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Abstract

The past five years have ushered in a new era of observational astronomy. Ground
based gravitational wave (GW) detectors - LIGO, TAMA and GEO - have started
taking science quality data. Space based cosmic microwave background (CMB) ex-
periments - WMAP - has produced a true image of the CMB temperature anisotropy
sky and also has mapped the CMB polarization sky. Efficiently extracting maxi-
mum amount of science out of these data rich experiments pose challenges to the
modern analysis techniques. Few of the issues regarding efficient analysis of data
have been addressed in my thesis.

Detection of GW from inspiraling binaries is perhaps the most important ex-
perimental goal in experimental general relativity for the next few years. However,
extracting the true GW strain signal from much stronger random detector noise is
quite challenging. Current analysis strategy relies on matched filtering techniques
which is computationally expensive. We have developed an interpolation scheme
for efficient implementation of matched filtering based analysis algorithms. We use
numerical simulations to show that this new method reduces computational cost,
thereby increasing the volume the parameter space that can be searched with the
available computing resources.

Measurement of the anisotropy of the CMB and the gravitational wave back-
ground (GWB) are equally important challenges in experimental cosmology to
probe the history of the early universe. Usually the imaged skymaps are con-
volved with the instrumental beam functions - also known as the point spread
functions (PSF). Unbiased estimation of the anisotropies of these backgrounds re-
quires development of smart analysis strategies. We have analytically formulated
and numerically implemented complete analysis frameworks to account for the
effects of beam functions in the analysis of CMB and GWB.



xx ABSTRACT

The thesis has been organized as follows:

• Chapter 1 provides an overall introduction and motivation on the works
presented in this thesis.

• Chapter 2 provides an introduction to Gravitational Waves (GW) and its
sources, detectors and data analysis, essentially mentioning the features im-
portant for the detection of GW.

• The Chebyshev interpolated search algorithm for efficient detection of GW
from inspiraling binaries and the results are presented in Chapter 3.

• A brief introduction to stochastic Gravitational Wave Background (GWB) and
a detailed review of the general radiometer analysis for the detection of GWB
has been presented in Chapter 4.

• Brief introduction to the theory and experiments of Cosmic Microwave Back-
ground (CMB) and its anisotropy, emphasizing points which are relevant to
the work presented in this thesis, is provided in Chapter 5.

• The analytical formulation of beams and deconvolution in CMB and GWB
analysis is presented in Chapter 6.

• Implementation of radiometer deconvolution algorithm and application to
GWB skymaps obtained from simulated detector outputs is presented in
Chapter 7.

• The leading order correction to CMB power spectrum due to non-circular
beams is estimated using a perturbative analysis in Chapter 8.

• General analysis framework for the pseudo-Cl approach to correct for non-
circular beams including the effect of incomplete sky coverage is developed
in Chapter 9.

• The summary of the main results obtained in this thesis and future directions
are mentioned in Chapter 10.



1

Chapter 1

Introduction

In the past few decades, astronomy, in particular, cosmology has emerged into a
precision science. A host of instruments have come up with advanced measure-
ment techniques. These instruments produce large volumes of data and extracting
maximum amount of science out of these data is one of the primary goals of modern
astronomy and astrophysics.

My thesis concerns with two very important areas of modern astronomy and
cosmology - the analysis of data from gravitational wave and cosmic microwave
background detectors. Though these detectors work differently, we shall see that
the data analysis challenges posses many common attributes.

The overall introduction and motivation of this thesis is provided in this chap-
ter. The discussions presented here will be brief; more detailed material can be
found in the subsequent chapters.

1.1 Basics

1.1.1 Gravitational Waves (GW)

General theory of relativity (GR) has so far been the unchallenged theory of gravity.
Unlike Newtonian theory of gravity, in GR, the effect of gravity does not affect
instantaneously - gravitational information travels at the speed of light and the
information is carried by the gravitational waves. In the weak field approximation,
GW can be considered as an external field over a background space-time - ripples
in space-time. GW are massless excitations, hence have two polarizations, + and ×.

GW interact weakly with matter, which makes them extremely difficult to
detect. However, on a positive note, being weakly interacting with matter, GW can
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travel large distances without getting absorbed or distorted. Detection of GW is,
therefore, not only important to test GR, but promise a whole new possibility of
GW astronomy. When gravitational waves are incident on a local coordinate system
defined by a set of test masses, the light travel time between two points changes.
This principle is exploited for detecting GW. The GW strain is proportional to the
distance between particles, so long detectors are desired to improve the sensitivity.

Several detectors are under construction all over the world and proposed. The
detectors are either bar detectors (ALLEGRO, EXPLORER, NAUTILUS) sensitive
to high (kHz) frequencies or interferometric detectors (LIGO, TAMA, GEO, VIRGO,
LISA) at lower (mHz to few hundred Hz) frequencies. Since different sources have
different frequency spectrum, each detector is most sensitive to a specific class of
sources. The LIGO detectors, currently the most sensitive ones, TAMA and GEO
have started taking science quality data, which are being used to put upper limits
on important astrophysical quantities. Besides terrestrial GW detectors, there are
proposals to build interferometric space antennas.

GW are generated by massive bodies with varying moment of inertia. There
are different sources of GW, with different frequency spectra. The sources have been
classified into three major types depending on the time scales and characteristics:

1. Burst (inspiraling binaries, supernovae)

2. Stochastic (unmodeled sources, characterized by statistical expectations)

3. Continuous (pulsars)

The data analysis challenges and, therefore, strategies are different for each type of
source. In this thesis we have considered an efficient strategy to extract the inspiral
waveform from a compact binary system (category 1). Secondly, we analyze and
implement targeted search for the stochastic GW background (category 2).

1.1.2 Cosmic Microwave Background (CMB)

The Big Bang theory is the currently accepted working model of the universe. Ac-
cording the big bang model, the universe was a very hot plasma in its early stages.
The photons were tightly coupled to the plasma in thermal equilibrium - attaining
a black body distribution. As the universe expanded, the plasma recombined to
neutral state where photons could then travel freely. This epoch of recombination
is known as the last scattering surface. Photons from the last scattering surface, re-
ceived continuously from all directions, constitute the relic background. Due to the
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expansion of the universe, the photon density has decreased and due to cosmolog-
ical redshift the wavelengths of the photons have increased. So the temperature of
the background has decreased - currently at 2.7K, which corresponds to microwave
radiation. Thus the relic electro-magnetic radiation background of the hot early
universe is called the cosmic microwave background (CMB).

The early universe was highly homogenous and isotropic. This fact is reflected
in the high degree of isotropy of CMB. However, the early universe also had small
inhomogeneities, which have grown to form the presently observed structures,
like galaxies. These signatures are also present in CMB as µK fluctuations. CMB
anisotropy is an extremely important probe of the early universe. Gaussian and
statistically isotropic CMB anisotropy can be completely characterized by its angular
power spectrum.

Since the first detection by COBE satellite of CMB anisotropy in 1992, a host of
terrestrial, balloon borne and space based experiments to measure CMB anisotropy
have been performed, commissioned and being proposed. The earth based exper-
iments include interferometric detectors (e.g., CBI, DASI), scanning detectors (e.g.,
ACBAR), balloon borne detectors (e.g., BOOMERang, Archeops) and the space
based detectors include COBE and WMAP. Another spaced based mission, the
Planck surveyor, is planned in 2007. CMB observations have been used to pre-
cisely constrain cosmological models and parameters. CMB research has taken the
leading role in entering the era of precision cosmology. The precision of the exper-
iments, however, demands unbiased analysis of data. Unbiased estimation of the
CMB power spectrum by removing systematic effects is one of the broad concerns
of this thesis.

1.2 Search for GW from Inspiraling Binaries: Chebyshev In-
terpolation

GW interact weakly with matter, which makes them very difficult to detect. Though
the most advanced technologies of microscopic measurements are being used in the
gravitational wave experiments, the detector outputs will be dominated by noise.
However, the sources of gravitational waves, which are expected to be detected
with the modern detectors, have been theoretically modeled. This knowledge can
be used to extract signal from noisy data. This is the only possible way of detection
of gravitational waves using the detectors which are currently operating or coming
up in the near future.
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If the phase of the expected signal is precisely modeled, matched filtering is
optimal. In the current analysis methodology, a theoretically modeled signal (tem-
plate) is correlated with data for different sets of parameters that densely cover
the physically permitted parameter space and detection will be claimed if the cor-
relation exceeds a pre-assigned threshold. The reason for such a dense coverage
of parameter space is to minimize the chance that a real signal, near the detection
threshold, will be missed by the parameter space sampling.

The current analysis is computationally expensive. Efforts are being made to
develop efficient search algorithms which would allow search over a larger volume
of parameter space with greater number of parameters. For small variations in
the parameters, the filter responses are strongly correlated, which is the case for a
dense search. This is the result of over sampling. The efficiency of search using
matched filtering can be improved by optimally sampling the parameter space and
then reconstructing the likelihood (or the match) function. We have investigated
the use of Chebyshev interpolation for reducing the number of templates that must
be evaluated without sacrificing the efficiency of the search. Additionally, rather than
focus on the “loss” of signal-to-noise associated with the finite number of filters in
the template bank, we evaluated the Receiver Operating Characteristic, or ROC, as
a measure of the efficiency of a search technique. The ROC relates the false alarm
probability to the false dismissal probability of an analysis, which are the quantities
that bear most directly on the effectiveness of an analysis scheme.

The time-dependent signature of GW from compact inspiraling binaries is well-
characterized function of a relatively small number of parameters, which makes
them very promising sources for the ground and space based interferometric de-
tectors. As a demonstration we compared the present “dense sampling” analysis
methodology with the “interpolation” methodology using Chebyshev polynomials,
restricted to one dimension of the multi-dimensional analysis problem for inspi-
raling binaries by plotting the ROC curves. We found that the interpolated search
can be arranged to have the same false alarm and false dismissal probabilities as
the dense sampling strategy using 25% fewer templates. Generalized to the full
seven dimensional parameter space that characterizes the signal associated with an
eccentric binary system of spinning neutron stars or black holes it suggests an order
of magnitude increase in computational efficiency. A reduction in the number of
templates evaluations translates directly into an increase in the size of the parameter
space that can be analyzed and, thus, the science that can be accomplished with the
data.
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1.3 Search for GW Background: Radiometer Analysis

The stochastic GW background arises from unresolved astrophysical sources and
is predicted from the physics of the early universe. The measurement of the GW
background (GWB) can probe the inhomogeneities of the nearby universe and
important phenomena, like inflation, in the early universe.

By definition, stochastic signals are characterized by expectation values. The
best strategy to detect GWB is to correlate the outputs of different detectors that
have independent noise. The correlation between noise streams will tend to cancel
on time integration, but the common GW signal will add. This principle can be used
to measure the sky averaged strength of the GWB, as well as, to make a sky map.
The sky map is made by introducing a phase shift between the detector outputs that
accounts for the delay between two detectors in receiving a signal from a certain
direction. Signals from a target direction is coherently added and signals from other
direction tend to cancel out. This method is similar to the earth rotation image
synthesis used in interferometric radio astronomy, hence we name this analysis as
GW radiometer. Extending primary work on GW radiometry for special cases of
GWB, we have developed a general GW radiometer analysis strategy, which can be
applied to a broad range of GWB models.

1.4 Deconvolution of Sky-Maps

The observed sky maps of the GWB and CMB are both convolved with a beam (or
a point spread function) - the image of a point source is not a point source, it is a
pattern of finite size. The estimation of the true skymap requires correction of the
observed “dirty” maps to eliminate the effects of the antenna pattern functions.

Unlike CMB experiments, the beam function of a GW radiometer has a highly
asymmetric pattern. The beam patterns also depend on the sky position. Our
first goal was to understand the beam pattern of the radiometer search. We used
stationary phase approximation (SPA) to analytically explain the beam patterns
which matched very well with the numerically obtained ones.

The next step was to remove the effect of beam function from the dirty maps.
Several deconvolution algorithms exist in literature. Because of the broad similarity
between the convolution equations of GWB and CMB, we followed a method that
has been successfully applied in CMB analysis - the maximum likelihood (ML)
sky map estimation. We have developed the deconvolution algorithm for GWB
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sky-maps based on the statistical and numerical methods suggested by the CMB
analysts. The method was numerically implemented and injected test maps were
recovered with a fairly good accuracy.

1.5 Non-circular Beam Correction to CMB Power Spectrum

The measurements of the angular power spectrum of the Cosmic Microwave Back-
ground (CMB) anisotropy has proven crucial to the emergence of cosmology as a
precision science in recent years. In this remarkable data rich period, the limitations
to precision now arise from the the inability to account for finer systematic effects
in data analysis.

The optimal analysis to account for the effect of the beam function, a full
maximum likelihood (ML) analysis, is computationally prohibitive because of high
resolutions of CMB experiments. Currently sub-optimal pseudo-Cl analysis seems
to be the only feasible way. The pseudo-Cl estimator is defined as the power
spectrum of the observed CMB anisotropy sky map obtained from the time ordered
data assuming a circularly symmetric experimental beam of infinite resolution. The
correction due to the non-circular experimental beam of finite resolution is applied
to the pseudo-Cl estimator in order to get the unbiased estimate of the true angular
power spectrum.

The non-circularity of the experimental beam has become progressively impor-
tant as CMB experiments strive to attain higher angular resolution and sensitivity.
We have developed a complete analysis framework to study the effects of a non-
circular beam on the CMB power spectrum estimation. First we find the leading
order correction due to non-circular beam alone. Next, we present a general ana-
lytic framework to find the bias on CMB power spectrum due to the non-circular
beams, where we include the effect of incomplete sky coverage in analytical cal-
culations that was considered only numerically in the previous analysis. We also
suggest apodized (azimuthally smoothed) masks, which reduce the computation
required to implement our analysis and still mask pixels strongly contaminated
by our galaxy and point sources. We consider a mildly non-circular beam, which
allows us to perform a perturbative analysis. We compute the bias in the pseudo-Cl

power spectrum estimator and then construct an unbiased estimator using the bias
matrix. The covariance matrix of the unbiased estimator is computed for smooth,
non-circular beams. Quantitative results are shown for CMB maps made by a hypo-
thetical experiment with a non-circular beam comparable to our fits to the WMAP
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beam maps described in an appendix and uses a toy scan strategy. We find that
significant effects on CMB power spectrum can arise due to non-circular beam on
multipoles comparable to, and beyond, the inverse average beam-width where the
pseudo-Cl approach may be the method of choice due to computational limitations
of analyzing the large datasets from current and near future CMB experiments.
Recently WMAP team have corrected for the non-circular beam effect in their 3
year results. The estimated effect is in good agreement with the prediction of our
method for a WMAP-like beam.

1.6 Organization of the Thesis

The thesis has been organized as follows: Chapter 2 provides an introduction to
GW and its sources, detectors and data analysis, essentially mentioning the features
important for the detection of GW. The Chebyshev interpolated search algorithm
for efficient detection of GW from inspiraling binaries and the results are presented
in chapter 3. A brief introduction to stochastic GWB and a detailed review of the
general GW radiometer analysis for the detection of GWB has been presented in
chapter 4. A brief introduction to the theory and experiments of CMB, emphasiz-
ing points which are relevant to the work presented in this thesis, is described in
chapter 5. The analytical formulation of beams and deconvolution in CMB and
GWB analysis is presented in chapter 6. Implementation of radiometer deconvolu-
tion algorithm and application to GWB skymaps obtained from simulated detector
outputs is presented in chapter 7. General pseudo-Cl approach to correct for non-
circular beams is described in the next two chapters - leading order correction is
estimated using a perturbative analysis in chapter 8 and the general analysis frame-
work including the effect of incomplete sky coverage is developed in chapter 9. The
summary of the main results obtained in this thesis and the future directions are
mentioned in chapter 10.
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Chapter 2

Introduction to
Gravitational Waves (GW)

The General theory of Relativity (GR) predicts the existence of Gravitational Waves
(GW). GR has so far been the unchallenged theory of gravitation. It provides a
geometrical interpretation of gravity by incorporating special theory of relativity
and Newton’s law of gravitation. Unlike Newton’s theory, gravitational interaction
is not instantaneous, gravitational information travels at the speed of light and,
analogous to electromagnetic waves in case of electrodynamics, this information is
carried by Gravitational Waves.

Although it was possible to detect GW through the observations of Hulse-
Taylor binary pulsars, the direct detection of GW has not been possible so far.
Several ground based interferometric GW observatories, namely TAMA, LIGO,
GEO, are already generating science quality data and the Virgo detector is in the
commissioning stage. The LIGO is presently the most sensitive GW detector, it is
operating at the initial design sensitivity for the past one year. The space based
observatories, LISA and DECIGO, are flying within a decade. Detection of GW will
undoubtedly be an exciting development in experimental general relativity - it is
not only important to test general relativity, but it promises a whole new astronomy
inaccessible to the electromagnetic regime.

GW are generated by different types of sources, e.g., coalescing compact binary
stars, rotating neutron stars and primordial density fluctuations near the big bang.
Different analysis strategies are used to search for different kind of sources.

In this chapter, I briefly mention some parts of the basic theory of gravitational
waves and their sources, detection and data analysis. Only those parts are consid-
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ered here which are relevant to the work done in this thesis. For further details see
standard references, e.g., [1, 2, 3, 4, 5, 6, 7] and references therein.

2.1 Gravitational Waves

2.1.1 General Relativity: Einstein’s Equation

Albert Einstein, almost single handedly, formulated the relativistic theory of gravity,
the General theory of Relativity (GR) in the year 1915. GR, being a relativistic
theory, incorporates the maximum information propagation speed - the velocity of
light in vacuum. The gravitational information also travels at this speed and the
information is carried by gravitational waves.

Instead of treating gravity like other forces in nature, Einstein gave a geometric
interpretation to gravity - the curvature and dynamics of space-time are controlled
by the distribution and kinematics of energy (≡ mass). This relation is formally
expressed by the famous Einstein’s equation (without the cosmological constant)

Gµν =
8πG

c4
Tµν, (2.1)

where G is the universal constant of Gravitation, c is the maximum velocity of
information propagation (which is same as the velocity of light in vacuum), Gµν is
the curvature tensor and Tµν is the energy-momentum tensor. Formal definitions of
these quantities can be found in any standard text on GR, e.g., [2]. The indices of the
four vectors/tensors run from 0 to 3, where 0 corresponds to the time-like component
and 1, 2, 3 correspond to the three space-like components. The metric of space-time
gµν can be obtained by solving Einstein’s equation. The energy momentum tensor
determines the metric and the metric, in turn, determines the dynamics of the
energy-momentum tensor - this makes Einstein’s equation highly nonlinear, and
hence difficult to solve exactly except in very few special cases.

2.1.2 Weak field limit: Linearized Theory

Solving Einstein’s equation becomes manageable in the weak field limit, where
the curvature of space-time, measured by the Riemann-Christoffel curvature tensor
Rµναβ, can be regarded as “small”, Rµναβ → 0. In flat space-time there exists a co-
ordinate system where the metric is Minkowski type, ηµν, where ηµν is a diagonal
matrix with diagonal elements (−1, 1, 1, 1). Similarly, far away from massive bodies,
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where gravity is weak, there exists a coordinate system where the metric is perturbed
Minkowski1 [4]

gµν = ηµν + hµν, (2.2)

with |hµν| � 1 over the whole nearly flat volume of space-time. The metric pertur-
bations hµν transform like a tensor under Lorentz boosts Λαβ ,

h′µν = Λ
α
µΛ

β
ν hαβ, (2.3)

preserving the form of the metric given by eqn (2.2). This convenient fact gives us
the freedom to treat metric perturbations as a separate tensor field propagating over
a background space-time with constant metric coefficients. This is the key strategy
to understand gravitational interaction in a perturbative way.

The metric perturbations satisfy two sets of Gauge conditions which are utilized
to obtain mathematical simplicity.

Lorentz/harmonic gauge:

Under a coordinate transformation of the form

xµ → xµ + ξµ(xν), such that, |ξµ,ν| � 1, (2.4)

the metric preserves the form given by eqn (2.2) if the perturbations are transformed
using the formula

hµν → hµν − ξν,µ − ξµ,ν. (2.5)

The above Gauge freedom allows us to choose a coordinate system where the
trace reversed metric perturbations,

h̄µν := hµν −
1
2
ηµν hαα, (2.6)

are divergenceless,
h̄µν

,ν
= 0. (2.7)

With these four coordinate conditions, Einstein’s equation in free space takes the
form of a wave equation

�h̄µν = 0. (2.8)

1It is also possible to consider a curved space-time as the background, which is routinely done for
studying metric perturbations in the early universe or close to a black hole
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This equation is quite similar to the Maxwell’s equation in vacuum in electro-
dynamics and, analogous to electromagnetic radiation, solutions to this equation
describe the propagation of Gravitational Waves (GW). This form clearly suggests
that GW travel at the velocity of light and the amplitude of a spherical wavefront is inversely
proportional to the radial distance.

The general solution to the gravitational wave equation [eqn (2.8)] can be
formally written as

h̄µν = h̄µν(kαxα), such that k0 := ω = |k|, (2.9)

where k ≡ ka, a = 1, 2, 3. The Lorentz gauge condition, eqn (2.7), then implies

h̄µν kν = 0, (2.10)

that is, the wave solutions are orthogonal to the propagation 4-vector kµ.

Transverse-Traceless (TT) Gauge:

The Lorentz gauge condition is preserved under coordinate transformations of the
form

xµ → xµ + ξµ(xν), such that, �ξµ = 0. (2.11)

These four gauge conditions can be used to minimize the number of non-vanishing
hµν to (twice) the number of degrees of freedom. Usually the gauge is chosen such
that the metric perturbations have the following properties:

1. Traceless, that is,
h̄αα = 0. (2.12)

Obviously, this condition implies h̄µν = hµν.

2. Orthogonal to a chosen time like vector Uµ

hµν Uµ = 0. (2.13)

Usually one chooses Uµ = δ
µ
0 , so that, all the timelike components of the

metric perturbations vanish, hµ0 = h0µ = 0.

These coordinate conditions (in Lorentz gauge) make GW transverse to the
propagation direction [6], as explained below.
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Imposing the above eight gauge conditions and choosing Uµ = δ
µ
0 one can see

that the metric perturbations can be completely parameterized by two independent
polarization amplitudes h+(xµ) and h×(xµ):

hµν = h+ e+µν + h× e×µν, (2.14)

where e+ ≡ e+µν and e× ≡ e×µν are the polarization 4-tensors:

e+ :=


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ; e× :=


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 . (2.15)

Since, with the above choice of coordinates hµ0 = h0µ = 0, we may represent
the metric perturbations only by the 3-tensor

hab = h+ e+ab + h× e×ab, a, b = 1, 2, 3, (2.16)

where the polarization tensors e+,×ab are now 3-tensors - the first row and the first
column from the 4-tensors in the definitions given in eqn (2.15) have been removed.
One can now write the transversality condition, eqn (2.10), in terms of the quantities
dependent only on the three spatial indices:

hab kb = 0, a, b = 1, 2, 3, (2.17)

where the 3-vector k ≡ ka, a = 1, 2, 3 is the wave propagation direction. Thus, in the
TT gauge, gravitational waves are orthogonal to the direction of propagation.

Note that in the TT gauge when gravitational waves fall on free particles the
coordinates of the particles do not change. However, the metric perturbations
do change the light travel time delay between two points. This is a coordinate
independent quantity and, therefore, this fact is exploited in the gravitational wave
detectors. In any coordinate system, gravitational waves appear as propagating
waves of varying tidal forces. The expression for these variations can be computed
from the geodesic deviation equation [2].
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2.1.3 Plane Polarized Monochromatic Gravitational Waves

The plane polarized monochromatic solution to the GW equation [eqn (2.8)] is given
by hµν(kαxα) = Aµν exp (ikαxα), where Aµν are coordinate independent quantities. In
the TT gauge this solution can be equivalently expressed by choosing the polariza-
tion modes (A = +,×) in eqn (2.16) as hA(xµ) = h̃A( f , Ω̂) exp[2πi f (t− Ω̂ · x/c)], where
f = k0/(2π) is the frequency of the monochromatic wave, the unit 3-vector Ω̂ := k/|k|
is the direction of propagation, t = x0/c is time, x ≡ xi, i = 1, 2, 3 is the 3-vector
for spatial coordinates and h̃A( f , Ω̂) is the amplitude of a plane wave propagating
in the direction Ω̂ with frequency f . The importance of the plane wave solution is
quite obvious - waves from distance sources can be regarded as the superposition
of plane monochromatic waves.

When a plane polarized monochromatic GW is normally incident on a circular
ring of particles the ring gets sheared as shown in figure 2.1, taken from the gallery
“LISA images” [8]. The direction of shear is different for different polarizations.
Figure 2.1 illustrates that the polarizations of GW are at an angle of 45◦, as expected
for a spin 2 field. The figure also outlines how this phenomenon is exploited in the
interferometric GW detectors.

2.2 Detection

Gravitational waves were indirectly detected by R. A. Hulse and J. H. Taylor in the
year 1974. They measured the decrease in orbital period with time of the double
pulsar system PSR B1913+16 [9], which precisely matched (within 0.2% after 30
years of observation [10]) the theoretically expected variation due to the radiation
of GW by the binary system. Hulse and Taylor got the Nobel prize for Physics in
the year 1993 for this remarkable discovery.

Direct detection of gravitational waves is perhaps the most important challenge
in experimental general relativity of recent times. Detection of GW is not only
important as a highly convincing test of GR, but it promises a whole new astronomy
inaccessible to the electromagnetic regime.

The main principle of detection is to measure the (coordinate independent)
variation of light travel time between different points when GW is incident on a de-
tector. Since the variation of light travel time between two points is proportional to
the distance between the points, longer detectors are preferred for better sensitivity.
Two kinds of detectors are currently being used for the detection of GW:

http://www.srl.caltech.edu/lisa/graphics/master.html
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Figure 2.1: Effect of GW on matter: Detection scheme. When a plane polarized
monochromatic GW is incident normally on a ring of particles, the ring gets sheared
and the direction of shear is dependent on the polarization of the wave as shown
in the top panel titled "Two polarizations of GWs". The angle between the two
polarizations is 45◦, as expected for a spin 2 field. The bottom panel illustrates how
this effect is exploited in the (Michelson) interferometric GW detectors. This figure
is taken from the gallery “LISA images” [8].

• Resonant bar detectors: As the name suggests, a detector of this kind is
essentially a bar of heavy material. GW, while passing through the bar,
excite the near characteristic (resonant) frequency modes of the bar and these
excitations are read using sophisticated coupled oscillators.

The resonant bar detector made by Weber around 1968 is the first ever GW
detector, though the claim of GW detection [11] using this detector could not
be verified by the scientific community. The present cryogenically cooled bar
detectors are much more advanced; many of them in different countries are
currently operating e.g., ALLEGRO (USA) [12], NAUTILUS (Italy) [13], AU-
RIGA (Italy) [14], EXPLORER (Switzerland) [15]. Bar detectors are sensitive

http://www.srl.caltech.edu/lisa/graphics/master.html
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to high frequencies (∼ kHz), so core collapse supernovae are the most promis-
ing sources for these detectors. These detectors, in combination to other bar
or interefometric detectors, are being used to put upper limit on a stochastic
background. Different omnidirectional shapes, e.g., spherical and “truncated
icosahedral”, for this kind of detectors are also being built. The examples
are MiniGRAIL (Netherlands) [16] and TIGA (USA) [17]. The image of the
ALLEGRO bar detector at Luisiana State University, is shown in the left panel
of figure 2.2 (image taken from “ALLEGRO Archive Photos” [18]).

Figure 2.2: GW Detectors. The left panel shows the ALLEGRO bar detector at
Luisiana, US (image taken from “ALLEGRO Archive Photos” [18]). The right panel
shows an aerial view of the LIGO detector at Hanford, US. This instrument, in fact,
hosts two detectors of 4km and 2km arms (image taken from “LIGO Press & Media
Kit: LIGO photos” [19]).

• Interferometric detectors: These detectors are very long (kilometer arm for
ground based and thousands to millions kilometer for space based) power-
recycled Michelson’s inferometers. As illustrated in the previous section,
when GW fall on a long Michelson interferometer, the light travel times in
different arms change, which result in a fringe shift in the output port of the
interferometer. Extracting true GW strain signal from the time series of fringe
shifts is the most promising way of detecting GW.

As many as six ground based inteferometric detectors in different countries
are either currently operating or in the commissioning stages, they are: two
LIGO (USA) detectors [20, 21] - at Livingston (LLO) and at Hanford (LHO),
TAMA (Japan) [22, 23], GEO (Germany + UK) [24, 25], Virgo (France + Italy)
[26, 27] and AIGO of ACIGA (Australia) [28, 29]. The TAMA team is also

http://sam.phys.lsu.edu/ImageSets/ImageSets.php?whichpage=./ALLEGRO%20Archive%20Photos
http://sam.phys.lsu.edu/ImageSets/ImageSets.php?whichpage=./ALLEGRO%20Archive%20Photos
http://www.ligo.caltech.edu/LIGO_web/PR/scripts/photos.html
http://www.ligo.caltech.edu/LIGO_web/PR/scripts/photos.html
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Figure 2.3: LIGO-I sensitivity curves. The noise Power Spectral Densities (PSDs) of
the LIGO detectors are overlaid on the goal sensitivity of the first generation LIGO
detector. LIGO has reached the goal sensitivity in the fifth science run (S5), which
is on for the last one year. Image taken from the “LIGO Sensitivity” website [32].

making a cryogenically cooled ground based interferometric detector LCGT
(Japan) [30, 31].

An aerial view of the LIGO detector at Hanford, USA is shown in the right
panel of figure 2.2 (image taken from “LIGO Press & Media Kit: LIGO photos”
[19]). The ground based interferometric detectors are most sensitive near few
100 Hz; coalescing stellar mass inspiraling binaries are the most promising
sources for the interferometric detectors. The sensitivity curves, the plot
of square root of noise Power Spectral Density (PSD) with frequency, of the
LIGO detectors for different science runs are overlaid on the sensitivity goal in
figure 2.3, taken from the “LIGO Sensitivity” website [32]. The LIGO detectors
are operating at the first stage (LIGO-I) goal sensitivity for the last one year.
The advanced LIGO sensitivity is targeted within the next few years.

Two space based interferometric detectors, LISA (ESA+NASA) [33,34,35] and
DECIGO (Japan) [36], each consisting of three satellites forming a triangular

http://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/
http://www.ligo.caltech.edu/LIGO_web/PR/scripts/photos.html
http://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/
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configuration with huge arm-lengths (5×106 km for LISA and 105 km for DE-
CIGO), are also expected within a decade. It is much easier in space to isolate
the low frequency noise, as no seismic vibration is present there. (However,
due to the variation of distances between the spacecrafts, the cancellation of
laser frequency noise will require post-processing of detector outputs using
Time Delay Interferometry [37].) LISA and DECIGO will operate in a low
frequency range (milli-Hertz and deci-Hertz respectively) and hence they are
expected to receive very high energy from high mass binary systems, which
emit at low frequencies. These satellites are also important for putting better
upper limits on the stochastic background. A space based observatory, the
Big Bang Observer (BBO) [38, 39], consisting of multiple satellites, is being
planned as part of NASA’s Beyond Einstein program [40]; it is expected to
precisely measure the cosmological GWB originated during inflation in the
very early universe.

The GW event rate is proportional to the observed volume of space and the am-
plitude of GW is inversely proportional to the distance. Therefore, the probability
of GW detection increases as the cube of sensitivity. Advanced LIGO will undergo
about an order of magnitude improvement in sensitivity as compared to the LIGO-I
detectors; which means that the advanced LIGO detector is thousand times more
likely to detect a GW event, while the event rate for LIGO-I is just one in few years.
Thus, the possibility of detection of GW in the next few years is very high.

2.3 Sources and Analysis Strategies

Different kinds of sources generate GW with different frequency spectra. The
analysis strategies also depend on the kind of sources one is trying to detect. The
three broad classification of sources and their detection strategies are listed below.

1. Burst: Compact inspiraling binaries in the last few cycles before coalescence
and supernova core collapse release highly energetic GW in very short time.
They are called burst sources.

The GW signals from inspiraling binaries have been precisely modeled using
Post-Newtonian approximations [41], hence matched filtering can be used for
extracting the true GW signal buried inside strong detector noise. Therefore,
the coalescing compact binaries, in particular, the stellar mass binaries which
emit in the sensitive frequency band of the ground based interferometric
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detectors, are the most promising candidates for the detection of GW. More
details on the detection strategy of these sources can be found in chapter 3.

On the other hand, the sources like supernovae are unmodeled high frequency
(∼ 1 kHz) sources. The analysis strategy to detect such sources makes use of
excess power statistics technique.

2. Stochastic: Unmodeled and unresolved sources of astrophysical and cosmo-
logical origin constitute a stochastic GW Background (GWB). The cosmolog-
ical background is analogous the the Cosmic Microwave Background (CMB)
and the astrophysical background is analogous to the galactic foreground ob-
served while making CMB skymaps. The detection of cosmological GWB will
be a direct probe of inflation and some other important phenomena in the
early universe.

Since the stochastic signals are unmodeled and characterized by their statis-
tical expectation values. The best strategy to detect stochastic sources (or put
upper limits) is by correlating outputs of two detectors (which can be of differ-
ent types - bar and interferometric, say) - forming a GW radiometer. The GW
radiometer analysis can be tuned to measure the all sky averaged power of the
stochastic background, as well as, to make a sky map of the GWB anisotropy.

The stochastic background is of major interest in this thesis. A more detailed
introduction to the stochastic sources and the complete radiometer analysis
are presented in chapter 4, chapter 6 and chapter 7.

3. Continuous: Sources which emit GW continuously over the full observation
time of a detector without significant change in the characteristics are called
continuous sources. Asymmetric pulsars and inspiraling binaries, which are
not in the final few cycles before coalescence, are the examples of such sources.

The locations, and also the phase evolutions, of many radio pulsars are quite
precisely known from electromagnetic astronomy. So a targeted search, by
correlating signals from two detectors with a time dependent phase factor
that accounts for the light travel time delay between two detectors, is the
best strategy for the detection of GW from known radio pulsars. Search for
unknown pulsars is computationally costly, as the parameter space (which
includes position coordinates) is quite big. The Einstein@Home project [42],
in a similar line as the SETI@home project [43], offers a nice solution to utilize
idle computational resources to search for unknown pulsars.
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2.4 Summary and Conclusion

Gravitational wave research is reaching new dimensions as the current detectors
are producing science quality data and many ground and space based detectors are
coming up. Brief introduction to the theory, detection, sources and data analysis of
gravitational waves were presented in this chapter.

General theory of Relativity (GR) predicts Gravitational Waves (GW). In the
weak field limit GW can be treated as an independent tensor field propagating over
a constant (flat) background. GW travel at the speed of light and follows many
other properties similar to the electromagnetic waves, except for polarizations -
GW are spin 2 excitations, so the polarization axes are at an angle 45◦.

GW change the light travel time between different points, which is exploited in
the GW detectors. Two kinds of detectors are currently being used - bar detectors
and interferometric detector. The ground based interferometric detector, LIGO, is
operating at its first stage goal sensitivity for the last one year. Many more ground
based and two space based detectors are coming up within a decade.

Different kinds of sources emit GW, which can be classified in three major
classes - burst, stochastic and continuous. The analysis strategies for different
sources are also different. Compact inspiraling binaries in the last few cycles before
coalescence are theoretically well modeled sources, hence matched filtering can be
used for these sources. Therefore, the stellar mass compact binaries, which emit
in the sensitive bands of the ground based interferometric detectors, are the most
promising sources for the detection of GW. data analysis strategies for detecting
GW signal from inspiraling binaries and stochastic background are principal goals
of this thesis.

The existence of GW has been indirectly established by Hulse and Taylor from
the observations of the binary pulsar B1913+16. However, the direct detection of
GW is still awaited. Worldwide efforts are being made to detect GW not only to
perform a crucial test of GR, they promises a whole new astronomy inaccessible
to the conventional electromagnetic regime. The advanced detectors, scheduled
to come up in the next few years, are expected to have a very high probability of
detection of GW. The detection of GW will be an extremely important achievement
in experimental GR. The main goal of this thesis is the development of analysis
techniques which can efficiently extract GW signals from the output of the modern
gravitational wave detectors.
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Chapter 3

Search for GW from Inspiraling
Binaries: Chebyshev Interpolation

Gravitational waves interact weakly with matter, which makes it very difficult
to detect. Though the most advanced technologies of microscopic measurements
are being used in the gravitational wave experiments, the detector outputs will
be dominated by noise. However, the sources of gravitational waves, which are
expected to be detected with the modern detectors, have been theoretically modeled.
This knowledge can be used to extract signal from noisy data. This is the only
possible way of detection of gravitational waves using the detectors which are
currently operating or coming up in the near future.

Inspiraling compact-object binary systems are promising gravitational wave
sources for ground and space-based detectors. The time-dependent signature of
these sources is well-characterized function of a relatively small number of pa-
rameters; thus, the favored analysis technique makes use of matched filtering and
maximum likelihood methods. As the parameters that characterize the source
model vary, so do the templates against which the detector data are compared in
the matched filter.

Current analysis methodology samples a bank of filters whose parameter val-
ues are chosen so that the correlation between successive samples from successive
filters in the bank is 97%. Correspondingly, the additional information available
with each successive template evaluation is, in a real sense, only 3% of that already
provided by the nearby templates. The reason for such a dense coverage of param-
eter space is to minimize the chance that a real signal, near the detection threshold,
will be missed by the parameter space sampling.
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The current analysis is computationally costly. Efforts are being made to de-
velop efficient search algorithms which would allow search over a larger volume
of parameter space with greater number of parameters. For small variations in the
parameters, the filter responses are closely correlated. The efficiency of search for
inspiraling binaries can be improved by reconstructing the likelihood (or the match)
function using sample values of the match function over the parameter space. We
have investigated the use of Chebyshev interpolation for reducing the number of
templates that must be evaluated to obtain the same analysis sensitivity [44]. Ad-
ditionally, rather than focus on the “loss” of signal-to-noise associated with the
finite number of filters in the template bank, we evaluated the Receiver Operating
Characteristic, or ROC, as a measure of the effectiveness of an analysis technique.
The ROC relates the false alarm probability to the false dismissal probability of an
analysis, which are the quantities that bear most directly on the effectiveness of an
analysis scheme.

As a demonstration we compared the present “dense sampling” analysis method-
ology with the “interpolation” methodology using Chebyshev polynomials, re-
stricted to one dimension of the multi-dimensional analysis problem by plotting
the ROC curves. We found that the interpolated search can be arranged to have the
same false alarm and false dismissal probabilities as the dense sampling strategy
using 25% fewer templates. Generalized to the two dimensional space used in the
computationally-limited current analyses this suggests a factor of two increase in
computational efficiency; generalized to the full seven dimensional parameter space
that characterizes the signal associated with an eccentric binary system of spinning
neutron stars or black holes it suggests an order of magnitude increase in compu-
tational efficiency. Since the computational cost of the analysis is driven almost
exclusively by the matched filter evaluations, a reduction in the number of tem-
plates evaluations translates directly into an increase in computational efficiency;
additionally, since the computational cost of the analysis is large, the increased effi-
ciency translates also into an increase in the size of the parameter space that can be
analyzed and, thus, the science that can be accomplished with the data.

In this chapter, I first give a brief introduction to (Newtonian) Chirp signals. I
summarize the current analysis technique to search for inspiraling binaries based
on matched filtering. Then I mention about the ongoing efforts to develop efficient
search technique. Rest of the chapter is devoted to the method developed by us
using Chebyshev interpolation and illustrate its efficiency in comparison to the
dense search.
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3.1 Chirp Signal

Inspiraling compact binaries of stellar mass neutron stars or black holes are among
the most important gravitational wave sources accessible to the current generation
of ground-based interferometric gravitational wave detectors [45, 46, 47, 48]. They
are also very “clean” systems, in the sense that the gravitational wave signal arising
from the inspiral depends only on general relativity (eg., the structure of the binary
components is unimportant) and can be calculated to great accuracy by the well-
understood techniques of post-Newtonian perturbation theory [49, 50, 41].

The gravitational wave signature of inspiraling binary systems depends on a
set of 15 parameters that characterize the system (i.e., component masses, orbital
energy and angular momentum at a given epoch, component spins, orientation
relative to detector line of sight). The signal from inspiraling binaries vary most
rapidly, however, along the axis spanned by the so called “Chirp mass”:

M := µ3/5M2/5, (3.1)

where M is the system’s total mass and µ its reduced mass. For reasons that will be
elaborated later, in this work we would only consider the Chirp mass parameter.

The strain response of an interferometric detector due to gravitational waves
incident from an inspiraling binary neutron star system, to quadrupolar approxi-
mation, can be written as

h(t|ta, τ0) = h0
[
π f (t − ta − τ0)M

]2/3 cosΦ(t − ta − τ0), (3.2a)

where

f (t|ta, τ0) :=
1
πM

(
5

256
M

τ0 + ta − t

)3/8

, (3.2b)

Φ(t|ta, τ0) := Φa + 2π
∫ ta+τ0

t
dt f (t|ta, τ0) (3.2c)

for t < ta + τ0. Here ta is the moment when the instantaneous wave frequency is
equal to fa and τ0 is the elapsed time from that moment until (in this approximation)
the system coalesces, which is directly related to the system’s chirp massM:

τ0 =
5

256π fa
1(

πM fa
)5/3

. (3.3)
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A typical signal is shown in the top panel of figure (3.1). The amplitude as well as
frequency of the GW signal from inspiraling binaries increase with time, hence they
are often called “Chirp”. The waveform formula given above is calculated using
the quadrupolar approximation and Newton’s law of gravitation, the signal is thus
called Newtonian Chirp. Its shape depends only on the Chirp mass parameter.

Chirp signals have been modeled to a vary high degree of accuracy using the
post-Newtonian1 (PN) approximation of order 3.5 — the error in phase variation is
less than one in every few thousands cycles, which is the typical number of cycles
while the frequency of the wave is in the sensitive bands of the modern ground
based detectors. However, like the Newtonian waveforms, very precise Chirp
waveforms are also highly sensitive to the Chirp mass as compared to other physical
parameters characterizing the compact binary. In this work we are interested in
studying the relative performances of different search algorithms. We use a one
dimensional parameter space to compare the performances of two methods, which,
we believe, can be extrapolated to higher dimensions. It is quite obvious that, for
a one dimensional analysis, we should consider only the most important intrinsic
parameter, the Chirp mass, and the Newtonian Chirp waveform, as its shape is
entirely determined by the Chirp mass. This explanation will be repeated in the
context of computational cost in the next section.

The elapsed time to coalescence τ0 is a useful surrogate for the chirp mass
M: templates equispaced in τ0 have constant cross-correlation, independent of τ0.
Choosing fa equal to 40 Hz, which is commonly taken as the lower-edge of the
LIGO detector bandwidth at design sensitivity [51], τ0 ranges from approximately
43 s for a binary system consisting of two 1 M� compact objects to 0.15 s for a binary
consisting of two 30 M� black holes.

It will soon become clear that working in the frequency domain is quite con-
veninent. For neutron star binaries in the LIGO or Virgo band the Fourier transform
can be evaluated to an excellent approximation using the stationary phase approx-
imation [52]:

h̃( f ) = N f−7/6 exp
{
i
[
−Φa − π/4 +Ψ( f |ta, τ0)

]}
, (3.4a)

1Post-Newtonian approximation is a perturbative analysis, where Einstein’s equations are ex-
panded as a power series in relative velocity v [using c = 1] of the binary components. The order of
approximation is defined as the highest power of v2 used in the expansion.
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where

Φa = Φ(ta|ta, τ0), (3.4b)

Ψ( f |ta, τ0) = 2π f ta + faτ0
6π
5

(
f
fa

)−5/3

. (3.4c)

The factorN is a constant amplitude.

3.2 Dense Search

As mentioned in the last section, gravitational waves from inspiraling binaries can
be accurately modeled using general relativity and they are independent of the
structure of the binary components. Because of these reasons matched filtering and
maximum likelihood techniques are well-suited for the detection and characteriza-
tion of the signal from these systems [53, 52]. An implementation based on these
methods is currently used in the analysis of data from the LIGO and GEO detectors
(cf. [54, 55, 56, 57]).

3.2.1 Matched Filtering

The above (conventional) search begins with the construction of theoretically mod-
eled waveforms or “templates” for discrete points λk on the parameter space λ.
[Technically, this process is also called “placement of a template bank over the
parameter space”]. The data is then “matched filtered” using the theoretically
constructed template bank [58]. For the purpose of the present work we have
λ = {τ0, ta,Φa}— the chirp mass parameter, the time of arrival and the initial phase.
However, as we shall see, it may not be necessary to construct template banks
over all the parameters; some parameters can be searched for using sophisticated
mathematical tools, like FFT, consuming very little computation time as described
in [54].

The strain output generated by a gravitational wave detector is a time series
of real numbers. The Wiener (matched) filter output is the scalar product between
the data g(t) and the template h(t). It is convenient to work in the frequency
domain, as the statistical properties of detector noise can be easily characterized
by a frequency power spectrum. Following the Neumann-Pearson approach of
Maximum Likelihood estimation, it can be shown that (cf. [59]) for GW signal from
inspiraling binaries the signal-to-noise ratio (SNR) is maximized if we define the
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scalar product with an inverse noise weight as

〈
g, h

〉
= 4

∫
∞

0
d f <

 g̃( f )̃h∗( f )
Sn( f )

 , (3.5)

where g̃( f ), h̃( f ) are the Fourier transforms of g(t), h(t) respectively and Sn( f ) is the
one sided power spectral density of detector noise. The basic steps for matched
filtering can then be listed as below:

1. Evaluate the Wiener filter output W(d|Sn,λk) at each of the template locations
λk;

2. Determine the template λ j whose Wiener filter output is greatest;

3. If the filter output at λ j exceeds the given threshold, report an event with the
parameters λ j.

An illustration matched filtering is provided in figure 3.1. A typical chirp signal
(top panel), is injected in comparatively stronger noise (middle). The data is then
correlated with the templates. In this case the templates are also chirp signals
of same shape but with different time of arrivals. The cross correlation value is
plotted against the time of arrival. One can see that, when the time of arrival of
the templates matches that of the injected signal, a very high correlation value is
observed.

3.2.2 Template placement

To choose the template locations we use the match function. Denoting by h(t|λ) the
signal characterized by λ the match Γ(λ j,λk) is

Γ(λ j,λk) =

〈
h(t|λ j), h(t,λk)

〉
√〈

h(t|λ j), h(t,λ j)
〉
〈h(t|λk), h(t,λk)〉

. (3.6)

By construction |Γ| ≤ 1. The templates locations are chosen so that consecutive
templates in any of the directionsλ j have an overlap Γ0, referred to as the “minimum
match” (MM).

It is also important to distinguish between the nature of the parameters that
characterize the template. Changes in some parameters, like τ0, change the shape of
the Chirp waveform: we term such parameters dynamical parameters (µk). On the
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Extracting the inspiraling binary signal from noisy data by Matched Filtering

Figure 3.1: Illustration of Matched Filtering. Top: Typical “Chirp” signal due to
Newtonian compact binaries. Middle: The above signal is injected into compar-
atively strong detector like noise. Bottom: Matched filtering is done over time of
arrival and high correlation is seen when the time of arrival matches the injection
time of arrival.
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other hand, parameters, such as ta or Φa, translate the waveform, but do not alter
its shape: we term these kinematical parameters2. Maximization of the Wiener filter
output over the kinematical parameters can be performed in a computationally
efficient manner as shown in the literature [54]. It is not required to search for
the parameters phase Φa and time of arrival ta of the signal by binning those
parameters and computing the Wiener filter output for each bin. Computation
of Wiener filter outputs W(d|Sn,µk, ta, 0) and W(d|Sn,µk, ta, π/2) for two orthogonal
phase components Φa = 0, π/2 can be combined together using the formula

W(d|Sn,µk, ta) =
√

W(d|Sn,µk, ta, 0)2 +W(d|Sn,µk, ta, π/2)2 (3.7)

to maximize the match over the phaseΦa. The estimate for the signal phase is given
by

Φa = tan−1
[
W(d|Sn,µk, ta, π/2)

W(d|Sn,µk, ta, 0

]
. (3.8)

Also, the Wiener filter outputs for all the time of arrival parameter bins can be
calculated at once using fast fourier transform (FFT) technique effectively using the
same amount of computation as required to calculate for just one bin. Therefore,
while designing efficient search algorithms, dynamical (intrinsic) parameters are
our main concern.

To identify an incident signal using a matched filter requires the application of
a fair sampling of filter templates, each defined by a unique choice of the parameters
associated with the physical system. Current implementations of matched filtering
used in the analysis of gravitational wave detector data involves a very dense
sampling of the two-dimensional parameter subspace corresponding to the binary
component masses (intrinsic parameter space) and assuming zero eccentricity orbits
and no body spins. The rationale for choosing a subspace is that the computational
cost of a full parameter space search is high and that many systems are believed to be
adequately represented by this subspace. Even for this two dimensional subspace
the minimum computational cost for a matched filter search over component masses
in the range 0.2 M� < m1 ≤ m2 < 30 M� in the LIGO detector band is several hundred
GFlops/s [56]. When significant body spin is allowed the computational cost grows
by several orders of magnitude [60]. The templates are spaced so closely that the
correlation between templates at neighboring points in the subspace - the minimal

2In the literature, dynamical and kinematical parameters are also known as intrinsic and extrinsic
parameters respectively. Unlike the dynamical parameters, the kinematical parameters can be handled
quickly and easily in the filtering algorithms.
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match - is 97% [56,55]. We refer to this as the “dense” search strategy. The rationale
underlying the dense search strategy is to reduce the probability that a weak signal,
characterized by parameters that fall between those sampled, will be missed by the
sampling3.

Here we are interested in understanding the performance of the different search
strategies. The current analysis focuses on a two-dimensional parameter space
spanned by the masses of the individual binary components. However, the tem-
plates vary most rapidly with the chirp mass. The linear density of templates
needed by the dense search in the direction ∂M is approximately 100 times the lin-
ear density needed in the orthogonal direction. Because of this, for the comparison
of efficiencies we perform here, we focus attention on the number of template eval-
uations needed for binaries with equal mass components that vary only inM. We
expect that the ratio of performance, measured as the number of templates required
by different search strategies to achieve the same search results, will be the same in
the complementary dimension and in the other dimensions that will be introduced
in future searches that accommodate component spins and orbital eccentricity.

3.2.3 Choice of parameter

There are many different ways of parameterizing the template space. Choosing
τ0 as a dynamical variable has the advantage that Γ(τ0, τ′0) depends only on the
difference τ0−τ′0; consequently, in the dense search templates are spaced uniformly
in τ0 [54, 55, 56]. To determine that spacing we evaluate

H(∆τ0) = Γ(τ0, τ0 + ∆τ0), (3.9)

where now Γ has been maximized over the kinematical parameters ta and φa. We
call H the dynamical ambiguity function or simply as the ambiguity function. It
quantifies the fractional match between the template at τ0 and the signal at τ0+∆τ0.
Figure 3.2 showsH for power spectral density specified in the initial LIGO science
requirements [51]. The requirement thatH(∆τ0) is equal to a constant for any two
consecutive templates determines the spacing ∆τ0 between templates that differ
only in τ0. For our example problem, which has just one dynamical parameter, the
requirement thatH(∆τ0) is 97% (the conventional choice) for neighboring templates

3Because the total accessible volume is proportional to the cube of minimum detectable amplitude
and it is assumed that the distribution of detectable sources is uniform in the nearby universe, to
ensure that at most 10% signals are missed due to the mismatch between data and template, the match
function should not fall below 3√1 − 10% ≈ 0.97.
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Figure 3.2: Ambiguity function. Ambiguity function H plotted as a function of
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for a 97% match, which corresponds to an inter-template separation of ∼ 30 ms.

leads to a template spacing ∆τ0 equal to 30 ms.

3.3 Efficient Search Algorithms

Dense search is computationally expensive. It is not possible to search over the
whole physically allowed parameter space considering all the parameters with the
available computing power. Therefore it is extremely important to design efficient
search algorithms. Several efforts is being made by different research groups to
develop fast data analysis algorithm for the detection of inspiraling binaries. One
of the very promising method is hierarchical search [61, 62]. In the first stage of
hierarchy a coarse template bank is used with a lower threshold of detection. In
the subsequent stages, the threshold is increased and a finer search is performed
around the trigger events in the previous stage.

We have developed another4 straightforward and practical way of using in-
terpolation to take advantage of the correlation between the matched filter output
associated with nearby points in the parameter space to significantly reduce the

4Our method can work with the hierarchical search, so this is not an alternative to the hierarchical
scheme, rather, our algorithm can be used to enhance its performance.
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number of matched filter evaluations without sacrificing the efficiency with which
real signals are recognized.

We are not the first to observe the significance of the high correlation between
neighboring templates nor to consider the opportunity for and advantages of in-
terpolation as part of the implementation of matched filtering for the analysis of
binary inspiral signals. The significance of the high correlation as an indication that
fewer templates should be able to recover signals with the same efficiency, was first
made in [55]. Croce et al [63, 64] explored the use of Cardinal interpolation with a
truncated series of sinc functions to estimate the value of the matched filter output
when the filter used corresponds to the actual parameters that describe the signal.
They found a sampling of parameter space that would insure the interpolated esti-
mate would be no less than 97% of the maximum over a two dimensional intrinsic
parameter space. Their sampling and interpolation reduced by a factor of 4, com-
pared to the dense search, the number of templates required to search over a two
dimensional intrinsic parameter space. Here we find that we can achieve an increase
in efficiency by a factor of 3.5 for one dimensional parameter space, with a simpler
template spacing and a simpler and quicker to evaluate interpolation function.

Cardinal interpolation with sinc functions provides perfect reconstruction of
a band-limited function from equispaced samples. In the present case, however,
the function being interpreted is not band-limited and — in any event — we do
not have the infinite number of samples that would be required for perfect recon-
struction. As an alternative to cardinal interpolation with a truncated series of sinc
functions we consider interpolation using Chebyshev polynomials, which have two
important properties: first, they have (very nearly) the minimum maximum error
of all polynomial interpolating expressions of fixed degree; and second, they have
the practical advantage of being quick and easy to calculate. Few more useful
properties of Chebyshev polynomials have been listed in Appendix A

To understand and demonstrate the performance of the interpolated search we
evaluate the both the minimum number of templates required to obtain a given
detection efficiency using both the (Chebyshev) interpolation and dense strategies.
We go further, however, and calculate also the false alarm probability of both
search strategies. The relationship between the false alarm and false dismissal
probabilities is referred to as the Receiver Operating Characteristic, or ROC. Clearly,
given two analysis strategies with the same efficiency, the strategy with the lower
false alarm fraction has superior discriminating power. We find that interpolation
strategy using Chebyshev interpolation is superior to the dense analysis strategy or
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interpolation using the sinc function, from the perspective of either computational
efficiency or discriminating ability.

3.4 Interpolated Search

As discussed in the previous section, the correlation between the Weiner filter out-
puts of neighboring templates can be exploited to reduce the number of template
evaluations required to search over the full parameter space. The Wiener filter
output can be sampled and the full function can be reconstructed using a suitably
chosen interpolation scheme. In this section we describe our proposed template
placement scheme using Chebyshev interpolation and compare it with other rele-
vant template placement schemes [44].

3.4.1 Interpolation of the Wiener filter output

The Wiener matched filter W, corresponding to an expected signal characterized by
τ , is a scalar-valued function of the (vector-valued) instrument data d, noise power
spectral density Sn:

W(d|τ ) =W(τ |Sn,d). (3.10)

In our particular problem W(d|τ ) is a continuous function of τ and τ corresponds
to the intrinsic parameters that characterize our binary system model: e.g., binary
system component masses, orbital energy and angular momentum, component
spins, etc. Given a data set d we wish to find an interpolating function W̃(τ ) and a
set of points τk in the space of possible signals such that

Wk = W̃(τk) =W(d|Sn, τk). (3.11)

There are, of course, an infinite number of continuous functions W̃(τ ) that take on
the values Wk at the τk: the question is, how do we choose among them?

Focus attention first on the case where τ is a scalar x. One particular choice of
interpolant W̃(d|Sn, x), which is especially important in the context of communica-
tion theory, is based on the Whittaker Cardinal function sinc:

C(x) =
∞∑

k=−∞

Wksinc
x − xk

∆
, (3.12)
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where

sinc(x) =
sinπx
πx

, (3.13)

xk = x0 + k∆. (3.14)

Shannon [65] showed that the Cardinal interpolation C(x) of W(d|Sn, x) is the unique
interpolant W̃ that (i) takes on the values Wk at the xk, (ii) has no singularities, and
(iii) and whose spectrum is limited to a bandwidth (2∆)−1. Correspondingly, if
W(d|Sn, x) is bandlimited in x and has the values Wk at the equidistant sampled
points xk then W(d|Sn, x) is equal to C(x). In the case where τ is multi-dimensional
the interpolation can be performed separately on each index: e.g., in the case of two
dimensions [i.e., τ equal to (τ1, τ2)]

C(τ ) =
∞∑

j,k=−∞

W jksinc
π
∆1

(
τ1 − τ1, j

)
sinc

π
∆2

(
τ2 − τ2,k

)
, (3.15)

where

τ1, j = τ1,0 + j∆1, (3.16)

τ2,k = τ2,0 + k∆2 (3.17)

and τ1,0, τ2,0 are constants.
Cardinal interpolation using the Cardinal function sinc forms the basis of the

interpolation formula used in [63, 64]. If W(d|Sn, τ ) is bandlimited and we choose
our samples of W appropriately then we can do no better than using the Cardinal
function to interpolate values of W between the samples. In our problem, however,
W(d|Sn, τ ) is not bandlimited and we do not have an infinite number of sample
points Wk; correspondingly, the Cardinal function C(τ ) is at best an approximation
to W(d|Sn, τ ). With that understanding the Cardinal interpolation C(τ ) is not pre-
ferred and we are led to seek other approximations to W(d|Sn, τ ) that have favorable
properties5.

One possibility, chosen from approximation (as opposed to interpolation) the-
ory, is the use of a Chebyshev polynomial expansion to approximate W(d|Sn, τ ).
Without loss of generality consider a continuous function f (x) on [−1, 1]. The Weier-

5In fact, as noted in [13,14], the Γ is quasi-band-limited: i.e., there exists a Bc such the error one makes
by undersampling at frequency B > Bc is proportional to exp[−(B − Bc)]. Nevertheless, interpolation
with the Cardinal function is still an approximation and, as we are about to see, other interpolating
functions can achieve equivalent accuracy at smaller computational costs.
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strass Approximation Theorem states that for any ε > 0 we can find a polynomial
Pn of order n such that

max
x∈[−1,1]

∣∣∣ f (x) − Pn(x)
∣∣∣ ≤ ε. (3.18)

The minimax polynomial approximation to W(d|Sn, x) is a natural candidate for
the interpolation W̃(x). Unfortunately, finding the minimax polynomial is a very
difficult process; nevertheless an excellent approximation to the minimax polynomial
does exist. Define the error E(x| f ,Pn) associated with the polynomial approximation
Pn(x) by

E(x| f ,Pn) ≡ f (x) − Pn(x). (3.19)

The Chebyshev Equioscillation Theorem [66] states P∗n is the minimax polynomial
if and only if there exist n + 2 points −1 ≤ x0 < x1 < · · · < xn+1 ≤ 1 for which

E(xk| f ,P∗n) = (−1)kE, (3.20)

where
|E| ≡ max

x∈[−1,1]

∣∣∣E(x| f ,Pn)
∣∣∣ . (3.21)

As a corollary, E(x| f ,P∗n) vanishes for x ∈ [−1, 1] at n+1 points x′k, with xk < x′k < xk+1.
This result, together with the Mean Value Theorem, allows us to write the error term
associated with the minimax polynomial P∗n as

E(x| f ,P∗n) =
f (n+1)(ξ)
(n + 1)!

n∏
k=0

(x − x′k), (3.22)

where ξ ∈ [−1, 1]. Correspondingly,

|E| ≤ max
x∈[−1,1]

∣∣∣∣∣∣∣
n∏

k=0

(x − x′k)

∣∣∣∣∣∣∣ max
ξ∈[−1,1]

∣∣∣ f (n+1)(ξ)
∣∣∣

(n + 1)!
. (3.23)

Focus attention on the order n + 1 polynomial

Q∗n+1(x) =
n∏

k=0

(x − x′k). (3.24)

This polynomial has leading coefficient unity. A unique property of the Chebyshev
polynomial Tn+1 is that, of all order n+ 1 polynomials Qn+1 with leading coefficient
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unity,

max
x∈[−1,1]

∣∣∣∣∣Tn(x)
2n−1

∣∣∣∣∣ ≤ max
x∈[−1,1]

|Qn+1(x)|. (3.25)

Additionally, Tn+1(x) has exactly (n + 2) extrema on [−1, 1], the value of |Tn+1(x)| at
these extrema is 1, and the extrema alternate in sign. Correspondingly, if the error
term E(x| f ,P∗n) associated with the minimax polynomial P∗n were polynomial — i.e.,
f (n+1)(ξ) were constant in equation 3.22 so that E(x| f ,P∗n) was equal to Q∗n — then by
the Equioscillation Theorem Q∗n+1 would be equal to Tn+1 and the x′k — where the
error vanishes — would be the n + 1 roots of Tn+1. This suggests that we find the
order n polynomial p∗n such that

p∗n(x′k) = f (x′k) ∀ k = 0 . . . n (3.26)

where, again, the x′k are the roots of Tn+1. The polynomial p∗n is a near minimax
polynomial approximation to f (x). For this polynomial approximation Powell [67]
showed that, as long as f (x) is continuous on [−1, 1],

1 ≤
εcheb

ε0
≤ νn ≡ 1 +

1
n + 1

n∑
k=0

tan
[
(k + 1/2)π

2(n + 1)

]
. (3.27)

where

ε0 = max
x∈[−1,1]

∣∣∣E(x| f ,P∗n)
∣∣∣ , (3.28)

εcheb = max
x∈[−1,1]

∣∣∣E(x| f , p∗n)
∣∣∣ . (3.29)

Powell also showed that νn grows slowly with n: in particular,

νn ∼
2
π

log n. (3.30)

Somewhat tighter bounds on νn can be placed when f is differentiable [68].

As defined above, the near minimax polynomial p∗n is the interpolating poly-
nomial that agrees with f at the n + 1 roots of Tn+1. Alternatively, using several
properties of Chebyshev polynomials, the Chebyshev interpolating polynomial can
be expressed as a linear combination of Chebyshev polynomials:

p∗n(x) =
n∑

k=0

akTk(x) −
1
2

a0, (3.31)
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where

a j =
2

n + 1

n+1∑
k=1

f (x′k)T j(x′k), (3.32)

where, again, the x′k are the n + 1 roots of Tn+1.

3.4.2 Search strategy

Following the above discussion we are in a position to describe an alternative
strategy, which we refer to as the interpolated search strategy.

Here also we first describe the general strategy using the full set of parameters
λ. However, as was in the case of dense search, we may not have to place template
banks over all the parameters. In the present case, we use interpolated search only
for the dynamical parameter6, namely the Chirp mass τ0, and maximize over the
kinematical parameters, the time of arrival ta and the initial phaseΦa, using the fast
FFT based method described in [54].

The general scheme is as follows. First, fix the order of the interpolating
polynomial. This determines the template locations λk on the parameter space λ.
Then

1. Evaluate the Wiener filter W(d|Sn,λk) at each of the template locations λk;

2. Form the interpolating polynomial from the W(d|Sn,λk);

3. Determine the location λ′ where the interpolating polynomial is maximized;

4. Perform a final Wiener filter evaluation at λ′;

5. If the final evaluation exceeds the given threshold, report an event with the
parameters λ′.

We illustrate the interpolated search strategy using Fig. 3.3. In Fig. 3.3 we
use 37 interpolating search templates, that is, we sample the ambiguity function at
37 points in the τ0 space (the marked points on the dotted curve). We construct
the interpolating function (the solid curve) and find its maximum by setting its
derivative to zero. In order to avoid local extrema, we first find the approximate
location of the peak of the interpolating function and then find the zero of its

6Note that, interpolation over kinematical parameters may also improve the performance of the
search algorithms [55]. Although this case has not been considered in the work presented here, it is
worth exploring the possibility in future efforts to maximize the efficiency to search for the binary
inspirals.
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Figure 3.3: Illustration of Interpolated Search. This figure demonstrates the in-
terpolated search. The ambiguity function is sampled and reconstructed over the
chosen parameter space of τ0 = 13 − 17 sec (only a part of the parameter space has
been shown in the figure) with the help of the Chebyshev interpolating polynomial.
The approximate location of the peak of the interpolating function is first located
and the zero of the derivative is obtained by applying successive approximations
around the peak. Finally a template is placed at this estimated signal location. Note
that by placing a template at the maximum of the interpolating polynomial, the
match has improved over the one obtained by simply evaluating the maximum of
the interpolating polynomial.
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derivative by successive approximation near the region of the peak. One can
clearly see that the proper value of the ambiguity function at the maximum of
the interpolating function is more than the maximum value of the interpolating
function and this is what we gain by placing a template at the maximum of the
interpolating function.

3.4.3 Template placement

In the dense search templates are equispaced in τ0, with the spacing between
adjacent templates — and thus the number of templates — chosen such that the
dynamical ambiguity function takes on a specified value. When presented with
data an event is signaled when the amplitude at one of these templates exceeds a
threshold.

In the interpolated search, on the other hand, the domain [τmin
0 , τmax

0 ] is mapped
onto [−1, 1] and the placement and number of templates is chosen to simplify the
construction of the Chebyshev interpolating polynomial of the template output
over this domain. When presented with data the maximum value of the Chebyshev
interpolating polynomial is found and an event is signaled when the amplitude at
that location exceeds a threshold.

In the interpolated search our goal is to minimize the order of the interpolating
polynomial (and, thus, the number of template evaluations) required for a given
accuracy of interpolation. We have some control over this through the choice of
mapping from [τmin

0 , τmax
0 ] to [−1, 1]. The linear map

τ′ = 2
τ0 − τmin

0

τmax
0 − τmin

0

− 1, (3.33)

is the most obvious such mapping. While have not made an exhaustive search of
all possible mappings; however, we have observed that better fits are possible with
a lower-order polynomial when we use the mapping

δ = cos(τ′) = − cos

π τ0 − τmin
0

τmax
0 − τmin

0

 . (3.34)

Moreover, with this mapping, the roots of the Chebyshev polynomial are equi-
spaced7 over the parameter range in τ0. Note that the Chebyshev polynomials

7This means that the Wiener filter outputs from a conventional dense search can also be used as
input to the Chebyshev interpolation scheme to yield a better efficiency by performing negligible
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can also be written as Tn(x) = cos[nθ(x)], where x = cosθ, so in this case Tn(δ) =
cos(nπτ′). Since the τ′ space is sampled uniformly due to the above mapping,
Chebyshev interpolation is now equivalent to a type II Discrete Cosine Transform
in πτ′. Equispaced sampling of the parameter space could be beneficial if the
signals are distributed uniformly over the τ0 space. Nevertheless, for a nonuniform
distribution of signals, different transformation could be preferred to give optimum
results. Once we have fixed the order n of the interpolating polynomial, templates
are placed at values of δ that are roots of the Tn+1(δ). This fixes the templates. The
coefficients of the interpolating polynomial are found using equation 3.32 and then
the interpolating polynomial is constructed using equation 3.31.

It is obvious that minimum number of templates should be used for maximum
computational advantage. We choose the order of interpolation n to be the minimum
order that can retain the MM of 97%. This is equivalent of saying that any injected
signal should be located within the error window where the ambiguity function
centered about the injection point is above the MM. So, in our case, the error in
locating any signal should be less than 15 ms. To do this, we first inject a normalized
signal at a non-special location of the parameter space. The order of interpolation
is then varied over a reasonable range of value and the error (bias) in locating the
signal is noted for each order. This variation has been plotted in figure 3.4. The
minimum order for which the bias is less than 15 ms gives a lower limit to the
number of templates to be used. From the figure one can see that the number is
35. We, then, increase the number of templates and find the minimum number for
which the maximum match is greater than 97% for any injection point. By performing
this exercise, we get the minimum oder of interpolation required to retain the MM
of 97% for the parameter space considered here is 37.

In figure 3.5 we have plotted the match by placing normalized test signals
(without noise) at regular intervals of τ0. For each injected signal τ0, we plot the
maximum of the interpolating polynomial (dashed curve) and the match obtained
by placing a template at the maximum of the interpolating polynomial (solid curve).
We see that the match is a (nearly) periodic function of τ0, with the period equal to
the template separation. This suggests that the detection probability is also periodic
and this fact has been used in carrying out the simulations - the signals are injected
within one such “period" in the parameter space. Moreover, one can see that with
just 37 + 1 interpolated search templates one gets a MM of 0.97, whereas the dense
search requires about 133 templates to achieve the same level of MM. This amounts

amount of extra computation.
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Figure 3.4: Variation of bias with no. of interpolated search templates. A nor-
malized test signal (without noise) was injected at a non-special location on the
parameter space. The error occurred in locating the signal position (bias) is plotted
with the number of templates. This plot gives an indication about the number of
templates required to keep the bias less than 15 sec, so that, the minimal match does
not fall below 97%. One can see that at least 35 templates are needed to keep the
minimal match greater than 97%. See text for the next steps to fix the exact number
of templates.
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Figure 3.5: Variation of Match with signal location. Normalized test signals (with-
out noise) were injected densely at regular intervals along the τ0 parameter space.
For each injected signal τ0, we plot the maximum of the interpolating polynomial
(dashed curve) and the match obtained by placing a template at the maximum of the
interpolating polynomial (solid curve) according to the interpolated search strategy.
This figure illustrates that the match is a (nearly) periodic function of τ0 with the
period equal to the template separation. Moreover, with just 37 + 1 interpolated
search templates the minimal match is 0.97. To maintain the same minimal match
133 templates are needed for the usual dense search.
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to a factor of 3.5 over the dense search and this is so for just one dimension. Note that,
the gain factor obtained by Croce et al. in [63] is ∼ 4 in two dimensions, which scales
to ∼ 2 per dimension. Because the metric (Fisher information matrix) determines
the lattice spacing as well as the correlation, they are interdependent. This suggests
that the Chebyshev interpolation method can be extended to a parameter space of
higher dimensions with about a similar gain factor per dimension.

3.5 Comparison between Dense and Interpolated search:
ROC curves

In this section we compare the performances of the dense and interpolated search
strategies when applied to the problem of identifying the gravitational wave signa-
ture of coalescing neutron star systems in the LIGO detectors.

We are interested in two, related, comparisons: first, the relative “sensitivity”
of a search carried-out with a fixed number of template evaluations using the
dense search strategy and the interpolated search strategy; second, the number of
template evaluations required by the interpolated search in order to achieve the
same “sensitivity” as the dense search. To give meaning to the “sensitivity" of these
two strategies we use the Receiver Operating Characteristic, or ROC.

The ROC is a plot of true positives as a function of the fraction of false positives
for a binary classifier system as its discrimination threshold is varied. Both the
dense search and the interpolated search are binary classifiers: i.e., they classify an
interval of data d as including a signal or not including a signal. A true positive
is a classification of d as including a signal when in fact it does; a false positive is
a classification of d as including a signal when it does not. In both of the search
strategies described here the discrimination threshold is matched filter output that
must be exceeded for a data interval to be classified as including a signal. The false
positive fraction is also known as the type II, or false alarm, error fraction and is
denoted α. The fraction of true positives is also known as the detection efficiency
ε, which is one minus the type I, or false positive, error fraction (which is denoted
β). At fixed α a more sensitive search method has a greater ε. The ROC associated
with a search method no better than a toss of a (possibly loaded) coin is given by
the diagonal α = ε.

Using numerical simulations we have evaluated α and ε as a function of the
detection threshold for both the interpolated search and the dense search, for dif-
ferent numbers of templates (dense search) and different interpolating polynomial
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order (interpolated search).

To evaluate the false positive fraction α we generate a large number of data
segments, each 215 samples long, and each consisting of Gaussian noise whose
power spectrum (assuming a 1024 Hz sample rate) is that specified as the initial
LIGO science requirement [51]. (The Gaussian random numbers are themselves
generated using the Mersenne Twister Pseudo Random Number Generator [69]
and then filtered in the Fourier domain by scaling the Fourier components by the
square root of the PSD.) For the purpose of this comparison we look for signals in
the interval τ0 ∈ [13 s, 17 s]. Both the dense and interpolated search methods are
applied to this data. The ratio of the number of events signaled to the number of
data segments examined as a function of the threshold η is α for that threshold.
Approximately 50,000 realizations of detector noise are used to evaluate α, which
gives reliable results for α greater than approximately 10−3.

To compute ε, the true positive fraction, we proceed in a similar fashion. Now,
however, with each noise instantiation we add a signal, with τ0 drawn uniformly
and randomly from the interval covered by the search: i.e., τ0 ∈ [13 s, 17 s]. We
inject signals of SNR 8. In almost all cases 50, 000 realizations of detector noise plus
signal are used to evaluate the efficiency, which gives reliable results for efficiencies
greater than approximately 10−3. However, for the flat search with 40 templates
and the interpolated search with 30 templates,we have used 400, 000 realizations.
The larger number of realizations in these cases results in smoother curves.

The top panel of Fig. 3.6 shows the variation of α for both methods using 40
templates: i.e., a 100 ms template spacing for the dense search and an order 39
interpolating polynomial in δ (cf. equation 3.34). For any threshold α is always
greater for the dense search than for the interpolated search; similarly, as shown in
the center panel of Fig. 3.6, for any given threshold the efficiency ε is always greater
for the interpolated search than for the dense search. Finally, the bottom panel of
Fig. 3.6 shows the ROC for a 40 template dense search and an order 39 interpolated
search, both of which involve 40 template evaluations to decide if a signal has been
detected. Comparing both ROCs it is clear that the interpolated search is more
sensitive at any given α then the dense search. This is always true: i.e., for a fixed
number of template evaluations the interpolated search will always have a better
efficiency at a given α than the dense search, though as the number of templates
grows large the fractional difference in sensitivity will decrease.

Figure 3.7 and table 3.1 addresses the second of our two questions: the number
of templates evaluations required of an interpolated search to have the same sensi-
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Table 3.1: Comparison between dense and interpolated search. Number of tem-
plate evaluations required to obtain the same efficiency at a false alarm fraction of
10−3 in a dense search and an interpolated search. Note how the interpolated search
is computationally more efficient for the same sensitivity.

# templates
ε at α = 10−3

Dense Interp.
40 31 0.859
50 41 0.890
60 49 0.905
80 64 0.919

100 89 0.924
140 105 0.927
160 115 0.929

tivity as a dense search. Figure 3.7 shows the ROCs for dense searches using 140 and
160 templates, together with the ROCs for interpolated searches using 120 and 100
templates. The interpolated search with and order 120 interpolating polynomial is
clearly as sensitive as a dense search with 160 templates, and an interpolating search
with an order 100 polynomial is as sensitive as a dense search with 140 templates.
Table 3.1 shows similar pairings of the number of templates in a dense search and
the number of templates in an interpolating search necessary to achieve the same
sensitivity.

3.6 Summary and Conclusion

Inspiraling binaries are the most promising sources for the currently operating and
upcoming gravitational wave detectors. Signals from these detectors will be dom-
inated by instrumental noise. However, the signals from the inspiraling binaries
can be accurately modeled using (approximate theories of) general relativity and
these signals do not depend on their internal structures of the binary components.
This makes it possible to detect the signals using matched filtering and maximum
likelihood techniques.

The existing data analysis algorithm, that is being used for the analysis of LIGO
and GEO data, considers only two mass parameters of the binary and densely
places templates over this parameter space so that signals are not missed out if
they fall in between two templates. We call this “dense” search. Dense search is
computationally expensive and it is extremely difficult with the available computing
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Figure 3.6: Comparison: False Alarm & False Dismissal probability. The variation
of the false and true positive fractions, α and ε with threshold η for the dense
and interpolated search methods, each making use of 40 template evaluations.
The top panel shows the false positive fraction. Note how the false positive falls
much sooner for the interpolated search than for the dense search. The bottom
panel shows ε when a signal of amplitude signal to noise 8 is present in the range
τ0 ∈ [13 s, 17 s]. Note how the ε is always greater for the interpolated search than for
the dense search. For the same computational cost (determined by the number of
template evaluations) the interpolated search will always perform better than the
dense search.
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Figure 3.7: Comparison: ROC Curves. ROC curves for dense searches (solid
curves) and interpolating searches (dashed curves). For a given number of tem-
plates, the solid curves are ‘lower’ - less false dismissal probability for the same
false alarm - than the dotted curves in the regime of low false alarm showing that
the interpolated search performs better than the dense search for low false alarm.
The bottom panel shows analogous plot for high minimal match (fine bank) ∼ .98.
Here the performance of the dense search with 160 and 140 templates is comparable
to that of the interpolated search with 120 and 100 templates respectively.
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resources to search over all the parameters and the full volume of the parameter
space using dense search.

We have shown that the use of near-minimax interpolating polynomials to fit
the output of matched filters to the filter parameter values can greatly improve the
sensitivity of a matched-filter based search for gravitational waves from compact
binary inspiral. Since the lattice for dense search and the correlations are depen-
dent on the metric (Fisher information matrix) and any interpolation exploits these
correlations, we believe that the Chebyshev interpolation method can be extended
to a parameter space of higher dimensions with about a similar gain factor per
dimension. Using such a polynomial to find the parameters of the signal template
leading to the best match we can reduce the computational cost of a search over
a two dimensional parameter space by a factor of two compared to the methods
currently in use, without any loss of sensitivity or discriminating power. This fac-
tor of two becomes a factor of ten when the search is over the seven dimensional
parameter space that includes not only the masses but also the spins of the binary
components [70]. This savings in computational cost is estimated under the as-
sumption, which we believe well-founded, that we will obtain the same savings
when the interpolation is extended to additional dimensions.

Moreover, the scheme we have developed places templates uniformly over
the parameter space, like the current dense search. So the Wiener filter outputs of
the dense search can be used as input to the Chebyshev interpolation and better
efficiency can be achieved by performing negligible amount of extra computation.

Other suggestions have been made for reducing the number of filter evalua-
tions without sacrificing detection efficiency. One promising proposal involves a
hierarchical search strategy, wherein a low-threshold trigger generated by the eval-
uation of the matched filters associated with a much coarser sampling of parameter
space followed by (if necessary) a higher threshold evaluation matched filters over
a much finer sampling of parameter space [61,71,72,73,62]. The interpolation strat-
egy we describe here can be implemented together with the hierarchical strategies
to further improve the computational efficiency of binary inspiral analysis. While
the gain in efficiency of the interpolated search over the dense search is approx-
imately constant in the desired false alarm probability, the balance between the
coarseness of the grids in the hierarchical steps, the number of hierarchical steps,
and the gain in computational efficiency associated with the interpolation is not
obvious and requires further study. Nevertheless, since the major contribution to
the computational cost of a multi-grid search is thought to arise in the initial stage
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of the search, the gain in computational efficiency — and, correspondingly, the size
of the parameter space that can be studied with fixed computational resources —
could be substantial.
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Chapter 4

Search for GW Background
(GWB): Radiometer Analysis

The universe is expected to have a stochastic Gravitational Wave Background (GWB)
of astrophysical and cosmological origin. Incoherent superposition of unmodeled
and/or unresolved sources of GW, which are characterized by statistical expecta-
tion values, constitute the stochastic GWB. The cosmological GWB component is
analogous to the Cosmic Microwave Background (CMB) - a stochastic background
of electro-magnetic radiation, whereas the GWB component generated from astro-
physical sources, e.g., supernovae, binaries etc., is analogous to the foreground
observed in CMB experiments, which will generally be higher in amplitude from
the GWB of cosmological origin. Different types of astrophysical and cosmological
sources of GWB and their modeled frequency spectra have been listed in section 4.2.
Measurement of the strength of the statistically isotropic cosmological GWB will
be a direct probe of inflation and some other important phenomena in the early
universe.

As the noise streams in different instruments are independent, the cross-
correlation between the data from a pair of detectors is the best statistic for the
estimation of the strengths of stochastic signals. The cross-correlation statistic can
be used to measure the sky averaged strength of the GWB [74, 75, 76], as well as, to
make skymap of the GWB [77, 78, 79, 80, 81, 82] using the ground and space based
detectors. In order to “point” a baseline formed by a pair of detectors at different lo-
cations, a time dependent phase delay is introduced in the cross-correlation statistic
that accounts for the light travel time delay between the detector sites for a given
source direction. As the earth rotates, the phase factor is adjusted in such a way
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that the signal from the pointing direction is coherently added, while the signals
from other directions wash out. The phase delay, however, is introduced through
a filter function, which also takes into account the variation of source power spec-
tral density (PSD) and non-stationary detector noise PSD over different frequency
bands. The filter function can be altered to search for different models of stochastic
backgrounds.

The method of synthesis imaging using the rotation of the earth is well devel-
oped in radio astronomy and CMB analysis. A similar approach is used here, for
the first time, to propose a method for mapping the GWB and, hence, the analysis
is called “GW radiometer”. The general GW radiometer framework is presented in
section 4.3 to search for any model of GWB. Two important “blind” estimations -
the search for a isotropic background and to map the GWB sky - have been outlined
in section 4.4.

Blind estimations of the upper limits on the strengths of a isotropic GWB
and a stochastic point source using a GW radiometer formed by the pair of LIGO
observatories at Hanford and Louisiana have already been implemented [83,84,85].
The upper limit on the sky averaged stochastic GWB obtained from the fourth LIGO
science run data is currently the best in the frequency range 51 − 150Hz [84].

4.1 Stochastic Gravitational Wave Background (GWB)

A gravitational wave in the weak field limit can be treated as an external field over
a flat Minkowski background:

ds2 = − c2 dt2 + dx2 + hab(t, x) dxa dxb (4.1)

where the roman indices a, b run from 1 to 3. In the transverse traceless (TT) gauge
the metric perturbations h(t, x) ≡ hab(t, x) can be expanded in terms of plane waves
of the two polarizations A = +,×

h(t, x) =
∑

A=+,×

∫
∞

−∞

d f
∫

S2
dΩ̂ h̃A( f , Ω̂) eA(Ω̂) e2πi f (t−Ω̂·x/c), (4.2)

where a tilde (˜) above a variable denotes its Fourier transform, the complex Fourier
amplitudes satisfy the relation h̃∗A( f , Ω̂) = h̃A(− f , Ω̂) owing to the reality of h(t, x),



4.1: Stochastic Gravitational Wave Background (GWB) 51

Ω̂ is a unit vector on the two sphere with spherical polar coordinates (θ, φ)

Ω̂ = cosφ sinθ x̂ + sinφ sinθ ŷ + cosθ ẑ (4.3)

and the polarizations tensors eA(Ω̂) ≡ eA
ab(Ω̂) are defined by the following equations

m̂(Ω̂) := sinφ x̂ − cosφ ŷ (4.4a)

n̂(Ω̂) := cosφ cosθ x̂ + sinφ cosθ ŷ − sinθ ẑ (4.4b)

e+(Ω̂) := m̂(Ω̂) ⊗ m̂(Ω̂) − n̂(Ω̂) ⊗ n̂(Ω̂) (4.4c)

e×(Ω̂) := m̂(Ω̂) ⊗ n̂(Ω̂) + n̂(Ω̂) ⊗ m̂(Ω̂). (4.4d)

Stochastic signals can not be modeled as a time series, they are characterized
by their expectation values. If we assume a stochastic GWB without any correlation
between different polarizations1, frequencies and directions2 we may write

〈̃h∗A( f , Ω̂) h̃A′( f ′, Ω̂′)〉 = δAA′ δ( f − f ′) δ2(Ω̂ − Ω̂′)PA(Ω̂) H( f ), (4.5)

wherePA(Ω̂) is proportional to the strength of the GWB in the direction Ω̂ and H( f )
is the two sided GW source Power Spectral Density (PSD).3 The quantityPA(Ω̂) may
be properly interpreted by comparing it with the total GW energy density.

The total GW energy density ρGW(t, x) can be defined as [2, 76]

ρGW(t, x) =
c2

32πG
〈ḣ(t, x) : ḣ(t, x)〉, (4.6)

where a dot ( ˙ ) represents derivative with respect time t and a colon ( : ) rep-
resents the matrix contraction operation. For a stochastic background ρGW(t, x) is

1It is important to note that, even if the polarizations are independent in certain direction, there
can be mixing between polarizations in the other directions due to the rotation of the basis vectors.
This complication has not been included in this thesis, because for numerical applications we only
consider equal power in both the polarizations where this complexity does not arise. However, it
should be straight forward to include this phenomenon in the analysis framework presented here.

2The inflationary GWB will have angular correlations over angular scales larger than the angular
resolution of the radiometers formed using the ground based detectors. Development of a more
general analysis technique to incorporate the angular correlations in GWB is being planned.

3In general, we can not separate H( f ) from PA(Ω̂), because the frequency power spectrum H( f )
could also depend on the direction Ω̂. A more general treatment would use

〈̃hA( f , Ω̂) h̃A′ ( f ′, Ω̂′)〉 = δAA′ δ( f − f ′) δ2(Ω̂ − Ω̂′)PA(Ω̂, f ),

where PA(Ω̂, f ) describes both frequency and angular distribution of GWB power together.
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statistically stationary and, in practice, it should not vary significantly over the
neighborhood of earth where we can place the detectors. Hence, from now on, we
omit the arguments (t, x) from ρGW(t, x).

In cosmology, energy density of a component is usually represented by its
relative magnitude with respect to the cosmological critical density ρcrit required
for a flat universe,

ρcrit =
3 c2 H2

0

8πG
, (4.7)

(in the units of energy density) where H0 is Hubble constant at the current epoch.
If the GWB is statistically homogenous and stationary4, the energy density of the
GWB ρGW is uniform over the whole universe, hence the energy density is better
represented by its relative strength ΩGW with respect to the critical density

ΩGW :=
ρGW

ρcrit
. (4.8)

The frequency spectrum of GWB energy density is also a very important phys-
ical quantity. The community has adopted the notation ΩGW( f ) to represent the
one sided frequency spectrum, which should not be confused with its all frequency
integrated counterpart ΩGW. The frequency spectrum of GWB produced by slow
roll inflation, a very important pillar of standard big bang cosmology, is scale in-
variant, i.e., flat in logarithmic frequency scale. Therefore, conventionally, the GWB
spectrum is defined as the energy density per unit logarithmic frequency interval

ΩGW( f ) := lim
δ ln f→0

[
1
ρcrit

δρGW

δ ln f

]
f
, (4.9)

where δρGW is the contribution to the energy density from the infinitesimal loga-
rithmic frequency interval δ ln f at frequency f (for an alternative but equivalent
definition of ΩGW( f ) see, e.g., [86]). If we define a cumulative spectrum of energy
density ρGW( f ) as the one sided total energy density contributed by the frequency
interval [0, f ], so that, ρGW(∞) ≡ ρGW, we can express the spectrum as a proper
logarithmic derivative:

ΩGW( f ) =
1
ρcrit

dρGW( f )
d ln f

. (4.10)

If the frequency spectrum ΩGW( f ) is integrated over all the (logarithmic) frequen-

4Though the energy density ρGW is statistically stationary, it can vary over cosmological time scales
due to the expansion of the universe.
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cies, one gets back the total energy density:∫
∞

−∞

ΩGW( f ) d ln f =
1
ρcrit

∫
∞

−∞

dρGW( f )
d ln f

d ln f =
1
ρcrit

[
ρGW(∞) − ρGW(0)

]
= ΩGW.

(4.11)
This was a consistency check for the above definition of GWB frequency spectrum.

The quantityPA(Ω̂) can now be interpreted by comparing two sides of eqn (4.6).
Substituting eqn (4.2), eqn (4.5) and eqn (4.8) in eqn (4.6) and using the identity
eA : eA

≡ eA
abeab

A = 2 one gets

ΩGW =
2π2

3H2
0

∫
∞

−∞

d f f 2 H( f )
∫

S2
dΩ̂

[
P
+(Ω̂) + P×(Ω̂)

]
(4.12)

=
4π2

3H2
0

∫
S2

dΩ̂
[
P
+(Ω̂) + P×(Ω̂)

] ∫ ∞

0
d f f 2 H( f ). (4.13)

Hence, the GW energy density contributed by per unit solid angle of GWB sky is

lim
|δΩ̂|→0

δΩGW

δΩ̂

∣∣∣∣∣
Ω̂
=

4π2

3H2
0

[
P
+(Ω̂) + P×(Ω̂)

] ∫ ∞

0
d f f 2 H( f ), (4.14)

where δΩGW is the part of energy density coming from the infinitesimal solid angle
δΩ̂ located at the direction Ω̂. Related definition of specific intensity commonly
used in astrophysics is given at the end of the section.

One can take a similar approach to establish the relation

ΩGW( f ) =
4π2

3H2
0

f 3 H( f )
∫

S2
dΩ̂

[
P
+(Ω̂) + P×(Ω̂)

]
. (4.15)

Since, both H( f ) and PA(Ω̂) are unnormalized, we are free to choose one additional
normalization condition5. Using the (polarization independent) normalization∫

S2
dΩ̂

[
P
+(Ω̂) + P×(Ω̂)

]
= 8π, (4.16)

one gets the relation between ΩGW( f ) and H( f ) as

ΩGW( f ) =
32π3

3H2
0

f 3 H( f ) ⇒ H( f ) =
3H2

0

32π3 | f |
−3ΩGW(| f |). (4.17)

5Note that, the normalization of PA(Ω̂) is not compulsory, it is required only for comparing with
the conventionally defined quantityΩGW( f ). We may not use this condition while constructing filters.
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More generally, one can extend eqn (4.14) to derive the expression for GWB
energy density per unit logarithmic frequency interval per unit solid angle

ΩGW( f , Ω̂) := lim
|δΩ̂|→0

δΩGW(f)

δΩ̂

∣∣∣∣∣
Ω̂
=

4π2

3H2
0

f 3 H( f )
[
P
+(Ω̂) + P×(Ω̂)

]
, (4.18)

where δΩGW(f) is the part of frequency spectrum coming from the infinitesimal
solid angle δΩ̂ located at the direction Ω̂. The above quantity differs by a factor
of c/ f from the specific intensity, defined as the energy density per unit frequency
interval per unit solid angle. Thus the specific intensity6 of GWB,

IGW( f , Ω̂) =
4π2c
3H2

0

f 2 H( f )
[
P
+(Ω̂) + P×(Ω̂)

]
, (4.19)

provides a complete physical interpretation for PA(Ω̂).

4.2 Sources of GWB

The stochastic gravitational wave background consists of two parts - an highly
anisotropic astrophysical background caused by unresolved long and short term
sources and a (relatively low) statistically isotropic cosmological background gen-
erated in the very early universe. A comprehensive review of the astrophysical and
cosmological GWB can be found in [87]. Few points of interest for our analysis are
listed below. The wide spectrum of the GWB components and their detectability
using the two upcoming advanced LIGO detectors are nicely illustrated in figure 4.1
(Fig 1 of [87]).

The astrophysical GWB can be classified into two main types depending on the
nature of the sources:

• Continuous: The continuous sources of GW are slowly varying sources whose
evolution times are comparable to the observation time, say, one year, e.g.,
rotating binary (not in the final few minutes before coalescence), deformed
neutron star and galactic white dwarfs. The continuous sources create a
continuous GWB.

• Burst: Burst sources are unmodeled sources whose evolution time is much
smaller than the observation time. If the burst sources have a very high event

6Note that, we have used ρcrit as the unit of energy, to express the specific intensity in the usual
unit of energy (e.g., CGS), IGW( f , Ω̂) should by multiplied by ρcrit in the corresponding units.
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Figure 4.1: Inflationary GWB spectra and detectability using advanced LIGO de-
tectors. The figure shows the spectra of different astrophysical and cosmological
GWB sources and their detectability using the two upcoming advanced LIGO de-
tectors (Fig 1 of [87]). Though it may not be possible to measure the GWB using the
advanced LIGO detectors, putting strong upper limit on the background is of great
scientific importance.

rate, so that, effectively there is at least one burst event at any given time over
the full observation time, a continuous GWB is produced. If the even rate
times event duration (Duty Cycle) is less than one, there are times when there
is no burst event. These sources create a non-continuous GWB known as the
popcorn noise.

The cosmological GWB is generated by phenomena in the very early universe
and hence it can be a direct probe of the universe when its age was comparable to
the Planck time 10−43s. The “standard” model of cosmology requires an inflationary
phase of the universe to explain the very high degree of homogeneity, isotropy and
flatness of the universe. Most of the reasonable models of inflation predict a very
broad band scale invariant cosmological GWB, so the detection of the cosmological
GWB would be a direct probe of the inflation. Several experiments are being pro-
posed to detect the cosmological GWB at different frequencies. These experiments
either aim to probe the GWB directly using the GW detectors or plan to measure cos-
mological GWB at very low frequencies by probing the B-mode polarization of the
cosmic microwave background. The spectrum and detectability of the inflationary
GWB is shown in figure 4.2 taken from page 18 of [88]. While the ground based GW
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detectors are unlikely to detect the inflationary GWB, the space based GW detectors
look quite promising. The upcoming CMB polarization experiments are likely to
probe the inflationary GWB at very low frequencies by precise measurement of
B-mode polarization anisotropy of the cosmic microwave background.

Figure 4.2: GWB spectra and detectability landscape. The figure shows the ex-
pected levels of cosmological inflationary GWB for different scalar to tensor ratio
and their detectability using the currently operational and proposed detectors (Pic-
ture taken from page 18 of [88]). While the ground based GW detectors may not
detect the cosmological GWB, the proposed space based GW detectors are quite
promising. Indirect detection of the inflationary GWB at very low frequencies by
precise measurement of B-mode polarization anisotropy of the cosmic microwave
background is likely with the CMB polarization experiments coming in the next
few decades.

4.3 Detection of GWB: Radiometer Analysis

Stochastic signals are characterized by their statistical expectation values. Two dif-
ferent detector have statitically independent noise. The simplest statistics is the
two point correlation or equivalently the power spectrum. These facts suggest that
the correlation of data from two independent detectors should be the best statistic
for detecting and mapping a stochastic GWB. This method has broad similarity
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with the earth rotation synthesis imaging used in radio astronomy and CMB exper-
iments, so, following a similar nomenclature, the analysis has been named as “GW
radiometer”. The general GW radiometer analysis technique has been presented in
this section.

4.3.1 Cross-correlation statistic

The time series data sI(t) from detector I consists of two parts - the true GW strain
hI(t) and noise nI(t):

sI(t) = hI(t) + nI(t). (4.20)

The true GW strain in the detector I due to the incident GW h(t, x(t)) ≡ hab(t, x(t)) is
given by the inner product

hI(t) = dI(t) : h(t, xI(t)), (4.21)

where xI(t) is the location of detector I and dI(t) is the detector tensor defined in
terms of the outer products of the unit vectors along its arms X̂I(t) and ŶI(t):

dI(t) :=
1
2

[
X̂I(t) ⊗ X̂I(t) − ŶI(t) ⊗ ŶI(t)

]
. (4.22)

Here we are using equatorial coordinate system, whose origin coincides with the
centre of the Earth. The axes are defined as follows: For a fixed but arbitrarily
chosen time t = 0, the x-y axes are in the equatorial plane forming a right handed
triad with the z axis pointing to the north celestial pole and the x-axis is chosen to be
point at the Greenwich meridian. So, the detector locations xI(t), the vector joining
the sites ∆x(t) := x1(t)−x2(t) and the detector arms X̂I(t), ŶI(t) are all vectors rotating
with the earth, their instantaneous value can be obtained by using the Euler rotation
formula, e.g.,

∆x(t) = R(−ωEt) · ∆x(0), (4.23)

whereωE = 2π/(1 sidereal day) is the earth’s rotation frequency and R(φ) represents
Euler rotation matrix about the earth’s rotation axis (z-axis) by an angle φ:

R(φ) :=


cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 . (4.24)
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The detector tensor dI(t) can be obtained by a similarity transform with R(−ωEt):

dI(t) = R(−ωEt) dI(0) R(ωEt). (4.25)

Statistically, the quantities hI(t) are uncorrelated with nJ(t); that is, the four
correlations, in the time domain are zero: 〈hI(t)nJ(t′)〉 = 0, I, J = 1, 2, where t, t′ are
any two time instants. We also assume that the noise in the different detectors is
uncorrelated; that is, 〈n1(t)n2(t′)〉 = 0. This assumption is not unreasonable when
the detectors are widely separated. Thus the only possible correlation we envisage
is between h1(t) and h2(t′). Moreover, a stochastic background is characterized by
its statistical expectation values. Therefore, the cross-correlation between detector
outputs is used as the statistic. The simplest cross-correlation statistic that could be
formed for the observation time T is∫ T/2

−T/2
dt s1(t) s2(t). (4.26)

However, the outputs of modern GW detectors are too noisy, one needs to suppress
all those frequency bands which have excess noise. So it is necessary to introduce a
filter function in the cross-correlation statistic that weigh the product of the signal
appropriately. A filter can handle “colored” noise, and, in addition, it provides a
complete mathematical framework to search for different models of GWB, including
a directed search to map the GWB sky. Also, the detector coordinates and noise
power spectra are non-stationary, so the correlation statistic has to be computed
over smaller time chunks to simplify filter evaluation. The chunk size is usually
chosen much greater than the light travel time delay between the detector sites (few
tens of milliseconds for ground based detectors) over which the detector outputs
are correlated; but small enough, so that the detector noise spectra and the earth can
be regarded as stationary over each chunk. The size of the chunk used in current
data analysis varies from 32 to 192 seconds. The “broadening” of the Fourier
components, ∼ few × 10−2Hz, due to the finite size of the chunk is much smaller
than the size of the frequency band of the stochastic signals we are interested in.
The final statistic for the full observation time T is obtained by linearly combining
the cross-correlations over the smaller chunks as a weighted sum.

To incorporate all the above requirements, we construct a more sophisticated
statistic using a (possibly direction dependent) filter function Q(t; t′, t′′), which con-
nects sidereal time t′ of one detector’s data to t′′ of the other detector’s data to match
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the phases of the GW strains in the detectors. In general, the filter is a functional
of the source and detectors characteristics, more specifically, the frequency PSDs of
the GWB signal, noise in detectors and, also, the angular power distribution of the
GWB. However, we do not explicitly show these dependencies in the filter, unless
we are using some models for those functions (or parameters) for constructing fil-
ters. Optimized filters are constructed for each chunk of size ∆t at different sidereal
times t. The general form of the cross-correlation statistic S for all the n = T/∆t
sidereal time bins can then be formally expressed using the following equations:

∆S(t) :=
∫ t+∆t/2

t−∆t/2
dt′

∫ t+∆t/2

t−∆t/2
dt′′ s1(t′) s2(t′′) Q(t; t′, t′′). (4.27)

S :=
n∑

i=1

wi ∆S(ti);
n∑

i=1

wi = 1. (4.28)

The weight factors wi are chosen in such a way that the Signal-to-Noise Ratio (SNR)
is maximized. If we choose the filter Q(t; t′, t′′), such that, the expectation of ∆S(t)
does not vary with time, it is easy to show that, to maximize SNR the weight factors
should be inversely proportional to the variance of ∆S(t). The proof is given below:

Problem: Let x ≡ xi be a set of independent estimators with mean
µ ≡ µi := 〈xi〉 and variance σ2

i := 〈(xi − 〈xi〉)2
〉. Let us construct an

estimator X as a weighted sum of the estimators xi:

X :=
∑

i

wi xi ;
∑

i

wi = 1. (4.29)

The problem is to choose the normalized weight factors wi, such that,
the signal-to-noise ratio (SNR) of the estimator X is maximized.

Solution: Mean, variance and SNR of the estimator X are respectively

µX := 〈X〉 =
∑

i

wi µi (4.30)

σ2
X := 〈(X − 〈X〉)2

〉 =
∑

i

w2
i σ

2
i (4.31)

SNRX :=
µX

σX
=

∑
i wi µi√∑

i w2
i σ

2
i

. (4.32)

The SNR can be expressed as a scalar product in terms of the unit vector
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κ̂ ≡ κi := wiσi/
√∑

i w2
i σ

2
i and the vector ρ ≡ ρi := µiσ−1

i , where ρi is the
SNR of xi:

SNRX = κ̂ · ρ. (4.33)

Clearly, the SNR is maximized when κ̂ is parallel to ρ, which happens
when we choose wi ∝ µiσ−2

i . Since, by construction,
∑

i wi = 1, the
Minimum Variance Estimator (MVE) for the present problem is

X =

∑
i xi µi σ−2

i∑
i µi σ−2

i

, (4.34)

which is a linear combination of all the estimators, with less noisy and/or
more “bright” ones getting more weightage. Then the mean, variance
and SNR of X are respectively

µX =

∑
i µ

2
i σ
−2
i∑

i µi σ−2
i

; σ2
X =

∑
i µ

2
i σ
−2
i[∑

i µi σ−2
i

]2 ; SNRX =

√∑
i

µi σ−2
i . (4.35)

More generally, if the estimators xi are correlated, the coefficients wi

should be chosen as the solution of the set of linear equations∑
j

σi j w j = µi

∑
j

w j, (4.36)

where σ ≡ σi j := 〈(xi−〈(xi))(x j−〈(x j))〉 is the covariance matrix of xi. The
MVE in this case is

X =
x · σ−1

· µ

1̄ · σ−1 · µ
, (4.37)

where σ−1 is the inverse of the covariance matrix and 1̄ is a vector whose
all the components are 1, and its variance and SNR in are given by

µX =
µ · σ−1

· µ

1̄ · σ−1 · µ
; σ2

X =
µ · σ−1

· µ[
1̄ · σ−1 · µ

]2 ; SNRX =
√

1̄ · σ−1 · µ. (4.38)

If all xi are unbiased estimators of a quantity µ, that is, 〈xi〉 = µ (which
is always possible by defining a new set of estimators x′i := xi/µi), by
construction X is an unbiased estimator of µ: 〈X〉 = µ. The Minimum
Variance Unbiased Estimator (MVUE), its variance and its SNR are then
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given by

X =
x · σ−1

· 1̄
Tr(σ−1)

; σ2
X =

[
Tr(σ−1)

]−1
; SNRX = µ

√
Tr(σ−1). (4.39)

Finally, if all xi are independent unbiased estimators of a quantity µ,
that is, 〈X〉 = µ and σi j = σ2

i δi j, the weight factors should be chosen as
wi ∝ σ−2

i and the MVUE, its variance and its SNR are respectively

X =

∑
i xi σ−2

i∑
i σ
−2
i

; σ2
X =

∑
i

σ−2
i


−1

; SNRX = µ

√∑
i

σ−2
i . (4.40)

Thus, if ∆S(t) is an independent unbiased estimator of a time independent quan-
tity with variance σ2

∆S(t), we may construct the unbiased estimator S for the full
observation time as

S =

 n∑
i=1

∆S(ti) σ−2
∆S(ti)

 /
 n∑

i=1

σ−2
∆S(ti)

 . (4.41)

Clearly, the noisy parts of a day (comparatively large σ∆S) get less weightage.
Finally, the overall variance and SNR of the statistic S are respectively

σ2 =

 n∑
i=1

σ−2
∆S(ti)


−1

; SNR :=
〈∆S(ti)〉
σ

= 〈∆S(ti)〉

√√
n∑

i=1

σ−2
∆S(ti). (4.42)

The power spectra of GW and the detector noise are modeled in the frequency
domain, therefore it is convenient to formulate the whole analysis in the frequency
domain. The (approximate) Fourier transform of a chunk of detector output can be
defined as

s̃I(t; f ) :=
∫ t+∆t/2

t−∆t/2
dt′ sI(t′) e−2πi f t′ . (4.43)

The Fourier transform in this case itself is a function of time t! This is understand-
able because the time argument t in the Fourier transform s̃I(t; f ) is essentially an
identifier for the chunk. The size of the frequency bands are negligibly increased
due to the finite size of the chunk (which would not happen if ∆t → ∞), but, as
mentioned before, it does not affect the analysis of data from stochastic signals with
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much broader frequency bands. Most importantly, by inverse Fourier transform,∫
∞

−∞

d f s̃I(t; f ) e2πi f t =

∫
∞

−∞

d f e2πi f t
∫ t+∆t/2

t−∆t/2
dt′ sI(t′) e−2πi f t′ = sI(t), (4.44)

one can recover the whole chunk time series sI(t). This justifies the reason for calling
the coefficients s̃I(t; f ) as “Fourier transforms”. The same convention will be used
for several other quantities as well in this analysis.

Assuming that the noise in the detectors are stationary within each chunk, we
may write Q(t; t′, t′′) = Q(t; t′ − t′′), which allows us to expand the filter in terms of
its Fourier transform Q̃(t, f ) as

Q(t; t′, t′′) = Q(t; t′ − t′′) =
∫
∞

−∞

d f e2πi f (t′−t′′) Q̃(t, f ). (4.45)

Substituting the above in eqn (4.27) one gets

∆S(t) =
∫ t+∆t/2

t−∆t/2
dt′

∫ t+∆t/2

t−∆t/2
dt′′ s1(t′) s2(t′′)

∫
∞

−∞

d f e2πi f (t′−t′′) Q̃(t, f ). (4.46)

Rearranging terms and using the definition of Fourier transforms of the signal it is
easy to show that

∆S(t) =
∫
∞

−∞

d f s̃∗1(t; f ) s̃2(t; f ) Q̃(t, f ). (4.47)

This form of the statistic (a.k.a. point estimate) will be used in our analysis.

4.3.2 Correlation between GW Strains

While constructing the statistic, it was assumed that the true GW strains in the de-
tectors are correlated (but the noise streams are not). The expression for correlation
between the GW strains in two detectors will be derived here, which is necessary
for the derivation of the optimal filter.

The Fourier transform of a chunk of GW strain in detector I [from eqn (4.21)] is

h̃I(t; f ) :=
∫ t+∆t/2

t−∆t/2
dt′ e−2πi f t′ hI(t′) =

∫ t+∆t/2

t−∆t/2
dt′ e−2πi f t′ dI(t′) : h(t′, xI(t′)). (4.48)

The GW strain involves two time scales of different orders - (i) the intrinsic frequency
of the wave and (ii) the period of the earth’s rotation over which the detector
coordinates and the noise power spectra significantly change. As mentioned earlier,
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the chunk size is kept much smaller than the earth’s rotation frequency, so that, the
detector parameters can be approximated to be stationary over this period. Hence
we may consider the quantities dI(t′) and xI(t′) to be nearly constant in the above
integral and replace them by dI(t) and xI(t) respectively, while keeping the high
frequency metric perturbation term h(t, xI(t)) untouched. Then by substituting
eqn (4.2) in the above formula we get

h̃I(t; f ) =
∫ t+∆t

2

t−∆t
2

dt′
∑

A=+,×

∫
∞

−∞

d f ′
∫

S2
dΩ̂dI(t) : eA(Ω̂) h̃A( f ′, Ω̂) e

2πi
[

f ′t′− f t′− f ′ Ω̂·xI (t)
c

]

=
∑

A=+,×

∫
S2

dΩ̂FA
I (Ω̂, t)

∫
∞

−∞

d f ′ h̃A( f ′, Ω̂) e
2πi

[
( f ′− f )t− f ′ Ω̂·xI (t)

c

]
δ∆t( f − f ′), (4.49)

where FA
I (Ω̂, t) are the antenna pattern functions of detector I,

FA
I (Ω̂, t) := eA(Ω̂) : dI(t), (4.50)

and δ∆t( f ) is the finite time delta function

δ∆t( f ) :=
∫ ∆t/2

−∆t/2
dt e−2πi f t =

sinπ f∆t
π f

. (4.51)

The finite time delta function δ∆t( f ) behaves as Dirac delta function δ( f ) in the limit
∆t→∞, but has the property δ∆t(0) = ∆t. Hence for large chunk size ∆t the Fourier
transform of chunk of data from detector I takes the simple form

h̃I(t, f ) =
∫

S2
dΩ̂

[
F+I (Ω̂, t) h̃+( f , Ω̂) + F×I (Ω̂, t) h̃×( f , Ω̂)

]
e−2πi f Ω̂·xI(t)/c. (4.52)

The expectation of cross-correlation between the Fourier transforms of chunks
of detector outputs at time t can be expressed as [using eqn (4.49) and eqn (4.5)]:

〈̃h∗1(t, f ) h̃2(t, f ′)〉 = e2πit( f− f ′)
∫
∞

−∞

d f ′′H( f ′′) δ∆t( f ′′− f ) δ∆t( f ′′− f ′)γPA(t, f ′′), (4.53)

in terms of the very important quantity, the general overlap reduction function

γPA(t, f ) :=
∫

S2
dΩ̂

[
F+1 (Ω̂, t) F+2 (Ω̂, t)P+(Ω̂) + F×1 (Ω̂, t) F×2 (Ω̂, t)P×(Ω̂)

]
e2πi f Ω̂·∆x(t)/c,

(4.54)
where ∆x(t) is the separation vector between the two detectors ∆x(t) := x1(t)− x2(t).
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In the limit of large chunk size, the above relation takes the neat form

〈̃h∗1(t, f ) h̃2(t, f ′)〉 = δ( f − f ′) H( f )γPA(t, f ). (4.55)

The advantage of expressing 〈̃h∗1(t, f ) h̃2(t, f )〉 by eqn (4.53) can be readily real-
ized if we put f = f ′. In this case, the correlation diverges in the limit ∆t → ∞, as
evident from eqn (4.55). But, in practice, ∆t is finite, and hence, we expect a finite
value. Eqn (4.53) lets us compute that finite value of 〈̃h∗1(t, f ) h̃2(t, f )〉 at f = f ′. We
use the large ∆t limit and replace one of the finite time delta functions δ∆t( f ′′ − f )
in the integrand of eqn (4.53) by the Dirac delta function δ( f ′′ − f ), while treating
the other δ∆t( f ′′ − f ) as a normal function and put δ∆t(0) = ∆t. We get

〈̃h∗1(t, f ) h̃2(t, f )〉 = ∆t H( f )γPA(t, f ). (4.56)

This result is important for injecting test signals in the detector output.

4.3.3 Detector Noise

The detectors outputs, and so the cross-correlation statistic, are overwhelmed by
noise. However, since the noise in the detectors are uncorrelated whereas the
true GW strains are correlated, we hope to detect a stochastic background by cross-
correlating detector outputs. Though the expected value of the signal is determined
by the true GW strain, the noise terms produce fluctuations in the statistic. The
properties of detector noise in a finite sized chunk is described here.

The noise time series nI(t) in detector I, and hence its Fourier transform,

ñI(t; f ) :=
∫ t+∆t/2

t−∆t/2
dt nI(t) e−2πi f t, (4.57)

are of zero mean: 〈nI(t)〉 = 0, 〈̃nI(t; f )〉 = 0 and uncorrelated with true strain signal
and noise of other detectors,

〈̃n∗1(t; f ) ñ2(t; f )〉 = 〈̃h∗1(t; f ) ñ2(t; f )〉 = 〈̃n∗1(t; f ) h̃2(t; f )〉 = 0. (4.58)

The chunk size is usually kept few tens of seconds over which detector noise can
be regarded as stationary. Which means that 〈nI(t′) nI(t′′)〉 is a function of t′′ − t′,
provided both t′, t′′ are in the same chunk centered at time t. Then, using the fact
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that nI(t) is a real, we may write

〈nI(t′) nI(t′′)〉 =
1
2

∫
∞

−∞

d f PI(t; | f |) e2πi f (t′′−t′), (4.59)

where PI(t; f ) is the one sided noise PSD. This noise PSD also is a function of time t,
because the noise power spectrum usually varies over different chunks.

It is useful to translate the above equation in terms of the Fourier transform of
noise. Taking Fourier transforms for both the time variables t′,t′′, we get〈∫ t+∆t/2

t−∆t/2
dt′ e2πi f ′t′ nI(t′)

∫ t+∆t/2

t−∆t/2
dt′′e−2πi f ′′t′′nI(t′′)

〉
=

1
2

∫
∞

−∞

d f PI(t; | f |)
∫ t+∆t/2

t−∆t/2
dt′e2πi( f ′− f )t′

∫ t+∆t/2

t−∆t/2
dt′′e−2πi( f ′′− f )t′′ , (4.60)

where we have converted the “one sided” frequency integral [0,∞] to a “two sided”
frequency integral [−∞,∞]. Then, interchanging dummy variables and introducing
the finite time delta functions, we obtain

〈̃n∗I(t; f ) ñI(t; f ′)〉 =
1
2

∫
∞

−∞

d f ′′ PI(t; | f ′′|) δ∆t( f ′′ − f ) δ∆t( f ′′ − f ′). (4.61)

In the large chunk limit we arrive at the usual formula

〈̃n∗I(t; f ) ñI(t; f ′)〉 =
1
2
δ( f − f ′) PI(t; | f |). (4.62)

The advantage of the expressing 〈̃nI(t; f ) ñI(t; f ′)〉 using eqn (4.61) becomes
evident when we put f = f ′: The regular formula [eqn (4.62)] involving Dirac delta
function diverges, which, in practice, is finite. Whereas in eqn (4.61) if we replace
one finite time delta function by Dirac delta function and treat the other as a normal
function we get

〈|̃nI(t; f )|2〉 =
1
2
∆t PI(t; | f |). (4.63)

This formula is very useful for generating simulated noise.

4.3.4 Optimal Filter

As the name suggests, we would like to construct an “optimal” filter to maximize
the SNR of the cross-correlation statistic over the small chunks. The optimal filter
depends on the theoretical model of the GWB. We shall derive the expression for
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filter for the general case and then we shall present the implementation schemes for
a couple of special cases.

We start by calculating the SNR of the statistic over small chunks, that is,
calculate the ratio of mean and standard deviation of ∆S(t) using the correlation
properties of signal and noise derived above.

• Mean:

The mean of the statistic ∆S(t)

µ∆S(t) := 〈∆S(t)〉 =
∫
∞

−∞

d f 〈̃s∗1(t; f ) s̃2(t; f )〉 Q̃(t, f ). (4.64)

Since the noise satisfies the correlation properties stated in eqn (4.58)

〈̃s∗1(t; f ) s̃2(t; f )〉 = 〈̃h∗1(t; f ) h̃2(t; f )〉. (4.65)

Using the above expression, we arrive at the result

µ∆S(t) = ∆t
∫
∞

−∞

d f H( f )γPA(t, f ) Q̃(t, f ). (4.66)

• Variance:

True GW strains in the detectors are much smaller than noise, which is more
severe for the stochastic signal analysis, where matched filtering can not be
used. For the same reason, the cross-correlation statistic over each small chunk
will also be strongly dominated by detector noise. We hope to detect a signal
by combining all the chunk cross-correlations over the full observation time.
Thus, while calculating the variance of ∆S(t), we may neglect the signal terms
as compared to the noise terms. Then, the variance of ∆S(t) can be written as

σ2
∆S(t) := 〈(∆S(t) − 〈∆S(t)〉)2

〉 (4.67)

≈

∫
∞

−∞

d f
∫
∞

−∞

d f ′ 〈̃n∗1(t; f ) ñ2(t; f ) ñ∗1(t; f ′) ñ2(t; f ′)〉 Q̃∗(t, f ) Q̃(t, f ′),

=

∫
∞

−∞

d f
∫
∞

−∞

d f ′〈̃n∗1(t; f ) ñ1(t;− f ′)〉〈̃n2(t; f ) ñ∗2(t;− f ′)〉Q̃∗(t, f ) Q̃(t, f ′).
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Then substituting eqn (4.61) in the above equation, we obtain

σ2
∆S(t) =

∫
∞

−∞

d f
∫
∞

−∞

d f ′
[
1
2

∫
∞

−∞

d f1 P1(t; | f1|) δ∆t( f1 − f ) δ∆t( f1 + f ′)
]
(4.68)

×

[
1
2

∫
∞

−∞

d f2 P2(t; | f2|) δ∆t( f2 + f ′) δ∆t( f2 − f )
]

Q̃∗(t, f ) Q̃(t, f ′).

In the above expression if we use large chunk limit and convert one finite
time delta function to Dirac delta function for each integral (while treating
the remaining ones as normal functions and putting δ∆t(0) = ∆t), we reach the
final expression

σ2
∆S(t) =

∆t
4

∫
∞

−∞

d f P1(t; | f |) P2(t; | f |) |Q̃(t, f )|2. (4.69)

The above results can be combined to write the expression for SNR over the
small chunks as:

SNR∆S(t) :=
µ∆S(t)
σ∆S(t)

= 2
√

∆t

∫
∞

−∞
d f H( f )γPA(t, f ) Q̃(t, f )√∫

∞

−∞
d f P1(t; | f |) P2(t; | f |) |Q̃(t, f )|2

(4.70)

Since P1(t; | f |) P2(t; | f |) is positive definite, we may introduce the inner product at
time t

(A,B)t :=
∫
∞

−∞

d f P1(t; | f |) P2(t; | f |) Ã∗(t; f ) B̃(t; f ), (4.71)

which satisfies all the properties of scalar product in a complex vector space indexed
by f . The vector space is finite for practical purposes as the number of frequency
bins used for data analysis is finite. We may also define the norm of a complex
function A(t; f ) at time t to be

‖A‖ =
√

(A,A)t . (4.72)

In terms of the “unit” filters Q̂ := Q/‖Q‖t of this space, such that, (Q̂, Q̂)t = 1, the
SNR can be expressed in an elegant form:

SNR∆S(t) = 2
√

∆t

 H( f )γ∗
PA(t, f )

P1(t; | f |) P2(t; | f |)
, Q̂


t

. (4.73)

Clearly, SNR∆S(t) is the projection of the vector 2
√
∆tH( f )γ∗

PA(t, f )/[P1(t; | f |)P2(t; | f |)]
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on the unit vector Q̂. So, the SNR is maximized when the “signal” and the “filter”
vectors are parallel, which happens when

Q̃(t, f ) ∝ q̃(t, f ) :=
H( f )γ∗

PA(t, f )

P1(t; | f |) P2(t; | f |)
, (4.74)

where we call q̃(t, f ) as the unnormalized filter function. From now on, q will always
denote the above “unnormalized” filter for the corresponding filter Q; same notation
will be used to explicitly show the dependencies.

In practice, we have to choose the filter Q̃(t, f ) such that the above criteria is
satisfied, but we do not have an exact a priori model for H( f ) and PA(Ω̂), which we
are trying to measure! We use different models for H( f ) and PA(Ω̂) to search for
different types of backgrounds. These models are used to construct the model de-
pendent overlap reduction function γPA(t, f ) and then the filter QPA,H ≡ Q̃PA,H(t, f )
to measure the filter dependent statistic∆SQ(t) (and SQ). We employ a generic suffix
Q to represent all the parameters Q depends on. Here Q represents, in short, PA, H.
Thus, to search for a GWB with PSD H( f ) and angular energy density distribution
P

A(Ω̂), the optimal filter is given by

Q̃PA,H(t, f ) = λQ(t) q̃PA,H(t, f ) = λQ(t)
H( f )γ∗

PA(t, f )

P1(t; | f |) P2(t; | f |)
, (4.75)

where λQ(t) is a (real) proportionality constant, to be fixed by the normalization
condition for the statistic. As discussed before, for each GWB model, we normalize
the statistic over small chunks in such a way that they become unbiased estimators
of a single (time independent) quantity, that is,

〈∆SQ(t)〉 = ∆t
∫
∞

−∞

d f H( f )γPA(t, f ) Q̃PA,H(t, f ) (4.76)

should not vary with time t. In practice, we do not have the exact model for GWB,
but the filter is still normalized by setting the mean to be constant when the filter
matches the true GWB. We choose

∆t
∫
∞

−∞

d f H( f )γPA(t, f ) Q̃PA,H(t, f ) = 1 (4.77)

⇒ λQ(t)∆t
∫
∞

−∞

d f
H2( f ) |γPA(t, f )|2

P1(t; | f |) P2(t; | f |)
= λQ(t)∆t ‖qPA,H‖

2
t = 1. (4.78)

It is worth noting that the normalization equation can be rewritten in terms of the
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scalar product defined in eqn (4.71) as

λQ(t) = ∆t (QPA,H,QPA,H)t ≡ ∆t ‖QPA,H‖
2
t , (4.79)

in other words, the normalization constant is proportional to the square of the norm
of the filter. The normalization condition sets [see eqn (4.69) and eqn (4.79)]

σ2
∆S(t) = (∆t/4)(QPA,H,QPA,H)t = λQ(t)/4 = ‖qPA,H‖

−2
t /(4∆t). (4.80)

This allows us to express the statistic over the full observation time as7

SQ =

∆t
n∑

i=1

‖qPA,H‖
2
ti


−1 n∑

i=1

∫
∞

−∞

d f s̃∗1(ti; f ) s̃2(ti; f ) q̃PA,H(ti, f ), (4.81)

which has the overall variance [from eqn (4.42)]

σ2
Q =

1
4

 n∑
i=1

λ−1
Q (ti)


−1

=
1
4

∆t
n∑

i=1

‖qPA,H‖
2
ti


−1

. (4.82)

It is quite important to note that the statistic defined above, in practice, is a real
quantity. This is because the Fourier transforms of (real) chunk time series data
satisfies the relation s̃I(t;− f ) = s̃∗I(t; f ) and q̃PA,H(t,− f ) = q̃∗

PA,H
(t, f ) [as γPA(t,− f ) =

γ∗
PA(ti, f )] and the range of the integral is spread symmetrically over the positive

and negative frequencies.

4.3.5 Observed Point Estimate and SNR

The optimal filter requires exact models for the PSD H( f ) and the angular power
distributions of the GWB PA(Ω̂), which are the quantities one wishes to measure.
Hence, the models can not be exactly known a priori, hence we can not have the
“true” filter Qtrue ≡ Q

PA
true,Htrue

- filters can only be suboptimal. The expected point

7The expression for optimal statistic derived here follows the historical route starting from [76]
and provides a practical picture. However, the same expression could be derived in a simple mathe-
matically elegant way by defining a scalar product in the t ⊗ f space as

(A,B) = ∆t
n∑

i=1

∫
∞

−∞

d f P1(ti; f ) P2(ti; f ) Ã∗(ti; f ) B̃(ti; f )

and using the fact that the GW strains of two detectors in different chunks are uncorrelated as the
chunk size is much greater than the light travel time delay between the detector sites.
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estimate and SNR using an approximate filter is estimated below. The maximum
SNR than can be observed if the models were exactly known is also obtained.

Suppose that the true GWB PSD is Htrue( f ) and the true angular power distribu-
tion is PA

true(Ω̂), while this background is searched using the corresponding model
functions H( f ) and PA(Ω̂). Then the source term will have the “true” overlap
reduction function,

γtrue
PA (t, f ) ≡ γ

PA
true

(t, f ) =
∑

A=+,×

∫
S2

dΩ̂FA
1 (Ω̂, t) FA

2 (Ω̂, t)PA
true(Ω̂) e2πi f Ω̂·∆x(t)/c, (4.83)

and the statistic SQ over the full observation time will have the following properties:

• Mean: [using eqn (4.81), eqn (4.66)]

µobs
Q =

∆t
n∑

i=1

‖qPA,H‖
2
ti


−1

∆t
n∑

i=1

(qtrue, qPA,H)ti (4.84)

=

∆t
n∑

i=1

∫
∞

−∞

d f
H( f )γ∗

PA(ti, f )

P1(ti; | f |) P2(ti; | f |)
Htrue( f )γtrue

PA (ti, f )

∆t
n∑

i=1

∫
∞

−∞

d f
H2( f ) |γPA(ti, f )|2

P1(ti; | f |) P2(ti; | f |)

(4.85)

• SNR: [using eqn (4.85) and eqn (4.82)]

SNRobs
Q =

µobs
Q

σQ
= 2

∆t
n∑

i=1

‖qPA,H‖
2
ti


−1/2

∆t
n∑

i=1

(qtrue, qPA,H)ti (4.86)

= 2

∆t
n∑

i=1

∫
∞

−∞

d f
H( f )γ∗

PA(ti, f )

P1(ti; | f |) P2(ti; | f |)
Htrue( f )γtrue

PA (ti, f )√√
∆t

n∑
i=1

∫
∞

−∞

d f
H2( f ) |γPA(ti, f )|2

P1(ti; | f |) P2(ti; | f |)

(4.87)

In the most optimistic case, where the true background is proportional to the mod-
eled background, Htrue( f )PA

true(Ω̂) = κH( f )PA(Ω̂), where κ is the proportionality
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constant, the expectation of observed point estimate and SNR are respectively

µQ = κ
µobs

Q

σQ
=

∆t
n∑

i=1

‖qPA,H‖
2
ti


−1

∆t
n∑

i=1

(qPA,H, qPA,H)ti = κ (4.88)

SNRmax
Q = 2κ

√√
∆t

n∑
i=1

‖qPA,H‖
2
ti
= 2κ

√√
∆t

n∑
i=1

∫
∞

−∞

d f
H2( f ) |γPA(ti, f )|2

P1(ti; | f |) P2(ti; | f |)
. (4.89)

This is the maximum detectable SNR (depending, of course, on κ) by a radiometer
search. This relation is important to test the algorithm using artificial injections and,
more importantly, for putting upper limits on the GWB.

The above discussion shows that the ignorance about the correct model of the
sky leads to a loss of SNR. The ratio of the observed signal-to-noise ratio SNRobs

Q

with the modeled filter QPA,H and the signal-to-noise ration SNRtrue that could be
observed given the true model is given by

ε :=
SNRobs

Q

SNRtrue
=

∆t
n∑

i=1

(qtrue, qPA,H)ti√√
∆t

n∑
i=1

‖qtrue‖
2
ti

√√
∆t

n∑
i=1

‖qPA,H‖
2
ti

, (4.90)

which is the “angle” between the truly optimal (qtrue) and the modeled (qPA,H)
unnormalized optimal filters. The quantity ε would be a good measure to quantify
the necessity of developing more accurate (and possibly more complicated) filters.

4.3.6 Summary

To search for a stochastic GWB Fourier transforms of outputs s̃I(t; f ) from the de-
tectors I = 1, 2 for each of n chunks of size ∆t are cross-correlated [eqn (4.47)]

∆SQ(t) =
∫
∞

−∞

d f s̃∗1(t; f ) s̃2(t; f ) Q̃PA,H(t, f )

through a filter function [eqn (4.75)]

Q̃PA,H(t, f ) = λQ(t) q̃PA,H(t, f ) := λQ(t)
H( f )γ∗

PA(t, f )

P1(t; | f |) P2(t; | f |)
,
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where H( f ) is the modeled GWB PSD, PI(t; f ) is the noise PSD of detector I,γPA(t, f )
is the modeled overlap reduction function, λQ(t) is a (real) normalization constant
and q̃PA,H(t, f ) is the unnormalized filter function. The modeled overlap reduc-
tion function depends on the modeled angular power distribution PA(Ω̂) and the
antenna pattern functions FA

I (t, Ω̂) of the detectors [eqn (4.54)]

γPA(t, f ) =
∫

S2
dΩ̂

[
F+1 (Ω̂, t) F+2 (Ω̂, t)P+(Ω̂) + F×1 (Ω̂, t) F×2 (Ω̂, t)P×(Ω̂)

]
e2πi f Ω̂·∆x(t)/c.

The normalization constant is (usually) fixed by the relation [eqn (4.78)]:

λQ(t)∆t
∫
∞

−∞

d f
H2( f ) |γPA(t, f )|2

P1(t; | f |) P2(t; | f |)
=: λQ(t)∆t ‖qPA,H‖

2
ti
= 1.

Filter dependent correlations over the short chunks ∆SQ(t) are then combined to
get the statistic SQ over the full observation time using a linear sum with inverse
weightage of noise variance σ2

∆S(t) = λQ(t)/4 in the small chunks [eqn (4.41)]:

SQ =

 n∑
i=1

∆SQ(ti) σ−2
∆S(ti)

 /
 n∑

i=1

σ−2
∆S(ti)

 ,
which can also be written as [eqn (4.81)]

SQ =

∆t
n∑

i=1

‖qPA,H‖
2
ti


−1 n∑

i=1

∫
∞

−∞

d f s̃∗1(ti; f ) s̃2(ti; f ) q̃PA,H(ti, f ).

If the modeled and true GWB are proportional, Htrue( f )γtrue
PA (ti, f ) = κH( f )γPA(ti, f ),

where κ is the proportionality constant, the observed SNR is maximum. The expecta-
tion of point estimate [eqn (4.88)] and SNR [eqn (4.89)] in the most favourable case
are respectively

µQ = κ; SNRmax
Q = 2κ

√√
∆t

n∑
i=1

‖qPA,H‖
2
ti
= 2κ

√√
∆t

n∑
i=1

∫
∞

−∞

d f
H2( f ) |γPA(ti, f )|2

P1(ti; | f |) P2(ti; | f |)
.

The above results are important for putting upper limits on a certain kind of back-
ground. These formulae have been extensively used in this thesis for testing the
algorithm with injected signals.
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4.4 Applications

In the previous section, we established that the “optimal” filter to search for a
stochastic GWB with PSD H( f ) and angular power distribution PA(Ω̂) is given by
[eqn (4.75)]

Q̃PA,H(t, f ) = λQ(t)
H( f )γ∗

PA(t, f )

P1(t; | f |) P2(t; | f |)
,

where the sky model dependent overlap reduction function [eqn (4.54)]

γPA(t, f ) =
∫

S2
dΩ̂

[
F+1 (Ω̂, t) F+2 (Ω̂, t)P+(Ω̂) + F×1 (Ω̂, t) F×2 (Ω̂, t)P×(Ω̂)

]
e2πi f Ω̂·∆x(t)/c.

So the optimal search is an all-sky search for a colored anisotropic background.

However, a priori, we do not have exact models for H( f ) and PA(Ω̂). Which
means that, we can not perform truly “optimal” search. But, like many other signal
analysis methods, we opt for suboptimal methods - knowledge about the GWB sky,
available from different theoretical and observational fields of astronomy, will be
used to construct H( f ) and PA(Ω̂), and in turn, the filter.

Approximate models are available for the PSDs H( f ) of different kinds of as-
trophysical and cosmological GWB, which were shown in figure 4.1 [87]. From
the figure one can see that most of these models are linear over a broad logarith-
mic frequency range. This suggests that the PSDs can be modeled in the sensitive
frequency bands (around 100 Hz) of the detectors using power laws of the form

H( f ) = Hα

(
f

100Hz

)α
. (4.91)

The popular slow roll inflation model predicts ΩGW( f ) = constant, which corre-
sponds to α = −3.

Due to the lack of reasonable models forPA(Ω̂), to search for a GWB in the data
from the currently operational detectors (e.g., LIGO), only blind estimations have so
far been considered. No prior knowledge about the sky has been used in the data
analysis - which is why we call it blind estimation. Two possible blind estimations,
which have already been implemented in LIGO data analysis, are presented here -
1. the all-sky search for an isotropic background and 2. the directed search to map
the GWB sky.
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4.4.1 All-sky isotropic background

The background produced by the large scale cosmological processes, like inflation
in the very early universe, could give rise to a statistically isotropic GWB.8 This
has motivated the search for a isotropic background with equal power in both the
polarizations.

To construct filters for the isotropic model with equal power in both the polar-
izations, PA(Ω̂) = 1, we need to use the time independent overlap reduction function

γiso( f ) :=
∫

S2
dΩ̂

[
F+1 (Ω̂, t) F+2 (Ω̂, t) + F×1 (Ω̂, t) F×2 (Ω̂, t)

]
e2πi f Ω̂·∆x(t)/c, (4.92)

which can be calculated in a closed form as outlined in appendix-B of [75]. Though
the integrand in the above integral contains time dependent quantities, the integral
is independent of time because of the following reason: Evaluation of the integral
on the right at any non-zero time t is equivalent of rotating the integration variable
Ω̂ in the arguments of all the quantities in the integrand by an azimuthal angle of
−ωEt and then evaluating the integral at t = 0 (which is not, in general, valid for an
anisotropic GWB). Since a two sphere remains invariant under rotation, the integral
is independent of time. Moreover, since Ω̂→ −Ω̂ does not change expression inside
the square bracket in the integrand, γiso( f ) is real.

In terms of ΩGW( f ), using eqn (4.17) we may write the isotropic filter as

Q̃H(t, f ) =
3H2

0

32π3λQ
| f |−3ΩGW(| f |)γ∗iso( f )

P1(t; | f |) P2(t; | f |)
. (4.93)

Unfortunately, the time independent overlap reduction function becomes nearly
zero at frequencies greater than ∼ 100 Hz, as shown in figure 4.3 for the LIGO
detectors at Hanford and Livingston (note that, our normalization condition is
different from the conventional one prescribed in, e.g., [75]). Hence, the cross-
correlation statistic does not receive power from the most sensitive bands of the
detectors. This problem can be reduced, that is, more power can be acquired from
the “sweet spots” of the detectors, by integrating over only a finite patch of the sky
instead of the whole sky [89].

If we useΩGW( f ) = ( f/100Hz)α in the filter and the true GWB is isotropic with
the spectrumΩGW( f ) = Ωα( f/100Hz)α, then the SNR detected by the isotropic filter

8Note that, the framework presented in this thesis assumes different directions of the GWB sky are
uncorrelated, which may not be a valid assumption for the cosmological GWB.
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Figure 4.3: Time independent overlap reduction function. γiso( f ) has been plotted
for the LIGO Hanford and Livingston detectors. It becomes nearly zero at frequen-
cies greater than ∼ 100 Hz, so data from the most sensitive frequency bands of the
detectors are effectively left out. Note that, our normalization condition is different
from the conventional one prescribed in, e.g., [75].

is maximum. The point estimate and the SNR in that case are respectively [from
eqn (4.88) and eqn (4.89)]

µα = Ωα (4.94)

SNRmax
α =

Ωα
100α

3H2
0

16π3

√√
∆t

n∑
i=1

∫
∞

−∞

d f
| f |2α−6 |γiso( f )|2

P1(ti; | f |) P2(ti; | f |)
. (4.95)

In particular, using four months of data from the LIGO Hanford and Livingston
detectors at designed sensitivity, a rough estimate of minimum detectable amplitude
of a flat GWB spectra, ΩGW( f ) = Ω0, at the 1-σ level (SNRmax

0 = 1) is given by
Ω0 = 3.0 × 10−6 h−2

72 , where h72 is the Hubble constant H0 at the present epoch in the
units of 72 km sec−1 Mpc−1.

The upper limit on Ω0 from the 20 days of fourth LIGO science run data is
6.5 × 10−5 h−2

72 in the frequency range 51 - 150 Hz. This is currently the best upper
limit on the isotropic stochastic GWB in that frequency range.
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4.4.2 Directed Search

The GWB is dominated by nearby anisotropic universe, so the detection of localized
sources is more favorable over the all-sky averaged search. Making a skymap of the
GWB sky has been a long standing ambition of stochastic GW research. Different
analysis methods have been proposed to create skymaps by measuring the first few
spherical harmonic multipoles of the sky [77, 78, 80, 81, 82]. A direct approach to
the problem is the directed GW radiometer analysis [89, 79]. Here the whole sky
is decomposed in a discrete set of pixels and the contribution from each pixel is
measured separately by correlating phase shifted detector outputs to generate the
whole skymap - a clear application of earth rotation synthesis imaging.

The angular power distibution for only one unit point source on the sky in the
direction Ω̂with equal power in both the polarizations can be expressed as9

P
A(Ω̂′) = δ(Ω̂′ − Ω̂). (4.96)

The optimal filter for this case is given by

Q̃Ω̂,H(t, f ) = λΩ̂(t)
H( f )γ∗

Ω̂
(t, f )

P1(t; | f |) P2(t; | f |)
, (4.97)

where λΩ̂(t) is the normalization constant and

γΩ̂(t, f ) :=
[
F+1 (Ω̂, t) F+2 (Ω̂, t) + F×1 (Ω̂, t) F×2 (Ω̂, t)

]
e2πi f Ω̂·∆x(t)/c (4.98)

is the direction dependent overlap reduction function. Unlike the time independent
overlap reduction function of the isotropic search, the direction dependent overlap
reduction function accepts power from all the frequencies.

The working principle of the above filter is evidently similar to the earth rotation
image synthesis often used in CMB and radio astronomy to make map of a certain
portion or the whole sky. The phase lag between two detectors, separated by a
distance∆x(t), in receiving a plane wavefront from a certain direction Ω̂, as shown in
figure 4.4, is accounted for in the filter through the phase factor exp[2πi f Ω̂ · ∆x(t)/c].
As the earth rotates this factor is adjusted, such that, waves from one direction are
coherently added, while the effects of the other directions tend to cancel out. Note
that, we did not introduce the phase factor by hand, it appeared automatically

9Note that, we are not normalizing PA(Ω̂′) using eqn (4.16) for constructing filters. However, we
need to use proper normalization when we compare the directed search result with the all-sky result
using the conventional formula [eqn (4.17)].
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through the process of SNR maximization. Though the whole radiometer analysis
is based on this principle, the idea is clearly realized in the directed search analysis.

.

x
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∆ x
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Figure 4.4: Geometry of an elementary radiometer. ∆x(t) is the vectorial distance
between the two detectors whose magnitude remains constant but its direction
changes as the Earth rotates. Ω̂ is the direction to the source which is fixed in the
barycentric frame.

As mentioned above, the directed search filter is constructed by putting a unit
point source at the pointing direction, PA(Ω̂′) = δ(Ω̂′ − Ω̂). In addition, a power
law model is used for the frequency spectrum H( f ) = ( f/100Hz)α. If the true power
distribution of the background is proportional to the GWB model used to construct
the filters, PA

true(Ω̂′) H( f ) = δ(Ω̂′ − Ω̂)PΩ̂( f/100Hz)α, the observed point estimate
and SNR are maximum, given by [eqn (4.88) and eqn (4.89)]

µΩ̂,α = PΩ̂ (4.99)

SNRmax
Ω̂,α

=
2PΩ̂
100α

√√
∆t

n∑
i=1

∫
∞

−∞

d f
f 2α |γΩ̂(ti, f )|2

P1(ti; | f |) P2(ti; | f |)
. (4.100)

It is expected that, if the filter direction Ω̂ does not match the true point source
direction, say Ω̂0, the observed point estimate and SNR will decrease as the differ-
ence between the filter and source directions, Ω̂− Ω̂0, increases. In fact, only in that
case we may hope to make a map of the GWB sky using the directed search analysis.
The function that describes the variation of point estimate with Ω̂−Ω̂0 is commonly
known in astronomy as the point spread function (PSF) or the beam pattern func-
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tion. The observed sky map is convolved with the beam function and it has to
be deconvolved in order to estimate the true sky map. This is the most important
issue considered in this thesis. Deconvolution of raw skymaps have already been
studied in great detail in CMB analysis and radio astronomy. In particular, CMB
analysis has broad overlap with GWB map making. So relevant techniques have
been adapted from CMB analysis to estimate the true GWB skymaps. Of course,
fresh challenges were encountered while implementing the adapted techniques in
GWB map making. Last four chapters of this thesis are devoted to address the
issues of beams and deconvolution in the context of GWB and CMB analysis.

Figure 4.5: A test sky map made using the GWB radiometer. Strain in the detectors
due to three point sources with flat PSD [H( f ) = constant] were injected in white
Gaussian noise with upper cutoff frequency fu = 1024 Hz and the map was made
by a GW radiometer formed by two detectors at the LIGO locations - Hanford and
Livingston. The point estimates fall of as the pointing direction of the filter moves
away of the true sources, which is why one can see three distinct sources in this
map. This map demonstrates that, making skymaps with a GW radiometer formed
by modern detectors is possible.

A map of the GWB sky made by using a radiometer formed by the two LIGO
detectors at Hanford and Livingston from simulated data containing white noise
and strain due to three injected point sources with flat PSD [H( f ) = constant] is
shown in figure (4.5). It shows that, the point estimate indeed falls off when the
(filter) “pointing direction” moves away of the true source direction, which is why
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the map shows three distinct sources. This exercise demonstrates that it is possible
to make sky maps using a GW radiometer. A rough estimate of minimum detectable
strength of a stochastic point source at the 1-σ level from four months of LIGO data
at the designed sensitivity varies between 4.0 × 10−50 Hz−1 to 5.5 × 10−50 Hz−1 for
α = −3 [flatΩGW( f )] and between 1.4× 10−50 Hz−1 to 1.9× 10−50 Hz−1 for α = 0 [flat
H( f )] depending upon the position of the sky.

The directed search analysis has been implemented using 20 days of the fourth
science run data of the LIGO detectors [85]. The current upper limits from this
analysis on the strength of a point source PΩ̂ varies between 1.2 × 10−48 Hz−1 to
1.2 × 10−47 Hz−1 for α = −3 [flat ΩGW( f )] and between 8.5 × 10−49 Hz−1 to 6.1 ×
10−48 Hz−1 for α = 0 [flat H( f )] depending upon the position of the sky. The
analysis also puts an upper limit of 1.20 × 10−4h−2

72 on the all-sky isotropic point
estimate Ω0 by combining the point estimates of directed search at each pixels.
However, different combinations of the directed search pixel point estimates can
provide different estimates for the all-sky averaged result. Since, the true GWB is
anisotropic, an optimal combination [e.g., eqn (4.39)] of the directed search pixel
point estimates would provide a more accurate estimate of the all-sky averaged
GWB - which could even be better than the estimate obtained by using the all-sky
isotropic search filter. This issue will be taken up with greater detail in chapter 6.

4.5 Summary and Conclusion

A stochastic background of GW from unmodeled and/or unresolved sources of
astrophysical and cosmological origin is expected in the universe. These sources
can not be modeled as a time series, they are characterized by their expectation
values. Conventionally the frequency spectrum is defined as the energy density
per unit logarithmic frequency interval. We can also define specific intensity of
GWB in terms of the quantity that characterizes the strength of the angular power
distribution of GW energy density.

The noise in different detectors are uncorrelated, so the cross-correlation be-
tween data from two detectors is the best statistic for the detection of GWB. The
correlation is done in the frequency domain through a filter function to put less
weight to the noisier frequency bands. Due to non-stationarity of detector noise
and (slow) rotation of the earth, the correlations are taken over small chunks of time
to simplify the construction of filter functions; the correlations over the smaller
chunks are then linearly combined with inverse noise weightage to get the final
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statistic over the full observation time.
The filter function can be varied to search for different models of the GWB.

A general analysis framework to search for any model of GWB (with no angular
correlation) has been presented in this chapter. For any given model of GWB, the
optimal filter that maximizes the signal-to-noise ratio (SNR) has been derived. The
optimal filter requires true models of the power distribution of GWB, which is not
a priori known. Suboptimal filters based on modeled PSD and angular distribution
of energy density of GWB have to be used in the analysis. Expressions for the
observed SNR using a suboptimal filter due to the presence of an unmodeled
anisotropic background and the maximum SNR that could be observed with an
exact prior model of the GWB sky have also been derived.

Due to the lack of reasonable models for the angular distribution of GWB, so
far only blind estimations have been considered - no prior model of the sky has
been used in the analysis, every direction is treated with equal weightage. Two
possible blind estimations - upper limit on the all-sky averaged background and
upper limit on a stochastic point source - have already been implemented using
the fourth science run data of the LIGO detectors at Hanford and Livingston. A
skymap of the GWB sky using the directed search analysis has also been prepared.
However, it is necessary to deconvolve the observed map in order to estimate the
true GWB sky. This is an extremely important issue and will be addressed with
great detail in the rest of this thesis. Because of the broad similarity between GWB
and CMB true skymap estimation, we adapt techniques from CMB analysis. The
next chapter will provide an introduction to theory and experiments of CMB. In
the last four chapters we develop and apply deconvolution techniques, specifically
designed for the current CMB and GWB analysis.

Finally, we must remember that the implementation of the analysis presented
in this thesis focuses only on blind estimations. Better suboptimal filters could be
constructed by introducing different models taking inputs from electro-magnetic
astronomy. Analysis in the spherical harmonic space may allow us to measure low
angular multipoles of the GWB, which can be debiased using the techniques used to
account for the non-circular beam corrections presented in chapter 8 and chapter 9.
Moreover, inclusion of angular correlation of GWB can also be possible in such
analysis. It is also necessary to generalize the analysis by relaxing the assumptions
that the frequency power spectrum of the GWB sky is independent of direction
and waves of different polarizations are independent. We plan to explore these
possibilities in the near future.
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Chapter 5

Introduction to the Cosmic
Microwave Background (CMB)

The Big Bang theory is currently the widely accepted working model of the universe.
According to the big bang model, photons were strongly coupled to matter until the
last scattering surface, after which, photons could travel freely and, hence, they carry
a snapshot of the universe at the last scattering surface. These photons are reaching
us from all the direction constituting a background of microwave electromagnetic
radiation, commonly known as the Cosmic Microwave Background (CMB).

CMB is isotropic to a very high degree with a temperature of 2.7K. However,
the anisotropies in CMB are extremely important for cosmology as they carry the
signature of initial density perturbations (including the primordial gravitational
waves), which have eventually grown due to gravitational instability to form the
structures that are seen in the present universe. If CMB anisotropy is Gaussian and
statistically isotropic, as predicted by the well accepted cosmological models, it can
be completely specified by its angular power spectrum.

The measurement of CMB anisotropy has played perhaps the most important
role in leading cosmology to a precision science. Since COBE’s discovery of CMB
anisotropy, several ground, space and balloon based experiments have measured
CMB anisotropy at different angular scales. However, the precision of the ex-
periments relies on the identification and removal of all the significant systematic
effects. Removing the systematic effects from the CMB anisotropy measurement
experiments is one of the key issues addressed in this thesis. In this chapter, I
briefly mention some of the basic concepts on the origin, measurement and analysis
of CMB, which are relevant to the work presented in this thesis.
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5.1 Origin

The Big Bang theory suggests that the universe has emerged from an extremely
dense and hot initial state [90]. So, in the early stages of the universe, photons
were strongly coupled to the charged plasma of electrons and baryons. As the
universe expanded, the density of photons and electrons decreased, hence the
probability of collisions between the photons and the electrons also decreased.
The photon-electron scattering rate drastically fell off over a small strech of time - a
period commonly referred to as the Last Scattering Surface (LSS). After LSS photons
travelled freely and, hence, the last scattering surface is also called the period of
matter-radiation “decoupling”.

During the above decoupling process, the temperature of the universe de-
creased and free electrons recombined with protons to form neutral hydrogen - a
phenomenon commonly known as “recombination” [91]. One would expect that
recombination occurred when the temperature of the universe became less than
13.6 eV. However, due the very high photons to baryons ratio, the high energy tail
of photon distribution was enough to ionize neutral hydrogen until the temperature
dropped below 0.25 eV [92]. Detailed rate balance equation in the expanding uni-
verse predicts that recombination occurred when the temperature of the universe
was roughly 3000K.

The decoupled photons, which are traveling freely from the LSS, constitute the
Cosmic Microwave Background (CMB). CMB is isotropic to a very high degree -
the temperature (in Kelvin) is the same in every direction up to the fifth decimal
place1. CMB carries signatures of the anisotropies in the universe that existed during
the last scatterings. It is also affected by recombination and other fluctuations
during its journey from the LSS to the observer. Theory of CMB temperature
anisotropy is briefly mentioned in the next section. The timeline of anisotropies
in the universe before and after the LSS have been nicely illustrated in cartoon
figure fig:univTimeLine (taken from WMAP website [93]).

Observations of CMB and its anisotropy is extremely important for constraining
cosmological models and parameters, and have, thereby, played the leading role in
the transition of cosmology to a precision science.

At the LSS photons were in thermal equilibrium over large scales (possibly due
to inflation). Therefore the CMB photons at LSS followed a Planckian distribution.

1Though the observed CMB has a dipole anisotropy at the 10−3 level largely due to the partic-
ular velocity of the solar system in the comoving frame and indistinguishable from any intrinsic
component, here we are talking about the anisotropy intrinsic to CMB.
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Figure 5.1: Evolution of anisotropies in the universe. The timeline of different
anisotropies in the universe, including CMB at LSS, has been illustrated in this
cartoon. Image taken from the WMAP website [93].

Since the photons travelled freely after LSS, their distribution did not change. This
fact was precisely established [94] by the Far Infrared Absolute Spectrophotometer
(FIRAS) of the Cosmic Background Explorer (COBE) [95] satellite as shown in
figure 5.2 (taken from the COBE website). The plot shows the theoretically expected
blackbody spectrum overlaid on the observed CMB frequency spectrum. The error
bars in the plot are hidden by the thickness of the line, showing the remarkable
match between theory and observation.

The expansion of the universe stretches the wavelengths of the CMB photons
and the density of the photons also decrease with the expansion. Therefore, the
temperature of the universe is inversely proportional to the scale factor; it can be
related to the cosmological redshift through the formula T(z) = (1 + z) T0, where
T0 is the observed temperature of the universe at redshift z = 0, the current epoch.
From CMB observations we know that the temperature of the universe today is
2.73K. Comparing this with the recombination temperature (∼ 3000K), one can see
that the LSS refers to a redshift of z ∼ 1100. According to the standard cosmological
model, redshift of 1100 means ∼ 4 × 105 years after the Big Bang. Thus, CMB is a
snapshot of the universe when it was about 4 × 105 years old.
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Figure 5.2: Observed CMB frequency spectrum by COBE FIRAS. The spectrum
matches the blackbody spectrum (Planckian) so remarkably well, that the theoreti-
cally expected blackbody curve shown by the solid line, hides the (tiny) error bars
in the plot. This image is taken from the COBE website [95].

5.2 CMB Anisotropy

The anisotropies in the CMB were originated from the primordial quantum fluctu-
ations in the statistically homogeneous density field. These fluctuations had grown
due to the gravitational instability and the corresponding anisotropy in the radia-
tion density is imprinted on CMB as 10−5K fluctuations. The anisotropy of CMB
temperature field obtained from the three years’ data by the WMAP satellite has
been shown in figure 5.3. A polarization skymap has also been by made by from
that data, which is overlaid on the temperature anisotropy map as solid lines. The
image is taken from WMAP [93] press releases. See [96,97,98] for technical details.

These fluctuations are introduced in CMB through two mechanisms of redshift
variations: anisotropy in gravitational redshift due to the anisotropy in gravitational
potential ΦLSS(q̂) (Sachs-Wolf effect) and anisotropy in the redshift of scattered
photons due to the anisotropy in the particular velocity of the LSS VLSS(q̂) in
the comoving frame (Doppler effect). The observed anisotropy in CMB is also
affected by the thickness of the last scattering surface ∆zLSS ∼ 80, which, in turn,
is controlled by the process of recombination. The fluctuations at scales smaller
than the thickness of the last scattering surface are damped out. In the post-



5.2: CMB Anisotropy 85

Figure 5.3: WMAP CMB anisotropy sky. The 10−5K level temperature anisotropy
skymap obtained from 3-years’ data of the WMAP satellite is shown in the figure.
The polarization map obtained from that data is also overlaid on the map as solid
lines. Image taken from WMAP [93] press releases. See [96, 97, 98] for technical
details.

recombination period, while CMB photons travel from the LSS to the observer, they
may cross anisotropic potential Φ(t, q̂) evolving with time and suffer a net redshift
that introduces anisotropy in CMB (integrated Sachs-Wolf effect). Mathematically,
we may write the observed CMB anisotropy ∆T(q̂) in a direction q̂ as a fraction of
the mean temperature T0 as [186]

∆T(q̂)
T0

=

[
q̂ ·V�(q̂)

c
−

q̂ ·VLSS(q̂)
c

]
+
ΦLSS(q̂)

3c2 +
2
c2

∫
∂
∂t
Φ(t, q̂) dt, (5.1)

where we have also considered the anisotropy introduced due to the particular
velocity of the solar system V�(q̂) in the comoving cosmological frame.

The angular scale of the fluctuations at the LSS is mostly determined by the
competition between the gravitational instability, which tries to increase anisotropy
and radiation pressure, which tries to smooth density fluctuations. It can be shown
that this competition leads to what is known as the acoustic oscillations and the
angular scale over which the patches on the LSS are correlated corresponds to the
acoustic horizon at the LSS. The angular size of the acoustic horizon at the LSS
as seen from the present epoch in a flat universe is ∼ 1◦. We shall explain in the
next section that CMB anisotropy is usually characterized by its angular power
spectrum. The peaks in the observed CMB power spectrum correspond to different
harmonics of the acoustic oscillation, where the first peak corresponds to an angular
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size of ∼ 1◦.
CMB also contains polarization anisotropy, which is usually classified into two

modes, E and B. The large scale anisotropy of B-mode polarization, generated by
the tensor perturbation in early universe, can be an important probe of inflation.
CMB polarization has not been considered in the works presented in this thesis, see
standard references, e.g., [99], for a detailed introduction.

5.3 Angular Power Spectrum: Cosmic Variance

If CMB anisotropy is Gaussian, as predicted by well-accepted inflationary Big Bang
model, the two point correlation function

C(q̂1, q̂2) := 〈∆T(q̂1)∆T(q̂2)〉, (5.2)

gives a complete description of the statistical properties of the anisotropy field.
Further, if CMB anisotropy is statistically isotropic, the two point correlation function
depends only on the angular separation between two directions, C(q̂1, q̂2) = C(q̂1 ·

q̂2), so it is quite convenient to expand it in a Fourier-Legendre series:

C(q̂1 · q̂2) =
∞∑

l=0

2l + 1
4π

Cl Pl(q̂1 · q̂2), (5.3)

where Pl(x) is the Legendre polynomial of order l and Cl is the well known angu-
lar power spectrum of CMB (anisotropy). The angular power spectrum of CMB
(Cl) provides a complete description, equivalent to the two-point function, if CMB
anisotropy is statistically isotropic and Gaussian. From analysis point of view,
however, the angular power spectrum is preferred over the two point correlation
function, because the power spectrum estimator C̃l at different multipoles are uncor-
related, at least, in case of a “perfect” CMB experiment which has full sky coverage
with circularly symmetric beam. In contrast, the two point correlation functions for
different angular separations are correlated.

Thus, the precise measurement of CMB anisotropy essentially means precise
measurement of its angular power spectrum, which is one of the key challenges
in experimental cosmology. To do so one first measures the spherical harmonic
transform of the temperature anisotropy sky (over the 2-sphere):

alm :=
∫

dΩq̂ ∆T(q̂) Y∗lm(q̂). (5.4)



5.3: Angular Power Spectrum: Cosmic Variance 87

The statistical isotropy of the temperature anisotropy sky implies that

〈a∗lm al′m′〉 =

∫
dΩq̂1

∫
dΩq̂2 C(q̂1, q̂2) Ylm(q̂1) Y∗l′m′(q̂2) = Cl δll′ δmm′ , (5.5)

where we have made use of the addition theorem for the spherical harmonics [100]

4π
2l + 1

l∑
m=−l

Y∗lm(q̂1) Ylm(q̂2) = Pl(q̂1 · q̂2) (5.6)

and the orthogonality relation of the spherical harmonics∫
dΩq̂ Y∗lm(q̂) Yl′m′(q̂) = δll′ δmm′ . (5.7)

Therefore, to measure the CMB angular power spectrum, one can first compute
the spherical harmonic transforms alm of the temperature anisotropy sky and then,
according to the above relation, compute2

|alm|
2, which is an unbiased estimator

of Cl. However, if the temperature anisotropy field is Gaussian, so is alm, hence
|alm|

2 is χ2 distributed, therefore each measurement of |alm|
2 will have certain error.

Since we have only one CMB sky, one can not reduce this error by taking multiple
observations. To reduce the error, we define the estimator for angular power
spectrum, C̃l, by averaging over the independent “m” modes:

C̃l :=
1

2l + 1

l∑
m=−l

|alm|
2. (5.8)

Even then the estimated angular power spectrum will have certain error, which is
independent of the experimental precision. That is, even in an ideal CMB experi-
ment, where we assume that the temperature in a certain direction can be measured
with infinite precision, we can not measure the angular power spectrum with arbi-
trary precision. The angular power spectrum estimated from the single realization
of the random CMB that can be observed leads to an inevitable uncertainty (akin to
sample variance) known as the cosmic variance. For statistically isotropic Gaussian

2In practice, alm’s from two different frequency channels, which have independent noise, are cross-
correlated to measure |alm|

2. This removes the noise bias, that is, makes the product of additive noise
terms from alm of zero mean and, hence, the estimator of Cl becomes unbiased.
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CMB anisotropy, cosmic variance is given by

var(C̃l) =
2

2l + 1
C2

l . (5.9)

The above formula for power spectrum estimator suggests that the “specific” cosmic
variance decreases with multipoles. Which is understandable as the number of
independent “m” modes is more at high multipoles. Detailed derivation of the
expression for cosmic variance can be found in appendix C.

The best fit CMB power spectrum obtained from Wilkinson Microwave Anisotropy
Probe (WMAP) [93] data compared to other experiments is shown in figure 5.4
(taken from the LAMBDA website [101]). The first peak of the CMB power spec-

Figure 5.4: Observed CMB Power Spectrum. The best fit WMAP 3-year CMB
power spectrum is compared with the observed power spectrum from other recent
experiments. Note that the errors at the low multipoles and at the high Cl region
around the first peak are cosmic variance dominated, this is the best any CMB
experiment can achieve at those multipoles given only one observable universe.
Image taken from the LAMBDA website [101].

trum was located with extremely good accuracy by the WMAP experiment. The
errors at the low multipoles and the high Cl region near the first peak are all cosmic
variance limited, which is the best any CMB experiment could achieve at those
multipoles.

http://lambda.gsfc.nasa.gov/
http://lambda.gsfc.nasa.gov/
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5.4 Experiments

CMB was serendipitously discovered by Arno Penzias and Robert Woodrow Wilson
at Bell Telephone Laboratory in 1964. This great achievement brought them the 1978
Nobel prize in Physics. Since then a host of CMB experiments have been performed
to measure CMB and, more importantly, its anisotropy at different angular scales.
COBE’s Differential Microwave Radiometer (DMR) [102] detected CMB tempera-
ture anisotropy in 1992 [103]; George Smoot and John Mather have received the 2006
Nobel Prize in Physics for this discovery. The ground based experiment DASI (De-
gree Angular Scale Interferometer) [104] detected CMB polarization anisotropy in
2002 [105]. A map of CMB polarization anisotropy has recently been prepared from
WMAP 3-year data [98]. More precise measurements of the polarization anisotropy
is expected from the upcoming Planck Surveyor [106] and other future missions,
e.g., CMBPol [107]. The measurement of the B-mode polarization anisotropy will
be a direct probe of inflation in the early universe.

The CMB anisotropy experiments can be classified into three broad types:

1. Space based (e.g., WMAP, COBE)

2. Balloon borne (e.g., BOOMERanG, MAXIMA)

3. Ground based (e.g., ACBAR, CBI)

Figure 5.5: CMB Experiments. Three types of CMB anisotropy measurement
experiments - ground based, balloon based and space based, are illustrated in this
figure. The left panel shows the space based experiment WMAP [93], the middle
panel shows the balloon based experiment BOOMERanG [108] and the right panel
shows the ground based interferometer DASI [104]. A list of all the past, ongoing
and upcoming CMB experiments can be found in [109, 110].

Examples of the above three kinds of experiments have been shown in figure 5.5. The
left panel shows the space based WMAP experiment [93], the middle panel shows
the Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics
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(BOOMERanG) experiment [108] and the right panel shows the ground based DASI
instrument [104]. A list of past, ongoing and future CMB experiments can be found
in, e.g., [109, 110]. The timeline of CMB astronomy is listed at [111]. The details
of the instrumentation in CMB experiments is beyond the scope of this thesis.
Specific details about the instruments, in particular, about the WMAP satellite, will
be provided wherever necessary.

5.5 Summary and Conclusion

According to the widely accepted working Big bang model of the history of the
universe, the universe was a very hot and dense soup of photons and charged
plasma. As the universe expanded, its density and temperature of reduced and
photons started traveling freely. The electrons and protons also recombined during
this time, known as the Last Scattering Surface (LSS). The anisotropies at the LSS
are embedded as tiny fluctuations in the CMB. Measurement of these fluctuations
are extremely important for constraining cosmological models and parameters and
has played a leading role in the transition of cosmology to a precision science.

Standard Big Bang model also predicts that the CMB anisotropy is Gaussian and
we observe that the universe is highly isotropic. Because of that, CMB anisotropy
is usually characterized by the angular power spectrum, as it provides a complete
statistical description of a statistically isotropic Gaussian random field on a 2-sphere.
Precise measurement of CMB anisotropy is then equivalent to precise measurement
of position and height of the crests and troughs of the CMB power spectrum.

CMB was serendipitously discovered by Penzias and Wilson in 1964 and CMB
anisotropy was first detected by COBE in 1992. Since then several space based,
balloon borne and ground based experiments have been performed to precisely
measure the CMB power spectrum at different scales. The first peak of the CMB
temperature power spectrum was precisely determined by the WMAP satellite.
Its 3-year data has also provided a CMB polarization anisotropy map, which was
first detected by DASI in 2002. Detection of the B-mode polarization due to tensor
perturbation in the early universe will be a direct probe of inflation.

The precision of these highly sensitive experiments can be properly utilized if
all the significant systematic effects are removed. Study of the systematic effects in
CMB experiments, in particular, the WMAP satellite, is one of the major goals of
this thesis.
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Chapter 6

Beams and Deconvolution in
CMB and GWB Mapmaking:
Analysis and Formalism

The observed skymaps of CMB and GWB are convolved with a beam function, a. k.
a., the Point Spread Function (PSF). The observed skymaps need to be deconvolved
for the estimation of the true skymaps.

The beam function of a CMB instrument is combined with the scan strategy
of the instrument and presented as a mapping matrix. The observed time ordered
data is a convolution of the mapping matrix with the true sky map. On the other
hand, the (directed) GW radiometer beam patterns are extended, quite asymmetric
and vary with sky position. We present an analytical study of the GW radiometer
beam involving stationary phase approximation to explain the shape of the beam.
Also, unlike CMB map making, the GW radiometer analysis is in a preliminary
stage. The definition of beam function and the observed data in CMB and GWB
experiments are discussed respectively in section 6.1, section 6.2 and section 6.3.

The observed quantities in both CMB and GWB analysis can be expressed as
a linear convolution equation. Because of the broad overlap between the kind
of map estimation problem we are addressing in CMB and GWB, it is expected
that similar techniques will be applicable to both analyses. CMB map making
techniques are quite mature and have been tested for a long time. So, to begin with,
we essentially follow the prescription based on maximum likelihood estimation
followed in CMB analysis. The analytical details of maximum likelihood map
making and its application to CMB and GWB analysis are presented in section 6.4,
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section 6.5 and section 6.6 respectively.

Though the analysis that has been used here for GWB map making, was first
developed for CMB analysis, it can not be implemented with full strength to make
CMB maps using modern high-resolution instruments for the following reason: The
CMB beams are mildly non-circular and this systematic effect has to be corrected
for high resolution experiments. But incorporating this in a maximum likelihood
analysis is computationally prohibitive. A suboptimal analysis to correct for beam
anisotropy in CMB analysis has been developed in chapter 8 and chapter 9.

6.1 Beam Function

Due to the finite resolution of imaging devices, a point source is mapped to an image
of finite size. Similarly when the device is pointed to a certain direction, it receives
contributions from the neighboring directions also. The function that describes the
image of a point source or the response function of the device for each direction is
known as the beam function or the point spread function (PSF) or the kernel. The
beam function B(Ω̂, Ω̂′) is the observed effect in the direction Ω̂ due to a unit point
source in the direction Ω̂′; it is, in fact, the kernel of the convolution equation. For
practical purposes the sky is pixelized and the beam function is represented by a
matrix. The beam function (or the matrix) can be interpreted in two ways:

1. B(Ω̂, Ω̂′) is the response function for the pointing direction Ω̂
(each column of the beam matrix is a response function)

2. B(Ω̂, Ω̂′) is the point spread function for the source direction Ω̂′

(each row of the beam matrix is a point spread function)

Usually a beam function is maximum along the direction where the device is point-
ing; it falls off (often rapidly) as the distance between the image point and the
pointing direction increases. The size of the beam is quantified by its Full Width at
Half Maximum (FWHM). In many imaging devices there are secondary peaks also
in the beam functions, which are known as “side lobes”.

6.2 Observed CMB Data

Several experiments have been performed to measure CMB anisotropy at different
angular scales. Most of the CMB experiments have beams of fairly axisymmetric
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shape, which can be approximated by two dimensional Gaussian functions. WMAP
analysis is of particular concern in this thesis. We have shown the WMAP beam
patterns below and we have fitted WMAP Q-beam in appendix D using the IRAF
image processing software. See chapter 8, chapter 9 and appendix D for details.

The goal of the WMAP mission is to make skymaps of CMB anisotropy. The
WMAP satellite spins in space and scans the whole sky in this process. At each ob-
servation time the horns A and B of the instruments point in two different directions
and the difference in temperature detected by the two horns is measured. So, given
the scan strategy, the observation time can be mapped to pointing direction of each
horn. At any given moment, though each horn points in a certain direction, due to
the finite resolution of the instruments, photons are received from its neighboring
directions as well. The beam function describes the fractional energy received from
each direction corresponding to a certain pointing direction.

In modern astronomical experiments, often an imaging device is capable of
creating more than one image of a point source on the focal plane for different
parameters, e.g, polarization, frequency bands. Figure 6.1 shows the temperature
beam maps of the two horns of the WMAP satellite. Each image plane (side A and
B) shows the images of Jupiter (treated as a point source) for 10 frequency channels
used for observing CMB anisotropy. Jupiter was observed during different seasons
to account for the variation in apparent shape due to different observation angles.
The sizes of the WMAP beams vary from 0.22◦ to 0.88◦. The shape of the WMAP
beams do not vary with sky position, which is a very important property and will
be of great use later on.

In a practical application we need to pixelize the sky. Each pixel is given a
unique number, so effectively the two dimensional sky can be represented by one
pixel index - a skymap can be expressed by a real vector. Thus the combined effect
of the scan strategy and the beam function for each horn can be represented by a
mapping matrix MA,B

≡ MA,B
ij . Each row of the mapping matrix corresponds to a

certain observation time. Elements of each row of the mapping matrix is a beam
pattern function for the pointing direction corresponding to that observation time.
At every observation time, the instrument measures the difference between the
temperature anisotropies between two horn pointing directions; the full observation
time generates a vector of Time Ordered Data (TOD) d. For a differential instrument
like WMAP, the mapping matrix M ≡Mi j, that convolves the true map to generate
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Figure 6.1: WMAP image planes. The image of Jupiter (as a point source) in
different frequency bands taken by two horns of the WMAP satellite. (Images taken
from the LAMBDA website [101]).

the final output, is the difference between the mapping matrices of two horns [96]

M = MA
−MB. (6.1)

For computational simplicity to be explained later, the beam functions of each horn
are assumed to be of infinite resolution and circular (axially symmetric about the
pointing direction). So one element of each row of the pointing matrices MA,B is 1
at the pixel (column) index that corresponds to the pointing direction at the given
time (row index). All other elements of the matrices are 0.

Since the true temperature anisotropy map t is independent of time, one may
write the observed CMB time ordered data as the convolution equation

d = M · t + n (6.2)

where n is the random instrumental noise. WMAP noise is nearly white zero mean
Gaussian, so the noise covariance matrix [96] is given by

N := 〈n nT
〉 = σ2

0 I, (6.3)

where σ2
0 is the variance of each bin of time ordered data and I is the identity matrix.

Thus the measured time ordered data d from a CMB anisotropy experiment is

http://lambda.gsfc.nasa.gov/
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a convolution of the true sky t with the known mapping matrix M and has additive
noise n of known statistical properties. In the next section we shall see that the
output of the GW radiometer can also be expressed in a similar fashion as a linear
convolution equation. We then present a general deconvolution method applicable
to both CMB and GWB for the estimation of the true anisotropy sky.

6.3 Observed (Directed) GW Radiometer Point Estimate

As described in section 4.4.2, it is possible to make a skymap using a directed GW
radiometer. The detailed properties of the beam function and convolution equation
of the radiometer is presented in this section. From now on we shall only consider
the issues of map making using a directed GW radiometer, so the tag “directed” is
implied and hence will be omitted.

A GW radiometer is pointed to a direction Ω̂ by using a direction dependent
filter function

q̃Ω̂,H(t, f ) =
H( f )γ∗

Ω̂
(t, f )

P1(t; | f |) P2(t; | f |)
. (6.4)

Suppose that there is only one unit polarized point source in the sky in the direction
Ω̂′, that is PA

true(Ω̂) = δAA′δ(Ω̂ − Ω̂′). Then the expected point estimate (statistic)
SΩ̂ is maximum when Ω̂ = Ω̂′ and it falls of as the distance between the pointing
direction and the source direction, ∆Ω := Ω̂ − Ω̂′, increases, when Ω̂ is close to Ω̂′.
The expected point estimate 〈SΩ̂〉 in this case is the polarization dependent beam
function BA(Ω̂, Ω̂′) for the GW radiometer. Formally, we can express the beam
function using eqn (4.88) and eqn (4.98) as

BA(Ω̂, Ω̂′) =

∆t
n∑

i=1

‖qΩ̂,H‖
2
ti


−1

∆t
n∑

i=1

∫
∞

−∞

d f Htrue( f )γA
Ω̂′

(ti, f ) q̃Ω̂,H(ti, f ) (6.5)

=

∆t
n∑

i=1

‖qΩ̂,H‖
2
ti


−1

∆t
n∑

i=1

∫
∞

−∞

d f
Htrue( f ) H( f )

P1(ti; | f |) P2(ti; | f |)
γA
Ω̂′

(ti, f )γ∗
Ω̂

(ti, f ).

(6.6)

Using the polarization and direction dependent overlap reduction function

γA
Ω̂

(t, f ) := FA
1 (Ω̂, t) FA

2 (Ω̂, t) e2πi f Ω̂·∆x(t)/c, (6.7)
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the shorthands for the combination of the antenna pattern functions

Γ(Ω̂, t) := F+1 (Ω̂, t) F+2 (Ω̂, t) + F×1 (Ω̂, t) F×2 (Ω̂, t) (6.8)

and representing the ratio of source and noise PSDs through a single function

G(t; f ) :=
Htrue( f ) H( f )

P1(t; | f |) P2(t; | f |)
, (6.9)

the beam function can be expressed in a more compact form

BA(Ω̂, Ω̂′) =

∆t
n∑

i=1

‖qΩ̂,H‖
2
ti


−1

×

∆t
n∑

i=1

∫
∞

−∞

d f G(ti; f )FA
1 (Ω̂′, ti)FA

2 (Ω̂′, ti)Γ(Ω̂, ti)e−2πi f∆Ω·∆x(ti)/c.(6.10)

If the detector noise PSDs are stationary, the shape of the beam functions for integra-
tion over complete day(s) do not depend on the longitude of the pointing direction
due to the symmetry about earth’s spin axis.

If the injected unit point source is unpolarized, we may useP+true(Ω̂) = P×true(Ω̂) =
δ(Ω̂ − Ω̂′) and the polarization independent beam functions becomes

B(Ω̂, Ω̂′) = B+(Ω̂, Ω̂′) + B×(Ω̂, Ω̂′) (6.11)

=

∆t
n∑

i=1

‖qΩ̂,H‖
2
ti


−1

∆t
n∑

i=1

∫
∞

−∞

d f G(ti; f )Γ(Ω̂′, ti)Γ(Ω̂, ti) e−2πi f∆Ω·∆x(ti)/c.

(6.12)

From now on we shall assume that the true source PSD is exactly known, Htrue( f ) =
H( f ), unless otherwise specified (so we omit the subscript “H” from the filter). With
this assumption, it is interesting to note that

B(Ω̂, Ω̂′) =

∆t
n∑

i=1

(qΩ̂, qΩ̂′)

 /
∆t

n∑
i=1

‖qΩ̂‖
2
ti

 , (6.13)

which follows the convenient normalization condition B(Ω̂, Ω̂) = 1 [see eqn (4.79)].

Typical (polarization independent) beam functions for the baseline formed by
the two LIGO detectors at Hanford and Livingston (for white noise PSD with upper
cutoff frequency 1024Hz and observation over a full day) are shown in the left panel
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of figure 6.2.

Figure 6.2: Numerical and Theoretical GW radiometer beam patterns. The left
panel shows a numerical beam patterns for the LIGO Hanford-Livingston base-
line pointing at latitude 12◦ for white noise with an upper cut-off frequency of
1024Hz. The right panel shows the theoretical pattern obtained by stationary phase
approximation (SPA). Clearly they are in very good agreement.

The size of the beam of the radiometer using the LIGO Livingston and Hanford
detectors can vary between∼ 50−100 sq. degrees [79] depending on the sky position,
the upper cutoff frequency and the source and noise PSDs. Typical contour plots of
the beam function including the (negative) side lobes of the LLO-LHO radiometer
near latitude 12◦ for LIGO-I noise PSD and different source PSDs are shown in
figure 6.3. The source PSD for the left panel is H( f ) = constant and for the right
panel is H( f ) ∝ f−3.

The GW radiometer beams have quite asymmetric shape and they vary with sky
position. This compelled us to understand the characteristic of the beam function.
In appendix B we have analytically studied the beam pattern using Stationary
Phase Approximation (SPA). Where we have used the fact that the functions G(t; f )
and Γ(Ω̂, t) are slowly varying functions of time, so the integrand constructively
contributes when the phase term exp[−2πi f∆Ω · ∆x(t)/c] is stationary. We show
that the beam function B(Ω̂, Ω̂0) for a pointing direction Ω̂0 takes significant values
when Ω̂ − Ω̂0 is parallel to the unit normal n̂cone(t) to the baseline vector ∆x(t) and
the cone traced out by the baseline due to earth rotation. Mathematically, the beam
pattern stands out along the following trajectory parameterized by sideral time t:

Ω̂(t) = Ω̂0 − 2 [Ω̂0 · n̂cone(t)] n̂cone(t). (6.14)
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Figure 6.3: Contour plots of GW radiometer beam patterns. Approximate size of
the beam and the (negative) side lobes for different source PSDs and LIGO detectors
with LIGO-I noise PSD are shown in this figure. The left panel shows the beam
contours for H( f ) = constant at latitute 12◦ and the right panel shows the same for
H( f ) ∝ f−3. The contours are drawn starting from 1 with an interval of −0.1. Note
that, the beam falls by 1/e in between the 6th and the 7th contour (from the highest
value), which can be used to measure the beam size.

The theoretical pattern is shown in the right panel of figure 6.2, which is in very
good agreement with the numerical pattern shown in the left panel.

We proceed further and evaluate the (unnormalized) beam function along this
trajectory using the formula, again parameterized with time t

B(Ω̂(t), Ω̂0) ∝ Γ(Ω̂(t); t)Γ(Ω̂0; t)

√
fu −

√
fl

ωE

√
8 c∣∣∣[ẑ · ∆x(t)] [ẑ · (Ω̂(t) − Ω̂0)]

∣∣∣ , (6.15)

where fl and fu are respectively the lower and upper cutoff frequencies.

The stationary phase analysis also indicates an approximate resolving power
of the radiometer. The expression for the phase term 2πi f∆Ω ·∆x(t)/c suggests that
the resolving power of the radiometer is ∼ c/ fu/∆R, where λ corresponding to the
upper cutoff frequency fu. For the LIGO detectors separated by ∼ 3000km with a
upper cut off frequency of fu ∼ 1kHz (wavelength ∼ 300km). Hence the radiometer
resolution should be ∼ 0.1 radians, that is, ∼ 6 degrees, which is consistent with the
numerically obtained beam profiles.

In general, the true sky is a diffuse background of stochastic GW. If the true
angular power distribution is described by the polarization dependent function
P

A
true(Ω̂), it is straight forward to show using eqn (4.88) that the observed point

estimate SΩ̂ is a convolution of the the true sky PA
true(Ω̂) with the known beam
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function BA(Ω̂, Ω̂′) and has additive noise nΩ̂ of known statistical properties:

SΩ̂ =
∫

S2
dΩ̂′

[
B+(Ω̂, Ω̂′)P+true(Ω̂′) + B×(Ω̂, Ω̂′)P×true(Ω̂′)

]
+ nΩ̂. (6.16)

Notice the similarity with the CMB time-ordered-data described in the previous
section. Our aim is to estimate the true angular power distribution PA

true(Ω̂) from
the above integral equation. To be able to do that, we need to study the statistical
properties of noise at each pixel.

Unlike CMB, the GW radiometer noise is quite complicated. The noise at
different pixel (direction) is related to the detector time stream data through the
radiometer analysis, hence, the noise nΩ̂ at different directions are correlated. The
statistical properties of the noise nΩ̂ are given below.

The noise term in the radiometer signal will have terms containing summations
over ñI ñJ and h̃I ñJ, where I, J = 1, 2 are the detector indices. All these terms are of
zero mean for I , J, but the variance will be highly dominated by the noise-noise
term [〈̃n∗I ñI〉 � 〈̃h∗J h̃J〉]. Hence, while considering the noise characteristics the other
terms are ignored. Moreover, the noises in the detectors are independent, which
implies that [112], for I , J, 〈̃n∗I ñJ〉 = 〈̃n∗I〉〈̃nJ〉 and 〈̃n∗I ñ

∗

I ñJñJ〉 = 〈̃n∗I ñ
∗

I〉〈̃nJñJ〉.

• Noise in point estimate:

nΩ̂ =

∆t
n∑

i=1

‖qΩ̂‖
2
ti


−1 n∑

i=1

∫
∞

−∞

d f ñ∗1(ti; f ) ñ2(ti; f ) q̃Ω̂(ti, f ). (6.17)

• Mean of noise:

〈nΩ̂〉 =

∆t
n∑

i=1

‖qΩ̂‖
2
ti


−1 n∑

i=1

∫
∞

−∞

d f 〈̃n∗1(ti; f )〉〈̃n2(ti; f )〉 q̃Ω̂(ti, f ) = 0. (6.18)
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• Pixel-to-pixel covariance of observed noise :

〈nΩ̂1
nΩ̂2
〉 =

∆t
n∑

i=1

‖qΩ̂1
‖

2
ti


−1 ∆t

n∑
i=1

‖qΩ̂2
‖

2
ti


−1 n∑

i1=1

n∑
i2=1∫

∞

−∞

d f1

∫
∞

−∞

d f2

∫
∞

−∞

d f ′1

∫
∞

−∞

d f ′2 δ∆t( f1 − f ′1) δ∆t( f2 − f ′2) ×

〈̃n∗1(ti1 ; f1)̃n∗1(ti2 ; f2)〉〈̃n2(ti1 ; f ′1 )̃n2(ti2 ; f ′2)〉 q̃Ω̂1
(ti1 , f ′1) q̃Ω̂2

(ti2 , f ′2)

=
1
4

∆t
n∑

i=1

‖qΩ̂1
‖

2
ti


−1 ∆t

n∑
i=1

‖qΩ̂2
‖

2
ti


−1 n∑

i=1

∫
∞

−∞

d f1

∫
∞

−∞

d f ′1

δ2
∆t( f1 − f ′1) P1(ti, | f1|) P2(ti, | f ′1 |) q̃Ω̂1

(ti, f ′1) q̃∗
Ω̂2

(ti, f ′1)

=
∆t
4

∆t
n∑

i=1

‖qΩ̂1
‖

2
ti


−1 ∆t

n∑
i=1

‖qΩ̂2
‖

2
ti


−1

×

n∑
i=1

∫
∞

−∞

d f P1(ti, | f |) P2(ti, | f |) q̃Ω̂1
(ti, f ) q̃∗

Ω̂2
(ti, f ). (6.19)

The covariance can be expressed in a convenient form using eqn (6.13)

〈nΩ̂1
nΩ̂2
〉 =

1
4

∆t
n∑

i=1

‖qΩ̂2
‖

2
ti


−1

B(Ω̂1, Ω̂2) =
1
4

∆t
∑n

i=1(qΩ̂1
, qΩ̂2

)

∆t
∑n

i=1‖qΩ̂1
‖2ti
∆t

∑n
i=1‖qΩ̂2

‖2ti

.

(6.20)

• Noise variance [see eqn (4.82)]

〈nΩ̂ nΩ̂〉 =
1
4

∆t
n∑

i=1

‖qΩ̂‖
2
ti


−1

. (6.21)

The covariance formula gives the same consistent result for Ω̂1 = Ω̂2 = Ω̂.

Moreover, the probability distribution of the noise n(Ω̂) is normal (so the first
and the second moments characterize all the statistical properties). This is ensured
by the generalized central limit theorem [113]: If Xk be mutually independent one
dimensional random variables following distributions Fk with mean 0 and variance
σ2

k , then
∑

k Xk tend to follow a zero mean normal distribution with variance
∑

k σ
2
k .

Since several realizations of the products of Fourier transforms of detector noise
ñ∗1(t; f ) ñ2(t; f ) are added [see eqn (6.17)] to generate the noise n(Ω̂), the generalized
central limit theorem suggests it may be Normal distributed. As a consistency
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check, if this argument is used to calculate the variance of n(Ω̂), we get the same
result as in eqn (6.21).

For practical applications, the sky is pixelized and the true power distribution
is usually expanded as a sum of point sources at each pixel,

P
A
true(Ω̂) =

∑
k

P
A
k δ(Ω̂ − Ω̂k), (6.22)

where Ω̂k is the location of pixel k and PA
k is the strength of pixel k. Then, we may

write the discrete convolution equation as

S = B+ ·P+ + B× ·P× + n, (6.23)

where the indices of the vectors and matrices in the above equation refers to the
corresponding pixel, more explicitly, Bkk′ ≡ B(Ω̂k, Ω̂k′), Sk ≡ SΩ̂k

and nk ≡ nΩ̂k
. The

pixel to pixel noise covariance matrix in the observed map N ≡ Nkk′ becomes

Nkk′ := 〈nk nk′〉 =
1
4

∆t
n∑

i=1

‖qΩ̂k′
‖

2
ti


−1

Bkk′ . (6.24)

The convolution equation for GWB point estimates [eqn (6.23)] is strikingly sim-
ilar to the convolution equation for the CMB time-ordered-data given by eqn (6.2).
Therefore, in effect, the problem of estimation of true GWB anisotropy map from the
point estimate at every pixel is identical to the estimation of true CMB anisotropy
map from the time-ordered-data. The procedure to estimate the maximum likeli-
hood skymap is described in the next section.

6.4 Maximum Likelihood (ML) skymap Estimation

In the last two sections we have established that the CMB and GWB observed map
can be expressed by a linear convolution equation of the form

d = K · t + n, (6.25)

where our aim is to estimate the true sky vector t from the observed data vector d
using the known kernel matrix K and the known statistical properties of the Gaussian
noise vector n. This problem has been addressed in different branches of science
using different approaches. Since CMB map making has been developed and
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successfully implemented for more than a decade, we opt for the algorithm used
for CMB anisotropy map making [114]. This algorithm estimates the Maximum
Likelihood (ML) solution from a linear convolution equation with Gaussian noise,
which was put together by Borrill [115] as a (publicly available) software package
MADCAP [116]. The same algorithm was used to make anisotropy maps using the
recently released data from the WMAP satellite [97].

The mathematics is straight forward. If noise follows a multivariate normal
distribution, the probability that the data contains the noise vector n is given by [112]

P(n) =
1

(2π)Nd/2(det N)1/2
exp

[
−

1
2

nT
·N−1

· n
]

(6.26)

where Nd is the number of observed data points (number of elements in d), N :=
〈n nT

〉 is the (symmetric) noise covariance matrix of the observed data and det N is
the determinant of N. Therefore the probability (likelihood) that the data d contains
the modeled signal tmod is

P(d|tmod) = (2π)−Nd/2 exp
[
−

1
2

(
(d −K · tmod)T

·N−1
· (d −K · tmod) + Tr[ln N]

)]
.

(6.27)
The corresponding log-likelihood is

ln[P(d|tmod)] = −
1
2

(
(d −K · tmod)T

·N−1
· (d −K · tmod) + Tr[ln N]

)
+

Nd

2
ln(2π).

(6.28)
It can be shown by taking derivative of the above equation with respect to tmod [112]
that the (log-)likelihood is maximum when

tmod =
(
KT N−1 K

)−1
KT N−1

· d =: t̂, (6.29)

which is the maximum likelihood estimate for the given problem. For clarity, we
shall use the short hand

W :=
(
KT N−1 K

)−1
KT N−1. (6.30)

It is important to note that WK = I, where I is the identity matrix. Hence,

t̂ = W · d = W · (K · t + n) = t + W · n. (6.31)

Since the noise in observed data is of zero mean, 〈n〉 = 0, the above relation suggests
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that the ML estimate is unbiased: 〈t̂〉 = t.
The noise in the ML estimate n is a convolution of the noise n in observed data

with the matrix W:
n := t̂ − 〈t̂〉 = t̂ − t = W · n. (6.32)

The noise covariance matrix of the ML estimate is

Σ := 〈nnT
〉 = W 〈nnT

〉WT =
(
KT N−1 K

)−1
KT WT =

(
KT N−1 K

)−1
. (6.33)

Therefore, to obtain the ML estimate one has to first compute the inverse of the
noise covariance matrix Σ−1 = KTN−1K, then invert it to evaluate W and, in turn, t̂.

6.5 ML Estimation of CMB Anisotropy Map

The above mathematics is directly applicable to CMB map making. The ML estimate
of the true temperature anisotropy map is given by

t̂ = W · d; W =
(
MT N−1 M

)−1
MT N−1. (6.34)

The pixel-to-pixel noise covariance matrix of the estimated map is

Σ =
(
MT N−1 M

)−1
. (6.35)

However, in practice, the solution t̂ = W · d is too costly to evaluate exactly
given the properties of M and N−1 [96]. This is mainly due to very high resolu-
tions of modern CMB experiments and correspondingly large sizes of the matrices.
Approximate techniques are adopted for the implementation of the ML analysis.
For example, in the map making carried out by the WMAP team, the beams are
assumed to be circularly symmetric (about the pointing direction) with infinite res-
olution for the evaluation of the matrix W and the above analysis is then used to
estimate the true anisotropy map.1 Though this assumption is approximately valid
for preparing sky maps, it introduces a bias in the skymap and angular power spec-
trum [117, 118]. This systematic effect is quite significant at high multipoles (low
angular scales beyond the beam width), and has to be considered for correct data
analysis. Different approaches to deconvolve partial or full skymap for asymmetric
beams are being proposed [119,120]. We have developed a sub-optimal approach to

1Similar formalism has been used to make CMB polarization anisotropy map also using the three
years of WMAP data [96, 98].



104
Chapter 6. Beams and Deconvolution in CMB and GWB Mapmaking:

Analysis and Formalism

unbias the (pseudo-Cl) power spectrum estimator, which is presented in chapter 8
and chapter 9. The effect of beam asymmetry has been taken into account in the
recent WMAP three years analysis [96] using a similar approach; the results are in
very good agreement with our prediction.

6.6 ML Estimation of GWB Anisotropy

A straightforward application of ML estimation method described in the previous
section to GWB skymap making is presented in this section. While we first present
the simplest case of a sigle baseline interferometry, It is possible to extend the basic
analysis to incorporate more complex problems of using multiple baselines and/or
making separate maps for each polarization and to measure multipole moments of
the GWB sky.

6.6.1 Basic Analysis of Skymap

We shall first consider the case of single baseline with equal power in both polar-
izations, P+(Ω̂) = P×(Ω̂). The ML estimate for the GWB sky map is given by

P̂ = W · S; W =
(
BT N−1 B

)−1
BT N−1 (6.36)

and the pixel-to-pixel noise covariance matrix of the observed map is

Σ =
(
BT N−1 B

)−1
. (6.37)

Since in this special case the beam matrix is a square matrix, if the inverse of the
beam matrix exists the ML estimate takes a simple form

P̂ = B−1
· S. (6.38)

However directly inverting the beam matrix is non-trivial and we prefer to solve
the following linear algebraic equation to find P̂:

B · P̂ = S. (6.39)

This issue will be illustrated in the next section.
It is worth noting that in the case of GWB map making a full blown ML estimate

can be implemented because, as compared to the modern CMB experiments, GW
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radiometer beam for the ground based detectors is much broader, so the number of
pixels (and hence the dimension of the matrices) is numerically tractable.

6.6.2 Extensions of the simple MapMaking

The ML analysis to estimate the GWB skymaps can be generalized to address more
complex problems of using a network of detectors (multiple baselines) and making
separate maps for different polarizations. In each case the form of the expressions
for the ML estimate (P̂) and pixel-to-pixel covariance matrix (Σ) remain the same,

P̂ = ΣBT N−1
· S; Σ−1 := BTN−1B, (6.40)

as long as the form of the convolution equation,

S = B ·P + n, (6.41)

is preserved by redefining different quantities in that equation.

Network of Detectors

The description of GWB radiometer beam and its convolution provided in sec-
tion 6.3 only considered the problem of map making using one baseline (two detec-
tors). However, if we have observed maps (with same pixelization) from different
baselines of a network of detectors, we have to incorporate all the baselines by
redefining different quantities to get the ML estimate.2

Suppose that Nb baselines have generated skymaps of identical pixelization
with Npix pixels. Let S(i) be the observed map by baseline i, mapped using the filter
“vector” q(i), convolved with beam matrix B(i) and contains noise n(i). Then the

2Of course, one could also combine the maps from different baselines with suitable pixel dependent
weight factors wi,

S =
∑

i

wi · S(i),

which may reduce the noise by a factor of ∼
√

Nb. But, it would also have issues of combining data
from baselines with different beam functions. Further analysis is required to assess which method
would be more advantageous.
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form of the convolution equation [eqn (6.41)] can be preserved by substituting

S :=


S(1)

S(2)

...

S(Nb)

 ; n :=


n(1)

n(2)

...

n(Nb)

 ; B :=


B(1)

B(2)

...

B(Nb)

 . (6.42)

Note that S, n are now 1 × NpixNb vectors and B is a Npix × NpixNb matrix, while
P (the true GWB sky) remains unchanged. This is similar to CMB experiments
where each pixel is visited by the detector several times. In the multi-baseline GW
radiometer case each pixel is visited by different baselines, but, unlike CMB, each
pixel is visited equal number of times. The noise covariance matrix N := 〈nnT

〉 of
the raw skymap should also be generalized. Let n(i)

Ω̂
be the noise from the radiometer

baseline i with detectors I and I′ (and following the same convention for j) pointing
at Ω̂. Then

〈n(i)
Ω̂1

n( j)
Ω̂2
〉 =

∆t
n∑

i1=1

‖q(i)
Ω̂1
‖

2
ti1


−1 ∆t

n∑
i2=1

‖q( j)
Ω̂1
‖

2
ti2


−1 n∑

i1=1

n∑
i2=1∫

∞

−∞

d f1

∫
∞

−∞

d f2

∫
∞

−∞

d f ′1

∫
∞

−∞

d f ′2 δ∆t( f1 − f ′1) δ∆t( f2 − f ′2) ×

〈̃n∗I(ti1 , f1)̃n∗J(ti2 , f2)̃nI′(ti1 , f ′1 )̃nJ′(ti2 , f ′2)〉 q̃(i)
Ω̂1

(ti1 , f ′1) q̃( j)
Ω̂2

(ti2 , f ′2).

(6.43)

If i and j denote the same baselines we get back the covariance for single baseline
[eqn (6.19)]. However, if i and j denote different baselines, at least one pair of the
detectors among the two pairs will be different (i.e., either I , J or I′ , J′), so in
that case 〈n(i)

Ω̂1
n( j)
Ω̂2
〉 = 0. Hence the matrix N will be a block diagonal matrix, with

diagonal elements N(i) := 〈n(i)n(i)T
〉 - the covariance matrix of baseline i.

Polarization Maps

We may even make skymaps for different polarizations separately by generalizing
the definitions of different quantities in the ML analysis. The discrete convolution
equation

S = B+ ·P+ + B× ·P× + n (6.44)
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can also be expressed as eqn (6.41) by substituting

B :=
[

B+ B×
]

; P :=

 P+
P×

 . (6.45)

Polarization Maps using a Network of Detectors

Finally, we may combine the previous two generalizations to estimate maps for each
polarization separately using multiple baselines. We use the generalized definitions
of P given in eqn (6.45) containing the two polarization map vectors and signal S
and noise n corresponding to multiple baselines given by eqn (6.42). We then
generalize the definition of beam matrix B even more by putting

B :=


B(1)
+ B(1)

×

B(2)
+ B(2)

×

...
...

B(Nb)
+ B(Nb)

×

 , (6.46)

which now combines the effect of each individual baseline and polarization.

6.6.3 Multipole moments from the directed search

The convolution equation:

〈S(Ω̂)〉 =
∫

S2
dΩ̂′ B(Ω̂, Ω̂′)Ptrue(Ω̂′). (6.47)

The angular power distribution can be expanded in terms of spherical harmonics,

Ptrue(Ω̂) =
∑
lm

Plm Ylm(Ω̂) (6.48)

B(Ω̂, Ω̂′) =
∑
lm

Blm(Ω̂) Ylm(Ω̂), (6.49)

and substituted the above in the convolution equation:

〈S(Ω̂)〉 =
∑
lm

Plm

∫
S2

dΩ̂′ B(Ω̂, Ω̂′) Ylm(Ω̂′) =
∑
lm

PlmB∗lm(Ω̂). (6.50)
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The spherical harmonic transform of the convolution equation

〈Sl′m′〉 :=
∫

S2
dΩ̂ 〈S(Ω̂)〉Y∗l′m′(Ω̂) =

∑
lm

Plm

∫
S2

dΩ̂B∗lm(Ω̂)Y∗l′m′(Ω̂) =
∑
lm

Bl′m′
lm Plm.

(6.51)
where the double spherical harmonic transform of the beam is3

Bl′m′
lm :=

∫
S2

dΩ̂Y∗l′m′(Ω̂) B∗lm(Ω̂) :=
∫

S2
dΩ̂Y∗l′m′(Ω̂)

∫
S2

dΩ̂′ Ylm(Ω̂′) B(Ω̂, Ω̂′). (6.52)

It is always possible to convert an lm index pair to a single index i using the
transformation formula i = l2 + l+ 1+m. So we can write the convolution equation
as

〈Si〉 =
∑

j

Bi jP j → S = B ·P + n, (6.53)

where we define

Slm ≡ Sl2+l+1+m; Bl′m′
lm ≡ Bl′2+l′+1+m′,l2+l+1+m; Plm ≡ Pl2+l+1+m; ni = noise. (6.54)

Again we have got a linear equation which can be used to obtain the Maximum
Likelihood estimate of the multipole moments4 as:

P̂ = ΣBT N−1
· S; Σ−1 := BTN−1B. (6.55)

The difference between this approach and making a deconvolved map first and
then calculating the multipole moments is that, this method gives more flexibility
to discard terms (like all the higher multipoles!), which is difficult/meaningless in
the context of skymap deconvolution in pixel space.

6.6.4 Multipole moments from isotropic all-sky search

The true distribution of GWB power P(Ω̂) at different directions Ω̂ can be decom-
posed using the standard spherical harmonic expansion

P(Ω̂) =
∑
lm

Plm Ylm(Ω̂), (6.56)

3The calculation of the double spherical harmonic Bl′m′
lm is rather straightforward and computation-

ally efficient way. It can be expressed as a sum of products of the spherical harmonic transforms of
the direction dependent overlap reduction function.

4We could also get such an equation from eqn (6.50). But this method seems more practical.
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where Plm are the angular multipole moments we wish to measure. This problem
was previously attacked using different methods [77, 78], but none of them suc-
ceeded in estimating all the spherical harmonic moments up to a certain maximum
multipole, that is limited by the resolution corresponding to the baseline, using only
two or three GW detectors. Here we address the problem by a straight forward
extension of the ML analysis. Similar attempt has also been made for making GWB
skymaps using a space based GW detector [80, 81, 82].

Consider that the above background was searched using the isotropic search
filter - the observed correlation over each chunk ∆S(t) is evaluated at all the sidereal
time bins with the filter for isotropic search that involves the time independent
overlap reduction function γiso( f ) [eqn (4.92)]. However, the overlap reduction
function in the source term γtrue

P
(t, f ) is still time dependent; it can be expanded as

γtrue(t, f ) =
∑
lm

Plm γ
∗

lm(t, f ), (6.57)

where γlm(t, f ) are the spherical harmonic transforms of the direction dependent
overlap reduction function (for a delta function like point source)γΩ̂(t, f ) [eqn (4.98)]:

γlm(t, f ) =
∫

S2
dΩ̂ e2πi f Ω̂·∆x(t)/c Γ(Ω̂, t) Y∗lm(Ω̂). (6.58)

Note that, the numerical computation of γlm(t, f ) for each set of l,m,t, f is likely to be
computationally prohibitive. However, it may be possible to reduce computation
cost by evaluating those quantities using a (semi)analytic method [77].

Our aim is to measure (or put upper limit on) the anisotropies of the sky from
the isotropic all sky search. We shall try to exploit the the fact that though the filter is
time independent, the observed signal is not because the true sky is anisotropic.

(Unnormalized) mean of the observed signal over each chunk:

µ∆S(t) = ∆t
∫
∞

−∞

d f H( f )γtrue
P

(t, f ) q̃(t, f ) (6.59)

= ∆t
∑
lm

Plm

∫
∞

−∞

d f
H2( f )γ∗iso( f )

P1(t; | f |)P2(t; | f |)
γ∗lm(t, f ) (6.60)

The above equation can be transformed in to an algebraic equation. Using the
definition Pl2+l+1+m ≡ Plm and using discrete index for sidereal time t we may write



110
Chapter 6. Beams and Deconvolution in CMB and GWB Mapmaking:

Analysis and Formalism

the above equation as
µi =

∑
j

Ki jP j, (6.61)

where the “kernel"

Ki(l2+l+1+m) := ∆t
∫
∞

−∞

d f
H2( f )γ∗iso( f )

P1(ti; | f |)P2(ti; | f |)
γ∗lm(ti, f ). (6.62)

is a known quantity, calculable from the detectors geometries and the time series
data from the detectors. Therefore we may write

∆Si =
∑

j

Ki j p j + ni ⇒ ∆S = K · p + n, (6.63)

where the noise term can be expressed in terms of the detector noise ñ1,2(t; f ):

ni = ∆t
∫
∞

−∞

d f ñ∗1(ti; f ) ñ2(ti; f ) Q̃(ti, f ). (6.64)

The Maximum Likelihood estimate for p is given by

P̂ =
(
KT N−1 K

)−1
KT N−1

· ∆S, (6.65)

where the noise covariance matrix N := 〈nnT
〉. Since the detector noise at different

times are uncorrelated and time bins are much larger than the phase delay between
the detector sites, this matrix should be diagonal. The diagonal elements (variance):

σ2
i =
∆t
4

∫
∞

−∞

d f P∗1(ti, f ) P2(ti, f ) |Q̃(ti, f )|2; Ni j = σ2
i δi j. (6.66)

Covariance matrix for P̂ is given by

Σ := 〈(P̂ − 〈P̂〉)(P̂ − 〈P̂〉)T
〉 =

(
KT N−1 K

)−1
. (6.67)

If the matrix K is a square matrix, the estimated solution takes the simple form
P̂ = K−1

·∆S. This can happen if, for example, we use 10 days’ data with 60sec time
bins and maximum multipole moment up to l = 119, both would then correspond
to a total of 1202 bins. However, we may restrict ourselves to much less number of
multipoles and reduce error by solving a over-cosntrained linear system.

The vector ∆S is calculated for any stochastic search. However, the kernel K
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has to be calculated, which can be computationally expensive. But, we may not
want to compute it for every day, rather we may calculate this for each sidereal time
bin averaged over all the days. This has to be done with ∆S also. Computationally
this will be equivalent of analyzing one day’s data, but with reduced error bars at
each sidereal time bin.

6.7 Summary and Conclusions

The observed CMB and GWB anisotropy maps are convolved with experimental
beam functions (point spread functions) and have additive Gaussian noise of zero
mean. Deconvolution of these maps is necessary in order to estimate the true
skymap. In this chapter we have described the procedure to obtain the maximum
likelihood estimate the true skymap.

CMB experiments have very high resolution beams which do not vary with sky
position. Our main focus was on modern anisotropy measurement experiments,
e.g., WMAP, where the instrument scans the sky and at each time it points to a
certain direction. So the output of the instruments is time-ordered-data. The time
ordered data is a convolution of the true sky with a mapping matrix, that combines
the effect of the beam function and the scanning strategy of the instrument. The
noise in the observed time-ordered-data is white Gaussian.

GWB anisotropy sky is mapped using a GW radiometer described in the previ-
ous chapter. Unlike CMB, the beam of a directed GW radiometer using the ground
based detectors is quite broad and vary with pointing direction. We explained the
asymmetric structures of the beam using stationary phase approximation (SPA) -
which suggests that those points in the sky contribute the most, whose displace-
ment vector with respect to the pointing direction is normal to the baseline and also
the cone traced out by the baseline. We also computed approximate values of the
beam function along the trajectory obtained by the SPA analysis. Like CMB, the
observed GWB sky is a convolution of the true sky with the beam function and has
Gaussian noise of zero mean. However, the noise in different pixels in the observed
map are correlated; we have computed the covariance matrix of the observed map.

In general, the observed data for CMB and GWB anisotropy map making can be
expressed as a linear convolution equation - the true sky has to be estimated using
the known beam function and the known properties of noise from the integral equa-
tion, or, in practice, the algebraic equation as the sky is pixelized. We briefly outline
the analysis used for CMB anisotropy map making to obtain the maximum like-
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lihood estimate of skymaps. This analysis have been developed and successfully
implemented for more than a decade in CMB analysis. Therefore, we considered
this scheme to be quite robust and so, among several alternatives, we chose the
maximum likelihood method for the estimation of the true GWB skymaps. The for-
mal mathematics for GWB anisotropy analysis has been developed in this chapter.
We also have extended the basic analysis to consider more complex problems of
making separate skymap for each polarization, estimating multipole moments and
using a network of detectors for better estimation. The numerical implementation
of this analysis to estimate the GWB skymap is presented in the next chapter.

Though the analysis was developed for CMB map making long back, it is no
longer applicable with full generality for CMB map making due to the very high
resolution of modern CMB anisotropy experiments. To overcome computational
difficulty, the time-ordered-data from modern CMB experiments, e.g., WMAP, is
deconvolved assuming a circularly symmetric beam of infinite resolution, which
introduces a bias in the estimated map and power spectrum. Attempts are being
made by different groups to deconvolve the time-ordered-data using the true asym-
metric beam pattern. In chapter 8 and chapter 9 we present a sub-optimal approach
to correct the pseudo-Cl CMB power spectrum estimator from beam asymmetry
and the comparison of our predicted bias with the bias correction introduced in the
recently released WMAP third year results.
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Chapter 7

Numerical Implementation of ML
Mapmaking for GWB

We have implemented the maximum likelihood estimation algorithm discussed in
the previous chapter to estimate the ‘true’ GWB background sky observed with a
single baseline ground based directed GW radiometer. The details of the numerical
deconvolution algorithm, the simulated data and the results for simulated data
are presented in this chapter. The algorithm has been implemented using the
MATLAB® software package [121].

The observed map over a pixelized sky using a directed GW radiometer is
a convolution of the known beam matrix and contains Gaussian noise of known
statistical properties. Here we only consider a background with equal power in
both polarizations. We call the observed map a “dirty map” in analogy to the
nomenclature used in radio-astronomy. Following CMB analysis, we use maximum
likelihood (ML) techniques to estimate the ‘true’ skymap - the “clean” map. The
main computation challenges were to numerically evaluate the beam matrix and
finding an estimate without introducing severe numerical errors. The details of
these problems and their primary remedies have been presented in this chapter.

The method has been tested using simulated data. Detector noise is generated
in the frequency domain using a Gaussian pseudo random number generator and
colored with LIGO-I PSD. Modeled signal is also generated in the frequency domain
and injected in the simulated noise. Dirty maps were made using the directed
radiometer analysis for different types of injections - isolated point sources and
diffuse backgrounds. The recovered clean maps are similar to the injected GWB
backgrounds, which is a great success of this project.
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The chapter is organized as follows: We first outline the generation of simulated
detector output in section 7.1. The raw skymaps are then produced from the
simulated data using the directed GW radiometer in section 7.2. The numerical
scheme to evaluate the computationally intensive beam function is outlined in
section 7.3. The strategy to estimate the true maps, the clean maps, from the
dirty maps obtained from simulated data and a brief discussion on the conjugate
gradient method used for deconvolution are presented in section 7.4. The numerical
results and comparison between the injected and recovered maps are presented in
section 7.5.

7.1 Preparation of Simulated Data

The data is simulated in the frequency domain for each chunk. Since the noise of
ground based interferometric detectors is very high at frequencies higher than few
100 Hz and the computation cost increases with the number of frequency bins, we
use an upper cut-off frequency of fu = 512 Hz and bin width of∆ f = 2 Hz for testing
of the algorithm. The size of each chunk is chosen as ∆t = 192 sec and the total
integration time is T = 86400 sec. The sky is pixelized using the Hierarchical Equal
Area isoLatitude Pixelization (HEALPix) [122] scheme, which divides the 2-sphere
(S2) in 12 n2

side pixels, where nside is an integer power of 2. Since the radiometer beam
width is greater than ∼ 6◦, we chose nside = 16, which corresponds to a pixel width
of ∼ 3◦ and a total of 3072 pixels. The HEALPix scheme also allows fast spherical
harmonic transform on a sphere, which may become useful for more advanced
analysis in future. Note that, the algorithm is independent of the pixelization scheme,
other equal area pixelization schemes can also be used in the analysis.

• Noise Generation:

We generate the detector noise ñI(t; f ) using a Gaussian pseudo random num-
ber generator for each chunk. The noise is colored using the (one sided) noise
PSD PI(t; f ) of the corresponding detector according to the following formula
[eqn (4.63)]

〈|̃nI(t; f )|2〉 =
1
2
∆t PI(t; | f |). (7.1)

MATLAB® software’s pseudo random number generator can generate very
long sequences of random numbers, so we relied on the MATLAB® in-
built function randn for simulating detector noise. For each of T/∆t =
86400/192 = 450 chunks we generated a complex random sequence (that
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is, two real random sequences) of fu/∆ f = 512/2 = 256 real numbers. The to-
tal number of random numbers, 2(T/∆t)( fu/∆ f ) = 225, 000, is much less than
the period of the MATLAB® software’s pseudo random number generator
21492 & 10449 [123].

• Signal injection:

Signal is also generated directly in the frequency domain. However, the GW
strain in each detector, h̃I(t; f ), is not generated independently; rather the
product of the strains in the detectors, h̃∗1(t; f ) h̃2(t; f ), is generated directly
using the statistical properties of the strain correlation described in subsec-
tion 4.3.2. From eqn (4.56) we know that the expected correlation between the
detector strains due to a GWB sky described by PA(Ω̂) may be expressed as

〈̃h∗1(t, f ) h̃2(t, f )〉 = ∆t H( f )γPA(t, f ). (7.2)

For all the cases considered in this thesis we have used flat source PSDs, i.e.,
H( f ) = constant. We may write the above product of the strains as a sum of
its expectation value and statistical fluctuations:

h̃∗1(t, f ) h̃2(t, f ) = 〈̃h∗1(t, f ) h̃2(t, f )〉 + fluctuations. (7.3)

Since our main aim is to generate s̃∗1(t, f ) s̃2(t, f ) = [̃h∗1(t, f )+ ñ∗1(t, f )]× [̃h2(t, f )+
ñ2(t, f )] and since statistically the signal terms are much weaker than the
zero mean uncorrelated detector noise terms, we may simply drop the signal
“fluctuations” term from the signals - that is, we may approximate the product
of the detector outputs using the formula1

s̃∗1(t, f ) s̃2(t, f ) = 〈̃h∗1(t, f ) h̃2(t, f )〉 + ñ∗1(t, f ) ñ2(t, f ). (7.4)

In this analysis we assume the sky to be a collection of uncorrelated point sources
of different strengths placed at every pixel. Moreover, the numerical analysis
has been restricted to the case of equal power in each polarization. So the

1Note that, it is also possible to generate the correlated detector strains hI(t) independently and
construct s̃I(t; f ) = h̃I(t; f ) + ñI(t; f ) for each detector separately using simulated colored noise ñI(t; f )
to test the analysis. However, we chose the above method in order to reduce complications in the
primary testing of the analysis presented in this thesis.
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(injected) true sky is constructed by putting [eqn (6.22)]

Ptrue(Ω̂) =
∑

k

Pk δ(Ω̂ − Ω̂k), (7.5)

where Pk is the strength of the point source placed at pixel k, located in the
direction Ω̂k [In order to inject only one point source at pixel k0, we make
all the Pk = 0 except for k = k0]. In that case the expression for the overlap
reduction function [eqn (4.98)] for the true GWB strain becomes

γPA(t, f ) =
∑

k

Γ(Ω̂k, t)Pk e2πi f Ω̂k·∆x(t)/c, (7.6)

where we use our usual notation [eqn (6.8)]

Γ(Ω̂, t) := F+1 (Ω̂, t) F+2 (Ω̂, t) + F×1 (Ω̂, t) F×2 (Ω̂, t). (7.7)

We then substitute the above in eqn (7.2) and inject that simulated signal in
noise using eqn (7.4) to generate products of outputs from two detectors. In
order to preserve the reality of time series data, the products of signals are
generated only for positive frequencies and setting the negative frequencies
equal to the complex conjugates of their positive frequency counterparts, that
is, s̃I(t,− f ) = s̃∗I(t, f ).

7.2 Preparation of the “Dirty” Maps

The radiometer analysis is run on the simulated data to generate the raw maps -
also known as the “dirty maps” in radio astronomy. It is clear from the previous
two chapters that one needs to construct filters for each direction as a function of
sidereal time (midpoint of each chunk) and frequency. Then the cross-correlation
statistic should be computed including the filter to generate the dirty map.

The optimal filter to measure the point estimate at pixel k is the usual weighted
direction dependent overlap reduction function

qΩ̂k
(t, f ) =

H( f )
P1(t; f ) P2(t; f )

Γ(Ω̂k, t) e2πi f Ω̂k·∆x(t)/c. (7.8)

The details of computation of ∆x(t) and Γ(Ω̂, t) using Euler rotation follow from
the analytical details provided in chapter 4. This filter is applied to the simulated
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time-frequency cross-correlation matrix s̃∗1(t, f ) s̃2(t, f ) to generate the dirty map S.
Following eqn (4.81) and introducing finite frequency band we may write

Sk = 2

∆t
n∑

i=1

‖qΩ̂k
‖

2
ti


−1 n∑

i=1

<

∫ fu

fl
d f s̃∗1(ti; f ) s̃2(ti; f ) q̃Ω̂k

(ti, f )

 . (7.9)

The real part is taken from the above integral to take computational advantage of
the fact that the negative frequency components are the complex conjugates of the
positive frequency parts. As mentioned before, this was taken into account while
simulating the detector outputs in order to preserve the reality of time series data.

The dirty maps obtained by the above analysis for different injections will be
provided in the results section. The whole procedure to make dirty maps is carried
out in a computationally efficient way. For clarity, the details are not presented
in this section, they will be presented in the section on computation of the beam
matrix, where the computation strategy plays a much more important role.

7.3 Computation of the Beam Matrix

The most computationally intensive part of this analysis is to numerically evaluate
the beam matrix. Computation of the beam matrix is equivalent of making one
dirty map for each pixel by placing a unit point source at that pixel - each row of the
beam matrix describes the response function of the GW radiometer for the pointing
pixel that corresponds to the row index and each column is the PSF for the direction
that corresponds to the column index. We have to evaluate the dirty map for each2

pixel because the radiometer beam pattern varies with pointing direction. Since
we use 3072 pixels, it is equivalent of making 3072 skymaps. However, with smart
application of algebra and pre-computation, we could achieve this using reasonably
less computation. The details are given below.

The beam matrix B ≡ Bkk′ can be computed using the following expression

2If one assumes stationary noise and the observation is taken over complete days, the beam
function becomes independent of pointing longitude. In that case one can make one map for each set
of isoLatitude pixels, thus reducing the computation cost significantly. Though we have simulated
stationary noise and used an observation time of one full day, this assumption was not used in our
analysis, because testing the numerical tractability of this problem for practical applications (where
these assumptions do not apply) was one of the major goals of this project.
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[eqn (6.12)]

Bkk′ = 2

∆t
n∑

i=1

‖qΩ̂k
‖

2
ti


−1

∆t
n∑

i=1

<

∆ f
n f∑
j=1

G(ti; f j)Γ(Ω̂k, ti)Γ(Ω̂k′ , ti) e−2πi f j
∆Ωkk′ ·∆x(ti)

c

 ,
(7.10)

where the n f frequency bins marked by f j cover the range f = fl to f = fu and, as
before [eqn (6.9)], we have packed all the source and detector noise PSDs in a single
function G(t; f ) := H2( f )/[P1(t; | f |) P2(t; | f |)].

The key to fast computation is the structure of the quantities contained in the
expression for beam. All the component in the expression are dependent on any
one or two variables out of the three - direction, time and frequency. This gives us
the freedom to pre-compute those quantities in advance and keep them loaded in
the memory. Loading these two indexed object in memory is possible with realistic
memory sizes of modern computers, while three indexed arrays would be too large.
For example, we use Npix = 3072 pixels, n = 450 sidereal time chunks and n f = 256
frequency bins. This means a three indexed double precision complex array would
require 16Npixnn f ≈ 5 GigaBytes of memory space, while any two indexed object
in the expression for the beam matrix requires at most 8Npixn ≈ 10 MegaBytes of
memory space. Based on this observation we plan the computation of the beam
matrix as follows:

1. Pre-compute arrays (in the following order)

Gi j := G(ti; f j) (7.11a)

Ri := R(−ωE ti) [3 × 3 Euler-z matrices] (7.11b)

∆xi := ∆x(ti) (7.11c)

Γki := Γ(Ω̂k, ti) (7.11d)

σk :=

∆t
n∑

i=1

‖qΩ̂k
‖

2
ti


−1/2

(7.11e)

2. Combine the arrays

bkk′ :=
n∑

i=1

Γki Γk′i

n f∑
j=1

Gi j cos[2π f j(Ω̂k − Ω̂k′) · ∆xi/c] (7.12a)

Bkk′ = 2∆t∆ f σ2
k bkk′ (7.12b)
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The introduction of b ≡ bkk′ reduces the computation cost by a factor of ∼ 2,
as it is a symmetric matrix. Clearly the computation of bkk′ is very similar
to evaluating the product of two matrices with one additional cosine call
(cos[2π f j(Ω̂k − Ω̂k′) · ∆xi/c]) for each pair of elements. Essentially the cosine
operation consumes most of the computation, but we can neither pre-compute
it as it is a three indexed object3.

The above analysis was implemented using the MATLAB® software package
[121]. Utilizing the simplicity and efficiency of vectorized notations of MATLAB®,
it was possible to compute the beam matrix in just 18 hours on a 2.2 GHz AMD
Opteron™ processor [124]. Similar approach was also used to make the dirty maps
efficiently from the (simulated) detector outputs using the radiometer analysis.

A typical beam matrix for the LIGO baseline using 192 HEALPix pixels is
shown in figure 7.1. By construction Bkk = 1 and Bkk′ < 1 for k , k′, hence the matrix
is diagonal dominated. The “stripes” in the matrix are related to the pixelization
scheme. The beam is stronger if the sources are closer to the pointing direction
and it weakens as the distance between the source and pointing direction increases.
So the pixels closer to a point source will have stronger contamination from the
point source. However, since we have used a isoLatitude pixelization scheme, the
indices of two neighboring pixels at different latitudes differ by the total number
of pixels on that latitude. This fact is reflected on the plot of the beam matrix - the
matrix is sparse with certain “periodic” behavior that causes the stripes in the plot.
The matrix becomes even more sparse for finer resolutions as greater number of
isoLatitude pixel rings pass trough the core of the beam. Making a legible plot of
the beam matrix for higher resolution is difficult, so the plot presented here is of
lower resolution, 192 pixels instead of 3072.

Since the sparsity of the beam matrix depends on the pixelization scheme, it
may be possible to make the beam matrix significantly diagonal by using a nested
pixelization scheme, where the indices of the neighboring pixels are close. This
possibility is being explored.

3It may be possible to use FFT+interpolation [79] techniques to reduce the computation cost of
the cosine term also. This possibility has not been explored in this thesis, as the computational
requirement for the parameters used here was far below the computing power available to us after
the introduction of an appropriate efficient strategy.
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Figure 7.1: A typical GW radiometer Beam Matrix. Beam matrix for the LIGO
baseline at a low resolution (192 pixels) has been shown. Each row of the matrix
is the beam response function for the pointing direction that corresponds to the
row index. The matrix is diagonal dominated as the instrument receives maximum
contribution from the pointing direction. The stripes are related to the isoLatitude
pixelization scheme - the indices of the neighboring pixels at different latitudes
differ by the total number of pixels on that latitude. It should be noted that the
possibility of reducing the sparsity of the beam matrix using a nested pixelization
scheme, where the indices of the neighboring pixels are close, is being explored.

7.4 Deconvolution: The “Clean” Maps

The mathematical formulation to estimate the true GWB sky was developed in
section 6.6. The numerical implementation scheme is presented in this section.

The Maximum Likelihood (ML estimate of the true GWB sky for a single
baseline (two detectors), where the beam matrix B is a square matrix, is given by
eqn (6.38)

P̂ = B−1
· S. (7.13)

As mentioned before, the beam matrix is a sparse matrix. Sparse matrices are easier
to invert as far computational cost is concerned, however, the stability of inversion
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of a sparse matrix is a numerical challenge. Therefore, we choose to solve the set of
linear equations with the same number of unknowns as the number of equations
(that is, the system is not under/over constrained)

B · P̂ = S. (7.14)

Using the definitions used in eqn (7.12) and eqn (7.11) the kernel in the above
equation can be made symmetric, which is a requirement for many linear equation
solving algorithms. Thus, we may write

b · P̂ = s, (7.15)

where

sk := Sk/σ
2
k = 2

n∑
i=1

<

∫ fu

fl
d f s̃∗1(ti; f ) s̃2(ti; f ) q̃Ω̂k

(ti, f )

 . (7.16)

There are several algorithms to solve this type of linear algebraic equation.
We, again, choose the method which is routinely used in CMB analysis for making
skymaps - we use a Conjugate Gradient (CG) method to solve the above equation.

Conjugate Gradient method for sparse linear systems

Goal: Conjugate Gradient method is used to solve sparse linear systems
of the form

A · x = b, (7.17)

where the matrix A and the vector b are known. The basic conjugate
gradient method, that requires A to be symmetric and positive definite,
is outlined below.

Exact Solution: Since A is positive definite, it is possible to define inner
products of two vectors u and v in the vector space as

(u,v)A := u ·A · v. (7.18)

We call two vectors u and v to be A-conjugate to each other if (u,v)A = 0.
In an N dimensional vector space, it is always possible to find N mutually
A-conjugate vectors {pi

} , i = 1, 2, ...,N, such that (pi,p j)A = δi j (pi,pi)A,
which can be used as a basis set for the vector space.

Let x∗ be the exact solution of the linear equation. Then we can always
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expand it in terms of the basis vectors using the components αi as

x∗ =
N∑

i=1

αi pi, (7.19)

Substituting the above in the linear equation, taking “dot” products of
both sides by pk and using the fact that (pi,p j)A = δi j (pi,pi)A we may
write

x∗ =
N∑

i=1

(pi
· b)

(pi ·A · pi)
pi. (7.20)

Iterative Solution: In practice, however, we need not use all the basis
vectors to reach to the solution. If we choose the first few basis vectors
correctly, the truncated series can provide a good approximate solution.

The main principle of the iterative scheme follows from fact that the
solution of the linear equation A · x = b minimizes the function

f (x) :=
1
2

x ·A · x − b · x. (7.21)

So the aim is to reach to the minimum of the function f (x); an iterative
technique (gradient descent method) is used to do that in the Conjugate
Gradient scheme: At every iteration i an approximate solution xi+1 is
obtained by adding a correction vector αipi to the approximate solution
vector xi obtained after the previous iteration. The correction vector
is conjugate to all the basis vectors {p j}, j = 1, 2, ..., i obtained in the
previous iterations and closest to the (negative) gradient of the function
f (x) obtained after the previous iteration. Ideally, after N iterations, the
exact solution is reached, but, in practice, lesser number of iterations are
used. The residual after iteration i is

ri := b − A · xi ≡ −∇ f (xi). (7.22)

The basis vector pi+1 is chosen close to the residual ri, but it should be
conjugate to all the previous basis vectors. It can be done by choosing

pi+1 = ri −
(ri,pi)A

(pi,pi)A
pi. (7.23)
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The detailed algorithm can found in, e.g., Numerical Recipes [125].

Different conjugate gradient methods can be used depending on the character-
istics of the beam matrix. We use the minimum residual method, which efficiently
utilizes the fact that b is symmetric and does not require b to be positive definite.
The minimum residual method aims to minimize the residual |A · x − b|2 itself,
instead of the quadratic form (1/2)x ·A · x − b · x.

7.5 Results and Comparisons

The analysis was tested for different kinds of injected maps consisting of localized
sources and diffuse sources. The results can be summarized using a series of figures
showing different injected, dirty and clean maps as in figure 7.2. The left panels of
figure 7.2 show the injected maps. The simulated data is prepared following the
procedure described in section 7.1: The true GW strains in the LIGO detectors due to
a given skymap are computed in the frequency domain, which is then injected into
simulated Gaussian noise colored with LIGO-I PSD. The middle panels of figure 7.2
show the dirty maps obtained by applying the directed GW radiometer analysis on
simulated data of one complete day. The right panels show the clean maps obtained
from the dirty maps after deconvolving with the beam function for the two LIGO
detectors for observation time of one full day. The deconvolution is done using the
minimum residual conjugate gradient iterative technique.

Four sets of GWB maps have been shown in figure 7.2, which correspond to
the following cases:

• Figure 7.2a: A 1-pixel point source near the virgo cluster

• Figure 7.2b: A 4-pixel wide source near the Virgo cluster

• Figure 7.2c: A map similar to the CMB temperature anisotropy map in galactic
coordinates4 measured by the WMAP satellite [96]

• Figure 7.2d: A map similar to the CMB temperature anisotropy map in
barycentric coordinates generated by the Planck simulator [126]

In all the above cases each pixel of the test map is assigned a positive value
between 0 to 10 with a source PSD H( f ) = 5 × 10−47/Hz. Which means that, if a

4Note that, CMB maps looks different, more like Figure 7.2d, in barycentric coordinates. We
intentionally omit the coordinate transformation in order to get a toy equatorial diffuse source.
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pixel of a test map has strength 1, the standard deviation of the Fourier transform
of stochastic GW coming from that pixel is

√
H( f ) ∼ 7 × 10−24/

√
Hz. This standard

deviation is about one third of the standard deviation of Fourier transform of
noise at the most sensitive frequency band of the LIGO-I detectors which is about
2 − 3 × 10−23/

√
Hz. Though the signal level is quite below the noise level, we can

still detect the signal by coherently correlating outputs from the detectors for long
time, which is one full day in our case. This is particularly impressive, since we are
not using matched filtering usually employed to pull out a known signal buried in
noise.

• Localized sources: Figure 7.2a and figure 7.2b have been considered as the
test cases for the detection of highly localized point sources. The Virgo cluster
is expected to be a strong localized source of stochastic GWB and is definitely
a primary target for the targeted search. This was the reason for choosing
the position of the localized sources near the virgo cluster. The dirty maps,
understandably, show a broad pattern similar to the point spread function, in
excess of noise, for the localized (point like) sources.

These maps were deconvolved using 20 iterations of the minimum residual
algorithm. Clearly, deconvolution has accumulated power within few pix-
els. However, it can be seen from the figures that the recovered peak value
at the injection point is considerably less than the injected value. This is
possibly caused due to the inability of numerical routines to converge to a
point like solution (a point source in this case). This statement can be sup-
ported by the following observation: The performance of deconvolution for
a broader source in figure 7.2b is better as compared to a more pointed source
in figure 7.2a. In fact, an increase in the number of iterations introduce more
numerical noise than any improvement in the peak values of the clean maps
for a localized source.

• Diffuse sources: Figure 7.2c and figure 7.2d have been used to demonstrate
the cases of diffuse background (without any angular correlation). The galactic
white dwarf binaries and the cosmological GWB fall in this category (of course,
the cosmic GWB will additionally have angular correlations, which we have
neglected in this preliminary exploratory analysis. So, we injected skymaps
similar to the CMB temperature anisotropy maps with the galactic background
in galactic and barycentric coordinates as toy sources. The dirty maps lose
most of the detailed structures present in the injected maps. The dirty map
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can even get severely distorted and provide an incorrect impression of the
true map. For example, in figure 7.2c, there is no obvious similarity between
the injected map and the dirty map and in figure 7.2d the dirty map takes
nearly equal positive and negative peak values.

The clean maps were recovered by deconvolution using 300 iterations. De-
convolution clearly brings out almost all the structures originally present in
the injected maps. The positivity of the estimated map is also vastly restored
- most of the pixels in the clean map have large positive values as compared
to the absolute values of the negative ones. Moreover, unlike the case of
localized sources, the clean maps for diffuse background are recovered with
almost similar pixel amplitude as that of the injected maps.

Although the exact quantification of the quality of deconvolution is still to be
formulated, the overall performance of this first attempt to estimate simulated GWB
skymaps has produced promising results and the necessity to deconvolve the dirty
maps is well established.

7.6 Summary and Conclusion

In this chapter we have numerical implemented the analytical deconvolution scheme
developed in the previous chapter. A key numerical challenge was to evaluate the
beam matrix using reasonable amount of computation and to obtain a the clean
map without introducing severe numerical errors. To accomplish these challenges,
we respectively used smart pre-computation techniques and a conjugate gradient
method used in the CMB analysis. This was the first ever attempt to estimate the
true GWB skymap using the data from the recent ground based interferometric GW
detectors and the success is quite remarkable - we got back nearly what we injected.

However, since this is a primary attempt, this method has scope for improve-
ments on many fronts. Firsty, we have compared the maps just visually, a method
to quantify the quality of deconvolution is necessary. To get that one needs the
inverse of the beam matrix for obtaining the pixel-to-pixel noise covariance matrix
of the clean map, which is a difficult task. We are currently working on it. Secondly,
the ML approach used here closely follows the CMB analysis. A more customized
deconvolution strategy would provide better results. Several other modifications
and checks are needed before this method could finally be used for putting upper
limits on the true stochastic GWB with enough confidence.
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(a) A 1-pixel point source is injected near the Virgo cluster

(b) A 4-pixel broad source was injected near the Virgo cluster

(c) A map similar to the CMB temperature anisotropy map measured by the WMAP satellite [96], as
seen in the Galactic coordinates, is injected as a test equatorial diffuse GWB map

(d) A modified form of the CMB temperature anisotropy map generated by the Planck simulator [126]
in the barycentric coordinate is used as a toy all sky GWB map

Figure 7.2: Deconvolved (simulated) GWB skymaps. The four sets of images above
compare the results of deconvolution of the GWB skymaps. The left panels show the maps
injected to simulate strains in the LIGO Hanford and Livingston detectors with LIGO-I noise,
the middle panels show the raw “dirty” maps obtained by the directed radiometer analysis
and the right panels show the deconvolved “clean” maps. In each case the minimum
residual Conjugate Gradient method was used for the maximum likelihood estimation
with number of iterations 20 for (a) and (b) and 300 for (c) and (d). The similarity between
the left and right panels illustrate the success of this first ever attempt to estimate the true
GWB sky using the recent ground based GW detectors. Note that the above scales are
different for the injected, dirty and clean maps.
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Chapter 8

Non-circular Beam Correction to
CMB Power Spectrum:
Perturbative Analysis

A golden decade of measurements of the Cosmic Microwave Background (CMB)
anisotropy has ushered in an era of precision cosmology. The theory of primary
CMB anisotropy is well developed and the past decade has seen a veritable flood
of data [127, 128, 129]. The measurements of the angular power spectrum of the
CMB anisotropy has proved crucial to the emergence of cosmology as a precision
science in recent years. In this remarkable data rich period, the limitations to pre-
cision now arise from the the inability to account for finer systematic effects in
data analysis. The non-circularity of the experimental beam has become progres-
sively important as CMB experiments strive to attain higher angular resolution and
sensitivity. The optimal solution to remove this systematic effect from CMB mea-
surements is to deconvolve the anisotropy maps accounting for the non-circularity
of the beam function (as outlined in the previous chapter for the gravitational wave
background skymaps). Unfortunately the full maximum likelihood estimation of
a high resolution CMB map is computationally prohibitive. The CMB anisotropy
maps from the high resolution instruments, like WMAP, are deconvolved assuming
circularly symmetric beams of infinite resolution [96], which introduces a bias in the
CMB power spectrum estimated from those maps. We have developed an analytic
framework for studying the effects of a non-circular beam on the CMB power spec-
trum estimation [118, 130]. First we use a perturbative analysis to find the leading
order correction, which will be presented in this chapter. Next, we derive a general
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analytic framework to find the bias on CMB power spectrum due to the non-circular
beams, where we include the effect of incomplete sky coverage in analytical calcu-
lations that was considered only numerically in the perturbative analysis. This will
be presented in the chapter 9. In both the cases we consider a mildly non-circular
beam, that allows us to perform a perturbative analysis and the first few orders
are sufficient to account for the beam non-circularity effect for most of the recent
experiments. We compute the bias in the pseudo-Cl power spectrum estimator and
then construct an unbiased estimator using the bias matrix. The covariance matrix
of the unbiased estimator is computed for smooth, non-circular beams. Quanti-
tative results are shown for CMB maps made by a hypothetical experiment with a
non-circular beam comparable to our fits to the WMAP beam maps described in
appendix D and uses a toy scan strategy. We find that significant effects on CMB
power spectrum can arise due to non-circular beam on multipoles comparable to,
and beyond, the inverse average beam-width where the pseudo-Cl approach may
be the method of choice due to computational limitations of analyzing the large
datasets from current and near future CMB experiments. Recently WMAP team
have corrected for the non-circular beam effect in their 3 year results. The estimated
effect is in good agreement with the prediction of our method for a WMAP-like
beam.

8.1 Pseudo-Cl Approach to Non-circular Beam Correction

Increasingly sensitive, high resolution, ‘full’ sky measurements from space mis-
sions, such as, the ongoing Wilkinson Microwave Anisotropy Probe (WMAP) and,
the upcoming Planck surveyor pose a stiff challenge for current analysis techniques
to realize the full potential of precise determination of cosmological parameters. As
experiments improve in sensitivity, the inadequacy in modeling the observational
reality start to limit the returns from these experiments.

A Gaussian model of CMB anisotropy ∆T(q̂) is completely specified by its an-
gular two-point correlation function. In standard cosmology, CMB anisotropy is
expected to be statistically isotropic. In spherical harmonic space, where ∆T(q̂) =∑

lm almYlm(q̂), this translates to a diagonal 〈alma∗l′m′〉 = Clδll′δmm′ where Cl, the widely
used angular power spectrum of CMB anisotropy, carries a complete description of
a Gaussian CMB anisotropy. Observationally, the angular power spectrum being
a simple, robust point statistics is the obvious first target for cosmological obser-
vations. Theoretically, the Cl are deemed all important since the simplest inflation
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models predict a Gaussian CMB anisotropy. In this case, the power spectrum pro-
vides an economical description of the CMB anisotropy allowing easy comparison
to observations.

Accurate estimation of Cl is arguably the foremost concern of most CMB ex-
periments. The extensive literature on this topic has been summarized in a recent
article [131]. For Gaussian, statistically isotropic CMB sky, the Cl that correspond
to covariance that maximize the multivariate Gaussian PDF of the temperature
map, ∆T(q̂) is the Maximum Likelihood (ML) solution. Different ML estima-
tors have been proposed and implemented on CMB data of small and modest
size [132,133,134,135,136,137]. While it is desirable to use optimal estimators of Cl

that obtain (or iterate toward) the ML solution for the given data, these methods usu-
ally are limited by the computational expense of matrix inversion that scales as N3

d
with data size Nd [138, 139, 140]. Various strategies for speeding up ML estimation
have been proposed, such as, exploiting the symmetries of the scan strategy [141],
using hierarchical decomposition [142], iterative multi-grid method [143], etc. Vari-
ants employing linear combinations of∆T(q̂) such as alm on set of rings in the sky can
alleviate the computational demands in special cases [144, 145, 146]. Other promis-
ing exact power estimation methods have been recently proposed [147, 148, 149].

However there also exist computationally rapid, sub-optimal estimators of Cl.
Exploiting the fast spherical harmonic transform (∼ N3/2

d ), it is possible to estimate
the angular power spectrum Cl = 〈|alm|

2
〉/(2l+1) rapidly [150,151]. This is commonly

referred to as the pseudo-Cl method [152]. (Analogous approach employing fast
estimation of the correlation function C(q̂ · q̂′) have also been explored [153,154].) It
has been recently argued that the need for optimal estimators may have been over-
emphasized since they are computationally prohibitive at large l . Sub-optimal
estimators are computationally tractable and tend to be nearly optimal in the rele-
vant high l regime. Moreover, already the data size of the current sensitive, high
resolution, ‘full sky’ CMB experiments such as WMAP have compelled the use of
sub-optimal pseudo-Cl related methods [155, 156]. On the other hand, optimal ML
estimators can readily incorporate and account for various systematic effects, such
as non-uniform sky coverage, noise correlations and beam asymmetries.

In the years after the COBE-DMR observations [157], more sensitive mea-
surements at higher resolution but with limited sky coverage were made by a
number of experiments 1. The effect of incomplete (more generally, non uniform)

1For a compendium of links to experiments refer to, e.g.
http://www.mpa-garching.mpg.de/~banday/CMB.html

http://www.mpa-garching.mpg.de/~banday/CMB.html
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sky coverage on the sampling statistics of Cl was the dominant concern of these
experiments such as the ground based experiment TOCO [158, 159], DASI [160],
CBI [161], ACBAR [162], and balloon based experiments BOOMERang [163], MAX-
IMA [164, 165] and Archeops [166]. Comprehensive analyzes have been carried
out to tackle this problem. For example, the basic semi-analytic framework devel-
oped [152] was subsequently implemented as fast, efficient scheme for the analysis
of the BOOMERang experiment [167]. While the non-uniform sky coverage has
been addressed in the pseudo-Cl method, the other effects remain to be incorpo-
rated.

In this work, we initiate a similar line of research to address a more contem-
porary issue that has gained relative importance in the post WMAP [155] (and
pre-Planck) era of CMB anisotropy measurement with ‘full’ sky coverage. It has
been usual in CMB data analysis to assume the experimental beam response to
be circularly symmetric around the pointing direction. However, any real beam
response function has deviations from circular symmetry. Even the main lobe of
the beam response of experiments are generically non-circular (non-axisymmetric)
since detectors have to be placed off-axis on the focal plane. (Side lobes and stray
light contamination add to the breakdown of this assumption). For high sensitive
experiments, the systematic errors arising from the beam non-circularity become
progressively more important. Recent CMB experiments such as ARCHEOPS,
MAXIMA, WMAP have significantly non-circular beams. Future experiments like
the Planck Surveyor are expected to be even more seriously affected by non-circular
beams.

Dropping the circular beam assumption leads to major complications at every
stage of the data analysis pipeline. The extent to which the non-circularity affects
the step of going from the time-stream data to sky map is very sensitive to the
scan-strategy. The beam now has an orientation with respect to the scan path
that can potentially vary along the path. This implies that the beam function is
inherently time dependent and difficult to deconvolve. Even after a sky map is
made, the non-circularity of the effective beam affects the estimation of the angular
power spectrum, Cl, by coupling the l modes, typically, on scales beyond the inverse
angular beam-width.

Barring few exceptions (eg., [168]), the non-circularity of beam patterns in CMB
experiments has been addressed in limited context. When it has not been totally
ignored, one has measured with numerical simulations the biasing effect on the
power spectrum of CMB anisotropies of neglecting the non-circularity of the beams
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in the data analysis chain (see e.g., MAXIMA [165, 169], Archeops [166, 170]). This
approach only deals with the diagonal part of the matrix relating the observed
power spectrum to the underlying power spectrum, so does not fully describe the
effect of the beam complexity on the CMB statistics. An integrated approach to
account for the systematic effect of a non-circular beam has not yet been developed.

In this initial work we skip over the issues related to map making and focus on
the CMB power spectrum estimation from a CMB sky map made with an effective
beam that is non-circular. Mild deviations from circularity can be addressed by a
perturbation approach [117,171]. Besides providing an elegant analytic formalism,
the approach has lead to rapid methods for computing the window functions for
CMB experiments [172, 173]. In this work the effect of beam non-circularity on the
estimation of CMB power spectrum is studied analytically using this perturbation
approach.

A brief primer on the connection between CMB power spectrum and the ex-
perimental window functions is presented in section 8.2. Though some of the
basics have already been described in Chapter 5, section 8.2 is designed to keep
this chapter self-contained. In section 8.2.2, the perturbation approach for comput-
ing the the window functions for CMB experiments with non-circular beam [117]
is briefly reviewed and also define the elliptical Gaussian beam and its spherical
transform. The bias matrix accounting for the non-circularity of the beam for the
pseudo-Cl estimator of CMB anisotropy is derived and discussed in section 9.2. The
error-covariance for the unbiased estimator is derived in section 9.2. The chapter is
conclude with a discussion of the results in section 8.4. An interesting exercise of
fitting the WMAP beam maps with an elliptical Gaussian beam profile is presented
in an appendix D. Details of the steps leading to our analytical results are given in
Appendix E.

8.2 Window functions of CMB experiments: a brief primer

Conventionally, the CMB temperature, ∆T(q̂), is expressed as a function of angular
position, q̂ ≡ (θ, φ), on the sky via the spherical harmonic decomposition,

∆T(q̂) =
∞∑

l=0

l∑
m=−l

almYlm(q̂) . (8.1)

In an idealized noise free, CMB anisotropy sky map ∆T(q̂) made with infinitely
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high resolution, the angular power spectrum is given by

Cl ≡
1

2l + 1

l∑
m=−l

〈|alm|
2
〉, (8.2)

where
alm ≡

∫
dΩq̂ Y∗lm(q̂)∆T(q̂) (8.3)

are the spherical harmonic transforms of the temperature deviation field ∆T(q̂). We
introduce the scaled power spectrum Cl ≡ (l(l + 1)/2π)Cl, that measures the power
per logarithmic interval of angular scale, l. Eliminating alm, we may write,

Cl =
l(l + 1)

8π2

∫
dΩq̂1

∫
dΩq̂2〈∆T(q̂1)∆T(q̂2)〉Pl(q̂1 · q̂2), (8.4)

where we have made use of the expansion of Legendre Polynomials

Pl(q̂1 · q̂2) =
4π

2l + 1

l∑
m=−l

Y∗lm(q̂1)Ylm(q̂2). (8.5)

If we assume the isotropy of the CMB sky, 〈∆T(q̂1)∆T(q̂2)〉 should depend only on
q̂1 · q̂2. Therefore, we can use Legendre expansion to show that,

〈∆T(q̂1)∆T(q̂2)〉 =
∞∑

l=0

2l + 1
2l(l + 1)

Cl Pl(q̂1 · q̂2). (8.6)

All CMB anisotropy experiments measure differences in CMB temperature at
different locations on the sky. A step of map-making is required to derive the
above temperature anisotropy map at each point on the sky. Since this is a linear
operation, the correlation function of the measured quantity for a given scanning
or modulation strategy can always be expressed as linear sum of ‘elementary’
correlations of the temperature given in eq. (8.6).

Typically, a CMB anisotropy experiment probes a range of angular scales char-
acterized by a window function Wl(q̂, q̂′). The window depends both on the scanning
strategy as well as the angular resolution and response of the experiment. However,
it is neater to logically separate these two effects by expressing the window Wl(q̂, q̂′)
as a sum of ‘elementary’ window function of the CMB anisotropy at each point of
the map [117]. In this work, we only deal with these elementary window functions.
For a given scanning/modulation strategy, our results can be readily generalized
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using the representation of the window function as sum over elementary window
functions (see, e.g., [117, 172, 173]). Although the quantitative results we present
in this work refer to a scan strategy where each pixel is visited by the beam only
once, this is not a limitation of our approach. If pixels are multiply visited by the
beam with different orientations, the correlation function still can be expressed as
a sum over appropriate elementary window functions for which all the results we
describe in this work hold.

8.2.1 Window function for circular beams

Due to finite resolution of the instruments, the ‘measured’ temperature difference
∆̃T(q̂) along the direction q̂ in response to the CMB anisotropy signal∆T(q̂′) is given
by

∆̃T(q̂) =
∫

dΩq̂′ B(q̂, q̂′)∆T(q̂′) (8.7)

where the experimental “Beam" response function B(q̂, q̂′) describes the sensitivity
of the measuring instrument at different angles around the pointing direction. There
is an additional contribution from instrumental noise denoted by n(q̂) which we
shall introduce later into our final results.

The two point correlation function for a statistical isotropic CMB anisotropy
signal is

C(q̂, q̂′) = 〈∆̃T(q̂)∆̃T(q̂′)〉 =
∞∑

l=0

(2l + 1)
4π

Cl Wl(q̂, q̂′) , (8.8)

where Cl is the angular spectrum of CMB anisotropy signal and the window function

Wl(q̂1, q̂2) ≡
∫

dΩq̂

∫
dΩq̂′ B(q̂1, q̂)B(q̂2, q̂′)Pl(q̂ · q̂′), (8.9)

encodes the effect of finite resolution through the beam function.

For some experiments, the beam function may be assumed to be circularly
symmetric about the pointing direction, i.e., B(q̂, q̂′) ≡ B(q̂ · q̂′) without significantly
affecting the results of the analysis. In any case, this assumption allows a great
simplification since the beam function can then be represented by an expansion in
Legendre polynomials as

B(q̂ · q̂′) =
1

4π

∞∑
l=0

(2l + 1) Bl Pl(q̂ · q̂′). (8.10)
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Consequently, it is straightforward to derive the well known simple expression

Wl(q̂, q̂′) = B2
l Pl(q̂ · q̂′) , (8.11)

for a circularly symmetric beam function.

8.2.2 Window function for non-circular beams

ρ

ϕ

θ

Pole

Figure 8.1: Illustration of beam rotation. The figure illustrates that a beam pointed
in an arbitrary direction q̂ = (θ, φ), with an orientation given by the angle ρ(q̂)
can always be rotated to point along ẑ oriented with ρ(ẑ) = 0. The Euler angles of
this rotation are clearly seen to be (θ, φ, ρ). Consequently, the beam transforms are
related through Wigner rotation matrices corresponding to the same rotation.

While some experiments may have circularly symmetric beam functions, most
experimental beams are non-circular to some extent. The effect of non-circularity
of the beam has become progressively more relevant for experiments with higher
sensitivity and angular resolution. The most general beam response function can
be represented as

B(ẑ, q̂) =
∞∑

l=0

l∑
m=−l

blm(ẑ) Ylm(q̂) (8.12)

by a spherical harmonic expansion when pointing along ẑ axis (“North pole” in
some given astronomical coordinate system). In case of circularly symmetric beams,
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the real coefficients Bl =
√

4π/(2l + 1)bl0.
For mild deviations, the non-circularity of the beams can be parameterized by

a set of small quantities βlm ≡ blm/bl0 – the Beam Distortion Parameters (BDP). The
smoothness of the beam response implies that at any multipole l, the coefficients
βlm decrease sufficiently rapidly with increasing |m|. In addition, for the rest of
this chapter we assume2 that the beam function has reflection symmetry about two
orthogonal axes on the (locally flat) beam plane, which ensures that the coefficients
blm(ẑ) are real and zero for odd values of m. An example of a non-circular beam with
such symmetries is the elliptical Gaussian beam. A brief mathematical description
of such beams can be found later in this section. In order to verify our analytical
results, we have used the elliptical Gaussian beam as a model of non-circular beam.
However, our analytic results would apply to a general form of non-circular beam
(as long as βl1 is zero or sub-dominant to βl2).
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Figure 8.2: WMAP Q1 Beam. The left panel shows the WMAP Q1 (A side) beam
map overlaid with IRAF fitted ellipses over iso-intensity contours. More details
are in Appendix D. On the right panel, we plot the product of beam distortion
parameters for the elliptic Gaussian fit to the WMAP-Q1 beam versus multipole
corresponding to the different order of the perturbation expansion of a window
function for a non-circular beam. Note that the effect kicks in at lσ̄ ∼ 1.

In order to find an expression for window function in terms of the βlm and Bl,
we follow the approach in [117]. The beam transforms for an arbitrary pointing
direction q̂ may be expressed as,

blm(q̂) =
l∑

m′=−l

blm′(ẑ)Dl
mm′(q̂, ρ(q̂)), (8.13)

2This assumption is designed for simplicity as well as due to the fact that most experimental
beams are well approximated by a elliptical shape that obeys this. Our method can function perfectly
without this assumption. In the next chapter we shall drop this assumption.
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where Dl
mm′(q̂, ρ) ≡ Dl

mm′(φ, θ, ρ) are the Wigner-D functions given in terms of the
Euler angles describing the rotation that carries the pointing direction q̂ to ẑ-axis,
as illustrated in Figure 8.1. The third angle ρ(q̂) measures the angle by which the
beam has rotated about the new pointing direction, when the pointing direction
moves from ẑ to q̂ 3. Inserting the spherical transform of the beam in eq. (8.13) into
eq. (8.9) we can write the window function as

Wl(q̂1, q̂2) =
4π

2l + 1

l∑
m=−l

b∗lm(q̂1)blm(q̂2) (8.14)

= B2
l

l∑
m1=−l

l∑
m2=−l

β∗lm1
βlm2

l∑
m=−l

Dl∗
mm1

(q̂1, ρ(q̂1))Dl
mm2

(q̂2, ρ(q̂2))

solely in terms of the circular component of the beam function Bl and non-circular
parts encoded in the BDP’s, βlm. As pointed out in [117], the window function
expressed in the form of eq. (8.15) has an obvious expansion in perturbation series
in βlm retaining only the lowest values of |m1| and |m2|. In this chapter, we adopt this
perturbation approach to evaluate the leading order correction to power spectrum
estimation arising due to mild deviations of the beam from circular symmetry.

To provide a neat perturbative framework, it is advantageous to use the sum-
mation formula of Wigner-D to combine the product of the two Wigner-D functions
in eq. (8.15) into a single one as [117]

Wl(q̂1, q̂2) =
4π

2l + 1

l∑
m′=−l

l∑
m′′=−l

[blm′(ẑ)]∗ blm′′(ẑ)Dl
m′m′′(α − ρ1, γ, β + ρ2), (8.15)

where

cosγ = q̂1 · q̂2

cotα = −cosθ1 cot(φ1 − φ2) + sinθ1 cotθ2 csc(φ1 − φ2) (8.16)

cotβ = −cosθ2 cot(φ1 − φ2) + cotθ1 sinθ2 csc(φ1 − φ2).

For large values of l it is computationally expensive to evaluate the entire m′ and
m′′ sum in eq. (8.15). However, for a smooth, mildly non-circular beam function,
restricting the summation to a few low values of m′ and m′′ results in a good

3Hereafter, for brevity of notation, absence of the pointing direction argument to blm or βlm will
imply a beam pointed along the ẑ axis.
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approximation. The leading order terms in the perturbation [117]

Wl(q̂1, q̂2) =
4π

2l + 1
×[

[bl0(ẑ)]2 dl
00(γ) + 2bl0(ẑ)bl2(ẑ)

{
cos(2(α − ρ1)) + cos(2(β + ρ2))

}
dl

02(γ)

+2 [bl2(ẑ)]2
[
cos(2(α + β + ρ2 − ρ1))dl

22(γ)

+ (−1)−lcos(2(α − β − ρ1 − ρ2)))dl
22(π − γ)

]
+2bl0(ẑ)bl4(ẑ)

{
cos(4(α − ρ1)) + cos(4(β + ρ2))

}
dl

04(γ) + · · ·
]
. (8.17)

can be readily evaluated using recurrence relations similar to that of Legendre
function. In the above we have restricted to the common situation of beam functions
with reflection symmetry (βlm are real and βlm = 0 for odd m) such as the elliptic
Gaussian beam described next.

An elliptic Gaussian beam profile, pointed along the ẑ-axis is expressed in terms
of the spherical polar coordinates about the pointing direction as follows [117]

B(ẑ, q̂) =
1

2πσ1σ2
exp

[
−

θ2

2σ2(φ)

]
, (8.18)

where the “beam-width" σ(φ) ≡ [σ2
1/(1 + ε sin2 φ)]1/2 and the “non-circularity

parameter" ε ≡ (σ2
1/σ

2
2 − 1) are given in terms of σ1 and σ2 – the Gaussian widths

along the semi-major and semi-minor axis, respectively. However, we characterize

an elliptical beam using two different parameters: eccentricity e ≡
√

1 − σ2
2/σ

2
1 and

the size parameter θ1/2, the FWHM of a circular beam of equal “area"4.
For elliptical Gaussian beams the spherical harmonic transform is available in

the closed analytical form

blm =

[
2l + 1

4π
(l +m)!
(l −m)!

] 1
2

(l + 1/2)−m
×

Im/2

 (l + 1/2)2σ2
1e2

4

 exp

− (l + 1/2)2σ2
1

2

{
1 −

e2

2

} , (8.19)

where Iν(x) is the modified Bessel function [117, 174]. Note, in the above equation
we have used eccentricity e instead of the non-circularity parameter ε = e2/(1 − e2)

4By “area" we mean the area enclosed by the curve whose each point corresponds to the Half
Maximum of the Gaussian profile. We can show that, θ1/2(in degrees) = (180/π)

√
8 ln 2 σ̄, where

σ̄2
≡ σ1σ2 is proportional to the area of the beam.
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Table 8.1: Definition of parameters that quantify non-circularity. In literature,
the elliptical beams have been described by several parameters which can all be
expressed in terms of the Gaussian widths along the semi-major (σ1) and the semi-
minor (σ2) axes of the ellipse. We have used these parameters at several places in
the text.

Parameter Symbol Expression

Eccentricity e
√

1 −
σ2

2
σ2

1

Non-Circularity Parameter ε
σ2

1
σ2

2
− 1

Ellipticity ε̄ 1 − σ2
σ1

used in [117]. (See Table 8.1 for the various definitions and characterizations of
elliptical beams.)

Fig 8.2 shows one of the WMAP beams as an example of a distinctly non-
circular beam (see iso-contours in the left panel) that can be efficiently handled by
the leading order term in the perturbation approach (see the right panel). Details
of the exercise of fitting elliptical Gaussian beam profile to the WMAP beam maps
is given in appendix D.

8.3 Bias Matrix

Given the observed temperature fluctuations ∆̃T(q̂), a naive estimator for the angu-
lar power spectrum based on eq. (8.2) is given by

C̃l ≡
l(l + 1)

2π
1

2l + 1

l∑
m=−l

|ãlm|
2, (8.20)

where
ãlm ≡

∫
dΩq̂ Y∗lm(q̂) ∆̃T(q̂) U(q̂) (8.21)

are the coefficients of the spherical harmonic transform of the CMB anisotropy
map [150,151]. The weight function U(q̂) accounts for non-uniform/incomplete sky
coverage and also provides a handle to weigh the data ‘optimally’. Without the
inconsequential l(l + 1) scaling, this naive estimator is referred to as the pseudo-
Cl in recent literature [152]. The ‘pseudo’ refers to fact that the estimated Cl is
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biased. Moreover, this is a sub-optimal estimator of the power spectrum. This
naive power spectrum estimate has to be corrected for observational effects such
as the instrumental noise contribution, beam resolution, incomplete/non-uniform
sky coverage. Nevertheless, the pseudo-Cl method is a computationally fast and
economical approach and is currently a method of choice for the recent large CMB
anisotropy datasets (at least for large l within the hybrid schemes [131]).

Faced with the computational challenges of large data sets, an approach that
has been adopted is to compute the pseudo-Cl’s from the CMB observations and
then correct for the observational effects. The true Cl spectrum is linearly related

〈C̃l〉 =
∑

l′
All′ Cl′ (8.22)

to the pseudo-Cl through a bias matrix All′ . Similar bias matrices arising due to the
effect of non-uniform sky coverage, instrumental noise have been studied [152,167].
In this work, we compute All′ for non-circular beam and give explicit analytical
results for the leading order terms for non rotating beams.

The pseudo-Cl estimator in eq. (8.20) can be expressed as

C̃l ≡
l(l + 1)

8π2

∫
dΩq̂1

∫
dΩq̂2 U(q̂1)U(q̂2) ∆̃T(q̂1)∆̃T(q̂2)Pl(q̂1 · q̂2). (8.23)

The ensemble expectation value of the pseudo-Cl power spectrum estimator is

〈C̃l〉 =
l(l + 1)

8π2

∫
dΩq̂1

∫
dΩq̂2 U(q̂1)U(q̂2)

∑
l′

2l′ + 1
2l′(l′ + 1)

Cl′ ×

Pl(q̂1 · q̂2)
∫

dΩq̂

∫
dΩq̂′ B(q̂1, q̂)B(q̂2, q̂′)Pl′(q̂ · q̂′). (8.24)

Recalling the definition of a window function in eq. (8.9), the most general form of
the bias matrix

All′ =
2l′ + 1
16π2

l(l + 1)
l′(l′ + 1)

∫
dΩq̂1

∫
dΩq̂2 U(q̂1)U(q̂2) Pl(q̂1 · q̂2)Wl′(q̂1, q̂2). (8.25)

Using the expression for the window function for a non circular beam in eq. (8.15)
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the bias matrix can be written as

All′ =
B2

l′

4π
(2l′ + 1)
(2l + 1)

l(l + 1)
l′(l′ + 1)

× (8.26)

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
l′∑

m′=−l′
βl′m′

∫
dΩq̂ Y∗ln(q̂) Dl′

mm′(q̂, ρ(q̂)) U(q̂)

∣∣∣∣∣∣∣
2

.

The above expressions in eq. (8.25) and eq. (8.26) are valid for a completely general
non-circular beam with an arbitrary orientation at each point. The scan pattern
of the CMB experiment and relative orientation of the beam along it is encoded
in the function ρ(q̂). The weight U(q̂) can account for non-uniform sky coverage.
Analytical progress can be made when U(q̂) ≡ U(θ) and ρ(q̂) = ρ(θ) are fixed
along a given declination, but we do not discuss further it here. When the beam
transform, weight function and the scan pattern are specified, the bias matrix can
be evaluated numerically using eq. (8.26). However, for mild deviations from
circularity, the above expression also points to a perturbation expansion in the
small beam distortion parameters, βlm.

For obtaining analytical results, in this chapter we set the weight function
U(q̂) = 1, corresponding to a full, uniform sky coverage and also limit attention
to scans with ‘non-rotating’ beams where ρ(q̂) = 0. This is presented in the next
subsections.

8.3.1 Circular Symmetric Beam

We first consider eq. (8.26) for the simpler and well studied case of a circular beam.
For clarity of presentation, we limit our discussion to full, uniform sky coverage
(U(q̂) = 1). Results for non-uniform coverage with a circular beam are available in
the literature [152, 167, 131].

Using the expression for the window function for circular beam eq. (8.11) into
the expression for the bias in eq. (8.25) we recover

All′ = B2
l δll′ ⇒ 〈C̃l〉 = B2

l Cl. (8.27)

For a full sky measurement with a circular beam, the bias matrix is diagonal
implying that there is no mixing of power between different multipoles. The true
expectation value of the power spectrum can be obtained by dividing the pseudo-Cl

estimator by the isotropic beam transform B2
l .
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Next we account for the noise contribution and recover the well known result
for a full sky observation. The pixel noise n(q̂) adds to the observed temperature,
so that the resultant observed temperature

∆̃T
′

(q̂) = ∆̃T(q̂) + n(q̂) (8.28)

and we can readily obtain

〈C̃
′

l〉 = 〈C̃l〉 + C
N
l = B2

l Cl + C
N
l , (8.29)

where CN
l is the angular power spectrum of the noise n(q̂) is a well determined

quantity. The unbiased estimator for Cl obtained is

C̃
UB
l = B−2

l

(
C̃
′

l − C
N
l

)
. (8.30)

8.3.2 Non-circular Beam

In this chapter, we obtain analytic results for the bias matrix for a full sky observation
(U(q̂) = 1) with a non-circular beam that ‘does not rotate’. The phrase “non-rotating"
means that the orientation of the non-circular beam does not rotate about its axis
(the pointing direction) while the pointing direction scans the sky implying that

ρ(q̂) = 0. (8.31)

For non-rotating beam, the calculation of the bias becomes simpler, which is quite
useful for this first attempt to calculate and understand the bias matrix. The integral
in the expression for the bias in eq. (8.26) is given by∫

Y∗ln(q̂) Dl′
mm′(q̂, 0) dΩq̂ =

√
(2l + 1)π Ill′

mm′ δmn, (8.32)

where

Ill′
mm′ ≡

∫ 1

−1
dl

m0(θ) dl′
mm′(θ) d cosθ, (8.33)

and dl
mm′(θ) are Wigner-d functions related to Wigner-D functions

Dl
mm′(q̂, ρ) = e−imφ dl

mm′(θ)e−im′ρ. (8.34)
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The analytic simplicity arises from the fact that for ρ(q̂) = 0, the Wigner-D function
reduces to spherical harmonic function

Ylm(q̂) =

√
2l + 1

4π
Dl

m0(q̂, 0) . (8.35)

We have also used the orthogonality of the phases
∫ 2π

0 e−i(m−n)φdφ = 2πδmn while
deriving the above relations.

Substituting the expression for the integral eq. (8.32) into the expression for the
bias in eq. (8.26), we obtain

All′ = B2
l′

(
2l′ + 1

4

)
l(l + 1)

l′(l′ + 1)

L∑
m=−L

∣∣∣∣∣∣∣
l′∑

m′=−l′
βl′m′ Ill′

mm′

∣∣∣∣∣∣∣
2

, (8.36)

where L ≡ min{l, l′} is the smaller between l and l′.

Further analytical progress is possible for smooth beam with mild deviations
from circular symmetry through a perturbation in terms of the small beam distortion
parameters, βlm. We calculate the exact analytic expression for the leading order
effect. Assuming a beam with reflection symmetry where βlm are zero for odd m,
the leading order effect comes at the second order, namely, βl2βl0 (see eq. (8.17)).
Neglecting, βlm for |m| > 2, we obtain

All′ = B2
l′

(
2l′ + 1

4

)
l(l + 1)

l′(l′ + 1)

L∑
m=−L

[
Ill′
m0 + βl′2(Ill′

m2 + Ill′
m−2)

]2
. (8.37)

Next we obtain analytical expression for the two integrals, Ill′
m0 and Ill′

m2 + Ill′
m−2. The

first one can be found in standard texts (e.g. [100]) given as

Ill′
m0 ≡

∫ 1

−1
dl

m0(θ)dl′
m0(θ)d cosθ =

2
2l + 1

δll′ . (8.38)

For m = 0, writing dl
00(θ) and dl

02(θ) in terms of Pl(cosθ) and its first derivative
P′l (cosθ) we have shown in Appendix-E that for odd values of l + l′, Ill′

02 + Ill′
0−2 = 0.

For even values of l + l′,
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Ill′
02 + Ill′

0−2 =



8/κ if l < l′

0 if l > l′,

−(4l/κ)(l − 1)/(2l + 1) if l = l′

(8.39)

where κ ≡
√

(l′ − 1)l′(l′ + 1)(l′ + 2).

To evaluate Ill′
m2 + Ill′

m−2 for non-zero m we expand dl′
m±2(θ) in terms of dl′′

m0(θ)
using a recurrence relation of the Wigner-D functions (where l′′ takes integer values
between l′ − 2 to l′ + 2) . The details are given in Appendix-E. We obtain that
Ill′
m2 + Ill′

m−2 = 0 for odd l + l′. For even values of l + l′, if L ≡ min{l, l′} ≥ |m| > 0,

Ill′
m2 + Ill′

m−2 =



(4/κ)(|m| + 1)
√

(l+|m|)!(l′−|m|)!
(l−|m|)!(l′+|m|)! if l < l′

(4/κ)(|m| − 1)
√

(l−|m|)!(l′+|m|)!
(l+|m|)!(l′−|m|)! if l > l′

(4/κ)[|m| − (l2 + l + 1)/(2l + 1)] if l = l′.

(8.40)

The bias matrix including the leading order beam distortion (for non-rotating,
reflection symmetric beams) can be summarized as
• For odd values of l + l′,

All′ = 0. (8.41)

• For even values of l + l′,

All′ =



(Bl′βl′2)2
(

8 l(l+1)(2l′+1)
l′2(l′+1)2(l′−1)(l′+2)

) [
2 +

∑l
m=1

(l+m)!(l′−m)!
(l−m)!(l′+m)! (m + 1)2

]
if l < l′

(Bl′βl′2)2
(

8 l(l+1)(2l′+1)
l′2(l′+1)2(l′−1)(l′+2)

) [∑l′
m=1

(l−m)!(l′+m)!
(l+m)!(l′−m)! (m − 1)2

]
if l > l′

B2
l

2l+1

{1 − 2βl2

√
l(l−1)

(l+1)(l+2)

}2

+ 2
∑l

m=1

{
1 − 2βl2

(l2+l+1)−(2l+1)m
√

(l−1)l(l+1)(l+2)

}2
if l = l′.

(8.42)

The non-zero off-diagonal terms in the bias matrix All′ imply that the non-
circular beam mixes the contribution of different multipoles from the actual power
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spectrum in the observed power spectrum. Off-diagonal elements in All′ that
arise from non-uniform/incomplete sky coverage have been studied earlier and
are routinely accounted for in CMB experiments. Non-circular beam is yet another
source of off-diagonal terms in the bias matrix and should be similarly taken into
account. In general, CMB experiments have both non-circular beams and non-
uniform/incomplete sky coverage that could lead to interesting features in All′ .

Although the analytical result presented in this chapter is limited to mildly
non-circular and non-rotating beam functions, it does bring to light certain generic
features of the effect of non-circular beam functions. To be specific, we compute
the elements All′ for non-rotating elliptic Gaussian beams (see appendix D). The

non-circularity of these beams is characterized by their eccentricity e =
√

1 − σ2
2/σ

2
1,

where σ1 and σ2 are the 1σ beam-widths along major and minor axes of the beam (see
table 8.1). Many experiments have characterized their beams in terms of an elliptic
Gaussian fit (e.g., [172, 173, 169, 171]). A convenient advantage of elliptical beams
is that the beam transform blm (and obviously, the beam distortion parameters, βlm)
can be expressed in a closed analytical form. The results expressed in terms of lσ̄
are broadly independent of the average beam-size [117].

Fig. 8.3 shows a density plot of the normalized bias matrix All′/(BlBl′) for a
non-rotating elliptical beam. The plot illustrates the importance of off-diagonal
terms that arise due to the non-circular beam relative to the diagonal terms. The
absence of coupling between multipoles separated by odd integers is evident. Also
evident is the fall off as one moves away from the diagonal. The left panel of Fig. 8.4
shows that the off-diagonal elements of All′ are important at lσ̄ ∼ 1. The results
are qualitatively independent of the average beam size σ̄. The right panel Fig. 8.4
shows the strong dependence of the dominant off-diagonal element Al l+2 on the
eccentricity of the beam.

The analytical results and numerical computations using eq. (8.25) were com-
pared. The numerical and analytical results match perfectly as shown in Figure 8.4.
Numerical computation involves the pixelized sky and the algorithm must ensure
that this does not introduce spurious effects. We verify that All′ has numerically neg-
ligible off-diagonal elements when the beam is circularly symmetric. The numerical
computation for non-circular beam are verified to be robust to the pixelization of
the sky.

Next we illustrate the effect of beam-rotation and non-uniform sky coverage
for a hypothetical experiment where All′ have been computed numerically5. The left

5The effect of beam rotation and non-uniform sky coverage has been studied analytically in the
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Figure 8.3: Bias matrix without beam rotation. The log of normalized bias matrix
All′/(BlBl′) is plotted for an elliptical beam of eccentricity e = 0.6 and mean beam-
width σ̄ = 0.074. The normalization is carried out so that the effect of non-circularity
on the bias matrix can be easily compared to that for circular beams. Beam rotation
and cut-sky effects have not been considered in this figure. One notices that the
off-diagonal elements of the bias matrix take significant values for lσ̄ ≥ 1.
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panel of Fig. 8.5 shows (in log scale) the normalized bias matrix arising from a 2.5◦

circular beam including a non trivial U(q̂) in the form of a smoothed version of
the galactic mask Kp2 of WMAP [155, 101]. The right panel of the figure shows
the extra effect that a rotating non-circular beam would introduce. We assume a
simple ‘toy’ beam rotation along an equal declination scan strategy, where the beam
continuously ‘rotates’ by 2π for every complete pass at a given declination which
implies the simple form

ρ(q̂) ≡ ρ(θ, φ) = φ . (8.43)

The elements here have been computed numerically using eq. (8.25) retaining the
leading order terms in the perturbation expansion of Wl in eq. (8.17). The off-
diagonal effects at low l are dominated by the cut sky effect. The off-diagonal
element lσ̄ & 1 arise solely due to non-circular beam. The numerical computation
illustrates the potentially large corrections that can arise due to non-circular beam
that ‘rotate’ on the sky. The numerical computations in this work pave the way for
introducing realistic scan-pattern, beam-rotation and non-uniform sky coverage in
a future extension to our work.
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Figure 8.4: Characteristics of the bias matrix elements (no beam rotation). Ele-
ments of the bias matrix All′ are plotted in this figure as a function of multipole (l).
The bias matrix relates the observed Cls to their true values. When non-circular
beams are used in CMB experiments, the bias matrix can be shown to be non-
diagonal, thus implying mixing of power between multipoles. On the left panel,
we plot All′ for l′ − l = 2, 4, 6. It is evident that the effect decreases as we move
away from the diagonal and that it kicks in at lσ̄ ∼ 1, for a beam of eccentricity
e = 0.8. For the figure in the right panel, we plot Al l+2 for several beams of the
same size but different eccentricities. Clearly, the effect also depends strongly on
the non-circularity of the beam.

next chapter
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Figure 8.5: Effect of beam rotation on bias matrix The normalized bias matrix
elements (on log scale, log[All′/(BlBl′)]) of a hypothetical experiment with a scan
pattern (eq. 8.43) corresponding to a rotating, non circular beam (e = 0.6) and non
uniform sky coverage are studied. The left panel shows the effect of non-uniform
coverage alone (circular beam approximation). The right panel isolates the addi-
tional effect that arises due to the non-circularity of the beam and its rotation. We
note that significant off-diagonal elements arise at lσ̄ ≥ 1 from the non-circular beam
comparable to that from the non-uniform coverage. The non-uniform coverage cor-
responds to a smoothed WMAP Kp2 galactic mask (smoothed from resolution of
Nside = 512 to 64). We use a sufficiently high resolution beam with σ̄ = 0.018
(θ1/2 = 2.5◦) to ensure that the effects due to the galactic mask and the non-circular
beam appear in distinct regions of the multipole space.

We summarize the following features of the bias matrix :

1. There is no coupling between 〈C̃l〉 and Cl′ for odd values of l + l′,

2. Coupling decreases as |l − l′| increases,

3. Coupling increases with eccentricity for fixed beam size, and

4. Size of the beam determines the multipole l value for which coupling will be
maximum (lσ̄ ∼ 1).

Figure 8.6 roughly indicates the level and nature of the effect of neglecting the
non-circularity of the beam on CMB power estimation (for the conservative case
of non-rotating beams). Consider the power spectrum C̃l =

∑
l′ All′Cl′ measured

using a non-circular, elliptical Gaussian beam of a given eccentricity, e and average
beam-width, σ̄. We compare the power spectrum obtained by deconvolving C̃l with
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a circular, Gaussian beam of the beam-width, σ̄ with the true Cl. The lower panel
shows that the error can be significant for multipole values beyond the inverse
beam-width even for modestly non-circular comparable to the WMAP beam maps
discussed in the Appendix D.

The estimation error of CMB power spectrum due to non-circular beams was
recently published by the WMAP team [96]. Full scan strategy with a simple model
for beam rotation was used in their calculations. Figure 8.7 is taken from the
WMAP third year results paper first published in the LAMBDA website [101]. The
effect of non-circular beam on CMB power spectrum from WMAP was estimated
in this paper following a method similar to ours. The fractional error in power
spectrum estimation error at different multipoles have been plotted in this figure.
As expected, the effect is quite significant at high multipoles. The errors predicted
by us for WMAP-like beams in [118] has also been overlaid on the plot. The results
are quite consistent.

Once we have calculated the bias matrix, we can construct the unbiased esti-
mator for the angular power spectrum. Invoking steps similar to the case of circular
beams to account for the instrumental noise, we obtain

〈C̃
′

l〉 = 〈C̃l〉 + C
N
l =

∑
l′

All′Cl′ + C
N
l . (8.44)

The unbiased estimator for the angular power spectrum is

C̃
UB
l =

∑
l′

A−1
ll′

(
C̃
′

l′ − C
N
l′
)
. (8.45)

8.4 Error-Covariance Matrix

The statistical error-covariance of the estimated angular power spectrum is defined
as

Cov(C̃l, C̃l′) ≡ 〈(C̃l − 〈C̃l〉)(C̃l′ − 〈C̃l′〉)〉. (8.46)

In an idealized, noise free, CMB experiment with infinite angular resolution uni-
formly covering the full sky

C̃l =
l(l + 1)

8π2

∫
dΩq̂1

∫
dΩq̂2∆T(q̂1)∆T(q̂2)Pl(q̂1 · q̂2). (8.47)
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Figure 8.6: Cl estimation error due to non-circular beams. The effect of non-circular
beam is studied for CMB power spectrum estimation by a CMB experiment with a
WMAP-like non-circular beam. For illustration, we consider the best fit (Power law)
model to be the (fiducial) trueCl of the Universe shown as the solid line in the upper
panel. Let C̃l be the power spectrum measured by using a elliptical, Gaussian beam
with eccentricity, e = 0.6, and σ̄ = 0.0016. The dashed line shows the Cl that would
be inferred by deconvolving C̃l with a circular beam assumption with beam-width,
σ̄. The lower panel plots the relative error in the power spectrum recovered with a
circular beam assumption for a measurements made with a non-circular beam with
e = 0.4 to 0.8.
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Figure 8.7: Cl estimation error published in the WMAP 3yr results [96]. The plot
shows the fractional error in power spectrum estimation at different multipoles due
to non-circular beams. Clearly, the error is highly significant at higher multipoles.
Our prediction of estimation errors for WMAP-like beams have also been overlaid
on this plot for two different values of eccentricity. The results are in very good
agreement [Figure 8.6]

Using the property of Gaussian random fields that,

〈∆T(q̂1)∆T(q̂2)∆T(q̂′1)∆T(q̂′2)〉 = 〈∆T(q̂1)∆T(q̂2)〉〈∆T(q̂′1)∆T(q̂′2)〉 +

〈∆T(q̂1)∆T(q̂′1)〉〈∆T(q̂2)∆T(q̂′2)〉 +

〈∆T(q̂1)∆T(q̂′2)〉〈∆T(q̂′1)∆T(q̂2)〉

(8.48)

and eq. (8.6), we recover the well known result for full sky CMB maps

Cov(C̃l, C̃l′) =
2

2l + 1
〈Cl〉

2 δll′ =
2

2l + 1
C

2
l δll′ , (8.49)

corresponding to Cl being a sum of the squares of 2l+ 1 Gaussian variates, i.e. χ2
2l+1

distribution. The measured power spectrum at each multipole is independent (for
full sky CMB maps). The variance of the power spectrum estimator is not zero
even in the ideal case. Consequently, the measurement angular power spectrum
from the one available CMB sky map is inherently limited by an inevitable error the
Cosmic Variance 6.

6This is a direct consequence of the sphere being compact and, consequently, an inevitable, rigid
lower bound on the uncertainty in the measurement of angular power spectrum at a given multipole
l. Otherwise, the effect is the similar to the well-known sample variance of a finite data-stream
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8.4.1 Circular Beam

For measurements made with a circular beam, the temperature is a linear trans-
form of the actual temperature (see eq. (8.7)). So, it also represents a Gaussian
random field. Hence, eq. (8.48) remains valid even for observed temperature fluc-
tuations. Moreover, the window function takes a simple form given in eq. (8.11).
Consequently, eq. (8.6) gets modified to

〈∆̃T(q̂1)∆̃T(q̂2)〉 =
∞∑

l=0

2l + 1
2l(l + 1)

B2
l Cl Pl(q̂1 · q̂2). (8.50)

The covariance matrix

Cov(C̃l, C̃l′) =
2

2l + 1
〈C̃l〉

2δll′ =
2

2l + 1
(B2

l Cl)2 δll′ , (8.51)

remains diagonal for circular beams, i.e., the measured power spectrum at each
multipole is independent of the power measured in the other multipoles. The
second equality follows from eq. (8.27).

Including the instrumental noise spectrum in the measured power spectrum
C

N
l , we obtain

Cov(C̃′l , C̃
′

l′) =
2δll′

2l + 1

(
〈C̃l〉 + C

N
l

)2
, (8.52)

where we assume that the noise spectrum CN
l is known much better and, in par-

ticular, does not suffer from cosmic variance. For the unbiased estimator given by
eq. (8.30), the well known covariance matrix

Cov(C̃UB
l , C̃UB

l′ ) = B−4
l Cov(C̃′l , C̃

′

l′) =
2δll′

2l + 1

(
Cl + B−2

l C
N
l

)2
(8.53)

is readily obtained from the linear transformation between C′l and CUB
l [175, 176].

8.4.2 Non-circular Beam

As expected, the covariance for the non-circular beam is considerably more compli-
cated. We start with the general form of the two point correlation function. Using
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eq. (8.23), the general form of the covariance matrix is

Cov(C̃l, C̃l′) =
ll′(l + 1)(l′ + 1)

(4π)4

∞∑
l1,l2=0

(2l1 + 1)(2l2 + 1)
l1l2(l1 + 1)(l2 + 1)

Cl1Cl2 ×∫
d4ΩU(q̂1)U(q̂2)U(q̂′1)U(q̂′2) Pl(q̂1 · q̂2)Pl′(q̂′1 · q̂

′

2) ×

[Wl1(q̂1, q̂′1)Wl2(q̂2, q̂′2) + Wl1(q̂1, q̂′2)Wl2(q̂2, q̂′1)], (8.54)

where for brevity we use d4Ω ≡ dΩq̂1dΩq̂2dΩq̂′1
dΩq̂′2

.

Noting the interchangeability of the dummy variables q̂′1 and q̂′2, we combine
the two terms in the above equation to obtain

Cov(C̃l, C̃l′) = 2
[
ll′(l + 1)(l′ + 1)

(4π)4

] ∞∑
l1,l2=0

(2l1 + 1)(2l2 + 1)
l1l2(l1 + 1)(l2 + 1)

Cl1Cl2 × (8.55)∫
d4ΩU(q̂1)U(q̂2)U(q̂′1)U(q̂′2)Pl(q̂1 · q̂2)Pl′(q̂′1 · q̂

′

2)Wl1(q̂1, q̂′1)Wl2(q̂2, q̂′2).

We expand the Legendre Polynomials in terms of spherical harmonics (eq. (8.5))
and use the expression for the window function in eq. (8.15) to obtain

Cov(C̃l, C̃l′) =
ll′(l + 1)(l′ + 1)

8π2(2l + 1)(2l′ + 1)

∞∑
l1,l2=0

(2l1 + 1)(2l2 + 1)
l1l2(l1 + 1)(l2 + 1)

×

Cl1Cl2B2
l1

B2
l2

l∑
m=−l

l′∑
m′=−l′

l1∑
m1=−l1

l2∑
m2=−l2

l1∑
m′1,m

′′

1 =−l1

βl1m′1
β∗l1m′′1

∫
dΩq̂1U(q̂1)Y∗lm(q̂1)Dl1

m1m′1
(q̂1, ρ(q̂1)) ×

∫
dΩq̂′1

U(q̂′1)Yl′m′(q̂′1)Dl1∗
m1m′′1

(q̂′1, ρ(q̂′1)) ×

l2∑
m′2,m

′′

2 =−l2

β∗l2m′2
βl2m′′2

∫
dΩq̂2U(q̂2)Ylm(q̂2)Dl2∗

m2m′2
(q̂2, ρ(q̂2)) ×

∫
dΩq̂′2

U(q̂′2)Y∗l′m′(q̂
′

2)Dl2
m2m′′2

(q̂′2, ρ(q̂′2))
]
,

(8.56)

as the general expression for error covariance for angular power spectrum for non-
circular beams. Note that even for full, uniform sky observations, U(q̂) = 1, the
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error covariance matrix is no longer diagonal.

To make further progress analytically, we restrict to the case of uniform, full
sky coverage (U(q̂) = 1) with no beam rotation (ρ(q̂) = 0). Using the integration
of eq. (8.32) and after a considerable algebra we may write the expression for
covariance as

Cov(C̃l, C̃l′) =
ll′(l + 1)(l′ + 1)

8

L∑
m=−L

(8.57)
∞∑

l1=|m|

B2
l1
Cl1

(2l1 + 1)
l1(l1 + 1)

l1∑
m′1=−l1

βl1m′1
Ill1
mm′1

l1∑
m′′1 =−l1

β∗l1m′′1
Il′l1
mm′′1


2

where L = min{l, l′} is the smaller between l and l′. The integrals Ill′
mm′ are defined

in §9.2 and the analytical expressions for m′ = 0,±2 are given. It is straightforward
to verify that the above equation correctly reproduces the expression for the error-
covariance in the circular beam case given by eq. (8.51).

For evaluation of the covariance matrix, we note that though the summation
over l1 runs from 0 to ∞, the contributions are significant only around l ∼ 1/σ̄ and
the summation can be truncated suitably. Further, for most beams we can confine
to the leading order approximation as in eq. (8.17), by neglecting all the βlm’s for
m ≥ 4. For mild deviations from circular beams, the observed power spectrum at
different multipoles are weakly correlated (∼ βl2βl′2). The error-covariance matrix
can be diagonalized to find the independent linear combinations of estimators
(eigenvectors), and the variances of theses independent estimators are given by
the corresponding eigenvalues. These eigenvalues are necessarily larger that the
cosmic variance corresponding to a circular beam.

The inclusion of instrumental noise is similar to what was done in the circular
beam case. The covariance

Cov(C̃′l , C̃
′

l′) = Cov(C̃l, C̃l′) +
2δll′

2l + 1

[
2〈C̃l〉C

N
l + (CN

l )2
]

(8.58)

clearly reproduces the result in eq. (8.51) in the limit of a circular beam. Figure 8.8
shows a density plot of the elements of the covariance matrix for a non-circular
(elliptical) beam with no rotation. In contrast to the case for incomplete (cut) sky
case, where the effects are at small l (see [131]), the non-circular beam affects the
large multipoles region (lσ̄ ≥ 1). The pseudo-Cl approach is close to optimal for
large l hence it may be more important to account for non-circular beams effects
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Figure 8.8: Covariance of Cl’s due to beam non-circularity. Log of the normal-
ized covariance matrix Cov(Cl,Cl′)/(BlBl′)2 [in the units of (µK)4] is plotted for an
elliptical beam of eccentricity e = 0.6 and mean beam-width σ̄ = 0.074. Due to the
non-circularity of the beam, the error in CMB angular power spectrum estimate
at different multipoles are no longer independent. We notice that the off-diagonal
elements of the error covariance matrix are pronounced for lσ̄ ≥ 1.
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than the cut-sky, since it is possible to use maximum likelihood estimator for small
l.

The error-covariance matrix for the unbiased estimator eq. (8.45) for non-
circular beams is given by

Cov(C̃UB
l , C̃UB

l′ ) =
∑

l1

∑
l2

A−1
ll1

A−1
l′l2

Cov(C̃′l1 , C̃
′

l2
) (8.59)

=
∑

l1

∑
l2

αll1αl′l2

(Bl1Bl2)2

[
Cov(C̃l, C̃l′) +

2δll′

2l + 1

{
2〈C̃l〉C

N
l + (CN

l )2
}]
,

where the matrix αll′ ≡ B−2
l′ A−1

ll′ , being very close to identity, demonstrates that
the beam-modified cosmic variance part of the covariance of unbiased estimator
weakly depends on Bl’s, whereas the noise part depends on them significantly.

8.5 Discussion and Conclusion

We present an analytic framework for addressing the effect of non-circular experi-
mental beam function in the estimation of the angular power spectrum Cl of CMB
anisotropy. Non-circular beam effects can be modeled into the covariance functions
in approaches related to maximum likelihood estimation [136, 137] and can also be
included in the Harmonic ring [144,145] and ring-torus estimators [146]. The latter is
promising since it reduces the computational costs from N3 to N2. However, all these
methods are computationally prohibitive for high resolution maps and, at present,
the computationally economical approach of using a pseudo-Cl estimator appears
to be a viable option for extracting the power spectrum at high multipoles [131].
The pseudo-Cl estimates have to be corrected for the systematic biases. While con-
siderable attention has been devoted to the effects of incomplete/non-uniform sky
coverage, no comprehensive or systematic approach is available for non-circular
beam. The high sensitivity, ‘full’ (large) sky observation from space (long duration
balloon) missions have alleviated the effect of incomplete sky coverage and other
systematic effects such as the one we consider here have gained more significance.
Non-uniform coverage, in particular, the galactic masks affect only CMB power
estimation at the low multipoles. Recently proposed hybrid scheme promotes a
strategy where the power spectrum at low multipoles is estimated using optimal
Maximum Likelihood methods and pseudo-Cl are used for large multipoles.

We have shown that non-circular beam is an effect that dominates at large
l comparable to the inverse beam width. For high resolution experiment, the
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optimal maximum likelihood methods which can account for non-circular beam
functions are computationally prohibitive. In implementing pseudo-Cl estimation,
the non-circular beam effect could dominate over the effects of more well studied
effect of non-uniform sky coverage. Our work provides a convenient approach for
estimating the magnitude of this effect in terms of the leading order deviations from
a circular beam. The perturbation approach is very efficient. For most CMB exper-
iments the leading few orders capture most of the effect of beam non-circularity.
The perturbation approach has allowed the development of computationally rapid
method of computing window functions [117]. Our work may similarly yield
computationally rapid methods to estimate the error due to beam non-circularity.

We have also developed a complete analytic framework that considers the
the effect of non-circular beam together with beam rotation and incomplete sky
coverage. While the perturbative analysis can predict very good estimate for the
bias, the complete analysis can be more accurate and has the potential to replace the
computationally expensive approach of bias estimation for upcoming experiments
(eg., Planck) using numerical simulation. The details has been presented in the next
chapter.

The quantitative estimates of the off-diagonal matrix elements of the bias and
error-covariance for ‘non-rotating’ beam graphically illustrate the general features
that can be gleaned from our analytic results. They show that the beam non-
circularity affects the Cl estimation on multipoles larger than the inverse beam
width. A strong dependence on the eccentricity of the beam is also seen. The
analytical results obtained in this chapter are limited to non-rotating beams and
uniform sky coverage, these assumptions will be dropped in the next chapter. We
caution against interpreting these results as a measure of the non-circular beam effects for
any real CMB experiment. Numerical results include a scan pattern that does not
belong to any known experiment. Nevertheless, our prediction of bias has been is
good agreement with the recently released WMAP 3 year results [96]. Numerical
calculations of the bias matrix for a ‘toy’ scanning strategy where the beam rotates
on the sky indicates the possibility of significant corrections. The bias due to
non-uniform sky coverage can have interesting coupling to the bias from beam
non-circularity. On the other hand, it has also been shown that effects of non-
circular beams can be diluted if the scan pattern is such that each point in the sky
is revisited by the beam with a different orientation at different time [169]. The
numerical implementation of our method can readily accommodate the case when
pixels are revisited by the beam with different orientations. Evaluating the realistic
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bias and error-covariance for a specific CMB experiment with non-circular beams
would require numerical evaluation of the general expressions for All′ in eqs. (8.26)
using real scan strategy and account for inhomogeneous noise and sky coverage.
Some of these issues have been addressed analytically in the next chapter.

It is worthwhile to note in passing that that the angular power Cl contains
all the information of Gaussian CMB anisotropy only under the assumption of
statistical isotropy. Gaussian CMB anisotropy map measured with a non-circular
beam corresponds to an underlying correlation function that violates statistical
isotropy. In this case, the extra information present may be measurable using, for
example, the bipolar power spectrum [177, 178]. Even when the beam is circular
the scanning pattern itself is expected to cause a breakdown of statistical isotropy
of the measured CMB anisotropy [167]. For a non-circular beam, this effect could
be much more pronounced and, perhaps, presents an interesting avenue of future
study.

In addition to temperature fluctuations, the CMB photons coming from dif-
ferent directions have a random, linear polarization. The polarization of CMB can
be decomposed into E part with even parity and B part with odd parity. Besides
the angular spectrum CTT

l , the CMB polarization provides three additional spectra,
CTE

l , CEE
l and CBB

l which are invariant under parity transformations. The level of
polarization of the CMB being about a tenth of the temperature fluctuation, it is only
very recently that the angular power spectrum of CMB polarization field has been
detected. The Degree Angular Scale Interferometer (DASI) has measured the CMB
polarization spectrum over limited band of angular scales in late 2002 [179]. The
WMAP mission has also detected CMB polarization [180]. The polarization maps
have also been released by WMAP with the 3 year results [98, 101]. Correcting for
the systematic effects of a non-circular beam for the polarization spectra is expected
to become important soon. Our work is based on the perturbation approach of
[117] which has been already been extended to the case of CMB polarization [171].
Extending this work to the case CMB polarization is another line of activity we plan
to undertake in the near future.

In summary, we have presented a perturbation framework to compute the
effect of non-circular beam function on the estimation of power spectrum of CMB
anisotropy. We not only present the most general expression including non-uniform
sky coverage as well as a non-circular beam that can be numerically evaluated but
also provide elegant analytic results in interesting limits. In this work, we have
skipped over the effect of non-circular beam functions on map-making step. In
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simple scanning strategies, our results may be readily applied in this context. As
CMB experiments strive to measure the angular power spectrum with increasing
accuracy and resolution, the work provides a stepping stone to address a rather
complicated systematic effect of non-circular beam functions.

The next chapter is a sequel to this chapter, where we evaluate the most general
expression for the bias, that considers the effects of beam-rotation and incomplete
sky coverage also analytically - issues which were addressed numerically in this
chapter.
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Chapter 9

Non-circular Beam Correction to
CMB Power Spectrum:
Complete Analysis Framework

In the previous chapter a perturbative analysis was presented to estimate the lead-
ing order effect of non-circular beams on the cosmic microwave background (CMB)
power spectrum. We have extended that formalism to a complete analysis frame-
work to consider the more general and practical scenarios in modern CMB ex-
periments [130]. The analysis is no more limited to the leading order correction.
Multipole moments of the beam function up to any order can be included in the
analysis - the upper limit being set by the available computing power. Also the
effect of incomplete sky coverage is automatically calculated by this new algorithm.
However, as an intermediate step we have computed the final analytic results for
“non-rotating” beams. We hope to include beam-rotation in near future. We have,
both analytically and numerically, evaluated the leading order correction to match
the results obtained with the perturbative analysis in the previous chapter as an
important check of this method. Numerical evaluations also give an estimate of
the computational requirement to use this method for the recent experiments. We
find that wise choice of apodized mask functions (to hide the corrupt pixels) can
provide significant reduction in computation cost. A possible way to construct such
masks have also been explored. We conclude that this analysis has the potential
to replace the computationally costly simulations currently used to determine the
non-circular beam effects in the upcoming experiments like Planck.

The organization of this chapter is as follows. The full analytical details of
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the new method will be presented in section 9.1. Here we also reproduce the
standard analytical results in different limits, including the result of the perturbative
analysis obtained in the previous chapter. The detailed calculations are given
in the appendix F. An efficient algorithm for numerical implementation is given
in section 9.2, which includes the possibility and demonstration of constructing
apodized masks to reduce the computation cost. The detailed computational costs
is also estimated in this section. Since the work presented in this chapter is a
generalization to the perturbative analysis and essentially we are reproducing the
results that have already appeared in the previous chapter, detailed motivation
and interpretation of the results will not be repeated in this chapter - refer to the
introduction and discussion sections of chapter 8 for these details. The importance
and applicability of the new results will be discussed in the concluding section of
this chapter.

9.1 Analytical Framework

The full likelihood analysis of beam non-circularity is computationally prohibitive,
we use the sub-optimal pseudo-Cl analysis. The basic formula for bias of the
pseudo-Cl estimator including the effects of the beam function and incomplete sky
coverage was stated in section of the previous chapter, where the leading order
correction with full sky coverage was explicitly computed. In this chapter, we
derive general expression for bias including the effect of incomplete sky coverage.
We start with the summary of the basic formulae provided in the previous chapters
to make this chapter self-contained.

9.1.1 Bias in the pseudo-Cl estimator

If the cosmic microwave background (CMB) temperature anisotropy field ∆T(q̂)
over all the sky directions q̂ ≡ (θ, φ) is Gaussian and statistically isotropic, the
angular power spectrum,

Cl :=
∫

S2
dΩq̂1

∫
S2

dΩq̂2〈∆T(q̂1)∆T(q̂2)〉Pl(q̂1 · q̂2) (9.1)
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provides a complete description of CMB. The angular power spectrum is related to
the spherical harmonic transform of the temperature anisotropy sky,

alm :=
∫

S2
dΩq̂ ∆T(q̂) Y∗lm(q̂), (9.2)

through the relation

Cl = 〈|alm|
2
〉 =

1
2l + 1

l∑
m=−l

〈|alm|
2
〉. (9.3)

Following the above formulae, the pseudo-Cl estimator is defined as

C̃l :=
1

2l + 1

l∑
m=−l

∣∣∣̃alm

∣∣∣2 , (9.4)

which can be rewritten as

C̃l :=
∫

S2
dΩq̂1

∫
S2

dΩq̂2∆̃T(q̂1) ∆̃T(q̂2) Pl(q̂1 · q̂2), (9.5)

where ∆̃T(q̂) is temperature observed from direction q̂ and Pl(x) is the Legendre
polynomial of degree l. The observed temperature field is convolved with a beam
(Point Spread) function B(q̂, q̂′), contaminated by noise n(q̂) and partially masked
by a weight function U(q̂) to hide pixels corrupt by foreground (e.g., galactic and
point) sources:

∆̃T(q̂) = U(q̂)
[∫

S2
dΩq̂′ B(q̂, q̂′)∆T(q̂′) + n(q̂)

]
. (9.6)

In the circular beam and full-sky assumption the pseudo-Cl estimator is trivially
biased. But, in general (which is a more practical consideration), the pseudo-Cl is
nontrivially biased:

〈C̃l〉 =

∞∑
l′=0

All′ Cl′ + CN, (9.7)

where All′ is the bias matrix for non-circular beams and incomplete sky coverage,
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given by

All′ :=
2l′ + 1

4π

∫
S2

dΩq̂1

∫
S2

dΩq̂2 U(q̂1) U(q̂2) Pl(q̂1 · q̂2)

×

∫
S2

dΩq̂′1

∫
S2

dΩq̂′2
B(q̂1, q̂′1) B(q̂2, q̂′2) Pl′(q̂′1 · q̂

′

2). (9.8)

If the pixel to pixel noise is uncorrelated, 〈n(q̂1) n(q̂2)〉 = δq̂1q̂2 σ
2
N, where σ2

N is the
variance of noise at each pixel, the noise term becomes

CN :=
∫

S2
dΩq̂1

∫
S2

dΩq̂2 U(q̂1) U(q̂2) 〈n(q̂1) n(q̂2)〉Pl(q̂1 · q̂2)

=

∫
S2

dΩq̂ U2(q̂) σ2
N(q̂). (9.9)

The pixel noise variance σ2
N can usually be measured with very high accuracy for

CMB experiments, hence the noise term CN is treated as a constant in our analysis.

9.1.2 Evaluation of the Bias Matrix

Evaluation of the bias matrix would be necessary to construct the unbiased pseudo-
Cl estimator

C̃UB
l =

∑
l′

[A−1]ll′
(
C̃l′ − CN

)
(9.10)

The integral expression [eqn (9.8)] for the bias matrix is computationally costly to
evaluate to the desired accuracy. Unlike integration, accuracy of summations are
limited by machine precision. So our aim would be to express the bias matrix as a
summation. But, we shall see, that the summations often contain infinite number
of terms and, hence, they have to be truncated for numerical computation. This
again leads to numerical inaccuracy. However, the situation improves if we use
expansions in terms of angular multipoles. Angular multipole moments give a
much better geometrical picture of the system, so it becomes quite easy to identify
and discard terms that have negligible contributions.

If the beam is circular, that is symmetric about the pointing direction [B(q̂, q̂′) =
B(q̂ · q̂′)], we may expand the beam function in terms of Legendre transforms Bl:

B(q̂ · q̂′) =
∞∑

l=0

2l + 1
4π

Bl P(q̂ · q̂′). (9.11)
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The full analysis for circular beams with incomplete sky coverage has been carried
out in [167]. We shall reproduce these results in the circular beam limit as a check
for our analysis. In general, the beam functions are expanded in terms of spherical
harmonic moments blm(q̂):

B(q̂, q̂′) =
∑
lm

blm(q̂) Ylm(q̂′). (9.12)

Computation of the beam transforms blm(q̂) for each direction q̂ would be com-
putationally prohibitive. Fortunately, the experimental beams do not change their
shapes over the sky, though they can change the orientation with respect to the
pointing direction as illustrated in figure 8.1. This fact was exploited in [117] to
“rotate” the beam transforms evaluated at the ẑ axis using Wigner-D functions
Dl

mm′(q̂, ρ(q̂)):

blm(q̂) =
l∑

m′=−l

Dl
mm′(q̂, ρ(q̂)) blm′(ẑ). (9.13)

This relation made it possible to implement the analysis presented here using the
available computing resources. From this point we shall drop the argument ẑ from
beam transform, i.e. blm ≡ blm(ẑ).

Since the beams in most of the CMB experiments are mildly noncircular and
circular beam approximation was used for the their data analysis, in order to ex-
press the estimation error in a convenient form, we use a perturbative series to
describe the deviation of the beam shape from the assumed circularity. The series
is parameterized by the “beam distortion parameters” (BDP) βlm := blm/bl0. The
“circularized” beam B(ẑ · q̂) is usually defined by azimuthally averaging the beam
about the pointing direction:

B(ẑ · q̂) =
1

2π

∫ 2π

0
dφB(ẑ, q̂). (9.14)

The Legendre transform of the circularized beam

Bl :=
∫ 1

−1
d(ẑ · q̂) Pl(ẑ · q̂)B(ẑ · q̂) (9.15)

is related to the spherical harmonic transform of the beam by the relation

Bl =

√
4π

2l + 1
bl0. (9.16)
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Which also means that the beam distortion parameters are related to the circularized
beam transforms by the following equation:

βlm =

√
4π

2l + 1
blm

Bl
. (9.17)

Similar to the beam function, we also expand the mask function in terms of its
spherical harmonic transforms Ulm:

U(q̂) =
∞∑

l=0

l∑
m=−l

Ulm Ylm(q̂). (9.18)

It may be noted that roughly the beam multipoles are expected to affect the
low angular scales (higher multipoles) [167] and the multipoles of mask are more
significant at large angular scales (lower multipoles) [118]. However, if smaller
structures are present in the mask, the higher multipole moments of the mask may
get coupled with those of the beam and the overall effect of non-circular beams can
significantly increase at high multipoles.

Putting everything together, we can now express the bias matrix as

All′ =
B2

l′

4π
(2l′ + 1)
(2l + 1)

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
l′∑

m′=−l′
βl′m′

∞∑
l′′=0

l′′∑
m′′=−l′′

Ul′′m′′ Jll′′l′
nm′′mm′

∣∣∣∣∣∣∣
2

, (9.19)

where the integral over two sphere S2

Jll′′l′
nm′′mm′ :=

∫
S2

dΩq̂ Yln(q̂) Yl′′m′′(q̂) Dl′
mm′(q̂, ρ(q̂)), (9.20)

has to be calculated to get the general expression for the bias matrix. The details of
the mathematics have been provided in appendix F.

Evaluation of the above integral is quite non-trivial. To simplify calculations,
the final analytical results derived in this thesis has been restricted to “non-rotating”
beams [ρ(q̂) = 0]. However, this is an intermediate step and the extension of this
method to include beam rotation should not be far off. We hope to include beam-
rotation in the final analytical result in near future.

Two approaches have been taken in order to derive the above integral. Because
of the complications inherent to the integral, we reach different forms (identical
results, of course) of the final result [see appendix F for details].
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First, using sinusoidal expansion of the Wigner-D functions (which is motivated
from [100], but the we corrected the final expression given in that reference)

dl
mm′(θ) = im+m′

l∑
M=−l

[
(−1)M dl

mM

(
π
2

)
eiMθ dl

Mm′

(
π
2

)]
(9.21)

we get the follwoing expression for the bias matrix:

All′ = B2
l

(2l′ + 1)
16π

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
∞∑

l′′=0

√

2l′′ + 1 Ul′′(m−n) × (9.22)

l′′∑
M′′=−l′′

dl′′
(m−n)M′′

(
π
2

)
dl′′

M′′0

(
π
2

) l∑
M=−l

dl
nM

(
π
2

)
dl

M0

(
π
2

)
×

l′∑
M′=−l′

dl′
mM′

(
π
2

) l′∑
m′=−l′

βl′m′ dl′
M′m′

(
π
2

)
f (m′; M +M′ +M′′)

∣∣∣∣∣∣∣
2

,

where the function f (m′; N) in the above expression is defined as

f (m′; N) := <

[
im
′

(−1)N
∫ π

0
sinθdθ eiNθ

]
(9.23)

=


(−1)(m′±1)/2 π/2 if m′ = odd and N = ±1

(−1)m′/2 2/(1 −N2) if both m′,N = 0 or even
0 otherwise.

Alternatively, in addition to the sinusoidal expansion of wigner-D [eqn (9.21)],
using the Clebsh Gordon Series [100]

Dl1
m1n1

(q̂, ρ) Dl2
m2n2

(q̂, ρ) =
l1+l2∑

l=|l1−l2|

Cl(m1+m2)
l1m1l2m2

Dl
(m1+m2)(n1+n2)(q̂, ρ) Cl(n1+n2)

l1n1l2n2
, (9.24)

where Clm
l1m1l2m2

are the Clebsh-Gordon coefficients, we get the following expression
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for the bias matrix:

All′ = B2
l

(2l′ + 1)
16π

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
∞∑

l′′=0

√

2l′′ + 1 Ul′′(m−n)

l+l′′∑
L=|l−l′′|

CL0
l0l′′0 CLm

lnl′′(m−n)

×

L+l′∑
L′=|L−l′|

CL′0
L−ml′m

L′∑
N=−L′

dL′
0N

(
π
2

) l′∑
m′=−l′

βl′m′ CL′m′
L0l′m′ dL′

Nm′

(
π
2

)
f (m′; N)

∣∣∣∣∣∣∣
2

.

(9.25)

9.1.3 Checking different limits

The special cases of circular beam and complete sky coverage limits are readily
recovered from our general expressions.

First, we consider the simplest case of complete sky coverage Ulm =
√

4πδl0

with circular beam limit βlm = δm0. We show in the appendix F section F.5 that we
get back the well known result

All′ = B2
l δll′ .

Hivon et al. [167] formulated MASTER (Monte Carlo Apodized Spherical Trans-
form Estimator) method for the estimation of CMB angular power spectrum from
“cut” (incomplete) sky coverage for circular beams. Substituting the circular beam
limit [βlm = δm0] in the expression for bias matrix we recover the MASTER circular
beam result in appendix F section F.6:

All′ = B2
l

2l′ + 1
4π

l+l′∑
l′′=|l−l′|

(2l′′ + 1)

 l l′ l′′

0 0 0

2

Ul′′ , (9.26)

whereUl′′ :=
∑l′′

m′′=−l′′ |Ul′′m′′ |
2/(2l′′ + 1).

Finally, in appendix F section F.7, we recover the general formula for full sky
coverage with non-circular beams presented in [118]. We substitute Ulm =

√
4πδl0

in the expression for the bias matrix and get back1 eqn (38) of [118]

All′ = B2
l

(2l′ + 1)
4

min(l,l′)∑
m=−min(l,l′)

∣∣∣∣∣∣∣
l′∑

m′=−l′
βl′m′

∫ 1

−1
d cosθ dl

m0(θ) dl′
mm′(θ)

∣∣∣∣∣∣∣
2

. (9.27)

1Note that due to a somewhat different definition of bias matrix in [118], for Cl := [l(l+ 1)/(8π2)]Cl,
the results differ by a factor of [l′(l′ + 1)]/[l(l + 1)].
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Unfortunately, because of the rather complicated form in the final expression for
leading order correction to bias matrix presented in eqn (43) of [118], it is not possible
to explicitly compare the results term by term.

9.2 Implementation

An important motivation for deriving the analytic results is the computationally
prohibitive nature of the hierarchy of four integrals over the 2-spheres in the expres-
sion for the bias matrix. However, even the computation of the algebraic expression
for the bias matrix is computationally challenging. A detailed numerical implemen-
tation has been proposed in this section.

The final analytic form of the bias matrix contains infinite summations. These
summations have to be truncated using reasonable physical insights. Let us denote
the l,m cut-offs for the mask and beam by lmask,mmask and lbeam,mbeam respectively.
The choice of the numerical values for these cut-offs will be provided in the numer-
ical results section.

Calculation of the final expression directly, using the analytic expression given
by eqn (9.22), is computationally challenging. Three major innovations have been
introduced in order to numerically evaluate the bias matrix for beams of reasonable
size. Moreover, we also suggest the use of “apodized” masks in order to reduce
computational cost. The details are given below:

1. We used a smart implementation of the hierarchical summations to success-
fully reduce the computation cost by a few orders of magnitude. To calculate
three coupled loops of the form

S =
N∑

i=1

N∑
j=1

N∑
k=1

f (i + j + k), (9.28)

apparently N3 operations are necessary. However, if we calculate the summa-
tion in the following order:

V(m) :=
N∑

k=1

f (m + k); m = 1, 2, . . . , 2N (9.29a)

S =

N∑
i=1

N∑
j=1

V(i + j) (9.29b)
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we effectively require just 2N2 + N2 = 3N2 operations. The computational
gain is N/3. For N = 900, this factor is 300. This example was for a very
simple case where all the summations have the same limits, but clearly this
can be extended to the case of summations with unequal limits and match our
analysis [See appendix G for details].

In our analysis the summations within the modulus symbols in eqn (9.22)
(that is for each pair of m,n) are computed in three stages:

• Step I:

V1(N) =
l′∑

M′=−l′
dl′

mM′

(
π
2

) mbeam∑
m′=−mbeam

βl′m′ dl′
M′m′

(
π
2

)
f (m′; M′ +N) (9.30a)

N runs from −(l +mmask) to +(l +mmask)

• Step II

V2(M′′) =
l∑

M=−l

dl
nM

(
π
2

)
dl

M0

(
π
2

)
V1(M +M′′) (9.30b)

• Step III

V3 =

lmask∑
l′′=0

√

2l′′ + 1 Ul′′(m−n) ×

mmask∑
M′′=−mmask

dl′′
(m−n)M′′

(
π
2

)
dl′′

M′′0

(
π
2

)
V2(M′′) (9.30c)

For lbeam = lmax the above algorithm reduces the computation cost from ∼
(8/3)(2mmask + 1)(2mbeam + 1)l5maxl2mask to ∼ (4/3)(2mmask + 1)(2mbeam + 1)l5max,
providing a speed-up factor of ∼ 2l2mask. It is important to note that, small
values of mbeam lead to computational speed up.

Mildly non-circular beams, where the BDP βlm at each l falls off rapidly with
m, allows us to neglect βlm for m > mbeam. For most real beams, mbeam ∼ 4 is
a sufficiently good approximation [117] and this cuts off the summation over
BDP in the bias matrix All′ .

Soft, azimuthally apodized, masks where the coefficients Ulm are small beyond
m > mmask. Moreover, it is useful to smooth the mask in l , such the Ulm die
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off rapidly for l > lmask too. More details on apodized mask will be provided
below.

2. The Wigner-d functions with argument π/2 occur too frequently in the above
evaluation. So one possibility to reduce computation cost is to pre-compute
all the Wigner-d coefficients dl

mn(π/2) at once. But for l ∼ 1000 this scheme is
limited by disk storage and/or program Input/Output (I/O).

However, we may observe that, in each step of computation described in
eqn (9.30) only one value of l occurs in the d symbols. Hence we use an
efficient recursive routine presented in [181] that generates all the dl

mn(π/2) at
once for a given value of l. This allows us to compute the Wigner-d symbols
efficiently and use them as constant co-efficents at each step without any
significant I/O limited operations.

3. We know that the bias matrix is not far off from diagonal, because the beams
are mildly non-circular. So we need not compute all the elements of the bias
matrix. Rather, a diagonal band (could be of triangular shape) of average
“thickness” ∆l can be used to calculate the Cl estimation error with a fairly
high accuracy. This can give an additional speed-up factor of ∼ l/∆l.

4. As pointed out above, the computational cost is proportional to mmask. Since
the mask function is within our control, judicious choice of masks with low
mmask would reduce the computation cost. We suggest a method to construct
such a mask function by smoothing over the azimuthal axis2.

We first find the spherical harmonic transforms Ulm of the “essential mask”
(e.g., the WMAP Kp2 mask) needed to hide the foreground contaminated
pixels. We smooth it using the transformation formula

U′lm = exp(−m ∗m/[αm2
mask]) ∗Ulm, (9.31)

and reconstruct the new mask from the above spherical harmonic transforms
U′lm. Finally, in order to make sure that the contaminated points are completely
blocked from the analysis, we multiply the recovered mask with the essential
mask pixel by pixel. The effect of this smoothing is illustrated using figure 9.1.
The left panel of figure 9.1 shows the original WMAP Kp2 mask (without the
point sources) and the right panel shows the azimuthally smoothed masks.

2Recently, similar apodized masks have also been recommended in the context of CMB polarization
maps [182].



170
Chapter 9. Non-circular Beam Correction to CMB Power Spectrum:

Complete Analysis Framework

Figure 9.1: The original Kp2 mask.

The effectiveness of the smoothed mask can be readily seen by comparing the
spherical harmonic transforms of the above two masks as shown in figure 9.2.
The left panel shows the (real part of) the true WMAP Kp2 mask (left panel of
figure 9.1) and the right panel shows the spherical harmonic transforms of the
azimuthally smoothed mask (right panel of figure 9.1). Clearly, the spherical
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Figure 9.2: Comparison of mask transforms. The mask transforms for the regular
WMAP Kp2 mask (left) and the azimuthally smoothed apodized mask (right) have
been compared in this figure. Clearly the apodized mask has suppressed high m
content, which allows an early cut off in the mask summation, leading to reduction
in computation cost.

harmonic transforms of the azimuthally smoothed mask falls off by an order
of magnitude after m ∼ 20 opening up a scope for huge computational gain,
which is not accessible with the original WMAP Kp2 mask.
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Apart from the above major steps we also obtained several speed-up factors
utilizing the symmetries with respect to the indices.

The above scheme was numerically implemented to reproduce leading order
correction to the pseudo-Cl estimator presented in section . The results were con-
sistent within numerical errors.

9.3 Discussions and Conclusion

The effect of non-circular beams has become progressively important as CMB ex-
periments strive to attain higher resolution. Incorporating the non-circularity of
experimental beams in the Maximum Likelihood analysis is computationally pro-
hibitive when the number of pixels is large (say > 50000). We present a complete
analytic framework to account for the effect of non-circular beams on the pseudo-Cl

estimator extending to the case of incomplete sky coverage. The analytical details
was presented in this section. The computation of the analytical expression is also
nontrivial. Several smart innovations have been introduced in the numerical eval-
uation scheme for efficient computation. We also suggest azimuthally smoothed
masks in order to reduce the computational cost. The leading order correction to
CMB power spectrum for non-circular obtained by a perturbative analysis in our
previous work has been successfully reproduced using the current analysis.

The analysis will be extremely important for the estimation of the effect of
non-circular beams on CMB polarization power spectrum. It is expected that the
non-circular beams would induce more leakage from E to B polarization by getting
coupled to the weak gravitational lensing. Our analysis can provide a good starting
point to estimate that systematic effect. Also, the work presented here can be
extended to study the statistical anisotropy of the observed CMB maps induced
due to the combined effect of beam non-circularity and incomplete sky coverage.
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Chapter 10

Conclusion

The past five years have been an exciting period for the gravitational waves (GW)
and cosic microwave background (CMB) experiments. These experiments produce
huge volumes of data and pose several analysis challenges. We addressed few of
the important analysis issues in this thesis. We have developed and implemented
techniques to efficiently extract science out of the data. Several important and
relevant calculational details for GW and CMB analysis have been presented in the
appendices.

GW strains in the detectors are overwhelmed by noise. Prior knowledge of
the expected signal has to be used to search for GW with the present day detectors.
Matched filtering is optimal where the waveform can be accurately determined. The
conventional matched filtering based search for inspirals is computationally costly.
Interpolation of the match function over the parameter space can reduce the number
of matched filters required to search over the parameter space utilizing the statistical
correlation between templates. We developed an interpolating search algorithm
where we used Chebyshev interpolation for its near minimax property. We tested
the algorithm for a one dimensional intrinsic parameter space using Newtonian
Chirp signal from inspiraling binaries. We observed 25% reduction in the number
of templates - which can lead to an order of magnitude improvement in the efficiency
over a multidimensional parameter space. The Chebyshev interpolated scheme can
improve the efficiencies of the conventional dense search algorithms without using
any extra computation. Also, there is a possibility of using Chebyshev interpolation
in the first stage of hierarchical search to improve the efficiency of the first stage,
which is the most computationally costly part of the hierarchical search.

There exists a stochastic GWB generated by unresolved and unmodeled as-
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trophysical sources and tensor perturbations in the early universe. This is quite
similar to CMB in electro-magnetic astronomy. Since the noise in the GW detectors
are independent, the best strategy to detect the GWB is by correlating outputs from
different detectors. The correlation is done through a sky model dependent optimal
filter. The optimal filter can be properly chosen in order to measure the all-sky aver-
aged strength of the GWB, as well as to make map of the GWB sky by introducing a
time dependent phase delay that account for the light travel time delay between the
detector sites. This approach is quite similar to the earth rotation synthesis imaging
used in CMB and radio astronomy, and hence named as GW radiometer.

The theory of general radiometer analysis has been presented in this thesis. In
this course, we have developed the full analysis technique to estimate the true GWB
skymaps, which extends to more than one baselines. The beam function (kernel of
the convolution equation) has been analytically understood using Stationary Phase
Approximation (SPA). We have numerically implemented the analysis on simulated
data. The injected maps were successfully recovered with almost all the detailed
structures, which was a great success for this first ever attempt to estimate the true
GWB sky using the current ground based GW detectors.

However, this analysis relies on certain assumptions on the source - the fre-
quency power distribution is independent of direction and the waves of polariza-
tions are independent, these assumptions need to be removed/relaxed in order to
formulate a more general analysis. The analysis should also be extended to an-
alyze data from the space based detectors, which are more sensitive to the GWB
as compared to the ground based detectors. This can be done by incorporating
time delay interferometry in the radiometer framework. The radiometer analysis
implemented so far considers only blind estimations - no prior knowledge of the
sky was used. Construction of a model of the sky in pixel or spherical harmonic
basis, e.g., by taking inputs from electro-magnetic astronomy, would improve the
signal to noise ratio. Finally, different directions of the sky were assumed to be
uncorrelated; this assumption does not hold for a cosmological GWB, which can
be correlated at scales even greater than the beam size. The possibility of using a
Legendre or spherical harmonic expansion of the angular correlation function of the
GWB sky should be explored in order to generalize the GW radiometer analysis.

The observed CMB and GWB skymaps are convolved with experimental beam
patterns. Estimation of the true skymap requires the decovolution of the skymaps
with the beam patterns. The maximum likelihood skymap estimation had been
successfully applied to CMB analysis for more than a decade. Because of the broad
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similarity between CMB and GWB map making we adapted a similar analysis
strategy to estimate true GWB skymaps. The method was implemented using
MATLAB® coding and test maps were deconvolved with great success - we got
back nearly what we injected. So far the comparison between the injected and
recovered maps has only been done visually, work is in progress to formulate
a scheme to quantify the quality of deconvolution. The deconvolution technique
used here closely follows CMB analysis, a more customized method would improve
the quality of deconvolution.

Maximum likelihood deconvolution of CMB skymaps with non-circular beams
for the present day high resolution experiments is computationally prohibitive.
CMB anisotropy maps are deconvolved assuming a circular beam of infinite resolu-
tion, which introduces a bias in the skymaps and the angular power spectra. Beam
correction is directly applied to debias the angular power spectrum obtained from
the undeconvolved map - the pseudo-Cl estimator. The effect of non-circularity of
the experimental beam becomes important at high multipoles (low angular size).
We have developed a general analysis technique to account for the non-circular
beams including the effect of the incomplete sky coverage. The leading order cor-
rection predicted by our analysis has matched the error estimated in the WMAP
third year results. We also suggest apodized masks to reduce the computational
cost required to implement our analysis. The non-circular beams can introduce
statistical anisotropy in the statistically isotropic true CMB anisotropy. The effect of
non-circular beams will affect the CMB polarization power spectrum more severely,
as this will increase the leakage of E-polarization to B-polarization by getting cou-
pled to the weak lensing effect. We plan to estimate these effects in the near future.
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Appendix A

Properties of the Chebyshev
Polynomials

Below we list a few important properties of the Chebyshev polynomials taken
from [66].

1. The nth degree Chebyshev polynomial:

Tn(x) ≡ cos(n cos−1 x). (A.1)

2. Chebyshev polynomials Tn(x) satisfy the differential equation:

(1 − x2)
d2

dx2 Tn(x) − x
d
dx

Tn(x) + n2 Tn(x) = 0 (A.2)

3. Chebyshev polynomials satisfy the recursion relation:

Tn+1(x) = 2 x Tn(x) − Tn−1(x) (A.3)

4. List of the first few Tn(x), n = 0, 1, . . . , 5:

T0(x) = 1 (A.4a)

T1(x) = x (A.4b)

T2(x) = 2 x2
− 1 (A.4c)

T3(x) = 4 x3
− 3 x (A.4d)

T4(x) = 8 x4
− 8 x2 + 1 (A.4e)
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Figure A.1: Plots of the first few orders of Chebyshev polynomials

Fig. A.1 shows the plots of the above listed polynomials.

5. The zeroes (xm) of the (n + 1)th degree Chebyshev polynomial Tn+1(x) are
located at:

xm = cos
(m − 1

2 )π
n + 1

, m = 1, 2, ...,n + 1. (A.5)
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Appendix B

Directed GW Radiometer Beam:
Stationary Phase Approximation

The beam function is the profile of the observed skymap using a directed GW
radiometer if only one unit point source is present on the sky. The study of the
beam function will enable us to analyze the properties of the convolution equation,
as well as to devise a scheme for efficient pixelization of the sky. Here we attempt
to develop an analytical approach to handle the beam function.

We shall find the beam function around the pointing direction Ω̂0 ≡ (θ0, φ0),
which is equivalent of placing a unit point source at Ω̂0 and evaluating the point
estimate. We may rewrite eqn (6.12) as the expectation of the observed point
estimate for this case:

〈S(Ω̂)〉 =
[∫ T

0
dt/λ(Ω̂, t)

]−1 ∫ T

0
dtΓ(Ω̂, t)Γ(Ω̂0, t)

∫
∞

−∞

d f G(t; f ) e−2πi f∆Ω·∆x(t)/c,

(B.1)
where ∆Ω := Ω̂ − Ω̂0. For simplicity, in the above equation we have replaced the
summation over i by an integration over sidereal time t. Our aim is to analytically
extract as much as possible information from the above integral.

We shall first find an approximate beam pattern, that is, the points on the sky
where the point estimates stand out. Then we shall approximately evaluate the
values of the beam pattern on the trajectory.
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Figure B.1: Cone traced out by a radiometer baseline. The baseline formed by two
detectors, ∆x(t) traces out a cone as the earth rotates. A schematic diagram is shown
here. The vector n̂cone(t) is normal to the baseline as we as the cone.

B.1 Beam Pattern: SPA Trajectory

Application of Stationary Phase Approximation (SPA) can explain certain features
that are present in the numerical beam function, basically the shape of the beam,
which closely resembles a tear drop or the integer “8”.

The rapidly varying part in the integrand of eqn (B.1) is the phase term. Setting
the first derivative of phase with respect to f and t to zero we get

∆Ω · ∆x(t) = 0, (B.2)

∆Ω · ∆x′(t) = 0, (B.3)

where ∆x′(t) := d∆x(t)/dt. The detector separation vector ∆x(t) rotates about the
earth’s rotation axis (z-axis in our coordinate system) with the angular velocity ωE.
Geometrically ∆x(t) traces out a right circular cone with z-axis as its symmetry axis
[see Figure B.1].

The angle of the cone Θ is given by [since 0 ≤ Θ ≤ π, i.e., sinΘ is positive]

Θ = cos−1 cosθ1 − cosθ2√
2[1 − cosθ1 cosθ2 − sinθ1 sinθ2 cos(φ1 − φ2)]

, (B.4)

where (θI, φI) are the detector coordinates. If the initial phase is Φ, we may write

∆x(t) = ∆R sinΘ cos(ωEt + Φ), (B.5a)

∆y(t) = ∆R sinΘ sin(ωEt + Φ), (B.5b)

∆z(t) = ∆R cosΘ = constant, (B.5c)
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Figure B.2: Beam functions in flat latitude-longitude grid. The beam patterns are
plotted in a flat grid of latitude and longitudes for the LIGO baseline with white
noise. The upper cut off frequency is 1024Hz. Pointing directions are at latitudes 0◦

(left) and 45◦ (right). Beam functions are independent of pointing longitude because
of azimuthal symmetry for observation over full day(s) with stationary noise. Note
that, the slopes of the legs near the core of is ∼ ±2 in the left panel.

where ∆R := |∆x(t)| is the distance between the detectors and remains constant.
This implies that ∆x(t) · ∆x′(t) = 0. Thus ∆x(t), ∆x′(t) and ∆Ω should form an
orthogonal triad for the phase to be stationary. Therefore, for the SPA condition
to exist ∆Ω should be parallel to the normal n̂cone(t) to the baseline, as well as, the
cone traced out by the baseline.

We first consider the case of small ∆Ω to have a feeling for the numbers. Then
we derive the general solution.

B.1.1 The case of small ∆Ω

If the numerical beam function for a full day of observation is plotted in a plane
cartesian grid of latitude and longitude, as shown in figure B.2, we can see four
“legs” are coming out of the core of the beam. For equatorial pointing direction (left
panel), θ0 = π/2, the legs have slopes ∼ ±2.

Since the beam function for a full day’s observation is independent of pointing
longitude, we assume the source to be at φ0 = 0 without any loss of generality.
Thus,

Ω̂0 = (sinθ0, 0, cosθ0). (B.6)

For small ∆Ω we have ∆Ω · Ω̂0 = 0, thus ∆Ω lies in a plane normal to Ω̂0. Writing
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∆Ω = ∆Ωq̂, where q̂ is a unit vector; q is parametrically given by,

q̂ = (− cosθ0 cosψ, sinψ, sinθ0 cosψ). (B.7)

The SPA conditions are satisfied if ∃ φ and ψ such that q̂ is normal to the cone. The
set of normals to the cone is parametrically given by

n̂cone(t) = (cosΘ cosφ, cosΘ sinφ,− sinΘ), (B.8)

where 0 ≤ φ ≤ 2π and φ = ωEt [again, due to azimuthal symmetry, we have the
liberty to assume φ = 0 at t = 0]. We get three equations for φ and ψ from eqn B.8
and eqn B.7, which must be consistent. We can solve for φ and ψ from the x and z
components:

cosψ = ± sinΘ/ sinθ0 (B.9)

cosφ = ± cotθ0 tanΘ, (B.10)

which consistently matches the y component. The ψ gives the direction of the legs
and the φ = ωEt gives which data segment in time contributes.

Assuming source position at θ0 = π/2

cosψ = ± sinΘ = cos(Θ ± π/2). (B.11)

Using

sinθ0
∆φ

∆θ
= tanψ (B.12)

to the first order the above equation gives

∆θ
∆φ
= ± tanΘ. (B.13)

The approximate coordinates of the LIGO detectors are given in Table B.1.1.
For the LLO-LHO pair we get tanΘ = −1.98. The slopes of the legs of the beam, as

Detector LLO LHO
latitude 30.5 46.5
longitude -90.75 -119.5

Table B.1: Coordinate of the LIGO detectors
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shown in the left panel of figure B.2, are also ∼ ±2, thus satisfying eqn (B.13).

B.1.2 General SPA solution

The calculation for infinitesimal ∆Ω given above provides a comprehensive geo-
metrical picture and the directions of the legs. It is also possible to algebraically
derive a general expression for the values of ∆Ω for which the SPA conditions hold.

Phase part of the integrand is stationary when ∆x(t), ∆x′(t) and ∆Ω form an
orthogonal triad. Since

n̂cone(t) =
∆x(t) × ∆x′(t)
|∆x(t) × ∆x′(t)|

,

SPA condition is satisfied when ∆Ω = ∆Ω n̂cone(t), where ∆Ω can take both positive
or negative values. Since both Ω̂0 and Ω̂ = Ω̂0 + ∆Ω should be of unit length

Ω̂ · Ω̂ = (Ω̂0 + ∆Ω) · (Ω̂0 + ∆Ω) (B.14)

⇒ 1 = 1 + 2∆Ω Ω̂0 · n̂cone(t) + (∆Ω)2 (B.15)

⇒ ∆Ω = −2 Ω̂0 · n̂cone(t) (B.16)

Hence we may write
∆Ω = −2 [Ω̂0 · n̂cone(t)] n̂cone(t). (B.17)

Thus the set of points satisfying the SPA conditions are given in the parametric form

Ω̂(t) = Ω̂0 − 2 [Ω̂0 · n̂cone(t)] n̂cone(t). (B.18)

As a consistency check, we prove below that |∆Ω| is always positive:

Note that n̂cone(t) can have any direction. The above equation makes
sure that it connects two points on a unit 2-sphere, which can be justified
with the following diagram:
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Here P(Ω̂0) and Q(Ω̂) are two points on the unit 2-sphere. We have
drawn a plane AB tangent to the sphere at P. The figure shows a 2-D
cross-section that contains both Ω̂ and Ω̂0. Clearly, since the vector ∆Ω
starts at P and ends at another point Q on the two sphere, ∆Ω can never
cross the tangent plane. Hence the angle between Ω̂0 and ∆Ω is never
less than π/2, which implies that, Ω̂0 · ∆Ω is always negative. This is
consistently guaranteed by eqn (B.17), as

Ω̂0 · ∆Ω = −2 [Ω̂0 · n̂cone(t)]2. (B.19)

Moreover, from eqn (B.14) we could also write

|∆Ω| = −2 Ω̂0 · ∆̂Ω, (B.20)

where ∆̂Ω := ∆Ω/|∆Ω| [that is, ∆̂Ω = ±n̂cone(t)]. Since Ω̂0 · ∆Ω is always
negative, it is guaranteed that the right hand side of eqn (B.20) is positive
definite.

The above analysis tells that at each time t one direction of the sky Ω̂ can
satisfy the SPA condition and hence contribute significantly to the correlation. If
the observation time is a day, then n̂cone(t) completes a full rotation about the earth’s
rotation axis. Hence the trajectory of the stationary phase points (the set of directions
Ω̂ satisfying the SPA condition) becomes independent of the source azimuthal angle
or the longitude.

B.2 Evaluation of the Beam Function on SPA trajectory

We now evaluate the value of the beam function on the trajectory we have found.
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1. Along the SPA trajectory:

Using the general solution we can now evaluate the beam function along the
SPA trajectory. As we know that the integral over time contributes only when
the SPA condition is satisfied, we expand ∆Ω ·∆x(t) about t = tSPA (the instant
when the stationary phase condition is satisfied for a certain Ω̂) upto second
order in t

∆Ω · ∆x(t) = ∆Ω · ∆x(tSPA) +
1
2

(t − tSPA)2ω2
E ∆Ω∆R cosΘ sinΘ, (B.21)

which is then substituted in the expression for the the unnormalized point
estimate [from eqn (B.1)]∫

∞

−∞

d f
∫ T

0
dtΓ(Ω̂, t)Γ(Ω̂0, t) G(t; f ) e−2πi f∆Ω·∆x(t)/c. (B.22)

Assuming that Γ(Ω̂, t) and G(t; f ) are slowly varying functions of time we may
use the standard SPA prescription to evaluate the above integral:

Γ(Ω̂, tSPA)Γ(Ω̂0, tSPA)

√
2

ω2
E ∆Ω∆R| cosΘ sinΘ|/c

∫
∞

0

d f√
f

G(tSPA; f ), (B.23)

where we have used the relation <[eiπ/4/
√
±1] = 1/

√
2. Using a further

simplification that all the PSDs are white (i.e. Γ(Ω̂, t) = 1) within the frequency
range f ∈ [ fl, fu] we arrive at the final expression for the unnormalized beam
function becomes

Γ(Ω̂, tSPA)Γ(Ω̂0, tSPA)

√
fu −

√
fl

ωE

√
8 c

∆Ω∆R| cosΘ sinΘ|
. (B.24)

To summarize, since only one point on the sky contribute to the stationary
phase integral at one instant of time, to get the stationary phase trajectory
along with the beam function evaluated at each point on the trajectory we
may use the following two equations parameterized by time t:

Ω̂(t) = Ω̂0 − 2 [Ω̂0 · n̂cone(t)] n̂cone(t) (B.25)

〈S(Ω̂)〉 ∝ Γ(Ω̂(t), t)Γ(Ω̂0, t)

√
fu −

√
fl

ωE

√
8 c

RE |(cosθ1 − cosθ2) ẑ · [Ω̂(t) − Ω̂0]|
.
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The above above analysis does not produce correct result if the detectors are
on the same latitude, as in that case n̂cone(t) = ẑ, which is always perpendicular
to the base line vector ∆x(t). So all the derivative of the phase vanishes at all
the time intervals. However, we can still find the stationary phase trajectory,
which is actually the image point of the source about the equatorial plane.
Mathematically,

Ω̂(t) = Ω̂0 − 2 [Ω̂0 · ẑ] ẑ. (B.26)

It is easy to see that in that case the contribution to correlation coming from
this point (for white PSDs) is

〈S(Ω̂)〉 ∝ 2 ( fu − fl)
∫ T

0
dtΓ(Ω̂0, t)Γ(Ω̂0 − 2 [Ω̂0 · ẑ] ẑ, t). (B.27)

2. Close to the source direction:

Right at the source direction, since ∆Ω = 0, the unnormalized correlation is∫ T

0
dt[Γ(Ω̂0, t)]2

∫
∞

−∞

d f G(t; f ). (B.28)

For the white PSD case the above value becomes

2 ( fu − fl)
∫ T

0
dt[Γ(Ω̂0, t)]2. (B.29)

Moreover, since the phase 2πi f∆Ω · ∆x(t)/c is small near the maximum of the
beam function, a linear expansion exp[2πi f∆Ω ·∆x(t)/c] ≈ 1+2πi f∆Ω ·∆x(t)/c
may be used to study the beam function near the maximum.
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Appendix C

Cosmic Variance

The estimator for the power spectrum of Cosmic Microwave Background (CMB)
has inevitable variance (error) even in case of a ideal CMB anisotropy measurement
experiment, where the temperature at every direction in the sky is exactly known.
This error arising due to the fact that we can observe only one observable CMB sky,
it is known as cosmic variance. The well known cosmic variance for statistically
isotropic Gaussian CMB is derived in this appendix for the benefit of readers from
other fields.

The power spectrum estimator in a ideal CMB anisotropy experiment is given
by [eqn (5.8)]

C̃l :=
1

2l + 1

l∑
m=−l

|alm|
2, (C.1)

where alm is the spherical harmonic transform of the true CMB temperature anisotropy
∆T(q̂) sky, where q̂ denotes a direction on the 2-sphere [eqn (5.4)]:

alm :=
∫

dΩq̂ ∆T(q̂) Y∗lm(q̂). (C.2)

By definition, for statistically isotropic CMB, the expectation of the estimator is
the true angular power spectrum, 〈C̃l〉 = Cl, which follows from eqn (5.5).

The variance of the estimator, the cosmic variance, is given by

var(C̃l) := 〈C̃2
l 〉 − 〈C̃l〉

2. (C.3)
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The right hand side of the above equation (〈C̃2
l 〉 − 〈C̃l〉

2) can be written as

1
(2l + 1)2

l∑
m=−l

l∑
m′=−l

∫
dΩq̂1

∫
dΩq̂2

∫
dΩq̂′1

∫
dΩq̂′2

Y∗lm(q̂1) Ylm(q̂2) Y∗lm′(q̂
′

1) Ylm′(q̂′2)

×

[
〈∆T(q̂1)∆T(q̂2)∆T(q̂′1)∆T(q̂′2)〉 − 〈∆T(q̂1)∆T(q̂2)〉〈∆T(q̂′1)∆T(q̂′2)〉

]
, (C.4)

which can be evaluated using the following relation which holds if CMB anisotropy
is Gaussian

〈∆T(q̂1)∆T(q̂2)∆T(q̂′1)∆T(q̂′2)〉 − 〈∆T(q̂1)∆T(q̂2)〉〈∆T(q̂′1)∆T(q̂′2)〉

= 〈∆T(q̂1)∆T(q̂′1)〉〈∆T(q̂2)∆T(q̂′2)〉 + 〈∆T(q̂1)∆T(q̂′2)〉〈∆T(q̂2)∆T(q̂′1)〉.(C.5)

Moreover, if CMB anisotropy is statistically isotropic, the two point correlation
functions depend only on the angular separation between two directions and, hence,
can be expanded in a Fourier-Legendre series:

〈∆T(q̂1)∆T(q̂2)〉 = C(q̂1 · q̂2) =
∞∑

l=0

2l + 1
4π

Cl Pl(q̂1 · q̂2). (C.6)

Substituting the above in the expression for variance, using the addition theo-
rem for spherical harmonics [eqn (5.6)],

4π
2l + 1

l∑
m=−l

Y∗lm(q̂1) Ylm(q̂2) = Pl(q̂1 · q̂2) =
4π

2l + 1

l∑
m=−l

Ylm(q̂1) Y∗lm(q̂2), (C.7)

and using the orthogonality relation for spherical harmonics [eqn (5.7)],∫
dΩq̂ Y∗lm(q̂) Yl′m′(q̂) = δll′ δmm′ , (C.8)

one can write final expression for cosmic variance as

var(C̃l) =
2

2l + 1
C2

l . (C.9)

The above relation suggests that the specific error due to cosmic variance decreases
with multipoles; at l = 2 the fractional error is ∼ 63% and at l = 5 it is ∼ 42%. This
is understandable - the number of independent spherical harmonic “m” modes
increases with multipoles, which reduces the measurement uncertainty (variance).
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Appendix D

Elliptical Gaussian fit to the
WMAP beam maps

We briefly describe an exercise of characterizing non-circular beams in CMB exper-
iments using the example of the beam maps of the WMAP mission. We analyzed
the WMAP raw beam images in the Q1, V1 and W1 [101, 183] bands using two
different standard software packages. We use the elliptical Gaussian fit allowed
by the well known radio-astronomy software, AIPS and a more elaborate ellipse
fitting routine available within the standard astronomical image/data processing
software IRAF. The ELLIPSE task in the STSDAS package of IRAF, which uses the
widely known ellipse fitting routines by Jedrzejewski [184], allows independent
elliptical fits to the isophotes. This significant greater degree of freedom in fitting
to the non-circular beam allows us to assess whether a simple elliptical Gaussian
fit is sufficient. The three bands see Jupiter in the two horns (labeled A and B) as
a point source. The fitting routine fits ellipses along iso-intensity contours of the
beam image, parameterized by position angle (PA), ellipticity (ε̄) and position of
the center. Each of these parameters can be independently varied. The distance
between successive ellipses can also be independently varied. The eccentricity e is
related to ellipticity ε̄ as e =

√
1 − (1 − ε̄)2 (Please see Table 8.1).

We fit the the beams in two different ways: (a) by holding the ellipticity constant
to ε̄ = 0.05 and freely varying the position angle and center and (b) fixing the center
to be the pixel with the highest intensity (normalized to 1.0 at the central pixel)
and varying ellipticity and position angle. In the first case, we get the closest
approximation to circular beam profiles as used in WMAP data analysis. This beam
has no azimuthal (φ) dependence. In the latter case, we get the elliptical profile of
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Figure D.1: Profile of WMAP Q-beam fitted using IRAF. The beam profile is
characterized by intensity along the semi major axis (SMA). The beam in Q-band
for WMAP experiment was analyzed using IRAF and fitted to both circular and
elliptical profiles. We have plotted the best fit circular profile (solid error bars) and
overlaid the profile recovered by inverting the WMAP beam transforms, available
at LAMBDA website (solid line). Two analytical models for circular beam profile
g(θ) and h(θ) are also considered, and the best fit profiles are overlaid. We find that
these models are consistent with the IRAF and WMAP data. We have also plotted
the best fit elliptical profile along SMA (broken error bar). Notice that the error
bars in this case are much smaller than those for circular profile, implying a better
agreement with the data.

the WMAP beam which depends on both the polar (θ) and azimuthal (φ) distance
from the pointing direction. Notice that in this case it is sufficient to provide the
intensity along a particular direction (usually, the semi-major axis or φ = 0) and the
ellipticity ε̄.

Even a visual inspection reveals that the Q1 beam map plotted in Fig 8.2 is
non-circular and the iso-intensity contours distinctly elliptical. Thus it comes as no
surprise that the error bars as shown in Figure D.1 for circularized beam are larger
than those for the elliptical profile. As a consistency check, we take the WMAP Q1
beam transfer function Bl from WMAP first year data archived at publicly available
LAMBDA site [101] and ‘recover’ the circular beam profile B(θ) using eq. (8.10).

From Figure D.1, it is clear that this ‘recovered’ beam profile is in good agree-
ment with that obtained by IRAF. This allows us to make some statements about
the profile fitting in CMB experiments, in the context of WMAP beams. The beam
profile B(θ) has been modeled as a Gaussian times a sum of even order Hermite
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Figure D.2: IRAF estimated parameters characterizing WMAP beams. The beams
for WMAP experiment in three bands Q, V and W for both the horns (A and B) were
fitted to elliptical profiles using IRAF. The plot above shows the fitted eccentricity
and position angle along the semi major axis (SMA). The presence of side-bands in
the smaller beams (W band) makes it difficult for IRAF to model them sufficiently
well. However, in the Q1 band, such sub-structures in the beam are not present thus
allowing the IRAF ellipse fitting routine to fit reasonably good ellipses which have
consistent eccentricities (e ∼ 0.65) and position angles all along the SMA. The V1
beam is smaller in extent than the Q1 beam and its eccentricity was determined to be
e ∼ 0.46 using IRAF. The highest resolution beam in in W1 band, whose eccentricity
was determined to be e ∼ 0.40.

polynomials (H2n) by the WMAP team [183]. To compare, we have also modeled
the beam profile with a function h(θ) given by

h(θ) = exp
(
−

1
2
αθ2

)
(h0 + h2H2(θ) + h4H4(θ)) , (D.1)

where α, h0, h2 and h4 are unknown parameters to be fixed by least squared method.
We found that this model fits the data very well with a reduced χ2 of about 0.7.
However, on closer analysis, it is found that the chief role of the Hermite poly-
nomials is to add a constant baseline over and above the Gaussian. To test this
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hypotheses, we choose another form of the fitting function g(θ) given by

g(θ) = g0 + g1 exp
(
−

1
2

g2θ
2
)
, (D.2)

where g0, g1 and g2 are parameters of the model. It is very interesting to note that
this model also fits the data very well with a reducedχ2 of about 0.8 for the best fitted
parameters. In all fairness, g(θ) serves as a simpler model for the beam profile. We
cannot point to the precise origin for the baseline. However, such ‘skirts’ in beam
responses are not uncommon in radio-astronomy. At this point, our observation
should perhaps merit a curious aside, if not as an alternative approach to beam
modeling. Our best-fit models g(θ) and h(θ), along with the IRAF fitted data points
to the WMAP Q1 (A) beam is shown in Figure D.1.

As shown earlier in this thesis, the effects of non-circularity of the CMB ex-
perimental beams show up in the power-spectral density estimates through the
off-diagonal elements of the bias matrix All′ . As shown in eq. (8.26), these in turn
can be expressed in terms of the leading components of the harmonic transform
of the beam. In general, the harmonic decomposition of a non-circular beam may
have to be done numerically. But for the particular case of an elliptical Gaussian
beam, a closed form expression given by eq. (8.19) serves as a useful test-bed for
us. Thus another motivation for fitting ellipses to WMAP beams using IRAF was to
get a handle on the eccentricity of these beams so as to find the harmonic transform
components of an elliptical Gaussian beam of similar eccentricity. This allows us
to give more realistic estimates of the effect of non-circularity of the beam on Cl

estimates.

It is interesting to note how the fitted eccentricities vary as a function of the dis-
tance along the semi-major axis of the fitted ellipses for various beams. The smaller
beams (V1 and W1) have sufficient sub-structure in the form of side-lobes which
throws the ellipse fitting routine off course. However, where the sub-structure is
less pronounced, we find that the eccentricities of the fitted ellipses takes a constant
value. Toward the center of the ellipses, there are far too few pixels to average over,
which in turn manifests as large error bars in the eccentricities and position angles
of the ellipses. In Figure D.2, we notice that the Q1 beam has a very elliptical profile
with eccentricity e & 0.65 and position angle of about 75◦. We also fitted the Q1 (A)
beam to an elliptical Gaussian model using radio astronomy standard data analysis
software AIPS and got consistent numbers for the eccentricity. However the IRAF
modeling gives us more freedom to vary the eccentricity and position angle as we
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Table D.1: Ellipticities of WMAP beams. The result of ellipse fitting using IRAF
on the Q1, V1 and W1 beams of the WMAP experiments. The frequency quoted
is the ‘effective’ frequency of the corresponding band from Page et. al. [183]. The
presence of sub-structures in the W1 band makes it difficult to fit elliptical contours
to the beam.

Beam Frequency Eccentricity Position Angle
(GHz) (degree)

Q1 (A) 40.9 0.65 +80
Q1 (B) 40.9 0.67 -80
V1 (A) 60.3 0.48 +60
V1 (B) 60.3 0.45 -60
W1 (A) 93.5 0.40 —1

move away from the center of the ellipse and the result is that the beam is modeled
more accurately.
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Appendix E

Derivations for perturbative
analysis of beam correction to
pseudo-Cl estimator

In the appendix we provide the details of the analytical steps involved in
deriving some of the expressions used in chapter 8. This is designed to keep the
thesis self contained and easy to extend. These calculations can be useful for other
applications which involve Wigner-D functions.

Step I

First, we outline the steps involved in evaluating the integral
Ill′
02 + Ill′

0−2 = 2
∫ 1
−1 dl

00(θ)dl′
02(θ)d cosθ to obtain the result in eq. (8.39).

Using the expressions [117,100] for dl
00 and dl

02 in terms of Legendre Polynomials
and its derivatives,

∫ 1

−1
dl

00(θ)dl′
02(θ)d cosθ

= −
l′(l′ + 1)

κ

∫ 1

−1
Pl(x)Pl′(x)dx +

2
κ

∫ 1

−1
xPl(x)P′l′(x)dx, (E.1)

where, κ ≡
√

(l − 1)l(l + 1)(l + 2). The first integral is simply the orthogonality of
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estimator

Legendre polynomials ∫ 1

−1
Pl(x)Pl′(x)dx =

2δll′

2l + 1
. (E.2)

Further, we can show that for odd values of l + l′,∫ 1

−1
x Pl(x) P′l′(x) dx = 0, (E.3)

and for even values of l + l′,

∫ 1

−1
x Pl(x) P′l′(x) dx =


2 if l < l′

0 if l > l′

2l/(2l + 1) if l = l′.
(E.4)

Assembling all these we can derive eq. (8.39).

Step II

Next we evaluate the more general integral Ill′
m2+Ill′

m−2 ≡
∫ 1
−1 dl

m0(θ) [dl′
m2(θ)+dl′

m−2(θ)] d cosθ
to obtain the expression in eq. (8.40). The first step is to express dl

m±2(θ) in terms
of dl′

m0(θ). Using the recurrence relations for Wigner D functions (see eq. (4)in
§4.8.1, [100]) and using the fact that

Dl
mm′(φ, θ, ρ) = e−imφ dl

mm′(θ) e−im′ρ (E.5)

we get the recurrence relations for Wigner-d functions:

sinθ dl
mm′+1(θ) =

√
(l2 −m2)(l +m′)(l +m′ + 1)

l(2l + 1)
dl−1

mm′(θ) (E.6)

−
m

√
(l −m′)(l +m′ + 1)

l(l + 1)
dl

mm′(θ)

−

√
[(l + 1)2 −m2](l −m′)(l −m′ + 1)

(l + 1)(2l + 1)
dl+1

mm′(θ).

Using these relations for dl
m2 we may write,

dl
m2(θ) =

κ

sin2(θ)
[κ0dl

m0(θ)+ κ1dl+1
m0 (θ)+ κ−1dl−1

m0 (θ)+ κ2dl+2
m0 (θ) + κ−2dl−2

m0 (θ)], (E.7)
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where

κ0 ≡
m2

l2(l + 1)2 −
l2 −m2

l2(4l2 − 1)
−

(l + 1)2
−m2

(l + 1)2(2l + 1)(2l + 3)
,

κ1 ≡ 2m

√
(l + 1)2 −m2

l(l + 1)(l + 2)(2l + 1)
, κ−1 ≡ −2m

√

l2 −m2

l(l2 − 1)(2l + 1)
,

κ2 ≡

√
[(l + 1)2 −m2][(l + 2)2 −m2]
(l + 1)(l + 2)(2l + 1)(2l + 3)

, κ−2 ≡

√
(l2 −m2)[(l − 1)2 −m2]

l(l − 1)(4l2 − 1)
.

Also, since dl
m−2(θ) = (−1)l+mdl

m2(π−θ) and dl
m0(π−θ) = (−1)l+mdl

m0(θ) we can write,

dl
m−2(θ) =

κ

sin2(θ)
[κ0dl

m0(θ)−κ1dl+1
m0 (θ)−κ−1dl−1

m0 (θ)+κ2dl+2
m0 (θ) + κ−2dl−2

m0 (θ)]. (E.8)

Using the expression for dm±2 we can make the following substitution

dl
m2(θ) + dl

m−2(θ) = 2κ [κ0dl
m0(θ) + κ2dl+2

m0 (θ) + κ−2dl−2
m0 (θ)]/ sin2 θ , (E.9)

in the integral we seek to evaluate. We use the following integral for l ≤ l′ and
L = min{l, l′} ≥ |m| > 0,

∫ 1

−1
dl

m0(θ)dl′
m0(θ)

d cosθ
sin2 θ

=


1
|m|

√
(l+|m|)!(l′−|m|)!
(l−|m|)!(l′+|m|)! even l + l′

0 odd l + l′
(E.10)

and obviously, for l > l′, l and l′ have to be interchanged in the above expression.
We then obtain Ill′

m2 + Ill′
m−2 as given in eq. (8.40).

Step III

The integral in eq. (E.10) can also be readily derived. We use the fact that

dl
m0(θ) = (−1)m

√
(l −m)!
(l +m)!

Pm
l (cosθ) , (E.11)

which leads to∫ 1

−1
dl

m0(θ)dl′
m0(θ)

d cosθ
sin2 θ

=

√
(l −m)!(l′ −m)!
(l +m)!(l′ +m)!

∫ 1

−1
Pm

l (x)Pm
l′ (x)

dx
1 − x2 . (E.12)
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estimator

The symmetry of Associated Legendre Polynomials, Pm
l (−x) = (−1)l+mPm

l (x) dictates
that the integrand is antisymmetric for odd values of l+ l′, hence the integral is zero.
However for even values of l + l′, we can evaluate the integral in the following
manner. One of the recurrence relations for Associated Legendre Polynomials is
( [185], §12.5.)

Pm
l (x) = Pm

l−2(x) + (2l − 1)
√

1 − x2Pm−1
l−1 (x) . (E.13)

Using equation (E.13) we can write,∫ 1

−1
Pm

l (x)Pm
l′ (x)

dx
1 − x2 (E.14)

=

∫ 1

−1
Pm

l (x)Pm
l′−2(x)

dx
1 − x2 + (2l′ − 1)

∫ 1

−1
Pm

l (x)Pm−1
l′−1 (x)

dx
√

1 − x2
.

We have provided a proof that the second integral on the right is zero at the end of
this section. Thus, from eq. (E.14) we have∫ 1

−1
Pm

l (x)Pm
l′ (x)

dx
1 − x2 =

∫ 1

−1
Pm

l (x)Pm
l′−2(x)

dx
1 − x2 . (E.15)

In this way we can keep reducing l′ by two each time until it equals with l (since
l + l′ is even and l < l′ it will reduce to l). Thus, we have shown that,∫ 1

−1
Pm

l (x)Pm
l′ (x)

dx
1 − x2 =

∫ 1

−1

[
Pm

l (x)
]2 dx

1 − x2 =
1
m

(l +m)!
(l −m)!

, (E.16)

where the second equality follows from the evaluation of a standard integral, which
can be obtained, for example, from [185]. Substituting in eq. (E.12) we can evaluate
the integral for m > 0. Clearly eq. (E.16) is valid for l = l′. For l > l′, l should be
replaced by l′ in that equation. Moreover, using the property dl

−m0(θ) = (−1)mdl
m0(θ),

we can express the integral for any m , 0, as given in eq. (E.10).

Step IV

Finally we prove the result used in simplifying eq. (E.14) that for even values of
l + l′ and l < l′, ∫ 1

−1
Pm

l (x)Pm−1
l′−1 (x)

dx
√

1 − x2
= 0. (E.17)

Using the recurrence relation of Legendre Polynomials in eq. (E.13), we can
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write ∫ 1

−1
Pm

l (x)Pm−1
l′−1 (x)

dx
√

1 − x2
(E.18)

=

∫ 1

−1
Pm

l−2(x)Pm−1
l′−1 (x)

dx
√

1 − x2
+ (2l − 1)

∫ 1

−1
Pm−1

l−1 (x)Pm−1
l′−1 (x)dx.

Then from the orthogonality relation of associated Legendre Polynomials,∫ 1

−1
Pm

l (x)Pm
l′ (x)dx =

2
2l + 1

(l +m)!
(l −m)!

δll′ , (E.19)

we can see that the second integral on the right of eq. (E.18) vanishes for l′ , l. Thus
we have, ∫ 1

−1
Pm

l (x)Pm−1
l′−1 (x)

dx
√

1 − x2
=

∫ 1

−1
Pm

l−2(x)Pm−1
l′−1 (x)

dx
√

1 − x2
. (E.20)

We can use the above equation iteratively since the lower indices of the Pm
l ’s will

never match as l′ > l. So the lower index of the first polynomial in the integration
can be reduced to either m or m+ 1 (depending on l−m is even or odd) by repeated
use of the above identity. Thus we may write

∫ 1

−1
Pm

l (x)Pm−1
l′−1 (x)

dx
√

1 − x2
=


∫ 1
−1 Pm

m(x)Pm−1
l′−1 (x) dx

√

1−x2

or∫ 1
−1 Pm

m+1(x)Pm−1
l′−1 (x) dx

√

1−x2
.

(E.21)

Finally using the relations,

Pm
m = (−1)m (2m − 1)!! (1 − x2)m/2

= (−1)(2m − 1)
√

1 − x2Pm−1
m−1, (E.22)

Pm
m+1 = x(2m + 1)Pm

m = x(2m + 1)(−1)(2m − 1)
√

1 − x2Pm−1
m−1

= (−1)(2m + 1)
√

1 − x2Pm−1
m (E.23)

and the orthonormality condition in eq. (E.2) we can see that in both the cases right
side of eq. (E.21) is zero. This completes the proof.
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Appendix F

Derivations for general analysis of
beam correction to pseudo-Cl
estimator

F.1 Useful formulae

• Important relations [eq. (1)s of §4.3, §4.17 & §5.4 and eq. (2) of §4.4 of [100]]:

Dl
mm′(q̂, ρ) = e−imφ dl

mm′(θ) e−im′ρ (F.1)

Y∗lm(q̂) =

√
2l + 1

4π
Dl

m0(q̂, ρ) =

√
2l + 1

4π
e−imφ dl

m0(θ) (F.2)

Dl∗
mm′(q̂, ρ) = (−1)m−m′ Dl

−m−m′(q̂, ρ) (F.3)

Y∗lm(q̂) = (−1)m Yl−m(q̂) (F.4)

Note that, unlike [118], the argument of the Wigner-d function is θ (standard
definition) not cosθ.

• The Clebsch-Gordon series:

Expansion of the product of two Wigner-D functions [eqn (1) of §4.6 of [100]]:

Dl1
m1n1

(q̂, ρ) Dl2
m2n2

(q̂, ρ) =
l1+l2∑

l=|l1−l2|

Cl(m1+m2)
l1m1l2m2

Dl
(m1+m2)(n1+n2)(q̂, ρ) Cl(n1+n2)

l1n1l2n2
, (F.5)
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where Clm
l1m1l2m2

are the Clebsch-Gordon coefficients.
The special case of spherical harmonics [eq. (9) of §5.6 of [100]]:

Yl1m1(q̂) Yl2m2(q̂) = (F.6)
l1+l2∑

l=|l1−l2|

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
Cl0

l10l20 Cl(m1+m2)
l1m1l2m2

Yl(m1+m2)(q̂).

In modifying the above equations (from [100]) we have used the fact that the
Clebsch-Gordon coefficients Clm

l1m1l2m2
vanish if m , m1 +m2.

• The integral
∫ π

0 dθ sinθ eiNθ equals to:∫ π

0
dθ

[
ei(N+1)θ

− ei(N−1)θ

2i

]
= (F.7)

±iπ/2 if N = ±1[
1−ei(N+1)π

2(N+1) −
1−ei(N−1)π

2(N−1)

]
=

 0 if N = odd (, ±1)
2

1−N2 if N = 0, even.

The above can be used to define an useful quantity

f (m′; N) := <

[
im
′

(−1)N
∫ π

0
sinθdθ eiNθ

]
(F.8)

=


(−1)(m′±1)/2 π/2 if m′ = odd and N = ±1

(−1)m′/2 2/(1 −N2) if both m′,N = 0 or even
0 otherwise.

F.2 Expansion of Wigner-D Function

Motivation

This derivation is motivated from eq. (10) of §4.16 of [100]. However, the motivating
equation is wrong, as it predicts Dl

mm′(φ, θ, ρ) = 0 if m + m′ = odd. We derive the
correct formula by “reverse engineering”. We start with the second expression of
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the above mentioned equation [see below for steps]:

l∑
M1,M2,M3,M4=−l

[
Dl

mM1

(
φ, 0, 0

)
Dl

M1M2

(
0,
π
2
, 0

)
Dl

M2M3
(0, θ, 0)

Dl
M3M4

(
0,
π
2
, 0

)
Dl

M4m′
(
0, 0, ρ

)]
= e−imφ

l∑
M2,M3=−l

[
Dl

mM2

(
0,
π
2
, 0

)
Dl

M2M3
(θ, 0, 0) Dl

M3m′

(
0,
π
2
, 0

)]
e−im′ρ

= e−imφ
l∑

M2=−l

[
Dl

mM2

(
0,
π
2
, 0

)
Dl

M2m′

(
θ,
π
2
, 0

)]
e−im′ρ

= e−imφ Dl
mm′

(
π
2
, π − θ,

π
2

)
e−im′ρ = Dl

mm′

(
π
2
+ φ, π − θ,

π
2
+ ρ

)
(F.9)

Steps

Step I
From eq. (1) & (2) of §4.16, pg.112 of [100].

Dl
mm′(φ, 0, 0) = e−imφ Dl

mm′(0, 0, 0) (F.10)

Dl
mm′(0, 0, ρ) = Dl

mm′(0, 0, 0) e−im′ρ (F.11)

Dl
mm′(0, 0, 0) = δmm′ . (F.12)

Step II1

e−imφ
l∑

M3=−l

[
Dl

mM3

(
0,
π
2
, θ

)
Dl

M3m′

(
0,
π
2
, 0

)]
e−im′ρ (F.13)

From the “Addition of Rotations" formula in eq. (3) of §4.7, pg.87 of [100].

l∑
M=−l

[
Dl

mM(φ, θ1, γ) Dl
Mm′(−γ, θ2, ρ)

]
= Dl

mm′(φ, θ1 + θ2, ρ). (F.14)

1Another way is to combine the first two remaining D symbols using eq. (1) of §4.16, pg.112 of [100]
and then evaluate the following in Step III using the “Addition of Rotations" formula similar to the
present method:
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Step III
From eq. (1) of §4.7, pg.87 of [100] we may write

l∑
M=−l

[
Dl

mM(0,
π
2
, 0) Dl

Mm′(θ,
π
2
, 0)

]
= Dl

mm′(α, β, γ) (F.15)

where α, β, γ are to be obtained using eq. (66)-(70) of §1.4, pg.32 of [100]. Note that
the arguments of the first D symbol have been denoted by α2, β2, γ2 respectively and
not by α1, β1, γ1.
From eq. (66) of §1.4, pg.32 of [100], since 0 ≤ α < 2π, 0 ≤ β ≤ π, 0 ≤ γ < 2π

cosα = 0 ⇒ α =
π
2

or
3π
2

(F.16)

cos β = − cosθ ⇒ β = π − θ (F.17)

cosγ = 0 ⇒ γ =
π
2

or
3π
2
. (F.18)

From eq. (67) of §1.4, pg.32 of [100]

sinα = sinγ =
sinθ
sinθ

= 1. (F.19)

Combining the above equations we may write

α =
π
2

; β = π − θ; γ =
π
2
. (F.20)

Final expression

We can modify eq. (F.9) by changing φ→ φ − π
2 , θ→ π − θ, ρ→ ρ − π

2 to reach the
desired expansion:

Dl
mm′

(
φ, θ, ρ

)
= e−im(φ−π/2)e−im′(ρ−π/2)

× (F.21)
l∑

M2,M3=−l

[
Dl

mM2

(
0,
π
2
, 0

)
Dl

M2M3
(π − θ, 0, 0) Dl

M3m′

(
0,
π
2
, 0

)]
.

Then using the definitions of Wigner-d functions from eq. (1) of §4.3, pg.76 and
eq. (1) of §4.16, pg.112 of [100], we get

Dl
mm′

(
φ, θ, ρ

)
= im+m′ e−imφ

l∑
M=−l

[
(−1)M dl

mM

(
π
2

)
eiMθ dl

Mm′

(
π
2

)]
e−im′ρ. (F.22)
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This also means

dl
mm′(θ) = im+m′

l∑
M=−l

[
(−1)M dl

mM

(
π
2

)
eiMθ dl

Mm′

(
π
2

)]
. (F.23)

The coefficients dl
mm′(π/2) can be directly calculated using eq. (5) of §4.16, pg.113

of [100]

dl
mm′

(
π
2

)
= (−1)m−m′ 1

2l

√
(l +m)!(l −m)!

(l +m′)!(l −m′)!
× (F.24)

max{l+m′, l−m}∑
k=max{0,m′−m}

(−1)k

 l +m′

k

  l −m′

k +m −m′

 .
F.3 Evaluation of Jll′′l′

nm′′mm′ using sinusoidal expansion of Wigner-
d

Putting eq. (9.21) in eq. (9.20) we get

Jll′′l′
nm′′mm′ :=

∫
S2

dΩq̂ Yln(q̂) Yl′′m′′(q̂) Dl′
mm′(q̂, ρ(q̂)) (F.25)

=

√
(2l + 1)(2l′′ + 1)

4π

∫ 2π

0
dφ ei(n+m′′−m)φ

×∫ π

0
sinθdθ dl

n0(θ) dl′′
m′′0(θ) dl′

mm′(θ) e−im′ρ(q̂)

=

√
(2l + 1)(2l′′ + 1)

4π
in+m+m′+m′′

l∑
M=−l

dl
nM

(
π
2

)
dl

M0

(
π
2

)
×

l′′∑
M′′=−l′′

dl′′
m′′M′′

(
π
2

)
dl′′

M′′0

(
π
2

) l′∑
M′=−l′

dl′
mM′

(
π
2

)
dl′

M′m′

(
π
2

)
×

(−1)M+M′′+M′
∫ 2π

0
dφ ei(n+m′′−m)φ

∫ π

0
sinθdθ ei(M+M′+M′′)θ e−im′ρ(q̂).

To proceed further analytically, we need a model for ρ(q̂). We shall continue
assuming non-rotating beams, i.e. ρ(q̂) = 0. In this case the φ integral above is
separable. Using, ∫ 2π

0
dφ ei(n+m′′−m)φ = 2πδm′′(m−n) (F.26)
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we can get a simplified result:

Jll′′l′
nm′′mm′ = 2πδm′′(m−n)

√
(2l + 1)(2l′′ + 1)

4π

l∑
M=−l

dl
nM

(
π
2

)
dl

M0

(
π
2

)
×

l′′∑
M′′=−l′′

dl′′
m′′M′′

(
π
2

)
dl′′

M′′0

(
π
2

) l′∑
M′=−l′

dl′
mM′

(
π
2

)
dl′

M′m′

(
π
2

)
×[

in+m+m′+m′′ (−1)M+M′′+M′
∫ π

0
sinθdθ ei(M+M′+M′′)θ

]
. (F.27)

The above expression is real. The proof follows:

• Contribution for all of M,M′,M′′ = 0:
In this term (of the summation) the integral of the above expression is real.
Therefore, if n +m +m′ +m′′ = even this term is real (because then the factor
in+m+m′+m′′ is real). When n +m +m′ +m′′ = odd, which means at least one of
n,m+m′,m′′ is odd, this term does not contribute, since dl

m0(π/2)dl
0m′(π/2) = 0

if m +m′ = odd (follows from eq. (6) of §4.16 of [100]).

• Contribution for not all of M,M′,M′′ = 0:
For each set of M,M′,M′′ in the above summation, there exists a set−M,−M′,−M′′,
which converts the integral of the above expression to its complex conju-
gate. Since dl

mm′(π/2) = (−1)l−m′dl
−mm′(π/2) = (−1)l+mdl

m−m′(π/2) [see eq. (1)
of §4.4 of [100]], the Wigner-d symbols give a factor of (−1)n+m+m′+m′′ . So, if
n + m + m′ + m′′ = even, the sum is real, as well as the factor in+m+m′+m′′ and
both are imaginary if n +m +m′ +m′′ = odd.

Therefore, the full summation is always real.

Following the discussion on the reality of the expression and using eq. (F.8) we
can write

Jll′′l′
nm′′mm′ = 2πδ(m−n)m′′ (−1)m

√
(2l + 1)(2l′′ + 1)

4π
×

l∑
M=−l

dl
nM

(
π
2

)
dl

M0

(
π
2

) l′′∑
M′′=−l′′

dl′′
(m−n)M′′

(
π
2

)
dl′′

M′′0

(
π
2

)
×

l′∑
M′=−l′

dl′
mM′

(
π
2

)
dl′

M′m′

(
π
2

)
f (m′; M +M′ +M′′). (F.28)
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Moreover, since for “symmetric" beams βlm = 0 for m = odd, in the final expression
terms with m′ = odd shall not contribute, that means, for symmetric beams, f (m′; N)
contributes only when both m′,N = 0 or even.

To make the final expression more simple, we can write the bias matrix for
non-rotating beam with incomplete sky coverage as:

All′ = B2
l

(2l′ + 1)
16π

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
∞∑

l′′=0

√

2l′′ + 1 Ul′′(m−n) × (F.29)

l′′∑
M′′=−l′′

dl′′
(m−n)M′′

(
π
2

)
dl′′

M′′0

(
π
2

) l∑
M=−l

dl
nM

(
π
2

)
dl

M0

(
π
2

)
×

l′∑
M′=−l′

dl′
mM′

(
π
2

) l′∑
m′=−l′

βl′m′ dl′
M′m′

(
π
2

)
f (m′; M +M′ +M′′)

∣∣∣∣∣∣∣
2

.

This form could be useful for numerical evaluation.

F.4 Evaluation of Jll′′l′
nm′′mm′ using Clebsch-Gordon series and

sinusoidal expansion of Wigner-d

Putting eqn (F.6), (F.4), (F.2), (F.5) & (9.21) in eqn (9.19) we get

Jll′′l′
nm′′mm′ ≡

∫
S2

dΩq̂ Yln(q̂) Yl′′m′′(q̂) Dl′
mm′(q̂, ρ(q̂)) (F.30)

=

l+l′′∑
L=|l−l′′|

√
(2l + 1)(2l′′ + 1)

4π(2L + 1)
CL0

l0l′′0 CL(n+m′′)
lnl′′m′′ ×∫

S2
dΩq̂ YL(n+m′′)(q̂)Dl′

mm′(q̂, ρ(q̂))

= (−1)n+m′′
√

(2l + 1)(2l′′ + 1)
4π

×

l+l′′∑
L=|l−l′′|

CL0
l0l′′0CL(n+m′′)

lnl′′m′′

∫
S2

dΩq̂DL
(−n−m′′)0(q̂, ρ(q̂))Dl′

mm′(q̂, ρ(q̂))

= (−1)n+m′′
√

(2l + 1)(2l′′ + 1)
4π

l+l′′∑
L=|l−l′′|

CL0
l0l′′0 CL(n+m′′)

lnl′′m′′ ×

L+l′∑
L′=|L−l′|

CL′(m−n−m′′)
L(−n−m′′)l′m CL′m′

L0l′m′

∫
S2

dΩq̂ DL′
(m−n−m′′)m′(q̂, ρ(q̂)).
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Now using eq. (9.21) one can write integrals of the above form as (m−n−m′′ →M′

& m′ →M′′):∫
S2

dΩq̂ DL′
M′M′′(q̂, ρ(q̂)) = (F.31)

iM
′+M′′

L′∑
N=−L′

(−1)N dL′
M′N

(
π
2

)
dL′

NM′′

(
π
2

) ∫
S2

dΩq̂ e−iM′φ eiNθ e−iM′′ρ(q̂).

To proceed further analytically, we need a model for ρ(q̂). We shall continue
assuming non-rotating beams, i.e. ρ(q̂) = 0. In this case the φ integral above is
separable. Then, putting eq. (F.26) we get∫

S2
dΩq̂ DL′

M′M′′(q̂, 0) = (F.32)

2πδM′0 iM
′′

L′∑
N=−L′

(−1)N dL′
0N

(
π
2

)
dL′

NM′′

(
π
2

) ∫ π

0
sinθdθ eiNθ.

This integral is real. This becomes clear if we write the right hand side of the above
equation as

2πδM′0iM
′′

2 dL′
00

(
π
2

)
dL′

0M′′

(
π
2

)
+

L′∑
N=1

(−1)NdL′
0N

(
π
2

)
dL′

NM′′

(
π
2

)
∫ π

0
sinθdθ

{
eiNθ + (−1)M′′e−iNθ

}]
. (F.33)

When M′′ = even both iM
′′

and the integrand are real, and when M′′ = odd
both iM

′′

and the integrand are imaginary. The first term inside the square bracket
does not contribute when M′′ = odd (since dL′

00(π/2)dL′
0M′′(π/2) vanishes in that case).

Therefore irrespective of the value of M′′ the above expression is real. Thus,∫
S2

dΩq̂ DL′
M′M′′(q̂, 0) = (F.34)

2πδM′0

L′∑
N=−L′

dL′
0N

(
π
2

)
dL′

NM′′

(
π
2

)
<

[
iM
′′

(−1)N
∫ π

0
sinθdθ eiNθ

]
.
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Now we can use the above results and combine with eq. (F.8) to get

Jll′′l′
nm′′mm′ = (−1)n+m′′ δm′′(m−n)

√
(2l + 1)(2l′′ + 1)

2
×

l+l′′∑
L=|l−l′′|

CL0
l0l′′0 CL(n+m′′)

lnl′′m′′

L+l′∑
L′=|L−l′|

CL′(m−n−m′′)
L(−n−m′′)l′m CL′m′

L0l′m′ ×

L′∑
N=−L′

dL′
0N

(
π
2

)
dL′

Nm′

(
π
2

)
f (m′; N). (F.35)

The final form of the bias matrix for non-rotating beam with incomplete sky
coverage can now be written as (after replacing m′′ by m−n, pulling out few factors
outside the modulus and squaring):

All′ = B2
l

(2l′ + 1)
16π

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
∞∑

l′′=0

√

2l′′ + 1 Ul′′(m−n) ×

l+l′′∑
L=|l−l′′|

CL0
l0l′′0 CLm

lnl′′(m−n)

L+l′∑
L′=|L−l′|

CL′0
L−ml′m

L′∑
N=−L′

dL′
0N

(
π
2

)
×

l′∑
m′=−l′

βl′m′ CL′m′
L0l′m′ dL′

Nm′

(
π
2

)
f (m′; N)

∣∣∣∣∣∣∣
2

. (F.36)

F.5 The full sky and circular beam limit

Here we recover the special case of circular beam and complete sky coverage limit.
From Eq. F.36, the full sky limit [Ulm =

√
4πδl0] is obtained by replacing Ul′′(m−n)

with
√

4πδl′′0δmn; and for the circular beam, we replace the BDP βl′m′ with δm′0. So,

All′ = B2
l

2l′ + 1)
4

min(l,l′)∑
n=−min(l,l′)

∣∣∣∣∣∣∣Cl0
l000 Cln

ln00

l+l′∑
L′=|l−l′|

CL′0
l−nl′n CL′0

l0l′0 ×

L′∑
N=−L′

dL′
0N

(
π
2

)
dL′

N0

(
π
2

)
f (0; N)

∣∣∣∣∣∣∣
2

. (F.37)
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From the relation Ccγ
aα00 = δacδαγ (Eq. (2) in §8.5.1 of [100]), we can reduce Cl0

l000 and
Cln

ln00 to unity, and get:

All′ = B2
l

2l′ + 1
4

min(l,l′)∑
n=−min(l,l′)∣∣∣∣∣∣∣

l+l′∑
L′=|l−l′|

CL′0
l−nl′n CL′0

l0l′0

L′∑
N=−L′

dL′
0N

(
π
2

)
dL′

N0

(
π
2

)
f (0; N)

∣∣∣∣∣∣∣
2

. (F.38)

To get the value of
∑L′

N=−L′ dL′
0N

(
π
2

)
dL′

N0

(
π
2

)
f (0; N), we have to start a step back.

Y∗lm(q̂) =

√
2l + 1

4π
Dl

mm′(q̂, 0)

=

√
2l + 1

4π
ime−imφ

l∑
N=−l

(−1)Ndl
mN

(
π
2

)
dl

N0

(
π
2

)
eiNθ (F.39)

From the relation ∫
S2

Y∗lm(q̂)dΩq̂ =
√

4πδl0δm0

it follows that√
2l + 1

4π
im

l∑
N=−l

(−1)Ndl
mN

(
π
2

)
dl

N0

(
π
2

) ∫
eiNθsinθdθ

∫
e−imφdφ

=
√

4πδl0δm0. (F.40)

The last integral (i.e.,
∫

e−imφdφ) gives 2πδm0. So, equating out both sides and
rearranging, we have

im
l∑

N=−l

(−1)Ndl
mN

(
π
2

)
dl

N0

(
π
2

) ∫
eiNθsinθdθ

∫
e−imφdφ =

2
√

2l + 1
δl0. (F.41)
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The l.h.s. is identified with the relation
∑L′

N=−L′ dL′
0N

(
π
2

)
dL′

N0

(
π
2

)
f (0; N), and hence

Eq.(F.38) reduces to

All′ = B2
l

2l′ + 1
4

min(l,l′)∑
n=max(−l,−l′)

∣∣∣∣∣∣∣
l+l′∑

L′=|l−l′|

CL′0
l−nl′n CL′0

l0l′0
2

√
2L′ + 1

δL′0

∣∣∣∣∣∣∣
2

= B2
l (2l′ + 1)

min(l,l′)∑
n=max(−l,−l′)

∣∣∣C00
l−nl′n C00

l0l′0

∣∣∣2 . (F.42)

We know from Eq. (1) of §8.5.1 of [100]

C00
aαbβ = (−1)a−α δabδα,−β

√
2a + 1

.

Hence, All′ finally reduces to the desired result

All′ = B2
l δll′ .

F.6 The circular beam limit with cut sky

We will show in this section that our formulation reduces to the analytic limit of
the MASTER method of Hivon et al. [167] for the incomplete sky coverage taking
circular beams. Following the procedure mentioned in section F.5, we proceed as:

All′ = B2
l

2l′ + 1
16π

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
∞∑
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√
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×
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dL′
0N

(
π
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)
dL′

N0

(
π
2

)
f (0; N)
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2

(F.43)
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Using Eq. (F.41), we get

All′ = B2
l

2l′ + 1
4π

l∑
n=−l

l′∑
m=−l′∣∣∣∣∣∣∣

∞∑
l′′=0

√
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l+l′′∑
L=|l−l′′|
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lnl′′(m−n)C
00
L(−m)l′m C00
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2

=
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l

4π

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
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√

2l′′ + 1 Ul′′(m−n)

l+l′′∑
L=|l−l′′|

CL0
l0l′′0 CLm

lnl′′(m−n)

∣∣∣∣∣∣∣
2

To arrive at Eq. A31 of Hivon et al. [167], we first replace (m-n) by m′′ and then open
up the modulus square. The symbol Cl′m

lnl′′m′′ contributes only when m′′ is equal to
(m-n) and also l′′ satisfies the triangle inequality.

All′ =
B2

l

4π (2l′ + 1)

l∑
n=−l

l′∑
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l0l′′0 Cl′m
lnl′′m′′
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2

=
B2

l

4π(2l′ + 1)

l∑
n=−l

l′∑
m=−l′


∞∑

l′′1 =0

√
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l0l′′1 0
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√
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(F.44)

The last summation
∑l

n=−l
∑l′

m=−l′ Cl′m
lnl′′1 m′′1

Cl′m
lnl′′2 m′′2

simplifies to (2l′+1)/(2l′′1 +1)δl′′1 l′′2
δm′′1 m′′2

by Eq. (5) of § 8.7.2 of [100]. So, we have

All′ =
B2

l

4π

l+l′∑
l′′=|l−l′|

(
Cl′0

l0l′′0

)2
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|Ul′′m′′ |

2

= B2
l

2l′ + 1
4π
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l′′=|l−l′|

(2l′′ + 1)

 l l′ l′′

0 0 0

2

Ul′′ , (F.45)
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whereUl′′ :=
∑l′′

m′′=−l′′ |Ul′′m′′ |
2/(2l′′ + 1). This matches the final expression of [167]

[See eqn (A31)].

F.7 The full sky limit with non-circular beam

The full sky limit to the final expression should reproduce the result obtained
in [118]. We substitute Ulm =

√
4πδl0 [⇒ Ul′′(m−n) =

√
4πδl′′0δmn] in eqn (9.25) and

get

All′ = B2
l
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4

min(l,l′)∑
m=−min(l,l′)

∣∣∣∣∣∣∣Cl0
l000 Clm

lm00

l+l′∑
L=|l−l′|

CL0
l−ml′m ×

L∑
N=−L

dL
0N

(
π
2

) l′∑
m′=−l′

βl′m′ CLm′
l0l′m′ dL

Nm′

(
π
2

)
f (m′; N)

∣∣∣∣∣∣∣
2

. (F.46)

Using the relation Ccγ
aα00 = δacδαγ [Eq. (2) in §8.5.1 of [100])] we may write Cl0

l000 =

Clm
lm00 = 1. Then rearranging terms, we may write

All′ = B2
l

(2l′ + 1)
4

min(l,l′)∑
m=−min(l,l′)
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2

. (F.47)

Using the definition of f (m′; N) [eqn (9.24)] and the expansion formula for Wigner-d
[eqn (9.21)] we may write

L∑
N=−L

dL
0N

(
π
2

)
dL

Nm′

(
π
2

)
f (m′; N) =

∫ 1

−1
d cosθ dL

0m′(θ). (F.48)

Then, using the Clebcsh-Gordon series [eqn (F.5)] we get

l+l′∑
L=|l−l′|

CL0
l−ml′m dL

0m′(θ) CLm′
l0l′m′ = (−1)m dl

m0(θ) dl′
mm′(θ). (F.49)
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Finally, putting everything together, we get the expression for the bias matrix in the
full sky limit with non-circular beam as

All′ = B2
l

(2l′ + 1)
4

min(l,l′)∑
m=−min(l,l′)

∣∣∣∣∣∣∣
l′∑

m′=−l′
βl′m′

∫ 1

−1
d cosθ dl

m0(θ) dl′
mm′(θ)

∣∣∣∣∣∣∣
2

, (F.50)

which matches eqn (38) of [118].
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Appendix G

Fast computation of non-circular
beam correction to
CMB power spectrum

The general analytical results obtained in chapter 9 to estimate the bias in CMB
power spectrum due to noncircular beams including the effect of incomplete sky
coverage will be important only if the evaluation time is much faster than carrying
full blown simulations. The fast evaluation of the analytical results is, however, not
straight forward. Smart innovations are necessary for the numerical implementa-
tion of the analysis. The basic principle of the fast implementation algorithm have
been outlined in section 9.2, the detailed calculations are presented in this appendix.

The full expression for the bias matrix with no rotation:

All′ = B2
l

2l′ + 1
16π

l∑
n=−l

l′∑
m=−l′

∣∣∣∣∣∣∣
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2l′′ + 1 Ul′′(m−n) × (G.1)

l′′∑
M′′=−l′′

dl′′
(m−n)M′′

(
π
2

)
dl′′

M′′0

(
π
2

) l∑
M=−l

dl
nM

(
π
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)
×
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βl′m′ dl′
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(
π
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)
f (m′; M +M′ +M′′)

∣∣∣∣∣∣∣
2

.

The following way of calculation requires less computation cost. V1,2,3 have been
used as intermediate arrays. This prescription is only for the loops inside the
modulus, so for each m,n pair all the three steps have to be performed.
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CMB power spectrum

• Step I:

V1(N) =
l′∑

M′=−l′
dl′

mM′

(
π
2

) l′∑
m′=−l′

βl′m′ dl′
M′m′

(
π
2

)
f (m′; M′ +N), (G.2)

N runs from −(l + l′′max) to +(l + l′′max).

• Step II

V2(M′′) =
l∑

M=−l

dl
nM

(
π
2

)
dl

M0

(
π
2

)
V1

ll′[M +M′′; m]. (G.3)

• Step III

V3 =

l′′max∑
l′′=0

√

2l′′ + 1 Ul′′(m−n)

l′′∑
M′′=−l′′

dl′′
(m−n)M′′

(
π
2

)
dl′′

M′′0

(
π
2

)
V2

ll′[M
′′; n]. (G.4)

Required number of cycles to compute V3 for each pair m,n for lmax � l′′max and the
cut off for the m′ summation at m′max = mbeam is:{2(l + l′′max) + 1}(2l′ + 1)(2mbeam + 1) + (2l′′max + 1)(2l + 1) +

l′′max∑
l′′=0

(2l′′ + 1)

 (G.5)

As mentioned earlier we are interested in the total number of computation cycles
in the limit lmax � l′′max. Before procceeding further we note that Ul′′m′′ = Ul′′m−n is
limited to only mmask modes for each l′′. Here mmask > 0. Thus means that N varies
from −(l+mmask) to (l+mmask) in Step I. Moreover, the condition for non-negligible
values of Ul′′m−n becomes |m − n| < mmask. This in turm implies that m − n < mmask

when m − n > 0, and −m + n < mmask when m − n < 0. Then we see that for each
n,m can run only from n−mmask to n+mmask for a total of 2mmask + 1 values so that
Ul′′m−n’s are non zero.
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Thus considering two outer loops over m,n total computation cylces becomes

lmax∑
l=2

lmax∑
l′=2

(2l + 1)(2mmask + 1)
[
{2(l + l′′max) + 1}(2l′ + 1)(2mbeam + 1)+

(2l′′max + 1)(2l + 1) +
l′′max∑
l′′=0

(2l′′ + 1)


= (2mmask + 1)

lmax∑
l=2

lmax∑
l′=2

(2l + 1)
[
{2(l + l′′max) + 1}(2l′ + 1)(2mbeam + 1)+

(2l′′max + 1)(2l + 1) +
l′′max∑
l′′=0

(2l′′ + 1)


= (2mmask + 1)

lmax∑
l=2
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l′=2

(2l + 1)
[
2l′′max(2l′ + 1)(2mbeam + 1)+

(2l + 1)(2l′ + 1)(2mbeam + 1) + (2l′′max + 1)(2l + 1) +
l′′max∑
l′′=0

(2l′′ + 1)


The computation cycles will be decided by the maximum power of the largest
term in the above expression. Clearly the second term in the bracket will give the
maximum contribution as it contains highest powers combined from l, l′. Hence
the total number of cycles is

(2mmask + 1)
lmax∑
l=2

4l2
lmax∑
l′=2

(2l′)(2mbeam + 1) = (2mmask + 1)(2mbeam + 1) ×

8
[
lmax(lmax + 1)(2lmax + 1)

6
− 1

] [
lmax(lmax + 1)

2
− 1

]
(G.6)

For lmax � 1 the computation cost scales as (4/3)(2mmask + 1)(2mbeam + 1)l5max.
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