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Introduction

More than 30 years ago, in 1975, R. A. Hulse and J. H. Taylor discovered

the binary pulsar PSR1913+16, offering the first indirect observation of

the existence of gravitational radiation. In the meanwhile, the interest

and the efforts to detect directly the gravitational waves coming from the

cosmos have continuously grown, and today several resonant detectors are

active and the first generation of interferometric detector is operative.

Scientific runs have been already performed from the LIGO and Virgo

interferometers, and a simultaneous period of data acquisition has been

recently completed.

The interest in directly revealing gravitational radiation is manyfold.

A very immediate reason is, following the sentence by S. Bonazzola and

E. Gourgoulhon, ’because they are there’ [1], which in its turn mocks the

answer of G. Mallory to the question why to climb Everest. Furthermore,

the characteristics of such emission would provide a confirmation to the

validity of the General Relativity with respect to alternative gravity theo-

ries. Thirdly, the possibility to observe the Universe in a completely new

spectrum would permit the birth of a gravitational astronomy, which

would complement the traditional channels of observation of the sky,

providing direct information about black holes and compact objects in

general.

The gravitational waves interferometric detector Virgo [2], realized

by a joint Italian-French collaboration, together with LIGO (USA) [3],
GEO600 (United Kingdom and Germany) [4] and TAMA (Japan) [5] rep-

resent the technological success of the first generation of interferometric

detectors. These interferometers will be soon (2009) upgraded exploiting

the existing technology to Enhanced LIGO and Virgo+ and will hopefully

provide the first detection of gravitational waves coming from astrophys-

ical objects.

In order to reach the conditions for the birth of a gravitational waves

astronomy, a further step is needed. The present detectors will be up-
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graded with substantial improvements aimed to obtain a reduction of the

noise in the whole detection band by a factor 10; the advanced versions

of Virgo and LIGO will represent the second generation of gravitational

waves detectors. A third generation of completely new interferometers

will follow, enhancing further the detection range; the European gravi-

tational waves community is now working on a design study for a gravi-

tational detector called Einstein Telescope. To accomplish each step on

this path, the development of new technologies and new ideas must be

pursued.

Among the various noise sources entering the sensitivity band of grav-

itational waves interferometers, thermal noise dominates in a wide fre-

quency interval ranging from about 10 Hz up to 1 kHz; the reduction of

this noise contribution requires a careful study of the dissipative charac-

teristics of the materials used for the optics and for the optics suspensions.

This thesis presents the results of experimental activities aimed to

develop new optics suspensions with very low thermal noise. In view of

Virgo+ and Advanced Virgo, the realization of monolithic fused silica

suspensions is a main issue in thermal noise reduction: we present our

results concerning the production and characterization of suitable fused

silica fibres. The third generation of detectors will adopt a cryogenic ap-

proach; silicon monolithic suspensions will optimally fit the requirements

for cryogenic conditions. We performed measurements of the thermome-

chanical behaviour of silicon specimens in order to enhance our knowledge

of the possibilities offered by silicon.

In the first chapter of the thesis, the problem of detection of grav-

itational waves coming from astrophysical objects by interferometric,

ground-based interferometers is presented, paying a particular attention

to the case of Virgo. A brief review of the foreseen upgrades of Virgo

and of the main characteristics of the second and third generations is

also given. The main features of the mechanical thermal noise, from the

fluctuation-dissipation theorem to the noise contributions in Virgo, are

discussed in the second chapter. The activity on fused silica fibres is

presented in chapter three. In chapter four, an experimental study of the

dissipative behaviour of silicon fibres to be used as suspensions elements

is described. Finally, thermal conductivity measurements in silicon and

in silicon to silicon silicate bonded samples, relevant for a cryogenic sus-

pension assembly, are reviewed and discussed in the last chapter.



Chapter 1

Detection of gravitational
waves

In this chapter, the theoretical framework for the study of the gravita-

tional waves is presented. In the second part of the chapter, the two main

ground-based methods for the detection of gravitational waves, i.e. in-

terferometers and resonant bars, are treated, and a review of the possible

astrophysical sources is given. Finally, the case of the Virgo interferom-

eter is faced, with a sketch of the improving schemes of its second and

third generation descendants.

1.1 Gravitational waves

1.1.1 Einstein’s equation

Since the beginning of physics and experimental science, the geometri-

cal characteristics of space have been thought as absolute; the cartesian

frame in three-dimensional space was originally conceived as an hosting

structure for the phenomena, having no interactions with them. Apart,

a similar absolute, non interacting time coordinate has been introduced.

In this picture, two aspects are present at the same time: on one hand,

a formal geometrical parametrization of the place and time of the event,

on the other hand, a quantitative description of the interactions involved

in the event by means of force laws.

The Einstein’s General Relativity Theory (1916) postulates instead a

geometric approach to the gravitational interactions and in this respect

it operates a synthesis among the two aspects.

In Einstein’s theory, the equation of motion for a free point-like mass
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in any coordinate framework or variety is represented by the system of

geodetic equations:
d2xµ

ds2
Γµ

νρ

dxρ

ds

dxν

ds
0 (1.1)

where xµ is the position four-vector, and:

Γα
βγ

1

2
gαε

β gεγ γ gεβ ε gβγ (1.2)

are called Christoffel symbols or connections. The known quantity in

these equations is the metric tensor gµν of the variety, which defines the

infinitesimal length interval:

ds2 gµνdxµdxν (1.3)

Since the geometry of the variety inherits the characteristics of the gravity

field, the metric tensor is related to the dynamical properties of the field.

The Einstein field equation allows the metric tensor in the form of the

Einstein tensor Gµν to be linked to the dynamical sources represented by

the stress-energy tensor Tµν of the matter:

Gµν
8πG

c4
Tµν (1.4)

where G 6.673 10 11 m3s 2kg 1 is the Newtonian gravitational con-

stant. The Einstein tensor is defined as:

Gµν Rµν
1

2
gµνR (1.5)

where Rµν and R are obtained on contraction of the Riemann tensor:

Rα
βγδ γΓ

α
βδ δΓ

α
βγ Γα

γεΓ
ε
βδ Γα

δεΓ
ε
βγ

Rµν Rα
µαν

R Rµµ (1.6)

1.1.2 Gravitational waves

According to the Special Relativity, any signal cannot carry informa-

tion at a speed greater than the speed of light c. Therefore, the local

perturbations of the metric structure of space-time cannot propagate in-

stantaneously; they are carried by gravitational waves [6] which travel at
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the speed of light1. The shape of such waves can be calculated in the

General Relativity framework if the far field hypothesis is assumed.

The effect of the gravity field in vacuum, far from the source, is small

enough for a perturbative approach to be pursued (as for example in [7])
of the Einstein field equations (Weak Field Approximation o WFA). Con-

sider thus a small perturbation hµν to the flat Minkowski metric tensor

ηµν :

gµν ηµν hµν hµν 1 (1.7)

On substituting the expression (1.7) in the field equations in vacuum

Gµν 0, then solving at the first order in hµν , one finds:

0 βαhα
δ

α
αhδβ

α
δ hαβ βδh

α
α (1.8)

The latter expression can be simplified by operating a gauge transforma-

tion. It is convenient indeed to move to a coordinate system in which a

freely falling mass (that is, a mass which experiences gravitational forces

only) is at rest; in this frame the solution for the metric tensor hδβ is

transverse and traceless (gauge TT or Transverse Traceless gauge), so

that:

hδβ 0 (1.9)

A general solution for this equation can be written in the form:

hδβ Aδβ expi kαxα (1.10)

where kα k nα is the wave vector. On substituting this solution in

equation (1.9) one has:

nα nα 1 #n 2 0 (1.11)

showing that the gravitational waves travel at the speed of light. The

transverse and traceless gauge choice leads for the tensor Aδβ to the form:

Aδβ

0 0 0 0

0 h h 0

0 h h 0

0 0 0 0

(1.12)

1The assumption that General Relativity holds leads to a massless radiation prop-
agating at c, while alternative gravity theories would rely on massive field mediators
leading thus to a radiation with a velocity lower than c
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In this expressions, only two free components appear, h and h , cor-

responding to two possible polarization states of the gravitational wave.

Consequently, the wave can be rewritten as:

Aδβ h eδβ h eδβ (1.13)

defining the polarization vectors:

e

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

, e

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

(1.14)

Consider now a monochromatic wave with angular frequency ω and po-

larization h , impinging orthogonally on the plane z 0 of a cartesian

coordinate system 0xyz. Near the origin, the deformation pattern in-

duced by the traveling wave is given by:

x x0 1 h
2 cos ωt

y y0 1 h
2 cos ωt

(1.15)

The effect of such deformation on a material ring of radius R centered in

the origin is shown in figure (1.1). The pattern of deformation induced by

the polarization h is obtained rotating the previous one by an angle π 4.

By superposition of the two polarizations is possible to obtain circular

or linear polarization states.

1.1.3 Emission and luminosity

As the emission of electromagnetic waves is due to the acceleration of

charged particles, the emission of gravitational radiation is associated

with an accelerating mass. Nevertheless, conservation laws for the mass

and for the momentum imply that monopole and dipole terms in the

gravitational potential energy do not give rise to wave emission.

The first term to generate a gravitational wave is the quadrupole

moment [7], [8]:

Qij
V

ρ #x xixj
1

3
δijr

2 dV (1.16)

As a consequence of the quadrupole nature of the gravitational radiation,

a spherical distribution of mass cannot produce gravitational waves. This
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Figure 1.1: Effect of the two polarizations of a monochromatic gravitational wave on
a circular mass distribution close to the origin.
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is in accord with the Birkhoff’s theorem which states that out of a spheri-

cal mass distribution, even not stationary, the metric tensor is steady and

it is equal to the one produced by the same amount of mass concentrated

at the center of the distribution.

The power emitted as gravitational waves (luminosity) depends on

the third-order time derivative of the quadrupole tensor of the source,

according to:

L 1

5

G

c5
QijQij (1.17)

where . . . indicates the averaged value over period and polariza-

tions.

Equation (1.17) can be used to compute an approximated expression

for the gravitational luminosity of a source with mass M and character-

istic radius R, having a typical evolution timescale T . The mass distri-

bution asymmetry is measured by a deformation parameter ε defined in

terms of the principal moments of inertia:

ε
Ixx Iyy

Izz
(1.18)

Therefore, the quadrupole moment is:

Q εMR2 (1.19)

and the luminosity:

L ε2 G

c5

M2R4

T 6
ε2 c5

G

RS

R
2 v

c
6 (1.20)

In the previous expression a characteristic velocity v R T has been

introduced; the length scale RS 2GM c2, the Schwarzschild radius,

measures the object compactness. An efficient source of gravitational

waves, thus, should be highly compact ( RS), should possess an high

grade of anisotropy (ε 1) and evolve at a relativistic rate (v c).

The amplitude of the emitted wave at a distance r from the source

is:

hij
2

r

G

c4

d2

dt2
Qij t

r

c

G

c4

ESOURCE

r
(1.21)

being ESOURCE εMR2 T 2.

1.1.4 The binary pulsar PSR1913+16

The prediction of the existence of metric deformation waves traveling at

the speed of light and originated by mass acceleration was first made by

Einstein in 1916 within the General Relativity.
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However, the discovery of the binary pulsar PSR1913+16 in 1974 by

R. Hulse and J. Taylor [7], [8] provided to the scientific community the

first proof, though not direct, of the existence of gravitational waves.

PSR1913+16 binary system includes a pulsar orbiting at high speed

( 400 Km/s) in the gravity field of a dark companion, with a period

of 7h 45m. The system shows the required characteristics for emitting

a strong gravitational radiation, therefore it has been studied purposely

with the aim of highlighting relativistic effects.

During the observations [9], Hulse and Taylor measured with accuracy

the variation of the orbital period P with time. In a classic system,

obeying the Keplerian dynamics, the orbital period is a constant of the

motion and it constitutes together with the eccentricity and the major

orbital axis the Keplerian set of system parameters. Taking into account

the relativistic nature of PSR1913+16, other post-Keplerian parameters

must be introduced; among them, the period variation rate P . The fact

that P 0 indicates that the bonding energy of the two stars flows away

by means of some sort of efficient mechanism. One can make the guess

that this energy flow is due to the emission of gravitational radiation; it

is possible then to predict how should the consequent period variation

behave according to the General Relativity.

In figure (1.2) the variation of the orbital period of PSR1913+16 is

compared with the prediction based on the Einstein’s theory. The very

good agreement found provides then a striking evidence of the existence

of gravitational radiation, being also a positive test of the General Rela-

tivity.

1.2 Detection of gravitational waves

Despite the evidence provided by the study of PSR1913+16 period, up to

now no direct observation of gravitational radiation has been obtained.

The simplest way for testing the General Relativity predictions and

detecting gravitational waves would definitively be that of producing such

waves in a controlled way, in a laboratory. If that would be possible, the

radiation characteristics could be optimized for the detection, making

the latter as easy as possible.

Imagine thus using as source a massive body realized with two 1 ton

masses joined by a 2 m long shaft. The gravitational signal produced

when such body rotates around its center at a frequency of 1 kHz turns

out [8] to have an amplitude lower by 16 orders of magnitude than the one
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Figure 1.2: Time variation of the orbital period of the binary system PSR1913+16:
measured (dots) and General Relativity prediction (line).
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predicted to come from astrophysical objects in the near Universe. By

all means, the emission of this body would be absolutely not detectable

with the presently available techniques.

There are two ways of interpreting phenomenologically the effect of

a metric variation h, basically equivalent as long as the linear dimension

L of the considered region is negligible with respect to the wavelength of

the gravitational signal. These two approaches are related to the chosen

local gauge; it is therefore possible to move from the one to the other by

gauge transformations.

A first possible choice is that of the TT gauge. In this frame, freely

falling bodies are at rest. Consider the variation of distance among two

freely falling masses, when a gravitational wave with wavelength λ and

polarization h passes. The two masses are placed initially at a distance

L λ the one from the other, and L 2 from the origin. The effect of the

wave impinging orthogonally on the z 0 plane where the masses lie is

such that:

L g11 t,#r #0
1
2 L 1

1

2
h t,#r #0 L (1.22)

Therefore, the variation of the distance among the masses is:

∆L L
hLL

2
(1.23)

Otherwise, one can use the so called proper reference frame, that is,

a frame in which the coordinates are fixed with respect to perfectly rigid

rules. In this case, the distance among the freely falling masses will vary,

provided that the coordinates of the masses vary; a passing gravitational

wave makes the masses accelerate, and eventually a tidal force appears

according to [7], [8]:

Ftid mx
1

2
m L

2 hLL

t2
(1.24)

The latter is in perfect agreement with equation (1.23), anyway this ap-

proach allows a description of the wave effect in terms of forces.

It must be underlined clearly the fact that, while in the TT gauge the

coordinates of freely falling objects do not change even when the local

metric is changing, in the proper reference frame the observed masses

move with respect to the coordinates ticks drawn on perfectly rigid rules.

Following this twofold scheme, the strategies for the detection of grav-

itational waves belong to two main classes.
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1.2.1 Resonant bar detectors

In a resonant bar detector the effect of a gravitational wave is described

in terms of a force which is counteracted by the internal elastic forces

of the solid bar [10], [11]. The system is therefore similar to a forced

harmonic oscillator. Such a detector can be roughly modeled by means

of two masses m placed at a distance 2L and linked by a spring with

elastic constant k. In presence of a monochromatic gravitational wave

h t h0 cos ωt the equation of motion is:

mx k x L γx
1

2
mL

2 h

t2

k x L γx
1

2
mLω2 h0 sin ωt (1.25)

In the previous equation, a viscous-like force with coefficient γ has been

included.

Bar detectors are made with solid cylinders with very low level of in-

ternal friction (see further, chapter (2)), insulated from the environment

and left free to vibrate when excited by a gravitational wave; the maxi-

mum response is obtained at the mechanical resonance frequency of the

bar. The bar vibrations are read by suitable (usually capacitive) sen-

sors. Resonant bars are subject to high levels of noise introduced by the

thermal excitation of internal degrees of freedom; thus, resonant cylin-

ders are cooled down at cryogenic temperatures. The sensitivity of such

detectors is maximum in a narrow band (few Hz) around the resonance

which is usually in the proximity of 1 kHz. Bar detectors have been ac-

tive in Italy (AURIGA, NAUTILUS, EXPLORER) for many years (and

still are), and all around the world (ALLEGRO, NIOBE and others).

Among the resonant bar detectors, a specific case is that of the dual

detectors. In this class of detectors, there are two resonant elements,

for example a cylinder inserted in a coaxial hollow cylinder. The two

elements are characterized by the relevant frequencies ν1 and ν2 of their

first quadrupole modes. Between the two cylinders, a narrow interspace

is left. A gravitational wave with frequency within the interval ν1, ν2

causes the two elements to move in phase opposition; in this condition,

the amplitude of the thickness variation of the interspace is doubled. This

variation is read in a suitable pattern of points making use of capacitive

or optical (Fabry-Perot cavities) transducers. An example of such kind

of resonant detectors is DUAL [12].
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1.2.2 Interferometric detectors

When the gravitational emission is considered in the TT gauge frame-

work, a natural suggestion is to measure ∆L by measuring the travel

time of a laser beam between two freely falling bodies.

An interferometric detector of gravitational waves is basically a trans-

ducer converting the length variations in a phase variations of the output

light. Since the length is measured by the travel time of light among two

test masses, the best way for detecting very small displacements is to

use a Michelson interferometer with orthogonal arms. The mirrors at

the arms ends keep the role of test masses and, to attain the condition

of freely falling within the detection frequency range, they are hung to a

chain of pendula with low characteristic frequencies, acting as a low-pass

filter and assuring an efficient mechanical insulation from the environ-

ment. The same trick is used for the beam splitter mirror. In these

conditions, General Relativity equations valid for freely falling particles

can be applied to the mirrors, thus the travel time τ of the laser beam

in an interferometer arm can be computed. Chose then a frame in which

the two arms of length L are disposed along the axes x and y , and an

impinging gravitational wave has the wave vector along the z axis, that

is, #k 0, 0, k . For the sake of simplicity, consider a wave with

polarization and hxx hyy h exp2πifgt, therefore:

τx
1

c

L

0

dx 1
1

2
hxx

x

c

1

c

0

L

dx 1
1

2
hxx

2L x

c

τ0
hL

2πifgcτ0
exp2πifgcτ0 1 (1.26)

where τ0 2L c is the classical travel time. Along the y arm, where

hyy hxx, one has:

τy τ0
hL

2πifgcτ0
exp2πifgcτ0 1 (1.27)

The difference in the travel time among the two arms is the effect of the

passing gravitational wave2:

∆τ t h t
2L

c

sin πfgτ0

πfgτ0
(1.28)

2Actually, the gravitational redshift of the beam light should be also taken into
account; nevertheless, in the considered case this effect turns out to be negligible with
respect to the metric variation.
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For a laser with wavelength λ, the time delay corresponds to a phase lag:

∆Φ t h t
4πL

λ
sinc fgτ0 (1.29)

The output phase lag depends on the wave frequency fg; at low frequen-

cies fg 1 τ0 the interferometer response is approximatively white:

∆Φ t

h t

4πL

λ
(1.30)

At high frequencies, though, the transfer function results in a fading of

the signal, depending on an average effect over the wave period. If L λ,

during the light travel across the arm, several waves pass trough the

detector with a null average effect. On the other hand, the interferometer

overall sensitivity increases with increasing L, as in equation (1.23). It is

thus necessary to find a tradeoff among the average effect and the high

sensitivity request. This lead to a design in which the arms are about

100 km long; such design is unfeasible for ground-based detectors, due

both to the proibitive cost and to the Earth curvature.

Figure 1.3: Scheme of a Michelson interferometer with Fabry-Perot cavities.

The adopted solution consists in folding the optical path in such a

way that affordable arms dimensions are obtained. A specific technique



1.2 Detection of gravitational waves 13

relies on inserting resonant optical Fabry-Perot (or FP) cavities in place

of the classic arms. Two semitransparent mirrors are placed at the in-

put ports of the arms (figure (1.3)). The two cavities are maintained

at the resonance condition with the laser frequency; the photons enter-

ing the cavities are trapped inside and cover the arm length on average

N 2F π times. The parameter F is called finesse and is fixed by the

reflectivity ri of the cavity mirrors:

F
π r1r2

1 r1r2
(1.31)

or, in the simpler case of a perfect far mirror (r2 1):

F
π r1

1 r1
(1.32)

The finesse is related to the cavity storage time, that is, the time needed

for the power in an arm, once the laser is switched off, to decrease its

value by a factor 1 e:

τs
1

4

2L

c

2F

π
(1.33)

Using a folding technique, the required optical path can be achieved by

arms of few kilometers. The phase transfer function is modified by the

introduction of Fabry-Perot cavity; at low frequencies fg 1 τ0:

δΦ

h

4πL

λ

2F

π

1

1 4πfgτs
2

(1.34)

The folding strategy using Fabry-Perot cavities represents a significative

improvement of the interferometric detection technique; nonetheless, it

makes the use of an active mirrors positioning control necessary for keep-

ing the cavities at the resonance.

For a displacement ∆L hL 2 due to a gravitational wave, the light

power modulation at the output port of the interferometer is:

POUT PIN cos2 4r1

1 r1
k∆L (1.35)

being k 2π λ. To maximize the contrast, defined as:

C
PMAX PMIN

PMAX PMIN
(1.36)

the working point of the interferometer is chosen by satisfying:

k∆L
π

2
nπ n N (1.37)
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that is, in the dark fringe. A control loop acting on mirrors position

is realized for locking the interferometer output to the dark fringe. In

this condition, though, the sensitivity of the interferometer for a fringe

displacement is at its minimum:

POUT 0
POUT

∆L
0 (1.38)

To avoid this situation, a heterodyne phase modulation is commonly

used: through a small asymmetry in the length of the two arms, it permits

to have POUT ∆L 0. Then, the detection signal is obtained by the

feedback signal of the fringe locking.

Ground-based gravitational waves interferometric detectors have been

realized in several countries; the two LIGO interferometers, built at Han-

ford and Livingston (USA), have 4 km arms, while a third one with 2

km arms is co-located with the main one at Hanford. The Japan experi-

ment TAMA has 300 m arms, GEO600 at Hannover (Germany) has 600

m arms, while the Virgo project in Cascina (PI) representing the joint

French-Italian effort, has 3 km arms.

The limit imposed by the phase transfer function to the optical path

depends on the chosen detection frequency band. A very long arms

detector would possess an high sensitivity at very low frequencies. The

LISA project is aimed to realize an interferometric detector with three

test masses orbiting in space, near the Earth; the masses will be placed

at the vertices of a huge triangle with 1.5 106 km side. LISA detection

band will range from 10 4 Hz up to about 1 Hz.

A network of ground and space based interferometric detector will

boost the detection capabilities, while ground-based interferometers and

bars will work together in the same frequency region allowing a coinci-

dence analysis of the gravitational signals.

1.3 Sources of gravitational waves

As discussed in section (1.1.3), in order to efficiently emit gravitational

radiation, astrophysical objects must be compact, asymmetric and highly

relativistic. The Universe provides a variety of such objects.

From an observational point of view it is convenient to group the

sources in three classes, depending on the characteristics of the emitted

signal. Periodic sources produce a sinusoidal signal with almost constant

amplitude over long timescales; typically they are compact, rapidly rotat-

ing stars such as neutron stars. Transient sources last for a short period
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and represent the effect of catastrophical events like binary stars or black

holes coalescence or supernovae. Stochastic sources provide a fluctuat-

ing background coming from unresolved transient events and quantum

gravity effects; a cosmological gravitational background is also expected

to come from the first instants of the Universe.

In the following, the characteristics of the sources which are expected

to enter the sensitivity band of ground-based and space-based interfero-

metric detectors are briefly reviewed. A resume of the main sources and

their spectra is displayed in figure (1.4).

Figure 1.4: Spectrum of gravitational waves astrophysical sources [13]. The abbre-
viations are: BH, collapse to a black hole; NS/NS, neutron stars coalescence; NS
evolving, secular evolution of a non axisymmetric neutron star.

1.3.1 Neutron stars

Neutron stars are compact and rapidly rotating objects, remnants of the

catastrophical death of a star (supernova). Typical densities of neutron

stars are ρ 1015 g/cm3, that is, the order of magnitude of the nuclear

matter. The typical radius is few tens of km. The magnetic field on
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the star reaches very high values and the rotation period is very short,

ranging from few seconds down to tens of ms.

A feature of neutron stars is the directional, collimated emission of

radio waves, due to the presence of intense magnetic fields in small regions

of the surface; together with the rapid rotation, it produces the well

known pulsating signal which is at the root of the name pulsar.

Within quasi-regular intervals, the period suddenly varies (glitches);

this behaviour is thought to be due to quick deformations of the crust

of the stars when the object seeks for more symmetrical configurations.

This seems to suggest that, at least at the beginning, pulsars do have high

conformation asymmetries. The deformation parameter for a common

neutron star is expected to be ε 10 6.

The frequency of gravitational radiation expected from such objects

is doubled with respect to the rotational frequency (this is an effect of

the quadrupole nature of the emission) and the amplitude is given by:

h0 4 10 24 1 ms

T

1 kpc

R

I

1038 kg m2

ε

10 6
(1.39)

where ε represents the non-axisymmetric ellipticity.

The observed spindown of radio pulsars is presumed to be due pri-

marily to the emission of energetic particles and low frequency electro-

magnetic waves, nevertheless, the radio waves coming to Earth carry too

little energy; therefore, there is room for the possibility that the gravita-

tional emission contributes a significant amount to the spindown process.

By entirely addressing the spindown rate to gravitational radiation to set

an upper limit to h, one finds that for the Crab pulsar it is of the order

of 10 24 [14].
Accreting neutron stars can also emit strong gravitational wave sig-

nals. Two ways have been suggested for this emission to happen: ex-

citation of unstable normal modes of the rotating neutron star [15], or

exchange of precession through the accretion of angular momentum not

aligned with the star spin.

1.3.2 Coalescing binaries

A relevant fraction of stars is part of a binary system. A close binary

made by two compact stars in fast orbits (white dwarves, neutron stars

or black holes) emit a strong gravitational radiation at high frequencies.

Consider then a simple model of this system, where the stars are repre-

sented by two point-like masses M at a distance 2r0, rotating around the
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center of mass with angular frequency ω 2πf . One finds [8] that the

gravitational emission of the binary system in a direction z orthogonal

to the orbital plane, at a distance R, is:

hxx hyy
32π2G

Rc4
Mr2

0f
2 cos 2 2πf t (1.40)

hxy hyx
32π2G

Rc4
Mr2

0f
2 sin 2 2πf t (1.41)

Note that the angular frequency of the emitted wave is doubled with

respect to the orbital angular frequency.

Binary compact stars lose energy by radiating gravitational waves.

This implies a shortening of the distance among the two stars and an

enhancement of the orbital frequency. Therefore, the two stars spiral to-

ward the common center of mass, giving rise to the coalescence phase; in

a time τ called coalescence time the two stars collide and merge together,

eventually leaving a single object with radius similar to that of the par-

ent stars. In the final phase of the coalescence the rotation velocity can

reach significative fractions of c.

In such extreme conditions, gravitational radiation becomes very strong.

The pattern of emission can be computed directly only at the beginning of

the coalescence phase, when a Newtonian approximation with two point-

like particles can be assumed. The characteristic signal expected in the

first phase, called chirp, consists in a pulsating signal whose amplitude

goes on growing, showing also a frequency sweep. One finds:

h 2 1 cos2 i
GµM

2
3

Rc4
ω

2
3 t cos 2 ω t t (1.42)

h 4 cos i
GµM

2
3

Rc4
ω

2
3 t sin 2 ω t t (1.43)

In these formulae, i is the angle formed by the line of sight and the orbital

plane, M and µ are the total mass and the reduced mass respectively, R

is the distance from the source. The orbital angular frequency changes

getting closer to the instant tc when the merging phase starts:

ω t
1

8

GµM
2
3

5c5

3
8

tc t
3
8 (1.44)

A rough estimation of a chirp signal detected on Earth by a binary system

with masses of the order of the Chandrasekhar mass, at a distance R 10

Mpc gives values around 10 20.
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An important deduction can be made from the previous expressions.

If one measures the time dependence of both frequency and amplitude,

the masses can be eliminated thus obtaining an estimation of R [16], [17].
Therefore, binary systems in the coalescing phase can be used as standard

candles.

Unfortunately, systems such the one described above are quite rare,

and few are the ones known or studied. The recent discovery and ob-

servation [18], [19] of the binary pulsars system PSRJ0737-3039 allowed a

better knowledge of the physical properties of binary stars close to the

coalescence. Presently, about 10 15 events of such kind per year are

expected to take place within a radius of 100 Mpc around the Milky Way.

In the case of a double neutron star merging, the expected detection rate

for the present day interferometric detectors ranges from about one event

every 100 years [20] to about one every ten years [21]. In the case of a pair

of black holes, the most optimistic estimations give a rate of the order of

one event per year [22].

1.3.3 Supernovae

A transient gravitational signal can be emitted during catastrophical

events such stellar explosions or supernovae. The emission is conditioned

by the geometry of the explosion: if indeed the matter is expelled in a

spherical symmetrical burst the Birkhoff’s theorem prevents any metric

modification and no gravitational waves are radiated. The emission is

possible only if the explosion is asymmetric.

There are mainly three suggested mechanisms [23] for producing a

gravitational emission.

The so called boiling consists in a temporary instability within the

outer layers of the neutron star formed by the supernova event. In this

case, about ten gravitational bursts cycles are expected, with an ampli-

tude h 10 24 if the source is located at 10 Mpc.

An axisymmetric collapse is expected to produce gravitational waves

with low efficiency and intensity h 3 10 24 at a distance of 10 Mpc,

with a complex frequency spectrum ranging from 200 Hz up to 1 kHz.

A collapse without an axisymmetric component 10 Mpc far from

Earth is much more efficient (h 10 21).

In terms of amplitude, if a burst of gravitational waves is emitted by a

supernova event at a distance R carrying a total energy E predominantly



1.3 Sources of gravitational waves 19

at a frequency f and spread over a timescale τ one finds [14]:

h 5 10 22 E

10 3 M c2

1
2 τ

1 ms

1
2

f

1 kHz

1 R

15 Mpc

1

(1.45)

Supernova events are expected within 10 Mpc with a rate of few per

year. If only 1 % of collapses produce a gravitational waves burst carrying

1 % of the available energy, then the present interferometers should see

roughly one of such events per year.

1.3.4 Cosmological background

A background of gravitational radiation is predicted by the currently

accepted cosmological theories, in analogy with the cosmic microwaves

background [13]. The gravitational cosmic background has been produced

much before the recombination time, therefore it would carry informa-

tion about a cosmological time up to now unattained by observations.

The gravitational interaction with matter is very weak due to the very

low value of the Newtonian constant: even confronting with neutrinos,

one has σg σν G GF
2 10 67! Therefore, a gravitational fossile

background would come from the very early times of the Universe, of the

order of Plank time t 10 43 s.

A parametrical amplification of gravitational radiation background

has been suggested in the inflation period; if there was no enhancement

process, the background would be fixed by the condition of thermal equi-

librium at the Plank era. This would imply that today the redshifted

fossile radiation would have an amplitude as low as h 10 35 that is

completely undetectable.

Nevertheless, if the early universe contained an initial inhomogeneity

with amplitude hg [13], today it should result:

h 10 20 hg

f
(1.46)

The limit set to hg by the cosmic microwave observations is 10 5. This

would imply for the cosmological background an amplitude 10 21 at

10 4 Hz, which would be accessible to space antennas like LISA.

Observational limits to the gravitational cosmological background at

low frequencies can be obtained by binary pulsar systems like PSR1913+16,

as discussed in [13].
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1.4 The Virgo interferometer

First generation gravitational waves detector Virgo possesses the general

design characteristics discussed in section (1.2.2). The design sensitivity

curve of Virgo is displayed in figure (1.5); all the main sources of noise

are included, as they will be described further on, in section (1.4.1).

A scheme of the functional parts of Virgo is shown in figure (1.6).
A peculiar feature of Virgo is the attention paid to filtering the seismic

noise. Such a result is obtained by a particular optics suspension strat-

egy; the mirrors are hung to a complex system basically realized with a

chain of six pendula fixed at the top to the upper platform of an inverted

pendulum. This mechanical filter, called superattenuator or SA [24], al-

lows both an active and passive filtering of the seismic noise with an

attenuation of about fifteen orders of magnitude at 10 Hz. A picture of

the SA is in figure (1.7). The last suspension stage is realized with wires

directly attached to the test mass. The mechanical part supporting the

last suspension stage is called marionetta and hosts part of the actuators

for the active positioning of the mirrors when the feedback loop is closed.

Figure 1.5: Virgo nominal sensitivity curve.

The laser used in the interferometer is a Nd:YVO4 with wavelength

λ 1064 nm and power of about 20 Watts. The output is a TEM00
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Figure 1.6: A schematic representation of the Virgo optical layout.

mode and the stability requirements are, in power:

δP

P

3 10 5 Hz forf 10 Hz

3 10 7 Hz for110 f 1 kHz
(1.47)

and in frequency:

δν

ν

10 4 Hz forf 10 Hz

10 6 Hz for110 f 1 kHz
(1.48)

The beam injection is accomplished by an injection bench hung to a

SA which holds a triangular reference cavity for the laser frequency pre-

stabilization, the input and output mirrors of the mode cleaner an the

expansion and alignment optotronics.

The mode cleaner is a triangular 144 m long cavity with the interme-

diate mirror suspended to a short SA.

After the input bench, the whole laser path is maintained under vac-

uum, at required residual pressures different for the various gases, ranging

from 10 9 for hydrogen to 10 14 for hydrocarbons. The limit on hydro-

carbons is more stringent because of the capability they have to stick on

the mirrors surfaces degrading their quality. The high vacuum prevents

interactions between the laser beam and matter which would result in

power losses and scattering, causing the output noise to increase.
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Figure 1.7: A schematic representation of the Virgo superattenuator. A chain of 5
filters (with a horizontal resonant frequency fh 0.45 Hz and a vertical one fv 0.4
Hz) is attached to the top of a big tripod, that acts as an inverted pendulum (with
fh 30 mHz). The mirror is hanged through a device called marionetta that allows
a fine control of its position along the three relevant degrees of freedom.
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The Fabry-Perot cavities in Virgo are 3 km long and their finesse is

F 50.

The power recycling mirror redirects to the beam splitter part of the

light reflected back to the laser increasing the beam power up to a factor

50. This technique permits a reduction of the laser shot noise which

limits the sensitivity at high frequencies.

The read-out system is realized with an output mode cleaner in se-

ries to the collimating optics delivering the beam onto the acquisition

photodiodes.

1.4.1 Noise sources

The Virgo detection system must be designed in such a way to minimize

all the possible noise sources which could introduce a spurious contribu-

tion to the output, mocking a gravitational signal, or totally cover the

physically interesting signals.

Therefore, a large effort has been done in recognizing and under-

standing the noise sources and in studying their characteristics. The

origin of the various kinds of noise can be identified as due to a fluctu-

ation of the mirror position or to the signal read-out noise. The sum of

all the power spectra coming from the noise sources expected in Virgo

defines the limit to the amplitude of detectable events, and constitutes

the sensitivity curve of the detector. These noise contributions are briefly

reviewed below.

• Optical read-out noise

The optical read-out noise is originated by the sum of two effects

related to the quantum behaviour of the light.

The corpuscular nature of light causes the output signal to be af-

fected by shot noise. The shot noise can be treated in analogy with

the simple case of the current noise in a diode; it basically depends

on the laser input power Pin. Call Φ the phase at the output port of

the interferometer, and δΦ the phase lag due to a true gravitational

signal. Having a SNR of order unity requires that:

δΦ 2
hν

ηPin

1 cos Φ

sin2 Φ
(1.49)

being η the efficiency of the photodiode and ν the laser frequency.

This expression also confirm that working in dark fringe condition
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is convenient: in this case, the right side of the equation is mini-

mum. The shot noise then shows a white frequency spectrum with

amplitude:

h̃SN
1

4πL

2hλc

ηPin
(1.50)

Note that increasing the injected power results in decreasing the

shot noise level.

A quantum effect conjugate to the shot noise, the radiation pressure

noise, is also present, adding its contribution to the overall noise.

A mirror reflecting a beam with power P sustains an average force

given by F̄ 2P c. Since the beam is constituted by particles

(the photons) this force fluctuates. The corresponding fluctuation

spectral density is:

δF̄
8hP

λc
(1.51)

inducing a noise at the output equal to:

h̃RP
1

ML

hPin

2π4cλ

1

f 2
(1.52)

where M is the mirror mass. Clearly, the radiation pressure noise

can be reduced by reducing the laser power. Nonetheless, recall

that the opposite happens to the shot noise; thus, an optimal laser

power can be found depending on frequency.

The optical folding by Fabry-Perot cavities modifies the form of

expressions (1.50) and (1.52). In this case [8], the total read-out

noise is given by:

h̃FP
tot

π

2F

2

h̃2
SN

2F

π

2

h̃2
RP (1.53)

• Thermal noise

A fundamental limit to the sensitivity in a wide region just in

the middle of the detection band is represented by the thermal

noise [25]. It is caused by thermal fluctuations of the mechanical

degrees of freedom of the suspensions system and of the test mass

itself. The next chapter is devoted to a description of the main fea-

tures and theoretical points regarding the thermal noise, therefore

we will not discuss it further in this section.
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• Seismic noise

Even in the most quiet site, ground movements are far from being

null. Seismic solicitations of natural origin or due to the human

activity are transmitted to the test masses through the suspensions

system, thus injecting noise. Within a good approximation, the

displacement spectral density associated to the seismic movements

follows the empirical law:

Sseismic
x f A

f 2
0

f 2
(1.54)

when f 1 Hz, where f0 1 Hz. The constant in equation (1.54) is

of the order of A 10 6 m Hz. This displacement noise is filtered

by the SA over 10 Hz, while below it represents a severe detection

limit.

• Newtonian noise

The human activity in the proximity of the detector site, as well

as seismic waves in the Earth crust, will have another effect on the

test masses motion. In fact, moving masses around the detector

modify the local gravitational field and this modification is directly

transmitted to the mirrors by the field itself. Obviously, this action

is not prevented by the suspensions insulation. This purely New-

tonian effect is believed to represent a primary contribution to the

overall noise at very low frequencies [26].

• Creep

The term creep refers to the phenomenon of sudden mechanical

micro-release of internal stresses in the structures supporting the

mirrors. Events of micro-release can simulate gravitational bursts

signals.

1.4.2 The future generations of detectors

The first Virgo science run (VSR1) started on May 2007 in coincidence

with the last period of the fifth LIGO science run. The achieved sensi-

tivity during the run is presented in figure (1.8); in the frequency region

300 Hz 5 kHz the goal sensitivity has been reached and it is equal

to the LIGO one. Therefore, a joint data analysis among the two in-

terferometers has started. The duty cycle over the run was 81 %. The

detector sensitivity expressed as the distance at which a coalescence of



26 Detection of gravitational waves

two 1.4 solar masses neutron stars is detectable, averaged on the source

direction, attained 4 Mpc.

Figure 1.8: Plot of the Virgo sensitivity curve during VSR1 (May 2007), compared
with the design one and with the sensitivities of LIGO and GEO600. The design
sensitivity of LIGO is also shown.

The sensitivity of current interferometric gravitational waves detec-

tors, though making a first detection possible, would not permit detection

statistics. The expected detection rates presented in section (1.3.2) for a

double neutron star merging or those for a double black hole coalescence

are still quite low, reaching in the most optimistic case one event per

year. The first generation detectors performances must be enhanced in

order to open the era of gravitational waves astronomy.

The foreseen upgrade of Virgo and the main features of the second

generation detector Advanced Virgo are shortly presented here. Also, a

general description of a third generation interferometer is given.

Virgo+

An improvement of the current Virgo apparatus doubling the sensitivity

will allow an increment of a factor 10 in the detection rate which is

proportional to the observable volume.
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Virgo has planned a first set of upgrades of the detector, the so called

Virgo+, to be performed at mid 2009. A similar upgrade (Enhanced

LIGO) is planned for the LIGO detectors. Since the seismic isolation

provided by the SA is compliant with the sensitivity improvement, the

main upgrade will concern [27]:

• the installation of a system for the thermal compensation of the

heating deformation of mirrors induced by the laser absorption;

• the improvement of the power laser up to 50 Watts by using a new

laser amplifier, with the sake of reducing the shot noise at high

frequency;

• the installation of new control system electronics;

• the increase of cavity finesse up to 150 with new mirrors;

• the installation of fused silica monolithic suspensions (see chap-

ter (3)).

Advanced Virgo

A more substantial upgrades campaign will take place at the beginning of

the next decade when an almost new, second generation detector called

Advanced Virgo (AdV) will be installed in place of the present one [28].
The aim of AdV is to improve the present sensitivity by one order of

magnitude, therefore increasing the detectable events rate by three orders

of magnitude.

An higher power laser (200 Watts) will be employed for shot noise

reduction. In order to keep the radiation pressure noise at a low level,

heavier mirrors (42 kg) will be used. The laser spot on the mirrors

will be enlarged in such a way that the thermal noise resulting from

the vibrations of the mirror surface will be averaged over a larger area,

offering a better performance.

The AdV interferometer dual recycled baseline will include a signal

recycling mirror placed at the output port, increasing the power stored

in the cavities.

The current research activity on coating thermal noise (see section

(2.6.2)) will allow an improvement of the coatings mechanical character-

istics, enhancing the sensitivity in the intermediate frequency region.

The thermal noise features of AdV will be reviewed further on, in sec-

tion (2.6.3).
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A new control strategy of the SA will be implemented, in order to

reduce the impact of bad weather conditions on the detector. In the same

frequency region, the suspensions thermal noise will be sensibly reduced

by using the monolithic suspension scheme developed for Virgo+.

Finally, the output phase modulation will be replaced by a DC detec-

tion scheme. A possible sensitivity curve for AdV is shown in figure (2.3).

The third generation

The plans for realizing a third generation of gravitational waves inter-

ferometric detectors are aimed to find strategies for reaching a further

reduction (a factor 100 with respect to the present detectors) of noise

levels beyond the second generation detectors expectations. The design

study of an european observatory called Einstein Telescope (ET) is being

developed; the main issues are:

• new mirrors, suspensions and coating materials.

• cryogenic approach. Since the thermal noise depends directly on

temperature, it can be reduced by cooling the test masses and the

suspensions.

• seismic noise and Newtonian noise reduction by choosing a suitable

underground location.

• enhancement of the arms length up to 30 km. Different arms ge-

ometries are also under consideration.

• higher power lasers and new optic techniques for the suppression

of the read-out quantum noise.

Part of the experimental work presented in this thesis is devoted to

match the aim of the first two items of this list. A comparative view of

the future generations detectors performances is given in figure (1.9).
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Figure 1.9: Comparative view of the sensitivity curves of future generations detectors.
The curve drawn for Advanced Virgo is one among several possible curves depending
on the design options. For the Einstein Telescope, a possible curve based on design
study considerations is displayed.





Chapter 2

Thermal noise

Thermal excitation of the mechanical degrees of freedom of the test

masses, as well as those of the last suspension stage, results in a spu-

rious contribution to the output of an interferometric detector, setting a

limit to the sensitivity of first generation GW interferometers in a wide

band between few Hz and few 100 Hz. Such contribution has a stochastic

nature, so its description is given in terms of power spectra. Thermal

noise is a very general fact: it is related to the stability of the thermo-

dynamical equilibrium of a system. The so called fluctuation-dissipation

theorem [29], [30], [31], [32] states that, in a linear system, thermally ac-

tivated equilibrium fluctuations are determined by its dissipative char-

acteristics. Application of this result leads to the evaluation of thermal

noise curves for GW interferometers, provided that the dissipation pa-

rameters of the materials the masses and suspensions are made of are

known. Energy loss measurements are thus needed, together with the

characterization of new materials aimed at reducing the thermal noise

sensitivity limit.

In this chapter, the theory of thermal noise is briefly reviewed, as it

is strictly linked to dissipation in bodies. Therefore, energy dissipation

is also discussed; standard models of the behaviour of materials which

deviate from pure elasticity are described, together with an overview of

the energy loss mechanisms relevant for the argument. Finally, the main

thermal noise features for an interferometric GW detector are summa-

rized.
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2.1 The fluctuation-dissipation theorem

The attainment of thermodynamical equilibrium in a gas is related to the

collisional terms in the dynamic equations; collisions are responsible for

the momentum interlinking of the whole system, so they bring the fluid

to equilibrium and keep it stable. Such action results in a fluctuation of

state variables around equilibrium values, so that their root mean square

levels are related to the equipartition energy kBT . Collisions are at the

root of viscosity forces in a gas flow, where the frictional momentum

transfer is acted by the gas. It turns out naturally that the same process

gives rise to equilibrium fluctuations and dissipation; furthermore, the

momentum transfer is determined by the velocity distribution of the gas

molecules, that is by the temperature.

Brownian motion is a good example [33], [34], [35]. During micro-

scope observations, the eighteenth century botanist R. Brown noticed

that pollen grains suspended in water moved with a continuous jittery

motion. Such motion, called Brownian in his honour, is proper of small

particles immersed in a fluid. It is likely determined by a randomly fluc-

tuating force, due to collisions of the particle with the fluid molecules.

Assuming that such unknown force has a constant spectral density1, it

is possible to write the velocity distribution of the particle; equating the

resulting energy with the equipartition value, one is able to work out the

force.

However, for the Brownian motion as well as in the general case, the

spectral density of the fluctuations of a given quantity can be more con-

veniently obtained by exploiting the discussed link between fluctuation

and energy loss. Viscous drag in the fluid, for instance, is the dissipative

counterpart of the Brownian jitter. The fluctuation-dissipation theorem

allows the spectral density of generalized fluctuating quantities to be

determined by knowing the dissipative behaviour of the system. Its for-

mulation correlates an equilibrium property with irreversible processes.

Consider therefore a system2 which is dissipative - that is, it can

absorb energy if undergoing time-periodic solicitations - and linear, in

the sense that the energy lost per unit time is proportional to the square

of the solicitation amplitude. The system is supposed to be acted upon

1Actually, such assumption is somewhat rough, becoming false at high frequencies.
2The following considerations are taken from the original demonstration of the

theorem by Callen and Welton [29].
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a generalized force V such that the relevant term in the Hamiltonian is:

Hint VQ (2.1)

Q being a suitable generalized lagrangian coordinate. The linearity can

thus be expressed by introducing the impedance Z ω as the ratio be-

tween the solicitation V and the system responseR : Q in the frequency

domain:

Ṽ ω Z ω Q̃ ω (2.2)

where X̃ indicates the Fourier transform of X.

First look at the dissipation. Suppose the system receives a small

monochromatic solicitation V ω, t V0 sin ωt ; the Hamiltonian (2.1)
can be regarded as a perturbation, and the state of the system can be

expanded on the set of unperturbed eigenfunctions. If the energy levels

are densely distributed with density ρ E , the amount of energy lost

per unit time (the negative power P ) can be computed following the

perturbation theory:

P
1

2
πV 2

0 ω
0

E !ω Q E 2ρ E !ω

E !ω Q E 2ρ E !ω ρ E e
E

kBT dE (2.3)

where the temperature T is taken into account by the Boltzmann expo-

nential factor f E exp E kBT . On the other hand, the impedance

allows the instantaneous power Pt V Q! Z ω Z ω to be computed

and hence the average power dissipated as:

P
1

2
V 2

0

! Z ω

Z ω 2
(2.4)

Collecting (2.3) and (2.4) one obtains:

R Z 2 πω
0

E !ω Q E 2ρ E !ω

E !ω Q E 2ρ E !ω ρ E f E dE (2.5)

being R ! Z the resistance.

Refer now to above considerations about thermodynamical equilib-

rium. As discussed, in that condition Q undergoes spontaneous fluctu-

ations, which can be thought as being due to a spontaneous fluctuating
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force whit a spectral density S2
V to be determined. By means of a cal-

culation of Q2 on the energy eigenfunctions of the unperturbed

Hamiltonian H0, one finds:

En Q2 En

m

En Q Em Em Q En

! 2

m

En H0Q QH0 Em Em H0Q QH0 En

! 2

m

En Em
2 Em Q En

2 (2.6)

Introducing ω En Em ! and replacing the sum with an integral over

ω, then weighting with the Boltzmann factor, one has:

Q2

0

!ω2

0

ρ E f E E !ω Q E 2ρ E !ω

E !ω Q E 2ρ E !ω dE dω (2.7)

hence,using (2.2):

V2

0

Z 2!ω2

0

E !ω Q E 2ρ E !ω

E !ω Q E 2ρ E !ω ρ E f E dE dω (2.8)

The integral expressions included both in (2.5) and in (2.6) make evident

the fact that dissipation ad fluctuation are intimately related, having the

same physical origin. Confronting the two equations, by means of some

algebra one obtains the mean square value of the generalized fluctuating

force:

V2 2

π 0

R ω
1

2
!ω !ω exp

!ω
kBT 1

1

dω (2.9)

At high temperatures (kBT !ω) this expression becomes:

V2 2

π
kBT

0

R ω dω (2.10)

Since one is usually interested in the power spectral density, the latter

must be differentiated with respect to frequency, so that, putting ω

2πf :

S2
V 4kBTR f (2.11)
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which is the classic form of the fluctuation-dissipation theorem. It must

be emphasized that in (2.11) the dissipation is represented by the resis-

tance R. Making use of the definition of impedance (2.2), the power

spectral density for the Q coordinate is also computed:

S2
Q

kBT

π2f 2
! 1

Z f
(2.12)

While the mean square values V2 and Q2 are related to the

equipartition energy, the fluctuation-dissipation theorem provides infor-

mation on the spectral distribution of thermal fluctuations. Clearly, the

integral over the frequency of the fluctuation energy must be equal to

the equipartition value kBT .

2.1.1 Case of a gravitational waves interferometer

The fluctuation-dissipation theorem applies widely to almost all the fields

of physics, from the brownian motion to the electric dipole radiation. In

the case of gravitational waves interferometers, Q represents the mirrors

position, fluctuating under the effect of the force V . However, finding

the mechanical impedance of the system constituted by mirror and sus-

pension fibres is not trivial, involving an infinite number of degrees of

freedom. Basically two ways of applying the fluctuation-dissipation the-

orem to such a system are currently used for overcoming this problem.

The set of normal vibrations of the mirror and of the suspensions,

being the modes nearly orthogonal, can be split in single one-dimensional

harmonic oscillators with suitable proper frequency and effective mass [36].
As described in the following, the application of the theorem to a simple

oscillator is straightforward. The contributions to the thermal noise from

each oscillator are thus added up to a certain number of modes. As long

as the materials of mirrors and fibres are homogeneous, this approach

leads to a correct estimation of the noise spectrum. That is the case for

the suspending fibres contributions.

In presence of energy loss inhomogeneities, such as in the mirrors

coatings, the harmonic decomposition fails [37]. Thus, a direct appli-

cation of the theorem has been developed by Levin [38]. The mirror is

supposed being acted in a point r of the reflecting surface by a force

F r, t F0 cos ωt P r , where P r is a weighting factor which takes

in account the profile of the readout system, that is the laser. Once the

mean dissipated power resulting from such action, W0, is computed, the
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dissipation-fluctuation theorem can be rewritten in the form:

S2
X

2kBT

π2f 2

W0

F 2
0

(2.13)

The discussion henceforth will focus on suspension fibres issues; there-

fore, in the following only the harmonic decomposition will be considered

in detail.

2.2 Hooke’s law and loss angle

In order to find out the dynamics of a mechanical system, one must

consider both the external forces f per unit mass acting on it and the

inner elastic stresses f e, so that the equation of motion for the system

displacement vector U r, t is:

2U

t2
f e f (2.14)

The inner stresses are described by the constitutive equation of the body,

the Hooke’s law, in terms of strain and stress tensors εij and σij:

εij Cijklσkl (2.15)

where Cijkl is called compliance tensor. For the sake of simplicity, hence-

forth a homogeneous, isotropic body will be considered, therefore equa-

tion (2.15) can be written in simple scalar form:

σ Y ε (2.16)

and the real coefficient Y is the Young’s modulus of the material.

In order to describe energy losses in the body, the constitutive law

must be modified, in such a way that in equation (2.14) a term giving

rise to power dissipation appears. Once the energy loss is formally in-

cluded in (2.16) by means of a suitable parameter, the simple case of

one-dimensional oscillator can be handled and the harmonic decomposi-

tion can be performed. The matter of what is the physical origin of such

dissipation, can be thus regarded as a somehow independent problem.

With the aim of introducing a clever and suitable dissipative param-

eter in (2.16), one is led to evaluate the power loss in a simple linear

system. By making use of the admittance Y , defined as the inverse of
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the impedance, the mean power lost by the system under a periodic

solicitation F0 cos ωt is computed as:

P̄
1

2T

T

T

F0
2 Y cos ωt cos ωt ψ dt (2.17)

Here T 2π ω and ψ is the phase of Y . If such phase is π 2, clearly

P̄ is zero; the dissipation is only present if the admittance has a non

vanishing real part. This result has two important implications.

First, let us consider the system response to a step input. The re-

sulting displacement will in general exhibit a relaxation, taking a certain

time to reach the final equilibrium position. It can be readily shown that

such relaxation happen only if ! Y is not zero. Thus, dissipation and

relaxation are strictly interlaced.

Then, consider the frequency response T defined by:

Q̃ ω T ω Ṽ ω (2.18)

Admittance and frequency response are simply related, being Y iωT .

For the above considerations, the dissipation appears as a non vanishing

imaginary part of the frequency response, so that a phase lag exists

between the soliciting force ad the corresponding displacement of the

system.

By analogy with the latter argument, the constitutive law can be

rewritten in the frequency domain by introducing a small, non vanishing

imaginary part in the complex Young’s modulus [39], [40]:

σ̃ ω Yr ω iYi ω ε̃ ω (2.19)

The phase lag is then:

φ ω
Yi

Yr
1 (2.20)

The quantity φ, called loss angle, is the key feature in modeling the dis-

sipation in a linear system. To a good approximation3, one can therefore

put the Hooke’s law in presence of energy loss in the form:

σ̃ ω Y 1 iφ ω ε̃ ω (2.21)

3The prescription of causality for the system response requires the real and imag-
inary parts of the admittance to be linked by the so called Kramers-Kronig rela-
tions [39], [41], so that Yr and Yi depend the one on the other. However, as long as
the loss angle is small, Yr is almost equal to Y .
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The loss angle is strictly related to the amount of energy lost in a cycle of

periodic motion. Imagine the system being excited with a time periodic

strain ε ε0 expiωt. Keeping in mind equation (2.19), in the limit (2.20)
the maximum energy per unit volume stored in the oscillation is:

EMAX
1

2
! σ ! ε MAX

1

2
Yr ω ε2

0 (2.22)

while the mean energy dissipated in a cycle, per unit volume is:

EDISS
cycle

! σ ! ε dt πYi ω ε2
0 (2.23)

Taking the ratio between equations (2.23) and (2.22) one obtains:

EDISS

EMAX
2π

Yi

Yr
2πφ ω (2.24)

Even if the strain pattern within the body is supposed to assume a very

general form, the result (2.24) maintains its validity, provided that the

material under consideration is homogeneous. Since energy losses add

linearly, the superposition of loss sources with different angles φi is cor-

rectly described by an effective loss angle φ i φi.

In the presence of a conservative force, like for instance the gravity,

the loss angle is somehow diluted [42]. Writing again the equation (2.24) in

terms of the total energy dissipated EDISS and the mean elastic potential

energy Ve, then adding a generic potential V , one has:

EDISS

EMAX

EDISS

2 Ve V

EDISS

2 Ve

Ve

Ve V
2πφD (2.25)

so that the resulting loss angle is lower than φ by a factor D Ve Ve V ,

which is called dilution factor.

2.3 Harmonic oscillator with losses

The first step of the harmonic decomposition approach consists in study-

ing the behaviour of a simple, one-dimensional harmonic oscillator under

the action of a dissipative force. As shown in the previous section, the

corresponding Hooke law includes a complex Young’s modulus with a

small imaginary part (equation (2.21)), leading to a complex elastic con-

stant k:

k k 1 iφ ω (2.26)
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The equation:

mx k 1 iφ ω x Fext (2.27)

describes then the motion of the oscillator with mass m driven by an

external force Fext.

It is worthwhile comparing (2.27) with the equation of an oscillator

with viscous damping [43]:

mx kx bx Fext (2.28)

where b is the viscous drag coefficient. Substituting a harmonic solution

x x0 expiωt in both expressions, one finds by comparison that the loss

angle in the viscous case is proportional to the frequency:

φ ω V ISCOUS

b ω

k
(2.29)

Traditionally, oscillators performances are characterized by using the

quality factor Q, which corresponds to the ratio between the energy

stored in the natural frequency of a viscous oscillator ω0 k m, and

that which is lost in a cycle. Applying the definition of Q, it is easy to

show that:

Q
k

b ω0
(2.30)

The quality factor and the loss angle for the viscous resonator are thus

related in the following way:

φ ω V ISCOUS

ω

Qω0
(2.31)

The latter result is relevant for the technique which is usually employed

in measuring the loss angle, as described in chapter (4).

Equation (2.27) allows the mechanical impedance of the oscillator to

be computed, obtaining:

Z ω
F̃ext

x̃

m

ω
φ ω ω2

0 i ω2 ω2
0 (2.32)

The lossy resonator is clearly a linear and dissipative system, so that the

fluctuation-dissipation theorem can be applied. The resulting displace-

ment thermal fluctuation has the spectrum:

S2
x

4kBT

mω

φ ω ω2
0

ω2 ω2
0

2 φ ω 2ω4
0

(2.33)
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Far beyond the resonance, equation (2.33) becomes:

S2
x 4kBT

φ ω ω2
0

mω5
, ω ω0 (2.34)

Now that the thermally induced vibrations spectrum is written for the

simple one-dimensional lossy oscillator, the full noise spectrum for a com-

plex mechanical system will be obtained by summing the contributions

from each normal mode, thought as a single resonator with its equivalent

mass. Practically, the sum over the modes has some convergence range,

after which it can be truncated.

The former thermal noise analysis has been performed without spec-

ifying the physical content of φ ω ; its form and frequency dependence

were thought to be known, for instance as the result of a suitable mea-

surement. In the following, the loss angle will be related to models of

dissipative mechanisms.

2.4 The standard anelastic solid and Debye

peak

Deviation of solid bodies from the ideal elasticity is generally referred

to as anelasticity. The anelastic behaviour will result in some dissipa-

tion described by a proper loss angle. For example, the proportionality

of φ to the frequency in the viscous case has been already highlighted

(equation (2.29)).

Figure 2.1: Schemes of the solid models discussed in the text. (a) Kelvin-Voigt solid,
(b) Maxwell unit, (c) standard anelastic solid.
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The viscous dissipation within a body can be described using a me-

chanical model, called the Kelvin-Voigt solid (see figure (2.1)), which, in

place of a simple lossless spring, consists in a spring and a dashpot in

parallel. Suppose a strain ε is set; while the spring provides a Hook-like

stress σS Y ε, for the dashpot σD ε. The whole stress is simply the

sum of both the contributions. Therefore, the constitutive equation for

such material is usually written as:

σ Y ε τrY ε (2.35)

The meaning of the proportionality factor τr can be explained as follows.

If a sudden constant stress σ0 is applied to the KV solid, the strain

exhibits an exponential approach to the Hooke law value ε0 σ0 Y ,

with a decay time τr. As discussed in section (2.2), this relaxation is

indicatory of the onset of dissipation. The dashpot is represented by a

viscous constant defined as:

η τrY (2.36)

Conversely, one can think about a material in which the relaxation ap-

pears in the stress, provided a constant strain is switched on. The me-

chanical equivalent model (the so called Maxwell solid or Maxwell unit,

figure (2.1)) is built again with a dashpot and a lossless spring, but now

arranged in series. Here, suppose a stress σ is applied to the body. Since

it has been found that for the dashpot σ τrY εD, it is convenient to

compute ε, so that for the spring εS σ Y . In this configuration, the

contributions εS and εD add together. The resulting equation is:

ε Y 1σ τrY
1σ (2.37)

The relaxing stress shows a time constant τr η Y . The associated loss

angle can be worked out with a harmonic analysis, by introducing the

complex Young’s modulus Y σ ω ε ω :

Y ω
iωηY

Y iωη
(2.38)

Following the given definition:

φ ω
" Y

! Y

Y

ηω
(2.39)

However, a large number of materials show both a relaxation time τσ

for stress and a relaxation time τε for strain. Such condition would be
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expressed by a constitutive law containing the time derivative of the stress

and of the strain. The corresponding mechanical scheme is a lossless

spring with Young’s modulus Y , in parallel with a Maxwell unit ∆Y , η

(refer again to figure (2.1)). It can be shown with a bit more complex

algebra that the respective constitutive law is:

σ τσσ Y ε τεε (2.40)

where the decay times are:

τσ
η

∆Y
(2.41)

τε
Y ∆Y

Y ∆Y
η (2.42)

Computing the loss angle as in equation (2.39):

Y ω Y
1 iωτε

1 iωτσ
(2.43)

φ ω ∆ ωτ̄ 1 ωτ̄ 2 (2.44)

where:

τ̄ τστε (2.45)

∆
τε τσ

τστε
(2.46)

The body described by equation (2.40) is usually called standard anelastic

solid (SAS), while the frequency dependence of φ ω in (2.44) leads to a

bell-shaped plot (a Debye peak), reaching its maximum value ∆ 2 at

ω τ̄ 1.

When the dissipation is small, that is when Y ∆Y , the relaxation

time is the same for stress and strain τ̄ τε τσ η ∆Y , and ∆

∆Y Y . In this approximation, the equivalent spring constant4 for the

SAS can be obtained from (2.43):

kSAS k 1 ω τ̄ φ ω i φ ω (2.47)

where k is the equivalent constant for an ideal elastic body with Young’s

modulus Y . For very low frequencies, kSAS k, so that Y is referred to

as the SAS relaxed modulus.
4Note that in the written expression of the SAS spring constant, the real part is fre-

quency dependent. It must be kept in mind that equation (2.21) is an approximation,
as explained in the footnote (3).
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The SAS model fits with those dissipative processes which are suitably

characterized by means of two parameters, for instance, the two time

delay constants previously defined. It gives an adequate description for

most of the practical cases5, so that it is a standard choice in treating

them.

In next paragraphs a brief review of the main dissipative processes

in solids is presented. Anelasticity affecting internal variables will be

accounted for using the SAS model. Of course, there are also external

sources of energy loss, such coupling with mechanical supports, or leaking

out by sound waves in air.

2.4.1 The thermoelastic effect

In searching for internal dissipative mechanisms, one has to look at those

processes which are excited by means of vibrations, and take a finite time

to reach an equilibrium condition6. Since the free energy in elastic bodies

depends on the deformation, it is expected that the coupling between

strain and temperature gives rise to an irreversible heat flux and thus to

dissipation.

In a periodic motion, a thermal diffusion process is established be-

tween neighbouring regions of contraction, where the temperature raises

up, and expansion, where it falls down. The temperature T can be thus

taken as the internal relaxing variable; this process is called thermoelastic

effect [44], [45], [46]. It must be explicitly noted that this effect is limited

to frequencies which are low compared with phonons relaxation rates, so

that a local temperature is well defined.

The main feature of the thermoelastic dissipation is represented by

the characteristic time τth of heat migration. If the vibration frequency

is small with respect to τ 1
th , the thermalization between compressed and

expanded regions occurs almost instantaneously (isothermal limit); con-

versely, at high frequencies the temperature has not enough time to set

up a heat flux, therefore the vibration is practically adiabatic.

The typical relaxation time for the thermal gradient can be obtained

5Actually, the SAS cannot get through all the anelastic processes in metals and
different materials; models involving three or more parameters can be developed as
well, but for the pourposes of this chapter only the SAS will be considered in detail.

6As explained above, energy loss occur if the system reacts to a sudden change in
deformation with a finite relaxation time.
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by solving the heat diffusion equation:

T

t

κ

cV
∇2T

Y α T0

cV 1 2σ

∇ u

t
(2.48)

where κ is the thermal conductivity, cV is the specific heat per unit

volume, α is the thermal expansion coefficient, σ is the Poisson’s ratio

and u is the elastic deformation vector. The solution of equation (2.48)
depends clearly on the geometry of the considered body. If d is the

distance between expansion and contraction regions7, it results that:

τth C d2 cV

κ
(2.49)

being C an adimensional form factor which takes into account the par-

ticular geometry and the shape of the considered vibration mode8. The

thermoelastic contribution to loss angle, related to a macroscopic relax-

ation τth, can be modeled with a SAS configuration, obtaining a Debye

peak:

φth ω φ0
ωωth

ω2 ω2
th

(2.50)

where the maximum dissipation happens when ω ωth 2π τth. The

dissipation strength φ0 in the SAS model results:

φ0 T Y
α2

cV
(2.51)

Objects which have at least one dimension much larger than the others

show a prominent thermoelastic peak in the frequency band of the first

resonant modes. On the contrary, this effect is usually negligible for

bulky objects with ωth small with respect to the modal frequencies.

The former discussion, valid for homogeneous bodies, must be mod-

ified for anisotropic materials, like crystals, whose thermal expansion,

conduction and elastic moduli depend on the orientation. Nevertheless,

the main features are the same; a rough estimation of the thermoelastic

dissipation can be obtained in such case by averaging α, κ, Y and σ over

the solid angle and using (2.50).

7The geometrical parameter d does not coincide in general with the wavelength of
the vibration. Consider a thin, long cylinder; in this case, the largest thermal gradient
occurs normally to the length, where the separation is set by the cross sectional size,
so that d can be equated to the cylinder diameter.

8If d is small with respect to the mode wavelength, C is almost independent of the
mode shape. For instance, for a thin, long cylinder C 1 2.16 for the low frequency
flexural modes.
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If the material under study is polycrystalline, there is an additional

thermoelastic dissipation source which must be considered [47]. The pres-

ence of crystal grains with average dimension dG defines a new typical

heat diffusion time τth,G. In the regime ωτth,G 1 the vibrations are

nearly isothermal for neighbouring grains and the resulting loss angle

is viscous-like, proportional to ω. If conversely ωτth,G 1, within each

grain the deformation is adiabatic. In the latter case, the heat conduction

is confined to a grain shell with characteristic thickness δ Dth ω 1 2,

being Dth the thermal diffusivity. It results that:

φ ω ωτth,G
1 2 (2.52)

The contribution of such intercrystalline heat diffusion to the dissipation

in polycrystalline objects is in general not negligible.

A nonlinear thermoelastic loss mechanism due to the temperature de-

pendence of the material elastic moduli can be of remarkable importance

in GW detectors suspension fibres; it has been described in [48].

2.4.2 Structural losses

Dissipation mechanisms which are related to microscopical variables within

the solid, such as orientation or displacement of atoms and molecules and

the presence of defects, are classified under the generic name of structural

losses. They are described by a set of typical relaxation times.

All these structural processes can be thought as being excited once

an activation energy U is reached. The population of particles which

possesses the needed energy U is set by the Boltzmann’s distribution, so

that the rate of events follows an Arrehnius’ exponential law:

τ̄ 1 ν0 exp
U

kBT (2.53)

where τ̄ is the relevant relaxation time to be included in the SAS model.

Therefore one obtains:

φ ω ∆
ωτ̄

1 ωτ̄ 1

∆

2
sinh ln ωτ̄

U

kBT

1

(2.54)

Plotting equation (2.54) versus 1 T produces a peak similar to a Debye

peak, centered in kBT U ln ωτ̄ . Individual relaxation processes

giving rise to such peaks have been experimentally observed and inter-

preted in many materials.
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By contrast, there is experimental evidence of a structural contribu-

tion to loss angle which is almost constant in frequency [49], [50], [51]. The

phenomenon is usually modeled by considering a superposition of simi-

lar Debye peaks with continuously distributed activation energies. The

energy distribution is taken constant within a large interval:

f U dU
dU

U2 U1
(2.55)

Computing the sum of single Debye terms:

φTOT ω ∆
U2

U1

ωτ̄

1 ωτ̄ 2

dU

U2 U1

∆

U2 U1
kBT arctan ωτ̄1 arctan ωτ̄2 (2.56)

where:

τ̄1,2 ν 1
0 exp

U1,2
kBT (2.57)

The density defined in (2.55) can be put in the form of a function of the

relaxation time, by means of the equation (2.53), obtaining:

f τ
kBT

U2 U1

1

τ
(2.58)

The latter relation points out the fact that the discussed constant loss

model is equivalent to the request that the structural dissipation behaves

like 1 f noise [52].

There are many studied internal dissipation processes. In amorphous

objects, specific mechanisms described by the thermal activation (equa-

tion (2.54)) are well known [47]. In crystals and metals, they can be

divided in two groups: those which act even in a perfect crystal, and

those due to the presence of defects in the body microscopical structure.

Both are summarized in the rest of this paragraph.

Phonons and electrons relaxation

It is well known that the phonon-phonon interaction arising from perfect

crystal anharmonicity provides a mechanism for sonic and ultrasonic at-

tenuation [53]. If the elastic wave frequency is low enough for the phonon

mean lifetime τph to be much lower than the wave period, i.e., if ωτph 1,

then relaxation formalism of SAS can be applied [47]. In fact, within this

limit the phonon distribution rearranges itself almost instantaneously
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during the vibration; the relaxation happens locally, and locality is re-

quested for (2.19) to be valid. However, such low frequency limit is well

satisfied for the materials and conditions which are considered here.

As a result of the crystal anharmonicity, the phonon frequencies are

modulated by the acoustic strain. The three-dimensional anisotropic

nature of the lattice structure and the dispersive phonon propagation

make the frequency shift depend on the strain via the so called Grüneisen

parameters γkα:
∆Ωkα

Ωkα
γkαε (2.59)

where the wavevector k and the polarization α specify the branch of

phonon spectrum.

The tensor nature of the strain is not specified in equation (2.59).
Usually, the Grüneisen parameters are defined for a pure dilation εjj [54],
while a general treatment for arbitrary strain needs a Grüneisen tensor

γij
kα to be defined [55], [56], [57]. Nevertheless, the overall contribution to

the acoustic damping will be of the order of the pure dilation relaxation,

which can be roughly estimated as:

φph ω
Kα2

gT

cg
ωτph (2.60)

In the case of metals, an anelastic relaxation mechanism analogous to

the phonons relaxation just discussed is due to conduction electrons [47].

Point defects and dislocations

The presence in a real crystal of point defects such as interstitial or sub-

stitutional impurities in the lattice will in general give rise to relaxation

phenomena. If, for instance, impurity atoms can be arranged in crystal-

lographically equivalent interstitial sites, the distribution of such defects

is modulated by an applied stress. Therefore, energy dissipation arises.

Beside the described behaviour, called Snoek effect [58], [59], many other

point defect processes are known, such as stress-induced pairs reordering,

quantum tunneling and so on. A typical value of the activation energy

for these mechanisms is 1 eV; they give rise to Debye peaks which usually

show a maximum at audiofrequency well above room temperature [47].
Hydrogen impurities can instead provide relaxation channels at lower

temperatures, due to their smaller volume and activation energy [58].
Dislocations appear within a real crystal basically in two ways [39].

An edge dislocation occurs when a crystalline plane is inserted within
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two other close packed planes. Screw dislocations can be visualized

imagining each plane being cut along an half infinite segment, then each

cut edge being glued to the opposite edge of the adjacent plane. It

results in an helicoidal surface around a defect line orthogonal to the

crystal planes.

As well as for point defects, dislocations can be strongly coupled

with external mechanical solicitations [60], [61], [62]. The internal friction

processes caused by the dislocation motion under an applied stress are

divided in two categories [39].

In the case the dislocation orientation differs from the crystallographic

directions, its motion can be described in terms of continuum mechan-

ics, since discrete features disappear by averaging over the dislocation

length. It has been shown [63], [64], [39] that under these assumptions the

dislocation can be regarded as a vibrating string, with a resonant peak

at ultrasonic frequencies. In the low frequency band, the contribution to

dissipation is:

φd ω Λ l4 ω (2.61)

where Λ is the dislocation density and l is a typical dislocation length.

If otherwise the dislocation lies close to a crystallographic direction,

there exists a potential barrier to its movement due to the periodic vari-

ation of the dislocation energy along its length (Peierls potential [65]).
This relaxation mechanism is thermally activated, thus leading to a De-

bye peak whose parameters depend on l.

Both mechanisms give rise to a loss angle which increases with in-

creasing l, so that their effects should be still present even in annealed

samples, where great values of l can counteract the decreasing of Λ.

Finally, interactions between dislocations and point defects must also

be considered [66]. The pinning of dislocation lines by the impurities,

resulting in a shortening of l, is an example of such mixing processes.

Theoretical work on this topic, and in general on defect losses, is still in

progress, due both to the difficulty of measuring parameters such as the

defect density, and to the variety of possible specific mechanisms.

2.4.3 Surface effects

In the previous section, structural defects in a real crystal have been

treated supposing that their distribution within the body was homoge-

neous. In fact, this is the case for homogeneous materials, as long as
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the volume contribution to loss angle is considered. The dissipation is

proportional to the defect density.

Still, the surface of a body is exposed to chemical and mechanical

damage; it is likely that here the amount of defects is much greater than

in the volume. Indeed, in homogeneous bodies the overall dissipation

increases for higher surface to volume ratios, due to surface effects.

Surface contribution can be included in the total loss angle by the

following definition:

2πφTOT
∆EBULK ∆ESURF

ETOT
(2.62)

where ETOT is the energy stored in the oscillation, ∆EBULK and ∆ESURF

are the amounts of energy dissipated in the volume and near the surface,

respectively. One assumes that ∆EBULK is proportional to the volume V

of the body, and ∆ESURF to the surface S:

∆ESURF

∆EBULK
D

S

V
(2.63)

The proportionality factor D has the dimension of a length; it carries

the information about the oscillation mode shape and the geometry of

the body. Moreover, it depends on the entity of surface dissipation. It is

convenient therefore [67] to put it in the form D µ ds, in such a way that

µ takes into account geometry and dynamics and ds, called dissipation

depth, models the presence of a dissipative layer at the surface. One thus

obtains from (2.62) and (2.63), being ETOT EBULK :

φTOT φbulk 1 µds
S

V
(2.64)

since the bulk loss angle is defined as:

φbulk ∆EBULK EBULK ∆EBULK ETOT . (2.65)

The dissipation depth is related to the thickness h of the superficial

dissipative shell. Let φ n be the local value of the loss angle in a small

volume at deepth n; then it results:

ds

h

0

φ n dn (2.66)

Supposing φ n φsurf constant within the shell:

φsurf φbulk
ds

h
(2.67)

According to equation (2.64), surface effects are negligible if ds V S µ .

The coefficient µ is of the order of unity; for instance, a cylindrical thin

fibre oscillating transversally has µ 2.
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2.5 Other sources of loss

While the dissipation processes examined hereto are intrinsic to the

anelastic solid, a body can lose its mechanical energy outward, due to in-

teractions with the environment. Usually these external loss sources are

not interesting in determining the anelastic behaviour of a body, in fact,

if they overcome the intrinsic loss level, care must be taken in reducing

them as much as possible.

2.5.1 Recoil losses

The energy of a vibrating body clamped in a frame is partly transmitted

to the support, where it is dissipated. This coupling would be null only

if the supporting structure were infinitely massive and rigid; in general,

though, this external source of loss is not negligible [68].
Consider the case of a pendulum of mass m hung to a mass M by

a massless wire of length l. An effective spring constant for small os-

cillations kg m g l is used for modelling the restoring force due to

gravity, being g the modulus of the gravitational acceleration. In order

to introduce a coupling with the support, the mass M is supposed to be

horizontally connected with an infinitely massive wall by an ideal spring

of constant K. The dissipation within this spring is described by its in-

ternal loss angle φK . Therefore, φK measures the energy loss due to the

induced vibration in the supporting frame. The equations of motion of

m and M along the horizontal x axis are:

MxM KxM iKφKxM kgxm (2.68)

mxm kexm (2.69)

Substituting in the former expressions xm xm0 expiω0t, where ω0

g l is the pendulum angular frequency, and neglecting the small dissi-

pation term, one finds the amplitude xM0 of the support motion as:

xM0

xm0

kg

K ω2
0M

(2.70)

Therefore, in the limit ω2
M K M ω2

0:

xM0

xm0

kg

K

mω2
0

K
(2.71)

According to equation (2.24), the recoil loss is represented by an effective

loss angle φe such that, if E is the total vibration energy, 2πφeE is the
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amount of dissipated energy. Therefore, reminding ωM ω0:

φe φK
Kx2

M0

E
φK

K

kg

x2
M0

x2
m0

(2.72)

so that, using (2.71):

φe φK
mω2

0

K
(2.73)

The expression of φe without approximations, for a supported me-

chanical oscillator with natural frequency ω0, is found [68] to be:

φe φK
m

M

ω2
0ω

2
M

ω2
M ω2

0
2

(2.74)

The leak of energy toward the support, given by equation (2.74), can

be reduced by choosing a massive, rigid support with a small intrinsic

dissipation. Nevertheless, if ωM ω0, even with the proper material

choice the recoil loss becomes relevant.

2.5.2 Air losses

If the vibrating body is immersed in a fluid, the viscous drag of the fluid

results in a damping of the vibration. The corresponding loss angle will

be of the same form of equation (2.29), i.e., proportional to the frequency:

φgas ω
b

mω2
0

ω (2.75)

where b is the viscosity coefficient of the fluid.

While in dense fluids the friction includes the effect of shear forces, in

a rarefied gas the drag is mainly due to pure momentum transfer between

the body and the gas molecules which are given a thermal velocity whose

mean value is v̄ kBT m. In this case the viscosity coefficient can be

written [8] as:

b
1

4
ρgasAv̄ (2.76)

The gas density ρgas depends on the pressure and the temperature via the

usual thermodynamical equation of state for ideal fluids. The parameter

A represents the total cross sectional area of the body for collisions with

gas molecules during the oscillation. One thus obtains:

φgas ω
ρgasAv̄

4mω2
0

ω (2.77)
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As an example, for a vibrating cylinder of diameter d and density ρ [67]:

φgas ω
ρgasv̄

2ρdω2
0

ω (2.78)

Thus the quality factor of this cylindrical resonator in a diluted gas is

(see equation (2.31)):

Qgas
2dρω0

v̄ρgas

2dρω0

n µkBT
(2.79)

being n and µ the numerical density and the mass of the gas molecules.

As one would expect, the limiting quality factor (2.79) becomes very high

when n is small; that is, the air damping can be easily reduced by placing

the resonator under vacuum.

2.6 Thermal noise in a gravitational waves

interferometric detector

2.6.1 Thermal noise due to the suspension wires

The test masses of an Earth-based interferometric detector of gravita-

tional waves are suspended in a pendulum configuration which acts as a

mechanical filter for the attenuation of seismic noise. In this configura-

tion, the thermally induced vibrations of the suspending wires result in a

fluctuation of the masses position along the laser beam [69] and produce

a spurious signal in the power output which limits the detector sensitiv-

ity. In the case of Virgo, whose mirrors are suspended from a chain of

pendula, only the last stage is considered for the sake of evaluating the

thermal noise. According to the normal-mode decomposition, the sus-

pension wires thermal noise spectrum can be computed separately for the

pendulum mode [70], [71], [72] and for the violin harmonic series [71], [73].

Pendulum mode

A point-like mass M hung by an ideal, massless wire of length L swings

with an angular frequency ωP g L. As long as the internal structure

of the wire is neglected, there are no friction losses9 associated to the

swinging and actually all the energy is stored in the lossless gravity field.

9It is supposed here that all the external sources of loss, such as air damping and
recoil, are made negligible by a proper choice of materials and conditions.
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The wire bends exactly at the upper end and, once the oscillation is

stopped, no thermal noise is present.

When instead a real wire is considered, the pendulum mode shape

is determined by the tension T applied by the suspended mass and by

the elastic characteristics of the wire material. The bending occurs at a

finite distance from the top, called bending length λ, which for a rod of

constant cross section Σ has the expression [42]:

λ
Y I

T (2.80)

where Y is the Young’s modulus and I is the geometrical moment of

inertia of Σ:

I
Σ

r2 dx dy (2.81)

being r the distance from an axis passing through the center of the sec-

tion.

An extended mass M hung by a single wire will exhibit both pendu-

lum and rocking swing. A rocking mode is indeed present for which the

bending is located mainly near the mass, again at distance λ10. In an

interferometric detector, the test masses are suspended by several wires.

It is assumed here that each cylindric mirror is suspended by four wires

fixed sideward; the wires are pinned in four points forming an horizontal

rectangle whose center lies near the center of mass of the mirror . The real

configuration is obtained with a cradle suspension [74] (see figure (2.2)).
In this arrangement, the rocking mode is essentially suppressed, while

during the pendulum swing each wire bends both at the top and at the

bottom. Therefore, a certain amount of energy is contained in the elastic

strain, so that dissipation occurs.

Recall equation (2.25). Calling φw ω the intrinsic loss angle of the

wires, the overall loss angle to be considered here is diluted by the pres-

ence of the gravity field [68], [75], [76]:

φP ω DP φw ω (2.82)

where:

DP
Ve

VG Ve

Ve

VG
(2.83)

10If the cross section depends on the position along the wire, there will be in general
two different bending lengths at the top and at the bottom, but the main features of
the discussion do not change.
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Figure 2.2: Scheme of the mirror suspension configuration described in the text. (a)
Pinned fibres (b) Cradle suspension.

is the relevant dilution factor, Ve, VG are the elastic and gravitational

mean potential energies and small oscillations are assumed. By solving

the elasticity equations for the four wires one finds that11:

DP
1

L

Y I

T (2.84)

Here T Mg 4 is the tension applied to each wire. Now, the pendulum

mode corresponds to an oscillator with mass M and elastic constant

kg Mg L, so that, making use of (2.33):

S2
x,P

4kBT

Mω

φP ω ω2
P

ω2 ω2
P

2 φ2
P ω ω4

P

(2.85)

is the thermal noise spectrum for the displacement x along the laser

beam, due to the pendulum resonance.

Violin and bouncing modes

Besides the pendulum mode, which is due to the presence of gravity, a

real wire possesses a set of vibration proper modes due to the elastic inner

11This expression is doubled with respect to that valid for a pendulum with point-
like mass [71], since the bending here happens both at the upper and at the lower
end.
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forces. The shape and frequency of such modes is clearly depending on

the tension T , therefore, even though they are due to elasticity, they are

influenced by gravity.

The spring-like vibration of a wire suspending a mass M is called

bouncing mode; the equivalent spring constant is kB Y Σ L, thus the

angular frequency:

ωB
Y Σ

ML
(2.86)

Neglecting the coupling between vertical and horizontal displacement,

the bouncing mode would not affect the position of the mirror along the

laser beam. However, such coupling exists in a gravitational waves inter-

ferometer, due to the Earth curvature and imperfections in the mechanics

of the suspensions: the vertical directions for two mirrors placed apart

at a distance D are not parallel, they form an angle ψ D R , calling

R the Earth radius. Therefore, the vertical bouncing mode gives rise

to a thermal noise spectrum modulated by ψ:

S2
x,B ψ

4kBT

Mω

φw ω ω2
B,N

ω2 ω2
B,N

2 φ2
w ω ω4

B,N

(2.87)

where ωB,N NωN if N is the number of suspension wires.

Instead, the violin transverse modes of the wires contribute directly

to the suspension thermal noise. The set of violin harmonics is given by

the formula:

ωn
nπ

L

T
Σρ

1
2λv

L

1

2

nπλv

L

2

n 1, 2, ... (2.88)

where ρ is the mass density. The shape of the violin modes is such that

most of the wire bending occurs again at its top and bottom, over a

typical distance λv λ. Since for the suspension wires λ L, the first

several modes are almost equal to the vibrations of an ideal string:

ωn
nπ

L

T
Σρ

(2.89)

Taking into account only the bending near the top and the bottom and

computing the elastic and gravitational energies, one finds the dilution

factor in the four wires arrangement:

DV 2 DP (2.90)
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The latter is valid as far as the bending energy along the wire is small

with respect to that at the top and bottom, that which ceases to be true

for the higher order modes.

The effective mass of the violin nth mode is [71]:

µn
π2M2

2ΣρL
n2 (2.91)

It is noticeable the fact that µn is proportional to M2; this high mass

value is the effect of the tiny mass displacement during a violin vibration.

The contribution of violin modes to the thermal noise spectrum is

therefore:

S2
x,V

4kBT

ω
n 1

µ 1
n φn ω ω2

n

ω2 ω2
n

2 φ2
n ω ω4

n

(2.92)

2.6.2 Test masses thermal noise

The test mass itself contributes to the thermal noise level by means of

several different mechanisms [71], [77]. The mass is constituted by a bulky

cylindrical substrate with a coated flat face, so in fact, the origin of these

mechanisms can be individuated either in the dissipation within the bulk

or in the losses associated with the coating.

The thermal noise sources in the substrate are divided in three main

branches, Brownian noise, thermoelastic noise and thermal lensing. The

Brownian noise comes from the displacement fluctuation of the mirror

related to its internal friction, according to the usual formulation of the

fluctuation-dissipation theorem. In finding the expression of the bulk

Brownian noise spectrum, one has to solve the mirror acoustic wave

equation and use the described direct approach (see section (2.1.1)), ob-

taining [78]:

S2
x,B

8kBT

ω
φB F (2.93)

where φB is the bulk loss angle12, and F is a series of Bessel functions

with coefficients depending on the material and the mirror and beam

spot size geometry.

A mirror bulk thermoelastic noise is also present, due to a coupling be-

tween the temperature fluctuations and the mirror elastic strain, thanks

12For the structural damping here considered the loss angle has been found ex-
perimentally to be approximatively constant in frequency (see section (2.4.2)). A
frequency dependent model for the structural losses based on a review of many ex-
perimental data has been recently published [79].
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to a non-null expansion coefficient α. The fluctuations of the tempera-

ture are originated either by laser photon absorption or they are the ther-

modynamical counterpart of the statement of the fluctuation-dissipation

theorem, that at the equilibrium each internal variable undergoes a spon-

taneous fluctuation. The resulting strain causes heat conduction to dissi-

pate energy in the substrate. Furthermore, in those mirrors which work

in transmission, the fluctuation of temperature results in a variation of

the refraction index n determining a laser phase noise, which is referred

to as thermal lensing.

The thermal noise due to the coating layer [80], [81], [82] is similarly

divided in Brownian, thermoelastic and thermorefractive contributions.

The Brownian noise has in this case the special feature that the coating

loss angle φC is different from that of the bulk, therefore an inhomogene-

ity is present. Moreover, φC is assumed to be non isotropic and is written

as:

φC
δU‖ d

U
φ‖

δU d

U
φ (2.94)

where δU‖ and δU are surface integrals of the coating energy density

components along the parallel and perpendicular direction with respect

to the surface, φ‖ and φ are the associated loss angles, U is the total

stored bulk energy and d is the coating thickness. The values of φ‖

and φ are not well known experimentally, so it is customary to rely

on the simplifying assumption that φ‖ φ . A rough, approximated

expression13 of the coating Brownian thermal noise is therefore obtained

by means of the Levin calculation approach:

S2
x,C

2kBT

ω

d

πYBr2
0

YC

YB

YB

YC
φ‖ (2.95)

being YB, YC the bulk and coating Young’s moduli and r0 is the beam

radius. The matching of the Young’s moduli YC YB corresponds to the

lower value of (2.95).
Temperature fluctuations generated thermodynamically or due to laser

photon absorption give rise to a thermoelastic coating noise. These fluc-

tuations couple with the laser phase thanks to a non null dn dT , leading

to the thermorefractive component of the coating thermal noise.

A complete and detailed review of all these noise contribution is of-

fered in [78].

13It is assumed also, for the sake of simplicity, that the bulk and coating Poisson’s
ratios σ are negligible with respect to the unity; nevertheless, since usually σ 0.2,
the latter condition is rather crude.
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2.6.3 Thermal noise budget in Virgo

The total thermoelastic noise spectrum is the sum of the suspensions and

test masses components formerly reviewed. The thermal noise contribu-

tion to the noise budget in Virgo and in the foreseen second-generation

detector Advanced Virgo are compared in figures (1.5) and (2.3) with the

main non-thermal noise sources.

Virgo employs steel wires (φS 10 4) for suspending the mirrors.

The Virgo present status curve in figure (1.5) is dominated by the pen-

dulum noise in a wide frequency band from few Hz up to 50 Hz, where

it becomes comparable with the mirror bulk noise which is dominant

around 100 Hz. The coating noise is negligible.

In the Advanced Virgo design, the suspensions will be made of fused

silica (see chapter (3)), resulting in an improvement of the low frequency

sensitivity. Similarly, low-loss substrates will allow a reduction of the

mirror bulk noise to negligible levels. On the contrary, the coating ther-

mal noise will become the new dominating noise around 50 Hz: coating

Brownian, as well as thermoelastic and thermorefractive components are

foreseen to overcome the substrate effects. The sensitivity curve shown

in figure (2.3) is a conservative estimation of the noise contributions to

Advanced Virgo, based on a monolithic design with cylindrical fused sil-

ica fibres. Choosing different geometries, like ribbons or dumbbell fibres,

would reduce the pendulum noise level; with heavier mirrors, also the

radiation pressure noise would get lower.

Figure 2.3: Advanced Virgo nominal sensitivity curve, from [28].



Chapter 3

Fused silica fibres for Virgo+
and Advanced Virgo

Future generations of GW interferometric detectors will improve the de-

tection performance in the whole sensitivity frequency band. A specific

effort will be made for finding solutions to reduce the thermal noise com-

ing from the test masses and the last stage suspensions [83], [84]. In

this chapter, the attention is focused on a material which is particularly

interesting for the second generation GW interferometers monolithic sus-

pensions, that is, fused silica [72], [85].

The production of fused silica fibres for realizing monolithic fused

silica suspensions for Virgo+ is described [86]. A tool for characterizing

the fibres mechanical behaviour, in particular the position of the bending

point, is presented, together with a first set of measurements.

3.1 Monolithic fused silica suspensions for

the second generation

In the design of advanced GW interferometric detectors, thermal noise

represents the most serious sensitivity limitation in the frequency range

from a few Hz up to a few kHz. Thermal noise in the suspensions domi-

nates the sensitivity curve up to about 100 Hz.

In the frequency range comprised among the pendulum resonance and

the first violin mode of a suspension fibre the power spectral density of

the thermal noise displacement of a suspended mirror is computed by

means of equations (2.84) and (2.85), and is well approximated by the
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following expression:

S2
x,P

4kBT

ω5

g

L2

Y g

4πnM

φ ω

CSTB
(3.1)

where L is the suspension fibres length, Y is the Young’s modulus of the

fibres material, n is the number of suspension fibres for each mirror of

mass M , and CS is the percentile of breaking stress TB at which the fibre

is loaded. The loss angle φ ω represents the sum of all the dissipative

processes which occur in the material (structural and thermoelastic, as

described in chapter (2)), plus an effective loss angle taking into account

the losses associated with the connecting elements such as clamps or

chemical bonded pieces (see section (5.4)).
The suspensions system of the main optics in the current GW inter-

ferometric detectors is based on a single or double metal wire loop. A

scheme of a cradle-like suspension with two wires is drawn in figure (3.1);
note the presence of triangular spacers between the mirror and the wires,

assuring a precise knowledge of the wires break-off points position. The

presence of spacers is an additional source of losses. In Virgo, C85 steel

wires are presently used, with an intrinsic loss φw 2 10 4 at 100 Hz

and a tensile breaking strength of about 2.9 GPa [87].

Figure 3.1: Scheme of a double steel wire cradle suspension. The position of the
spacers is indicated by red arrows.

Only the GEO600 detector uses a different suspension system, based
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on a monolithic fused silica design, while an analogous solution is cur-

rently being developed for Virgo. A monolithic suspensions arrangement

prevents the friction among wires and mirrors in the cradle-like steel

suspension scheme. Furthermore, fused silica is a good material for low

thermal noise suspensions [87], [88] because of its low intrinsic loss angle

(at room temperature) [89], [90], [91], [92], [93] and its low thermoelastic

effect (see section (2.4.1)). The thermoelastic dissipation (equation (2.50))
in fused silica fibres is suppressed by a low thermal expansion coefficient

α 0.5 10 6 K 1 [94], while the high value of the tensile strength

T 4 GPa makes large the gravitational dilution (equation (2.84)) [87].
It seems possible that the monolithic arrangement will reduce the sus-

pension thermal noise in the interesting frequency range of about one

order of magnitude.

In spite of these positive characteristics, fused silica present some

drawbacks, since the tensile strength is dominated by cracks and defects

present in the fibre surface and there is evidence of a sort of ageing due

to ambient moisture [87].

Monolithic suspensions using fused silica fibres involve the silicate

bonding technique described later on, in section (5.4) [85]. Silicate bonding

will be employed for chemically glue silica ears to the substrates, allowing

the fused silica fibres to be welded on them. A scheme of a possible

monolithic assembly to be realized for the future upgrades of Virgo (first

of all Virgo+, see section (1.4.2)) is given in figure (3.2). Difficulty arose in

testing such kind of arrangement, due to the thermal stress induced in the

bonded ears during the fibres welding. Therefore, alternative assembly

schemes are now under consideration.

The production and characterization of fused silica fibres is a funda-

mental issue in the path toward monolithic fused silica suspensions.

3.1.1 Production of fused silica fibres

Silica (SiO2) is retrievable in nature in two different aggregation states,

both transparent, the one with an high grade of internal order, the other

showing a disordered clustering of molecular aggregates. The former state

is represented by the crystalline quartz, while the latter has a vitreous

structure and is properly called fused silica. Within the silica molecule,

each silicon atom is bonded to four oxygen atoms by covalent bonds.

Vitrification temperature of fused silica depends on specific material his-

tory and vitrification velocity; it usually lies near 2000 K. Fused silica
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Figure 3.2: Scheme of a possible monolithic fused silica suspension assembly to be
realized for Virgo+. Silica ears are attached to the mirror by silicate bonding on
flattened sides; then the fibres are welded to the ears.

breaking strength and intrinsic losses have been already reviewed in the

previous section; here in table (3.1) other thermomechanical parameters

are sketched.

C [J/(kg K)] κ [W/(m K)] α [K 1]

670 1.4 5.5 10 7

Table 3.1: Values of the specific heat C per unit mass, thermal conductivity κ and
linear thermal expansion coefficient α in fused silica (from [95],[96]).

Fused silica are currently employed in the realization of optical fibres

for telecommunications; nevertheless, since these applications have spec-

ifications completely different from the ones here described, the fused

silica fibres to be used for monolithic suspensions have to be produced

purposely.

The fibres are produced starting from high purity fused silica cylin-

drical bars commercially available (suitable materials are HERASILR© or

SUPRASILR©), with length 10 cm and 1.5 mm thick. Once melted, fused

silica material becomes highly viscous and it can be plastically deformed.
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Fibres are thus obtained by melting the central region of the bar and sub-

sequently pulling the two ends apart. This method can be implemented

in several ways. Care must be taken in the process for avoiding contam-

inants to enter the melted material; impurities diffused in it will indeed

spoil the tensile strength performances. Moreover, a method capable of

producing fibres with reproducible characteristics would be preferable.

Initially and up to now, hydrogen/oxygen flames have been used for

melting the bars. Nevertheless, at the moment we are using a different

method. A machine for pulling fused silica fibres using a CO2 laser has

been developed at the University of Glasgow [97]. A duplicate of this

machine has been assembled in a dedicated laser room at the site of

the Virgo experiment. A schematic view of the functional parts of the

machine is given in figure (3.3).

Figure 3.3: Schematic drawing of the CO2 laser pulling machine described in the text.

The fused silica rod is first cleaned with isopropylic alcool; then it

is clamped at its lower end to a fixed clamp, while it is blocked at the

top to a clamping tool rigidly connected to a moving arm. The vertical

displacement of this arm is acted by precision motors which are controlled

trough a computer board, by a suitable software application.

A 100 Watts CO2 commercial laser with 10.6 µm wavelength fur-

nishes the needed power for melting the rod. The laser beam is delivered

onto the fused silica rod by a series of gold coated mirrors. A rotating
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45o mirror placed underneath the fixed clamp delivers the beam on a

conic mirror, where the beam is reflected toward a second conic mirror

which finally directs it to the rod. Thanks to the rotating and conic

mirrors, the beam hit the rod continuously all around its axis, assuring

an homogeneous local heating.

Once the rod is melt by the laser, the upper arm pulls it upward fol-

lowing a given velocity profile and a thin fibre is produced. The geometry

of the pulled fibre depends critically on the chosen velocity profile.

Since the melting involves a small volume of the rod from which the

material is driven away during the pulling, new material must be melt

in order to feed the fibre. Therefore, the melting point must be shifted

downward during the operation. This is the reason why the second conic

mirror is fixed to a moving arm analogous to the one hosting the upper

clamp; the velocity profile to be passed to the motor is obtained applying

the conservation of rod mass through the continuity equation.

When the rods are shipped, though being pure, defects and small

cracks are present at the surface and in their volume. Indeed, when a

rod is placed in the machine and the beam melts it, usually internal

reflections show a diffuse luminosity within the rod and small spots al-

most everywhere. Such kind of structural defects compromise severely

the breaking strength of the obtained fibres. Therefore, an annealing is

performed on the fibre before the pulling; the beam is moved up and

down along the fibre by moving the lower arm, so that the melted region

goes through all the fibre length. This process is repeated until no more

diffuse light or spots are present inside the fibre, which therefore appears

perfectly transparent.

The clamped rod ends are not melted during the process, so the fibre

maintains thick heads. Two small bobs within the heads can be produced

before the pulling, melting the rod near the clamps and then shrinking

it. These bobs are necessary for allowing a good clamping in all the

subsequent operations described in section (3.1.2).

With this method, thin fibres about 1 m long can be produced. The

laser pulling allows a very good reproducibility of the fibre shape, as

shown in figure (3.4) where the profiles of two fused silica fibres produced

subsequently are compared. The profiles are measured using a profiling

tool such as the one described in section (4.3.1). For the sake of realiz-

ing monolithic suspensions, fibres with a diameter of about 280 µm are

pulled, capable of supporting loads as high as 10 kg or more.

There are several advantages in using the laser pulling machine. Though
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Figure 3.4: Comparison among the measured profiles of two fused silica fibres pulled
45’ the one after the other with the CO2 laser pulling machine. The profile re-
producibility is very good. These fibres were not regular, showing a thinner neck.
Nevertheless, this problem has been fixed and the fibres presently pulled show a
monotonically decreasing diameter near the heads, after which the section is pretty
regular.
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the laser is at the moment not stabilized, a short term improvement of

the system will include a laser power control loop, so that very fine con-

trol of quantity and localization of heating will be possible. With respect

to the flame method, the contamination of the fibre material is almost

completely avoided since no gas is involved in the process. Finally, the

laser itself can be used to perform precise welding of the fibres.

3.1.2 Characterization of fused silica fibres

The fused silica fibres produced with the CO2 laser machine must have

the mechanical characteristics requested for realizing a monolithic sus-

pension stage. In particular, they have to support a load of about 5 kg

each one, since the mirror mass is 20 kg and 4 fibres are employed in

suspending it.

Therefore, a stress test has to be performed once the fibre has been

pulled. The test consists in gently hanging to the fibre a 10 kg load and

letting the fibre support it for few seconds. The load is progressively

released by using a labjack. If the test is passed, the fibre is validated

and will be used in the monolithic suspensions arrangement tests.

Figure 3.5: Picture of the clamping system used for blocking the fused silica fibres
during the load test and the λ measurements. The clamp parts are shown on the left,
while a fibre clamped is on the right. Note the small bob in the fibre thick head and
the rubber pipe envelope.

The hanging operation requires the fibre to be clamped both at the

top to a rigid support and at the bottom to the loaded mass. Therefore,

an efficient and strong clamping has to be realized avoiding the ends of

the fibre to slide out from the clamp due to the high load. This has been

obtained using two aluminum thick slabs pressed together by screws; a

triangular groove has been machined onto one of the two slabs, as shown



3.1 Fused silica suspensions 67

in figure (3.5). The fibre head is firstly inserted in a fitting rubber pipe,

then placed along the groove in the clamp, making attention that the

bob has been left out of the clamp, at the opposite with respect to the

straining direction. The bob cannot pass trough the clamp, so that the

fibre slipping is avoided; moreover, the rubber pipe prevents the fibre to

break inside the clamp.

With this system, a produced fibre strength is validated; now, a char-

acterization of its mechanics is needed, allowing a full knowledge of the

dynamic behaviour of the future monolithic assembly.

A three segments model of the fibres

In order to design and successfully realize a monolithic fused silica sus-

pension assembly, a very precise knowledge of its dynamical parameters

is needed, so that the structural mechanical resonances can be optimized

for the best active control performance of the whole mass suspension

system.

Figure 3.6: Scheme of the deformation of a fibre once it is pulled apart by a force F t .
The pendulum mass is supposed pointlike. The pendulum swings with an effective
length smaller than the real length L by the amount λ.

A fundamental dynamical parameter of a cylindrical suspending fibre

is its bending length λ (equation (2.80)):

λ
Y I

T (3.2)
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Following the definition, λ represents the distance of the fibre bend-

ing point from the clamped end, when the fibre pendulum mode is on1.

Consider a force F t applied horizontally to the lower end of the fibre

supporting the load T (figure (3.6)). The horizontal displacement y x, t

along the fibre obeys the equation [42], [98]:

Y Iy T y ρ
2y

t2
(3.3)

where ρ is the mass density, Y the Young’s modulus, I the cross sec-

tional moment of inertia and each apostrophe stands for a derivative

with respect to the position x along the fibre. In the case of harmonic

excitation F t F0 expiωt and sufficiently small ω for the right hand

side of equation (3.3) to be neglected, one finds:

y x
F0λ

T exp x λ x

λ
1 (3.4)

The resulting fibre shape exponentially approaches two lines at the fibre

ends; the crossing point of the two lines identifies the bending point. If

the suspended mass is not point-like, a similar bending happens also at

the fibre bottom.

The given expressions for y x and λ hold for a regular fibre with

constant cross sectional moment I. Nevertheless, the fibres pulled by

the CO2 laser machine are not regular, since they present a tapered

profile near the heads (the so called neck region) which is different among

the two heads due to the pulling procedure. Different values are thus

expected for the bending length at the top and at the bottom of the fibre;

the mechanical behaviour of the fibre is obtained by applying the beam

equation (3.3) with a varying I x . Nevertheless, this is a very complicate

approach, especially when the dynamics of the whole suspensions system

are concerned.

By knowing the bending length at both the ends, a simple model of

the fused silica fibre can be built, using just three rigid, massless sec-

tions of length λt, L and λb, respectively the top bending length, the

distance among the bending points and the bottom bending length (see

figure (3.7)). This model is able to give the correct values of force and

torque on the suspended mass. A computation of the proper angular

frequencies gives:

1The bending length is relevant not only for the pendulum motion, but also for
the violin modes, as discussed in section (2.6.1).
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Figure 3.7: Scheme of a simple model of a fused silica fibre, based on a three segments
pendulum.

ω2 g

2LIC
l2M IC lLM

l2M IC lLM 2 lLMIC (3.5)

where IC is the moment of inertia of the suspended mass with respect

to the center of mass C, l λb d where d is the distance between C

and the fibre connection point, M is the mirror mass and g is the gravity

acceleration. Note that, letting l 0, one has:

ω
g

L
, ω 0 (3.6)

so that as expected only the pendulum mode survives. Clearly, ω cor-

responds to the rocking mode.

This model provides a simple costitutive relation for the suspensions

fibres, to be used in the detailed calculations of suspension system dy-

namics and proper frequencies. Therefore, the bending points enter the

expression of the suspension mechanical transfer function, which is used

for projecting the suspensions active controls.

The knowledge of λ is strictly needed for a successful control design.

As an example [99], in the monolithic suspensions realized for GEO600,
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the estimated bending point position was wrong by about 1 cm. The de-

signed feedback models for the suspensions resulted not to be sufficiently

accurate and the locking of the interferometer was rare and depended

strongly on the environmental conditions, so that a new seismic isolation

system had to be installed. The alignment problems were traced back to

a pitch coupling among the longitudinal motion of the suspension point

and the tilt of mirrors. The latter can be prevented by placing the bend-

ing point as close as possible to the horizontal plane passing trough the

mirror center of mass. The GEO600 experience taught a severe lesson

on the importance of the knowledge of the fibres parameters, especially

the bending length.

Bending point measurement

Since in general λ λt, λb, the position of both the bending points

of the produced fibres must be evaluated experimentally. In principle,

the measurement of the bending point is quite simple. Consider a fibre

blocked at its top to a rotary stage, supporting a load2 T . If the bending

point is placed exactly on the rotation axis of the stage, when the top

head of the fibre is rotated, the bottom part of it actually does not move

(see figure (3.8)). If instead the bending point does not correspond to the

rotation center, the fibre body moves in different directions depending

on whether the bending point is above or below the center.

A specific apparatus has been realized to perform the measurement

of λ, which is shown in figure (3.9). A rotary stage, mounted at the top

of a rigid structure, is driven by a controllable motor; on the stage, a

second motor acts on a micrometric sleigh moving along a diameter of

the rotary stage. This motor can be controlled by means of a joystick.

On the sleigh, a clamp is placed for blocking one head of a fused silica

fibre. The exact position of the center of rotation is found by inserting in

the hollow shaft of the rotary stage a steel bar on which a cut is machined

indicating precisely the rotation axis.

At the bottom of the fibre, a load is clamped and released gently by

means of a labjack. Once suspended, the loaded mass starts to swing at

the pendulum frequency. The pendulum motion is damped with a PVC

bar fixed to the load mass and inserted in a rubber pipe (see figure (3.10));
the pipe is in frictional contact with the floor, even when the mass is lifted

2Since the position of λ depends on the tension, T has to be chosen as close as
possible to the foreseen working load. In this case, a load of 5.1 kg is employed.
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Figure 3.8: Description of the experimental setup for measuring the position of the
bending length. (a) The bending point is exactly on the rotation axis: the lower part
of the fibre does not move away from the vertical line. (b) and (c) The bending point
is not centered on the axis: the lower part of the fibre moves horizontally during the
rotation.

or released.

The movements of the fibre are detected following the displacement

of the fibre shadow, projected by a LED diode on a double photodiode.

The photodiode is split in two elements by a thin insensitive gap and

the fibre is placed in face of the gap. The signals coming from the two

photodiodes are subtracted and amplified; the output becomes negative

or positive if the fibre moves, following its oscillation. The advantage of

tilting the photodiodes of about 45o with respect to the vertical axis is

explained in figure (3.11). The displacement signal is then displayed on a

screen.

Once the load is suspended, the rotary stage motor is started and

driven with a square-wave signal, so that a small oscillation of the fibre

head occurs. If the acquired signal from the shadow sensor indicates that

the fibre bottom is moving, a small displacement of the fibre head along

the micrometric sleigh is produced acting with the joystick, trying to

reduce the fibre movements. When these movements get their minimum

amplitude3, then we know that the bending point is on the rotation axis.

3Though actually the movements when the bending point is on the axis should
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Figure 3.9: Picture of the bending point measurement apparatus.
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Figure 3.10: Picture of the rubber tool used to damp the pendulum swing of the
suspended mass.

Figure 3.11: Possible configurations for the read-out system, with the photodiode gap
(a) parallel and (b) tilted with respect to the fibre axis. The gray areas represent the
sensitive regions for a good detection.
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Thus, the rotary stage is blocked and the distance among the rotation

center signalled by the steel bar and the upper end of the fibre is measured

using a caliper. In this way, the bending point position is evaluated with

respect to the fibre tip.

During all the measurement procedure, great care must be taken

in avoiding to touch the fibre. In fact, even a very soft touch would

cause cracks or defects to be produced on the surface, spoiling the tensile

strength so that the fibre would break when suspended.

Figure 3.12: Pictorial display of the measured position of the bending point, indicated
by a red arrow.

A test measurement has been performed on a 74 cm long fibre pulled

by the CO2 laser at the Virgo site. The obtained position of the bending

point is shown pictorially in figure (3.12). It has been possible to cali-

brate the shadow sensor signal by moving the micrometric stage during

the oscillations by a known amount, and observing the acquired signal

amplitude. The measurement uncertainty has been thus estimated evalu-

ating the residual minimum oscillation when the bending point is found,

then converting it in length. It has been found eventually, for the fibre

considered above, that λt 36.64 0.04 mm measured with respect to

the tip.

vanish, the accuracy of the micrometric sleigh movements is not enough for reaching
a perfect centering.
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Other mechanical parameters

Due to the fact that the fibre section is not constant, other mechanical

parameters must be measured directly since their analytic expression

would be too complicate to find.

The machine which has been built for measuring λ can be advan-

tageously employed for obtaining an evaluation of the fibre violin first

mode fv (equation (2.89)) and of the bouncing mode frequency fb (equa-

tion (2.86)).

The violin mode can be measured just gently hitting the clamp sup-

port with an hammer and observing the FFT of the shadow sensor signal.

A peak is observed in the frequency spectrum, and performing a long

lasting acquisition a precise measurement of the frequency position of

the peak is obtained. For the measured fibre, fv 444 1 Hz, assuming

as uncertainty the width of the recorded peak.

To measure the bouncing mode, a specifical setup has been realized. A

magnet is rigidly fixed underneath the suspended mass (see figure (3.10)),
while a coil is mounted on a support and placed close to the magnet.

The coil-magnet force driven by a sinusoidal current is used for exciting

the bouncing oscillation. The coil is feeded with a swept sine current

with frequency ranging from few Hz up to 10 Hz, since the bouncing

mode is expected to be around 6 Hz. In this way, the bouncing mode

is excited. The read-out of the mass oscillation is obtained by means

of a 1 cm piezoelectric rod, having one end clamped to the suspended

load and the other fixed to a small mass. The voltage coming from

the piezoelectric sensor is amplified and acquired by a computer board.

When the excitation force is removed, a long lasting acquisition of the

read-out signal is used to perform a FFT allowing the evaluation of the

bouncing peak position. For the considered fibre, we found fb 6.1 0.1

Hz.

3.2 Conclusions

Monolithic fused silica suspensions will be realized probably in time for

being used in Virgo+, and they will be part of Advanced Virgo.

The CO2 machine is able to pull fused silica fibres with a good con-

trol on the diameter value and regularity; the pulled fibres show a re-

markable diameter reproducibility. The necessity of measuring all the

relevant mechanical parameters of the fibres has been stressed, particu-
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larly in relation with the experience of GEO600. The presented tool for

measuring the bending point is now ready to perform a full characteri-

zation of the pulled fibres, before they are welded to the ears attached

to the test masses. The welding procedure depends on the design of the

monolithic assembly, which is currently under study (as discussed at the

beginning of this chapter); the fundamental request is that the bending

point must be placed in correspondence with the mirror center of mass.

At the present status, a problem could be represented by the fact that

the bending point position is known with respect to the fibre tip; when

the welding is performed, the fibre head is deformed4 and the bending

point is no longer referable to the tip. Several solutions depending on

the welding procedure are under consideration.

As next step, fibres produced with the CO2 laser machine will be

employed in realizing monolithic suspensions tests. Using the λ-machine,

a complete dynamical characterization will be carried over a statistically

significative set of fibres to be used in monolithic assemblies.

4Depending on the welding procedure, the fibre head can be intentionally broken
for fitting with the ears geometry.



Chapter 4

Silicon suspensions for third
generation detectors

The suspensions of cryogenic interferometers will be probably made of

silicon [100], [101], [84]. In this chapter, a method of production of sil-

icon crystalline fibres is presented. The grown silicon fibres are then

measured in order to study their internal dissipation. The dissipation

indeed enters the expression of the thermal noise spectrum as seen in

chapter (2). Therefore, an experimental setup for measuring the fibres

loss angle within the frequency band concerned in the GW detectors is

described and the obtained room temperature measurement results are

discussed.

The produced fibres show a not perfectly regular geometry. Therefore,

a facility for realizing a 3D model of the fibre is also presented. The 3D

model has been used for a dynamical finite element analysis allowing a

comparison between the experimental results and the model outcomes.

In this way some physical parameters of the fibres have been extracted.

Finally, the problem of the fibre clamping is addressed, proposing

solutions for the foreseen cryogenic measurements on the fibres.

4.1 Silicon as a promising material for the

third generation

Long baseline GW interferometric detectors of the second generation will

optimize the level of thermal noise at room temperature, by a suitable

choice of low loss materials and a monolithic mounting solution [102], [103].

According to the fluctuation-dissipation theorem (2.1), the overall
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thermal noise power spectrum depends directly upon the temperature.

Thus in view of the realization of a third generation of GW interferomet-

ric detectors a cryogenic approach is currently under study.

As for the second generation, a gain in sensitivity against photoelec-

tron shot noise will be obtained by increasing the circulating power. In

the cryogenic perspective, this would request the suspensions to have a

high thermal conductivity in order to allow the heat deposited in the

mirrors to be extracted efficiently. Moreover, the heat absorption by the

mirror would cause a deformation with extent proportional [104] to α κ

and, consequently, a lensing effect (thermal lensing, see section (2.6.2)).
This effect could be source of optical mismatch and even cause instabili-

ties of the interferometer. Thus, the thermal conductivity of the substrate

is also requested to be high.

Fused silica fibres are not suitable for cryogenic suspensions due to a

peak in the dissipation at around 40 K [84], and to the low value of the

thermal conductivity which reduces the heat extraction capability. The

latter argument is also valid for silica substrates.

New materials have to be singled out for matching these requests.

Very low levels of internal friction feature in most crystals; these mate-

rials have structural loss angle as low as, or even lower than silica (see

section (3.1.1)) but, due to their relatively large thermal expansion, the

thermoelastic loss dominates by far over the sensitive frequency range.

For this reason, crystalline materials have never been considered suitable

for the construction of low thermal noise suspensions at room tempera-

ture. Despite being crystalline, silicon seems to be promising for realizing

cryogenic suspensions and test masses, as detailed below.

4.1.1 Thermomechanical properties of silicon

Silicon thermal and mechanical properties are extremely favorable for

realizing low thermal noise suspensions of a cryogenic GW interferometric

detector [105], [103].

The high conductivity of silicon is particularly useful for extracting

the heat deposited within the mirrors. In an interferometer operating at

cryogenic temperatures, with about 1 MWatt of circulating power and

mirrors with absorption at the level of few ppm, silicon ribbons with a

cross section between 175 mm2 and 47 mm2 in a monolithic arrangement

are suitable for extracting the sufficient amount of heat with just 2 K of

temperature difference across 0.7 m of suspension ribbons [102].
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Silicon is expected to have large bulk tensile strength (about 7 GPa,

dominated by surface effects that can decrease that value down to about

200 MPa [106]) and low intrinsic loss angle (φ 300 K 2.8 10 8,

φ 77 K 5 10 9 and φ 4.2 K 6 10 10 [107], [108]). It does not

show plastic deformation and it is almost insensitive to fatigue.

Recall the given expression (equation (2.50)) for the thermoelastic

contribution to the overall loss angle:

φth ω T Y
α2

cV

ωωth

ω2 ω2
th

(4.1)

where:

ωth
2πκ

d2cV
(4.2)

and κ is the thermal conductivity, α is the linear thermal expansion

coefficient, d is the thickness of the fibre, cV is the specific heat per unit

volume and Y is the Young’s modulus.

Figure 4.1: Thermal conductivity (continuous line) and linear thermal expansion
coefficient (dash-dotted line) of silicon (from [109],[110]), with inset a magnified plot
showing where α crosses 0 at about 18 K.

The behaviour of α and κ for silicon is peculiar [111], as displayed

in figure (4.1). The thermal expansion coefficient decreases with temper-

ature until it vanishes at about 123 K, is negative in the temperature

interval among 18 and 123 K, and almost zero at lower temperatures.

This means that the thermoelastic dissipation decreases sharply with

the temperature and becomes negligible with respect to the structural
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losses in the range 120 130 K and below 20 K, as shown in figure (4.2).

Figure 4.2: Amplitude of the linear thermoelastic loss angle in a silicon fibre plotted
versus the temperature. Ideally, at the two temperatures where the thermal expan-
sion coefficient vanishes ∆Si is null. The expected temperature dependence of the
thermoelastic peak frequency ν ωth 2π in a 560 µm diameter silicon fibre is also
shown. The frequency increase at low temperature should contribute to reduce the
thermoelastic dissipation due to the suspensions.

Peaks in the intrinsic loss angle of silicon have been reported [112] in

correspondence with the two temperatures for which α vanishes; it is not

known at the moment if these intrinsic loss peaks are related to the zeros

in α and further studies are required.

The thermal conductivity κ of silicon increases at low temperature

pushing the thermoelastic peak toward higher frequencies, as plotted in

figure (4.2). Therefore, the thermoelastic peak would fall out of the sen-

sitivity frequency band of the interferometric detectors. After reaching a

maximum, the thermal conductivity drops as explained in section (5.1).
The position and height of the maximum of the curve of conductivity,

though, depends critically on impurities, dimensions and doping in the

region below 100 K. The necessity of measuring the values of κ at low

temperatures for the particular silicon specimens considered is discussed

in chapter (5). Nevertheless, the latter argument is generally valid since

the curve of κ maintains its qualitative trend.

In figure (4.3) the plot of the specific heat per unit mass CV cV ρ of

silicon versus the absolute temperature is also shown.

The sources for suspensions thermoelastic noise are mostly in flexural
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Figure 4.3: Specific heat per unit mass of silicon plotted versus temperature.

points of fibres; a partial thermal noise reduction can be obtained just

cooling these points. Beside to classical methodologies, silicon allows to

investigate the possibility to cool or control the temperature of a doped

silicon fibre using an anti-Stokes fluorescence mechanism [113], [114], [115],
[116]. The most interesting dopant is Yb3 , which has been employed for

cooling vitreous and crystalline doped matrices, obtaining a maximum

temperature reduction of about 65 K with respect to room tempera-

ture [117]. Therefore, the study of the effect of dopants on the thermal

and mechanical characteristics of silicon and the control and optimization

of doping will be of great importance.

For the outlined scheme of third generation GW detectors, the choice

of substrate material is limited to silicon [118], [119] and calcium fluo-

ride [102]. Silicate bonding among silicon elements has been proved to be

possible (see further, section (5.4)). The pure silicon is transparent in the

range 1300 8000 nm, and presently technical components are available

and reliable for realizing transmissive silicon optics at a wavelength of

1500 nm. Also, a wholly reflective optics configuration would be studied

in alternative [120].

Crystalline silicon fibres must be realized and characterized in view

of their use as mirrors suspensions in a cryogenic, high power interfer-

ometer design. It is convenient to produce custom fibres in order to be

able to control all the steps of their realization checking the influence

of production items, the feasibility of section shaping and the thermo-
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mechanical performances. Controlling the production line will allow to

vary the type and level of doping, so that an experimental study of the

anti-Stokes fluorescence will be possible.

We used a crystal growing Czochralsky [121] furnace for producing

silicon crystalline fibres and we measured their loss angle at room tem-

perature [122]. The low temperature loss measurement are foreseen as

the next step in this path.

4.1.2 Production of crystalline fibres with

micro-pulling down technique

Silicon fibres matching the discussed design can be produced by using

known methods of crystal growth. A dedicated research facility has been

developed in an INFM Pisa laboratory. The PISA crystal growth furnace

uses the so-called micro-pulling down technique (µ-PD) for producing

thin (few millimeters), regular crystalline silicon fibres. Basically, the

µ-PD method consists in downward pulling of pure material melt in a

crucible, trough a micro-nozzle placed at the bottom of the crucible (see

figure (4.4)). It is an improvement of the classic Czochralski method used

currently for growing semiconductor crystals [121]. The facility crucible

is made with materials capable of remaining stable at very high temper-

atures such as the melting point of silicon (about 1700 K at standard

pressure [87]). The crystalline material is placed in the crucible and the

melting is induced by heating the crucible with a RF generator; then, at

the first stage, a silicon seed crystal produced in previous experiments or

cut from a bulk crystal is inserted in the crucible orifice. Once a contact

is set with the melted material, the seed is pulled downward; the fused

material is driven through the nozzle at the bottom of the crucible and

cools down forming a new fibre. The method allows to grow crystalline fi-

bres, rod or ribbons with diameters in the range of 0.15-5 mm at variable

pulling rates.

The adjustment and tuning of the temperature gradients in the prox-

imity of the nozzle can be done by applying an after-heater under the

crucible, allowing thus the regulation of the position of the solid-liquid

interface.

The shape and location of the growth interface is one of the most

important parameters determining the quality and uniformity of the re-

sulting crystal. A CCD camera is employed for viewing the solid-liquid

interface at the meniscus region.
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Figure 4.4: Scheme of the apparatus for the µ-pulling down growth of fibres.

The fibres growing facility has been tested with several materials and

about 20 silicon crystalline fibres have been already grown, with diam-

eters ranging between 0.4 and 3 mm and maximum length around 310

mm.

Growth process

The starting material was silicon (pure to the level of 10 ppm) in small

pieces of typical dimensions of few millimeters. These pieces were in-

serted in a vitreous carbon crucible held by a zirconate pedestal in a

vertical alumina ceramic tube. Cylindrical heat shields made of alumina

or zirconate ceramics were placed around the crucible.

The calibrated orifice at the bottom of the crucible was about 0.5

mm in diameter. To avoid the oxidation of the crucible, the crystals

were grown in Ar atmosphere of 10 ppm purity.

Seeding and growth procedure

Several Si single crystals with different lengths and diameters were grown.

A 100 oriented thin cut from a Si disk was used as a seed. The crystals
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were grown at various pulling rates in the range 0.3 2 mm/min.

The growth of long crystal fibres is affected by vibrations which be-

come especially intense at longer length. It has been found that the

length of crystals oscillations also depends on the fibre diameter [122].
Few abrupt changes in diameter and/or temperature happened, prob-

ably due to instabilities of the RF generator and to reactions between

silicon and the crucible. Anyway, for most of their length the grown fi-

bres show good quality. A capture of the growth process taken with the

CCD camera is shown in figure (4.5).

Figure 4.5: Picture of the growing fibre at the crucible orifice, taken with the CCD
camera.

Two typical silicon crystal fibres, grown with different diameters and

lengths, are shown in figure (4.6). The crystal orientation of the fibres

was determined using the X-ray Laue diffraction method. From this

measurement it is possible to say that the inspected fibres showed sin-

gle crystalline character (figure (4.7)), but it was found that the crystal

orientation changes along the fibre in every point in which the diameter

is not stable. The fibres are thus composed of several monocrystalline

segments.

Absorption investigations did not show the presence of any volume

contaminants within the sensitivity of the apparatus.
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Figure 4.6: Pictures of two crystalline silicon fibres with grown with the µ-pulling
down method described in the text. The average diameter of both fibres is 0.4 mm.

Figure 4.7: Laue X-ray diffraction pattern for the grown silicon fibres. Crystal orien-
tation is determined from the position of the spots. The Laue technique can also be
used to assess crystal perfection from the size and shape of the spots.
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4.2 Loss angle measurement description

The thermomechanical characterization of the grown fibres requires their

loss angle to be measured, stressing the thermoelastic contribution and

deducing the bulk dissipation. Also, the determination of physical pa-

rameters as Young’s modulus, thermal expansion coefficient and thermal

conductivity as a by-product of the latter analysis is possible. In this

section, the measurement principle and the apparatuses employed in this

activity are described.

4.2.1 Measurement principle

The loss angle φ ω of a body is experimentally deduced by its response

to an oscillating solicitation at angular frequency ω. The response can be

viewed in terms of Fourier transform, that is, a regime oscillation, or in

terms of Laplace transform inspecting the transient, once the solicitation

is removed. Consider therefore the first type of analysis: the presence of

loss determines a phase lag in the response with respect to the excitation,

which is the loss angle itself. Nevertheless, measuring such phase lag is

difficult, especially when the loss angle is very tiny as it is the case for the

considered materials. The same conclusion would be valid if one would

try to measure the resonance width, which is proportional to φ.

On the other hand, one can observe the damping of the excited os-

cillation once the excitation is removed. If the oscillation is driven at a

normal mode frequency ω0, the damping envelope is an exponential decay

whose rate is proportional to the loss angle at that frequency. Indeed, as

discussed in section (2.3), if the internal resonance is modeled as a simple

harmonic oscillator with losses, one has (equation (2.31)):

φ ω
ω

Qω0
(4.3)

so that at the resonance ω0 a simply relation holds:

φ ω0
1

Q
(4.4)

being Q the quality factor of the resonator. The solution of the damped

one-dimensional resonator has the form:

x t A exp
t
τ sin ω0t (4.5)
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for a given amplitude A. The damping time τ is proportional to the

quality factor:

τ
2Q

ω0
(4.6)

Therefore, provided that the oscillation of the body is recorded, the loss

angle at each normal mode frequency can be obtained by measuring τ

and computing:

φ ω0
1

Q

2

τω0
(4.7)

Repeating the measurement for n normal modes allows the loss angle

to be obtained at the corresponding n frequencies. The frequency depen-

dence of φ can be eventually worked out by fitting the measured points

with a suitable loss model, e.g. a thermoelastic Debye peak over-imposed

to a constant loss level.

4.2.2 Experimental apparatus

The scheme of the apparatus realized for measuring the loss angle of the

produced silicon crystalline fibres is shown in figure (4.8). It is made of

four parts with specific functions. A vacuum chamber prevents the os-

cillating fibre from being damped by the air viscosity. A rigid, massive

clamp allows the fibre to be blocked at one end, minimizing the recoil en-

ergy loss. The measurement is performed using an electrostatic actuator

and a shadow position readout system.

Vacuum system

As seen in section (2.5.2), the loss angle measurements can be spoiled by

the presence of a gas around the vibrating fibre. The gas viscous drag

in this case dissipates most of the mechanical energy. Therefore, the

air pressure around the measured fibre must be reduced in such a way

that the contribution to the fibre loss angle due to the air damping is

negligible.

The stand supporting the fibre clamping system is placed on a bench

inside a vacuum chamber (figure (4.9)) equipped with pass-through con-

nectors and optical windows. The pressure inside the chamber is mea-

sured with a conduction manometer.

Two pumps arranged in cascade produce the vacuum inside the cham-

ber. A first rotative stage brings the internal pressure down to about

6 10 2 mbar; once this value has been reached, a turbo-molecular pump
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Figure 4.8: Model of the experimental apparatus for loss angle measurements. The
dimensions of the parts are not in scale.

stage can be started. The turbo-molecular pump rotor reaches a regime

condition with 36000 rpm in about 15 minutes. Thanks to the turbo-

molecular stage, the lowest attainable pressure is about 10 7 mbar and

it is usually reached within two days. Nevertheless, already at P 10 5

the air friction is negligible in the interesting range of frequencies (see

figure (4.10)).

The two pumps are connected to the vacuum chamber through semi-

rigid tubes, avoiding their vibrations to be directly transmitted to the

rigid structure clamping the fibre. Nevertheless, we observe peaks in the

vibration spectrum of the fibre, mainly at 50 Hz and 600 Hz which are

the rotating frequencies of the pumps.

Clamping stand

A crucial point in loss measurements is generally represented by the

clamping system [123], [124], [125]. A limit on the measured loss angle

is determined by the energy which is transferred and then dissipated

within the clamp, as discussed in section (2.5.1). In addition, stick-slip

friction and several other processes can take place in the clamp, which are

difficult to evaluate and keep under control. Sliding and stick-slipping of
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Figure 4.9: Picture of the stand supporting the fibre clamp. The two C-shaped
aluminium parts fixed to the stand hold the excitation system and the displacement
sensor. The stand is placed on an optical bench hosted in a vacuum chamber.
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Figure 4.10: Surface plot of the loss angle due to air friction, for a silicon cylindrical
resonator with diameter d 1 mm. The computation has been performed using
equation 2.79. The loss angle is plotted as a function of the air pressure and of the
resonant frequency.

the clamped sample must be avoided as much as possible.

In our set up, the fibre is blocked in vertical position, by clamping

its upper end to a rigid, massive steel stand (see figure (4.8)). The fibre

head is tightened between two aluminium flat blocks, fixed rigidly to the

stand. If the sample is softly tightened, it can move among the blocks

giving rise to sliding friction and stick-slipping; if it is tightened too much

it can be damaged or broken. A special care must therefore be taken in

tightening the clamp, repeating the clamping procedure if the measured

losses are dominated by spurious frictions.

Even if the clamp is suitably tightened, mechanical coupling to the

support is always present. It is better therefore to avoid measurements

near the resonance modes of the stand-clamp structure (of the order of

several kHz).

Excitation system

The described measurement method requires the fibre resonant modes to

be excited selectively. Neglecting the gravity, the purely elastic modes of

an unloaded cylindrical bar clamped at one end have frequencies given

by [126]:

fi
1

2πL2

Y I

ρS
α2

i

d

8πL2

Y

ρ
α2

i (4.8)
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where L is the length of the bar, d the diameter, S and I the section and

the cross section moment of inertia, Y and ρ are the Young’s modulus

and the density of the bar material, and αi are the solutions of:

cos α cosh α 1 0 (4.9)

A very good approximation for αi values is [126]:

αi
1.8755 i 1

i 1
2 π i 2

(4.10)

These formulae are useful for guiding the search of resonance frequen-

cies in a real, non perfectly cylindrical fibre. A comparison between the

values in equation (4.8) and the measured set of modes provides informa-

tion about the regularity of a fibre.

The fibre has to be excited at the desired frequency; this is necessary

both in a preliminary stage to determine the resonance frequencies and

in the measurement stage to excite the known modes.

The employed excitation system makes use of the polarization of the

dielectric material the fibre is made of; the fibre is placed into a high

gradient electric field #E #x, t sinusoidally variable with time. The effect

of the electric field is to generate a force1 on the fibre which is proportional

to #E 2, thus driving an oscillation at an angular frequency which is twice

that of the field. For avoiding this discrepancy between the frequency of

the exciting field and that of the induced force, one can add a constant

field #EC to #E. Otherwise, the angular frequency of the exciting field

must be set at half of the desired resonance.

The exciter is composed by two electrodes with opposite polarity in

shape of coplanar combs, arranged in such a way that each comb teeth

is placed between two teeth of the other comb (refer to figure (4.8)). The

fibre is faced near the plane of the exciter, among two neighbouring teeth,

where the field gradient is almost maximum and parallel to the comb. In

this way the fibre is forced to oscillate perpendicularly to its length.

The voltage signal transmitted to the comb electrodes has a peak-to-

peak amplitude of 700 V, to which a continuous voltage of 400 V can be

over-imposed.

1This force is obtained as the field (E times the induced polarization (P , which is
in its turn proportional to (E.
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Read-out system

The movements of the vibrating fibre are detected with a shadow sensor

like the one described in section (3.1.2).

Since the read-out system is able to detect the movements of the fibre

at only one point, care must be taken in placing the shadow sensor far

from a nodal point where the amplitude of the oscillation for a given

mode is null.

The cables with the output voltage from the photodiodes are bound

by grounded aluminium foils, shielding them from the electro-magnetic

noises induced by the high voltage cables of the excitation system.

In a further improvement, two shadow sensors are placed near the

fibre on two orthogonal planes, in order to detect the vibration in two

directions x and y normal to the fibre axis. This double device allows

the motion on the cross-sectional plane to be reconstructed. That is

especially useful for checking the geometry of the measured modes with

irregular fibers (see after, section (4.3)).

Measurement procedure

The output of the shadow sensor is referred to the ground of the system

and acquired.

First of all, the position of the fibre is measured in DC, in air. The

shadow sensor can thus be centered so that a null signal is recorded when

no excitation is feeded.

After the centering, a search of the resonance frequencies set is per-

formed with the sample under vacuum. The frequencies can be found

looking at the response of the fibre to an excitation sweeping in fre-

quency. The FFT of the signal from the shadow sensor is visualized on

a spectrum analyzer, where the resonance peaks are identified thanks to

their persistence after the sweeping excitation is passed away. Usually,

the resonance modes are measured up to 10 15 kHz. At frequencies

well beyond that values, the damping time is too short (less than 3

seconds) for detecting a resonance, even with very high Q.

Once the set of resonances ωi is known, the standard Q measurement

is performed for each mode. In order to isolate the single Fourier com-

ponent of the output corresponding to ωi, the sampled signal is filtered

sharply around the resonance with a digital lock-in filter which provides

a further amplification. The lock-in frequency is chosen at about 1 Hz

from the resonance, so that the filtered oscillation is shifted at low fre-



4.2 Loss angle measurement description 93

quency allowing a low acquisition rate to be employed. A by-product of

this technique is that the recorded files are small and handy even for very

high values of τi. The acquisition of the ring-down of the fibre oscilla-

tion is started immediately after the interruption of the excitation. The

acquisition extends for a time at least of the order of the characteristic

damping time τi 2Q ωi.

The resulting acquired samples vector is shown in a plot and its am-

plitude shall follow an exponential damping.

To obtain an estimate of the quality factor of the single measurement,

a computer program makes a Hilbert transform x̂ of the filtered signal

x t :

x̂ t
1

π

x s

t s
ds (4.11)

The Hilbert transform yields a phase lag of π 2 for the positive com-

ponents of x t , leaving their amplitude unaltered. Assuming that:

x t A exp
t
τi sin ωit (4.12)

the Hilbert transform results:

x̂ t A exp
t
τi cos ωit (4.13)

Once x̂ t has been extracted, the program computes Z t x t ix̂ t

and gets the envelope of the oscillation calculating the squared modulus:

Z t 2 A2 exp
2t
τi (4.14)

Extracting the logarithm of the envelope one obtains a linear function

of t:

R t ln Z t 2 2 ln A 2
t

τ
(4.15)

The output signal should therefore be a straight line. Performing a linear

fit leads to the best value of the slope γ 2 τ . The estimate of Q is

then obtained as:

Q ωi
ωi

γ
(4.16)

Several measurements are performed for each resonance frequency and

the average value is computed. The error is evaluated as the standard

deviation on the measurements set, assuming that no systematics are

present. This error usually ranges from 1% to 5%, while the contribution

coming from the linear fit is at the level of 1%.
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4.3 Fibre modeling

The silicon fibres which have been produced as described in section (4.1.2)
do not have a perfectly cylindrical shape. In fact, the diameter changes

along the fibre axis z; furthermore, the cross section is more similar to

an ellipse, whose axes are variable in orientation along z.

In order to compare the experimental results with the theoretical pre-

dictions of thermoelastic losses, one needs to have a geometrical descrip-

tion of the fibre. The thermoelastic formula (2.49), valid for a vibrating

cylindric fibre, is no longer accurate for the grown fibres. It is necessary

therefore to model the fibre; a careful measurement of the profiles along

the fibre axis for different angular orientations is needed. Then, once the

geometry is known, a finite element analysis can be performed.

4.3.1 Profile measurement apparatus

The fibre to be measured is clamped as it is during the loss measurement

and the clamp is blocked on a stand so that the fibre lays horizontally

(see figure (4.11)). The stand is free to slide on a rail in the direction of

the fibre axis.

Figure 4.11: Scheme of the apparatus used for obtaining a 3D model of a fibre.

The displacement of the stand along the rail can be recorded by means
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of an encoder, reading a rigid metallic ruler parallel to the rail.

A laser LED source, modulated at 1360 Hz, is placed at the focus

of a converging lens, so that a parallel beam is obtained. The beam is

widened by means of a telescope obtaining a plane wave with a large spot

size. The spot is employed for lighting the fibre in a point and projecting

its shadow on a photodiode.

The detecting photodiode is partially masked so that the laser de-

tection is allowed only in a narrow strip orthogonal to the fibre shadow.

A beam splitter is used for partially reflecting the laser beam before it

reaches the fibre, focusing the spot on a third photodiode used as inten-

sity reference.

The signal produced by the masked photodiode is a measurement of

the projected diameter of the fibre. If that signal is divided by the output

of the reference photodiode, one gets rid of intensity oscillations of the

source. The signal acquisition is triggered by the displacement encoder,

so that the diameter is recorded at each half millimeter along the fibre.

The signals coming from the main and reference photodiodes are filtered

around the modulation frequency before being recorded.

The acquired fibre profile is stored in a file. Then, the fibre is rotated

around its axis, thanks to a rotary stage on the stand, by a known amount

and a new measurement of the profile is performed. Eventually, a 3D

model of the fibre has been obtained, with measured diameter values

every 0.5 mm along the axis and every 30 around.

The data coming from the profile measurements are pure numbers,

taken as ratios between the signal coming from the detection photodiode

and the reference one. Therefore, they need a calibration to be converted

in diameters.

The calibration is done as follows. A series of wires of known diam-

eters is measured with the profiling apparatus, obtaining a profile like

that shown in figure (4.12). If the diameters of the wires are di, and the

measured ratios Ri are taken to be the averaged values of the oscillations

in each step, the calibration gives six couples di, Ri which can be fitted

with a straight line R d :

R d α d β (4.17)

so that the calibration parameters α 0 and β 0 can be extracted.

Therefore, the fibre diameter is obtained as:

d
R β

α
(4.18)
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Figure 4.12: Profile of the series of wires used for calibrating the profiling apparatus.
Note that the smaller is the diameter, the larger is the output ratio R. The large
downward spikes are due to welding bobs at the joining of different wires.

The associated error is:

σ2
d

1

α2
σ2

R d2 σ2
α σ2

β (4.19)

An estimation of this error gives σd 100µm, that is about 10%, domi-

nated by the σ2
α term.

Even though the estimated error is quite high, during the profile

measurement we had the impression that such error was overestimated,

since we found a very good reproducibility (figure (4.13)). Therefore, an

independent profile measurement was needed.

An independent method have been used for testing the precision of

the profiling apparatus, which is more precise but extremely slow. It

resides on the possibility of taking several photos of the fibre profile with

a digital camera set on a microscope. The photos are then elaborated

digitally obtaining a black and white template of the fibre (figure (4.14)).
An image analysis code is used for processing the template in such a

way that the profile in pixels is obtained. The error of this method is a

composition of the error on the pixel/mm conversion factor and the error

on the position of the fibre edge in drawing the template. In figure (4.15),
the data obtained with the camera profile and the standard procedure

are shown for a part of a silicon fibre. The supposed overestimation of

the error in the standard procedure (red bars) is here evident. This is
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Figure 4.13: Plot of two subsequent profile measurements of the same fibre, at the
same angle. The measured diameter shows a very good reproducibility.

Figure 4.14: Bottom: picture of a small part of a silicon fibre, taken at the microscope.
Top: template of the fibre obtained by the picture.
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Figure 4.15: Comparison between profile measurements on the fibre segment of fig-
ure 4.14, obtained with the digital camera (green line with little bars) and with the
standard procedure (red line with big bars).

the case for all the regions inspected along the fibre. Thanks to the

agreement found, it seems reasonable to scale the error on the standard

profile measurement to the value coming from the camera profiling, i.e.

3.5%.

4.3.2 Modeling the fibre with ANSYS

From the data obtained with the profiling apparatus, it is possible to

reproduce a 3D model of the fibre to be used for a finite element analysis

(FEA). In the following paragraphs the fibre modeling procedure is briefly

reviewed, while a complete description of the simulation steps is given

in [78].

Profiles

As formerly explained, the outcome of the profiling measurement is a

group of six vectors containing the profiles of the fibre every 30 of rota-

tion around the fibre axis. The displacement encoder is not able to sense

the absolute position but just the differential displacement during the

stand sliding; therefore, each vector has a starting point which is slightly

different in position from the subsequent one. To match the fibre profiles

it is necessary to manually align them; the profiles are aligned at the free
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end of the fibre. The resulting profiles are shown in figure (4.16) for a

177.5 mm-long fibre. Although it is evident that the fibre is not a perfect

cylinder, the various profiles are very similar to one another.

Figure 4.16: Profiles at various section angles are shown for a 177.5 mm-long silicon
fibre. The alignment of the different data sets have been performed by manually
shifting them to the origin of the plot,where the free end of the fibre is.

Shadow-projection correction

The laser shadow sensing systematically overestimates the diameter at

the various angles, since, due to the fact that the fibre is not a perfect

cylinder, the shadow produced by the fibre does not correspond to the

exact normal section of the fibre at the given angle (this effect is clearly

explained by figure (4.17)). As a result, elliptical sections are distorted

toward a peanut-shell shape.

A corrective algorithm has been developed to correct the introduced

bias. It is based on the idea that the real section of the fibre is contained

inside the envelope of all the projection directions of the shadows. The

algorithm of projection correction is explained graphically in figure (4.18).

The aligned, corrected profiles are then used for FEA. A 3D model

of the fibre is made with a mesh of volume elements, and physical prop-

erties such as density and elastic constants are selected. The boundary

conditions, that is, free and clamped ends, are also fixed. A part of the

resulting fibre model is shown in figure (4.19).

The model is ready to perform a modal analysis on it. In the modal
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Figure 4.17: Shadow projection of a non cylindrical fibre. It comes clear from the
scheme that the profiling system detects at an angle θ a diameter d instead of the
normal diameter (red thick line).

Figure 4.18: (a) Correction of the estimated fibre section from profile measurements.
Two consecutive shadow projections identify construction points (the green squares).
The new estimated section points (cyan triangles) are chosen to be the midpoints
of the segments delimited by the green squares. (b) A comparison among the true
section (in blue), the fake estimation (in red) and the corrected one (in cyan) is given.
Clearly, the peanut-shell deformation has been corrected.
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Figure 4.19: View of the elements of a fibre model. Some of them are removed to
allow the vision of the underlying elements.

analysis the software extracts the frequencies and the shapes of the res-

onance modes. It allows also the user to look for stress and strain distri-

bution on the surface or inside the simulated objects.

4.4 HNA etching procedure

In section (2.4.3) the relevance of the loss mechanisms introduced by sur-

face impurities has been highlighted. Such losses are even more important

in the case of thin fibres, where the ratio S V becomes large. Oxides or

handling damages are located within a thin layer on the surface of the

fibres, contributing to the overall loss angle with a constant term. When

a grown silicon fibre is inspected, an opaque gray skin is present on it; it

is due to the presence of silicon oxides and silicon carbide, formed in the

interaction between the growing fibre and the furnace crucible. Prob-

ably, many other impurities and polluting materials are present in the

outer layer. If this layer would be removed, one should observe an overall

reduction of the dissipation.

Now, it is possible to operate on the grown fibres with a chemical

process called etching. It consists essentially of a bath in a chemical

solution that acts on the surface of the fibre removing atom layers. It

allows the fibre to be polished from surface contaminations.

The etching process modifies also the geometry of the fibre, by reduc-
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ing its diameter. The etching can be performed even selectively. It can

be realized only on certain parts of the surfaces, shielding the rest with

a layer of enamel like nail varnish.

On the one hand, it is convenient to lower the fibre diameter for ex-

ploring the parameter space of the thermoelastic effect, whose frequency

peak depends on the diameter. In fact, the growth of fibres with di-

ameters below 500 µm is very difficult, due to technical issues in the

micro-pulling down process.

On the other hand, the profile can be shaped in order to reduce

the clamp losses. Masking with enamel one end of a mm-thick fibre

during the etching results in a bigger head which allows a better clamping,

shifting the most solicited parts of the fibre to a region which is far from

the clamp itself. If the fibre part near the clamp is heavily solicited,

indeed, a large amount of mechanical energy is transferred to the support

enhancing the spurious losses.

The used chemical solution is called HNA and is obtained by mixing

fluoridric acid (HF at a 49% concentration), nitric acid (HNO3 at a 70%

of concentration) and water or acetic alcohol (CH3COOH). The HNA

solution is used for performing an isotropic etching on silicon.

Etching occurs via a redox reaction followed by the dissolution of the

oxide by HF that acts as a complexing agent. The reaction is schematized

as:

Si HNO3 6HF H2SiF6 H2O H2 (4.20)

Points on silicon surface randomly become oxidation or reduction sites.

These act like localized electrochemical cells, sustaining relatively large

currents. It is important to note that for the considered solution each

point spends on the average the same amount of time being an anode

or a cathode site, leading to an isotropic etching, that is, the corrosion

velocity of the material should be the same in all directions.

The nitric acid gives birth to NO2, which is reduced at a cathode site

producing free holes:

2NO2 2NO2 2h (4.21)

The silicon gains two positive charges at the anodic sites becoming Si2 .

The formation of oxide is therefore obtained from the dissociated OH :

Si2 2OH Si(OH)2 SiO2 H2O (4.22)

and the oxide is then dissolved by HF to form a water soluble complex

H2SiF6. The nitric acid is therefore fundamental for the reaction to be
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allowed; it is produced continuously in an autocathalitic cycle which is

boosted by the presence of HNO3 undissociated. Since the acetic acid is

less polar than water, it determines a minor dissociation of HNO3, and

that is why it is conveniently included in the HNA solution. Furthermore,

for the same reason it helps achieving proper wetting of the fibre surface.

The fibre is immersed in horizontal position in a long basin filled with

the HNA solution. It has been found that if the fibre is vertically im-

mersed the etching is no longer isotropic. In the latter case, the solution

temperature at the top of the fibre rises up; possibly, the reaction at the

bottom is slowed by the inert products falling down. Otherwise, it can

happen that light products are carried upward modifying the distribution

of reactants.

After a first rough etching lasting some minutes, a second immersion

is performed for a time which has been calculated to reduce the diameter

to a chosen value. Nail varnish can be used at this stage for masking a

part of the fibre, for instance the head. After the etching, the varnish is

removed by means of acetone. The fibre is finally dipped into a pure HF

solution for removing the oxide which may still be present on the surface.

A picture showing the difference between a grown fibre with opaque

skin and an etched fibre with a clean blue surface, is presented in fig-

ure (4.20).

Figure 4.20: Microscope comparative view of two fragments of silicon fibres, the one
still not etched (top), the other after the etching (bottom).

The reaction velocity of HNA etching depends on the concentrations
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of the solution components. A diagram of reaction velocities is shown in

figure (4.21) as they vary with relative concentrations. The circle marks

the actually used solution with 75% HNO3, 15% HF and 10% CH3COOH.

Figure 4.21: Diagram of HNA etching rate (from [127]). The circle corresponds to
the concentration of the employed solution.

Using the profiling apparatus described above (section (4.3.1)) the

etch velocity can be checked experimentally. It results from a series of

measurements performed on a fibre 121 mm long (figure (4.22), where the

etching rate is plotted versus the reaction time) that the reaction was

slower than the value reported by the diagram in figure (4.21). At the

beginning, the etching is quite slow, probably due to the fact that the

fibre outer skin, far from being composed by pure Si, contains impurities

and oxides. After a fast phase, the etching process again slows down,

and this can be caused by depletion of the reactants.

In figure (4.23) the profile of a silicon fibre obtained with the profiling

apparatus is shown before and after the etch procedure. It can be noticed

clearly that the procedure results in an even diameter reduction all along

the fibre.

4.5 Experimental characterization of fibres

A complete room temperature fibre characterization is done as follows.

A silicon fibre, grown with the described micro-pulling down method,
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Figure 4.22: Plot of the measured etch rate versus the etching total time, for a 121
mm long, 2 mm thick silicon fibre. The etching solution was 75% HNO3, 15% HF
and 10% CH3COOH.

Figure 4.23: Profile of a fibre at a particular angle before (solid blue line) and after
(dashed red line) an etching. The diameter has reduced isotropically of about 200
µm.
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is prepared for loss angle measurement. Isopropilic alcohol is employed

for cleaning the sample, both for avoiding spurious losses introduced by

pollution and for preserving the vacuum from degassing substances.

The fibre head is filed on the side in order to obtain two flat, parallel

surfaces. In this way, when the fibre head is clamped, the contact zone

is wider allowing a tighter clamping and reducing the risk of breaking it.

In clamping the fibre, the total force acted by the clamp must be kept

under the breaking point of the fibre head, which is widely depending on

size and imperfections but generally is of the order of 50 kg. This force

is exerted on the clamp by a calibrated press, then the clamp is fixed by

screws. Often the clamping operation results unsatisfactory, and spurious

losses appears. In these cases, the whole measurement procedure must be

restarted. The matter is discussed with special attention to the foreseen

low temperature measurements in section (4.6).

Once the fibre is clamped, the clamp is settled on the profiling stand

and a complete profile is acquired. A 3D model of the fibre is built

and a FEA analysis is carried. The analysis provides the set of modal

frequencies for the sample, together with the energies and the modes

shapes.

Then, the clamp is placed on the measurement stand inside the vac-

uum chamber. The pumping system is activated and, once a pressure of

10 5 mbar is reached, the loss angle measurements can start. The Q of

each mode is obtained, then the loss angle φ 1 Q is evaluated for each

resonance frequency.

After this measurements series, the fibre is removed from the clamp

and it is subjected to the etching process, then a new measurements

series is carried.

4.5.1 Loss angle measurements

The loss angle has been measured for two fibres with length 308 mm and

111.5 mm.

The measured values for the 308 mm long fibre are shown in fig-

ure (4.24). The fibre average diameter was 746 µm. As it will be ex-

plained in section (4.5.2), from the analysis of these data the values of

Young’s modulus Y , of the thermal expansion coefficient α and of the

thermal conductivity κ can be evaluated. Using the measured value of

Y , the dispersion relation allows to define an effective diameter for each

resonance frequency. Assuming a cylindrical-shaped fibre with this di-
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Figure 4.24: Measured loss angle for a 308 mm long fibre, with an average diameter
of 746 µm. The squares represent the thermoelastic contribution as predicted by the
finite element analysis model described in the text.

ameter it is possible to predict a value of the thermoelastic loss angle

for each resonance, using the formula (2.50). These predictions are also

shown on figure (4.24). Their errors come mainly from the uncertainty in

the diameter measurement. It is quite evident that some excess loss is

present.

In figure (4.25) the measured values of the loss angle for the same fibre

after the etching process described in section (4.4) are shown. The average

diameter after the etch became 574 µm; the diameter reduction shifts

the position of the thermoelastic peak to higher frequencies. Again, the

predictions of thermoelastic losses obtained as explained above are also

shown. Clearly, the excess losses play no significant role anymore, thus

confirming the idea that surface contaminations were degrading the Q of

the sample. Note that a small excess is still present at low frequencies;

this is supposed to be due to spurious clamp losses. At low frequency

indeed the vibration amplitude is larger, thus all the dissipations induced

by the clamp are enhanced.

In figure (4.26) the measured values of φ for another fibre 111.5 mm

long, treated with chemical etch, are shown. The average diameter of

the fibre was 242 µm. Since this fibre has been found to have a roughly
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Figure 4.25: Measured loss angle for the same fibre as that shown in figure 4.24 after
the etch process; the average diameter is here 574 µm.

Figure 4.26: Measured loss angle for a 111.5 mm long fibre. The blue and red squares
represent the measured loss angle values relative to a and b modes respectively.
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elliptical section, it is evident that the frequencies result to be separated

in two sets. Recall indeed the expression (4.8) of the fibre modal fre-

quencies; in case of elliptical section, each mode is split in a doublet,

roughly corresponding to the frequencies of two cylindrical fibres with

diameters equal to the two main axes of the ellipsis a and b; that is why

in figure (4.26) the two sets are indicated as a-modes and b-modes.

4.5.2 Parameters extraction

The following analysis done for extracting the material thermo-mechanical

properties of the silicon fibres resides on FEA carried on the fibres 3D

models.

Young’s modulus

From equation (4.8), defining ki αi L, it results clearly that, for a

cylindrical fibre, fi k2
i must be constant in frequency. The ratio fi k2

i

experimentally obtained for the 111.5 mm fibre is shown in figure (4.27).
The data indicated by blue squares follows two different trends reflecting

the ellipticity of the fibre section; moreover, the ratio is not constant due

to the irregular geometry of the fibre.

Figure 4.27: Plot of fi k2
i versus the mode number for the 111.5 mm long fibre.

As seen in section (4.1.2), the silicon fibres have a good crystalline

character, but the crystal orientation changes along the fibre axis. Nev-

ertheless, for resonance modes whose wavelength is grater than the typi-
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cal monocrystalline scale of the samples (of the order of mm), the elastic

deformation sees an effective average Young’s modulus Y . Since the FEA

model takes into account the geometry of the fibre, it is possible to pre-

dict the values of fi k2
i for a given effective value Y , and therefore the

best Young’s modulus estimation Ybest is obtained by finding a set of

frequencies fmodel
i that minimizes the quantity:

i

fmodel
i f exp

i

k2
i

2

(4.23)

In figure (4.27) the values predicted by the FEA using for the Young’s

modulus the obtained value Ybest (150 11) GPa2 are shown with

magenta squares. The agreement with the experimental points is very

good.

The FEA also allows several modes to be identified, which are not

purely transversal, that is, their plane of oscillation depends on the point

along the fibre length. These modes have been excluded in the above

experimental analysis, since there is not in this case a simple model of

the loss angle behaviour.

An analogous estimation gives for the 308 mm long fibre a value

of (174 12) GPa for the Young’s modulus. Both the Y values are

between what is expected for silicon 100 and 110 crystallographic

directions.

Linear thermal expansion coefficient

The linear thermal expansion coefficient α is completely determined by

the thermoelastic peak amplitude φ0, once the Young’s modulus has been

evaluated (see equation (2.51)). The specific heat per unit volume is taken

as cV CC ρ, using the known specific heat CC 707 J/(kg K) and

density ρ 2330 kg/m3 of silicon.

The φ measurements sample the thermoelastic peak at the resonance

frequencies only. The amplitude is obtained using the φ trend around

the peak, finding for the 308 mm fibre φ0 (10.12 0.12) 10 5. The

error on the amplitude is estimated as the interval between the max-

imum possible value, taken as the intersection between two lines con-

taining the two couples of experimental points around the peak, and

the minimum value which corresponds to the maximum measured φ (see

2The error comes mainly from the uncertainty in the diameter measured with the
profiling system.
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figure (4.28)). Therefore, assuming for T the measured value of 293 K,

α (2.56 0.11) 10 6 K 1.

Figure 4.28: Loss angle measurements of the 308 mm fibre around the thermoelastic
peak allow the peak amplitude to be estimated and its maximum and minimum values
to be determined. The finite element analysis has made possible to recognize also for
this fibre a and b modes, whose splitting is due to the geometrical irregularity of the
section.

Analogously, for the 111.5 mm long fibre we found φ0 (17.26 0.24)

10 5, and α (2.54 0.13) 10 6 K 1.

Thermal conduction coefficient

The τth parameter in the thermoelastic curve allows a determination of

the thermal conductivity of the fibre. From equation (2.49), the heat flux

characteristic time is:

τth C d2 cV

κ
(4.24)

Recall that C is a geometrical constant keeping into account the shape of

the fiber section. For the 111.5 mm long fibre, whose section is roughly

elliptical, an estimate of the distance d can be deduced for each mode

assuming a cylindrically shaped fibre oscillating at that frequency. In

this way the elliptical section is approximated with two circular sections,

one with the larger axis as diameter and the other with the dimensions of

the shorter axis, for the two main oscillating direction. Nevertheless, the

larger curvature radius assumed for the external circular section leads to
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underestimating the heat gradient and, consequently, to overestimating

τth; the opposite happens assuming the internal circular section. A better

first-order estimation can be obtained modifying equation (4.24) with the

introduction of a parameter c correcting the form factor C known for a

cylindrical geometry:

τth
1

2.16
1 c d2 cV

κ
(4.25)

The sign (or ) in front of c is referred to the inscribed (respectively,

circumscribed) circular section. Fitting τth for the 111.5 mm long fibre

leads to the estimation of the parameters κ (146 13) W/(mK)

and c (0.018 0.002), while for the 308 mm fibre κ (138 11)

W/(mK) and c (0.001 0.001). The errors are computed varying Y

and α within their errors. Table (4.1) summarizes the physical parameters

obtained for the two fibres. The thermal conductivity κ is in both cases

compatible with the tabulated room temperature value for the silicon.

Moreover, the value of c for the 308 mm fibre is compatible with zero,

reflecting the fact that this fibre has an almost circular cross section.

L[mm] Y [GPa] α[K 1]10 6 κ[W/(mK)] c

111.5 0.5 150 11 2.54 0.13 146 13 0.018 0.002

308.0 0.5 174 12 2.56 0.11 138 11 0.001 0.001

Table 4.1: Summary of the measured physical parameters for the two silicon fibres.

4.6 Investigation on clamps performances

The experience gained in fibres φ measurements at room temperature

clearly showed the prominent role played by the clamp system in deter-

mining the reproducibility and quality of measurements. Regarding the

influence of the clamp procedure on the experimental activity on fibres,

several point can be highlighted.

Clamping by hand-tightened screws is difficult; very small movements

of the screw-driver can suddenly damage or break the fibre, even when

the fibre head has been filed. On the other hand, a too soft tightening

can not always prevent the appearance of excess losses due to friction or

similar phenomena.

Moreover, the clamp material influence on the performances has not

been understood, remaining at the level of conjectures. While a soft
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material like aluminium should be able to encompass the fibre head, pre-

venting its movements inside the clamp and therefore its friction losses,

an aluminium clamp would give rise to plasticity losses in those regions

where the pressure is high. The matter is further complicated by the fact

that thin fibres can locally penetrate deeper in the clamp than the thick

ones.

The clamping procedure can be made more independent from force

uncertainty using a specifically designed tool. In figure (4.29) a clamp

design is presented, which would allow the squeezing force to be finely

tuned. In this design, screws are replaced by rigid shafts worked in

a single block with the clamp basis. The slab is equipped with two

thin rings embossed inside the shaft holes, whose inner radius match the

radius of the shaft. Two screws allow these rings to be tightened around

the support shafts, acting as jaws. The squeezing pressure on the slab

is exerted by means of pipes pressed against these rings (as shown by

arrows in figure (4.29)). The clamping force can be adjusted to a chosen

value, then the jaws are tightened and the force actuator removed. In

the following we will always refer to this generic clamp design.

Figure 4.29: Cross sectional view of the clamp designed for optimizing the fibre
clamping procedure.

A clamp like the one in figure (4.29) represents a good improvement

at room temperature, but it is still unsatisfactory in the case of cryo-

genic measurements like those we are interested in for next future devel-

opments. With the cooling process indeed the whole clamp undergoes

thermal contraction, but since the fibre has a thermal expansion coef-

ficient smaller than that of the clamp (αSi 2.6 10 6 K 1, αAl

2.3 10 5 K 1 at room temperature), going down in temperature re-

sults in a squeezing of the fibre head, leading eventually to its breaking.
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Basically two clamp designs have been conceived for allowing cryogenic

measurements.

Using materials with different thermal expansion coefficients, it is

possible to compensate for the thermal expansion of the clamp. The

distance between the inner clamp faces must follow the fibre thickness

variations with temperature. This idea is explained in paragraph (4.6.2).
Alternatively, the problem could be overcome by using a thin clamp

slab. When the cooling shrinks the clamp, the shafts drag the slab against

the fibre; hence the slab slightly bends. If the elastic response due to

bending is soft (that is the case for a thin plate), it can prevent the fibre

from breaking.

4.6.1 Dimensioning the bending clamp

Let us suppose that, while the fibre is vibrating, the fibre head is in

frictionless contact with the flat inner sides. Since the fibre outside the

clamp is completely free to move (once the gravity is neglected), the

vibration modes are those of a rod fixed at one end. Let us call z the

coordinate along the fibre and put z 0 at the fixed tip. In order to keep

the constrain, a certain force and momentum should be applied from the

clamp at z 0. These force and momentum for a cylindrical fibre with

length Lf and diameter df are [128]:

F
KL3

f

Ed4α4
i

H αi Ed4
f

α3
i

L3
f

(4.26)

Mx

KL3
f

Ed4α4
i

Ed4
f

α2
i

L2
f

(4.27)

where E is the Young’s modulus inside the fibre, K is the energy stored

in the oscillation, H α is an adimensional function3 and αi is found to

be for the i-th mode (i 2):

αi
π

2
i 1 π i 2

3The function H α comes from the solution of the force and momentum equations
under suitable constraints for the clamped end. It results:

H α
sin α sinh α

cos α cosh α
, α kL

where k is the wave number and L is the free length of the fibre.
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Since, from the third mode on, H αi 1, taking as reference the

value of αi for i=4 and including all numerical constants disregarded

in (4.26), (4.27) yields:

F 3.2 10 3 df

1 mm

2 Lf

20 cm

3 2

E

1.7 1011 Pa

K

10 6 J

αi

11
N (4.28)

This value for the force acting against the clamp increases for increasing

mode number i.

Consider now the behavior of the clamp upper slab, tightened with

the two shaft-pressing jaws as described in paragraph (4.6) and pushed

by the fibre head with a pulsating force of amplitude F . Let assume this

force to be applied uniformly along the medium line of the slab (that is a

rough approximation, the force being applied by the fibre mainly at the

clamp brim). If the fibre is assumed to be placed midway between the

shafts4, the amplitude of the bending ζ of the slab pushed by the fibre

turns to be (see [128]):

ζ
l

2

Fl3

192 Y I

Y being the Young’s modulus of the clamp, l the distance between the

shafts and I the cross sectional moment of inertia, which for a rectangular

section of width L and thickness d is:

I
L d3

12

Thus ζ and F obey to an usual elastic equation F k ζ, once it has been

defined an effective elastic constant k as:

k 16 Y L
d3

l3
(4.29)

Because of this shaking, part of the elastic vibration energy is stored

in the oscillation of the slab. It is possible, using the written relations,

to evaluate how much energy is transferred to the clamp, allowing an

4The reported expression is valid for a slab with both ends clamped, as it is the
case for the rigidly fixed clamp plate. If the slab is instead supported, the right side
of the equation should be multiplied by 4.
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estimation of the dissipation inside it. At that point the loss angle as-

sociated with such dissipation will be requested to be less than a chosen

value (in the present case 10 8), so that it will be negligible compared

with the loss angle of the fibre: this request will result in an evaluation

of a minimal value for the thickness d. It should be noted that the de-

scribed analysis is quasi-static, taking into account only the amplitude

of the force exerted, and is useful for the sake of the slab dimensioning;

a dynamical calculation should pass through the transfer function of the

whole system. A quasi-static analysis would be strictly valid only well

below the first resonance of the slab (about several kHz).

The first step is to write down the energy of the oscillating slab as:

εs
kζ2

2

F 2

2k
(4.30)

Here F contains a dependence on the energy K, while the thickness d is

”hidden” in k.

The amount of dissipated energy in the clamp is easily obtained when

the loss angle φs of the material the slab is made of is known:

εdiss 2πφsεs

From the point of view of the whole energy K, there will exist an effective

value φc such that:

εdiss 2πφcK

Therefore the loss angle associated with the slab motion is:

φc φs
εs

K
Substituting now the expression (4.30) yields:

φc φs
F 2

2kK
In the latter equation k can be written explicitly in terms of d; the force

F can also be put in the form (4.28), so that forcing φc 10 8 leads to a

condition on d for the i-th mode:

di
3 φs

2K10 8

F 2 αi l3

16Y L
(4.31)

Assuming a conservative estimation for the clamp material losses (φs

10 2), and requiring this condition to be valid up to the 10th mode, we

have finally dmin 2 mm (stainless steel clamp). Numerical values of
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geometrical and elastic parameters used in this computation are reported

in table (4.2). It is worth noting that F is proportional to K, so that

in (4.31) the result does not depend on K.

Y L l E Lf df

210 GPa 2 cm 1.6 cm 170 GPa 18 cm 2400 µm

Table 4.2: Numerical values used for the computation of the minimal clamp plate
thickness.

So far, it has been explored the lower limit for d, keeping the other

clamp dimensions fixed. It could seem now that a clamp with d dmin

would be a suitable solution, but since things go better when d increases,

why not choosing d as large as possible?

With a large d, problems arise when Q measurement are performed at

low temperatures. Thermal expansion is indeed very different in silicon

fibres and in the clamp material (see paragraph (4.6)), smaller for the

former than for the latter. Thus going down in temperature results in

an additional squeezing force exerted by the clamp on the fibre. If d

is ”large” (in a sense that will be shortly made more quantitative) this

additional squeezing would be strong enough to break the fibre.

Therefore the question becomes: how large can be d in order to pre-

vent a breaking inside the clamp? It depends obviously on the force F0

applied by the clamp before the cooling. Suppose C to be the breaking

value of the force for a clamped fibre; it is clear that having F0 C will

let d to be very high, but in that case the friction losses inside such a

weak clamp would be severe. This is the reason why the clamp is tight-

ened with F0 a considerable fraction of C. The experience suggests that,

for silicon fibres with diameter df 1 mm, the breaking force is C 500

N.

With F0 ∼ C it is clear that the cool-induced breaking becomes very

likely; so the clamp should be as soft as possible (d ∼ dmin). In the

following, the presented approach for the calculation of dmin is pursued

in a slightly different perspective for showing clearly the effect of the

cooling.

Let the force F0 to be about 500 N, and suppose the room temperature

bending of the clamp slab is ζ 1 µm. Since the fibre is very close to the

breaking, it is necessary to take care about the cool-induced bending. If

the temperature T goes from 300 K to 100 K, for a diameter df 1 mm
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the bending increases by about 3.5 µm, so willing to keep the additional

squeezing force due to the cooling at a level of, for instance, 35% of F0

(a conservative value), it should be ζ 10 µm. It is straightforward to

obtain the elastic constant for the room temperature bending:

k
F0

ζ
5 107 N

m

thus, remembering the equation (4.29), the thickness d can be worked out

as:

d l
3 k

16 Y L

that is, for values in table (4.2):

d 3.6 mm

Therefore choosing a value for the bending, suitable for preventing the

breaking, the thickness comes out of the same order of magnitude than

in the evaluation obtained formerly in this section.

Does this value verify the constraint put on the loss angle φc? The

energy stored in the clamp for the 4th mode of the fibre is:

Ec
F 2

2k
2 10 13 J

where F is the oscillating force of equation (4.28) for K 1 µJ. For the

loss angle it leads to:

φc φs
Ec

K
10 9

and the request is fulfilled.

The chosen values for the geometrical dimensions of the realized clamp

are reported in table (4.3). A scheme of this clamp is shown in figure (4.30).

L l d

2 cm 1.6 cm 2.4 mm

Table 4.3: Geometrical dimensions of the stainless steel clamp sized using the com-
putation described in the text.
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Figure 4.30: Design of the bending clamp slab to be mounted on the shaft-pressing
jaws described in paragraph 4.6. Dimensions are those reported in table 4.3.

4.6.2 A clamp based on thermal compensation

Thermal expansion of different materials can be advantageously used for

the sake of counteracting the fibre squeezing induced by cooling. This

idea relies on the fact that, once a squeezing force is chosen, its effect

can be thought as a shortening of the distance between the two clamping

surfaces, and, due to the low value of thermal expansion in silicon, main-

taining the squeezing force constant is (almost) the same as maintaining

constant such distance. It can be done by realizing the slab of the clamp

with a material having a suitable expansion coefficient and shaping it in

a proper way.

Figure 4.31: Clamp scheme for thermal compensation of cooling-induced squeezing.
Note the protruding lower part of the slab, which drops down for a length d from the
narrow ring jaw around the clamp shaft.

Refer to figure (4.32). It should be noted the protruding lobe of the

clamp slab, whose depth is d. The slab and the support are made with

two different materials. Once the fibre has been tightened, before the

cooling, we have:

L0 d0 l0 (4.32)
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where the subscript 0 denotes quantities taken at room temperature T0.

During the cooling inside the cryostat, all these lengths vary according

to the thermal expansion law:

∆L T, ∆T

L T
α T ∆T (4.33)

Since α depends on the temperature, for large ∆T the length variation

is the sum of small variations like the ones described by (4.33). This

variation is tabulated [129] as a function of the temperature for the various

materials, assigning the values of polynomial coefficients. So for instance

the thickness of the silicon fibre can be written as:

l T l0 1
∆L
L Si

T (4.34)

The expression:

∆l T l T l0 l0
∆L
L Si

T (4.35)

represents the thickness variation of the fibre at temperature T .

Now, since we need to keep constant the force against the fibre, and

this force is obviously related to the distance between the clamp inner

faces, the condition:

L T d T l T (4.36)

must be valid at each temperature. Thus we need to compare (4.35) with:

L d T L0 1
∆L
L SS

T d0 1
∆L
L X

T (4.37)

where subscripts SS (stainless steel) and X indicate the material which

the clamp support and slab are made with. Taking L0 as parameter, and

remembering (4.32), equation (4.37) leads to:

L d T L0 1
∆L
L SS

T L0 l0 1
∆L
L X

T

∆ L d L d L0 d0

L0
∆L
L SS

T
∆L
L X

T l0
∆L
L X

T (4.38)

For a fibre with given diameter l0, appropriately choosing both L0 and the

material X, the condition (4.36) can be satisfied with good approximation.

The values ∆ L d T for aluminium (triangles) and brass (diamonds)

are compared with ∆l T in figure (4.32), where l0 2.2 mm and L0 1.2

cm.
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Figure 4.32: Comparison between
thermal compensation obtained
with brass and with aluminium.
The fibre diameter is l0 2.2 mm
and the shaft length L0 1.2 cm.

Figure 4.33: Comparison between
thermal compensation obtained
with brass and with aluminium.
The fibre diameter is l0 2.2 mm
and the shaft length L0 0.7 cm.

Obviously, each deviation δ T ∆l T ∆ L d T from the

perfect thermal compensation would result in a static force ∆Fth T

kslabδ T against the fibre. From the figure it is clear that a suitably

shaped brass slab could follow the silicon contraction trend, with a max-

imum deviation δ .5 µm. Also, an aluminium slab can be realized,

provided that in this case the shaft free length is L0 7 mm; the max-

imum deviation does not exceed δ .5 µm, but the concavity is not

well fitting (see figure (4.33)). Table (4.4) resumes the shaping parameters

obtained for aluminium and brass.

material L0 (mm) d0 (mm) δMAX (µm) δ (µm)

BRASS 12 9.8 0.5 0.21

ALUMINIUM 7 4.8 0.5 0.25

Table 4.4: Shaping parameters for thermal compensating clamps, with a fibre diam-
eter l0 2.2.

4.7 Conclusions

We used crystalline silicon fibres produced with the micro-pulling down

technique for testing experimentally several items. First of all, a custom

production of fibres with optimal crystalline characteristics, with the pos-

sibility of shaping and doping, is possible thanks to a dedicated facility.
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This will be fundamental when a full analysis of the doping influence (as

an example, on the anti-Stokes cooling) will be carried out. Moreover,

measurements of the loss angle indicated clearly that the influence of

surface defects produced as a by-product of the pulling technique can

be eliminated using an isotropic etching. The etching is also useful for

a re-shaping of the silicon fibres, since it can be precisely controlled. It

is remarkable the fact that, to our experience, the excess surface loss is

still not present in the etched fibres, even after several weeks. Handling

and exposition to air did not spoil the fibres high Q values. Our work

on the experimental results shows that a finite element analysis can be

very helpful in extracting the fibres thermomechanical parameters only

by knowing the thermoelastic loss.

The activity on this topic is just at the beginning. Monolithic suspen-

sions using silicon fibres have never been realized; the suspensions design

is still under consideration. A main problem evidenced during our mea-

surements is that the welding of silicon fibres on silicon ears cannot be

performed with the method used for silica: the high conductivity of sili-

con prevents the heat from melting the material in a localized volume.

In this preliminary phase, the natural continuation of our work is a

cryogenic measurement of the fibres dissipation; part of this activity has

been pursued at the INFN laboratories in Perugia [122], while we foresee

to test our ideas on fibre clamping at cryogenic temperatures.



Chapter 5

Thermal conductivity
measurements

As discussed in chapter (4), silicon monolithic suspensions are thought

to be very advantageous in the perspective of cryogenic third genera-

tion ground-based GW detectors. A thermomechanical characterization

of silicon specimens is therefore necessary. In this chapter a facility for

measuring the thermal conductivity of various materials samples is pre-

sented. The facility is now working and it is disposable for the European

GW community involved in the design study of a third generation inter-

ferometer.

In the first section, the question why it is convenient to measure di-

rectly the thermal conductivity of specimens, instead of taking literature

data, is addressed. A description of the main features of heat conduction

in semiconductors like silicon is shortly given.

Then, the realization of the apparatus for thermal conductivity mea-

surements down to cryogenic temperatures is discussed, and a test mea-

surement made on a high purity silicon reed is presented.

Once the system has been tested, it has been employed for study-

ing the thermal conduction across silicate bonded silicon disks. Silicate

bonding, a technique developed for chemically gluing silica substrates, is

briefly reviewed; this technique will be employed for assembling mono-

lithic silicon suspensions. The modifications of the apparatus made for

measuring the bonded disks conductivity are commented, and measure-

ment results are shown. Remarks on next work to be done within the

item of silicon silicate bonding conductivity are given.

Finally, the design of a facility to be used for measuring the thermal

expansion coefficient and small displacements in general is presented.
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Small displacements include a series of phenomena, like creep and ther-

mal expansion, which are of high interest in the field of suspensions noise

issues. Part of the facility has been also realized, as it is described in the

last section.

5.1 Thermal conductivity of silicon

The design of the suspensions for the third generation of GW interferom-

eters must take into account the problem of heat extraction, as discussed

in section (4.1). Obviously, in this respect, the main issue is represented

by the thermal conductivity of the suspensions. The heat extraction ca-

pability depends upon the thermal conductance K T of the suspension

fibres1:

K T κ T
nΣ

L
(5.1)

where Σ is the cross section of the fibres, L is their length, n is the

number of fibres, κ T is the thermal conductivity coefficient and the Σ,

L temperature dependence has been neglected. The heat flux equation:

CθR t kθR t P t (5.2)

where θR is the temperature difference among the fibre ends due to the

flux P and C is the heat capacity, can be written in the regime condition

when P t P0 as:

θR
P0

K
(5.3)

In section (4.1) the advantages of choosing silicon suspensions have

been explained; the expected behaviour of the silicon thermal conduc-

tivity was also described. Suitable silicon monolithic suspensions should

have Σ 100 mm2 and θR 2 K [102].
As it is well known, at low temperatures (below 100 K) the thermal

conductivity can vary largely, even for materials specimens of the same

shape and conditions, depending on samples history and purity [130].
This is especially true for silicon [131], [132], [133], [134], [135], [136]. As

for other semiconductors, the heat conduction in silicon is mainly due

to phonons currents. Considering thus a phonons gas carrying the heat

along the thermal gradient, the conductivity results:

κ
1

3
C v λp (5.4)

1The following equation is valid for homogeneous bodies with constant cross sec-
tion.
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where C is the specific heat capacity, v is a mean velocity of the phononic

flux and λp is the phonons mean free path.

In figure (5.1) a typical κ T curve for crystalline silicon is presented,

showing a broad peak well below room temperature. Indeed, when tem-

perature starts to go down phonon Umklapp scattering depending on sili-

con Debye temperature becomes less frequent, so that λp grows causing κ

to increase. This trend is counteracted when defects or impurities in the

crystal become ”visible” for phonons, so that diffusion happens. Thus,

a maximum value is reached; pushing T further down, the phonon mean

free path gets larger until it becomes comparable with the sample dimen-

sions D. From this point down, one has to put λp D in equation (5.4),
obtaining, since v is almost independent of T , that κ T 0 K C T 3.

Therefore, κ starts to decrease rapidly toward zero.

Figure 5.1: A typical curve for silicon thermal conductivity (from [137]). The pro-
portionality to T 3 at low temperatures is fitted by the red dotted line.

Diffusion by defects due to both handling and impurities (even if at a

very low level) determines the κ peak region, while specimen dimensions

set the region where the κ T 3 regime is valid. For temperatures T

100 K or T 0 K, almost all crystalline silicon samples with similar

dimensions behave in the same way2.

2This is not the case for isotopically pure silicon, which shows an higher conduc-
tivity with respect to the natural one, even at room temperature [133].
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The behaviour of κ T thus carries information about the physical

status of phonons in the crystal. As discussed in section (2.4.2), attenua-

tion of sonic and ultrasonic waves in a perfect semiconducting crystal is

mainly due to phonon-phonon interactions. Moreover, in the peak region

of κ T the role of defects and impurities is fundamental, and it can be

correlated to the energy dissipation which, in a real crystal, arise from

processes involving indeed impurities and crystallographic defects (see

section (2.4.2)).
The thermomechanical characterization of silicon suspensions and the

study of thermal issues in related techniques requires therefore the ther-

mal conductivity to be measured for the materials and the components

the suspensions will be made of.

5.2 A thermal conductivity measurement

facility

A facility has been realized for measuring the thermal conductivity co-

efficient in interesting specimens, at temperatures ranging from room

value down to cryogenic values. The facility is conceived for steady state

measurements of the thermal gradient set across a constant cross section

sample by a given constant heat flux. Once the temperature gradient

is measured along the flux, knowing just the power flowing through the

sample and the geometric parameters Σ and L, the thermal conductivity

κ is obtained by means of equations (5.1) and (5.3).
In practice, an homogeneous heat flux P0 from an heater flows in

the sample. The sample, whose cross section is Σ, is connected with a

massive heat sink, so that a steady flux is reached after few minutes.

Along the flux direction, in two points at a distance L from one another,

two temperature sensors are placed in contact with the specimen. The

temperature difference among the points ∆T T1 T2 is measured, then

the conductivity is estimated as:

κ T
L

Σ

P0

∆T
(5.5)

Spurious contribution to the heat transfer are due to conduction trough

air and radiation toward the environment. If the specimen is placed in

vacuum, the conduction by air can be kept at a negligible level. The

radiation is reduced by keeping the temperature of the surroundings as

close as possible to that of the sample.



5.2 A thermal conductivity measurement facility 127

5.2.1 Experimental apparatus

The facility is divided in two main parts. A cryostat is used for cool-

ing the sample down to cryogenic temperatures; inside the cryostat a

pumping stage provides the vacuum level needed for preventing the heat

conduction in air. Enclosed in the cryostat, a measurement stage con-

tains the sample holder, the heater and the temperature sensors. These

parts are described in detail in the following paragraphs.

Cryostat and vacuum system

In order to measure the curve κ T down to low temperatures, the sample

is hosted in a LN-LHe cryostat which is supported by a rigid structure

which is shown in picture (5.2). The cryostat is made with a steel cylinder

split in two parts by a copper massive plate (refer to the scheme in

figure (5.3)).

Figure 5.2: Picture of the LN-LHe cryostat used for the thermal conductivity mea-
surements.
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Figure 5.3: Cross sectional view of the LHe-LN cryostat used for measuring the
thermal conductivity down to about 4 K. The diameter of the copper cold plate is
about 30 cm. The vacuum chamber hosting the experimental equipment is accessible
by removing the shields.
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In the upper part, two tanks, the one into the other, are placed in

contact with the cold copper plate. Refilling holes are opened in the

upper steel plate for accessing the tanks. Both tanks can be filled with

liquid nitrogen in order to reach 77 K; if then liquid helium is poured in

the inner tank in place of nitrogen, 4 K can be attained. The nitrogen

can be removed from the inner tank by inserting nitrogen gas in the tank

with a two ways pipe as in figure (5.4); then, with a transfer line, the liquid

helium is poured from the dewar to the cryostat. This operation must

be carried when all the nitrogen from the inner tank has been removed;

if a mixing between He and N happens, temperatures as low as 4 K are

not attainable.

Figure 5.4: Cross sectional view of the cryostat settled with the two way pipe used
for depleting the liquid nitrogen from the inner tank.

The cryostat vacuum chamber, which is connected with the pumping

stage by a vacuum pipe in the top steel plate, is under the cold plate.

The cold plate is accessible by removing three steel shields. The two in-

ternal shields are put in direct thermal contact with the plate, preventing

excessive radiative heat dispersion from the plate itself to the environ-

ment. The shields have optical windows. The cold plate is machined

with a pattern of screw holes; it has a diameter of about 30 cm, which

represents the available space for hosting experimental equipments. The

cryostat is equipped also with a pass-through for electrical connections,
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which is not reported in figure.

The pumping stage is realized with two pumps arranged in cascade.

A first rotative stage brings the internal pressure down to about 6 10 2

mbar; when this value is reached, a turbo-molecular pump is started,

which is directly connected to the cryostat with a wide straight tube. The

turbo-molecular pump is able to reach 72000 rpm usually in few minutes,

after which the residual pressure is at the level of 10 4 mbar. Such

pressure is low enough for neglecting air conduction. With this system,

the lowest attainable pressure is about 10 7 mbar and it is reached within

two days. The pressure attains values around 2 10 8 mbar when the

cryostat is cooled down to 77 K.

Measurement stage

The measurement apparatus is placed underneath the cold plate of the

cryostat. The apparatus is composed by three functional parts. A con-

ductive massive clamping system is used for holding the sample, provid-

ing at the same time the sinking of the heat flow. The sample is heated

by a coil heater placed at the opposite end of the specimen with respect

to the sink. Two temperature sensors placed at a precise distance L as

large as possible along the flux represent the temperature sensing sys-

tem. Specifically, the design of each one of these parts depends upon the

shape and dimension of the considered sample. To test the apparatus

we measured in the chamber a silicon high purity (pure at the level of

1 ppm) cylindrical rod 10 cm long, with a diameter d 5 mm. The

setup realized for this specimen is schematically drawn in figure (5.5). It

is described here in detail, while the needed modifications for different

specimens are discussed later on.

The apparatus is enclosed inside a copper box, which provides an

additional thermostatic shielding; its purpose is to get a uniform tem-

perature around the sample in order to reduce at minimum the radiative

losses. An aluminium clamp shaped for granting a large contact surface

as shown in figure (5.6) is fixed in thermal contact with the copper box.

The clamp is big enough for behaving as a thermostat for the power flow

needed for the measurement (much less than 1 W); i.e., it operates as

heat sink. A PVC layer is interposed between the copper box and the

cold plate. That is useful for slowing the cooling of the sample, so that

conductivity measurements can be performed at almost every tempera-

ture in the range 4 300 K. In this way, since a single measurement lasts

no longer than 15-20 minutes and during that time the temperature of
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Figure 5.5: Scheme of the apparatus employed for measuring the thermal conductivity
of a high purity silicon reed.

the box can be regarded as constant, it is possible to obtain κ T for

each given T .

The sample heater has been realized by means of a constantan wire

coiled around the sample end, opposite with respect to the clamp. The

wire is connected with the exterior by means of thin cryogenic wires

soldered to the cryostat pass-through connectors. The coil provides the

heat flux by Joule effect. A dedicated circuitry measures the voltage and

the current trough the coil allowing the power supplied to the sample to

be known.

Figure 5.6: Schematic view of the clamping system of the silicon reed, designed for
assuring a good thermal contact between the reed and the clamp.

In two distant points along the specimen, PT1000 temperature sen-
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sors are put in contact with the silicon rod using two small aluminium

clamps. For temperatures below 20 K, CernoxR© sensors must be em-

ployed in place of PT1000. Both sensors are connected to the pass-trough

connectors by cryogenic wires. Note that, since the transverse dimension

of PT1000 strips is about 2 mm, while the distance among the two sen-

sors is 8 cm, the contact region between the sample and one of the sensors

can be regarded as point-like.

Other PT1000 strips are put in the vacuum chamber, in contact with

the cold plate and with the aluminium clamp, and out of the cryostat

in air. All the connections inside the cryostat are made with cryogenic

wires. These sensors register the temperature of the plate TP , that of the

sample T and that of the environment TE during the measurements.

Circuitry and acquisition line

PT1000 sensors are resistors with a resistance value R T sensible to

temperature changes (at 300 K, R=1100 kΩ and dR dT 4 Ω/K). A

measurement of their resistance is used for measuring T .

For sensors placed on the plate, on the clamp and in air, a precision

of the order of a tenth of K is needed. The sensors are mounted in series

to a waveform generator providing a sinusoidal signal with f 40 Hz

and amplitude VRMS 1 V. The voltage differences Vi at the ends of

sensors are acquired by a computer board and sharply filtered around f ;

the voltage on a calibrated 1 kΩ resistance in series to the sensors is also

acquired for evaluating the current I. The i-th PT1000 resistance is thus

computed as Ri Vi I. Hence, the values of TP , TE and T are obtained

by inverting the known relation R T .

The temperature difference along the sample must instead be mea-

sured as precisely as possible. For this reason, the two PT1000 placed

on the specimen have been connected in a bridge configuration (refer to

figure (5.7). It results:

∆V V
R1

R1 50kΩ

R2

R2 50kΩ
(5.6)

but since Ri 50kΩ:

∆V
V

50kΩ
R1 R2

V

50kΩ
∆R (5.7)

The bridge is supplied with an AC signal at 60 Hz with RMS amplitude

5 V. The output ∆V is amplified, then a lock-in filter is used for enhanc-

ing and demodulating it. The amplification introduces a multiplicative
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Figure 5.7: Schematic of the circuitry used for measuring the temperature on the
sample. The two PT1000 resistors are placed inside the cryostat, in contact with the
specimen.

coefficient in equation (5.7), thus the overall factor c ∆R ∆V must be

evaluated. A calibration of the bridge, therefore, is obtained placing a

100 kΩ in parallel to a PT1000 and measuring the corresponding output

variation. That allows c to be measured at the working point.

Potentiometers (not shown in figure) are placed in both the branches

of the bridge, for correcting the unbalancing offset and setting it to zero.

This is particularly useful when the sample is cooled, since the offset level

varies with the absolute temperature.

Then the calibrated output of the lock-in is acquired and converted

in temperature by means of the known relation R T . The temperature

difference ∆T is thus obtained.

5.3 Facility test measurements

Figure (5.8) shows the apparatus fixed beneath the cold plate, and the

silicon reed placed in the aluminium clamp.

During the measurement, the heat flux in air is completely negligible

due to the low value of the residual pressure. Nevertheless, the power

radiated at regime by the sample must be subtracted from the amount

of power supplied to the sample; that is, the whole conductivity which is

measured contains a spurious contribution due to radiation toward the

copper box. This contribution depends on the temperature difference

between the silicon reed and the box. Clearly, the effect of radiative
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Figure 5.8: Picture of the apparatus used for measuring the thermal conductivity of
a silicon reed 10 cm long, 5 mm thick.

conductance must be evaluated.

Figure 5.9: Heating curve of the silicon reed suspended with two plastic wires,
recorded for evaluating radiation loss.

At room temperature, the silicon sample has been disconnected from

the clamp and suspended in vacuum to two thin plastic wires. One of the

two bridge PT1000 has been moved to the box surface, and the sample

has been heated. By measuring ∆T in this configuration, it has been

possible to evaluate the radiating conductance, which has been proved

to be negligible3. By fitting the obtained heating curve in figure (5.9),
the heat capacity has been also measured (see table (5.1)).

3The radiative loss of heat obviously becomes even lower at low temperatures.
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C [J/K] K [mW/K]

4.2 0.1 3.7 0.1

Table 5.1: Heat capacity and radiating conductance measured for the high purity
silicon reed.

A set of measurements of κ T of the silicon reed has been performed

in the way described in the previous section. Since the offset signal

of the bridge follows the absolute temperature, each heating curve is

superimposed to a slowly varying offset. However, this problem can be

easily overcome, by linearly fitting the offset variation and subtracting it

by the acquired curve. From the residual heating curve, the temperature

difference at regime is evaluated.

Figure 5.10: The measured values of κ T for the high purity silicon reed are compared
with three curves taken from literature [137]. The comparing curves have been chosen
to be obtained with specimens as similar as possible to the measured reed. The
measured resistivity of the latter is 42 Ωcm.

Experimental results are sketched in figure (5.10) and compared with

literature data. The dominant contribution to the error on κ T is due

to the bad knowledge of the distance L and of the cross sectional radius r

needed for computing Σ πr2, which have been evaluated with a caliper.

Measurement relative error is of the order of 5%. Due to a technical
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problem in depleting nitrogen from the inner tank of the cryostat, a

little quantity of nitrogen mixed to the liquid helium, thus for this test

run it has been impossible to push T below 40 K. This problem has been

fixed after the run.

Nevertheless, measurements result to be in rather good agreement

with literature data in the temperature region over 100 K, where Umklapp

scattering makes κ almost independent from purity, shape and handling.

5.4 The silicate bonding technique

Monolithic arrangement discussed in section (3.1) requires the suspension

elements (ribbons, fibres) to be attached to the test masses. The tech-

nique currently indicated for connecting mirrors and suspensions is the

so called silicate bonding technique [112], [85].

Silicate bonding is a chemical gluing which has been firstly developed

and patented at Stanford University by D.H. Gwo, for the Gravity Probe

B experiment [138], [139].

5.4.1 Chemistry of the silicate bonding

Silicate bonding is often referred to as hydroxide-catalyzed hydration-

dehydration process [140]. Hydroxy-catalysis bonding is typically used for

joining oxide materials. The bonding is realized with a strong, rigid, very

thin layer of oxide settled among two surfaces with high flatness (that

is, flat within λ 10 where λ 633 nm). A drop of aqueous hydroxide

solution such as KOH or NaOH is deposited among the surfaces; a silicate

gel is formed, that solidifies over time.

The first step in the process is the hydration of the surface of silica.

Silicon surfaces must be oxidized, so that a silica layer about 100 nm thick

is disposable for the bonding. Since the silica surface is hydrophilic, OH

ions present in solution match the silica open bonds for forming silanol

Si-OH groups (refer to figure (5.11)). The role of KOH or NaOH is to

speed up this process, enhancing the basicity of the solution.

An etching of the surface occurs, due to the high concentration of

OH in solution. Since the OH ions create additional bonds with the

Si atoms, as a consequence the original lattice bonds weaken; therefore

a certain amount of Si atoms are separated from the surface. This etch

releases in solution Si(OH)5 and Si(OH)2
3 silicates.
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Figure 5.11: Scheme of the steps of hydration and etching of the silica substrate
during the silicate bonding process. (a) Hydration of the silica surface. (b) Creation
of additional bonds between Si and OH ions in solution. (c) Consequent weakening
of some bulk Si-O bonds. (d) Silicates are extracted from the surface causing the
etching of the substrate.

The OH ions also strip the H ions from the silanol groups, form-

ing water. This is the dehydration step. The Si-OH groups dehydration

causes the formation of Si-O-Si bridges at the surfaces. Then, silicates

chains connect the two surfaces. This occurs because silicates are dis-

sociated in monomers which tend to form chains starting from silanol

bridges and connecting the two surfaces. A definite settling time which

depends on the initial pH of the solution is necessary for the silica gel

layer to become rigid. Usually, settling time is of the order of hundreds

of seconds. Then, a curing phase of the bonding follows which lasts for

a time of the order of months.

5.4.2 Silicate bonding characteristics

Mechanical characteristics of silicate bonding have been measured in

many experiments. The silica to silica bonding layer obtained with the

described method is usually about 100 nm thick [141], [142], [143].

Quality factors of mirrors and fused silica masses with silicate bonded

silica ears have been evaluated, showing that the bond does not spoil the

overall performances [144], [145]. Nonetheless, estimations of intrinsic loss

angle of the bonding materials give values around 10 1 [141]; this high

level of dissipation suggests that the bonding material is substantially

different with respect to well-formed glass or silica. The silicate bond-

ing layer can be thought as forming a very imperfect glass with many

vacancies, dislocations and incomplete bonds.

Breaking stress of silicate bonded silica masses proved to be high, of

the order of MPa [87], [143].
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Silicon to silicon bonds are currently under study, they seem to show

a very similar behaviour to that of silica to silica ones. One interesting

point to note is that electron microscope imaging suggests that bonds

can lie in the range of thicknesses 40 100 nm [146]. Breaking stress is

almost independent on crystallographic orientation of silicon, and can be

as high as 8 MPa [147].

In a future silicon monolithic suspensions arrangement, heat extrac-

tion capability is a main issue. Therefore, the thermal conductance of

silicate bonds must be high enough for avoiding spoiling that of silicon at

low temperatures. Thermal conduction measurements would allow not

only to evaluate the conductive properties and homogeneity of the layer,

but also its compactness, by comparing the conductivity obtained for the

layer with that of bulky silica.

5.5 Measurement of silicate bonded high

purity silicon disks and effects of inho-

mogeneities

Pairs of 1’ in diameter, 6 mm thick silicon disks have been bonded (see fig-

ure (5.12)) at the University of Glasgow using different volumes of sodium

silicate bonding solution, 1 part commercial sodium silicate solution to 6

parts water, dropping volumes in the range 0.1 0.4 µl/cm2. Six of these

samples, after 2-3 months curing, were selected for thermal conductivity

measurement.

Initial mechanical testing at room temperature of the bonded disks

showed that a 5 cm2 silicon to silicon bond is capable of supporting a

1 MPa shear stress over two weeks without breaking or distortion [148].
Tests have been performed showing that successful bonds can overcome

temperature cycles down to cryogenic measurements without significant

damages [147]. A similar test carried in our lab immersing one of two

bonded silicon disks directly in liquid nitrogen, while the other was in

air, proved that high thermal gradients can be supported by the bond

without breaking.

Taking into account the oxide layers deposited on silicon disks for

allowing the silicate bonding, the layer among the disks is expected to

be about 300 nm thick. Taking for the bonding material a conductivity

similar to that of glass, the effect of such a thin homogeneous layer on

the overall conductance of the sample is expected to be within the mea-
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Figure 5.12: Picture of a couple of silicate bonded silicon disks 1’ in diameter, 6 mm
thick, produced at the University of Glasgow.

surement error except at low T (see figure (5.18)). The conductance of a

single silicon disk is as high as 12 W/K at room temperature, so that

a power of about 0.05 W is needed for having a ∆T 4 mK across the

disk. At cryogenic temperatures, the conductance is more than ten times

greater. These numbers give an idea of how challenging is measuring the

conductivity for these samples. Necessarily, the setup realized for the test

measurement had to be modified. In the following sections, the modified

apparatus used for measuring the disks is described and the obtained

conductivity curve down to about 60 K is presented and discussed.

5.5.1 Modified apparatus

The apparatus employed for the conductivity measurements on bonded

disks is represented schematically in figure (5.13), and a picture of it is

shown in figure (5.14). The modifications to each part with respect to the

test setup are separately discussed.

Heat sink and support

A massive copper block in thermal contact with the cold plate is used

as heat sink. All thermal contacts are realized by inserting in between

a cryogenic conductive vacuum grease. The sample flat face is placed

between the vertical flat surface of the sink and an aluminium cylinder

used as heater, pressed by a PVC screw-tightened block. For avoiding
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Figure 5.13: Cross sectional scheme of the apparatus realized for measuring the ther-
mal conductivity across silicate bonded silicon disks. The various parts of the appa-
ratus are described in the text.

Figure 5.14: Picture of the apparatus schematized in figure 5.13.
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mechanical damage to the sample, springs have been inserted among the

PVC block and the head of the steel screws. Thermal contraction of the

support structure at low temperature proved to be negligible.

Figure 5.15: The thermal contact among the sample and the sink has been tested
with oil. In the picture, a lack of contact in the central region is evident.

Evidence has been found that thermal contact among the sample and

the flattened surfaces of the sink and the heater was not good, even using

the conductive grease, see figure (5.15). That is due to the fact that, while

the silicon disks have been flattened to an high degree of accuracy (λ 10),

the machining of the flat faces on sink and heater is at the level of tenths

of a mm. The problem has been fixed by placing indium thin disks among

the sample and the contact faces. When the PVC block is tightened,

indium is squeezed assuring a good thermal contact everywhere on the

surface.

Due to the small emitting surfaces of the sample and to the very low

values of thermal gradients, radiation losses are negligible, therefore the

thermostatic copper box around the apparatus has been removed.

The temperature of the sink is registered by a PT1000 sensor.

Temperature sensors

As discussed in section (5.2.1), high sensitivity in the measurement of

the thermal gradient along the sample is achieved by mounting PT1000

in a bridge configuration. Nevertheless, in the case of bonded disks,

this sensitivity is somehow spoiled by geometry uncertainties, since the

contact regions of temperature sensors will be no longer point-like with

respect to the length of the sample. The sensed temperature is a sort of

spatial average.



142 Thermal conductivity measurements

Figure 5.16: Picture and cross sectional view of an aluminium ring hosting 2 PT1000,
to be employed for sensing the temperature on the sample.

For avoiding the contact region to be too wide, PT1000 sensors are

placed on aluminum rings whose inner edge is sharp (see figure (5.16)).
Each ring hosts 2 PT1000, which are glued in grooves machined in the

rings, by means of a conductive cement. The sensitivity of the resulting

ring sensor is doubled with respect to the single PT1000. The aluminum

rings are tightened around the sample, with the aid of precise spacers, so

that they touch it at the edges of selected cross sections. This solution

allows the temperature to be measured by averaging on a circle around

the disk4, while the distance among two rings along the sample is well

defined and precisely measurable.

Three such rings have been realized and connected in such a way that

two resistive bridges are obtained, sharing a branch. A couple of sensors

at a distance L1 4 mm is placed across a single, pure silicon disk, while

the third ring is placed around the other disk, L2 6 mm apart. In this

way the measurement of conductivity across the bonding layer is made,

while the conductivity of pure silicon is also obtained at the same time.

The latter will allow the quality of the measurement to be checked, by

comparing with the known curve of crystalline Si for T 100 K.

Heater block

A fundamental request for the measurement to be feasible is that the heat

flux must be homogeneous within the sample. In case of inhomogeneities,

the measured κ values are expected to be severely affected as discussed

below in section (5.5.3). Therefore, considering the peculiar concerned

4Of course, this operation is meaningful only if the heat flux has an axial symmetry.



5.5 Silicate bonded disks 143

geometry, care must be taken in heating homogeneously the flat face of

the specimen.

With this aim, a uniplanar constantane coil is stuck on an aluminum

cylinder 3 cm long with diameter matching that of the disks, as drawn

in figure (5.13). The thermal contact with the sample is assured by an

indium foil. The aluminium cylinder is long enough for uniforming the

heat flux before it reaches the silicon disks.

5.5.2 Measurements

Measurements of conductivity across both pure silicon disk and bonding

layer have been performed down to 77 K using liquid nitrogen. The

measurement technique is basically the same as described in section (5.3).
Both the bridges have been calibrated by inserting the 100 kΩ resistance

in parallel to PT1000. Furthermore, the measurement has been pushed

down to about 60 K by removing the nitrogen vapour out of the inner

tank with a rotative pump.

The error associated with the values of k is evaluated in this case as:

∆κ

κ

∆c

c

∆P

P

∆ Σ Li

Σ Li

∆cPT1000

cPT1000
(5.8)

where ∆c c is the relative error due to the calibration, ∆P P , ∆ Σ
Li

Σ
Li

and ∆cPT1000 cPT1000 are due respectively to the measurement of the

power, the geometry and the linearity error of PT1000 declared by the

manufacturer. It turns out that the dominating contribution is that

coming from the geometry. For all the measured values, ∆κ κ 8%.

The measurement setup proved to reach an high level of sensitivity

in measuring temperature differences on the sample, of the order of few

tens of µK, as shown in figure (5.17).
The obtained curves for the conductivity κ T in silicon and across

the bonding layer are shown in figure (5.18), where the reference literature

values of κ T in pure silicon are also reported. Moreover, the computed

curve modeling the layer among the two disks as a glass layer 300 nm

thick is plotted.

At a first glance, it is clear that there is a discrepancy between the

literature curve for pure Si and the measured one. Anyway, the ratio

among them is constant throughout the temperature range inspected,

and it is about 1.2. This fact has to be related to heat flux inhomo-

geneities probably due to a non perfectly uniform bonding, as discussed

in section (5.5.3).
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Figure 5.17: Heating curves at room temperature with feeded power 50 mWatts,
across the bonding (blue curve) and across pure silicon (red curve). The setup sensi-
tivity is remarkably high, at the level of few tens of µK.

The values of κ T across the bonding are significatively lower than

what is expected. Here, the ratio between the computed curve and the

measured one is not constant, becoming larger at low temperatures. This

suggests that in addition to flux distortion there could be a different

behaviour of the bonding with respect to compact glass.

Nevertheless, the measurement has proved to be definitively affected

by inhomogeneities. All the hints obtained with the measurement on

bonded disks have thus to be confirmed. As the next step, new samples

with a geometry suitable to reduce the crucialness of heat flow uniformity

will be produced and measured. Section (5.6) illustrates the present status

of the design of new bonded silicon bars.

5.5.3 Effects of inhomogeneities

The method here presented for measuring the thermal conductivity relies

on the hypothesis that the heat flows uniformly within the specimen.

Nevertheless, in the case of the bonded disks, while the homogeneity of

silicon in each disk is almost certain, the bonding layer can be affected

by impurities or detachment in small regions. The bonding layer defects

can be thought as shields against the heat flux. The effect of such shields

is to deform the flux pattern in such a way that cross sectional surfaces
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Figure 5.18: Plot of the measured values of κ T for a silicon disk (blue markers) and
across the bonding (pink triangles). The green curve for pure silicon is taken from
literature data [111]. The dotted curve is obtained multiplying the green values by
1.2. The red curve is obtained supposing a layer thickness of 300 nm, and assuming
the conductivity of glass [149] for the bond.
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are no longer isothermal.

Figure 5.19: Sectional view of a bonded sample with a bonding layer detachment
in correspondence of the disks edge. The resulting isothermal bent surfaces and the
position of temperature sensors are indicated. The effect of the detachment on the
measurement is to underestimate κ T across the bonding and to overestimate it over
the silicon disk, as explained in the text.

Refer to figure (5.19), where a detachment of the bond in correspon-

dence with the edge of the disks is supposed. The resulting isothermal

surfaces are bent symmetrically with respect to the layer. Note that

the heat flux is almost unperturbed near the central axis of the sample.

Here, the conductance is correctly obtained by measuring the temper-

ature gradients indicated by the cyan and purple arrows. Temperature

sensors yet record the value of T on the external surface of the specimen.

Therefore, we are led to associate the positions of sensors with the wrong

temperature gradients, marked with the black and red arrows. In this

way, the conductance is overestimated within the silicon disk, while it is

underestimated across the bond. It must be noticed that the pattern of

isothermal surfaces does not depend upon κ T provided that the con-

ductivity is independent with respect to the position inside the silicon.

Therefore, the ratio between the measured κ T across pure Si and the

conductivity of pure silicon from literature data would not depend upon

T .

Different types of inhomogeneities could be present in the bonding

layer, giving rise to similar effects, always characterized by a constant

ratio between measured and expected curve. In figure (5.20) a simulation
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performed with a finite element analysis (FEA) software is shown, where

the effect on the temperature field of a small cut 2 mm deep in the

bonding layer is considered. In particular, the temperature field is drawn

on an aluminum ring with sharp inner edge, very similar to that used in

the measurement for sensing T , in contact with the sample. It results

in a 30 mK spread of T over a 1K temperature gradient on the whole

sample. Depending on the position of PT1000s on the ring, that leads

to an error in determining T as high as 3%.

Figure 5.20: Simulation of the temperature field on an aluminum ring with sharp
inner edge in contact with one disk, where a small cut 2 mm deep in the bonding
layer is made and a ∆T 1 K is set across the sample at room temperature. A
schematic cross section view of the arrangement is shown for clarity.

The uniformity of the heat flow is therefore a basic requirement for

measuring κ.

5.6 Simulations on suitable geometry sam-

ples

As discussed in the previous section, the next necessary step is to obtain

bonded samples with a geometry suitable to get rid of the problem of

local inhomogeneities in the bonding layer. Therefore, different possible

solutions have been investigated by a finite element analysis. In all these

simulations, the bonded surface is of the order of 1 squared inch, similar

to that of the disks. The silicon disks are replaced with long silicon reeds

with constant cross section, and the profile of temperature along a line on

the lateral surface is obtained, for a fixed ∆T 1 K among the ends of the

sample. Then, different types of cuts in the bonding layer are simulated
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working out the relative temperature profiles. The bonding layer, too

sharp for being simulated in its real dimensions, has been replaced in

this computations with a thicker (0.1 mm) layer of a fictitious material,

whose conductance has been set to fit that of corresponding bonding

layer.

A prospect of the considered geometries and of the simulated bonding

layer defects is shown in figure (5.21). A set of temperature profiles,

obtained for the geometry labeled CYL RING at room temperature, are

plotted in figure (5.22). The profiles are drawn for different values of the

parameter δ, which is the difference between the radius of the silicon

reed cross section and the radius of the circular bonding layer. Very

similar results are obtained for the other geometries, even at cryogenic

temperatures.

Figure 5.21: Schematic view of the different bonded silicon reeds configurations sim-
ulated to be realized for the next measurement runs. For each configuration, one of
the two reeds is made transparent for allowing the bonding layer (represented in thick
cyan) to be seen. Also reeds faced by side have been considered, since λ 10 flattening
is simpler for lateral longer surfaces.

The simulation proved that at a distance of more than 2 cm from the

inhomogeneity, the high value of the silicon conductivity makes the heat

flux homogeneous, and the temperature profile is a line. Considering to

place two aluminium rings before the layer and two after, and taking

into account the fact that also the thermal contact between the sample

and the heater or the sink can give rise to inhomogeneities, leads to a

conservative reed length of at least 7 8 cm. Therefore, samples for

next measurements will be supplied by the Glasgow University, which

will be realized by silicate bonding two 8 cm long silicon reeds with
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cross sectional area Σ 1 squared inch.

Figure 5.22: Curves of T along a line on the cylinder lateral surface, with model CYL
RING and δ ranging from 1 mm (green line) to 5 mm (red line). The layer is placed
at 4 cm on x axis. Offset T refers to a mean value T0 300.5 K.

5.7 A facility for the measurement of small

displacements

In a complete plan for characterizing a silicon suspension element, such

as a fibre, one would measure the thermal expansion coefficient α T

down to cryogenic temperatures and especially at those temperatures

where it is expected to vanish. Anyway, α is much less dependent on

impurities or defects than κ. A curve like that in figure (4.1) is quite

general. Therefore, we planned to realize a facility aimed at measuring

α in thin, long samples, but which could be advantageously used more

generally in all the phenomena which would involve a measurement of

very small displacements. Creep, i.e., sudden release of internal mechan-

ical stresses in suspending fibres, is an example. The test mass motion

due to creep events could mimic a gravitational waves burst in a GW

detector, therefore it represents a main issue in the noise budget.

The facility is conceived to measure down to cryogenic temperatures,

by placing the specimen in a cryostat. In the following, a conceptual
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design of the facility is presented; also, the up to now realized part of the

facility (that is, the temperature stabilization) is described.

Michelson interferometer and single cavity Fabry-Perot (FP) interfer-

ometer have proved to be too poorly sensitive to be employed in silicon

α measurement (especially near its zero points); so the adopted strategy

turned out to be a double FP cavity. A sketch of that system is shown

in figure (5.23). While a reference FP cavity is used to lock the laser at a

given frequency, two mirrors placed at the opposite ends of the concerned

thin, long sample form a second cavity whose length varies as the sam-

ple length varies. It is possible to keep the second cavity in resonance,

by changing the reference cavity length with a piezo actuator: the error

signal feeded to that piezo device can be read as a measurement of the

thermal expansion.

Figure 5.23: Sketch of the FP interferometric setup that will be employed for mea-
suring α in thin rods.

As pointed out, in order to realize such interferometer the laser light

that will be employed should be made as frequency stable as possible. A

good stabilization can be attained by means of a suitable reference cavity:

that is, a fixed-length FP cavity. The cavity resonance condition being

maintained by a control loop which acts directly on the laser frequency

tuning, it is possible to lock the laser light at a given wavelength, provided

that the cavity length remains constant. It is clear that a very rigid and

thermal stable support must be chosen for blocking5 the mirrors at the

5Actually, since the measurement of thermal expansion will request an active con-
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ends of the cavity. A simplified scheme of the support realized with this

aim is sketched in figure (5.24).

Figure 5.24: Scheme of the reference Fabry-Perot cavity, to be used for laser frequency
stabilization.

Mirrors are stuck at the ends of a zerodur hollow cylinder, rigidly

clamped on a V-shaped aluminium block. Clamping occurs in the cylin-

der middle point, by means of a screw-tightened collar. The reference

cavity must be kept at very low pressure for avoiding refraction index

fluctuation in air.

Zerodur glass ceramic has a very low expansion coefficient, that is

roughly α 10 7 K 1; though this fact would guarantee a very small

variation of cavity length with temperature fluctuations, a thermal sta-

bilization of the support will be needed for making thermal expansion

effects negligible. It is possible to simply estimate the stabilization goal,

once few reasonable assumptions are made on system dimensions and

typical α values. Let us suppose the sample length equal to that of the

cavity, and take α 10 7 K 1 in silicon at low temperatures (for in-

stance, near zero points). In order to neglect the length variations of the

reference cylinder, the condition:

∆LR ∆LS (5.9)

must hold, where subscripts S and R refer to the sample and the reference.

That is:

∆TR
αS∆TS

αR
(5.10)

Measurement will be performed by heating the sample at a given tem-

perature, by an amount ∆TS 1 K, thus:

∆TR 1K (5.11)

trol on end mirror displacement, a piezoelectric actuator will be placed against one
of the end mirrors.
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Therefore, the temperature should be stabilized within fluctuations of

∆TR 10 2 K during a measurement time (of the order of ten minutes).

The temperature stabilization system is the only part of the facility

which is completed, and it will be described below. As detailed in the

following, the stabilization has been reached at about 316 K, with residual

oscillations within 2 10 3 K.

5.7.1 Setup

In order to achieve the designed vacuum level inside the cavity, the ze-

rodur cylinder has been placed in a vacuum tank (refer to figure (5.25)),
together with mirrors, piezoelectric device and ancillary parts.

Figure 5.25: Scheme of the reference Fabry-Perot cavity, to be used for laser frequency
stabilization.

A specific support structure for cylinder and mirrors has been de-

signed and realized, ad it is shown in figures (5.26), (5.27); that is, a

V-shaped aluminium block hosts the cylinder and two shaped springs

mounted on it keep the mirrors in place. The whole support is blocked

inside the tank by pressing screws.

The vacuum tank is connected by flexible pipes to a vacuum pumping

stage; a pressure of less than 10 3 mbar at room temperature can be

rapidly reached.

The cavity temperature can be more easily stabilized if the tank is

thermally insulated from the environment. That results in a poor heat

flux toward the exterior, that is the heat power needed to maintain the

cavity at a given temperature is minimized. For obtaining a good insula-

tion, the steel tank is supported by two PVC blocks inside a polyurethane
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Figure 5.26: Support system for assembling the reference cavity inside the vacuum
tank.

Figure 5.27: Pictures of the zerodur cylinder assembly.
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3 cm thick box. Thus the whole system should behave roughly according

to the equation (see (5.2)):

Cθ t kθ t P t (5.12)

where θ t =T 295 is the difference between the temperature of the tank

and the room temperature. A power P t poured in the tank leads to a

(positive) variation of θ that is determined by two parameters: the capac-

ity C which fixes the initial rate of the system response to a power change,

and the effective conductivity k which select the regime level. Actually,

for the cavity θ does not follow exactly the law in equation (5.12)(as it

will be discussed below), but the deviations are small enough to allow

the use of (5.12) for estimating C and k.

Active control is needed to reach the requested temperature stabiliza-

tion (refer to figure (5.28)): that is, a feedback able to deliver to the tank

the right amount of power for compensating environmental variations of

T . The cavity has to be kept at a temperature different from that of the

room, in order to have a stiff control (or, in other words, a regime power

different from zero).

Figure 5.28: Feed-back assembly for stabilizing the reference cavity temperature.
PT1000 temperature sensors are placed on the tank surface and inside it, in touch
with the zerodur cylinder. A control circuitry feeds the copper coil heater.

Power is provided by means of Joule current dissipation: around

the steel tank a 200 µm insulated copper wire has been coiled (see fig-

ure (5.29)), with a total electrical resistance of 9.2 Ω (it depends slightly

on the temperature). The coil has been wrapped in a polystyrene layer
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for shielding outward losses. The maximum power to be transferred to

the cavity by Joule effect on the wire is limited by the maximum current

the generator can supply, that is 1 A in this case. Thus:

PM 1A 2 9.2 Ω 9.2 W (5.13)

Figure 5.29: A picture of the steel vacuum tank with the coiled copper wire.

The cavity inner and outer temperature is acquired by means of

PT1000 sensors. While a PT1000 is placed in contact with the outward

surface of the vacuum tank, the other stays inside, pressed against the

zerodur cylinder. Each resistor is connected in a bridge for measuring its

resistance, thus allowing a very sensitive evaluation of the temperature,

provided that the characteristic PT1000 curve is known. Only the outer

PT1000 is employed in the feedback.

In the following the controller design procedure is presented, and the

resulting stabilization performances are reported and commented.

5.7.2 Controller design and test

Once a set point θR for the cavity temperature has been chosen such that

the required regime power is less than 9.2 W, and the system response to

a power variation (its power to temperature transfer function) has been

obtained, it becomes possible to design a loop which takes as error signal
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the difference between measured temperature and set point, and conse-

quently controls the current injected in the coil; the transfer function can

be either extracted from a physical model of the cavity by fitting model

parameters, or worked out from a measurement.

Let us firstly consider equation (5.12). If the system is initially at

θ θ0, and the power provided to the coil raises suddenly to a level P0:

P t P0 ΘH t (5.14)

accordingly to that equation the subsequent behavior of θ t is:

θ t 0
P0

k
θ0

P0

k
e

k
C t (5.15)

The knowledge of the two quantities k and C determines the system;

these values can be experimentally evaluated.

Regarding the equation (5.15) as valid for the cavity, it is clear that,

as the power is switched on, the slope of θ depends on both k and C:

θ t 0 θ0
k

C

P0

C
(5.16)

but in the case θ0 0 it is fixed only by C (and of course P0). Further-

more, the regime value turns to be:

θ t
P0

k
(5.17)

Therefore, a measurement can be performed by switching on the power

in the coil and acquiring θ. This has been done and led to the k and C

values reported in table (5.2).

P0 k C

9.2 W 0.33 W/K 3000 W s/K

Table 5.2: Values of k and C measured for the cavity stabilization assembly.

By using values in table (5.2), the system behavior with a given θ0

can be computed and compared with the experiment. As it can be seen

in figure (5.30) (θ0 25.44K), the agreement is not good, suggesting

that equation (5.12) should be somehow discarded; however, the overall

trend is reproduced, so the simple model with C and k can be regarded

as roughly correct.
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Figure 5.30: Temperature response of the system to a power step, with initial condi-
tion θ0 25.44 K (solid line). Experimental result is compared with the prediction
of the simple model of equation 5.12 (dashed line).

Figure 5.31: Block diagram of the feed-back loop realized for the cavity.
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Once k and C are known, the feed-back loop has been designed; the

control strategy has been decided to involve a PI controller. The basic

scheme of the complete feed-back loop is reported in figure (5.31).
The assembly is represented by the measured transfer function FA; in

order to obtain the overall transfer function, the power injected P must

be linearized around the working temperature:

δP δ I2 Rc 2I0δIRc

where I0 depends on the chosen set point (I0=0.88 A for T=316 K),

Rc is the coil resistance. The B labeled block contains the bridge for

converting the temperature in a voltage signal ∆V , while the G block

represents the overall gain of the proportional controller. The integral

controller I has a time constant τ RIC, so the controlling chain has a

transfer function given by:

H s 2I0RcB
1

RIC s
G (5.18)

The feed-back stability is granted by choosing a suitable value for τ :

we set τ 220 s. Thus the open loop transfer function turns to be:

HOL FA H (5.19)

while the closed loop transfer function is:

HCL
FA H

1 FA H
(5.20)

Transfer functions HOL and HCL are plotted in figures (5.32) and (5.33).
As it can be seen, the loop resonance is well damped; and the proportional

controller gain can be reduced with a potentiometer for further resonance

damping.

The control parameters are thus determined for the system; however,

such determination has been obtained by means of equation (5.12), which

we know to be incorrect. Though the temperature stabilization can be

reached by using the PI controller described, as it will be shown in the

following by experimental proof, we performed a direct measurement of

the transfer function in order to fully characterize the system.

Let us inject in the system a power P0 and wait for the regime tem-

perature to be reached; then, let switch suddenly off the power. The

system response is:

θ t P0

t

h t s 1 ΘH s ds (5.21)
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Figure 5.32: Open loop transfer function HOL of the control system. Red dashed
curve corresponds to unity gain condition HOL 1.

Figure 5.33: Closed loop transfer function HCL of the control system.



160 Thermal conductivity measurements

with initial condition θ θ0, where h t is the impulse response. Since

FA is equal to the Laplace transform of h t , once θ t has been measured,

the transfer function can be worked out:

FA L h t
L dθ t

dt

P0
(5.22)

In figure (5.34) a fit of measured θ t using a sum of three exponentials

is shown. The agreement is quite good, so the fit parameters (reported

in table (5.3)) allow the determination of FA as in equation (5.22).

Figure 5.34: System response to a power off switching: measured (solid line) and fit
(dashed line).

θ t Aeat Bebt Cect D

A a B b C c D

3.8 1.1 10 4 5.4 6.4 10 4 13.9 5.3 10 5 22.67

Table 5.3: Fitted parameters for the system response to a power off switching.

For testing the validity of that evaluation of FA, the feed-back has

been enabled with the cavity at a temperature θ1=18.75 K, and with set

point θ0=20.8. If the feed-back set point is changed suddenly by a finite

amount ∆θ θ0 θ1 at t 0, after it reached a regime condition, then:

θ t ∆θ S t θ1 (5.23)
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where:

S t
t

0

HCL Y dY (5.24)

is the unit step response of the system. This θ t is compared with ex-

perimental record in figure (5.35). As it can be seen, except for the initial

slope, the measured response is quite similar to that in equation (5.23).
Initial discrepancy can be thought as due to the fact that, instead of

changing the set point, the control loop has been turned from inactive to

active. In addition, enabling occurred when the cavity temperature was

dropping freely after a pre-heating phase.

Figure 5.35: System behavior after enabling the closed loop control (solid line). The
dashed line draws the step response as computed by using the measured transfer
function FA.

The designed controller has been tested, by switching on the con-

trol and collecting temperature values on the cavity tank and at the

zerodur surface, in vacuum conditions ( 10 3 mbar), for a period of

several hours after the stabilization. As it can be seen in figure (5.36),
the stability is granted within less than 10 2 K for both inner and outer

temperatures; inside the tank T has residual oscillations of about 4 10 3

K at a temperature of 315.7 K.
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Figure 5.36: Temperatures measured on the vacuum tank (red line) and on the zerodur
cylinder (blue line) after the stabilization set point has been reached.

5.8 Conclusions

The realized apparatus for the thermal conductivity measurement proved

to be able to reach a very good sensitivity down to LHe temperatures,

so that it can be employed in many applications in the research and

development activity for cryogenic suspensions. The facility is now at

disposal of the international European community working on the third

generation GW detectors; the design study for a third generation Euro-

pean interferometer (ET) is now beginning. Moreover, a facility for the

measurement of small displacements is being realized in our laboratories.

Concerning the silicon to silicon silicate bonding conductivity, our

activity primarily proved the importance of the bonding homogeneity

in regulating the heat flux; though the measurements need to be re-

peated with more suitable samples, our investigation on silicate bonding

with 1’ area suggests that conductivity measurements could be advan-

tageously used for testing the goodness and homogeneity of the bond

layer.
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