the previous expression we obtain

πµ

sinh(πµ)
= 2

∞∑
n=1

(−1)n−1

(
1 +

µ2

n2

)−1

(C.36)

which can be used to recover equation (C.33) as an explicit expression,

K̃(0, ω) =
(1 + i)β

sinh(β) cos(β) + i cosh(β) sin(β)
, β ≡

∣∣∣ωτ
2

∣∣∣1/2 (C.37)

Together with the sum of expression (C.33) which becomes K̃(0, 0) = 1. With the method
above described, we are able to sum the Fourier series describing the solution and end with an
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expression for temperature fluctuations at the centre of the sphere for any frequency.
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Appendix D
Frequency domain solution of multiple

layer spherical insulator

Here we present some mathematical details of the solution to the Fourier problem, equations (8.18)-
(8.19). We first of all Fourier transform equations

ρcp
∂

∂t
T (x, t) = ∇ · [κ∇T (x, t)] (D.1)

T0(θ, ϕ; t) =
∑
lm

blm(t)Ylm(θ, ϕ) (D.2)

to get

iω ρcp T̃ (x, ω) = ∇ ·
[
κ∇T̃ (x, ω)

]
(D.3)

T̃0(θ, ϕ;ω) =
∞∑
l=0

l∑
m=−l

b̃lm(ω)Ylm(θ, ϕ) (D.4)

Equation (D.3) can be recast in split form:

(
∇2 + γ2

1

)
T̃ (x, ω) = 0 , 0 ≤ r ≤ a1 (D.5)

(
∇2 + γ2

2

)
T̃ (x, ω) = 0 , a1 ≤ r ≤ a2 (D.6)

where r≡ |x|, and
γ2

1 ≡ −iω
ρ1cp,1
κ1

, γ2
2 ≡ −iω

ρ2cp,2
κ2

(D.7)
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To these, matching conditions at the interface1 and boundary conditions must be added:

T̃ (r = a1 − 0, ω) = T̃ (r = a1 + 0, ω) (D.8)

κ1
∂T̃

∂r
(r = a1 − 0, ω) = κ2

∂T̃

∂r
(r = a1 + 0, ω) (D.9)

T̃ (r = a2, ω) = T̃0(θ, ϕ;ω) (D.10)

Equations (D.5) and (D.6) are of the Helmholtz kind. Their solutions are thus respectively
given by

T̃ (x, ω) =


∑
lm

Alm(ω) jl(γ1r)Ylm(θ, ϕ) , 0 ≤ r ≤ a1

∑
lm

[Clm(ω) jl(γ2r) +Dlm(ω) yl(γ2r) ] Ylm(θ, ϕ) , a1 ≤ r ≤ a2

(D.11)

jl(z) = zl
(
−1
z

d

dz

)l sin z
z

, yl(z) = −zl
(
−1
z

d

dz

)l cos z
z

(D.12)

and the coefficients Alm(ω), Clm(ω) and Dlm(ω) are to be determined by equations (D.8)–(D.10).
These can be expanded as follows, respectively:∑

lm

Alm(ω) jl(γ1a1)Ylm(θ, ϕ) =

=
∑
lm

[Clm(ω) jl(γ2a1) +Dlm(ω) yl(γ2a1) ] Ylm(θ, ϕ) (D.13)

κ1γ1

∑
lm

Alm(ω) j′l(γ1a1)Ylm(θ, ϕ) =

= κ2γ2

∑
lm

[Clm(ω) j′l(γ2a1) +Dlm(ω) y′l(γ2a1) ] Ylm(θ, ϕ) (D.14)

∑
lm

[Clm(ω) jl(γ2a2) +Dlm(ω) yl(γ2a2) ] Ylm(θ, ϕ) =

=
∑
lm

b̃lm(ω)Ylm(θ, ϕ) (D.15)

Because of the completeness property of the spherical harmonics, the above equations com-
pletely determine the coefficients Alm(ω), Clm(ω) and Dlm(ω). The result is

Alm(ω) = ξl(ω) b̃lm(ω) , Clm(ω) = ηl(ω) b̃lm(ω) , Dlm(ω) = ζl(ω) b̃lm(ω) (D.16)

1 The temperature and the heat flux are assumed continuous across the interface.
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with
ξl(ω) =

1
∆l(ω)

[κ2γ2 jl(γ2a1) y′l(γ2a1)− κ2γ2 j
′
l(γ2a1) yl(γ2a1)] (D.17)

ηl(ω) =
1

∆l(ω)
[κ2γ2 jl(γ1a1) y′l(γ2a1)− κ1γ1 j

′
l(γ1a1) yl(γ2a1)] (D.18)

ζl(ω) =
1

∆l(ω)
[κ1γ1 jl(γ2a1) j′l(γ1a1)− κ2γ2 j

′
l(γ2a1) jl(γ1a1)] (D.19)

and

∆l(ω) = κ1γ1 j
′
l(γ1a1) [jl(γ2a1) yl(γ2a2)− jl(γ2a2) yl(γ2a1)] +

+ κ2γ2 jl(γ1a1) [jl(γ2a2) y′l(γ2a1)− j′l(γ2a1) yl(γ2a2)] (D.20)

When the above results, equations (D.17) through (D.20), are inserted back into equation (D.11)
the result stated in

T̃ (x, ω) =
∑
lm

Hlm(x, ω) b̃lm(ω) (D.21)

where

Hlm(x, ω) =

 ξl(ω) jl(γ1r)Ylm(θ, ϕ) , 0 ≤ r ≤ a1

[ηl(ω) jl(γ2r) + ζl(ω) yl(γ2r) ] Ylm(θ, ϕ) , a1 ≤ r ≤ a2

(D.22)

transfer function is

H(r, ω) =

 ξ0(ω) j0(γ1r) , 0 ≤ r ≤ a1

η0(ω) j0(γ2r) + ζ0(ω) y0(γ2r) , a1 ≤ r ≤ a2

(D.23)
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Appendix E
Binary Maximum Length Sequence:

Generation and properties

The input signal in a identification process is clearly an important tool to be used to extract the
system description in an efficient manner. In § 8.4.2 Pseudo-Random Noise (PRN) signals have
proved to be an interesting choice in our case. As a disadvantage, the accuracy on the measurement
can be difficult to achieve if the evaluated effect is small enough.

The main concept behind this approach is to replace an unfeasible white noise input, which
would equally weight all frequencies, for a signal with the following properties:

1. The signal must be periodic with period T , taking only two possible values and changing
only at discrete times k∆T .

2. The number of states on both binary positions must be approximately the same. More
precisely, the difference in number should not exceed one.

3. Short runs must be more frequent that long ones. More precisely, half of the runs should be
of length one, one-quarter of length two, one-eighth of length three, etc. Also for these runs
it should be as many in one state than in the other.

4. The autocorrelation function should be two valued, peaking in the middle and flat towards
the ends. Remarkably, this shape appears also when using a pulse signal which is one of the
least random functions.

PRN sequence can be physically implemented by means of shift register generators and a
modulo-two gate. The relation between the values of the sequence can be expressed as a recurrence
of the r stage value to the previous stages via the modulo-two addition, written as
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ar = c1ar−1 ⊕ c2ar−2 ⊕ . . . cnar−n (E.1)

where the ci coefficients have a value corresponding to a logic 0 or a logic 1 and the ’⊕’ sign
refers to the modulo-two addition. For a given number of stages in a register there is a maximum
to the number of digits which occur before the sequence repeats itself. This is then a maximum
length sequence.

The binary maximum length sequence is therefore a sequence of binary values with complies
with the maximum length requirement and has, consequently, N = 2n−1 bits length.

Generation The generating function of the shift register is defined as

G(x) =
∞∑
r=0

arx
r (E.2)

It can be shown that the generating function can be expressed as [28]

G(x) =
cn

1−
∑n
i=1 cix

i
(E.3)

where the denominator F (x) = 1 −
∑n
i=1 cix

i is called the characteristic polynomial. This
polynomial is better understood when written as

F (x) = x[I ⊕
∑

Dj ] (E.4)

where Di is an algebraic operator, the effect of which is to delay by i digits the variable it
operates on, I is the identity operator and the sum goes through all the active shift register stages
(the ones that are feeded back in the shift register implementation).

Once the mathematical framework to describe the shift register sequence has been introduced,
we can proceed to recover the BMLS as a special case. We will use the following result.

Given a characteristic polynomial, F(x), the necessary and sufficient condition for F(x) to gen-
erate a BMLS is to be irreducible and primitive.

We will just need to define our application and look in the tables for the characteristic polyno-
mial that fits in. We will need, however, to know which are the properties of the BMLS in order
to be able to perform this selection.

Properties We will focus our attention to the frequency domain properties of the BMLS being
these features the ones that will mainly define our input signal.
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The power spectrum of a BMLS signal with period T = N∆T can be expressed as

SBMLS(ω) =
a2(N + 1)∆t

N

N∑
r=1

[
sin(r π/N)
r π/N

]
(E.5)

The power spectrum is therefore flat (since sin(r π/N)/(r π/N) ' 1 for r � N) in an effective
bandwidth arriving at the frequency where SBMLS has falled 3dB. The effective frequency band
is therefore

f = { 1
N ∆T

,
1

3 ∆T
} (E.6)

This is clearly seen in figure (E.1) where an arbitrary BMLS implementation is compared to a
pulse of the same duration both in time and frequency domain. As expected, the random behavior
in time domain translates into a more constant frequency spectra which can be more suitable for
our purpose using the same power and time conditions than in the standard pulse application.
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Figure E.1: BMLS versus pulse characteristics in time (left) and frequency (right) domain

LTP requirements From the previous properties one can derive two main requirements that
must to be accomplished in our application, independently of the location where these pulses may
be applied in the LCA, and which can easily be traced into BMLS conditions.

In first place, the measuring bandwith is defined in the LTP as 1 mHz < f < 30 mHz, we are
therefore interested in sequences with an effective bandwith starting at 1 mHz. From equation
(E.6) a condition can be found for the minimum length of the sequence to fulfill this condition

N ∆T ≥ 1000 s (E.7)

We can also add a new constraint on the ∆T parameter. This will come from the DAU
switching frequency which sets a limit on the minimum time step of our BMLS impulses. If we
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consider that the DAU can not supply heat pulses in a timescale shorter than 1 s we will have

∆T ≥ 1 s (E.8)

which jointly with equation (E.7) implies N ≥ 1000. At the same time, we know that N is
related to the order of the characteristic polynomial by the relation N = 2n − 1 and hence, in the
case being studied it will imply a n ≥ 10 polynomial. The only parameter to be known to generate
the sequence is the amplitude which is directly related to the location considered in each case.
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