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General relativity predicts the existence of gravitational waves produced by

the motion of massive objects. The inspiral, merger, and ringdown of black hole

binaries is expected to be one of the brightest sources in the gravitational wave sky.

Interferometric detectors, such as the current ground-based Laser Interferometer

Gravitational Wave Observatory (LIGO) and the future space-based Laser Interfer-

ometer Space Antenna (LISA), measure the influx of gravitational radiation from

the whole sky. Each physical process that emits gravitational radiation will have a

unique waveform, and prior knowledge of these waveforms is needed to distinguish a

signal from the noise inherent in the interferometer. In the strong field regime of the

merger, only numerical relativity, which solves the full set of Einstein’s equations

numerically, has been able to provide accurate waveforms.

We present a comprehensive study of the nonspinning portion of parameter

space for which we have generated accurate simulations of the late inspiral through

merger and ringdown, and a comparison of those results with predictions from the

adiabatic Taylor-expanded post-Newtonian (PN) and effective-one-body (EOB) PN

approximations. We then focus on data analysis questions using the equal-mass



nonspinning as well as the 2:1, 4:1, and 6:1 mass ratio nonspinning black hole binary

(BHB) waveforms. We construct a full waveform by combining our results from

numerical relativity with a highly accurate Taylor PN approximation, and use it

to calculate signal-to-noise ratios (SNRs) for several detectors. We measure the

mass ratio scaling of the waveform amplitude through the inspiral and merger, and

compare our observations with predictions from PN. Lastly, we turn our focus to

parameter estimation with LISA, and investigate the increased accuracy with which

parameters can be measured by including both the merger and inspiral waveforms,

compared to estimates without numerical waveforms which can only incorporate the

inspiral. We use the equal mass, nonspinning waveform as a test case and assess the

parameter uncertainty by means of the Fisher matrix formalism.
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Preface

Over the last few years, I have benefited from having access to Hahndol, the

numerical relativity finite difference code written and maintained at NASA God-

dard Space Flight Center. The waveforms shown throughout this work were all

generated using Hahndol. Likewise, I have had the opportunity to collaborate with

the scientists at NASA Goddard, and a significant portion of Chapters 3 and 4 has

already been published with those collaborators as coauthors [1, 2]. For the unequal

mass work, which as yet unpublished, James van Meter performed the numerical

simulations, but the analysis and text presented is my own work.

The work on parameter estimation has been done in collaboration with Ira

Thorpe, John Baker, and Keith Arnaud. I wrote the original driver code in C++

for generating the waveforms and incorporating LISA’s response via interfacing with

Synthetic LISA, which uses both Python and C++. John and I wrote the original

Python code that actually ran Synthetic LISA, and used the resulting TDI observ-

ables to calculate the Fisher and covariance matrices, thus giving the parameter

accuracy estimate. Keith contributed improvements to the code, and Ira subse-

quently converted most of the Python content to C++ to make the code more

compact, and he has subsequently tested and validated the code extensively while

I have been occupied with this work, for which I am exceedingly grateful. Some of

the results from the code presented here were presented at the 12th Gravitational

Wave Data Analysis Workshop (GWDAW) and are being prepared for publication

in [3].
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Chapter 1

Introduction

Henceforth, space by itself, and time by itself, are doomed to fade away into mere

shadows, and only a kind of union of the two will preserve an independent reality.

-Hermann Minkowski

We are all made of stars.

-Moby

1.1 The Birth of Black Holes

To fully retrace the steps that lead to the creation of black holes, we must first

follow the progression that brought about the birth of stars. Stars are the factories

that take raw materials, hydrogen and helium in this case, and produce a steady

supply of heavier elements for the entire universe. In fact, without stars there would

be no elements heavier than beryllium [4]. Roughly one second after the Big Bang,

when the universe had cooled enough to sustain stable protons and neutrons, the

entire universe behaved like a fledgling star, fusing successively more massive compo-

nents for the first three minutes. This period is known as Big Bang nucleosynthesis,

or BBN [5, 6]. This period ended when the universe reached a bottleneck trying to

fuse either 5 or 8 nucleons into a nucleus, since both configurations are unstable.

Stars circumvent the BBN bottleneck by means of the triple-alpha process, whereby

1



three helium-4 nuclei produce a carbon nucleus. However, the reaction rate of the

triple-alpha process is proportional to ρ2, where ρ is the density of the gas. There-

fore, since the typical density of the universe within minutes of the Big Bang was

too low for helium-4 nuclei to efficiently find each other, the triple-alpha process

would take tens of thousands of years, and so would not be sufficiently expeditious

to prevent the bottleneck which ended Big Bang nucleosynthesis [4]. It took hun-

dreds of thousands of years for the universe to reach a temperature where the nuclei

could capture free electrons to form the first atoms. It was at this point that the

universe became optically thin, and photons could span the cosmos unimpeded.

For another billion years, very little happened. The slight inhomogeneities in

the mass distribution of the early universe that were observed by COBE and, more

recently, WMAP, led to pockets with higher density than the surrounding space.

Eventually, clouds of gravitationally bound matter began to form, meaning that in-

stead of the gas spreading out as it otherwise would in a rapidly expanding universe,

the cloud would contract under gravity. For such cases, the gravitational attraction

is counteracted primarily by the gas pressure, although rotation of the cloud and

internal electromagnetic repulsion can play significant roles. If the mass exceeds a

certain limit (referred to as the Jeans mass when rotation and electromagnetism

are neglected), the cloud will collapse under the force of gravity, building up ever

greater pressure at the core of the cloud until fusion is ignited [4].

Hydrogen fusion will continuously populate the core with helium. Where the

star evolves from there depends on a number of factors, but the dominant factor,

and the one which determines a star’s ultimate fate, is its mass. The star may
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continue fusing hydrogen in the envelope but be too light to fuse helium until very

late in the evolution. In this case, the hydrogen-fusing envelope actually generates

more luminosity than the hydrogen-fusing core did, but some of that energy goes

into slowly expanding the envelope, thereby decreasing its temperature and shifting

it to the red part of the visible spectrum. This type of star is referred to as a

red giant. On the other hand, the star may be sufficiently massive to fuse all the

elements up to iron, which requires an endothermic reaction to fuse and so will

not occur spontaneously [4]. The latter possibility will lead to a particular class of

supernova, or catastrophic stellar explosion, which will in turn provide the energy

to fuse all the stable elements with atomic numbers higher than iron. Therefore, all

the naturally-occurring elements heavier than beryllium were born from either the

evolution or the death throes of stars.

Eventually, a star will populate an electron-degenerate core via fusion in its en-

velope, meaning the core will be supported against gravitational collapse by electron

degeneracy pressure alone. If the final core is less than 1.4 M⊙, the Chandrasekhar

limit, the star will remain electron degenerate and be called a white dwarf. How-

ever, if the star’s total mass is sufficient for the envelope to populate a more massive

core, electron degeneracy will be overcome, and the star will become a neutron star

if neutron degeneracy is able to stop the in-fall and support the mass of the core,

or else the star will collapse to a singularity, where all the mass is concentrated at

a single point in space [4]. In this last case, any information contained in the star

other than its mass, spin, and charge (for instance, all the data on the computers

of the extremely heat-tolerant aliens living on the star) is erased from the universe.
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This state of complete collapse is known as a black hole, because it has the amazing

property that, within a certain distance from the singularity, even a photon lacks

sufficient velocity to escape the gravitational pull of the singularity. The surface

dividing the region where light can escape the singularity from the region where it

is inexorably drawn to it by gravity is called the event horizon. Because light can-

not escape, no information can be sent from inside the event horizon1. The region

inside the event horizon is therefore causally disconnected, or in layman’s terms,

completely cut off from the rest of the universe.

Black holes are the most dense objects in the universe, and so, as we will

detail in the next section, they create extreme curvature in spacetime. Furthermore,

accelerating black holes will induce change in the surrounding spacetime curvature.

Changes in the curvature of spacetime are referred to as gravitational waves. If two

black holes are in orbit with one another, the mutual acceleration that they induce

will cause extremely powerful emission of gravitational waves, resulting in a loss of

orbital energy that drives the black holes toward coalescence. However, for a brief

time before the black holes collide, the energy carried by gravitational waves exceeds

the energy carried by electromagnetic waves from all the stars in the universe.

1Throughout this work, we apply only classical theory. If one includes quantum effects, then

the phenomena of Hawking radiation may or may not permit information to escape through the

event horizon. There is, at present, still substantial disagreement in the community as to whether

Hawking radiation can carry information.
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1.2 Gravitational Waves from Black Hole Binaries

The energy and momentum content of spacetime, which is described by the

stress-energy tensor Tµν , can be related to the curvature of spacetime, described by

the Einstein tensor Gµν , through the relation known, fittingly enough, as Einstein’s

equation,

Gµν = 8πTµν , (1.1)

where we have set G = c = 1. Black holes induce curvature on spacetime but, as

is well known, the singularity itself has very little, if any, spatial extent. 2 Black

holes result from the complete gravitational collapse of a star, and can therefore be

viewed as pure curvature, or curvature in a vacuum. If we limit our focus to the

general relativistic prediction for systems containing only black holes, then we can

set Tµν to zero, yielding

Gµν = 0, (1.2)

which is the vacuum form of Einstein’s equation. Furthermore, eq. (1.1) predicts

that accelerating bodies will emit waves of curvature change through spacetime

known as gravitational radiation. This prediction was verified indirectly by Robert

Hulse and Joseph Taylor through the discovery and precision measurement of the

pulsar PSR 1913+16 [7], which is part of a binary system orbiting a neutron star at

a separation only a few times the distance from the Earth to the moon. Over the

2Technically, a singularity has exactly zero spatial extent by definition, but this assumes that all

elementary particles are point particles. If elementary particles have some limiting minimal spatial

extent, such as the Planck length lP , then the “singularity” is likewise limited in the minimal size

to which it can shrink.
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intervening decades since its discovery, the binary’s orbital period has decreased by

about 75 millionths of a second each year, in excellent agreement with the expected

value due to the emission of gravitational radiation as predicted by general relativ-

ity. This seemingly small change in the orbital period of the binary is an indicator of

how extreme the dynamics of a system need to be in order to emit a non-negligible

amount of radiation. Due to the relative weakness of the gravitational force, only

the largest, most densely concentrated objects in our universe moving at substantial

speeds will be a significant source of gravitational waves. The most extreme com-

bination of dense objects and relativistic speeds in the universe will likely be black

hole binaries (BHBs).

BHBs come together by different mechanisms depending on the scale in ques-

tion. For example, for supermassive BHBs (SMBHBs), the individual holes are at

the cores of galaxies, and so it is believed that both holes will sink to the bottom of

the gravitational well of the combined galaxies when the galaxies collide, a process

known as “dynamical friction” [8, 9, 10]. Then the forming BHB will most likely

go through a “hardening” due to the ejection of third bodies which will bring the

individual holes close enough for their mutual gravitational attraction to take over.

The evolution of the BHB that has just been described is of course a very different

process from that of stellar mass binaries, which would most likely be the result of

the co-evolution of a binary star system. However, when all other matter has been

expelled or consumed, and the BHB has reached the point of being gravitationally

bound, the subsequent description of the evolution is same regardless of the scale

of the holes involved. The BHB, be it SMBHB of O(105 M⊙ − 109 M⊙) or stellar of
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O(1 M⊙), will inspiral due to the emission of gravitational radiation of ever increas-

ing strength until the two holes merge into one. The single remnant hole will not be

quiescent, but rather will have perturbations that it will radiate away by emitting

exponentially decaying sinusoidal waves, which are called “quasi-normal modes”,

and this phase is called the “ringdown” of the BHB. The merged remnant will have

an inherent “spin” which reflects a conservation of the orbital angular momentum

that the system had, as well as the spin of each hole, before the merger. However, as

with electron spin, the spin momentum of a black hole does not refer to the rotation

of an object as we would understand it in a classical sense, but rather it is a way to

characterize the spacetime of a black hole. In fact, the mass, spin, and charge (which

we will always assume is neutral) are the only pieces of information needed to fully

characterize a black hole spacetime [11]. Furthermore, the dynamics of the inspiral,

merger, and ringdown of a BHB, and the gravitational radiation that it produces,

is scale-invariant, which means that a solution for a given pair of masses and spins

on the individual holes can be scaled to find a solution for any total system mass

(the relative sizes of the masses and spins is fixed by the initial solution).

When the binary reaches the late stages, it has cleared out any intervening

gas, so the whole process only involves the curvature content of spacetime, since the

black holes are pure curvature and the gravitational radiation is strictly a change in

the background curvature. Therefore, the inspiral, merger, and ringdown of a BHB

must satisfy the vacuum form of Einstein’s equation (eq. (1.2)). This deceptively

simple equation can be exceedingly difficult to solve, and while there are some ex-

act solutions known, such as the Schwarzschild solution for a single, nonspinning,
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chargeless black hole, the “two body problem” of two gravitationally bound black

holes has no exact solution, and must be solved using either numerical or perturba-

tive methods.

In this work we will use results from one perturbative method, the post-

Newtonian (PN) expansion of various observable quantities, which is an expansion in

v
c
, where v is the relative speed of the black holes. Specifically, two PN methods will

be applied for calculating waveform phasing: the adiabatic Taylor-expanded 3.5PN,

and a non-adiabatic pseudo-4PN effective one body (p4EOB) model. Adiabatic in

this case means that the holes move together via changes in orbital frequency alone,

so that the binary follows a sequence of quasi-circular orbits, whereas non-adiabatic

evolutions admit an explicit radial velocity degree of freedom in the evolution equa-

tions. and the p4EOB, and EOB methods in general, involves the mapping of the

binary system to the Hamiltonian of a deformed Schwarzschild spacetime represent-

ing the reduced system [12] (see Appendix A). These expansions are valid when the

black holes are widely separated and slowly moving, but become less accurate as

the dynamics become too relativistic for the expansion to be valid (i. e. v ≪ c is no

longer the case approaching merger). Therefore, a solution in full general relativity

is needed to know the correct dynamics for the late inspiral and merger-ringdown.

This solution must be found numerically. However, until 2003, attempts to do so

met with nothing but failure. In the ensuing years, with the experimental gravi-

tational wave astronomers forging ahead toward their design sensitivities, and the

possibility, if not probability, of a detection, the need for these numerical solutions

was never more evident.
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1.3 Gravitational Wave Detectors

The earliest efforts to detect the minute perturbations of spacetime involved

the use of resonant bar detectors, and were pioneered by Joseph Weber of the Uni-

versity of Maryland. Weber used massive aluminum cylinders and attempted to

isolate them from environmental noise and observe any oscillations from an incident

gravitational wave. In 1969, Weber announced that he had made several coincident

detections [13]. Ultimately, no other investigators could confirm Weber’s detections,

and the consensus conclusion has been that Weber failed to have a true detection,

although Weber himself was not in agreement with this consensus. The race to

confirm or refute Weber’s findings had the effect of galvanizing a gravitational wave

experimentation community where none had previously existed [14], so the unfor-

tunate end result did have a very positive side effect.

More sensitive bar detectors have subsequently been built, but the biggest leap

in gravitational wave sensitivity has come with ground-based laser interferometers,

such as LIGO, VIRGO, GEO, and TAMA, which provide a lower noise floor than

bar detectors and do so over a much broader frequency range, operating from the

tens of Hz through the several kHz range. LIGO, an NSF-supported project, is

the most sensitive of these detectors, consisting of three distinct interferometers.

Two of the interferometers are collocated and occupy the same tunnel at Hanford,

WA, one being two kilometers long and the other four kilometers long. The third

interferometer is four kilometers long and is located in Livingston, LA. Over a period

of nearly two years, LIGO scientists conducted their “S5” run, gathering a year’s
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worth of triple-coincident data ending in October of 2007. As of the writing of this

work, no detections have been announced, although the data is still being thoroughly

analyzed. An upgrade to LIGO, Advanced LIGO, is on track to begin construction

in 2008, and will go online in 2013. In the intervening time before Advanced LIGO

comes online, an “S6” run, referred to as “Enhanced LIGO”, will use some of the

improved technologies and is planned to run from mid-2009 until late 2010. It

is expected to show a factor ∼ 2 improvement over the S5 sensitivity level. The

Advanced LIGO upgrade will provide roughly an order of magnitude improvement

to the gravitational wave strain sensitivity across most of its bandwidth. Whereas a

detection with LIGO and the other current generation ground-based interferometers

is hoped for but not expected, a detection, or rather detections, are expected for

Advanced LIGO.

Another type of laser interferometer, the space-based LISA, is a joint NASA-

ESA project which is currently scheduled to launch in 2018. LISA will have 5

million kilometer long arms, and so will be sensitive to much longer wavelength

gravitational waves compared to the ground-based interferometers. The LISA band

will span from O(10−5 Hz) to the tenths of Hz. LISA’s strain sensitivity in this band

will be comparable to that of LIGO in LIGO’s band, but the riches of sources with

large strain spectral densities in the LISA band makes LISA a unique instrument.

LIGO can only hope to find a signal at low SNR, and it is very unlikely that pa-

rameters could be extracted with any significant degree of certainty. The best that

could reasonably be hoped for would be that the class of object might be identified

using data filtering and template matching. Advanced LIGO has the hope of finding
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sources with substantial SNR and with sufficient information content that param-

eters might be extracted. However, the noise power relative to the signal will still

be non-negligible, so uncertainties will be substantial. Advanced LIGO is therefore

an incremental step, giving us a hazy picture of some relatively nearby pieces of the

gravitational wave sky. LISA will measure signals with such high SNR, and extract

parameters with such high fidelity, that it can really be viewed as an observatory for

the gravitational wave sky. Gravitational wave astronomers will analyze the incom-

ing data, which will contain thousands of sources from the entire sky at any given

time, including galactic white dwarf binaries, extreme mass ratio inspirals (known

as EMRIs), and SMBHBs. They must use the data from LISA’s various channels

to separate the signals, then characterize the signal of interest, trying to specify its

intrinsic parameters, such as total mass or spin, and its extrinsic parameters, such

as distance and sky position. BHB coalescences are of particular interest for all

the interferometers. Stellar mass binaries would coalesce in LIGO and Advanced

LIGO’s band, whereas SMBHBs coalesce in LISA’s band. BHB coalescence is a

likely candidate for the first detection by a ground-based interferometer, and will

be one of the richest sources of science for LISA.

1.4 Numerical Relativity and Data Analysis

The field of black hole numerical relativity (hereafter, numerical relativity,

or NR) is an attempt to solve eq. (1.2) numerically for the case of a BHB. The

aforementioned detectors will produce a data stream that contains noise in all cases
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and, in the cases of LISA, as many as thousands of other signals, so nearly exact

knowledge of the waveform will be needed a priori in order to be able to successfully

identify that signal in the data stream. Until recently, the challenge of numerical rel-

ativity was viewed as formidable, and many thought the problems facing numerical

relativists were impossible to solve. These problems included the inherent difficulty

of evolving a singularity in a numerically stable way, finding the correct gauge choice

to accommodate the treatment of the singularities and accurately and stably follow

the correct dynamics, and the problem of computational resources needed to simu-

late the full spectrum of length scales involved, from the horizon diameters of the

individual holes up to the wavelength of the emitted radiation. However, beginning

with the first successful orbit of two black holes in a simulation [15], through the first

demonstration of the merger and subsequent ringdown [16], and culminating with

the discovery of a robust method for stably evolving any number of orbits through

the merger and ringdown [17, 18], all the obstacles along the road to success seemed

to fall away. Several groups went from being unable to evolve more than a fraction

of an orbit to evolving several orbits through the merger and ringdown and moving

beyond the case of two inspiraling equal mass Schwarzschild black holes to cases

of unequal mass and even Kerr (i.e. spinning) binaries in the space of just over a

year. We will discuss the methodology, and the breakthrough known as the “moving

puncture” method which is most responsible for the explosion of results in the field

in the last several years, in detail in Chapter 2.

Now that stable evolution is no longer an issue in numerical relativity for

those using the aforementioned technique, the focus has turned to exploring other
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regions of parameter space, as was mentioned, and investigating the accuracy of the

waveforms that are extracted from our simulations. In Chapter 3, we will thoroughly

investigate the accuracy of the equal mass, nonspinning runs which spanned seven

orbits for the highest resolution case. Some of this work has already been published

by the author and coauthors in [1] and [2], but much of it is previously unpublished

material.

Once we have established the accuracy of the waveforms, we can apply them

to problems of detection and measurement for the detectors that were discussed

earlier. Specifically, in Chapter 4, we use the waveforms to calculate quantities of

interest, such as the signal-to-noise ratios (SNRs) assuming matched filtering for

both LIGO and Advanced LIGO as well as LISA. Since LISA will be able to not

only detect, but measure parameters, we present the results of an investigation

into how much the merger phase would contribute to the parameter measurement

accuracy for the equal mass, nonspinning case. We compare this to an estimate of

the theoretical errors of a few parameters, to assess the degree to which we can rely

on the parameter values that have been calculated. We will conclude in Chapter 5

with a brief synopsis of key points, and a look ahead at the work that needs to be

done to make the field of Gravitational Wave Astronomy a reality.

1.5 Notation and Conventions

Unless otherwise noted, geometrized units are used throughout the text, mean-

ing G = c = 1. This allows us to express any observable quantities in terms of the
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total mass of the system, M, given that all observables for the black hole binary

solution scale invariantly with the total system mass. Two convenient conversion

factors are 1 M⊙ = 5×10−6 s for time measurements and 1 M⊙ = 1.5 km for distance

measurements.

Greek indices are used to indicate a spacetime quantity, whereas Roman indices

indicate a purely spatial quantity. This distinction is also made using a preceding

parenthetically enclosed superscript of “3” for spatial quantities and “4” for space-

time quantities, for example, (3)gij and (4)gµν , respectively. However, in cases such

as the examples given where the index convention specifies the dimensionality of the

object and no further identification is needed, the superscript is omitted. Also, the

metric signature will be (-1, 1, 1, 1).

Partial derivatives are interchangeably denoted ∂f
∂xi , ∂if , or f,i, depending on

convenience and clarity. Covariant derivatives are denoted Dif or f;i.
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Chapter 2

Modeling Black Hole Binary Coalescence

2.1 Recent Advances in Numerical Relativity

Numerical relativists attempt to accurately solve Einstein’s equation in a com-

puter. The field of numerical relativity has progressed at a rapid pace in the last

several years. This period began with the first simulation of a complete orbit of two

black holes [15]. This was followed by the successful evolution of a binary through

its final orbit, merger, and ringdown [16, 17, 18]. A major breakthrough, called the

“moving puncture” method [17, 18], was developed contemporaneously and inde-

pendently at NASA Goddard and at the University of Texas at Brownsville, and is

one of the technologies that has made these rapid advancements possible.

In the fixed puncture prescription [19], the black hole singularity is split into

singular and nonsingular pieces, with the singular piece being handled analytically

and not evolved. Because the coordinates of the punctures are fixed, the coordinate

system becomes distorted as the binary is evolved, eventually causing the code to

crash. However, by choosing appropriate gauge conditions, it was found that the

singular part of the puncture could be evolved along with the nonsingular part,

thus avoiding coordinate distortion. This breakthrough, referred to as the “moving

puncture” method, opened the door for several groups to begin running long-lasting,

stable simulations. Continued improvements in the gauge, the numerical accuracy,
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and the initial data used to start the simulations have led to more orbits before

merger [20, 21, 22], and the work presented here includes several equal mass, non-

spinning waveforms which span roughly seven orbits prior to merger. This length, as

we will demonstrate, is both necessary and sufficient for performing, among other

analyses, the first validation of the post-Newtonian (PN) approximation using a

numerical waveform [1].

2.2 Methodology

2.2.1 ADM Equations

The most popular approach to solving Einstein’s equation (1.2) for BHBs,

referred to as the “3+1” or “ADM” decomposition, entails dividing the 4 dimensional

spacetime into 3 dimensional slices, with the slices spanning the subspace of the

spatial dimensions of the original 4 dimensional space, but not the time dimension.

The slices propagate along the time direction, so that time is represented in the

sequential evolution of the purely spatial slices (see Fig. 2.1). Once we have values

for the relevant fields on a single slice (which is referred to hereafter as initial data),

we can evolve the fields to subsequent slices. The usual 4-metric, gµν , is therefore

more conveniently represented as three separate quantities. The 3-metric, gij, can

obviously be calculated for each slice separately. Two new quantities, called the

lapse α and the shift βi, determine how much proper time and distance, respectively,

should be spanned between successive slices for each grid point (see Fig. 2.2). The
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Figure 2.1: Pictorial representation of the division of 4 dimensional spacetime into

3 dimensional slices [23], with the slices spanning the subspace of the spatial dimen-

sions, and time being represented in the sequential evolution of the purely spatial

slices.

lapse and shift are related to elements of gµν in a straightforward way, namely

α = (−(4)g00)−1/2 (2.1)

βi =(4) g0i. (2.2)

Therefore, we see that the lapse, shift, and spatial 3-metric can be related to the

full 4-metric,

gµν =




βkβ

k − α2 βj

βi gij



 (2.3)

The slices are constrained to satisfy a set of evolution equations and a set

of conservation equations, known as the “ADM” equations. These equations have
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Figure 2.2: Illustration of the lapse, α, and the shift, βi (or ~β in vector notation) [23],

driving the evolution of a grid point from one slice to the next. α determines the

amount of motion the grid point undergoes in the time direction, and βi determines

the 3-dimensional spatial motion of the grid point.

been derived numerous times throughout the literature, in the original work [24],

in review articles (see e. g. [25]), and in many Ph. D. theses. A full derivation

is therefore not presented here. Instead, we begin with the final equations, explain

their content briefly, and mention some modern improvements. The ADM equations
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are [25]

R +K2 −KijK
ij = 16πρ (Hamiltonian constraint) (2.4)

DjK
j
i −DiK = 8πji (momentum constraints) (2.5)

∂tgij = −2αKij +Diβj +Djβ
k (evolution of spatial metric) (2.6)

∂tKij = −DiDjα + α(Rij − 2KikK
k
j +KKij)

−8πα(Sij −
1

2
gij(S − ρ)) + βkDkKij

+KikDjβ
k +KkjDiβ

k (evolution of extrinsic curvature). (2.7)

In this set of equations, Kij is called the extrinsic curvature, a quantity which is

contained on the slice and preserves the curvature information that is lost from Gµν

by truncating to a 3 dimensional subspace, andK is the trace ofKij, i.e. K = gijKij .

Both the Ricci curvature scalar, R, and the Ricci tensor, Rij , come from contraction

of the Riemann tensor, Rd
abc, i.e. R = Ra

a and Rij = Rk
ikj. The Riemann tensor,

in turn, can be computed from

Rd
abc = Γd ac,b − Γd bc,a + Γe acΓ

d
eb − Γe bcΓ

d
ea , (2.8)

where Γa bc are spatial connection coefficients that can be related to the spatial

metric using

Γa bc =
1

2
gad (gdb,c + gdc,b − gbc,d) . (2.9)

Sij is the projection of the full stress-energy tensor on the spatial slice, Sij =

gikgjlT
kl, with S being the trace of Sij, S = gijSij. ρ and ja are also related to

the stress-energy tensor, with ρ ≡ nanbTab being the total energy density measured

by a normal observer, with the time-like unit normal vector na = (−α 0 0 0)
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satisfying (4)gab =(3) gab + nanb, and ja ≡ −gb ancTbc. However, since we are inter-

ested in vacuum solutions eq. (1.2), the stress-energy projection terms and terms

related to stress-energy elements can be ignored entirely. Therefore, for our purposes

the constraint and evolution equations can be rewritten as

R +K2 −KijK
ij = 0 (Hamiltonian constraint) (2.10)

DjK
j
i −DiK = 0 (momentum constraint) (2.11)

∂tgij = −2αKij +Diβj +Djβ
k (evolution of spatial metric) (2.12)

∂tKij = −DiDjα + α(Rij − 2KikK
k
j +KKij) + βkDkKij

+KikDjβ
k +KkjDiβ

k (evolution of extrinsic curvature). (2.13)

As one might expect, not everything is determined by eq. (1.2). In fact, the

gauge freedom inherent in any GR problem means that we are free to specify the

lapse and shift however we wish in order to achieve the best solution. The first

successful orbit of a BHB [15] was achieved using the so-called “fixed puncture”

prescription, which will be discussed in section 2.3, but which, among other things,

fixed the shift at the punctures to be zero, i.e. the punctures did not move through

the grid. This meant that the grid had to wind itself around the fixed punctures, so

to speak, in order to simulate how the real spacetime would evolve. This winding

caused large errors to accumulate and eventually made the simulation unstable.

This problem was later circumvented when the “moving puncture” prescription was

found, which allowed a nonzero βi at the punctures, and has proven to be very

stable.
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2.2.2 BSSN Formulation and Further Improvements

In practice, the exact ADM formulation proved not to be ideal for long term

stable evolution. A variation containing additional auxiliary evolution terms, known

as the BSSN formulation, has been implemented with great success. The evolution

equations, when expressed in the appropriate form as a matrix equation, will have

a set of eigenvalues and eigenvectors which indicate the presence of “modes”. The

modes may travel at or below light speed without incident. However, superluminal

modes will permit error from inside the horizon to escape via coupling to the modes,

and zero speed modes will permit an accumulation of error on the grid which does not

advect away. The virtue of the BSSN formulation is that all the constraint-violating

modes travel at the speed of light, which is not the case for the ADM equations

[26]. In addition, while the ADM system is known to only be weakly hyperbolic,

the BSSN formulation has been shown to be strongly hyperbolic, meaning that no

modes will grow at greater than an exponential rate, and the system is well-posed

[27, 28].

The BSSN equations are obtained from the ADM equations by the following

substitutions

gij → e4φg̃ij (2.14)

Kij → e4φ
(
Ãij +

1

3
g̃ijK

)
, (2.15)

where g̃ = det g̃ij = 1 and Ãii = 0. Three additional variables (Γ̃i, φ, and K) are
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also introduced. The BSSN variables obey the following evolution equations [29]

∂0g̃ij = −2αÃij (2.16)

∂0φ = −1

6
αK (2.17)

∂0Ãij = e−4φ (−DiDjα + αRij)TF +

α
(
KÃij − 2ÃikÃ

k
j

)
(2.18)

∂0K = −DiDiα + α

(
ÃijÃ

ij +
1

3
K2

)
(2.19)

∂tΓ̃
i = g̃jk∂j∂kβ

i +
1

3
g̃ij∂j∂kβ

k + βj∂jΓ̃
i−

Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j − 2Ãij∂jα+

2α

(
Γ̃ijkÃ

jk + 6Ãij∂jφ− 2

3
g̃ij∂jK

)
, (2.20)

where TF indicates that only the trace-free part is used and ∂0 ≡ ∂t − Lβ, where

Lβ is the Lie derivative with respect to the shift vector, βi, which are given by

eqs. (3.15)-(3.17) of [30]. Also, Rij = R̃ij +Rφ
ij is given by

Rφ
ij = −2D̃iD̃jφ− 2g̃ijD̃

kD̃kφ+ 4D̃iφD̃jφ−

4g̃ijD̃
kφD̃kφ (2.21)

R̃ij = −1

2
g̃lm∂l∂mg̃ij + g̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k+

g̃lm
(
2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)
. (2.22)

Γ̃i is replaced by −∂j g̃ij in eqs. (2.16) - (2.22) wherever it is not differentiated. The

Hamiltonian and momentum constraints in the BSSN formulation take the form

H = R− ÃijÃ
ij +

2

3
K2 = 0 (2.23)

e4φMi = ∂jÃ
ij + Γ̃ijkÃ

jk + 6Ãij∂jφ− 2

3
γ̃ij∂jK = 0. (2.24)
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Further improvement beyond the standard BSSN equations have proven nec-

essary in order to achieve the results presented in this work. Namely, we alter the

standard BSSN system through the addition of dissipation terms as in [31] and

constraint-damping terms as in [32] in order to ensure robust stability. The dissi-

pation terms are proportional to a power of the resolution in the finest grid, and so

vanish in the continuum limit, but have the effect of smoothing over high frequency

errors. The constraint-damping terms, as the name implies, incorporate the con-

straint equations into the evolution equations as identities in order to actively damp

constraint violations as the system evolves from slice to slice. Using the constraints

as identities can resolve issues related to the superluminal or zero speed modes that

were mentioned earlier by changing the matrix form of the evolution equation.

2.2.3 Extraction of Gravitational Radiation

In order to analyze the gravitational radiation being emitted by the BHBs,

we must first choose a null tetrad for decomposition of the gravitational radiation

content. This radiation content is contained in the Weyl tensor, Cabcd, so the tetrad

will ideally be able to separate the radiation part of the Weyl tensor from the non-

radiation content. For this discussion, 1 we choose the following tetrad: given τ̂ , the

time-like unit vector normal to a given hypersurface (i.e. a vector normal to a slice

such as the ones shown in Fig. 2.1) and r̂, the radial unit vector, and using spherical

1This discussion necessarily follows the discussion in [33] quite closely, since we are describing

the same procedure.
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coordinates, we can form the tetrad

~ℓ ≡ 1√
2
(τ̂ + r̂) (2.25)

~n ≡ 1√
2
(τ̂ − r̂) (2.26)

~m ≡ 1√
2
(θ̂ + iϕ̂) (2.27)

~m∗ ≡ 1√
2
(θ̂ − iϕ̂) , (2.28)

where ∗ denotes complex conjugation. In addition to having zero length, the tetrad

satisfies the orthogonality relations

~ℓ · ~n = −~m · ~m∗ = −1 (2.29)

~ℓ · ~m = ~ℓ · ~m∗ = ~n · ~m = ~n · ~m∗ = 0 . (2.30)

In terms of this tetrad, the complex Weyl scalar ψ4 is given by

ψ4 ≡ Cabcd n
a(mb)∗nc(md)∗ . (2.31)

There are 5 Weyl scalars in total, denoted ψ0 through ψ4, but only ψ4 is of interest for

our purpose here because it contains the outbound radiation content of the system

[34].

ψ4 can be related to the gravitational radiation in the following way: first, we

note that in the transverse-traceless (TT) gauge (see Chap. 35 in Ref. [11]),

1

4
(ḧTT

θ̂θ̂
− ḧTTϕ̂ϕ̂ ) = −Rτ̂ θ̂τ̂ θ̂ = −Rτ̂ ϕ̂r̂ϕ̂ = −Rr̂θ̂r̂θ̂

= Rτ̂ ϕ̂τ̂ ϕ̂ = Rτ̂ θ̂r̂θ̂ = Rr̂ϕ̂r̂ϕ̂, (2.32a)

1

2
ḧTT
θ̂ϕ̂

= −Rτ̂ θ̂τ̂ ϕ̂ = −Rr̂θ̂r̂ϕ̂ = Rτ̂ θ̂r̂ϕ̂ = Rr̂θ̂τ̂ ϕ̂ . (2.32b)
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We can then set the h+ and h× polarizations of the radiation to

ḧ+ =
1

2
(ḧTT

θ̂θ̂
− ḧTTϕ̂ϕ̂ ) , (2.33a)

ḧ× = ḧTT
θ̂ϕ̂
. (2.33b)

Finally, we can utilize the equality of the Riemann and Weyl tensors in vacuum,

Rabcd = Cabcd (Gµν = 0) , (2.34)

to yield a relationship between ψ4 and the radiation,

ψ4 = −(ḧ+ − iḧ×) . (2.35)

One subtle point, however, is that the tetrad used for this explanation is not the one

used for the simulations in this paper. The tetrad actually used to generate ψ4 for

all the investigations carried out in this work is referred to as the quasi-Kinnersley

tetrad, which has the property of minimizing the mixing of other ψn’s with ψ4 (in

other words, mixing non-radiation and/or inbound radiation content into the ψ4

scalar, which ideally consists of outbound radiation only), particularly in cases with

spin [35, 36]. The distinction is not critical for this work other than to point out

that eq. (2.35) is revised to read

ψquasi−Kinnersly4 = −1

2
(ḧ+ − iḧ×) . (2.36)

The final step in analyzing the gravitational radiation using ψ4 is to decom-

pose it into harmonic components. This is a useful way to gain insight into the

physical processes at work, as some processes may excite specific modes, and there-

fore can most effectively be analyzed by eliminating the other modes. For instance,
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quadrupole radiation emits at twice the orbital frequency, and so will be constrained

to the l = 2, m = ±2 harmonic modes. Since two factors of ~m∗ appear in the defi-

nition of ψ4 in eq. (2.31), and each carries a spin-weight of −1, we decompose ψ4 in

terms of spin-weight −2 spherical harmonics −2Yℓm(θ, ϕ) [37], given by [38]:

±2Yℓm (θ, ϕ) =

[
(ℓ− 2)!

(ℓ + 2)!

]1/2 [
α±

(ℓm) (θ) Yℓm (θ, ϕ) + β±
(ℓm) (θ) Y(ℓ−1)m (θ, ϕ)

]
, (2.37)

for ℓ ≥ 2 and |m| ≤ ℓ, and with the functional coefficients

α±
(ℓm) (θ) =

2m2 − ℓ (ℓ+ 1)

sin2 θ
∓ 2m (ℓ− 1)

cot θ

sin θ
+ ℓ (ℓ− 1) cot2 θ , (2.38a)

β±
(ℓm) (θ) = 2

[
2ℓ+ 1

2ℓ− 1

(
ℓ2 −m2

)]1/2(
± m

sin2 θ
+

cot θ

sin θ

)
. (2.38b)

We can now decompose the dimensionless Weyl scalar Mrψ4, yielding

Mrψ4(t, ~r) =

∞∑

ℓ=2

ℓ∑

m=−ℓ

−2Cℓm(t) −2Yℓm(θ, ϕ) , (2.39)

where M is the total system mass, and r is the radial distance to the binary center

of mass. Note that this decomposition assumes a flat space background, and so the

extraction surface of the radiation must be adequately far from the coalescing BHB

to not be affected significantly by its gravitational potential (e.g. r ≫ M).

2.2.4 Implementation and Convergence Testing

Because we are working with a discretely sampled mesh, rather than a con-

tinuum solution, we need to monitor the behavior of our results to ensure that they

converge toward the continuum limit solution at the rate we expect when we change

the mesh. In other words, if our code employs all fourth order accurate methods,
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meaning that the leading error term scales as the grid spacing to the fourth power,

but our results are either under-convergent (i.e. consistent with lower order meth-

ods, in this case first through third), they are over-convergent (i.e. consistent with

higher order methods than the ones actually applied in the code), or they do not

converge, then we know there is an uncontrolled source of error that is dominating

our simulations.

For the simulations in this work, time integration was performed with a fourth-

order Runge-Kutta algorithm, and spatial derivatives were calculated using fourth-

order-accurate finite-differencing stencils. For the outer boundary we employed a

second-order-accurate Sommerfeld condition, which is an outgoing wave equation

given by [39]

(∂r + ∂t)




gij − δij

Kij




.
= 0 . (2.40)

The boundary is pushed to |xi| = 1536M to keep reflections far from the source.

Adaptive Mesh Refinement (AMR), which adapts the resolution of the mesh on a

cell-by-cell basis to meet the accuracy requirements of the simulation, was imple-

mented via the software package PARAMESH [40, 41], and interpolation between

refinement regions was fifth-order-accurate. Note that we use AMR only to re-

solve the sources, and the mesh will progressively become coarser far away from the

sources (see Fig. 2.3). Although the radiation which reaches the outer boundary

during the course of the simulation, with wavelengths of & 100M , will not be well

resolved in this lowest refinement region of grid-spacing h = 32M (in the highest

resolution run), reflections from there are causally disconnected from our extraction
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radii at R ≤ 100M . We do not use AMR to follow the radiation with a fine mesh;

instead we require only that the fixed mesh resolution in the region of the extraction

surfaces be sufficient to resolve the waves there. For example the extraction surface

at R = 60M , in our highest resolution simulation, spans regions with grid spacing

h = 1M and h = 2M .

Finally, to ensure that we are achieving reasonable results from our simulation,

in addition to satisfying the constraints, we test the rate of convergence of observ-

able quantities such as the waveform phase or the time of coalescence. Since the

aforementioned runs used fourth-order accurate evolution and second-order accu-

rate initial data, one would expect the output to certainly be no higher than fourth

order convergent and no lower than second order. The order of convergence will

depend on the dominant source of error, and the order of the method which was

responsible for generating that error. For instance, our data has been processed by

an initial data calculator, boundary conditions at the outer boundary and refine-

ment interfaces, the wave extraction algorithm, and the evolution equations. Due

to technical constraints, it is not always possible to use the same order methods for

all the relevant processes, but we generally expect, and have consistently observed,

that the error from the evolution error dominates.

To test the convergence, we take the observable quantity Θ at three different

resolutions: hf , Ahf , and B hf , where hf is the resolution in the finest grid and

A and B are constants, with both greater than 1 and B > A. We then form the
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Figure 2.3: Four slices of the computational grid, demonstrating the increasing

resolution as the grid moves closer to the puncture, and the adaptive nature of the

grid, as the refinement levels follow the puncture, starting with the earliest slice

(top right) and evolving counter-clockwise. The green, blue, pink, cyan, and black

represent, in that order, ever-increasing levels of resolution. Note that the finest

level for one hole disappears on the second slice, only to reappear on the third. This

is not a critical issue, but is not ideal, and is an example of the added challenges

that implementing AMR presents.
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following differences:

∆ΘA =Θ (Ahf) − Θ (hf ) = O
[
(Ahf)

n − hnf
]

(2.41)

∆ΘB =Θ (B hf ) − Θ (Ahf) = O [(B hf)
n − (Ahf)

n] , (2.42)

with the result that we can now divide eq. (2.41) by eq. (2.42) to find the scaling

factor for a given rate of convergence, n, namely,

∆ΘA

∆ΘB

=
(Ahf)

n − hnf
(B hf )

n − (Ahf )
n (2.43)

Therefore, in practice, we can calculate the left hand side of eq. (2.43) using eqs. (2.41),

(2.42) and our data at three resolutions, then find the value for n for which the right

hand side most agrees. In the next Chapter, we will apply this technique to our

data to assess the order of convergence and thus qualify the data for the rest of this

work.

2.3 Black holes as punctures

The moving puncture that has proven to be, above all other advancements in

numerical relativity in the last several years, the achievement that is most centrally

responsible for the sudden explosion of new results which continues to come out of

the field since its discovery. For decades, it was thought that a puncture couldn’t

possibly be permitted to move on a computational grid in a stable way, and any work

on moving black holes involved excising the region inside the apparent horizon from

the computational grid. Nevertheless, puncture solutions, albeit fixed punctures,

have a lengthy history.
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Punctures are topological holes punched in the spatial slice. The first punc-

ture solution [42] consisted of a wormhole which connected two different regions on

the same sheet, such that the topology of the spacetime was left unchanged (see

Fig. 2.4a). However, this setup would be undesirable for evolutions as it admits

the possibility of emitted gravitational waves from one spatial region influencing the

dynamics of the puncture via interaction at the other spatial region at some later

time. A more suitable setup, referred to as Brill-Lindquist initial data, consists of the

wormhole connecting one spacetime sheet to a completely separate sheet, thereby

changing the topology of the system overall (see Fig. 2.4c). Also, the solution is for

an arbitrary number of holes. Brandt-Brügmann punctures [19] are similar to Brill-

Lindquist in that they also change the overall topology, but in addition to having a

solution for an arbitrary number of holes, the Brandt-Brügmann prescription allows

boosts and spins to be placed on each hole separately rather than just on the whole

system. The region beyond the throat of the wormhole is treated via a mapping,

with further points being mapped to smaller radial components. This results in a

large conformal factor as r → 0, where the conformal factor,ψ, is given by

gij = ψ4δij , (2.44)

with δij being the 3-metric in flat space, and gij is the 3-metric of the system.

However, the system is asymptotically flat in both physical and mapped coordinates,

since

Kij = ψ−2K̂ij, (2.45)

where K̂ij is the extrinsic curvature in flat space. For implementation, Brandt-
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Figure 2.4: Reproduction of the three different binary punctures-on-a-sheet con-

figurations from [43]. In the case of c, the binary is Misner’s wormhole solution

[42] connecting two asymptotically flat regions on the same sheet, whereas in b, the

punctures lead to another shared sheet, and in a, the punctures each lead to their

own sheet.

Brügmann provides an ansatz for the singular part of ψ, leaving the finite part to

be solved for numerically.

For the initial data in this work, we used Brandt-Brügmann puncture data[19]

generated by a second-order-accurate multigrid solver, AMRMG [44]. The puncture

parameters were determined by the Tichy-Brügmann prescription for quasi-circular

initial data [45], adjusted slightly, as informed by previous empirical experience, to

reduce eccentricity. This prescription, as the name suggests, uses the PN approxima-

tion and searches for the correct orbit at a given separation which is instantaneously
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circular, meaning ṙ = 0, by finding an approximate helical Killing vector. Our ad-

justment was simply to reduce the initial coordinate separation by roughly 2% while

increasing the initial momentum of each puncture such that the product of the initial

momentum with the initial coordinate separation remains constant.

The gauge condition that is used for all the results contained in this work is one

approach to what has become known as the “moving puncture” method. Specifically,

whereas other methods either have ~β(~x = ~xpunc) = 0, meaning the punctures are

fixed in the grid, or else an excised region rather than a puncture is permitted

to move across the grid, the “moving puncture” method takes advantage of the

natural regularizing capacity of finite differencing in order to move punctures across

a computational grid. 2 If the puncture is not placed on a grid point to start

the evolution, the first time-stepping procedure effectively eliminates the singularity

from the computational grid. With a properly chosen lapse and shift, the simulation

can continue indefinitely without going unstable and without the computational grid

being swallowed by a puncture. For the results contained in this work, the gauge

choice is that suggested in [46], namely

∂tα = −2αK + βj∂jα (2.46)

∂tβ
i =

3

4
Γ̃i + βj∂jβ

i − ηβi . (2.47)

We use this gauge because it dispenses with the auxiliary variable Bi that is present

in all other gauge choices in the literature, and, more importantly, it eliminates the

2In addition to letting finite differencing regularize the punctures in the “moving puncture”

method, another successful implementation of the method [17] involves analytically regularizing

the punctures by performing a change of variables.
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zero speed mode that would otherwise be contributed by Bi.

This method for evolving BHBs was truly a great discovery, and like many

discoveries, the effectiveness of the method and a plethora of achievements made

by applying the method preceded an understanding of why the moving puncture

method worked. It was shown in [47] that for a single moving puncture, the region

inside the event horizon evolves such that it ceases to be asymptotically flat at the

puncture, but rather is cut off at a throat with a finite Schwarzschild radius. The

region is still an infinite proper distance from the horizon, so the change to the

puncture as it evolves is causally disconnected from the rest of the space, and the

simulation should represent the same physics as it would if the puncture remained

asymptotically flat. Then in [48], it was demonstrated that all current numerical

codes under-resolved the punctures, but that this under-resolution, which is fully

contained within the horizon, permits the system to evolve to a stationary solution,

and in fact the puncture method would always be nonstationary in the limit of

infinite resolution. The under-resolution is highly analogous to excision, allowing

the system to evolve stably without an excessively large buildup of errors from

a singular puncture. While errors from the under-resolved puncture may not be

substantial enough to crash codes, they may, along with other sources of error like

eccentric initial data and errors in the post-Newtonian waveform, cause our final

template waveform to disagree with the true signal, thus limiting its utility. In the

next Chapter, we investigate the quantity of this internal error, and so determine

the level to which we can trust our waveforms.
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Chapter 3

Determining the accuracy of waveform templates

In this Chapter, we present an analysis of the accuracy of our numerical wave-

forms. This constitutes an assessment of both the initial data accuracy as well as

evolution accuracy. Since BHBs are expected to circularize their orbits through grav-

itational wave emission long before merger [49], minimal eccentricity is a requirement

for an accurate simulation, and initial data is the primary factor in determining the

eccentricity of a simulation. To assess errors in the evolution, simulations at multi-

ple resolutions, and data extracted at multiple distances from the BHB, will need

to be compared and analyzed. It is worth noting that the waveforms used in the

analysis are the same ones presented in [1, 2]. As such, since the field is progressing

at such a rapid pace, the waveforms no longer represent the most accurate available.

Higher-order methods have yielded much improved results for the few cases available

at the time of this writing. However, runs at multiple resolutions and with different

mass ratios using the latest methods were not yet available to use in this analysis.

Regardless, the intention of this Chapter is primarily to present the methodology

of assessing waveform accuracy, and as a secondary point to give a snapshot of the

accuracy level of state-of-the-art simulations as of a few months before the writing

of this work.
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3.1 Simulation Analysis

In order to apply our waveforms to data analysis, we must first establish

their accuracy. Late-inspiral evolutions, covering more than a few orbits prior to

ringdown, are more challenging than shorter merger-ringdown simulations. In this

regime, frequency change, which will be important for our analysis, occurs much

more slowly, so there is a greater demand for computational resources. In addition,

better accuracy is required to control the accumulated phase error, which in turn

constrains the numerical error that can be tolerated in the rate of energy loss.

content of the system (radiation + individual horizon masses), and therefore should

be conserved.

3.1.1 Comparing Waveforms

Using the moving puncture technique [17, 18, 46], with the gauge evolution

given by eq. (2.46) and eq. (2.47), which originated from [46], implemented with

fourth-order Runge-Kutta time integration, fourth-order accurate finite spatial dif-

ferencing, and second-order-accurate initial data, we have simulated the evolution

of a nonspinning equal-mass BHB starting at relatively wide separation, ∼ 1200M

or ∼ 7 orbits before the formation of a common event horizon. Here M is the total

mass the system would have had when the black holes were very far apart and before

radiative losses became significant. We used fourth-order-accurate finite differenc-

ing techniques with AMR to resolve the dynamics near the black holes and in the

wave propagation region. We carried out three runs using similar grid refinement
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structures, but at different resolutions: low (hf = 3M/64), medium (hf = 3M/80)

and high (hf = M/32). Here, hf is the grid spacing in the regions with the highest

resolution in each simulation, those being the regions around each black hole.

From each simulation we have measured the radiation in the form of the com-

plex Weyl tensor component ψ4 describe in Chapter 2. When calculating strain, the

two complex integration constants are chosen to keep the strain close to oscillating

about zero. For some applications we also examine waveforms in the form of the

strain rate v = ḣ+ + iḣ×, the quantity from which radiation energy is directly ob-

tained. To extract the waveform information from the simulation we define a series

of coordinate spheres of different radii Rext/M ∈ {40, 60, 100} on which we measure

spin-weighted spherical harmonic components of ψ4 via a second-order algorithm

described in [50, 51]. Decomposing ψ4 into spin-weighted spherical harmonic com-

ponents allows us to more clearly observe different physical processes which will

radiate in particular characteristic modes, and is a natural decomposition for quasi-

normal ringdown. In this work we focus exclusively on the l = 2, m = 2 component

of the radiation, which mirrors the l = 2, m = −2 component, 1 when dealing with

equal mass configurations (we do consider other modes for unequal mass cases).

Other components are considerably smaller, containing ∼ 1% as much energy [22].

1l = 2, m = 2 and l = 2, m = −2 components mirror each other by symmetry in all cases

without spin. In cases with spin, spin oriented in the orbital plane will cause an asymmetry

between the two components. Since the components point in opposite directions, the asymmetry

means they no longer cancel each other out, and a net linear momentum will be imparted on the

merging system (see e. g. [33] for a more detailed discussion).
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Fig. 3.1 compares waveforms from our high-resolution simulation extracted

on each of our three extraction spheres with the Rext = 40M and Rext = 60M

waveforms shifted in time by the intervening propagation time derived based on a

Schwarzschild black hole background. The generally good agreement for all three

waveforms indicates that potentially worrying subtleties related to the relatively

close distance of the extraction spheres, such as nonlinear propagation effects, or

tetrad-specification sensitivity, do not seriously affect the waveforms. On the other

hand, some small differences are evident.

For the early portion of the waveforms, shown in the inset, the results from the

closest extraction sphere show slight differences in amplitude and phase, suggesting

that 1/R2
ext radiation details are not yet insignificant here; this is not surprising

given that the extraction radius in this case is only ∼ 1/4 of a wavelength. On the

other hand, the waveform from the farthest extraction radius shows signs of dissi-

pation for the later higher-frequency portion of the waveform. This is because the

radiation has propagated significantly farther, through a lower-resolution region on

the computational grid, by the time it is measured at Rext = 100M . The resolution

in most of the intermediate region is h = 2M , about six points per cycle for the

ringdown radiation. For the rest of this work, we primarily employ the waveforms

extracted at the intermediate distance Rext = 60M , which is only weakly affected

by either of the above short- and long-wavelength effects.

Fig. 3.2 shows the resulting gravitational waveform in the context of recent

developments in black hole evolutions. The dashed (blue) curve gives the gravita-

tional wave strain from the dominant l = 2, m = 2 spin-weighted spherical harmonic
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Figure 3.1: ψ4 waveform calculated at three different extraction radii, and scaled by

the approximate Schwarzschild areal radius. Times have been shifted to compensate

for the differences in light travel time [11, 51], as appropriate to compare the Rext =

40M and Rext = 60M waveforms with the Rext = 100M waveform.

from our highest resolution simulation, extracted at Rext = 40M . This represents

an observation made on the equatorial plane of the system, where only a single

polarization component contributes to the measured strain. Time t = 0 is taken to

be the moment of peak radiation amplitude as measured by ψ4; the symbols along

the time axis mark the points at which the system reaches the innermost stable
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Figure 3.2: Gravitational strain waveforms from the merger of equal-mass

Schwarzschild black holes. The late part of the merger (t & −50M) is robustly

determined and relatively easily calculable, while simulations of the late inspiral

(early part of the waveform) are rapidly approaching the phasing accuracy required

for observational applications [1]. The dashed blue line shows the more current nu-

merical waveform that will be the focus of later analysis. The solid red line shows

a comparison waveform from a run starting with the same initial data as R4 in

Ref. [22] and the dash-dotted green curve shows the results from the highest reso-

lution R1 run in Ref. [22]. All waveforms have been extracted at Rext = 40M and

shifted in time so that the moment of maximum ψ4 radiation amplitude occurs at

time t = 0. The initial coordinate distance between the punctures, di, is indicated

in all cases.

circular orbit, or ISCO, calculated for a Schwarzschild black hole (circle), for the

effective one body method (EOB) at 3PN order [52, 53] (diamond), and for the

adiabatic PN method at 3PN [53, 54] (square). For comparison, we show two other
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waveforms from earlier simulations carried out by this group; both were extracted

at Rext = 40M and have been shifted in time and initial phase so that (as in [22])

the moment of peak ψ4 radiation amplitude occurs at t = 0. As these different sim-

ulations may radiate different fractions of the initial mass, we choose the mass mf

of the post-merger Kerr hole as the natural length scale for comparison. To within

error tolerance, mf is the result of subtracting the radiation energy from the ADM

mass, M . Because of radiative losses, mf ≈ 0.95M .

The solid (red) curve shows the results from a model that starts ∼ 800M

before merger with the same initial data as run R4 in Ref. [22] but using a different

gauge. Note that the gauge conditions used for the dashed (blue) curve and the

solid (red) curve are equivalent to those given by case #8 in Ref. [46], while the

gauge conditions used in Ref. [22] are equivalent to those given by case #3 in Ref.

[46]. The dot-dash (green) curve shows a simulation that starts ∼ 200M before

merger; this is the high resolution run R1 from Ref. [22]. All three waveforms agree

to within ∼ 1% for the merger-ringdown burst part of the waveform, starting near

t ∼ −50M .

Each simulation also contains a certain amount of noise which lasts for the

first ∼ 100M of the simulation. This will be seen in the simulation presented

throughout this work. The noise is primarily due to the initial gauge pulse which

occurs as the gauge starts to evolve, and the initial data “junk”, known as Bowen

York radiation when Bowen York initial data is used, which is a result of the initial

severe driving of the system by the evolution equations into the desired type of

dynamics. For example, all currently-used initial data is conformally flat, meaning
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the metric can be written in the form of eq. (2.44). However, a true BHB system

cannot be represented with a flat metric by any transformation, so at the outset

of the simulation, the description of the metric will have to change to represent

meaningful physics.

3.1.2 Satisfying the Constraints

To verify the validity of the simulations, we look at the Hamiltonian and

momentum constraints as previously discussed. For the most recent run shown in

Fig. 3.2, we find the Hamiltonian constraint to be fourth order convergent in the

regions leading up to the finest refinement region, but only 2.5 order convergent

in the finest region, where it is likely dominated by errors from the puncture (see

Fig. 3.3). For the momentum constraint, the convergence order leading up to the

finest region is less clear, and may be 2.5 there as well as in the finest region (see

Fig. 3.4). One possible explanation for the lower-than-expected convergence given

the order of methods being implemented is that errors may be leaking from the

puncture. These errors could be sufficiently small in the Hamiltonian constraint to

diffuse once they reach lower refinement regions, but be larger in the momentum

constraint. More investigation is needed to determine where the discrepancy lies.

3.1.3 Measuring and Mitigating Eccentricity

Astrophysically, BHBs in this relatively late stage of their evolution are ex-

pected to be traveling on nearly circular orbits, as any initial eccentricity would
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Figure 3.3: Convergence plot for the Hamiltonian constraint CH . The top panel

shows results from the finest grid and has been scaled so that for 2.5 order conver-

gence the curves should superpose (see eq. (2.43)). The bottom panel shows results

from the second finest grid and has been scaled so that for fourth order convergence

the curves should superpose; the curves indeed appear to be fourth order convergent.

have been radiated away early in their evolution. Therefore, it is desirable to miti-

gate any eccentricity that ultimately is present in our simulations, in order to make

the data as realistic as possible. We investigate several approaches for assessing th

eccentric content and removing it, while always being careful not to introduce bias
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Figure 3.4: Convergence plot for the Momentum constraint CM . The top panel

shows results from the finest grid and has been scaled so that for 2.5 order conver-

gence the curves should superpose (see eq. (2.43)). The bottom panel shows results

from the second finest grid and has been scaled so that for fourth-order convergence

the curves should superpose; the curves appear less than fourth-order convergent

but better than second-order convergent.

to the underlying trend that has been predicted by the simulation.
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3.1.3.1 Mitigation through Simple Fits

In our model, we start the black holes on nearly circular orbits with very small

eccentricity e < 0.01, as defined below. The resulting black hole trajectories are

shown in Fig. 3.5, where the tracks mark the paths of the punctures. Qualitatively,

the tendency of the trajectories to not cross each other, but to form complementary

spirals, is a visual indicator of the significantly reduced eccentricity compared to

previous puncture tracks in the literature (e. g. in [2]).

The black hole separation as a function of time is shown in Fig. 3.6 for this

model and the next shorter model from Fig. 3.2. The greater eccentricity of the

previous model (solid curve) is clearly distinguished by the large oscillations around

a monotonically decreasing trend. We also show all three resolutions of the more

recent model. The slight deviations from the overall smooth trend give an indication

of the small amount of eccentricity in these latter simulations. Note however the

differences between these three resolutions, particularly in the total time between

the start of the simulation and the merger. Although significant, the differences in

merger time appear to converge at a rate consistent with fourth-order error.

To an excellent approximation, the l = 2, m = 2 harmonic of the radiation

is polarized in the form expected for radiation generated by circular motion. The

polar representation of the l = 2, m = 2 component of the complex waveform,

ψ4,22 = Aψ(t) exp(iφψ(t)), is particularly natural for circularly polarized radiation,

for which Aψ and ω = ∂φψ/∂t vary only slowly. The angular polarization frequency

ω then provides a meaningful instantaneous frequency obtained directly from the
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Figure 3.5: The trajectories of each of the binary system’s black holes through ∼ 7

revolutions before coalescence for our high resolution case are shown.

radiation, corresponding to twice the angular frequency of orbital motion when the

black holes are still separate. Because the radiation is measured in the weak-field

region of our simulations, where gauge dependence is minimal, this polarization

frequency provides gauge-invariant information about the binary dynamics.

If the orbital motion is eccentric, this will leave an imprint in the radiation,

causing a slight decrease in the polarization frequency of radiation generated near

46



 0

 2

 4

 6

 8

 10

 12

-1600 -1400 -1200 -1000 -800 -600 -400 -200  0

r/
m

f

t/mf

di= 9.54M,hf=1M/32

di=10.8M,hf=3M/64

di=10.8M,hf=3M/80

di=10.8M,hf=1M/32

Figure 3.6: The coordinate separation between the puncture black holes is shown as

a function of time. The solid line shows the results for the comparison run, which

has relatively large eccentricity. The other curves show the three resolutions for our

new simulations, all having noticeably less eccentricity. Note that equivalent gauge

evolution equations were used in all four cases.

apocenter. We can recognize eccentric motion by identifying periodic deviations

from a smooth monotonic trend in the time development of the polarization fre-

quency ω(t).

Specifically, we looked at the polarization frequency ω(t) = ∂φ/∂t calculated
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Run AM Ω0M Ω̇M2 Φ0 e0

3M/64 5 × 10−4 0.017 3 × 10−6 1 0.005

3M/80 7 × 10−4 0.016 4 × 10−6 1 0.007

M/32 8 × 10−4 0.017 3 × 10−6 1 0.008

Table 3.1: Values resulting from eccentricity fitting. The magnitude of the eccentric-

ity in these simulations (as given by AM or e0) appears to be at least second-order

convergent.

from the strain rate v(t) = V (t) exp(iφ(t)). We see generally similar results whether

we use strain, strain rate, or ψ4 to define the frequency, but specifically show the

strain rate because it comes out smoother than ψ4 with respect to small waveform

noise, but with far less noticeable detrending issues than the strain. We fit the

time dependence of the frequency curves to a quartic trend, ωc, plus an eccentric

modulation of the form dω = A sin(Φ0 +Ω0(t− t0)+Ω̇(t− t0)2) where the quantities

A, Φ0, Ω0 and Ω̇ are fitting constants and t0 = 61M is a time offset approximately

accounting for the propagation time to Rext = 60M . Ignoring the early part of the

simulation where there are transient initial data effects, and the late part where

the secular trend is very strong, we fit the curves over the time range 250M < t <

1000M . We get similar results for eccentricity whether we apply high-frequency

filtering to the waveform before fitting. The results of the fitting are summarized in

Table 3.1.
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Variations in the details of the fitting procedure, such as using strain instead

of strain rate or smoothing high-frequency noise from ω(t), give results consistent to

roughly the number of significant digits shown for A and Ω0, though Ω̇ and Φ0 vary

more significantly in some cases. The period of eccentric oscillations indicated by Ω0

is about 1.5 times the initial orbital period, decreasing slightly at a rate comparable

to the rate at which the wave period grows. Allowing A to evolve in time did not

result in clearly improved fits.

From these fits we define eccentricity based on the effect, in Keplerian dy-

namics, of small eccentricity on orbital frequency, which should provide a good

approximation in the adiabatic regime. Kepler’s second law (conservation of angu-

lar momentum) implies that L ∝ r2ω is constant, from which it follows that the

eccentric frequency deviation dω/ω is twice the eccentric radial deviation dr/r, sug-

gesting the unitless definition of eccentricity e ≡ A/2ωc. Note that, to second order

in e, this definition of eccentricity is also equivalent to that put forth in Ref.[55] in

a post-Newtonian context. The constancy of A in our fit is consistent with a linear

decrease in eccentricity as frequency increases. The initial eccentricity e0, obtained

in this way, is also given in Table 3.1.

Even more interesting than the estimates for eccentricity provided this way

are the residual curves ωc(t) = ω(t) − dω(t) of angular frequency vs. time with

the eccentric part subtracted out. Note that the strictly sinusoidal nature of our

fit to the eccentric modulations represented by dω(t) implies that the underlying

secular trend should be preserved. Fig. 3.7 shows the results for each of our three

simulations together with the unmodified frequency ω(t) for the high-resolution case.
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Figure 3.7: Angular frequencies with eccentricity removed using the polynomial

trend, aligned such that the frequencies agree when the hf = M/32 simulation is

1000M before the peak in ψ4. Also shown is the frequency from the hf = M/32

resolution before the eccentricity was removed.

The plotted curves have also been filtered to remove some high-frequency simulation

noise present in the early part of the simulations. The smooth, now monotonic, trend

in the curves for ωc(t) is an indication that most of the wiggles evident in ω(t) were

consistent with our model for eccentric modulations dω(t), though the early part is

affected by transient features related to the shortcomings of the initial data model.
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We can take ωc(t) as providing a record of the “hardening” process, as radia-

tive losses bring the system through tightening orbits. The key effect of numerical

simulation error evident in Fig. 3.7 is a slowing of the hardening rate at low reso-

lutions, causing the final merger to be delayed. This delay appears to converge at

fourth order in resolution. Viewing the eccentric modulation as a small perturba-

tion on the dynamics of an optimally non-eccentric inspiral, we expect that these

trends would also provide a good approximation for the frequency evolution of a

merger simulation begun with optimally non-eccentric initial data. We therefore

have a mechanism for effectively removing a substantial fraction of the modulation

without affecting the underlying trend, and so can largely remove the eccentricity.

3.1.3.2 Improving Eccentricity Removal through Physically Moti-

vated Fitting

We note, however, that one potential shortcoming of the aforementioned proce-

dure is the possibility of mixing the trend and eccentricity components. For instance,

a fourth order polynomial can have inflection points, meaning the polynomial could

change its concavity due to the presence of an eccentric modulation. A more de-

sirable trend would be one that is constrained to be monotonically increasing. To

achieve this, we use the PN approximation. Specifically, we use the p4EOB model

introduced in [12] (see Appendix A), which includes a pseudo-4PN term tuned to

maximize the match with available numerical simulations, to approximate the circu-

larized frequency evolution. We align this EOB frequency data with our numerical
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frequency data by shifting the numerical data so that the peak numerical strain

amplitude occurs at t = 0, and then shifting the EOB frequency data so that the

peak in the frequency, which approximates the location of the light ring, also occurs

at t = 0. We will hereafter refer to this type of alignment as maquillage, in following

with [56]. We can then subtract the EOB data from the numerical data to isolate

the eccentric modulation present in the extracted radiation.

Fig. 3.8 shows three different frequency predictions. Two of these have been

discussed: the frequency as calculated from the extracted radiation, and the fre-

quency as calculated using the p4EOB model. The third approach makes use of

the physically intuitive evolution of the position of the puncture, which is obviously

heavily dependent on the choice of gauge. The puncture position, xi, is given by

dxi

dt
= −βi(xi) . (3.1)

Re-expressing the puncture position in polar coordinates, rPT e
i φPT , where rPT ≡

√
x2 + y2 and φPT ≡ arctan y

x
, the instantaneous puncture frequency is defined

as ωPT ≡ dφPT

dt
. This provides the third frequency prediction seen in Fig. 3.8.

Differences among the predictions are shown in Fig. 3.9. The modulations due to

eccentricity are particularly clear in the difference between the EOB and puncture

track predictions in Fig. 3.9.

Somewhat surprisingly, the amplitude of the eccentric modulations will not

be significantly damped in time via the emission of gravitational radiation until the

strong field regime of the merger, so eccentricity in the initial data gets locked in

until the final plunge. We can understand this behavior in the weak field by looking
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Figure 3.8: Gravitational wave frequency evolution as predicted by the p4EOB

model (dashed red line), which uses a phenomenological 4PN term to fit the nu-

merical relativity (NR) waveform, and by NR both from the puncture tracks (dash-

dotted green line) and from the extracted radiation (solid blue line). The puncture

orbital frequency is doubled for comparison to the extracted gravitational wave fre-

quency prediction until the merger, when the two frequency measures decouple. The

arbitrary time shift for the radiation and p4EOB frequencies through the maquil-

lage procedure, and the puncture track frequency is set by first shifting it the same

amount as the radiation, then shifting it forward by the coordinate distance to

the extraction sphere to account for the radiation’s travel time. This will be the

standard puncture track maquillage procedure.
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Figure 3.9: Differences in orbital frequency evolution as a function of time, demon-

strating the expected behavior of common eccentricity between the puncture and

radiation frequencies, and a smaller, underlying error when the eccentricity is can-

celed by subtracting the puncture track frequency from the radiation frequency.

at the leading order PN behavior. From Eq. (5.12) of [49], inverting r(e) to lowest

order in e, it is known that e ∝ r19/12. Using the leading order PN expressions

for r(t) and ω(t) (from e.g. [57] and references therein), we can string together the
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relationship

de

dt
=

de

dr

dr

dt
∝ r−29/12 ∝ ω29/18 ∝ (tc − t)−87/144 (3.2)

e(t) =

∫
de

dt
dt ∝ (tc − t)57/144 (3.3)

∆ωecc ≡ e · ω ∝ (tc − t)57/144(tc − t)−3/8

= (tc − t)57/144(tc − t)−54/144 = (tc − t)3/144 ≈ const. (3.4)

Therefore, we expect that we will be able to accurately fit the eccentric modula-

tion, ∆ωecc, using a sinusoid with a constant amplitude. Indeed, when we take the

difference between our high resolution gravitational wave frequency and the EOB

frequency (with the appropriate maquillage time shifts), and perform a least-squares

fit assuming a power law trend for the systemic error accumulation and a constant

amplitude eccentric modulation with only the leading PN order chirping behavior

(where “chirp” here refers to the rate of increase in frequency of the signal), i.e. a

fit of the form

∆ω(t) = ∆ωtrend(t) + ∆ωecc(t) = a+ btc + d sin
(
f(−t)−3/8 + g

)
, (3.5)

we find excellent agreement with the assumption of constant amplitude (see Fig. 3.10).

This result is simply an indication that the amplitude of eccentricity is radiated away

on a timescale longer than that over which PN is applicable in our simulations. In

other words, while it is well known that eccentricity radiates away, this has to either

occur over many more cycles than we simulate in the weak field, or else in the strong

field where we can’t reasonably apply a PN fit.

With this additional method for approximating the eccentricity contribution
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for a given frequency evolution, we can repeat the procedure demonstrated in Fig. 3.7

for the polynomial trend, and subtract the sinusoidal part of eq. (3.5) from our

calculated frequency. The result, shown in Fig. 3.11, is indeed an exceedingly smooth

curve. Because the p4EOB was used for the trend, rather than a polynomial, we can

be more confident that the trend part of the fit will not be affected by the eccentric

modulation, so that the sinusoidal part will be a more faithful representation of

the eccentric content. Of course, using a trend like the p4EOB is a much more

involved procedure, so the method that should be used depends on the level of

fidelity required.

As described in Chapter 2, the punctures move freely through the computa-

tional grid when using the “moving puncture” method. One of the advantages that

was mentioned was that, since the punctures weren’t fixed, the grid did not have to

evolve in a complex way, wrapping itself around the punctures in order to achieve

the necessary relative motion. Another benefit of the well-behaved grid is that the

coordinates are easily-interpretable. For instance, in order for the grid not to twist

around the punctures during the evolution, the rays of constant φ in the evolving

gauge will need to coincide with rays of constant φ, modulo a constant, in another

non-corotating gauge, such as the harmonic gauge used in most PN calculations,

or the ADM gauge mentioned earlier in association with the 3 + 1 decomposition.

Incidentally, empirical evidence indicates that the gauge used in this work is very

similar to the ADM gauge [58]. Assuming that the numerical gauge can be relied on

to give phase coordinates for the puncture that are consistent with a more familiar

gauge, such as ADM, we can interpret the puncture track values as being a reliable
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Figure 3.10: Differences in orbital frequency evolution as a function of time between

the radiation and EOB prediction (solid blue), and a fit of the form given by eq. (3.5)

(dashed green). The constant amplitude prediction for the eccentric modulation

appears to hold up particularly well.

estimate of the orbital phase despite the fact that they are not invariant quantities.

This assertion is borne out to a degree in the similarity of the eccentricity present

in both predictions, as seen in Fig. 3.9.

3.1.4 Behavior of the Puncture Frequency through Merger

The puncture frequency has an interesting characteristic in that it levels off to a

constant around merger which is independent of resolution and depends only on the
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Figure 3.11: Raw frequency evolution of our highest resolution run (solid blue), as

well as that same data with the eccentricity fit from Fig. 3.10 removed to leave a

“circularized” frequency. This circularized frequency is likely to be of greater utility

than the one based on the polynomial trend fit, since the trend in this case is a

physically motivated and more accurate fit to the true trend, and therefore the fit

to the modulation will ultimately be a truer representation of the correct eccentric

modulation.

initial data, evolution equations, and choice of gauge. This resolution independence

can be seen in Fig. 3.12. If we take xiPT to be the puncture track location, and

assume the center of mass is located at the origin, and ∆xi a small deviation from

the origin, then at very late times, we can assume xiPT ≈ ∆xi. We can then Taylor

expand the shift to ultimately find the puncture track frequency:
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Figure 3.12: Puncture frequency evolutions at 3 different resolutions, demonstrating

that they all plateau at a constant value after the merger has passed, and that that

value is the same regardless of resolution.

βi
(
xiPT

)
≈ βi (0) + βi

(
∆xi

)
≈ βi (0) + ∆xj∂jβ

i (0) (3.6)

βi
(
∆xi

)
= −d(∆x

i)

dt
≈ ∆xj∂jβ

i (0) (3.7)

ωPT ≡ 1

∆xj
d(∆xi)

dt
≈ −∂jβi (0) (3.8)

Therefore, the final plateau frequency from the puncture tracker depends on
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the curl of the shift vector around the common center. The key to understanding

the plateau behavior, then, is to see that eq. (3.8) becomes a steadily better approx-

imation as the puncture track approaches the origin, and so should be valid after the

merger, when a single Kerr hole has formed and is determining the evolution of the

gauge, and hence the plateau value observed in the puncture frequency. Therefore,

if we were to make any predictions related to the exact value of the plateaus that

would be tested via simulation, we would need a pseudo-Kerr solution for punctures,

which is not presently available, and it would need to be expressed in the specific

numeric gauge that the simulation will have arrived at when it reaches the merger.

Consequently, eq. (3.8) is not intended to be predictive (and, given the explanation

that eq. (3.8) provides, any prediction will be of dubious scientific value), but simply

serves as an explanation for the curious behavior of the puncture track through the

merger.

3.2 Waveform Accuracy

Having used various waveforms at different resolutions and extraction radii in

order to mitigate eccentricity, and having investigated the different kinds of error

contribution in order to assess the leading factors which cause errors in our simula-

tions, we are now ready to rigorously quantify the level of accuracy that we are able

to achieve with our numerical simulations. Again, a necessary caveat is that the

delay required in the preparation of this work means that the simulations presented

are no longer state of the art. Nonetheless, the intent was not for the exact level of
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accuracy to stand the test of time, but rather to present the methodology used to

assess accuracy in our simulations.

3.2.1 Validating the Numerical Phase

In order to meaningfully apply our results to answer questions regarding data

analysis, we must first determine our waveform accuracy, focusing primarily on the

accuracy of waveform phasing information in the late-inspiral portion of our sim-

ulations. Over the course of many developmental simulations leading up to these

results, we found that the early low-frequency part of the simulations is the most

difficult to simulate accurately. This makes sense generally because the crucial dy-

namical details are in the slow loss of energy and angular momentum to the relatively

fine, evolving structure of the spacetime curvature, which ultimately comprises the

radiation. Timescales are also longer for this part of the dynamics, requiring high

accuracy over a large number of computational iterations.

We get the most direct view of phasing information by examining the wave-

forms in polar decomposition. In Fig. 3.13 we show the polarization phase derived

from the strain rate waveform. This time we have aligned the simulations in time

from the beginning, as should be appropriate for simulations of the same initial con-

figuration. Later in the simulations, as the frequency increases the phase increases

more rapidly, and the timing differences among the simulations lead to large phase

differences.

We quantitatively compare the phasing results in Fig. 3.14, showing the dif-
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Figure 3.13: Strain rate phase. The high-resolution simulation goes through about

14 cycles before merger. The lower resolution simulations take longer to merge, and

go through more cycles.

ference between the two higher-resolution runs compared with scaled versions of the

difference between the two lower resolution runs. We can now clearly see that the

phase errors (measured this way) grow strongly in time. The lower-resolution dif-

ference has been rescaled two ways, such that they would be expected to agree with

the higher resolution difference for second- and fourth-order convergence, respec-

tively. The comparison suggests phasing convergence somewhere between second-
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and fourth-order over much of the run.

Since the phase error grows strongly in time, it is interesting to consider the

effect of timing errors in these convergence comparisons. The last curve in Fig. 3.14

shows the high-medium difference shifted in time by 57M ; that is, the high resolution

and medium resolution results have been differenced first, with their original time-

dependence unaltered, and then the resulting difference has been shifted in time.

57M represents the approximate timing difference between the two higher resolution

runs late in the simulation, as measured from the peaks in ψ4. Viewed this way we

see time-aligned phase differences taken from similar points in the physical evolution

of the medium resolution run, as represented in the medium-low curve, and the high

resolution run, as represented in the high-medium curve. As a result, the runs

appear to converge at a faster rate, closer to fourth-order. This unconventionally

time-shifted plot is not intended to serve as a rigorous assessment of convergence,

but is intended to illustrate that the timing differences can have a significant impact

on convergence estimates.

Above, we have compared our simulations made at different resolutions by

comparing the waveforms at equal points in time, with time aligned either at the

beginning of the simulation (t = 0 in the original run) or at the peak in ψ4. Since

errors cause the simulations to accelerate through their dynamical processes at some-

what different rates, such comparisons end up relating moments of quite different

dynamics, and become less meaningful, depending significantly on the reference time

according to which the phases are compared. This sort of comparison would not be

applicable at all when there is no clear way to physically align predictions in time,
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Figure 3.14: Strain rate phase three-point convergence. The higher resolution phase

difference is shown with and without a phase shift to allow comparison of errors at

similar dynamical points in the simulation. After shifting, the phase-error appears

to be fourth-order convergent for much of the simulation.

such as when comparing numerical simulations with post-Newtonian (PN) results.

However, as pointed out in a previous section, we can avoid assigning a reference

time by using the gravitational-wave frequency as the reference.

For the case studied here, a quasi-circular inspiral of comparable-mass black

holes, it is appropriate to consider the waveform frequency ω = ∂φ/∂t as a gradually
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increasing monotonic function of time, ω ≡ ω(t). Though the actual waveform

frequency of our simulations is not monotonic because of small eccentricities in the

inspiral trajectories, we have shown that we can fit out the eccentric deviations. The

residual secular trend ωc(t) provides a monotonic frequency, which we can apply as

an independent variable against which to compare various simulations.

We show frequency-based phase differences among the simulations in Fig. 3.15,

which allows us to compare the difference between the two higher-resolution simula-

tions with that between the two lower-resolution simulations. If the simulation er-

rors are fourth-order-convergent, then the low-medium difference should be approxi-

mately 2.784 times the medium-high difference. As is evident from the medium-high

“(3M/80-M/32)” and low-medium “(3M/64-3M/80)/2.784” curves in Fig. 3.15, the

errors appear slightly over-convergent with respect to fourth-order scaling. This

may be caused by phase error accrued early in the lowest-resolution (hf = 3M/64)

simulation, due to difficulty in resolving high-frequency components in the spuri-

ous radiation content of the Bowen-York initial data pulse, as well as in an initial

gauge pulse, which dominate at this time. This lowest resolution may therefore not

quite be in the convergent regime during this early part of the simulation. If the

phases are adjusted by a constant such that they match at some point after the

main part of the Bowen-York pulse has passed, then fourth-order scaling fits more

closely. This is demonstrated in Fig. 3.15 by the “(3M/64-3M/80)/2.784 (shifted)”

curve, which has been vertically phase-shifted by a constant so as to agree with the

“(3M/80-M/32)” curve at ωmf = 0.05423, the frequency 1000M before merger in

our high-resolution simulation.
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Figure 3.15: Frequency-based phase comparisons for runs at three resolutions. The

solid curve represents the phase-difference between the hf = 3M/80 and hf = M/32

simulations; the dotted curve represents the phase-difference between the hf =

3M/64 and hf = 3M/80 simulations; the short-dashed curve represents the phase-

difference between the hf = 3M/64 and hf = 3M/80 simulations, shifted vertically

by a constant phase so as to agree with the higher resolution difference at ωcmf =

0.05423 (shown as vertical dot-dashed line); and the long-dashed curve shows a

fit to ω−5 phasing error, which might be expected if there are energy conservation

violations that are constant in time. The lower-resolution curves have been scaled so

that they should superpose with the higher-resolution curves in the case of fourth-

order convergence.
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As is also clear in the figure, phase error accumulates most significantly in

the low-frequency portion of the simulation, mfω . 0.08. This makes sense gen-

erally since the simulation spends much more time at lower frequencies. We can

tie this observation back into our comparison between puncture track and radia-

tion frequencies, to attempt to a fully consistent picture of the phase error. When

the black holes are well separated, the dynamical development manifested in the

sweeping frequency is driven by a slow loss of energy and angular momentum. A

nonconservative leakage of energy δĖ will change the frequency sweep-rate ω̇ by

δω̇ ∼ (δĖ)/(∂E/∂ω), where ∂E/∂ω indicates how the binding energy changes with

frequency. Phase error δφ can be determined from the error in the sweep-rate by

δφ = δ

∫
ω

ω̇
dω = −

∫
ω

ω̇2
δω̇ dω (3.9)

Applying the leading-PN-order expressions for ∂E/∂ω and ω̇(ω), we find

δφ = −
∫

ω

(ω11/3)2

δĖ

(−ω−1/3)
dω = δĖ

∫
ω−6dω = −1

5
δĖω−5 (3.10)

Indeed this dependence fits our phase differences rather well assuming a constant

leakage of energy, as shown in Fig. 3.15. Note, however, that this does not single out

energy leakage as the source of error, as other errors may produce similar effects. For

instance, a similar leakage of angular momentum would lead to an error proportional

to ω−4, which would also fit reasonably well.
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3.2.2 Comparing the Radiation Observables with the Puncture Tracks

One side effect of using the moving puncture technique is that, in addition to

the typical method of extracting observable quantities such as waveform phase from

the radiation, one can also potentially make use of some of the gauge versions of

those quantities. For example, in the case of the fixed puncture gauge, the shift βi

at the punctures was zero, so the punctures did not move through the grid (hence

the name), and no insight could be gained from eq. (3.1), which relates the position

of the puncture to the shift. However, in the case of moving punctures, eq. (3.1) has

greater utility. Specifically, in order for the grid not to twist around the punctures,

which can lead to a buildup of errors and ultimately make codes unstable, the

puncture orbital phase will ideally coincide with the orbital phase of the binary in

a non-corotational gauge modulo a constant.

The puncture phase has a potential advantage over the radiation phase as a

measurement tool in that it is less vulnerable to errors from numerical dissipation.

The radiation must be numerically propagated from the source to the extraction

sphere, and this propagation accumulates error along the way. So, as was men-

tioned previously, extracting too close will lead to 1/Rext error, but extracting too

far will lead to errors biased toward the higher frequency content due to numerical

dissipation, which may be compounded if the waveform has propagated through a

region with coarse resolution. The puncture track, on the other hand, is a more

locally defined quantity, relying predominantly on Γ̃i, but it is a gauge quantity,

and since our gauge is not analytic, defining the relationship between gauge quanti-
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ties and observables calculated from the radiation in a rigorous way is challenging.

However, we find empirically that our gauge is very similar to the ADM gauge [58],

and regardless we do not perform any explicit gauge transformation in the upcoming

analysis that requires explicit definition of the gauge.

We choose to use ψ4 data for the following analysis, since we are comparing

data sets representing phase evolution of the same run, rather than different resolu-

tions or extraction radii, and we therefore need all the accuracy we can muster. Poor

results are achieved when the ψ4 data is smoothed using a moving average, since a

rapidly growing trend tends to be damped, but, as seen in Fig. 3.16, excellent results

can be achieved using a Savitsky-Golay filter. The difference between this filter and

a moving average is that, whereas a moving average approximates an entire span by

a single value, i.e. the average, the Savitsky-Golay filter fits the data in the moving

window to a polynomial of the desired degree, in this case second order. We use this

filter for all the results that come from ψ4 data, as otherwise high frequency noise

in the data obscures the meaningful underlying trend.

Before we perform the analysis, however, we digress briefly to illustrate why

the choice of which quantity to use to calculate the phase matters. Fig. 3.17 demon-

strates how different the result can be when h2,2 is used to calculate the waveform

phase instead of getting the phase directly from ψ4. Note the presence of errors on

the timescale of the waveform cycle, i.e. twice the orbital frequency, due to errors

that were made in the zeroing procedure. These errors, if left unchecked, would ob-

viously dominate the effect that we’re attempting to measure. To further illustrate

that the effect seen in Fig. 3.17 is indeed due to incomplete zeroing, we also present

69



−1000 −900 −800 −700 −600 −500 −400 −300 −200

−0.1

0

0.1

0.2

0.3

0.4

0.5

t (M)

δφ
 (

ra
d)

φ
GW, raw

 − φ
GW, averaged

φ
GW, raw

 − φ
GW, Savitsky−Golay

φ
GW, Savitsky−Golay

 − φ
GW, averaged

Figure 3.16: Phase difference due to smoothing using a moving average (solid) and

a Savitsky-Golay filter (dotted) using the same length window and a second-order

polynomial. The span was chosen to limit the moving average phase error to half

a radian, but yield as smooth a first derivative (i.e. frequency) as possible. The

difference between the two smoothed data sets is also shown (dashed) to demonstrate

that the Savitsky-Golay filter successfully removed all the jittery content, leaving

only the nonzero trend.
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a toy problem in Fig. 3.18 to illustrate the point. As can be seen, even a moderate

deviation from zero-mean can have a substantial effect on the frequency evolution.

The explanation is analogous to Kepler’s law of equal areas. If the waveform in

Fig. 3.18 were viewed as a vector whose length represented the strain magnitude,

and whose angle was the polarization angle, then zero-mean corresponds to the vec-

tor being centered at zero. However, if the waveform were shifted from zero-mean,

so that the vector’s base is no longer the origin, then the vector would have to wind

at either an accelerated or decelerated rate to subtend the same arc in the same

amount of time, depending on whether the vector’s base was closer or farther away

from the arc.

The convergence evidenced by Fig. 3.15 suggests that we can apply Richardson

extrapolation to estimate the difference of our high-resolution (M/32) run from the

infinite-resolution limit, and use the difference between each data series and the

extrapolated value as a measurement of our error. Richardson extrapolation is a

simple way to numerically remove the leading error term if you have two sets of data

at different resolutions and you know the convergence rate. Specifically, given two

waveforms, ha(t) and ha/b(t), where a and a/b are the resolutions, we can write the

exact answer h(t) as

h(t) = ha(t) + αo∆
n + O(∆n+1) (3.11)

h(t) = ha/b(t) + αo

(
a/b

a
∆

)n
+ O(∆n+1)

= ha/b(t) + αo

(
∆

b

)n
+ O(∆n+1) . (3.12)
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Figure 3.17: Orbital phase and frequency comparison between the puncture track

value and the value extracted from the radiation when the phase is calculated from

h2,2. The underlying trend in the radiation is obscured by errors from the zeroing

procedure.
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Figure 3.18: Demonstration of the error from incomplete zeroing. In this example,

h+ = cosφ+α and h× = sinφ+α, so that α represents a deviation from zero-mean.

As can be seen, a moderate deviation from zero-mean will cause a small deviation in

phase, but a substantial deviation in frequency. The same characteristic scalloped

pattern in the frequency of Fig. 3.17 is also clearly seen here.
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We can then use these two equations to eliminate αo:

h(t) =
ha(t) − bnha/b(t)

1 − bn
+ O(∆n+1) (3.13)

Using this relationship, if we assumed the fourth-order convergence suggested by

Fig. 3.15, the phase error estimate for this run would be 0.93 times the difference

between the phases from the 3M/80 and M/32 resolution runs. However we will

simply take the more conservative estimate of the actual difference between these

resolutions. Note that during the last 1000M of our M/32 simulation (i.e. from

ωmf = 0.05423 onwards), we estimate that roughly two and a half radians of phase

error accumulate, as measured with respect to frequency, which is less than half

of a gravitational wave cycle. A benchmark for accumulated waveform phasing

errors is one-half of a cycle, because phase error exceeding this amount would lead

to destructive interference in matched-filtering applications. For our high-resolution

simulation, we estimate less than one-half cycle of gravitational wave phase error over

the full simulated waveform, excluding the meaningless transients in the first 100M .

As in [1], we estimate that these phasing errors are smaller than the implicit phasing

difference between the 3PN and 3.5PN expansions of ω̇(ω) after t ≈ −300M (ωcM ≈

.08). For our data analysis considerations we will only be using the numerical

waveform after this point, for which the estimated phase error is well below a half

cycle.

Frequency-based phase comparisons, such as we have presented here, are bet-

ter suited than time-based phase differences, which depend strongly on where the

waveforms are chosen to be aligned in time. The relationship between the two can
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be understood by considering a one-parameter family of waveform results, with a

parameter λ representing model dependence, in this case the numerical grid-spacing.

The waveforms would provide phase as a function of time φλ(t), from which we can

derive frequency ωλ(t), which is monotonic for small eccentricity. Inverting to obtain

tλ(ω) one can derive the frequency-based phasing φ̄λ(ω) ≡ φλ(tλ(ω)). Now consid-

ering variations δ ≡ d/dλ near λ = 0, one finds the relationship between frequency-

and time-based phase comparisons

δφ̄(ω) = δφ(t(ω)) + ωδt(ω). (3.14)

This sheds some light on the often confusing issue of time alignment in the time-

based comparisons shown earlier. Specifically, for a waveform that sweeps signifi-

cantly through frequency, time- and frequency-based phase differences will be most

similar when the time-based phase differences are aligned so that δt vanishes where

ω is largest. In our case, the net frequency-based phase differences in Fig. 3.15

are closer to net phase differences with time-aligned at the end of the waveform,

as in Fig. 3.2, than when time is aligned at the lower-frequency beginning, as in

Figs. 3.13 - 3.14.

Given the advantages of frequency based comparisons, and the availability of a

circularized frequency to serve as our abscissa, we can compare the phase from both

the extracted radiation and the puncture tracks with the T4PN waveform in order

to assess the relative accuracy of each measurement technique. What we refer to as

T4PN is the T4 phasing choice in [59], which is an expansion of the chirp rate ω̇ in

terms of the frequency ω, which we then numerically integrate, as well as the 2.5PN
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amplitude from [60]. We see in Fig. 3.19 that both the radiation and the puncture

track phase differences appear to be consistent with fourth-order convergence. A

deviation at low frequency during the early noisy part of the waveform causes a

slight phase offset in the case of the radiation, but the shapes are clearly consistent,

and the use of phase means we could have freely added a phase constant to make

the two radiation curves lie on top of one another better. In Fig. 3.20, the radiation

phase differences both appear to outperform the puncture track ones, although by

a relatively slim margin.

We should note that, due to crossings between the T4PN phase and the other

data sets of interest, simple phase differences can accrue and cancel, making the

comparison less meaningful. Since not only the total phase difference, but the

instantaneous rate of accrual of that phase difference are indicative of the level of

error, we wish to employ a metric for comparing runs which is sensitive both to

net phase drifts and oscillatory deviations in phase. Therefore, for this comparison,

we looked at a measure of phase difference that was constrained to increase only,

namely

δφ∗(ωc) =

∫ ωc

ω′

c=ωo

|ω2(ω
′
c) − ω1(ω

′
c)|

ω̇c
′ dω′

c , (3.15)

where ω′
c is used to distinguish the use of ωc as the integration variable from its use

as the upper limit of integration (and hence the dependent variable for δφ∗). To

distinguish from δφ, we can refer to δφ∗ as the “maximized phase error”. We use a

starting frequency of Mωc = 0.054 for the results shown in Fig. 3.20. We see that

for both the high resolution and Richardson extrapolated cases, the puncture track
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Figure 3.19: Demonstration of fourth order convergence for both the puncture tracks

and the extracted radiation. All phases are set to zero atMω = 0.054, corresponding

to t = −1000M , where t = 0 denotes the moment of peak strain amplitude. The

frequency data for the radiation is calculated using ψ4, after it has been smoothed

using a Savitsky-Golay filter. The puncture track data is unsmoothed.

accumulates an additional ∼ 0.5 rads of phase error compared to the radiation.

However, it should again be noted that the radiation data required a very specific

choice of which data to look at, and subsequently the data required a significant
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Figure 3.20: Comparison of maximized phase error, δφ∗, measured as the difference

with the T4PN prediction, for the high resolution and Richardson extrapolated cases

from both the radiation (GW) and the puncture tracks (PT). The starting frequency

for integration of eq. (3.15) is Mωc = 0.054, corresponding to 1000M before merger.

The PT data shows an additional ∼ 0.5 radians of phase error compared to the GW

data for both the high resolution and extrapolated cases.

amount of smoothing, whereas the puncture track data has no such ambiguity, and

the raw data is as smooth as the processed result for the radiation case.
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While at present the analysis above shows that the evolution of the puncture

track phase does not provide a more accurate orbital phase than its radiation coun-

terpart, the choice of gauge has never been driven by an interest in yielding a highly

accurate gauge phase. It may, therefore, be worthwhile to monitor the accuracy

of the orbital phase and other observables calculated from gauge quantities in the

way presented here. It is possible, for instance, that at some point a gauge may be

found which yields either such small internal error sources in the puncture tracks, or

such perfectly canceling internal error sources, that the resulting phase corresponds,

to a high degree of fidelity, with the radiation phase extracted at infinity, which is

only approximated by our radiation measurements extracted at finite radii. We note

that as our gauge choices have evolved, they have steadily led to better agreement

between the puncture behavior and the dynamics predicted by the radiation.

Since we cannot disprove the possibility that such a gauge exists, we cannot

dismiss the possibility that quantities from the puncture track, although gauge de-

pendent, may ultimately yield the most accurate orbital phase for finite differencing

codes. We note, however, that we cannot measure all the same observables from

the puncture track that can be measured from the radiation. The mode decomposi-

tion of the radiation, as well as the amplitude, are of course impossible to calculate

(aside from applying PN) using the puncture tracks. Therefore, we must emphasize

that we are not suggesting an eventual replacement of the radiation observables

with puncture track observables. Rather, we advocate keeping track of the subset of

total radiation observables related to the orbital dynamics which can be calculated

using the puncture tracks, and comparing their predictions with each other and with
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PN predictions to gain insight into impact of the gauge on the dynamics, with the

possibility that our choice of gauge and evolution equations may eventually lead to

the aforementioned damping of error in gauge phase. Even without achieving such

an ideal gauge, another measure of phase which is largely free from noise is always

advantageous as a check when analyzing these waveforms which, as has been dis-

cussed, have substantial noise content and must be filtered to provide an accurate

measure of phase.

3.2.3 Validation of PN Phase Using Numerical Relativity

Having determined that, indeed, the radiation provides a slightly more ac-

curate measurement of phase than does the puncture track, we use the radiation

phase to answer a complementary question, that being, “Can the phase evolution

calculated using numerical relativity be used to validate the accuracy of the PN

approximation?” It turns out that the answer is yes, as has recently been demon-

strated to extremely high accuracy in [59]. However, at the time this analysis was

originally carried out (the result ultimately being published in [1]), the result was

somewhat unanticipated.

We again employ a frequency-based comparison of the phase predictions from

the two methods. We use the T4PN as the representative of PN methods based on

the qualitative agreement with numerical simulations that was demonstrated in [56]

(which, given that the 3.5PN order T4PN has recently been shown to agree with

the numerical simulations presented in [59] to within 0.05 radians over 30 orbits,
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has proven to be a wise choice). We again show the differences for the different

resolutions of simulations, along with the differences constructed from the three

highest PN phase expressions, i.e. the 2.5PN, 3PN, and 3.5PN phases. Finally,

we take the Richardson-extrapolated result found using our two highest resolution

simulations, and difference that with the 3.5PN phase prediction. The result is

shown in Fig. 3.21. Two areas of note are the regions where a portion of the

“3PN-3.5PN” data set have been translated to overlap other data sets. The first

such region, at a frequency of ωcM ∼ 0.08, shows approximately where the rate

of accumulation of error in the numerical simulation drops below that in the PN

approximation, as represented by the size of the highest order PN correction term.

The second point shows where the “extrap-3.5PN” data set is last equal in slope

to the “3PN-3.5PN” data set. The subsequent divergence of the former, and stable

behavior of the latter, indicates that after this point, the “3PN-3.5PN” data set can

no longer be relied upon to give physically reasonable results. Consequently, in the

region between these two areas, the small overall value and small slope (indicating

a slow rate of error accumulation) for the “extrap-3.5PN” is a striking validation of

the PN approximation using numerical simulations in a regime where both methods

should be valid.

3.2.4 Waveform Amplitude

Having thoroughly assessed the phase characteristics of the waveform, we will

now briefly turn to the behavior of the amplitude. Because the runs being analyzed
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Figure 3.21: Gravitational wave phase error estimates. Differences between phasing

from the 3.5PN chirp rate and Richardson extrapolation from the numerical simu-

lations (solid blue curve) are small, and are consistent with internal error estimates

for the numerical simulation results (dash-dotted) and the PN sequence (dotted).

here lack sufficient accuracy in the amplitude to perform all the analyses that were

done on the phase (for example, a quantitative comparison and validation of the

PN amplitude), we will provide a more qualitative description of the numerical

amplitude. More recent work [61], using higher-accuracy simulations, has carried

out such comparisons with PN predictions.

As can clearly be seen in Fig. 3.22, the fluctuations in the numerical amplitude
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are too great for us to be able to validate one order of PN over another with any

level of certainty, as a single simulation varies sufficiently to span across all orders

of PN over the course of the evolution. It is noteworthy that when the different

PN order amplitudes are shifted in time by making the corresponding frequencies

at 3.5PN order all be equal at some matching time (t = −328M in this case),

i.e. A3PN (ω3.5PN(t = −328M)) = A2.5PN (ω3.5PN(t = −328M)) = . . ., we see that

the 3PN amplitude is nearly identical to the 2PN amplitude (hereafter referred to

together as 2PN/3PN) until ∼ t = −100M . However, both 2PN and 3PN are

considerably larger than our numerical waveform at the time where we wish to

attach a PN inspiral. The 2.5PN amplitude, on the other hand, is very close, and

so allows us to construct a smooth combined PN-NR waveform. The slope of the

2PN/3PN appears to agree better at the matching point and thereafter, however,

and we find it likely that the disagreement between the NR waveform and 2PN/3PN

is the result of numerical dissipation in the simulation, rather than shortcomings in

the PN sequence. We choose the 2.5PN for convenience since it makes a smooth

hybrid waveform, and also to be conservative for our later analysis since the 2.5PN

predicts less power being radiated (and hence lower SNR) than does the 2PN/3PN.

For the purpose of assigning a fractional error to the amplitude, we have a

number of choices. However, we observe that the 2PN/3PN amplitude tracks the

waveform steadily throughout the evolution, is consistent with 2.5PN ∼ 1000M

before merger, and is roughly consistent with the disagreement among numerical

resolutions at t ≈ −100M , although it quickly diverges thereafter. The fractional

amplitude error estimate (3PN − NR)/3PN therefore ranges from ∼ 10% at t =
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Figure 3.22: Comparison of NR amplitude with different order PN predictions.

−1000M to ∼ 2% at t = −100M .

It was observed in [62] that the amplitude predicted by numerical simulations

was consistently less than the PN predictions at early times where PN is most likely

to be valid. This discrepancy was seen to decrease with increasing extraction radius,

indicating that the dominant error at early times was finite extraction radius. This

led some groups to the practice of extrapolating waveforms with respect to extrac-

tion radius [61], as is typically done with resolution. However, care must be taken

when dealing with extraction radius extrapolation, because whereas one source of

error (the approximation of extracting radiation at an infinite distance) decreases
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with increasing extraction radius, another error source, the error resulting from nu-

merical dissipation as the radiation is propagated through the grid, increases with

increasing extraction radius. Therefore, we can anticipate a crossover point, since

numerical dissipation becomes stronger at higher frequencies, where extrapolating

will cease to bring the result closer to the correct answer in the limit of infinite

resolution at infinite extraction radius, but will cause is to systematically deviate

from that answer. A study constrained to the case of the lower frequencies (as ul-

timately was the case for [61] due to technical issues) will be able to proceed with

such radius extrapolation, but any attempt to create an accurate complete wave-

form must take greater care. Since the effects of finite extraction are strongest at

low frequencies (when the extraction radius becomes comparable to the gravita-

tional wavelength), an ideal complete waveform would be a hybrid of a waveform

extrapolated in both resolution and radius at low frequencies, with the data used

having been extracted at as far a radius as possible, combined with a high frequency

late inspiral-through-merger waveform extrapolated only in resolution using closer

extraction radii. As we continue to pursue the highest level of accuracy achievable,

we will begin constructing more elaborate hybrids such as these.

The effects of numerical dissipation can clearly be seen in the power output

as calculated from the gravitational waves. To illustrate the varying behavior of

the waveform amplitude as we move from low frequencies and earlier times to high

frequencies and late times near merger, we use data from a very recent run which in-

corporates higher order spatial differencing, and can thus provide accurate solutions

at lower resolutions (only a single resolution was available at the time of this work).
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The following results have 3M/64 resolution, which is equivalent to our lowest reso-

lution in the set of equal mass, nonspinning runs which are analyzed throughout the

rest of this work. However, whereas our standard runs converge at fourth order, in

shorter test runs the new version of the code converged at between fifth and sixth

order. As can be seen in the top panel of Fig. 3.23, power output increases with

extraction radius until late in the inspiral. However, looking at the bottom panel,

we see that as the system moves from late inspiral into merger, the trend flips and

power output decreases with larger extraction radius, which is consistent with error

from numerical dissipation coming to dominate over errors from finite extraction

radius.

Lastly, we investigate the convergence of the errors from numerical dissipation

with extraction radius. Specifically, we compare the strain amplitude (times the

extraction radius, to compensate for the 1/r decay) extracted at 90M , with the

Richardson-extrapolated result using data extracted at 50M and 70M . The agree-

ment is reasonably good in the top panel of Fig. 3.24, with the dominant sources of

deviation being imperfect zeroing of the waveform (which explains the oscillations

at the GW frequency, which are amplified by extrapolation) and, less significantly,

eccentricity. There is far less apparent convergence at late times as shown in the

bottom panel of Fig. 3.24, which makes application of Richardson extrapolation in

extraction radius over the range shown questionable.

The presence of numerical dissipation does not automatically make conver-

gence impossible, since the radiation is decaying as 1/r, so that any fractional error

will also decay at that rate, and could potentially converge. However, the conver-
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Figure 3.23: Power as calculated from the extracted radiation. For most of the inspi-

ral, power output increases with increased extraction radius (top), but peak power

decreases with increased extraction radius due to numerical dissipation (bottom).
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Figure 3.24: Waveform amplitude calculated from extracted radiation. The extrap-
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as seen in b.). The dominant error is imperfect zeroing of the waveform, as can be

seen by the oscillations in a.), which are amplified by extrapolation.
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gence would be to a value equivalent to the correct value plus some finite error, with

the error given by a value whose integrand happened to converge when integrated

from 0 to infinity. Therefore, the presence of error is no guarantee of a failure to

converge and, likewise, successful convergence is not necessarily a guarantee of accu-

racy. These issues, though subtle, are important to be mindful of when attempting

to assess and mitigate error present in our simulations.
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Chapter 4

Signal Detection and Characterization

In this Chapter, we move from our detailed analysis of the waveform charac-

teristics presented in the preceding Chapter into more application-oriented issues.

Using a hybrid PN-NR waveform, we calculate various quantities related to signal

detection. In particular, we present several representations of the SNR for LIGO,

Advanced LIGO, and LISA for both the equal mass case as well as several cases of

unequal mass, nonspinning waveforms. Finally, we address the question of statistical

uncertainty that we can reasonably expect to be present in a LISA measurement of

an equal mass BHB, and discuss the subtleties related to distinguishing statistical

error from theoretical error in the waveform.

4.1 Making our Template

As indicated in the preceding chapter, the PN component of our hybrid PN-NR

waveforms, which we will apply in this chapter, is the T4PN as it was previously

defined. It is worth noting that this method of calculating the phase, via direct

numerical integration of the 3.5PN expansion of the chirp rate, ω̇3.5PN , for example

in the integrand dω(ω/ω̇3.5PN), does not strictly respect the proper procedure for

PN approximation, as the latter would require additional 3.5PN expansion of the

integrand itself. However, the phase obtained in this manner will have the same
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convergence properties as the original ω̇3.5PN expansion, which is arguably a more

fundamental PN quantity because of its close relationship to the rate of energy loss,

Ė, from which it is derived. Additional expansion of the phase may compromise its

accuracy. Alternately, since the T4PN procedure is done numerically, and therefore

permits no way to truncate higher-order PN terms upon integrating after each step

as one moves from solving ω̇3.5PN to get ω∼3.5PN , then to integrating ω∼3.5PN to get

φ∼3.5PN , it could be that the higher-order terms that are effectively kept instead

of truncated may account for the improved accuracy. Whatever the cause, as was

mentioned in Chapter 3, the accuracy of the T4PN was demonstrated in [59] to be

so much better than we would have any justification to expect, that for the moment

it might be best to just count our blessings and use it in blissful ignorance.

Fig. 4.1 shows our numerical waveform overlaid with the PN waveform that

was just described. To generate a complete, mass-scalable waveform, we match the

frequency of the numerical simulation to the PN prediction, adjusting the phases

to also be equal at that point as shown in Fig. 4.1, and connecting the two halves

to make a single waveform. This is done by shifting the PN waveform until the

frequency equals the numerically-predicted frequency at a time in the simulation

where the accuracy of the numerical data first surpasses the accuracy of the PN

approximation, as estimated in [1]. Specifically, [1] predicts this point of equivalent

accuracy to occur at Mω ∼ 0.08, which corresponds to t = −328M (shown by the

circle in Fig. 4.1).

It is interesting that there was no need to adjust the 2.5PN amplitude for

continuity. The amplitude agreement with the numerical simulation is so good, and
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Figure 4.1: Numerical waveform overlaid with T4PN waveform as described in Ap-

pendix A. The circle indicates the point at which the waveforms are joined to form

a hybrid NR-PN template waveform for data analysis applications.

hence the resulting amplitude is so nearly continuous, that the small discontinuity

fails to produce any discernible artifacts in the Fourier transform h̃(f) of the result-

ing waveform. The numerical data is shifted so that the peak amplitude occurs at

t = 0, and the PN amplitudes are shifted so that the corresponding 3.5PN frequency

matches the numerical run at t− 328M .

It is worth noting that the recently calculated 3PN amplitude [63] is negligi-

bly different from the 2PN amplitude compared both to the internal errors in the

numerical amplitude and to the typical scale of the individual PN terms, indicating

that the 3PN correction has simply canceled out the 2.5PN correction until very late

times (after ∼ −70M) where we know from simulation that the binary has begun

merging, and PN is no longer valid. Furthermore, although the 2.5PN amplitude

is closest to the NR amplitude at the location where we match NR and PN, the

NR amplitude trend is more similar to that of the 2PN/3PN amplitudes, so the
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agreement may well be due to leakage of energy from the simulation that should be

present in the radiation, causing the amplitude to be lower than it should be. Since

our internal errors are too great to draw a conclusion regarding which PN order is

best, we choose 2.5PN due to its aforementioned continuity with our NR data and

its lower value, which will yield slightly more conservative SNR results later.

Having generated a waveform, it is informative to estimate the waveform’s

phasing accuracy over the course of the BHB evolution. Note in Fig. 3.15 that

for the portion of our M/32 simulation that is used in the waveform, we estimate

∼ 0.5 radians of phase error. If we take the difference between 3 and 3.5 PN

terms to be an estimate of the phase error as in [1], we can assess the error for

the PN portion of the waveform. It was shown in [64] that the analytic PN phase

expression accumulates very little error, on the order of 0.1 radians, until Mω ∼

1 × 10−4. Beginning our numerical phase integration at this point and evaluating

up to Mω = 0.08 yields a gravitational wave phase error of ∼ 3.6 radians, such

that the total accumulated phase error over the entire waveform is ∼ 4 radians. As

stated previously, an accumulated waveform phasing error of less than π radians is

the threshold below which wave-matching comparisons may be used for matched-

filtering applications. We estimate that our combined waveform meets this criterion

after a frequency of about Mω ∼ 0.01 up to the ringdown frequency, Mω ∼ 0.5.

We therefore have a waveform with sufficient accuracy to be useful as a template for

gravitational wave detection. While templates will ultimately be needed for cases

of greater astrophysical interest, and still greater accuracy will be required for the

template to be useful for the purpose of parameter estimation, the construction
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of this waveform illustrates that the field of numerical relativity has matured to

the point of being capable of producing results that are useful for gravitational

wave data analysis. Furthermore, in our final analysis we calculate the expected

parameter errors assuming perfect templates, so we can compare our theoretical

errors for the phase and amplitude from the previous chapter to see how useful the

waveforms presented here would be in actually attempting to meaningfully estimate

those parameters in a real signal.

4.2 SNR Calculation

If one’s only interest is to detect signals, then the relevant metric is the signal-

to-noise ratio (SNR). The SNR is calculated assuming matched-filtering is performed

on the data, and that the waveforms are perfect copies of the embedded signal. In

this case, the sky- and waveform-polarization-averaged SNR is given by

〈(SNR)2〉 =

∫
d(ln f)

(
hchar(f)

hn(f)

)2

, (4.1)

where hchar(f) ≡ 2f |h̃(f)| is the characteristic signal strain and hn(f) ≡
√

5hrms(f) =

√
5fSn(f) is the rms of the detector noise fluctuations multiplied by

√
5 for sky-

averaging, with h̃(f) and Sn(f) being the Fourier transform of the signal strain and

the power spectral density of the detector noise, respectively [65].

The waveform scales with luminosity distance DL and total mass M as hchar ∝

(1 + z)M/DL, while the time axis for an observed wave, after redshifting, scales

as t ∝ (1 + z)M , so that the waveform shown in Fig. 4.1 is applicable over all

total masses and redshifts. When needed we relate luminosity distance to redshift z
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using cosmological parameters consistent with the most recent Wilkinson Microwave

Anisotropy Probe (WMAP) results (ΩΛ = 1 − ΩM = 0.72, h = 0.73) [66] and the

relation

DL(z) =
(1 + z)c

H0

∫ z

0

dz′√
ΩM(1 + z′)3 + ΩΛ

. (4.2)

For cases where an impractically long time series would be needed to cover the

band with an adequate sampling rate, the waveform is extended in Fourier space to

still lower frequencies (and consequently back further in time) using the quadrupole

formula,

|h̃quad(f)| =
1

2
√

15DL

(
[(1 + z)M ]5

π4f 7

)1/6

. (4.3)

The PN portion of the waveform continues slightly past where its Fourier

transform deviates from the quadrupole expression for |h̃(f)| by ∼ 2%, at which

point eq. (4.3) is used to extend |h̃(f)| back as far as necessary. The PN segment is

truncated at a higher frequency than the lowest frequency component of its Fourier

transform in order to eliminate edge effects. Finally, the quasi-normal ringdown

at the end of the numerical simulation is extended by fitting a damping coefficient

and fundamental frequency to the data in order to mitigate edge effects at the

high-frequency end of the Fourier transform.

4.2.1 Observing Stellar BHBs and IMBHBs with LIGO and Ad-

vanced LIGO

Ground-based interferometers are sensitive to relatively high frequency grav-

itational waves from coalescing stellar mass (M . 102M⊙) and intermediate mass
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(IM) (102M⊙ . M . 103M⊙) BHBs. In this section, we apply our combined wave-

form to consider the response of LIGO and Advanced LIGO to BHB coalescence,

illustrating the importance of numerical simulation results for ground-based detec-

tors.

For our analysis of LIGO, we used the design sensitivity to characterize the

detector noise [67]. This sensitivity assumes that the noise is seismically limited

below 40 Hz, thermally limited between 40 and 150 Hz, and shot-limited above 150

Hz. For Advanced LIGO, unlike LIGO, we had a choice of tuning configurations.

We used the wide-band tuning typically associated with burst sources because of

its dramatically superior sensitivity at higher frequencies, where the merger portion

from many sources is predicted to occur [68]. This yielded an improved SNR for

most masses compared to tunings that were optimized for only the early inspiral

portion of the coalescence.

In Fig. 4.2, we show hchar for several sources plotted relative to the hrms

sensitivity curves for LIGO (dashed line) and Advanced LIGO (dash-dotted line).

We plot these values because the height of hchar above hrms is an indicator of the

SNR, as can be seen by inspecting eq. (4.1). It is also informative to see that,

despite the relative brevity of the merger in time, it spans a relatively broad range

of frequency with significant power content.

By rescaling we can calculate the sky-averaged SNR as a function of redshifted

mass, and particular luminosity distance DL. In Fig. 4.3 we plot the SNR achievable

by LIGO for sources at a luminosity distance DL = 100 Mpc as a function of

redshifted mass (1 + z)M . Here, the dashed line shows the SNR from the early
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Figure 4.2: The LIGO (dashed) and Advanced LIGO (dash-dotted) rms noise am-

plitudes hn with the characteristic amplitudes hchar of 6 example sources (solid).

The locations on each hchar corresponding to the peak ψ4 amplitude (circle) and 1

second before the peak in the observer’s frame (filled circle), as well as t = −50M

(square) and t = −1000M (diamond) in the source’s frame, are as marked. The

mass given is the combined rest mass of each black hole.

inspiral in the time range −∞ < t < −1000M , which is roughly up to the start of

our run. The dotted line shows the SNR for the late inspiral, −1000M < t < −50M ,

where t = −50M is approximately the time at which the merger burst begins. The

thin solid line gives the SNR for −50M < t < ∞, and encompasses the merger-
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Figure 4.3: SNR for sources at luminosity distance DL = 100 Mpc plotted vs.

redshifted mass for LIGO. The contributions from −∞ < t < −1000M (dashed),

−1000 < t < −50M (dotted), and −50M < t < ∞ (thinner solid), as well as the

SNR from the entire waveform (thicker solid) are shown.

ringdown part of the signal. The thick solid line shows the SNR from the entire

waveform. Note that the addition of the merger-ringdown waveforms increases the

SNR and extends the detectable mass range significantly. The merger-ringdown

portion t > −50M dominates for all equal-mass nonspinning merger observations

detectable with SNR larger than 10 at 100 Mpc.

This type of plot was first made in [65], and it is useful to compare our results

with theirs. Our SNR calculations are based on a full waveform for the case of equal-
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mass, nonspinning black holes. The work in [65] was done before merger waveforms

were calculated and thus is based on estimates for the merger-ringdown regime. For

example, they estimated a merger radiation efficiency of ∼ 10%, which is higher than

our results but may well obtain for mergers with spin. Comparing their Fig. 4 for

the SNR for LIGO with our Fig. 4.3 we note that their curve for the inspiral includes

the radiation up to the merger and so should be compared to the combination (in

quadrature) of our dashed and dotted curves. Our result for the merger SNR is

somewhat smaller than theirs, due to the smaller amount of radiation emitted in

our mergers. More recently, an analysis of SNR for LIGO using numerical relativity

waveforms for the merger and PN waveforms for the inspiral was made in Ref. [56];

our results in Fig. 4.3 are similar to what they report in their Fig. 22.

Fig. 4.4 shows the SNR for sources at DL = 1 Gpc for Advanced LIGO.

Comparing with Fig. 4.3, we see that Advanced LIGO will have a significantly

higher sensitivity to BHBs over LIGO. This point is reinforced in Fig. 4.5, which

shows contours of SNR for Advanced LIGO as functions of redshift z and total mass

M . We find that for M ∼ 200M⊙, Advanced LIGO should be able to achieve an

SNR greater than 10 out to nearly z = 1 for equal-mass nonspinning binaries. From

Fig. 4.4 it is evident that these high SNRs depend strongly on the merger-ringdown

part of the waveform t > −50M .

It is important to note that astrophysical BHBs are likely to have mass ratios

different from unity, and that this will reduce the SNRs computed here for the

equal-mass case. For stellar BHBs, current work [69] shows that the mass ratios

are rather broadly distributed. The rates for such mergers may be low, ∼ 2 yr−1
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Figure 4.4: SNR for sources at luminosity distance DL = 1 Gpc plotted vs. red-

shifted mass for Advanced LIGO. The contributions from −∞ < t < −1000M

(dashed), −1000 < t < −50M (dotted), and −50M < t < ∞ (thinner solid), as

well as the SNR from the entire waveform (thicker solid) are shown.

for Advanced LIGO, depending on the evolution of the original binary through the

common envelope phase. For IMBHBs, mass ratios in the range 0.1 . m1/m2 . 1

are expected to be the most relevant, with potential rates of ∼ 10 per year [70],

although these rates are far more uncertain than those for stellar BHBs. We can

apply the mass scalings from Ref. [65] to extrapolate these results to take into

account the effect of mass ratios on the computed SNRs; specifically, SNR ∼ η1/2 for

the inspiral based on the leading-order quadrupole behavior, and, more speculatively,
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Figure 4.5: SNR contour plot with mass and redshift dependence for Advanced

LIGO.

SNR ∼ η for the merger and ringdown, extrapolating from the test mass limit, where

µ = m1m2/M (4.4)

is the reduced mass and

η = µ/M (4.5)

is the symmetric mass ratio. The accuracy of these mass ratio scalings will be

studied for the case of moderate mass ratios in an upcoming section of this Chapter.

Astrophysical BHBs are also expected to be spinning and this can potentially affect

the SNR, for example if the spin-orbit interaction moves the ISCO to smaller (or

larger) radius and thus causes the binary to that generate more (or less) gravitational

101



wave cycles in the merger [71].

4.2.2 Observing MBHBs with LISA

The coalescing BHBs that radiate in this band will be supermassive (i. e.

SMBHB), having masses M & 104M⊙. Fig. 4.6 shows hchar for several MBHBs plot-

ted relative to the LISA sensitivity curve. We used the “standard” LISA sensitivity

curve [72, 73] for frequencies above 1×10−4 Hz, with shot and pointing noise contri-

butions totaling 20pm/
√

Hz of laser phase noise. For 3×10−5 Hz ≤ f ≤ 1×10−4 Hz,

we employed a more conservative estimate of the acceleration noise than the one

given in [72], instead assuming a steeper amplitude spectral density that falls off as

f−3 constrained to match the standard sensitivity curve at 1 × 10−4 Hz [74]. Be-

low 3 × 10−5 Hz, we assume the detector has no sensitivity, which is a reflection of

the uncertainty of the sensitivity at such low frequencies and our desire to make

conservative estimates. The sensitivity model assumes that there are no correlated

noise sources, and it assumes perfect cancellation of laser phase noise which results

from having an unequal arm interferometer. This cancellation is achieved through

the application of time delay interferometry, or TDI (see e.g. [75] for a description

of the state-of-the-art in cancellation of LISA spacecraft motion through data post-

processing). In TDI, since the laser phase noise in the different arms is correlated,

different combinations of the data streams at various relative delays can be added to

form new TDI observables which, if the delay sizes are known precisely, can suppress

the laser phase noise to a level below the other noise sources that are independent
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among the arms of the interferometer.

MBHB sources can remain in-band for LISA over a very broad frequency

range. Therefore, unlike the case of LIGO and Advanced LIGO, LISA sources nearly

always require the use of the quadrupole approximation procedure mentioned above

to extend hchar to sufficiently low frequencies. Also, since more massive BHBs chirp

more slowly, a MBHB could potentially be in LISA’s sensitive band for much longer

than the mission’s lifetime. To prevent unrealistic SNR values due to this excessive

integration time, the quadrupole formula is only used to extend hchar to a low enough

frequency such that the total hchar used in our calculations corresponds to 3 years

of data in the detector’s frame, which is a conservative estimate of the expected

mission lifetime.

The SNR for LISA is shown as a function of redshifted mass, normalized

for DL = 10Gpc, in Fig. 4.7. The bump in the curves is caused by the binary

confusion noise. Again we see the enhancement of SNR from the merger-ringdown

part (thin solid line) of the waveforms, and confirm the strikingly large values of

SNR obtainable by LISA for these sources seen in [65] and [56]. For systems with

redshifted mass (1 + z)M < 3 × 104, the early inspiral t < −1000M portion of the

waveform dominates. The highest SNRs for equal-mass nonspinning mergers are

obtained for systems with(1+z)M > 106, again dominated by the merger-ringdown

portion of the waveform.

Contours of SNR for LISA are shown in Fig. 4.8 and demonstrate that LISA

can observe MBHBs throughout the observable universe at large SNRs. We find it

encouraging that, in addition to the large SNR values predicted for LISA overall,
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Figure 4.6: LISA rms noise amplitude hrms from the detector only (dashed) and

from the detector combined with the anticipated white dwarf binary confusion (dash-

dotted) [76] with the characteristic amplitudes hchar of three example sources (solid).

The locations on each hchar curve corresponding to the peak ψ4 amplitude (circle),

1 hour before the peak (filled circle), 1 day before the peak (circle with inscribed

cross), and 1 month before the peak (circle with inscribed square) in the observer’s

frame, as well as t = −50M (square) and t = −1000M (diamond) in the source’s

frame, are as marked. The mass given is the combined rest mass of each black hole.

When necessary, the quadrupole approximation is used to extend hchar backward in

time 3 years before the peak ψ4 amplitude in the detector’s frame (dotted).
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Figure 4.7: SNR for sources at luminosity distance DL = 10 Gpc plotted vs. red-

shifted mass for LISA. The contributions from the early inspiral −∞ < t < −1000M

(dashed), late inspiral −1000 < t < −50M (dotted), and merger-ringdown −50M <

t < ∞ (thinner solid), as well as the SNR from the entire waveform (thicker solid)

are shown.

some of the largest SNR values are obtained out to the largest redshifts in the mass

range 105M⊙ ≤ M ≤ 107M⊙ where models of BHB populations predict that the

binaries can coalesce within a Hubble time [77] and that the event rates for LISA

are several per year [78]. As discussed above, the effects of unequal masses will tend

to decrease these SNR values, while spins may increase or decrease them.

Even for non-optimal configurations, the presence of an MBHB coalescence

105



Figure 4.8: SNR contour plot with mass and redshift dependence for LISA. Note

that MBHBs with masses M > 107M⊙ may not coalesce within a Hubble time [77].

in the LISA data stream can dominate all the anticipated noise sources. Fig. 4.9

shows a simulation of LISA’s response to the merger of equal-mass nonspinning

black holes with total mass M = 105M⊙ located at redshift z = 15, and oriented so

that LISA lies in the system’s equatorial plane, where the radiation is weakest. The

SNR for a signal from such a source will be ∼ 200, averaged over sky positions and

polarizations (see Fig. 4.8).
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Figure 4.9: Simulated LISA data stream showing LISA’s response to a system of

two equal-mass black holes (M = 105M⊙) located at redshift z=15 observed on

the system’s equatorial plane. The quantity plotted is an unequal arm Michelson

interferometer observable “X” [75]. The LISA response and instrumental noise are

realized using the LISA Simulator [79, 80], and colored noise was added to represent

the unresolvable galactic binary foreground with the spectrum used in Ref. [76]. The

inset shows the signal over a longer duration where low-frequency noise is evident.

4.2.3 Unequal Mass and the Significance of Higher Modes

It has long been known that the peak of signal-to-noise ratio (SNR) along

the η axis of parameter space occurs for equal mass binaries due to the decrease
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in the power content of the emitted waves as η deviates from 0.25. However, the

higher frequency throughout the evolution of an unequal mass coalescence compared

to an equal mass system the same amount of time before merger might lead one

to believe that unequal mass systems will yield smaller parameter uncertainties.

Furthermore, the presence of subdominant modes in the unequal mass cases brings

about the possibility that those modes might break degeneracies among the other

parameters that describe the system, degeneracies that are left untouched in the

equal mass case. However, the increased number of cycles and presence of higher

modes is counterbalanced by the decrease in SNR as mass ratio increases, such

that for nonspinning binaries, parameter accuracy generally decreases as we move

away from the equal mass case [81]. Therefore, we will focus on questions regarding

waveform power and SNR, particularly during the merger, with the assumption

that these questions are the most relevant both for detectability and parameter

estimation.

In order to compare our data with any prior PN-inspired expectations, we

must first generate a complete waveform. We proceed in a similar fashion to what

we did in the equal mass case, by first truncating the numerical h22 waveform at a

point after the initial burst of transient noise has passed. We then attach a PN h22

waveform with phasing determined by numerical integration of an expansion of ω̇

in powers of ω, just as was done in the preceding section, the only difference being

that the joining point is simply ∼ 150M after the start of the numerical simulation,

rather than at a point determined by rigorous relative error analysis, which is due

for the most part to the relative brevity of some of the unequal mass runs. We
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Figure 4.10: Waveforms generated by combining numerical data and PN waveforms.

The circle, square, and diamond show where two parts were tied together for the

equal mass, 4:1, and 6:1, respectively. Note the striking overlap of the numerical

waveforms for all three cases for the final ∼ 6 cycles leading up to merger. Although

the relative frequencies during inspiral and at ringdown required some frequency

crossover among the three simulations, the prolonged agreement was unexpected,

and is the subject of current investigation.

also use the 3PN amplitude in this analysis, unlike in the equal mass-only analysis,

but we add an ad hoc 3.5PN term with a constant coefficient chosen to make the

amplitude continuous at the matching point, thereby minimizing artifacts in the

Fourier transform. Fig. 4.10 shows the end result for three cases, the equal mass,

q = 1/4, and q = 1/6, where q ≡ m1/m2. To avoid confusion, we will refer to

the unequal mass runs as ratios, i.e. the q = 1/4 run will be the 4:1 run. The

circle, square, and diamond show where the PN and numerical waveforms were tied

together for the equal mass, 4:1, and 6:1 runs, respectively.
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In the case of equal mass, we could immediately move on to calculating, for

instance, sky-averaged SNRs, since the only nonzero mode is the (2, 2). However,

since other modes are excited for unequal mass mergers, we must either include

them as well, or demonstrate that they are negligible for our purposes. We can

compare the relative contribution of h2,2 to the overall h, where h is given by

h =

∞∑

ℓ=2

ℓ∑

m=−ℓ

hℓm(t, R) −2Y
m
ℓ (θ, φ). (4.6)

As a measure of the relative contribution, we use

M =
〈h2,2|hallmodes〉√

〈h2,2|h2,2〉〈hallmodes|hall modes〉
(4.7)

where M is the “match”. The value on the right hand side can be viewed as the

fraction of the SNR for which the (2, 2) mode is accountable. The “〈·|·〉” that we

apply are simple, unweighted inner products, but could equally well be weighted by

the noise spectral density of a given detector. Fig. 4.2.3 shows a typical comparison

for the 6:1 case, which should have the strongest higher harmonics among the cases

studied here. The (2, 2) mode accounts for 0.9845 of the total signal as measured by

M for white strain noise. Also, we show a frequency-based comparison for the 6:1 in

Fig. 4.2.3, where the (2, 2) mode can be seen to dominate until well into ringdown,

which is denoted by a vertical dashed line. It should be noted that this is an analysis

of power and phase agreement over just the late inspiral and merger, and that the

degree of overlap is only adequate for detection even with this constrained range of

application. The degree of overlap might be worse if we compared a long inspiral

110



attached to the merger with and without ignoring extra modes.

4.3 Testing Expectations for Unequal Masses

Now that we have established that the (2, 2) mode is sufficient at these mass

ratios for investigating power-related observables, we can explore how closely the

Fourier amplitude of the signal follows the expected behavior for the late inspiral

and subsequent different behavior for the merger. Namely, we know that the inspiral

scales as
√
η to leading order, and that it was assumed in [65], based on the prediction

for total radiated energy in the test particle limit [82], that the merger scales as η.

Fig. 4.12 appears to validate that assumption, as the top panel demonstrates the

(not surprising)
√
η scaling of the inspiral (Mω . 0.08) for the equal mass, 2:1, 4:1,

and 6:1 cases, and the bottom panel shows the clear η dependence for the merger

(Mω & 0.08).

Since we have established that h(t, r, θ, φ) ≈ h2,2(t, r), at least to a fidelity

necessary for detection, we can now apply the same procedure for calculating sky-

averaged SNR that was done earlier for the equal mass case, rather than having to

explicitly calculate the SNR at N sky locations explicitly and average the result.

The procedure, then, is to make the above approximation, then calculate the sky-

and waveform-polarization-averaged SNR using eq. (4.1), As was mentioned, the

SNR falls off as η deviates from 0.25, i.e. equal mass. Therefore, to show the impact

of changing η, the 6:1 case provides the clearest distinction among the cases stud-

ied. Fig. 4.13 demonstrates the significant decrease in SNR with such a significant
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Figure 4.11: Time series and Fourier series representations showing a typical case of

the (2, 2) component constituting the vast majority of the overall power content of

the waveform. The case being shown is a 106M⊙ SMBHB at a distance of 10 Gpc.

To get a true sky average we would need to calculate the signal all over the sky for

unequal masses. M defined by eq. (4.2.3) for this case is 0.9845. This is further

demonstrated in the bottom panel, where the (2, 2) dominates until well into the

ringdown, designated by a dashed vertical line.
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Figure 4.12: Scaling of the Fourier amplitude for the different mass ratio cases q = 1,

1/2, 1/4, and 1/6. The amplitudes are scaled by
√
η in the top panel to show the

anticipated agreement of the inspiral, and by η in the bottom panel to show the

agreement during the merger. The η scaling was assumed in the SNR calculations

in [65] based on the prediction for total radiated energy in the test particle limit

[82], and appears to be an excellent approximation.
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deviation from equal mass. Both panels show contour lines for both the equal mass

and the 6:1 cases, with the top panel showing contours corresponding to Advanced

LIGO, and the bottom panel corresponding to LISA. The relative SNR in each panel

does not scale as a constant across all masses, as one would expect if either only

the inspiral or only the merger was contributing, but rather scales as
√
η for low

masses where the inspiral matters most, and η for higher masses where the merger

contributes the majority of SNR.

4.4 Parameter Estimation with LISA

Questions of detectability are the primary interest for LIGO, but for LISA, de-

tectability of the signals is typically not in question. For LISA, the goal is to be able

to accurately extract parameters. All of the work on parameter estimation using

LISA that has been done to date has focused exclusively on the inspiral waveform

and neglected the merger. This is not without justification given that, until recently,

only the inspiral and some aspects of the ringdown waveforms were known, and, per-

haps more importantly, the merger is such a fleeting event that, despite its very high

SNR, it occurs too fast for LISA to move significantly in its orbit, so the Doppler

modulation due to LISA’s motion around the Sun, which helps to break parameter

degeneracies during the inspiral, is absent for the merger. However, mergers, though

brief, contain substantial power and span roughly an order of magnitude higher in

frequency beyond the end of the inspiral. If the added information from the merger

breaks degeneracies between observables that can be matched well locally, then
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Figure 4.13: SNR contours for Advanced LIGO in the top panel and LISA in the

bottom panel. The solid lines with larger value markers correspond to q = 1 for

both figures, while the dotted lines with smaller markers correspond to q = 1/6.

In both cases, the late inspiral-merger phase constitutes the majority of the SNR

[65, 2], so that the
√
η-to-η scaling transition demonstrated in Fig. 4.12 is apparent

as one moves to larger masses, thus emphasizing the merger more so.
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the smaller uncertainty in those observables can affect their covariance with other

observables, thereby propagating improved accuracy. Furthermore, at high frequen-

cies, where the wavelength of the gravitational radiation becomes comparable with

the arm length of the interferometer, the short wavelength approximation breaks

down, and the gravitational wave transfer function begins to vary non-trivially with

frequency (see Fig. 4.14). This admits the possibility of non-negligible interaction of

the incident waveform with the varying transfer function given the right mass and

redshift combination. Whether the transfer function might act as a surrogate for

the Doppler modulation is an open question, but may prove less critical if mergers

help break degeneracies in general, since the transfer function only comes into play

for a limited mass range.

To approximate the measurement accuracy that LISA can achieve, one ap-

proach we can take is the Fisher matrix formalism. If you have a waveform, h(λi),

embedded in a signal, s, so that the noise, n is given by n = s − h, then the

probability that a signal contains a waveform with the parameter set λ̃a is given by

p(λ̃a|s) ∝ e−(h(λ̃a)−s|h(λ̃a)−s)/2 (4.8)

where (· · · | · · · ) is a noise weighted inner product [83]. The “maximum likelihood”

set of parameters, λ̂a, are those that maximize p. Errors in the λ̂a set of parameters

can be assessed by expanding p around λ̂a, such that

p(λ̃i|s) ∝ e−Γabδλ
aδλb/2 (4.9)

where δλa ≡ λ̃a − λ̂a. The Fisher information matrix, which is the centerpiece of
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Figure 4.14: Effective strain spectral density of the noise in LISA. This data is not

strictly noise, however, as it includes a bumpy, upward trending component at high

frequency which is due to the inclusion of (and division by) the signal response,

which remains flat until ∼ 0.01 Hz, but then begins to trend downward and shows

its nontrivial structure. The response was calculated using the LISA Sensitivity

Curve Generator [72, 73].

our subsequent analysis, is defined to be

Γab ≡
(
∂h

∂λa

∣∣∣∣
∂h

∂λb

)
, (4.10)

where a and b are parameter indices. To lowest order in an expansion in SNR−1,
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the covariance matrix for the errors is just the inverse of the Fisher matrix:

∆λa ∆λb ≡ 〈δλaδλb〉 =
(
Γab)−1

[
1 + O(SNR−1)

]
, (4.11)

where “〈· · · 〉” means “expectation value” and ∆λa is the standard deviation of

parameter a. The covariance matrix is symmetric, with the off-diagonal terms giving

the covariance between parameters, and the diagonal terms giving the variance of

each parameter.

For this investigation, since we wished to use the most accurate waveform pos-

sible, we attached T4PN and our high resolution run at a time, t = −166M , which

corresponds to the point where the numerical waveform has reached Mω = 0.1, so

that we know, as was pointed out in the preceding chapter, that our accumulated

phase error will be ∼ 0.3 rads over more than 30 orbits leading through merger

and ringdown, 0.05 rads being due to inspiral error from the T4PN, and the other

0.25 rads being due to our numerical simulation from the late inspiral starting at

Mω = 0.1, through the merger and ringdown (see Fig. 3.21).

In order to carry out a meaningful assessment of the statistical errors, as men-

tioned, we need to generate a TDI observable (or set of observables) to run through

the analysis pipeline. To make a set of TDI observables, we used components from

the software package Synthetic LISA [84], which includes a full model of the dy-

namics of the instrument, the application of TDI, and the response to incident

gravitational wave signals. Specifically, Synthetic LISA generates a set of observ-

ables referred to as the Michelson unequal-arm X, Y , and Z TDI observables [84].

However, this set of TDI observables is not linearly independent as we would prefer,
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so we then convert the X, Y , and Z to a linearly independent set we refer to as the

pseudo- A, E, and T variables.Using nearly the same combination employed in eq.

18 of [85] to construct the original A, E, and T variables from the 1st generation

TDI observables α, β, and γ, we construct the pseudo- A, E, and T via the relations

Ā =
Z −X

2
√

2
(4.12)

Ē =
X + Z − 2 Y

2
√

6
(4.13)

T̄ =
X + Y + Z

2
√

3
, (4.14)

where a bar indicates a “pseudo” quantity. The only difference we apply is an overall

factor of 1
2

to all three formulae to make Ā and Ē agree with A and E in the low

frequency limit.

In order to be consistent with our usage of a different set of TDI variables, we

must also apply the corresponding noise response. Following the procedure provided

in [85, 86] we generate a set of expressions for the pseudo- A, E, and T in terms of

the proof mass and optical path fractional-frequency-fluctuation spectral densities,

denoted Spm and Sop, respectively, which are given by

SĀ,Ē = 2 sin2(Φ)2[3 + 2 cos(Φ) + cos(2 Φ)]Spm + (2 + cos(Φ))Sop (4.15)

ST̄ = 8 sin2(Φ) sin2(Φ/2)(4 sin2(Φ/2)Spm + Sop) , (4.16)

where Φ ≡ ωL
c

and L is the average of the arm lengths, expressed as a light-travel

time. These expressions are the analog of eqs. 67 and 68 of [86] and eqs. 19 and 20 of

[85] for the noise response of the original A, E, and T variables, and we have verified

that our script for processing the procedure detailed therein duplicates those results
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[87] (accounting for a typo which we believe appears in [85] which, if corrected,

would make it consistent with [86] and with our results). One subtlety that arises is

that, if we allow perfect TDI cancellation of the laser phase noise, then the response

to noise for our choice of observables goes to zero at certain frequencies. We then are

left with an undefined or divergent SNR and set of elements in the Fisher matrix. To

remedy this, we add a small amount of laser phase noise, the equivalent of allowing

slightly unequal arms, or putting a floor on the noise response.

The result is a set of observables which we can now use for parameter estima-

tion studies. We note that while we hope that adding the merger will decrease the

statistical uncertainties due to the presence of noise, it will most certainly increase

the theoretical uncertainties due to having an imperfect template. Furthermore,

since it has already been estimated [88] that the theoretical uncertainties from the

PN portion of the waveform are already approximately the same magnitude as the

statistical errors, we are assured that the theoretical errors of our combined PN-NR

waveform are larger that the statistical errors. Therefore, we must be clear that we

are not testing actual templates that are sufficiently accurate to extract parameters

with the estimated level of certainty. Rather, we are applying the methodology and

assessing the level of statistical uncertainty that LISA can reasonably expect to be

able to achieve once the theoretical errors have been adequately suppressed.

Since there are fluctuations in the parameter uncertainties depending upon the

location in parameter space where you calculate the results, we perform a Monte

Carlo simulation, evenly distributing the sampling of all parameters except the total

mass and the luminosity distance, which are kept fixed atM = 2×105 Modot andD =
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Figure 4.15: Parameter uncertainties for the full inspiral-merger-ringdown waveform

calculated using the Fisher matrix. The data shown is the result of 40 Monte Carlo

trials. All histogram plots run from 0 to 17, to better allow visual comparison.
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Parameter 〈V ar(X)〉

∆M/M 7.84e-6

∆D/D 7.80e-3

∆lat 0.317 deg

∆lon 0.495 deg

∆ι 0.368 deg

∆φo 0.573 deg

∆pol 0.831 deg

∆tc 0.605 sec

Table 4.1: Comparison of mean fractional variance of all the extrinsic parameters

for the full inspiral-merger-ringdown waveform, which combines PN through most

of the early time evolution with NR in the late inspiral though merger where it

becomes more accurate.

168 Gpc (corresponding to z = 15), respectively. The results from our Monte Carlo

run, shown in Fig. 4.15, yield predicted uncertainties which compare favorably with

available results in the literature (e. g. [81]) for cases which studied the parameter

uncertainty from equal mass, nonspinning systems, but which only included the

PN waveform, truncated at some point near ISCO. Our own investigations of the

relative performance of the full inspiral-merger-ringdown waveform compared to

truncated waveforms intended to represent a PN-only attempt have borne out that
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the inclusion of the late inspiral-merger that NR provides substantially improves

the predicted parameter accuracy. However, there is ambiguity in how one treats

the PN-only contribution, and the hard divisions between the inspiral and merger

phases that were once anticipated have turned out to be non-existent.

Ideally, perhaps, we might use a PN method until ISCO and compare, but a

time series will need to be windowed to avoid introducing artifacts in the Fourier

transform that might dominate the parameter estimates. The stationary phase

approximation (SPA), which is already posed in frequency and so avoids windowing,

will nonetheless likely be inaccurate, since its requirement that the frequency change

adiabatically is invalid well before ISCO. In addition, since our investigation of

the full waveform involves using Synthetic LISA to apply the detector response

to an input time series, using the SPA would mean applying a separate model

of the response that takes frequency input directly, which is not ideal for side-

by-side comparison (although we are implementing this for future investigations).

Therefore, without having performed a comprehensive study of the dependence of

parameter uncertainties on the various possible treatments of a waveform without

numerical relativity content, we refrain for the moment from presenting a direct

comparison, stating only that the merger waveform provided by numerical relativity

appears to significantly improve the predicted measurement accuracy, with the level

of that improvement depending on the divisions of “inspiral” and “merger”, or “PN

contribution” and “NR contribution”, and the particular type and treatment of PN

inspiral chosen.

We note that the total phase error estimate of ∼ 4 rads found in Chapter 3
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is larger than the initial phase, ∆φo, and the polarization phase, ∆pol, which are

the two phase parameters that should be most directly affected by errors in the

template phase, and which are both generally several tenths of a radian. Both error

estimates from Chapter 3 do not take into account a detector response (and there-

fore a limiting range of frequency over which to integrate), so the result for phase

error in Chapter 3 will certainly be an overestimate, while the result for fractional

amplitude in Chapter 3 is a localized measure of the maximum disagreement, and

is therefore also an overestimate, since the correct measure would effectively find

the average fractional amplitude weighted by the detector response, rather than the

maximum value. However, given the observations in [88], we would expect that

all our theoretical uncertainties will ultimately exceed the statistical uncertainties

with the current state-of-the-art PN and any addition of a merger from numerical

simulations, in agreement with our estimates.

Consequently, theoretical errors appear to be the current limitation to ac-

curacy. Despite that, it is not unreasonable to expect the shape of the nearby

parameter space around the correct values of the luminosity distance, polarization

phase, and initial orbital phase to be the same or similar as it is around the the-

oretical values which are incorrect. Furthermore, we do not expect the theoretical

errors to have a net bias. Therefore, by performing the Monte Carlo simulation and

sampling throughout parameter space, we have been able to construct distributions

for the errors, and if the perturbations of those statistical errors caused by the theo-

retical errors do not introduce a bias in the statistical uncertainties, the expectation

values for the statistical uncertainties will not be shifted by the presence of theoret-
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ical error. We therefore have reason to expect that the predicted statistical errors

may be reasonable approximations, and may not change significantly once improved

templates are applied.
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Chapter 5

Summary and Conclusion

5.1 Review of Results

In this work, we analyzed simulations of equal-mass nonspinning BHBs start-

ing in the late inspiral regime and covering approximately an additional factor of

three in frequency before the merger-ringdown. We carried out runs at three resolu-

tions, hf = 3M/64, 3M/80, and M/32. Our runs start with relatively low eccentric-

ity and show good convergence and conservation properties. We have demonstrated

the stability and accuracy of our simulations over the course of seven orbits. We

also showed the value of using frequency (rather than time) to set a reference for the

purpose of comparing results between runs as well as with the PN approximation.

In recasting phase vs. frequency we have found particularly good agreement, not

only between the runs but also with PN predictions.

We made use of the p4EOB model [12] in order to provide a novel method

for removing eccentricity from runs. The previous method of fitting a fourth order

polynomial for the frequency trend allowed for the possibility that the polynomial

would “wiggle”, locking on to some of the eccentricity and effecting the sinusoidal

part of the fit that would ideally represent the eccentricity. However, using the non-

eccentric p4EOB for the frequency trend ensures that all the oscillatory content

will be left behind for the sinusoidal part of the fit. Furthermore, the p4EOB gives
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a natural, physically motivated method of time alignment by aligning the peak

radiation amplitude with the peak of the p4EOB frequency prediction, which is

roughly the p4EOB prediction for the location of the light ring. We also look at

the frequency from the puncture track, aligning it by time-shifting based on the

peak radiation amplitude as well as the light travel time to the extraction radius,

for which we simply use the coordinate value for Rext and find excellent alignment.

The eccentricity from the two measurements agrees very well, as we would expect.

We proceed to analyze the puncture track phase and frequency predictions,

similarly to what we had previously done for the radiation [1]. For this study, we

propose a new metric for comparing the phase error, which we refer to as the max-

imized phase error, which is constructed not to permit cancellation of accumulated

phase error. We use this to assess the relative error of the two methods, and we

find that, looking at both the high resolution and Richardson-extrapolated cases,

the radiation phase outperforms the puncture track phase over the frequency range

that we observe, although only by ∼ 0.5 rads in both cases. Since the puncture

track phase is a gauge quantity, even if it yielded a more accurate result in this one

case, that would certainly not guarantee its continued accuracy throughout param-

eter space. However, the fact that our improvements in moving puncture gauges

appear to also improve the utility of the gauge phase as a measurement tool is a

point of interest. The likelihood that the puncture phase will ever become more

accurate through some perfect choice of gauge is small, and, in fact, if it did happen

it seems likely that the community would be hesitant to accept a gauge quantity as a

measurement. The gauge that makes it possible would likely have to be understood
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in an analytic sense to be accepted. For the moment, however, the puncture phase

has been shown to be comparable, though slightly worse, but its measurement has

value as a check of the radiation phase, or as a tool, combined with the radiation

phase, to try and estimate sources of error, since each method has some different

error sources which impact their value.

We have also matched the numerical gravitational waveforms to the T4PN

inspiral. We have demonstrated that care must be taken when extrapolating wave-

forms using extraction radius, and that it yields poor results for the late inspiral

and merger. We have tested our accuracy using extrapolation in resolution only,

combined the numerical merger with a PN inspiral, and found that the resulting

waveform has less than 3/4 cycle of accumulated phase error over its entire fre-

quency band.

Using this waveform, we calculated the SNRs for LIGO, Advanced LIGO, and

LISA. Our results confirm the importance of the merger-ringdown signal, which

yields the highest values of SNR for the majority of equal-mass signals [65, 56]. We

also show the SNR for the late inspiral regime, which numerical simulations are now

beginning to address. The late inspiral dominates the SNR for LIGO and Advanced

LIGO for the lower mass (. a few ×10M⊙) stellar BHBs, and the SNR for LISA

generated by MBHBs with M ∼ 105M⊙. Contour plots of SNR as a function of z

and M show that Advanced LIGO can achieve SNR & 10 for IMBHBs out to nearly

z ∼ 1, and that LISA can observe MBHBs at SNR > 100 out to the earliest epochs

of structure formation at z > 15.

We looked at several unequal mass waveforms, and established the level of im-
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portance of the presence of higher modes once we deviate from equal mass. We also

calculated Fourier amplitudes, and used them to confirm the predicted scaling of the

merger power with mass ratio. Since the predicted scaling came from extrapolating

the test mass limit to the comparable mass case, we were by no means assured that

our answer would agree with the predicted scaling, but we found that it does to a

high degree of fidelity.

Lastly, we explored the parameter accuracies that LISA can hope to attain

from our waveforms, in particular the impact of including mergers. We do note,

however, that the fractional accuracy in the luminosity distance is smaller than the

fractional accuracy of the waveform’s amplitude as estimated in Chapter 3, and the

total phase error estimate of ∼ 4 rads found in Chapter 3 is larger than the initial

phase, ∆φo, and the polarization phase, ∆polo, which are the two phase parameters

that should be most directly affected, and which are both generally several tenths of

a radian. These estimates are consistent with [88], which finds that for PN inspiral

waveforms (i. e. without the merger contribution from numerical relativity) yields

approximately equivalent sizes of theoretical and statistical uncertainties. Adding

the merger increases the theoretical uncertainty and decreases the statistical uncer-

tainty, so that the result that including the merger yields larger theoretical errors

than statistical errors for the parameters is not surprising.
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5.2 Perspective

This work is an accumulation of our ongoing effort to try and take the output

from the fields of PN and NR, combine them in a reasonable way, and begin applying

them to real questions of detectability and parameter accuracy. When this work

began, there was no such material in the literature, but as the work has continued,

the body of literature has grown to include several of the results in this paper which

have already been published, as well as critical contributions from other groups.

For instance, in a relatively short time span, we used the T1PN phase to ap-

proximate the duration of a numerical simulation that would be required to validate

the PN phase approximation in the strong field regime [64]. The technical hurdles

required to perform such a lengthy simulation were overcome, and a run of sufficient

length and accuracy to validate the PN phase was achieved (the results of which

are presented in Chapter 3 and can also be found in [1]). The PN amplitude, which

is more difficult to validate due in part to the larger impact of numerical dissipa-

tion on the measured amplitude than on the phase of the numerical waveforms.

However, the necessary level of accuracy was achieved by the numerical relativity

group located in Jena, Germany, and they were able to conclusively demonstrate

the accuracy of the PN amplitude in the strong field regime [61], as we had done

for phase, thereby providing a complete validation of PN gravitational waveforms.

Finally, subsequent work by the group at Caltech, using completely different (and

considerably more accurate) numerical methods than either our group or Jena (they

use a generalized harmonic evolution system instead of BSSN, they employ spec-
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tral, rather than finite, differencing, and they use dual coordinates frames, described

in [89]) yielded exceedingly good agreement between several PN variants and the

numerical simulations until very late in the inspiral [59] (Caltech did not, at that

time, have the capability to successfully evolve through merger). In particular, they

found that the T4PN phase, which we had chosen as our benchmark for validating

PN based on previous observations regarding its good qualitative agreement [56],

agreed to within 0.05 rads with their simulation over a range of 30 orbits leading

into the late inspiral just before merger.

Already, the field has moved on to spinning binaries which, depending on

their configuration, undergo massive “kicks”, meaning they are imparted with linear

momentum which is transferred via conversion from the radiation. Work continues

on attempting to make the codes accurate and efficient enough to do ever-larger

mass ratios, and to combine mass ratios with spin in order to be capable of evolving

BHB systems which are truly generic, and hopefully ever-more astrophysical. On

the PN front as well, progress in numerical accuracy and the desire to test the

agreement with PN undoubtedly played a role in prompting work on the derivation of

the current highest order expression for quadrupole radiation amplitude, which was

presented in [63] after it had already been applied in [59] for the purpose of providing

a comparison with numerical results. Across many different groups presently active

in numerical relativity, there has been an extremely fruitful crossover of talent with

members of the PN community, with the two sides sharing expertise, helping to

drive one another’s progress, and generating a torrent of useful analysis from the

new results being turned out from numerical simulations.
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5.3 Directions for Future Work

With the data already available, a number of projects can and should be

undertaken in the near future. In the near future, we plan to assess the dependence

of our uncertainty estimates on our treatment of inspiral-only cases, in an effort

to fairly isolate the contribution from numerical relativity, meaning not only the

merger but also the late portion of the inspiral that numerical relativity can solve

more accurately than PN can. It has been shown that the most accurate parameter

estimates in PN studies come from the case of highly spinning BHBs, since the

spin-induced precession breaks degeneracies [90]. Therefore, a study similar to the

one performed in Chapter 4, but using highly spinning waveforms, should yield an

estimate of the absolute best accuracy we can expect from LISA 1, and would also

inform us as to whether the improvement seen in Chapter 4 is universal or a special

case.

Another investigation would be the parameter accuracies that Advanced LIGO

would be capable of if the merger were included. In this case, SNRs may be too

low to apply the Fisher matrix formalism with confidence (although the approach

will still be informative as a first estimate), so a better approach would be to use

Markov Chain Monte Carlo, injecting the waveform and matching to a template to

1This assumes the addition of spin does not diminish the contribution of the merger. We have

no reason to expect it to, other than the possibility of covariance with the 6 new parameters

describing the spins, and in fact for cases like spin-orbit interaction moving ISCO in and extending

the merger, there is reason to expect that the additional late inspiral-into-merger time will decrease

the statistical uncertainty.

132



calculate the likelihood at each point in the chain. In this case, one could either

restrict the study to extrinsic parameters and use the numeric waveform itself as a

template (with the analytic extrinsic scalings), as was done in Chapter 4, or else

one could use a full analytic approximation, such as the p4EOB, to calculate the

waveform for any value of the intrinsic or extrinsic parameters, in order to maximize

the likelihood over both.

There is much work to be done, but with the first GW detection looming

around the corner, it is an exciting time for the budding field of gravitational wave

astronomy. Every time a new window has been opened onto the universe, like the

advent of radio astronomy over a half century ago, our understanding of universe

has taken a giant leap forward. Measuring BHBs, in particular, represents an op-

portunity to study the most extreme environment in nature. However, even more

exciting than the prospect of measuring signals from BHBs is finding signals we did

not expect, or signals with unexpected behavior, because there may lie new physics,

and an opportunity to more fully understand our universe.
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Appendix A

Post-Newtonian Approximations for Gravitational Waveforms

In the first section of this Appendix, we provide the Taylor PN equations

that are implemented throughout the text. Then, in the second section, we present

the relevant details of the p4EOB model, which was originally presented in [12],

and which we use for comparisons with the gravitational wave phase and frequency

measured from our numerical simulations.

A.1 Adiabatic Taylor-expanded PN

As discussed in [59], there are multiple ways in the Taylor PN formalism to

calculate the orbital phase. Following the nomenclature in [59], we implement two

methods in this work, the T1 and T4 approximants. Both approximants are rooted

in the energy balance equation,

dE

dt
= −F , (A.1)

relating the energy loss of the BHB to the outbound gravitational flux. To get the

orbital phase, we first divide eq. (A.1) by dE/dω, yielding an ODE of the form

ω̇(ω) (assuming F = F (ω)). However, the form of this expression depends on the

procedure applied, and may be the most significant distinction between T1 and T4.

In the T1 method, ω̇(ω) is reexpanded in terms of ω. This reexpanded expression

can then be solved analytically to yield an expression of the form ω(t) , which is

truncated at 3.5PN order, and finally is integrated, and again truncated, to yield
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the T1 orbital phase through 3.5PN,

φ = φ0 − frac1ν

{
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(
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, (A.2)

where γE = 0.577 · · · is the Euler constant, φ0 is an arbitrary constant, and τ ≡

ν (tc− t)/5M . tc is the so-called “coalesence time”, although the approximation will

become invalid before reaching tc, since the phase diverges at that time.

Alternatively, one can choose not to reexpand ω̇(ω), but rather can solve the

ODE numerically to yield a data set for ω(t) . This can then be numerically in-

tegrated to yield a data set for the T4 orbital phase as a function of time. The

expression for ω̇(ω) is given by

ω̇

ω2
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. (A.3)

It is noteworthy that, by numerically integrating, we have effectively kept higher-
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order PN terms in the T4 expression that were discarded in the T1 version in order

to keep it consistently at 3.5PN order. It may be that, for instance, the effective

4PN content that has been generated is, in fact, the dominant contribution to the

correct, yet-to-be calculated 4PN phase, which is one possible explanation for the

superior performance observed from the T4 waveform in [56, 2, 59].

Once we have the frequency from either the T1 or T4 method, we can calculate

the dominant l = m = 2 component of the gravitational waveform up to 3PN order:

h22 = −8

√
π

5

Gνm

c2R
e−2iφx

{
1 − x

(
107

42
− 55

42
ν

)
+ 2πx3/2 − x2

(
2173

1512
+

1069

216
ν − 2047

1512
ν2

)

− x5/2

[(
107

21
− 34

21
ν

)
π + 24iν

]
+ x3

[
27027409

646800
− 856

105
γE +

2

3
π2 − 1712

105
ln 2

−428

105
ln x−

(
278185

33264
− 41

96
π2

)
ν − 20261

2772
ν2 +

114635

99792
ν3 +

428i

105
π

]}
, (A.4)

where x ≡
(
Gmω
c3

)2/3
. Other modes, some of which may be nonnegligible for unequal

mass cases, are given by eqs. (80)-(116) of [63] (ignoring terms of the form ln
(
x
x0

)
,

as we have in eq. A.4, since they are subsequently reabsorbed into the phase at 4PN

and beyond, and are therefore neglected).

A.2 p4EOB: The pseudo-4PN Effective One Body Model

Here we provide the relevant details of the p4EOB model, which was first

presented in [12]. Expressions are given in polar coordinates (r, φ, θ, pr, pφ, pθ)

throughout (although in the absence of spin, motion is constrained to the plane, i.e.
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pθ = 0). The EOB effective Hamiltonian for the nonspinning case is given by

Heff(r,p) = µ Ĥeff(r,p)

= µ

√

A(r)

[
1 + p2 +

(
A(r)

D(r)
− 1

)
(n · p)2 +

1

r2
(z1(p2)2 + z2 p2(n · p)2 + z3(n · p)4)

]
,

(A.5)

where r and p are the reduced dimensionless position and momentum variables, and

n = r/r where we set r = |r|. The EOB effective metric is

ds2
eff ≡ geff

µν dx
µ dxν = −A(r) c2dt2 +

D(r)

A(r)
dr2 + r2 (dθ2 + sin2 θ dϕ2), (A.6)

the real Hamiltonian is

Hreal = M

√

1 + 2η

(
Heff − µ

µ

)
−M, (A.7)

through at least 3PN order, and we define Ĥreal = Hreal/µ. The coefficients z1, z2

and z3 in Eq. (A.5) are subject to the constraint

8z1 + 4z2 + 3z3 = 6(4 − 3η) η , (A.8)

but are otherwise arbitrary. For the p4EOB model, we set z1 = z2 = 0, z3 =

2(4 − 3η)η.

To determine the waveform phase, we will need to find values for the coef-

ficients A(r) and D(r), as well as the radiation reaction force, F (r, φ). Since the

primary purpose of the p4EOB is to maximize agreement with NR waveforms, we

introduce a 4PN term to the radial potential A(r) for that purpose:

Ap4PN
T (r) = A3PN

T (r) +
a5(η)

r5
, (A.9)
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where the “T” means Taylor-expanded, and A3PN
T (r) is given by

A3PN
T (r) = 1 − 2

r
+

2η

r3
+

[(
94

3
− 41

32
π2

)
η − z1

]
1

r4
. (A.10)

We note that A3PN
T (r), as given, does not have a light ring, which would be a fatal

flaw for the p4EOB, as will be explained shortly. However, the Padé approximant

of A3PN
T (r) does, and is generally the expression that is used instead for this reason.

We therefore Padé approximate eq. (A.9) to get

Ap4PN
P 1

4

(r) =
Num(Ap4PN

P 1
4

)

Den(Ap4PN

P 1
4

)
(A.11)

Num(Ap4PN

P 1
4

) = r3 [32 − 24η − 4a4(η, 0) − a5(η, λ)] + r4[a4(η, 0) − 16 + 8η] (A.12)

Den(Ap4PN

P 1
4

) = −a2
4(η, 0) − 8a5(η, λ) − 8a4(η, 0)η + 2a5(η, λ)η − 16η2

+ r [−8a4(η, 0) − 4a5(η, λ) − 2a4(η, 0)η − 16η2]

+ r2 [−4a4(η, 0) − 2a5(η, λ) − 16η]

+ r3 [−2a4(η, 0) − a5(η, λ) − 8η] + r4 (−16 + a4(η, 0) + 8η), (A.13)

where a5(η, λ) = λη.

The 3PN Taylor-expanded form of D(r) is

D3PN
T (r) = 1 − 6η

r2
+ [7z1 + z2 + 2η (3η − 26)]

1

r3
(A.14)

and the 3PN Padé approximated form is

D3PN
P 0

3
(r) =

r3

r3 + 6ηr + 2η(26 − 3η)
. (A.15)

In the original work, the D(r) coefficient used was a pseudo-4PN Padé approximant,

although ultimately it was found that the pseudo-4PN approximant used is negligi-

138



bly different from eq. (A.15) in its impact on the results, so the version of p4EOB

applied in this work in fact uses eq. (A.15) for D(r).

The final component needed for the evolution equations is the reduced radia-

tion reaction force, F̂φ, for which we use the Pade-approximant

F̂φ ≡ − 1

η v3
ω

F [vω] = −32

5
η v7

ω

f(vω; η)

1 − vω/vpole(η)
, (A.16)

where vω ≡ ω̂1/3 ≡ (dφ/dt̂)1/3, with all “hats” now indicating reduced quantities, i.

e. t̂ ≡ t
M

. For vpole, we use

vpole =

√
1 + η/3

3 (1 − 35 ∗ η/36
(A.17)

as in [91]. The calculation of f(vω; η) follows the procedure in [91], first by expressing

it in terms of 7 coefficients:

f(vω; η) =

(
1 − 1712

105
v6 log

v

vMECO

) (

1 +
c1 v

1 + c2 v
1+...

)−1

(up to c7). (A.18)

where for vMECO we used

vMECO =

√√√√12 (1 + η/3)

36 − 35η

(
1 −

√
12 + 8η + 3η2

48 − 27η + 3η2

)
, (A.19)

which is found by differentiating eq. (46) of [91], which gives the 2PN Pade-approximated

energy function, in order to find the maximum, i.e. de
dv

(vMECO) = 0. The ci’s are in

turn functions of another set of coefficients, fi, given by eqs. (51)-(53) of [91], which

in turn are related to the Pade-approximated flux terms at increasing half-PN order

by fi = Fi− Fi−1

vpole
. For Fi we use the values from eqs. (38)-(41) in [91]. With the flux

calculated, we have all the components necessary to evolve the equations of motion,
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given by

dr

dt̂
=
∂Ĥ

∂pr
(r, pr, pφ) , (A.20)

dφ

dt̂
≡ ω̂ =

∂Ĥ

∂pφ
(r, pr, pφ) , (A.21)

dpr

dt̂
= −∂Ĥ

∂r
(r, pr, pφ) , (A.22)

dpφ

dt̂
= F̂ φ[ω̂(r, pr, pφ)] , (A.23)

which will provide us with, among other things, the waveform phase as a function of

time. Finally, we can use eq. A.4 to calculate the full gravitational waveform using

the EOB frequency.

The aforementioned procedure will fail to yield sensible results at some point

near the merger, where the black holes plunge together at relativistic speeds. To

complete the p4EOB model, a ringdown stage consisting of a sum of three quasi-

normal modes (QNMs) is attached. The BHB eventually merges to form a single

perturbed Kerr black hole, with the perturbations damping away exponentially in

time, and QNMs will be the signature of such perturbations [92, 93]. In the close-

limit approximation [94], the model for the BHB coalescence switches from the two-

body description to the one-body description of a single perturbed Kerr hole close

to the light-ring location. Following [52], the final black hole mass and spin are used

to determine the fundamental frequency and damping time of our QNMs, and we

finally match the summed QNMs to our p4EOB inspiral at the light ring. Therefore,

using coefficients that fail to predict a light ring would prevent us from completing

the model. In this work, no analysis incorporating the ringdown is performed, so

we discuss the details here only to present a complete picture of the original p4EOB
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model.
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