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Abstract

The upgrade of gravitational wave interferometers from first- to second-

generation will enable gravitational wave astronomy to become a reality,

providing a new view of our Universe. One of the numerous upgrades in

moving to the second-generation is the increased intra-cavity laser power in

the interferometer optical cavities, which should reduce the shot-noise in the

interferometer. Unfortunately, small, but finite, absorption of optical power

in the intra-cavity optics will result in thermal gradients within the inter-

ferometer optics, which causes wavefront distortion of the cavity eigenmode.

Numerical modelling, based on an analytic solution for the thermal gradient,

has shown that the effect of the accumulated wavefront distortion on the

cavity mode is to degrade the sensitivity of the interferometer, and it may

cause instrument failure. The wavefront distortion must, therefore, be com-

pensated and actuators for this purpose have been proposed but a suitable

wavefront sensor is required.

In this thesis, I describe an interferometric validation of the analytic solu-

tion for the thermal gradient which, as discussed above, is central to numeri-

cal modelling of advanced GWI. The bulk of the thesis, however, concentrates

on the development and testing of a wavefront sensor for wavefront com-

pensation. I shall describe a Hartmann wavefront sensor that can measure

wavefront changes, such as those due to substrate and coating absorption in

GWI, with unprecedented precision and accuracy. It is simple to optimize

and reliable, and appears very suitable for measuring wavefront distortion in

advanced gravitational wave interferometers.

vii



viii Abstract

I shall also describe the deployment of the Hartmann wavefront sensor

at the High Optical Power Test Facility in Western Australia to measure

wavefront distortion in the optics of a high-optical-power cavity. Despite sig-

nificantly increased environmental noise, the sensor measured the wavefront

distortion in the optics with a precision necessary for deployment in an ad-

vanced gravitational wave interferometry. The Hartmann wavefront sensor

measurements were verified using measurements of the intra-cavity mode size

and intra-cavity power.

The potential use of the wavefront sensor for off-axis measurement of

wavefront distortion in a gravitation wave interferometer prompted an inves-

tigation into reconstruction of the on-axis wavefront distortion. The proof-of-

principle of the resulting single-view off-axis analysis is demonstrated using

simulated and actual measurements.
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Chapter 1

The rewards and challenges of

gravitational wave astronomy

1.1 The promise of new science and a better

understanding of the Universe

1.1.1 Gravitational waves

Gravitational waves (GW) are ripples in spacetime, predicted by Einstein in

1918 [1] as a solution to the General Theory of Relativity. Although they

have never been directly observed, there is excellent indirect evidence for

their existence. The pulsar PSR B1913+16, discovered by Hulse and Taylor

in 1974 [2], shows a decay in its orbital period that is consistent with loss of

energy through the emission of gravitational waves as predicted by General

Relativity [3]. This observation earned Hulse and Taylor a Nobel Prize in

1993.

The generation of GW is analogous to the generation of EM waves. EM

waves are generated by the acceleration of charges and GW are generated

by the acceleration of masses. Whilst EM waves are dipolar in nature, the

lowest order GWs possible are quadrupolar in nature (monopolar GW and

dipolar GW would violate conservation of mass-energy and conservation of

1
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momentum, respectively [4]). Thus a passing quadrupolar GW exerts a tidal

strain on space-time, stretching it along one axis and squeezing it along the

perpendicular axis. This effect is characterized by the tidal strain amplitude,

h(t), such that a passing gravitational wave of amplitude h(t) causes the

distance, Ltest, between two fiducial test masses to fluctuate by a time-varying

differential amount, ∆Ltest(t) = h(t)Ltest, [5]. The observable quantity h(t)

decays as 1/r, where r is the distance between the source and the point

of observation, a fact that becomes very important in the discussion of the

measurement of GW.

The interaction between GW and matter is extremely weak and, there-

fore, the Universe is effectively transparent to GW and so the information

they carry from their sources is uncontaminated [4]. Given that they may

originate from areas, discussed in the following section, from which there is

little to no direct EM radiation, GW illuminate the Universe in an entirely

new and rich way.

1.1.2 Astrophysical sources of GW and the new sci-

ence they may reveal

There are a variety of predicted astrophysical sources of GW. These sources

each promise to reveal different types of new science in their GW radiation.

The following is a short list of the main types of sources and the associated

new science.

• Inspiral sources. Compact binary systems, such as PSR B1913+16,

containing either, two neutron-stars (NS), a NS and a black-hole (BH),

or two BHs radiate orbital energy as GWs with a characteristic ’chirp’

signal [5]. When the first direct detection of GW occurs it will most

probably be from the final decay and merger of the two objects in a

compact binary system as these sources are very powerful, are pre-

dicted to occur frequently enough to be seen and as the time depen-

dence of the GW signal emitted during the inspiral is believed to be
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well-known. Detection of such a source would reveal new astrophysi-

cal information about the late inspiral and merger epochs of such an

inspiral. Conversely, non-detection would say that the current models

of GW generation are incorrect.

• Continuous sources, generally rotating asymmetric neutron stars (which

may additionally be observable as pulsars), would reveal observations

of extremely dense states of matter [4] and maybe reveal an information

about free-quark matter [6].

• Burst sources. Detection of GW from the catastrophic core collapse

of massive stars would help our understanding of these violent events,

especially when combined with, for example, neutrino detections of the

same event [4].

• Stochastic sources. Random source, for example, the gravitational-

wave background from cosmological inflation [4], enabling testing of

new unification physics.

The observation of GW holds great promise in terms of increasing our

understanding of high energy astrophysical processes and non-linear General

Relativity. Additionally, it holds the promise of potentially revealing evi-

dence of new types of physics. As such grativational waves are a prominent

topic in the scientific community and several large scale projects are under-

way to enable their direct detection and the development of observational

gravitational wave astronomy.

1.2 The challenge of GW interferometry

1.2.1 First generation GW interferometry

The tidal strain effect of GWs on fiducial test masses can be observed by

measuring the differential length change between a set of two test masses

separated by a distance L1 along one line and a second set of two test masses
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separated by a similar distance L2 along a perpendicular line. This measure-

ment can be made using interferometry, hence the name gravitational wave

interferometry (GWI).

A schematic of a GWI is shown in Figure 1.1. It is, essentially, an L-

shaped Michelson interferometer formed from a laser, a beamsplitter, two

arms of length L1 and L2 at right angles and a photo-diode measuring the

output of the interferometer [7] [8]. The signal-to-noise is maximized by

averaging for a dark fringe at the PD, and thus most of the power propagates

back towards the power recycling mirror (PRM) which reflects it back into

the interferometer. A GW, of correct polarization, passing through the device

will compress one arm and distend the other. The change in the path length

difference between the two arms, ∆Larm(t) = L2(t) − L1(t), is equal to the

tidal strain amplitude, h(t), multiplied by the average arm length, Larm.

Hence, there is a time-varying phase change between the two arms and a

time-varying change in the intensity on PD, both of which are proportional

to the tidal strain amplitude.

The interferometer arms are kilometer-scale length (4 km in Initial LIGO)

in order to increase the length of time that the light in the arms is exposed to

a GW [7]. This has the effect of increasing the phase-delay between the two

arms. The phase-delay is further increased by the addition of Fabry-Perot

cavities.

Ignoring other noise sources (seismic and suspension thermal noise), the

minimum strain, hmin, that can be measured is determined by photon shot

noise at the beam splitter, which is inversely proportional to the square

root of the number of photons, Np, incident on the beam splitter in a given

exposure time [7]. Therefore, hmin, is given by

hmin ≈ λ

B Larm

1
√

Np

(1.1)

where B is the mean number of times the light bounces back and forth

in the Fabry-Perot cavities (proportional to the cavities’ finesse) [7]. At
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Power Recycling
Mirror (PRM)

End Test
Mirror (ETM)

Mode Cleaner (MC)

Beamsplitter (BS)

Input Test
Mirror (ITM) ETM

GW readout

100 W 13 kW
Laser

6 W

Photodiode (PD)

4 km Fabry−Perot cavities

Figure 1.1: Schematic of a first generation GWI. A power-recycled Fabry-
Perot long-baseline Michelson interferometer.
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low frequencies, (< 200 Hz), the minimum detectable strain is degraded by

seismic and suspension thermal noise. The minimum detectable strain at

high frequencies, (> 200 Hz), can be decreased by increasing the number of

photons incident on BS, accomplished by placing the PRM between the laser

and BS to form a resonant cavity between PRM, ETM1 and ETM2.

The target strain sensitivity for Initial LIGO is approximately 3 × 10−22

@ 150 Hz [5]. The current sensitivity of Initial LIGO, expressed in units of

m/
√

Hz, is shown in Figure 1.2. Converting to strain, by dividing by the 4

km length of the interferometer arms and multiplying by the square root of

the frequency, shows that Initial LIGO has achieved its design stain sensi-

tivity of approximately 3 × 10−22 @ 150 Hz. The strain sensitivity of Initial

LIGO is such that there is a reasonable, though not certain, chance of detect-

ing a GW in a year’s worth of observations [8]. However, the aim of Initial

LIGO is to demonstrate the up-scaling of laboratory interferometers to long-

baselines with the projected improvement in sensitivity. In order to increase

the probable rate of detection it necessary to move to improve the sensi-

tivity of the interferometers, which requires the next-generation ’advanced’

interferometers.

1.2.2 Advanced GWI enabling gravitational astronomy

The purpose of second-generation or ’advanced’ interferometers is to increase

the rate of detection of GWs to a point where GW astronomy becomes feasi-

ble. The justification for trying to accomplish this is related to the 1/r decay

of h(t). If a second-generation interferometer is N times more sensitive than

first-generation one, it can detect a ’standard candle’ N times further away.

The beauty of this is that it operates in all three dimensions and the volume

of space that is searched, and hence the event rate of GW, increases as N3.

Therefore, if an advanced interferometer can achieve a 10× increase in sen-

sitivity, the number of detectable sources increases by a factor of 1000, and

the estimated rate of detection of GWs will go from less than one detection

every year to an average rate of one detection a day! [5]
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Figure 1.2: The blue curve, L1:LSC-DARR ERR, shows the current sensitiv-
ity of Initial LIGO in units of m/

√
Hz, recorded 11th July 2007 at 04:56:07

UTC [9]. The sensitivity is limited by photon shot noise for frequencies >
about 200 Hz.
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180 W

Output Mode
Cleaner (OMC)

Laser

Cleaner (IMC)
Input Mode

PRM

BS

ETM

4 km Fabry−Perot cavities

ETMITM

Signal Recycling
Mirror (SRM)

PD

GW readout

800 kW

2 kW

2 kW4 kW

Figure 1.3: Schematic of a second generation GWI. A power-recycled signal-
recycled Fabry-Perot long-baseline Michelson interferometer, including the
approximate power levels expected in the input laser and interferometer cav-
ities.

A schematic for an advanced GWI is shown in Figure 1.3. It largely

resembles the first-generation GWI and the majority of the improvements to

the device have been highlighted. The improvements targeted for Advanced

LIGO are discussed below and divided into two groups, the first group are

those associated with reducing noise sources not discussed in detail in this

thesis, and the second group are those associated with increasing the number

of photons at the BS and hence decreasing photon shot noise.

• The improvements associated with other noise sources are:

– Better seismic isolation and suspension systems to reduce seismic

motion coupling into the test masses
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– Heavier test masses made of higher quality material to decrease

Brownian thermo-elastic noise and reduce radiation pressure noise.

– An output mode cleaneradded to improve the spatial profile of

any light incident on the PD.

• The improvements associated with decreasing shot noise:

– Increasing the laser power from from 10 W to 180 W [5]

– Increasing the power recycling factor from 30 to 80 [5] to increase

the total stored power in the PRC from 100 W to ≈ 4 kW.

– Adding a signal recycling mirror to enable resonant sideband ex-

traction. In this system, the interferometer is turned into a tun-

able resonant cavity. This is useful for monitoring continuous

sources at known frequencies [10].

As a result of the improvements Advanced LIGO is expected to be sen-

sitive enough to measure strains as small as ≈ 3 × 10−23 [11] in the range

60-300 Hz [5], resulting in an approximately 1000× increase in event rate for

expected sources [11].

1.2.3 Higher stored power leads to wavefront distor-

tion

The increase in optical power, while reducing the shot noise at the BS, also

has some side-effects which adversely affect the interferometer. The high re-

flectivity (HR) coatings, anti-reflection (AR) coatings and optical substrates

absorb a small but finite amount of the optical power in the PRC and the

arm cavities, as illustrated in Figure 1.4. This is particularly significant for

the substrates and the HR and AR coatings of the ITMs, the substrate and

coating of the BS and the HR coating of the ETMs [12].

The absorbed power causes local heating of the optic and results in an

internal temperature gradient. An analytic solution for the temperature
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Arm Cavity
Mode (800 kW)

Power Recycling
Cavity Mode (2 kW)

HR coating

T(r, z)

ITM

AR coating

Figure 1.4: Absorption in ITM causes temperature distribution

distribution, T (r, z), which has not been directly validated, was reported by

Hello and Vinet [13]. The full form of this solution is outlined in Appendix

A.1. The integral of T (r, z) along the z-axis through the optic is also given

there. As discussed by Lawrence [12], the distribution changes the optical

properties in three ways:

1. Thermo-optic effect: the refractive index changes with temperature

and, therefore, there is a change in the optical length along a path S

through the material given by

ψ (r)TO =
dn

dT

∫

S
T (r, z) ds

where dn/dT is the thermo-optic coefficient. This effect is manifested

within the substrate of the optic.

2. Elasto-optic effect: thermal expansion results in mechanical strain which

results in local refractive index changes. The change in optical length
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along a path S through the material is given by

ψ (r)EO ≈ α p1 1

∫

S
T (r, z) ds

where α is the coefficient of thermal expansion and p1 1 is the component

of the elasto-optic tensor along the probe beam polarization axis. This

effect is also manifested within the substrate of the optic.

3. Thermo-elastic effect: The surfaces of the optic expand along the op-

tical axis and the resulting change in optical path length is given by

ψ (r)TE ≈ noptic α
∫

S
T (r, z) ds

where noptic is the refractive index of the optic. It also changes the

curvature of the surfaces, which affects reflection. Obviously, this effect

is also manifested at the surfaces of the optic.

The resulting changes to the mirror properties adversely affect the perfor-

mance of the interferometer, as discussed in the next section.

1.2.4 Advanced GWI: thermally-induced performance

reduction

Essentially, the thermal distortion in the cavity optics scatters power from

the fundamental spatial cavity mode into higher order spatial modes that are

not resonant, as discussed by Strain et al. [14]. This has several effects on

the behaviour of the interferometer.

1. Power scattered out of the carrier mode in the arm and power recycling

cavities reduces the number of photons at the beam splitter.

2. Differential thermal lensing between the two arms of the interferometer

increases the phase noise at the dark port [12] and results in a mismatch

between the overlapping wavefronts at the beamsplitter [14].
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3. Power is scattered out of the RF sidebands whose uses include, but are

not limited to, measurement of the length of the PRC and also, in an

AC readout scheme, readout of the GW signal itself [15].

These effects have been predicted in numerical models of high optical

power cavities and advanced GWI (using the MELODY code [16]) and the

thermal lensing has been shown to ultimately drive the advanced GW inter-

ferometer to failure [12]. It should be noted than these models are predicated

on the assumption that the Hello-Vinet theory is correct.

The problem in a nutshell: the ability to investigate new physics with

advanced GWI is limited, in part, by thermal lensing in the optics of the

GWI.

1.3 Active compensation of absorption-induced

wavefront distortion

1.3.1 Thermal compensation techniques

Compensation of wavefront distortion has been suggested as a solution to

the problem of performance reduction of the interferometer and various tech-

niques have been demonstrated. A brief summary of the suggested techniques

is given below.

• Radiative heating from a shielded heating ring of the areas of a distorted

optic not heated by the cavity mode, as illustrated in Figure 1.5. This

was shown to be effective in reducing the overall distortion in a heated

optic by Lawrence et al. [17].

• Conductive heating of the barrel of a compensation plate in a high

power optical cavity was shown to produce a negative lens and com-

pensate for wavefront distortion in the intracavity optics by Zhao et al.

[18].
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Cavity mode

Aluminium shielding

Heating ring

Transmissive optic

Figure 1.5: Cross-section showing radiative heating from a shielded heating
ring

Compensation Plate

CO   laser + mask2 

Figure 1.6: Staring heating of ITM

• A CO2 laser beam with a specific intensity profile that ’stares’ at a dis-

torted optic, as illustrated in Figure 1.6, has been shown to be effective

in compensating wavefront distortion in Initial LIGO [19].

• A scanning CO2 raster pattern was proposed by Ryan Lawrence [12].

The initial design of Advanced LIGO does not include such an actuator

within the Thermal Compensation System (TCS), but the design is left

open to this installing this option [20].

All of the actuators listed above, however, require an accurate and sensi-

tive wavefront sensor to measure the distortion and compensation, in order
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to function as part of a closed-loop active thermal compensation system.

1.3.2 Wavefront sensor requirements for thermal com-

pensation

The requirements for an accurate and sensitive wavefront sensor for Advanced

LIGO have been investigated by Willems [21]. In Advanced LIGO, “the

extraction efficiency of the GW sidebands through the signal recycling cavity

(SRC) sets the most strigent requirement on TCS”. The maximum acceptable

phase error for the sidebands per round trip is 0.08 radians @ 1064 nm =

13.5 nm. This will ensure that no more than 0.1% of power is scattered out

of the sidebands per round trip, or no more than 5% in total. The following

requirements were therefore set for a wavefront sensor.

1. Sensor should have precision at least 10× better than this = 1.35 nm

(or λ/467 @ 632.8 nm) [21]

2. The spatial resolution must be such as to not miss a feature from a

point absorber [21]. This requires a 1 cm × 1 cm grid to cover a

circular region 224 mm in diameter, approximately 23 × 23 sample

points.

3. The sensor may need to be installed in an off-axis configuration [12].

The current TCS design for Advanced LIGO [20] requires an active ther-

mal compensation system with dedicated wavefront sensors and actuators for

each optic, as illustrated in Figure 1.7.

1.4 Wavefront sensors for TCS

Two types of potential wavefront sensors for TCS are interferometric and

Hartmann-type sensors, the relative merits of which are presented in the

following discussion.
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Figure 1.7: Schematic of initial design for wavefront sensors and TCS for
Advanced LIGO [20]
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An interferometer is capable of functioning as a wavefront sensor when its

output is read by a CCD array. Phase shifting interferometry has achieved

very high accuracy (1 nm) and precision (0.1 nm) [22]. This was accom-

plished by a attaching piezo-electric transducer (PZT) to a mirror in the

reference arm of the interferometer, appyling a sinusoidally varying voltage

to the PZT, and measuring the time-varying interference pattern on the

CCD. The main drawback of an inteferometer is that it is highly intolerant

of mechanical vibrations [23] and alignment issues. Additionally, the inter-

ferometric measurement of phase distortion induced by an object requires

two separate path matched laser beam paths, increasing system complexity.

Hartmann-type sensors, discussed in detail in Chapter 3, can be sum-

marized here as being based upon a geometrical technique that samples the

gradient of the wavefront profile at a series of discrete points. Given that

they only require a single path to measure wavefront distortion induced by

an object, they are relatively insensitive to alignment (in comparison to an

interferometer) and they offer a simpler alternative to interferometry. A

Hartmann sensor has been reported with a precision of 2.1 nm (λ/500 @

1064 nm) [24]. Additionally, commercially available variants called Shack-

Hartmann sensors, also discussed further in Chapter 3, are quoted as having

an accuracy of λ/150 @ 633 nm in an array of 25 × 19 lenslets [25].

The difference in the operation of the two sensors is summarised as fol-

lows: an interferometer measures the difference between two different paths

recorded at the same time and a Hartmann-type sensor measures the dif-

ference between the same path recorded at two different times. Koch et al.

[26] compared a SH sensor and a phase shifting interferometer (PSI) and de-

termined that they had comparable performance. They also suggested PSIs

could be replaced with SH sensors in order to reduce system complexity.

Given the comparable performance of SH and Hartmann sensors, the conclu-

sions of Koch et al. can be assumed to also apply to traditional Hartmamnn

sensors.

Given the existing complexity of GWI design (see Figures 1.3 and 1.7),
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the relative simplicity and promising performance of traditional Hartmann

sensors make them an attractive choice for inclusion in an active thermal

compensation system. As such, they were chosen for further study and de-

velopment, described in this thesis, to determine their suitability for such a

system.

1.5 This thesis

This thesis addresses several of the issues presented in the previous discus-

sion. A verification of the theory of Hello and Vinet that underlies the nu-

merical modelling of advanced GWI, described in Section 1.2.4, is presented

in Chapter 2. This verification was performed in laboratory conditions us-

ing a Mach-Zehnder interferometer as the accuracy and sensitivity of the

Hartmann sensor had not been established at the time of the test. The

development of an ultra-sensitive and accurate Hartmann wavefront sensor,

suitable for measurement of absorption-induced wavefront distortion in ad-

vanced GWI, is described in Chapters 3 and 4. The application of this sensor

to the measurement of wavefront distortion in the input-coupling mirror of

a Fabry-Perot cavity suspended in a vacuum system at the HOPTF is then

presented in Chapter 5. This test was designed to produce a wavefront dis-

tortion similar to that expected in Advanced LIGO and is the first direct

measurement of absorption-induced wavefront distortion in a GWI-like envi-

ronment. Finally, the use of the HWS for single-view tomographic analysis

of axially symmetric temperature distributions is described in Chapter 6.

The overall effectiveness of the Hartmann wavefront sensor for measurement

of thermal lensing in advanced GWI and potential future developments are

summarised in Chapter 7.
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Chapter 2

Interferometric test of

Hello-Vinet model

2.1 Background

The analytical models for coating and substrate absorption-induced wave-

front distortion (WD), published by Hello and Vinet [13], are used in the

MELODY code which is used to model the behaviour of advanced gravita-

tional wave interferometers. These time dependent models have not been

validated however. Nevertheless, some aspects of WD theories have been in-

vestigated experimentally. Mansell et al. [27] measured absorption-induced

wavefront distortion in a test sample, but compared the result to an simpler

model proposed by Strain et al. [14] that does not include boundary condi-

tions or any axial or temporal information. Lawrence et al. [17] verified the

steady-state coating absorption analytic model by heating a cylindrical test

optic with a CO2 laser beam with a Gaussian profile. The temporal model

of Hello and Vinet was indirectly validated by Zhao et al. [18] when they

induced a thermal lens in one the mirrors of a Fabry-Perot optical cavity

and observed its effect on the cavity mode. However, no direct validation

with a wavefront measurement of either the coating or substrate temporal

Hello-Vinet models, or the substrate steady-state Hello-Vinet model have

19



20 CHAPTER 2. INTERFEROMETRIC TEST OF H-V THEORY

diameter

height

Gaussian heating beam

Glass test optic

Figure 2.1: A cylindrical test optic exposed to a Gaussian beam expected to
absorb optical power in the substrate and produce a wavefront distortion as
described by Hello and Vinet

been performed to date.

2.2 Objective

The aim of this chapter, therefore, is to describe a bench-top test of the

temporal and steady-state Hello-Vinet model for substrate absorption using

a glass test optic, as depicted in Figure 2.1, which produces a wavefront

distortion that is similar in magnitude to that expected in Advanced LIGO

and satisfies the assumptions of Hello and Vinet (H-V). The design and choice

of the test optic is discussed in Section 2.3. The system used to produce

the wavefront distortion and its measurement using a Mach-Zehnder (MZ)

interferometer are described in Section 2.4. The results of the measurement

are reported in Section 2.5.

2.3 Design and choice of test optic

Why is this objective difficult to meet? The primary difficulty in this exper-

iment is creating an absorption-induced distortion in the test optic that is
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measurable on a benchtop with, ideally, an amplitude similar to Advanced

LIGO. A secondary difficulty is controlling the experiment and environment

such that the signal is capable of being measured by an interferometer.

2.3.1 Design

The size of the volumetric-absorption-induced wavefront distortion expected

in Advanced LIGO across the width of the cavity mode is, to first order,

approximately λ, where λ = 1064 nm. This is determined using the formulae

of Hello and Vinet (H-V) and knowing the power incident on the 20 cm

thick fused silica optics in Advanced LIGO is of the order of 2 kW, the

expected volumetric absorption in these optics is of the order of 50 ppm per

cm [28] [29] (giving a total absorbed power of approximately 2 Watts) and

the thermo-optic coefficient, dn/dT , is approximately 6 × 10−6.

The maximum power available in the Gaussian beam for this benchtop

test was 500 mW @ 1064 nm. In order to produce a distortion of similar

size to Advanced LIGO, it was necessary to find a material with a higher

coefficient of volumetric absorption, α, than the fused silica used in Advanced

LIGO. Additionally, this coefficient could not be so large that the Hello-Vinet

assumption of constant optical flux along the optical axis was no longer valid;

a concern that is addressed in Section 2.3.3.

2.3.2 Choice of material

Filter glasses typically have a well-defined absorption spectrum and are avail-

able with many different values of volumetric absorption @ 1064 nm.

Schott BG20 filter glass [30] was chosen because the volumetric absorption

@ 1064 nm (0.33% per mm) was large enough to produce a thermal lens

approximately 10% - 20% of the size expected in Advanced LIGO, but not

so large as to completely negate the assumption in Hello-Vinet of uniform

optical flux through the material, as discussed in Section 2.3.3. The thermal

conductivity was not specified, but was expected to be in the range 0.9−1.05
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Property Value

Diameter 65.0 mm
Average Height 29.1 mm
Heat capacity 727 J kg−1K−1 [31]
Density 2848 ± 0.5 kg m−3 (measured)
Thermal conductivity 0.9 − 1.05 W m−1K−1 @ 18◦C [31]
Emissivity 0.9 [35]
Volumetric absorption 0.33% mm−1 (measured)

Table 2.1: Properties of the BG20 glass cylinder used for measuring absorp-
tion induced wavefront distortion

W m−1K−1 @ 18◦C [31] because of its chemical composition (50-60% SiO2, 11-

20% Na2O, 11-20% Pr:Nd, 1-10% B2O3, 1-10% BaO [32]). The thermo-optic

coefficient, dn/dT , is typically in the range 1-6 ×10−6 [33] [34]. Accurate

knowledge of this coefficient is not required, however, as the Hello-Vinet

theory was tested using the temporal development of the shape of the thermal

lens, as discussed in more detail in Section 2.4.1.

Two cylinders of BG20 glass were cut and polished. The first had a

diameter-to-length ratio (65 mm : 20 mm) similar to that for an Advanced

LIGO fused silica mass. The second was 9.1 mm thicker in order to absorb

more power and produce a larger thermal lens. This latter cylinder is de-

picted in Figure 2.2 and its relevant properties are listed in Table 2.1. This

cylinder was used as the glass test optic (GTO) in the wavefront distortion

experiment.

2.3.3 Comparison of induced WD with H-V predici-

tion

The H-V model assumes that the optical flux and beam-size are uniform

along the optical axis. In reality, the intensity, I, at any point along the

optical axis is given by
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Figure 2.2: Schott BG20 filter glass cylinder. The absorption spectrum is
such that the glass appears pink under natural or incandescent light and
appears green under florescent light; hence the pink edges where the camera
flash is illuminating the material and the green transmission in the upper left
hand side. The twisted wire around barrel of the glass cylinder is attached to
a temperature probe that was not used in the experiment described in this
chapter.
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I (z) = Iinc exp (−α z)

= Iinc

(

1 − α z +
(α z)2

2
− ...

)

≈ Iinc for α z << 1

where Iinc is the incident intensity. For Advanced LIGO, the assumption

α z << 1 is valid. For larger α, such as in this experiment, higher order

terms are required to maintain accuracy in a Taylor-series expansion of the

absorbed intensity, for example:

Iabs (z) ≈ α Iinc (1 − α z) .

The effect of this z dependence on the absorption-induced WD was modelled

using a finite element simulation, a variant of the one described in Appendix

B.3, and compared to the predictions of H-V. Two H-V scenarios were mod-

elled using the parameters listed in Table 2.1. In the first simulation, the

volumetric absorption was 0.33% mm−1, the same as that in the BG20 glass.

In the second simulation, the absorption was 1000× smaller than this. The

incident power was adjusted in the second simulation such that the total

absorbed power was the same as that in the first simulation. Note that the

simulation code described in Appendix B.3 assumed constant flux through-

out the glass, whereas the code for these simulations assumed an exponential

decrease in the flux as it was absorbed by the glass. The code used for these

simulations is identical in all other respects to the code in Appendix B.3.

The results from the finite-element model: the temperature distribution

along the z-axis and the total WD are shown in Figure 2.3 a) and b), re-

spectively. Also shown are the magnitude of the differences between the

high-absorption and low-absorption scenarios. As expected, there is a slight

variation in the temperature distribution with the high-absorption coefficient

scenario being slightly warmer toward the input face (h = −14.5 mm). The
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(a) Axial temperature (b) Radial WD

Figure 2.3: Predictions of the finite element model of absorption-induced
WD: a) Temperature along cylindrical axis for low-absorption (blue curve)
and high-absorption (red curve) coefficient scenarios. The green curve shows
30 × the difference between the two results. b) Radial WD (dn/dT × inte-
grated temperature distribution) as a function of radius. The actual absorp-
tion curve (red) lies on top of the low absorption curve (blue). The green
curve shows 1000 × the difference between the two.

difference in the overall WD is negligible. Hence the BG20 glass cylinder is

appropriate for testing the H-V wavefront distortion equation.

2.4 Measurement and analysis of wavefront

distortion in test optic

In this section, I start by describing the system used to produce the WD in the

glass test optic (GTO), then I describe the measurement of the WD using

a Mach-Zehnder interferometer and finally the analysis of the interference

pattern.
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2.4.1 Multiple heating beam sizes

The heating beam size is one of the easiest1 parameters in the H-V solution

to vary so as to change the size and shape of the expected wavefront distor-

tion. As a result, the experiment was designed to be run with three different

heating beam sizes and all other parameters kept constant to provide a more

rigorous test of the Hello-Vinet solution. Additionally, this allowed one of

the measurements to be used to calibrate the thermo-optic coefficient, since

the absolute size of the wavefront distortion predicted by Hello-Vinet is di-

rectly proportional to the thermo-optic coefficient and this was not precisely

known.

2.4.2 Experiment design

Figure 2.4 illustrates the experiment used to make an interferometric mea-

surement of absorption induced WD in a cylindrical transmissive test mass.

The 65.0 mm × 29.1 mm BG20 glass test optic was mounted on four small

point contact sapphire balls to reduce conductive cooling and placed in a

tent to reduce convective cooling so radiative cooling was the dominant heat

loss mechanism.

A Mach-Zehnder (MZ) interferometer was created with a HeNe laser beam

(λ = 632.8 nm) with the object and reference beams expanded to 75mm and

50mm by telescopes T2 and T3, respectively. The object and reference beams

had intensity profiles Iobj and Iref , respectively. The object beam was directed

along the axis of the BG20 glass, demagnified by 4× by telescope T4 and then

recombined with the reference beam by beamsplitter BS2. The interference

pattern of the two beams at the exit plane of the glass test optic was imaged

onto the CCD by lens L1 and a PC recorded the digital output from the

CCD.

A mirror in the reference arm was tilted slightly, by an angle ∆θx, to

introduce a carrier signal in the interference pattern, as required by the

1The easiest parameter to vary is the incident power, but the only effect of this is to
scale the wavefront distortion without varying the shape.
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Fourier analysis described in Section 2.4.4. The analytic expression for the

central horizontal cross-section interference pattern between the two beams,

Iint (x), is thus given by

Iint (x) = Iobj + Iref + 2
√

Iobj Iref cos
[

2π

λ
(ψ (x) + ∆θx x)

]

(2.1)

where ψ (x) is the wavefront distortion introduced by the BG20 glass.

The laser beam from the Innolight 500 mW 1064 nm Mephisto NPRO [36]

was passed through the PC-controlled shutter, S1, expanded by a telescope

(T1) and directed along the axis of the BG20 glass cylinder. Immediately

before the BG20 glass, the 1064 nm and 632.8 nm beams were combined by

a dichoric beam splitter (DCBS) which reflected 1064 nm and transmitted

632.8 nm. After the BG20 glass, the 1064 nm beam was absorbed by an

infra-red filter (IRF) that allowed visible light to pass through.

The telescope T1 was made using 150 mm and 50 mm lenses. The exper-

iment was repeated three times, varying the configuration of T1 each time to

change the heating beam size to test more rigourously the Hello-Vinet theory,

as discussed in Section 2.4.1. The telescope configurations were varied:

1. 150 mm lens then 50 mm lens: heating beam 1/e2-radius ≈ 1.1 mm at

the exit plane of the GTO.

2. No telescope: heating beam 1/e2-radius ≈ 5.8 mm at the exit plane of

the GTO.

3. 50 mm lens then 150 mm lens: heating beam 1/e2-radius ≈ 10.6 mm

at the exit plane of the GTO.

In the second configuration (no telescope), the heating beam propagated

a distance of approximately 2.5 m from the NPRO to the GTO without

passing through any intervening lenses. The waist size of the heating beam at

the NPRO was approximately 150µm. Hence, the beam was not completely

collimated at the GTO because of the natural divergence of a Gaussian beam.

However, the width varied by only 1-2% over the length of the glass test
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CCD

T1

T2
DCBS

L1

T3

T4

S1

10mW HeNe

500mW NPRO

λ/2

PBS

BD

GTO

BS1

BS2 IRF

reference beam

object beam

Figure 2.4: Schematic of experiment to measure thermal lensing in a cylin-
drical test optic. The output of a 500 mW 1064 nm laser is passed through a
half-wave plate, λ/2, and a polarizing beam splitter (PBS) and is incident on
a shutter S1. When the shutter is open, the beam passes through a telescope
and is transmitted through the BG20 glass test optic (GTO). The remainder
of the beam is absorbed by an IR filter, IRF, in front of the CCD. The output
of a 10 mW HeNe laser is the input to a Mach-Zehnder interferometer, the
object arm of which contains the BG20 optic. The object and reference arms
are expanded by telescopes, T2 and T3, respectively. The object arm was
demagnified by telescope T4 and recombined with the reference arm at the
second beamsplitter, BS2. The interference pattern at the exit plane of the
glass test optic was imaged onto the CCD with lens L1. A dichroic beam
splitter, DCBS, immediately before the glass test optic was used to combine
the two different wavelengths.
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optic. This Gaussian divergence is also the reason that the beam size in

configuration 2 was not 3× the beam size in configuration 1 and the beam

size in configuration 3 was not 3× the beam size in configuration 2.

The flux of the 632.8 nm laser beam was at least 100× smaller than the

1064 nm laser beam in configuration 3 and over 10,000× smaller in config-

uration 1. Additionally, the absorption of the 632.8 nm light in the BG20

glass is of the same order of magnitude as the absorption of the 1064 nm

light [30]. As such, the thermal lensing due to the absorption of the HeNe

was not considered.

2.4.3 Measurement procedure

1. Adjust T1 and DCBS to direct an approximately collimated 1064 nm

beam along the axis of the glass test optic. [1064nm ON, 632.8nm

OFF].

2. Adjust λ/2 plate so that most of the 1064 nm is reflected from the

polarising beam splitter (PBS) into the beam dump (BD). Remove

IR filter (IRF) and open shutter. Record an image of the beam size.

[1064nm Low Power, 632.8nm OFF].

3. Close shutter and adjust λ/2 plate so that all the power is transmitted

through the PBS onto S1. [1064nm ON & Blocked, 632.8nm OFF].

4. Place an object of known size at the exit plane of the glass test optic.

Measure the size of the image of the object on the CCD to determine

the magnification. [1064nm Blocked, 632.8nm ON]. Remove the object

of known size.

5. Start to record the interference patterns between the object and refer-

ence beams, Iint (x, ti), at times ti, at a rate of 10Hz. At this stage i is

designated as negative (i < 0) and these patterns are used to determine

the rms background noise. [1064nm Blocked, 632.8nm ON].
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6. Use the PC to open the shutter and allow the 1064 nm onto the glass

test optic. This designates the time t0 = 0 s of the zeroth interference

pattern. [1064nm ON, 632.8nm ON].

7. Continue to record interference patterns (i > 0) on the CCD at a rate

of 10Hz. The ith pattern, recorded at time ti, is designated Iint (x, ti).

[1064nm ON, 632.8nm ON].

8. The last and M th pattern, designated tM , is the first one recorded after

t = 1000.0 s. [1064nm ON, 632.8nm ON].

2.4.4 Analysis of MZ interference patterns

The following is a summary of phase profile extraction from the MZ inter-

ference patterns using Fourier transforms, described in detail by Malacara

[37]. This discussion begins with the interference pattern at time ti due to

a wavefront distortion ψ (x, ti) with no tilt angle, ∆θx, between the object

and reference beams:

Iint (x, ti) = Iobj:ti + Iref:ti + 2
√

Iobj:ti Iref:ti cos
[

2π

λ
ψ (x, ti)

]

(2.2)

where Iobj:ti is the intensity profile of the object beam, Iobj:ti is the intensity

profile of the reference beam and ψ (x, ti) is the absorption-induced wavefront

distortion to be extracted. Equation 2.2, can be rearranged as a sum of

complex exponential terms

Iint (x, ti) = g (x, ti) + hψ (x, ti) + h∗ψ (x, ti) (2.3)

where

g (x, ti) = Iobj:ti + Iref:ti (2.4)

is the background intensity in the interference pattern and



2.4. MEASUREMENT AND ANALYSIS OF WD 31

hψ (x, ti) =
√

Iobj:ti Iref:ti exp
[

i
2 π

λ
ψ (x, ti)

]

(2.5)

is the complex form of the fringes in the interference pattern induced by the

wavefront distortion in the object arm of the interferometer.

The Fourier transform, S (fx, ti), of the interference pattern is thus

S (fx, ti) =
∫ +∞

−∞

Iint (x, ti) e
i fx x dx

= G (fx, ti) +Hψ (fx, ti) +H∗

ψ (fx, ti) (2.6)

where G (fx, ti), Hψ (fx, ti) and H∗

ψ (fx, ti) are the Fourier transforms of

g (x, ti), hψ (x, ti) and h∗ψ (x, ti), respectively. For the discrete intensity data

from the CCD, this is done using a discrete FFT. In IDL, the code is:

Fw = FFT(Iint)

The spectral components, Hψ (fx, ti), of the intensity-encoded phase infor-

mation in hψ (x, ti) and the spectral components of the background intensity

distribution, g (x, ti), are both centered around fx = 0 and are therefore

indistinguishable. Separation of these signals into two distinct peaks in fre-

quency space is achieved by frequency shifting one signal with respect to the

other.

To achieve such a frequency shift, a linear carrier signal, 2π (f∆θx
x),

where f∆θx
= ∆θx/λ, is applied to the interference pattern by tilting a mirror

in the reference arm so that the angle between object and reference beams

becomes ∆θx. The complex representation of the fringes becomes

hc (x, ti) =
√

Iobj:ti Iref:ti exp
[

i
2 π

λ
(ψ (x, ti) + ∆θx x )

]

= hψ (x, ti) exp [i 2π f∆θx
x]

and the interference pattern becomes
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Iint (x, ti) = g (x, ti) + hc (x, ti) + h∗c (x, ti)

= g (x, ti) + hψ (x, ti) exp [i 2π f∆θx
x] + h∗ψ (x, ti) exp [−i 2π f∆θx

x] .

An example of such an interference pattern measured by the interferometer

is shown in Figure 2.5 a).

The Fourier transform, Hc (fx, ti), of hc (x, ti) can be determined using

the Fourier transform of the Dirac delta function

g (x) = exp [−i 2π f0 x] ⇒ G (f) = δ (f − f0)

and the Convolution Theorem

F {g (x) h (x)} = G (f) ∗H (f)

=
∫ +∞

−∞

G (α) ×H (f − α) dα,

where F {g (x) h (x)} denotes the Fourier transform of g (x) × h (x), giving

Hc (fx, ti) = Hψ (fx − f∆θx
, ti) (2.7)

and the Fourier transform of the interference pattern becomes

Sc (fx, ti) = G (fx, ti) +Hψ (fx − f∆θx
, ti) +Hψ (fx + f∆θx

, ti) .

The spectral components, Hψ (fx, ti), of the intensity-encoded phase infor-

mation in hψ (x, ti) are thus centered around f∆θx
, as illustrated by the am-

plitude spectrum in Figure 2.5 b). The spectral components of the phase

information, the two lobes at ±f∆θx
, are now clearly separated from the

spectral components of the background intensity, G (fx, ti), centered around

zero.

A band-pass filter, illustrated in Figure 2.6 a), is applied to one of the off-

set lobes to select the interference fringes and remove high spatial frequency
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(a) Interference pattern cross-section (b) FFT of interference pattern

Figure 2.5: Demonstration of phase extraction from interference pattern a)
Original interference pattern, b) FFT of interference pattern.

noise. That lobe is then demodulated to zero frequency by f∆θx
as illustrated

in Figure 2.6 b). The minimum width of the band-pass filter was determined

by applying this analysis to the H-V model with the BG20 parameters and a

heating beam width of 1.1 mm. The result of filtering the H-V signal with too

narrow a bandwidth is a smoothing of the WD and the loss of high-frequency

information and is illustrated in Figure 2.7 a). Shown in Figure 2.7 b) is the

result of filtering the H-V with the bandwidth used in this experiment: there

is virtually no smoothing of the signal.

The filtering and demodulation of the discrete data, using a full band-

width of 70 spatial frequency units2 as in Figure 2.7 b), was done in IDL

using the following code:

bandwidth = 35.0

filter = exp(-2 * ((freq - fxc)/bandwidth)^8 )

Fw_filt = filter * Fw

Fw_demod = SHIFT(Fw_filt, fxc)

where freq is an array of indices corresponding to the spatial frequencies and

2If the interference pattern is sampled at N points with an interval of ∆x, then the
spatial frequency unit of the complex values returned by the FFT is 1/(N ∆x). In this case,
N = 1024 and ∆x = 12 µm is the width of one pixel and hence the sampling frequency
unit is 0.0814 mm−1.
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(a) Super-Gaussian bandpass filter (b) Demodulation of carrier signal

Figure 2.6: a) Super-Gaussian bandpass filter, b) Demodulation of filtered
carrier signal in frequency space. The dashed curve is the original signal and
the solid curve is the demodulated signal.

(a) Fullwidth of filter = 10 frequency units (b) Fullwidth of filter = 70 frequency units

Figure 2.7: a) Image filtering of sharpestH-V signal with bandwidth of 10
spatial frequency unit. b) Image filtering with bandwidth of 70 spatial fre-
quency units. Original signal (red), filtered signal (blue) and a) magnitude
of the difference (green) and b) 10× the magnitude of the difference (green).
1 spatial frequency unit = 1/(1024 × 1 pixel) = 0.0814 mm−1.
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Figure 2.8: The reconstructed and filtered phase profile is given by the arc-
tangent of the inverse FFT yields of the demodulated and filtered carrier
signal.

fxc is the index of one of the offset lobes. The function SHIFT(x, n) moves

all the values along in the array x by n units, which is the digital equivalent

of demodulation. Note that the filter is a super-Gaussian, exp
[

− (fx/∆fx)
8
]

.

After the filtering and demodulation, the inverse Fourier transform is

applied using

hWD_filt = FFT(Fw_demod, /INVERSE)

to yield hWD,filt (x). The phase profile is extracted by taking the arctangent

2π

λ
ψ (x) = arctan

{

Im (hWD, filt (x))

Re (hWD, filt (x))

}

an example of which is illustrated in figure 2.8 a). The range of the arctangent

function is {−π,+π} and hence the return value 2π
λ
ψ (x) is ”wrapped”

between these values. Unwrapping and extracting ψ (x) is a straightforward

process that is not described here.

The wavefront distortion in the ith pattern, at time ti, relative to the

zeroth pattern, at time t0 = 0 s, WDti (x), is given by
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WDti (x) = ψti (x) − ψt0 (x) (2.8)

Once the wavefront distortion was found the residual tilt/prism in the x

and y directions was removed.

2.5 Results

2.5.1 Background noise

The rms background noise was determined by measuring the temporal fluctu-

ations in the interference patterns before the shutter was opened, Iint (x, ti)

with i < 0 in Step 5, using the Fourier analysis described above and was

approximately λ/150 for λ = 632.8 nm.

2.5.2 Temporal development of measured wavefront

distortion

The measured wavefront distortion profiles at times t = 2.5 s, 8.5 s, 29.2 s and

100.0 s and for beam sizes ω = 1.1, 5.8 and 10.6 mm are plotted in Figures 2.9

and 2.10. The quasi-steady state at t = 100.0 s, in Figure 2.10 b), shows good

agreement with the H-V predicted profile for which a thermal conductivity

of 0.98 W m−1 K−1 was used. The measured profiles at the remaining times

appear to have the same shape as the predicted profiles within the region of

the heating beam albeit with marginally reduced magnitudes.

To illustrate the diffusion of heat through the material, the optical path

difference between the center and x = ±GTO diameter/4 = 16.25 mm for the

measurements and the Hello-Vinet prediction is shown in Figure 2.11 a). The

temporal evolution of the OPD for ω = 1.1 mm was used to determine the

best-fit value of thermal conductivity, giving 0.98 W m−1 K−1. As it has

been used to fit a parameter, the red plot in Figure 2.11 a) cannot be used

to validate the model. The data for the w = 5.8 mm and 10.6 mm agree
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(a) t1 = 2.5 s

(b) t2 = 8.5 s

Figure 2.9: The wavefront distortion measured by the interferometer when
the test mass was heated with a laser beam of three different beam sizes:
w = 1.1 mm (red), w = 5.8 mm (blue), w = 10.6 mm (green). The results
were recorded at time t1 from when the shutter was opened, where a) t1 = 2.5
s, b) t1 = 8.5 s. Note the different vertical scales on the figures. The black
lines show the prediction of H-V for each beam size.
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(a) t1 = 29.2 s

(b) t2 = 100.0 s

Figure 2.10: The wavefront distortion measured by the interferometer when
the test mass was heated with a laser beam of three different beam sizes:
w = 1.1 mm (red), w = 5.8 mm (blue), w = 10.6 mm (green). The results
were recorded at time t1 from when the shutter was opened, where a) t1 =
29.2 s, b) t1 = 100.0 s. Note the varying scales on the figures. The black
lines show the prediction of H-V for each beam size.
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reasonably well with the H-V prediction.

To illustrate the development of a thermal lens, the average defocus across

a beam width (calculated from the measured WD) and the H-V prediction

of the development of the defocus is plotted in Figure 2.11 b). There is good

agreement between the temporal development of the measured and predicted

thermal lenses for beam sizes ω = 1.1 mm and 5.8 mm and reasonable agree-

ment for the very weak thermal lens when ω = 10.6 mm.

These measurements show good agreement with the predictions of Hello

and Vinet for longer times, however, there are small systematic differences

between the predictions and the measurements. These discrepancies are most

obvious in the central sections of the wavefront distortion profiles in Figures

2.9 a) and b) and Figures 2.10 a) and also in the blue curve in Figure 2.11

a) and, to a lesser extent, the green curve in Figure 2.11 b). It appears

from Figures 2.9 and 2.10 that there is less thermal lensing than expected

at earlier times. It is unlikely that this was due to less laser power/heating

at earlier times as the intensity of the NPRO was observed to be very stable

with time. A possible explanation is that, given the test optic is in a tent to

minimize air currents and not a vacuum to eliminate them, there is a small

amount of convective cooling of the glass test optic - a cooling mechanism

not included in the Hello-Vinet model.

2.6 Conclusion

This chapter has described an interferometric measurement, with a precision

of λ/150 for λ = 632.8 nm, to validate the formula of Hello and Vinet. A

completely independent evaluation proved to be difficult because the value

of thermal conductivity of the test material was not known well enough

and had to be determined from one of the measurements. The remaining

measurements show good agreement with the predictions of Hello and Vinet.

It is possible that the small deviations from the predicted results are due to

convective cooling of the glass test optic.
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(a) OPD at wi

(b) Defocus at wi

Figure 2.11: a) The optical path difference between x = 0 and x =
diameter/4 measured by the interferometer and the predicted result from
Hello-Vinet and b) the average defocus across the heating beam width and
the predicted result from Hello-Vinet. In both plots the three different beam
sizes are w = 1.1 mm (red), w = 5.8 mm (blue), w = 10.6 mm (green) and
the H-V predictions are the corresponding black curves.
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The validation of the H-V model presented in this chapter increases the

confidence in the validity of numerical models of GWI, such as MELODY [16],

that employ the Hello-Vinet model, within the limitation of the systematic

error discussed. A more strenuous validation of the Hello-Vinet theory would

be possible with a stronger laser source, which would allow one to use a more

precisely characterized test optic, and construction of the experiment in a

vacuum chamber to eliminate convective cooling. Additionally, one could use

a Hartmann wavefront sensor, the construction and development of which is

described in the following chapter.
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Chapter 3

Hartmann wavefront sensor -

development

3.1 Introduction

The Hartmann Wavefront Sensor (HWS) was first used in 1900 [38] as a

way to measure aberrations in spherical mirrors and has since then been

applied to many more general wavefront sensing applications. Its popularity

has dramatically increased in recent years due to the incorporation into its

design of cheap and fast solid-state arrays [39]. This chapter discusses the

operation of the HWS and describes its development for measuring thermal

lensing in advanced Gravitational Wave Interferometers.

Section 3.2 begins by describing several applications of Hartmann-type

sensors to familiarise the reader with the scenarios in which they can be

used. The basic physics and operation of a HWS are described in Section

3.2.2 and potential configurations of a HWS in an experiment are discussed

in Section 3.2.3. With the basic physics and operation covered, variants

of the standard Hartmann theme are described in Section 3.2.4, including

the popular Shack-Hartmann sensor. The suitability of these variants for

measuring thermal lensing in GWIs is contrasted with the traditional HWS.

Lastly, a short description of potential temperature induced limitations is

43



44 CHAPTER 3. HARTMANN SENSOR DEVELOPMENT

described in Section 3.2.5.

The development of the HWS for an advanced GWI is described in Section

3.3. The design of the hardware components (the light source, the Hartmann

plate and the CCD) and the noise sources associated with these components

are described in Sections 3.3.1 to 3.3.3. The software components (the cen-

troiding and wavefront reconstruction algorithms) and the errors associated

with these components are described in Sections 3.3.4 and 3.3.5. Finally, the

total accumulated noise and error in the sensor are discussed in Section 3.3.6.

3.2 Hartmann sensor basics

3.2.1 Applications of the Hartmann sensor

The original purpose of the Hartmann sensor was to characterise aberrations

in curved mirrors as illustrated in Figure 3.1 ( reproduced from Ghozeil

[40]). In this figure, a light source illuminates a plate containing a series of

apertures, the Hartmann plate (HP), that is directly in front of a test optic

(in this case, a mirror). The rays from the apertures are reflected from the

mirror and are incident on a photographic plate forming a pattern of spots.

The displacements of the spots, from the positions expected for an ideal optic,

reveal the aberrations in the mirror. This process of characterizing reflective

or transmissive optics with a HWS has been used since 1904 [41] [42] [43]

[44] [45] [26] [46] [47]. Note that the light from the source that reflects off

the mirror is often referred to as a “probe beam”, a label that is used often

in the latter parts of this chapter.

Of the myriad of other applications of Hartmann-type sensors, a partic-

ularly salient one for this thesis is the measurement of thermal lensing in

optics. It is interesting to note that one might consider this application to

be quite old; Plaskett employed a Hartmann sensor in 1920 to determine

the change in the optics of a 72-inch mirror due to temperature [48]. More

recently, Mansell et al. [27] measured the effect on laser beam quality with

a Shack-Hartmann wavefront sensor with a reproducibility of λ/100 @ 633
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Test optic

Hartmann plate

Light source

Photographic plate

Figure 3.1: The original Hartmann test. A light source illuminates a Hart-
mann plate that is directly in front of a test optic. The resulting rays are
reflected onto the photographic plate, forming a pattern of spots. Aberra-
tions in the spot pattern reveal the aberrations in the test optic. Reproduced
from Ghozeil [40]

nm. Also, Lawrence et al. [17] described a measurement of a radiative ther-

mal corrector designed to compensate thermal lensing induced in an optic by

absorption of a Gaussian beam. Lawrence et al. used a Wavefront Sciences

CLAS-2D Shack-Hartmann sensor with a sensitivity of approximately λ/100

@ 633 nm [25]. While these examples illustrate the application of Hartmann

sensor technology to thermal lensing problems, the sensors that were used

do not meet the sensitivity requirement for use in Advanced LIGO (better

than λ/470 @ 633nm) established in Section 1.3.2.

Hartmann type sensors have also been used in:

• Adaptive optic systems in large ground-based optical telescopes [49]

[50] [51] [52]. Light from stars and other stellar bodies accumulates

phase aberrations upon passage through atmospheric turbulence. The

resolution of telescopes viewing this light has been improved by mea-

suring the aberrations using Shack-Hartmann sensors and actuating

upon the telescopes’ optics to compensate for the effects.

• Ophthamology. Modified Hartmann tests have reflected rays off an

aberrated cornea have been used to measure its topography [53] [54].
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• The characterization of laser-beam parameters, such as M2, divergence

and beam widths [55] [56].

• The automatic alignment of a synchrotron beamline using a Hartmann

sensor (operating at 0.414 nm) has been demonstrated at the SOLEIL

synchrotron in France [57].

• The triangulation of a point-like source [58].

3.2.2 Overview of Hartmann sensor

Stated simply, a Hartmann sensor measures the change in the gradient of a

wavefront relative to a reference wavefront. The gradient change is numer-

ically integrated to give the wavefront change. The following description of

the operation of a Hartmann sensor is a summary of the original Hartmann

papers [38] [59] and the work by Ghozeil [40].

A Hartmann sensor consisting of an opaque plate containing an array of

apertures and an intensity recording medium is shown in Figure 3.2. Origi-

nally, the recording medium was a photographic plate, but it is now almost

exclusively a solid-state photo-sensitive array. The basic operation of a Hart-

mann sensor can be described succinctly by:

1. The wavefront, W′, or wavefront change, ∆W = W′ − W, to be mea-

sured is incident on the Hartmann plate (HP) which divides it into a

set of rays, known as Hartmann rays.

In a traditional Hartmann sensor the apertures are simply

holes in a screen from which the rays diffract. There are a

variety of commonly used arrangements of apertures: radial

patterns [60], square arrays, or hexagonally closed-packed ar-

rays. The process of optimizing the apertures in the Hart-

mann plate for measuring thermally-induced wavefront dis-

tortion in GWIs is discussed in Section 3.3.2.
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Figure 3.2: An aberrated wavefront W′ is incident on a Hartmann plate
(HP). The resulting rays propagate a distance L, normal to the wavefront,
and are incident on a CCD. The spot position, x′i, is determined by the
centroid of that spot’s intensity profile. The reference spot positions, xi,
(either measured using a non-aberrated wavefront, W or calculated using
the hole positions in the HP) are indicated by the intersection of the dotted
lines and the CCD. The gradient of the wavefront at the ith aperture is given
by the displacement, ∆xi, from the reference position divided by L.
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2. The rays propagate a known distance L, normal to the wavefront, and

are incident on the CCD.

The process of optimization of L is also discussed in Section

3.3.2. The lever arm needs to be accurately known in order

to prevent systematic errors in the gradient of the wavefront

change. Fortunately, it can be calibrated by measuring an

accurately known gradient as demonstrated in Section 4.2.

3. The pattern of spots on the CCD is recorded as a digital image.

An example image of a recorded pattern of spots is shown in

Figure 3.3. The operation of the CCD, the digitization and

the noise are discussed in Section 3.3.3.

4. The position of the ith spot, x′i, is determined by a centroiding algo-

rithm.

The optimization of centroiding algorithms is discussed in

Section 3.3.4.

5. The displacement of each spot, ∆xi, from a previously measured refer-

ence position, xi, for wavefront W is calculated.

6. The gradient of the wavefront change is calculated using

∂∆W

∂x
=

∆xi
L

The angle between the ith Hartmann ray and its reference ray

is equal to the displacement, ∆xi divided by the lever arm,

L. Rayces [61] showed that this angle is approximately pro-

portional to the gradient of the wavefront aberration. Figure

3.4 shows an aberrated wave-front PC and a spherical ref-

erence wavefront SC of radius R centered at Q. The wave-
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(a) Hartmann spots on a CCD

(b) Hartmann spots - closer view

Figure 3.3: a) An example of a Hartamnn spot pattern and b) a closer view
of some of the spots.
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front change (aberration), ∆W, is defined as the distance PS.

Rayces determined the following relation:

∂∆W

∂x
= − |QT |

|QS| − ∆W
(3.1)

which can be simplified to

∂∆W

∂x
≈ −∆x

L
(3.2)

if one assumes L ≪ R and ∆W ≪ L. For absorption-induced

wavefront distortion in GWIs, ∆W ≈ 10−7 m, L ≈ 10−2 m

and the reference wavefront is approximately flat (R ≈ ∞).

That is, these assumptions and thus Equation 3.2 are valid.

7. The wavefront change, ∆W, is calculated by integrating the discrete

gradient field.

The techniques used to integrate the field and the propagtion

of errors in the integration are based largely on the work of

Southwell [62] and are discussed in Section 3.3.5.

3.2.2.1 Absolute or differential operation

In a conventional HWS, an absolute measurement of that wavefront can

be made by comparing the measured spot positions with the reference spot

positions (Step 5) which are determined using the positions of the holes in the

Hartmann plate, typically known with an accuracy of ±1µm. Alternatively,

the positions of those holes could be calibrated by illuminating the HWS

with a flat wavefront and measuring the spot centroids on the CCD - except

that the flatness of this wavefront must be verified with another method. The
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Figure 3.4: Reference sphere SC and wave-front PC (propagating to the
right), QS = QC = R, PS = ∆W. Reproduced and revised version of the
figure from Rayces [61].
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uncertainty of the absolute positions of the reference spots therefore limits the

accuracy of the HWS when used in the conventional absolute measurement.

For absorption-induced wavefront distortion in GWI, however, one is in-

terested only in the differential wavefront change, ∆W, from an undistorted

wavefront. The reference spots produced by the undistorted wavefront at

an earlier time are measured accurately by the sensor. This removes a po-

tential systematic error and allows much greater accuracy. All of the HWS

measurements within this thesis are differential.

3.2.3 Hartmann plate - CCD configurations

When measuring the wavefront change in a large diameter beam, some de-

magnification of the beam is necessary to fit the region of interest onto the

CCD of the HWS. For example, the wavefront sensor in Advanced LIGO

must probe a 224 mm diameter region (see Section 1.3.2). In order to fit this

onto a 12 mm × 12 mm CCD it must be demagnified by a factor of 18.7.

Similarly, the beam probing the distortion in the 65 mm diameter BG20 glass

test optic described in Section 2.3.2 must be demagnified by a factor of 5.4.

To facilitate this, the Hartmann plate, CCD and demagnifying optics can be

configured in several ways, as shown in Figure 3.5.

In Configuration A, a Hartmann plate is placed at the plane HPO im-

mediately after the test optic and before the telescope. The rays from the

Hartmann sensor propagate through the telescope, which demagnifies them

by M , and then are incident on the CCD. The effective lever arm of the

Hartmann sensor, L1, is the distance between the Hartmann plate and the

conjugate plane of the CCD, CCDI .

In Configuration B, a different Hartmann plate is placed at the plane HPI ,

the conjugate plane of HPO. The wavefront from the test optic propagates

through the telescope and is incident on the Hartmann plate.

Configurations A and B are equivalent if the Hartmann plate in B is a

demagnified version of the plate in A and L2 = L1/M
2. Thus, if the test

optic introduces the primary aberration defocus, S, for example, given by
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Figure 3.5: Two configurations of the Hartmann sensor. Configuration A:
the Hartmann plate is placed at HPO immediately after a test optic that
changes the wavefront from W to W′. The beam propagates through a
telescope, which demagnifies it by M onto a CCD. The effective lever arm of
the Hartmann sensor, L1, is the distance between the Hartmann plate and the
conjugate plane of the CCD, CCDI . Configuration B: the beam propagates
through the test optic and telescope and is incident on the Hartmann plate
at HPI , the conjugate plane of HPO, where the lever arm is L2 = L1/M

2.
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W =
S

2
x2

then the size of the aberration, S, at HPI is M2 times that at HPO. In

other words, if the test optic introduces a wavefront change with a radius

of curvature RO then the Hartmann sensor will measure a wavefront change

with a radius of curvature RI = RO/M
2. This is important in the analysis

of a thermal lens in a high optical power cavity and its effect on the cavity

mode, discussed in Chapter 5.

3.2.4 Variants of the traditional Hartmann sensor

3.2.4.1 Shack-Hartmann

In the S-H sensor, the holes in the HP were replaced by a lenslet array

by Shack [63]. Such a lenslet array is illustrated in Figure 3.6. A Shack-

Hartmann sensor operates in largely the same way as a standard Hartmann

sensor, except that the wavefront propagating through the lenslets are fo-

cussed onto the CCD rather than diffracting from the aperture. This results

in spots that are smaller than those from apertures of the same diameter in a

Hartmann sensor. The advantages and disadvantages of the Shack-Hartmann

sensor are described below and summarised in Table 3.2.4.1.

• Flexibility: the lever arm distance between the array and the CCD may

be varied easily in the Hartmann sensor, whereas in a Shack-Hartmann

sensor it is approximately equal to the focal length of the lenslets [64].

• Light collection: The Shack-Hartmann array has a higher transmission

per unit area and also concentrates the light onto the CCD, which is

an advantage in astronomical adaptive optics applications when there

are only a limited number of photons available [65].

• Spatial resolution: The spots in the Hartmann and Shack-Hartmann

sensors need to be separated from one another to prevent cross-talk



3.2. HARTMANN SENSOR BASICS 55

CCD surfaceLenslet array

Wavefront

Figure 3.6: A distorted wavefront incident on a Shack-Hartmann lenslet
array. The light through the each lenslet is focussed to a position on the
CCD determined by the average gradient of the wavefront over the lenslet.
The dotted lines show the reference positions of the spots when the incident
wavefront is flat.
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and the subsequent reduction in sensitivity. The area on the CCD oc-

cupied by a spot in a Hartmann sensor is larger than the area occupied

by a spot in a Shack-Hartmann sensor (assuming the Hartmann aper-

ture and Shack-Hartmann lenslet diameters are equal). Therefore the

lenslets in a Shack-Hartmann sensor can be packed closer togther than

in a Hartamnn sensor and achieve a higher spatial resolution.

• Both are susceptible to the misalignments between the array and the

detector identified by Pfund et al. [66]. Of the misalignments identified

(translation of the array in the x or y directions, translation of the array

along the z axis, rotation of the array about the z axis and rotation of

the array about the x and y axes) only rotation about the x and y axes

poses any problems for a differential measurement [67] and this can be

mitigated by careful assembly of the Hartmann sensor, as discussed in

Section 3.3.2.3. For the orientation of the axes, see Figure 3.2.

• The spots in a Hartmann sensor will typically cover more pixels than a

Shack-Hartmann sensor. This may average out the effects of any non-

uniform response in the pixels of the CCD, but it does not improve the

accuracy of the centroid. This can be shown using the theoretical result

higlighted by Thomas et al. [68]: the minimum possible centroid noise

in a Gaussian spot with rms size σspot and pure photon noise, is equal

to

σNph
=

σspot
√

Nph

where Nph is the average number of photons per spot. If the photon flux

on the CCD is large enough, then the number of photons per spot will

be proportional to the area of the spot, which is proportional to σ2
spot,

and hence σNph
will be a constant. Note that this only applies if a spot

covers an area greater than one pixel. If a spot is smaller than a single

pixel there is only a single data point and the location of the center of
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Property Shack-Hartmann Hartmann

Best sensitivity at time of design λ/150 @ 633 nm [25] λ/500 @ 1064 nm [24]
Lever arm is variable No Yes

Higher transmission per unit area Yes No
More pixels per spot No Yes

Subject to lenslet aberrations Yes No
Ease of manufacture Medium Easy

Table 3.1: A comparison of the relative merits of Shack-Hartmann and Hart-
mann sensors.

the spot cannot be determined with sub-pixel precision. In this case,

a Hartmann sensor with larger spots will offer an improvement on a

Shack-Hartmann sensor with single pixel-sized spots.

• A Hartmann sensor is a simpler device and is easier and cheaper to

manufacture than a Shack Hartmann lenslet array.

• A Shack-Hartmann array may suffer from aberrations in the lenslets

[67]. Clearly, this will not be a problem for a Hartmann sensor as it

contains no lenslets.

Ultimately, the large number of available photons, flexibility, low cost and

the relative ease of manufacturing a Hartmann plate to exact specifications

led to its choice over a commercially available Shack-Hartmann sensor.

3.2.4.2 Other variations

Other minor variations on the Hartmann sensor theme include:

• The scanning Hartmann sensor in which an incoming wave front is

scanned by a moving aperture that is created using a programmable

liquid-crystal display [69] [70] or a single beam is scanned across a CCD

using a galvanometer-based rotating mirror [71]. In this configuration,

cross-talk is not an issue. However, because of the sequential scanning,

real-time operation is not possible making it unsuitable for use in a

GWI.
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Figure 3.7: Apertures on the Hartmann plate move further apart as the
temperature of the plate increases. The dashed circles represent the original
positions and the solid circles represent the new positions after an increase
in temperature.

• The interferometeric Hartmann sensor [52] [72]. The spots in the Hart-

mann sensor are deliberately brought closer together to create inter-

ference fringes between neighbouring spots. Changes in the fringes are

used to extract the wavefront change. Using this method West [52]

reliably measured wavefront distortions as small as 10 nm, which does

not satisfy the Advanced LIGO sensitivity requirement of 1.35 nm =

λ/467 @ 633 nm.
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3.2.5 Temperature dependence of Hartmann sensors

As discussed by Chernyshov et al. [73], if the temperature of the Hartmann

sensor changes then there will be thermal expansion in the components of the

sensor. Thermal expansion of the HP causes an increased distance between

the holes, as shown in Figure 3.7, which results in an increase in the distance

between the spots on the CCD which increases the change in the wavefront

gradient measured by the sensor. Thermal expansion of the CCD results in

a decrease in the apparent distance between the spots.

For the HWS discussed in this chapter, the thermal effect is dominated by

thermal expansion of the brass HP and leads to a systematic error equivalent

to defocus, S, as shown below.

Assume that there is a uniform (and small) increase in temperature, ∆T ,

of the Hartmann plate. The increased distance between two Hartmann holes,

∆xthermal, is given by

∆xthermal = α hp ∆T (3.3)

where hp is the nominal distance between holes on the Hartmann plate. The

distance between the two corresponding spots on the CCD increases by the

same amount and the apparent change in gradient, ∂ (∆W) /∂x, is

∂ (∆W)

∂x
=

∆xthermal

L

=
α hp ∆T

L

=
(

α∆T

L

)

hp (3.4)

or more generally

∂ (∆W)

∂x
=
(

α∆T

L

)

x (3.5)

for the distance, x, between any two points. The apparent change in gradient
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is linear in x and, therefore, the apparent change in wavefront is quadratic

in x. That is, thermal expansion of the HP results in a measurement of the

primary aberration defocus [37], with a coefficient Sthermal, given by

Sthermal =
α∆T

L
(3.6)

3.3 Hartmann sensor for advanced GWI

As discussed in Section 1.3.2, the requirements for the wavefront sensor to

be used in the thermal compensation system in Advanced LIGO [20] [74] are

1. A sensitivity of at least λ/785 @ 1064 nm

2. Spatial resolution sufficient to cover a 224 mm diameter circle with

sampling points that are separated by less than 10 mm.

This section describes the design of a Hartmann sensor that exceeds these

requirements. The description of the sensor hardware includes the probe

beam light source in Section 3.3.1, the optimization of the Hartmann plate

and lever arm distance in Section 3.3.2 and the choice of the CCD camera

in Section 3.3.3. The analysis software is discussed in the following two

subsections, and includes the description of a novel centroiding algorithm

and discussion of the wavefront reconstruction algorithm. Finally, Section

3.3.6 collates the errors identified in earlier sections to determine the overall

sensitivity.

3.3.1 Light source - coherent versus incoherent

The probe beam is an integral part of the use of a HWS to measure thermal

lensing in an optic. The effect of intensity noise in the probe beam should

thus be included in the overall noise of the sensor.
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Property Value

Product name Agilent HFBR-1414 Transmitter
Emmiting Material AlGaAs
Fibre Output Power 60µW

Peak Wavelength 820 nm
Coherence Length (FWHM) 5.5µm

Fibre size 50/125µm

Table 3.2: Properties for Agilent fibre-coupled LED

The intensity of the light source will fluctuate due to photon shot noise

and also due to time-varying coherent effects, such as interference fringes,

that are present in the intensity distribution.

Photon shot noise, σphoton, is simply the Poissonian fluctuations in the

number of photons, Np, arriving in a given time interval, given by

σphoton =
√

Np (3.7)

This will be quantified in the discussion about the CCD in Section 3.3.3.

Coherent fluctuations, σcoherent, in the intensity pattern depend entirely

on the particular system under test. They are more likely to appear in a

system with many transmissive optics, in which multiple reflections of the

beam may occur, as opposed to one with purely reflective optics. As such,

no attempt will be made to quantify them at this point.

It is possible to circumvent these effects entirely by using a source with

a short coherence length. The feasibility of using an incoherent light source

was discussed by Roddier in 1990 [75]. Additionally, an incoherent source

will reduce the inteferometric cross-talk between neighbouring spots. This is

modelled and discussed in Section 3.3.2.

Thus, a fibre-coupled AlGaAs LED, with the properties listed in Table

3.2, was chosen as the primary light source for the HWS. The coherence

length of this source was measured using a path-matched Michelson interfer-

ometer and observing the Michelson visibility [76], VM , given by
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Figure 3.8: A plot of the Michelson visibility in the output of the interferom-
eter as a function of the optical path difference. The horizontal dashed line
is due background fluctuations in the object and reference intensity profiles.
The best fit Gaussian, indicated by the dashed line, has a FWHM coherence
length of 5.5µm.
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VM =
I1 − I2
I1 + I2

of interference fringes as a function of optical path difference, where I1 and I2

are the maximum and minimum intensities of the fringes, respectively. The

results are plotted in Figure 3.8.

3.3.2 Optimization of Hartmann plate design

The optimum Hartmann plate design for measuring thermally induced wave-

front changes in the optics of a GWI is found by determining the best combi-

nation of hole size, hs, hole spacing, hp, and lever arm, L, that give a spatial

resolution and sensitivity consistent with the Advanced LIGO requirements

stated in Section 1.3.2.

For example, longer lever arms will yield greater displacements of the

spots on the CCD in response to a given wavefront change, resulting in better

sensitivity for a constant uncertainty in the centroid positions. However,

diffraction from the holes increases the size of the spots on the CCD and,

if the lever arm was long enough then there would be substantial cross-talk

between neighbouring spots, reducing the sensitivity. Of course, cross-talk

could be reduced by increasing the hole spacing of the holes in the array but

this would decrease the spatial resolution. Alternatively, cross-talk could be

reduced by varying the hole size: either increasing the hole size if L is large

and there is substantial diffraction, or decreasing the hole size if L is small

and there is minimal diffraction. The optimum balance between these, hs,

hp and L must be found.

Unfortunately, the optimum balance cannot be found analytically be-

cause a typical Hartmann sensor is arranged such that the CCD is in the

near field of the holes in the plate. Therefore, numerical simulation of the

diffraction patterns for various Hartmann plate configurations was used to

find the optimum solution.
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The modelling simulated a Hartmann sensor operating in Configuration

A, shown in Figure 3.5. It calculated the wavefront change induced by ab-

sorption of a 8 mm (1/e2-radius) Gaussian beam in a 30 mm high, 50 mm

diameter cylinder of Schott FK51 glass, which was a potential candidate glass

for the thermal lensing experiment described in the previous chapter at the

time of design.

3.3.2.1 Modelling

The simulation, described below, determined the RMS noise, σsim, in the cen-

troid measurements for a Hello-Vinet thermal lens for a variety of Hartmann

sensor configurations. The smallest noise occurs when the separation of the

holes, hp, in the Hartmann plate is large and the lever arm is long, but this

is undesirable because of the low spatial resolution. Ideally, the RMS noise

should be small, i.e. 1/σsim should be large, and the density of holes, ∝ 1/h2
p,

should also be large. Therefore, a figure of merit (FOM) was defined by

FOM =
(

σsim h
2
p

)

−1
.

The configuration with the largest figure of merit was then manufactured.

Note that only close-packed hexagonal arrays were modelled because the

density of spots is approximately 15% larger than in square arrays of the

same hole spacing, improving the spatial resolution and reducing the error

in the reconstruction of the wavefront as discussed in Section 3.3.5.

The simulation used the physical optics propagation package in the ZEMAX

Optical Design program [77] [78]. The code used for this simulation is listed

in Appendix B.1.

The procedure used for each simulation was:

1. Choose the parameters for the Hartmann plate and lever arm from

the following sets :
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hs

2
= 0.2, 0.4, 0.6, 0.8 or 1.0 mm radius

hp = 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75 or4.00 mm

L = 100, 300, 500, 700 or900 mm.

2. Create a 1024 × 1024 numerical mask representing a 60 mm × 60 mm

square Hartmann plate, slightly larger than the 50 mm diameter of

the FK51 glass cylinder, with 4 rings of holes in a close-packed

hexagonal arrangement (61 holes). Weight each pixel in the array by

the fraction of its area that is covered by an aperture.

3. Create a 1024 × 1024 array representing the phase front incident on

the Hartmann plate in Mathematica.

4. Calculate the phase across the array, given by 2π/λ times the optical

path distortion due to an 8 mm (1/e2-radius) laser beam heating a

cylindrical piece of FK51 Schott Glass using Hello-Vinet.

5. Combine the mask and phase front to calculate the electric field

immediately after transmission through the Hartmann plate.

6. Use the diffraction propagation code in ZEMAX to propagate the

field array through the chosen lever arm distance to an output plane.

7. Convert the field at the output plane to intensity and digitize into an

8-bit TIFF image.

8. Calculate spot centroids, using Equation 3.10 (see Section 3.3.4), and

centroid displacements from their nominal position.

9. Determine the magnitude of the measured gradient as a function of

radial position.
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10. Compare to the known theoretical gradient of the Hello-Vinet

distortion, calculated by the gradient mutiplied by the lever arm and

divided by the pixel size.

11. Calculate the standard deviation of the difference between the

measured and known gradients.

The intensity patterns, resulting from Step 7, for hs = 2.0 mm, hp = 2.75

mm, L = 300 mm is shown in Figure 3.9 a) and for hs = 0.8 mm, hp = 2.25

mm, L = 900 mm is shown in Figure 3.10 a). Plots for the simulated (points)

and known (line) spot displacements, resulting from Step 10, for hs = 2.0

mm, hp = 2.75 mm, L = 300 mm, and for hs = 0.8 mm, hp = 2.25 mm, L =

900 mm are shown in Figure 3.9 b) and Figure 3.10 b).

The five best Hartmann sensor parameter sets and their figures of merit

are listed in Table 3.3. The parameter set: (hole diameter of 0.8 mm diameter

and hole spacing of 2.25 mm) was chosen for fabrication as a Hartmann plate.

Subsequently, it was decided that the sensor would be more robust if the

Hartmann plate was physically attached to CCD, as shown in Configuration

B in Figure 3.5. Thus the hole spacing and hole size were demagnified by a

factor, M ≈ 5.3, the demagnification of the telescope in Figure 3.5, and the

lever arm was demagnified by M2. The parameter sets for Configurations A

and B are listed in Table 3.4.

A hexagonally-close-packed array of 150µm diameter holes spaced 430µm

apart was laser drilled in a 50µm thick piece of brass plate to cover a 12.5×
12.5 mm area. The laser drilling process could position holes to within ±1µm

[79].

The plate, as viewed under a microscope, is shown in Figure 3.11. The

small diameter holes have a tendency to get clogged with dust when the plate

is stored in a dirty environment. The two images in this figure show that

plate before and after cleaning in an ultrasonic bath. Also indicated is the

hexagonal unit cell.
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(a)

(b)

Figure 3.9: a) Numerically determined diffraction pattern from a Hartmann
plate with hs = 2.0 mm, hp = 2.75 mm, L = 300 mm and b) the simulated
(points) and known (solid line) centroid displacements.
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(a)

(b)

Figure 3.10: a) Numerically determined diffraction pattern from a Hartmann
plate with hs = 0.8 mm, hp = 2.25 mm, L = 900 mm and b) the simulated
(points) and known (solid line) centroid displacements.
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Hole diameter, hs (mm) Hole Spacing, hp (mm) Lever Arm, L (mm) FOM

0.8 2.25 900 92.1
0.8 2.25 700 67.5
0.8 2.75 900 66.1
0.8 2.50 500 57.8
0.8 2.50 700 55.9

Table 3.3: Best five Hartmann plate configurations as rated by the figure of
merit (FOM).

Configuration A Configuration B

Hole diameter 0.8 mm 150 µm
Hole Spacing 2.25 mm 430 µm
Lever Arm ≤ 900 mm ≤ 31 mm

Table 3.4: Final design parameters for the Hartmann sensor

Figure 3.11: Hartmann plate as viewed under microscope. a) as delivered, b)
after cleaning in an ultrasonic bath and with hexagonal unit cells highlighted.
Note that the second image is brighter because the plate was more highly
illuminated.
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3.3.2.2 Simulations of cross-talk

If the array of holes in the HP is is illuminated by a spatially varying intensity

and/or wavefront, then centroid pulling due to cross-talk will occur and result

in systematic errors in the centroid displacements. The magnitude of these

errors will also be affected by the length of the lever arm and the coherence

length of the light source, particularly if spurious interference fringes are

produced by transmissive optics between the light source and HWS.

Numerical simulations were used to quantify the effect of cross-talk for

Configuration B. The simulations used two different lever arms, 31 mm and

10 mm, and coherent light, with a wavelength of 820 nm, and incoherent

light with a central wavelength of 820 nm and a FWHM spectral width of

120 nm (the width of a source with a coherence length of 5.5µm).

The systematic error due to cross-talk was calculated by comparing the

displacement of a spot centroid due to wavefront defocus for an isolated spot

and a spot at the centre of 6 hexagonally-coordinated neighbouring spots.

The procedure used for this simulation was:

1. Single hole HP, shown in Figure 3.12 a)

(a) Illuminate the HP with a flat wavefront and simulate numerically

the diffraction pattern at the lever arm distance using Fourier

diffraction propagation [80] (see Appendix B.2 for the source code

of this simulation). Determine the centroid.

(b) Repeat step 1 (a), but illuminate with a wavefront aberrated by

a small, randomly-selected, amount of the primary aberration de-

focus that is centered at a random position within the vicinity of

the hole in the HP.

2. Seven hole HP, shown in Figure 3.13 a)

(a) Repeat step 1 (a).

(b) Repeat step 2 (a), but illuminate with the aberrated wavefront

used in step 1 (b).
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The resulting diffraction patterns for the single hole HP are shown in

Figure 3.12 b) and c) coherent and incoherent, respectively, for the 31 mm

lever arm and d) and e) coherent and incoherent, respectively, for the 10

mm lever arm. The diffraction patterns for the seven hole HP are shown in

Figure 3.13 b) - e), arranged in the same order as the previous figure.

The cross-talk is defined to be that part of the spot displacement that is

due to the presence of neighbouring spots. The two quantities required to

calculate this are:

• The displacement of the spot for the single hole HP, ∆x1h, given by

the difference between the centroid calculated in step 1 (b) and the

centroid calculated in step 1 (a).

• The displacement of the central spot for the seven hole HP, ∆x7h, given

by the difference between the centroid calculated in step 2 (b) and the

centroid calculated in step 2 (a).

Recall that ∆x1h and ∆x7h are simulations of the same wavefront curva-

ture. Thus, the cross-talk, ǫCT, is given by

ǫCT =
∆x7h − ∆x1h

∆x1h
(3.8)

The results of the cross-talk simulations are summarised in Table 3.5. The

cross-talk shown in this table is the result of averaging over many defocus

aberrations. They show that the contribution of cross-talk is much more

significant with a lever arm of 30 mm than 10 mm. They also show that better

results are obtained with the incoherent source, which is not unexpected

because of the reduced interference between neighbouring spots.

As a result of these simulations, the nominal lever arm in the design was

reduced to 10 mm. It should be noted that this is a departure from the

optimized design reached in Section 3.3.2.1, however, the reduction of the

lever arm by a factor of only 3 in order to reduce the systematic cross-talk

for the incoherent source by a factor of 18.75 was deemed to be worthwhile.
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(a) Hartmann mask

(b) Coherent: L=31mm (c) Incoherent: L=31mm

(d) Coherent: L=10mm (e) Incoherent: L=10mm

Figure 3.12: a) Simulated Hartmann plate with a single hole. b) calculated
diffraction pattern from the Hartmann plate at a distance of 31 mm when
illuminated with a coherent 820 nm light source and c) with an incoherent 820
nm light source with a coherence length of 5.5µm. d) diffraction pattern at
a distance of 10 mm when illuminated with a coherent 820 nm light source
and e) with an incoherent 820 nm light source with a coherence length of
5.5µm.
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(a) Hartmann mask

(b) Coherent: L=31mm (c) Incoherent: L=31mm

(d) Coherent: L=10mm (e) Incoherent: L=10mm

Figure 3.13: a) Simulated Hartmann plate with multiple holes. b) calculated
diffraction pattern from the Hartmann plate at a distance of 31 mm when
illuminated with a coherent 820 nm light source and c) with an incoherent 820
nm light source with a coherence length of 5.5µm. d) pattern at a distance
of 10 mm when illuminated with a coherent 820 nm light source and e) with
an incoherent 820 nm light source with a coherence length of 5.5µm.
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Lever Arm Length Crosstalk - Coherent Crosstalk - Incoherent

10 mm 0.18% 0.08%
31 mm 2.7% 1.5%

Table 3.5: Level of cross-talk error in the centroid displacement of a single
Hartmann spot for coherent and incoherent sources at two different lever arm
lengths

3.3.2.3 HWS construction

An exploded view of the final Hartmann sensor is illustrated in Figure 3.14.

A 4 mm thick spacer containing a 36 mm diameter hole is bolted to the front

of the CCD camera (the CCD is discussed in detail in Section 3.3.3). A front

plate, also containing a 36 mm diameter hole, is bolted to the spacer. The

Hartmann plate is sandwiched between the spacer and the front plate in a

30 µm recessed region. The CCD is nominally 6 mm behind the front face

of the camera body. In combination with the spacer, this yields a lever arm,

L, of approximately 10 mm.

This construction addresses problems of CCD-HP alignment. Rotations

of the HP about the x or y axes will cause errors in the HWS measurement.

Either of these rotations cause the CCD and HP not to be parallel. Therefore,

the lever arm distance between the CCD and HP will not be constant across

the face of the HP. This is not a problem here because, as shown in Figure

3.14, the CCD is nominally parallel to the front face of the camera housing

and the sandwich construction should minimize misalignments between the

HP and the CCD.

3.3.2.4 Estimated temperature dependent defocus error

For a brass Hartmann plate (with a linear thermal expansion coefficient,

αbrass, of 20.3µm m−1 K−1 [81]) and a lever arm length of 10.43 mm (the

measurement of which is described in the next chapter), the temperature

dependent defocus error can be determined using Equation 3.6
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schematic icon CCD

Power connector

Data connectorTo PC
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Front plate

Hartmann plate
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50µm thick

30µm recess

Figure 3.14: A 4mm wide spacer is bolted to the front of the Dalsa 1M60
camera. The Hartmann plate is positioned in a 30µm recess in the front
plate which is then bolted onto the camera. 36mm diameter holes in both
plates allow the the rays to propagate onto the CCD. The inset shows the
icon used to represent the HWS in schematic diagrams.

Sthermal

∆T
=
αbrass

L
= 0.00195 m−1 K−1 (3.9)

3.3.3 CCD camera

The CCD records a digital image of the intensity distribution of the Hart-

mann spots by accumulating photoelectrons, produced by the incident light

in an Nx×Ny array of picture elements (pixels). Once exposure is complete,

the CCD transfers the accumulated charge in each pixel out of the array and

converts the output into a measurable voltage [82]. This voltage is passed

through an n-bit A/D converter to yield the digital numbers (DN) that make

up the digital image. The recording, transfer and digitization processes can

introduce noise which degrades the image fidelity and reduces the ability of

Hartmann sensor to locate accurately the centroids of the each of the spots

in the image.

One additional problem during exposure is the leakage of charge from a
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Parameter Value

Array size 1024 × 1024 pixels
Pixel size, ps 12µm × 12µm
Digitization 12 bits
Quantum efficiency @ 820 nm ≈ 6%
Full well capacity (linear operation) 350,000 electrons
Dark current @ 45◦C 1.3 × 10−16A per pixel
Random Readout noise (rms) 1.2 DN
Fixed pattern noise 3.8 % rms
Random non-uniformity 0.3 % rms
Antiblooming > 100× saturation level

Table 3.6: Specifications of Dalsa 1M60 CCD camera using an FTT 1010-M
image sensor [85] [86]. Note that the operating temperature of the CCD
array is approximately 45◦C when the room temperature is approximately
20◦C.

full pixel well into the wells of adjacent pixels. This effect is known as bloom-

ing and it will reduce the quality of the digital image. Fortunately, modern

scientific grade CCDs have antiblooming features that use an overflow drain

below each pixel to prevent blooming for reasonable exposure levels. Charge

flows into the drain before it is able to flow into adjacent pixels and is con-

stantly removed [82] [83] [84]. The magnitude of the anti-blooming in a CCD

refers to the multiple of the saturation level that can be applied to a pixel

before any charge leaks into a neighbouring pixel. Ultimately, this feature

allows the CCD to be used close to saturation level, improving the sensitivity,

without any danger of adjacent pixels contaminating one another.

A Dalsa 1M60 CCD camera [85], the relevant parameters of which are

listed in Table 3.6, was chosen as the image sensor in the Hartmann wave-

front sensor. The substantial technical and diagnostic information available

on this CCD indicates that it should be shot-noise limited (see below). A

measurement that tested and verified this conclusion is described in this sec-

tion after a brief discussion of the various noise sources in the CCD. The

magnitudes of these noise sources are collated in Table 3.7 for convenience.
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3.3.3.1 Expected noise in CCD

The dominant noise sources, in order of their appearance in the measurement

process, are:

• Photon shot noise. This arises because of the non-uniform arrival of

the photons at the pixels. It can be calculated by dividing the number

of electrons per pixel, Ne, by the quantum efficiency (QE ≈ 6%) to

determine the approximate number of photons, Np, required to produce

Ne electrons. For the Dalsa 1M60, Np ≈ 5.8 × 106 when Ne is equal

to the maximum value of 350,000. The rms noise in the number of

photons is
√

Np. This can be expressed in electrons by multiplying by

the QE. The maximum rms fluctuation due to photon shot noise is 145

electrons.

• Photoelectron shot noise arises because of the random nature of the

photoelectric conversion process and is given by
√
Ne. For the maxi-

mum number of electrons in a pixel (Ne = 350, 000) the rms fluctuation

due to electron shot noise is 592 electrons.

• Readout noise is due to random noise sources within the sensor, includ-

ing dark current and amplifier noise. Dark current refers to electrons

which are thermally generated, rather than photo-generated. The HWS

typically uses a short integration time (≤ 50 ms) and thus dark current

can be ignored. Amplifier noise is simply the noise introduced by the

sensor electronics. The specified value [85] in Table 3.6 is 1.2 digital

numbers (DN). This can be converted into electrons assuming a gain of

4096 DN per 350,000 electrons. The readout noise is thus 103 electrons.

• Digitization noise is the uncertainty in the measurement of the number

of electrons in a pixel because of quantization into an n-bit scale. This

is calculated using Equation A.4:

σdigital =
1√
3

Nemax

2n
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Noise Type RMS Value (el) % of total variance

Photon shot noise 145 5.40 %
Photoelectron shot noise 592 91.2 %
Random readout noise 103 2.76 %
Digitization noise @ 12-bits 49.3 0.63 %
Fixed Pattern noise 3.9 0.004%
Random non-uniformity 0.3 2 × 10−5 %

Table 3.7: Noise from each source expressed in electrons.

which gives a value of 49.3 electrons when Nemax
= 350, 000 electrons

and n = 12.

The remaining noise sources specified by the camera manufacturer, fixed

pattern noise and photoresponse non-uniformity, were small enough, see Ta-

ble 3.7, to be safely ignored.

It is clear from Table 3.7 that digitization noise is negligible and that

the total noise is dominated by photoelectron shot noise for the Dalsa 1M60

CCD. The contribution of the digitization noise for a reduced number of bits

is shown in Table 3.8, indicating that 10-bits, as opposed to 12-bits, would

not increase the total noise significantly. The total relative error, σtot/Ne, in

this Table is calculated using

σtot
Ne

=

√

σ2
others + σ2

digital

Ne

where σ2
others is the total variance from all the other noise sources as presented

in Table 3.8. In summary, using a CCD with more than 10-bits of digitization

is worthwhile only if the photoelectron shot noise is also reduced. This would

be accomplished by increasing the maximum number of electrons per pixel.

3.3.3.2 CCD: Measurement of noise

To confirm that the CCD was indeed shot noise limited, it was illuminated

at three different intensity levels by the LED described in Section 3.3.1. The

RMS fluctuations in the DN of the pixels were measured and are plotted as
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Number of bits Total var. (el2) % of total var. Total relative error

Other sources 3.82 × 105 - -
8 10.0 × 105 62% 0.29%
9 5.38 × 105 29% 0.21%
10 4.21 × 105 9.3% 0.19%
11 3.92 × 105 2.5% 0.18%
12 3.85 × 105 0.63% 0.18%

Table 3.8: The contribution of digitization noise to the total variance in the
pixel measurement using 8 to 12-bit digitization. All other noise sources are
assumed to be fixed at the levels shown in Table 3.7. Also shown is the
overall relative error in the measurements in each pixel.

a function of digital number in Figure 3.15 on a log-log scale. A line with

slope -1/2, the dependence expected for Poissonian statistics, is also plotted

in Figure 3.15. The good agreement indicates that the noise in the CCD is,

indeed, Poissonian and therefore that the CCD is random. From this plot,

the relative error at DN = 4095 is estimated to be 2.5 × 10−3 (≈ 10−2.6).

This is equivalent to the noise in a Poissonian distribution with a mean of

≈ 160, 000 counts, assumed to be the equivalent number of electrons in the

pixel well when full. This value is slightly less than the nominal full well

capacity of 350,000 electrons.

3.3.3.3 Pixel size measurement

Since all centroid positions are calculated in units of pixels, the wavefront

reconstruction is only as accurate and precise as the pixel size, ps . Therefore,

the pixel size was measured as outlined below.

The CCD was illuminated with the diffraction pattern from the edge

of a razor blade and the image recorded. The CCD was then translated

horizontally and perpendicular to the illuminating beam by 6.001 ± 0.003

mm using a micrometer-controlled translation stage. A second image of the

diffraction pattern was recorded. The two images are shown in Figure 3.16.

Horizontal cross-sections of each image are plotted in Figure 3.17. The second

fringe in the diffraction pattern was chosen as a well defined feature to locate
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Figure 3.15: RMS fluctuation in intensity vs intensity. The dashed line has
a slope of −1/2.

on the CCD when it was in the two positions and its peak was found for both

images. The data points marked by the square boxes in Figure 3.16 indicate

the data that were used to calculate the peaks. The difference between the

two peaks was 500.9 pixels. This yielded an average apparent pixel size of

11.975 ± 0.005µm.

3.3.4 Centroiding algorithms

As discussed in Section 3.2.2, a centroid algorithm is normally used to locate

the centres of the spots in a Hartmann image. The conventional form of this

algorithm is

(xc, yc)m = ps





∑i=Nmax
m

i=Nmin
m

∑j=Mmax
m

j=Mmin
m

i Iij
∑i=Nmax

m

i=Nmin
m

∑j=Mmax
m

j=Mmin
m

Iij
,

∑i=Nmax
m

i=Nmin
m

∑j=Mmax
m

j=Mmin
m

j Iij
∑i=Nmax

m

i=Nmin
m

∑j=Mmax
m

j=Mmin
m

Iij



 (3.10)

where ps is the pixel size, i and j are the CCD pixel indices in the horizontal
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Figure 3.16: Fixed diffraction pattern on the CCD before (top) and after
(bottom) a lateral translation of the CCD by 6.001 mm as measured on a
micrometer-controlled translation stage.

(a) Position 1 (b) Position 2

Figure 3.17: Average horizontal cross section of 1.0 mm vertical slice of both
images shown in Figure 3.16 in the vicinity of the edge of the shadow. The
peak of the second fringe in the diffraction pattern was determined for both
images over the range indicated by the square data points.
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and vertical directions, respectively, and Ii j is the intensity of the ijth pixel.

This algorithm can give rise to significant systematic errors depending

on the limits of summations, especially if the centroid of the spot is not

at the center of the detection area [87]. Many variations on this algorithm

have therefore been developed to minimize systematic and random errors in

the centroid. Much of this work was concerned with the performance of the

algorithm (and any variations) for a low photon flux [88] [89], such as might be

used in adaptive optics in astronomy. However, much brighter light sources

can be used for metrology and thermal lens measurement. Therefore, rather

than considering all the various centroiding algorithms, this discussion will be

limited to those that perform best in high photon flux: the weighted center

of gravity algorithm [87] [88] [68] and a novel ’fractional pixel’ algorithm of

the author’s design.

3.3.4.1 Weighted center of gravity (WCoG)

The WCoG algorithm applies a mask to the intensity distribution such that a

weighting, (Fw)i, is given to different pixels depending on their digital value.

The basic 1-D form is

xWCoG = ps

∑imax

i=imin
i Ii (Fw)i

∑imax

i=imin
Ii (Fw)i

(3.11)

The weighting function is quite often chosen to be a Gaussian that is

centered around an a priori estimate of the spots center [68]. Alternatively,

it can chosen to be the intensity in the pixel raised to a power P − 1 [87]:

(Fw)i = IP−1
i

and thus

xWCoG = ps

∑imax

i=imin
i IPi

∑imax

i=imin
IPi

. (3.12)

Note that the summation range imin ≤ i ≤ imax about a spot is chosen
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such that the central pixel is that pixel with the maximum intensity. Ad-

ditionally, the summation range extends by the same amount, n1, in the

positive and negative directions from the central pixel, resulting in 2n1 + 1

pixels, an odd number, in the range.

3.3.4.2 Fractional pixel centroiding (FPC)

An iterative algorithm to locate the centroid of a symmetric intensity distri-

bution was developed. A vaguely similar method was suggested by Topa [90]

for use in a Shack-Hartmann sensor.

The premise for this algorithm is derived from the problem identified by

Topa [90] of a symmetric spot being located asymmetrically about a pixel

on the CCD array. The center of the range of summation for the centroid

calculation is not coincident with the center of the spot and there is a sys-

tematic error in the centroid calculation. In general, it is very unlikely that

the true center of a spot will lie in the center of a pixel. If, however, the

range of summation can be altered such that the true center lies at the cen-

ter of the range of summation, then the systematic error should be removed.

Therefore, we must treat the data from the CCD as a continuum and con-

sider fractional pixels. Thus, the true centroid is defined to be that centroid

which is coincident with the center of the rectangular region (boxcar) used to

calculate it.

Since the coordinates on the CCD are considered to be a continuum,

but the individual pixels still need to be identified with discrete indices,

the following scheme applies. The coordinates in the continuum, (̄i, j̄), are

labelled with a bar to signify their continuous nature and the indices of the

pixels remain the same, i and j. In the ijth pixel, therefore, the continuum

ranges from (̄i, j̄) in the bottom left corner to (̄i+ 1, j̄ + 1) in the top right

corner.

The algorithm used to locate the true centroid, (illustrated schematically

in figure 3.18) is:

1. Define a boxcar of ranging from ī0 to ī1 in the horizontal direction and
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j̄0 to j̄1 in the vertical direction, that is approximately centered over a

spot in the digital image.

2. Apply equation 3.13 to determine the centroid. The numerator of the

equation is the sum of a series of values. Each value in that sum is

the weighted intensity, Iij , of the ijth pixel multiplied by the fraction

of the area, Aij , of that pixel that is covered by the boxcar and the

center, (̄imid, j̄mid), of the intersection between the pixel and the boxcar.

The denominator is the sum of the weights, Aij , multiplied by the

intensities, Iij . If the boxcar range is restricted to the discrete indices,

this centroid algorithm becomes the same as the conventional centroid

algorithm in Equation 3.10.

(xc, yc) = ps FC (Iij : ī0, ī1, j̄0, j̄1) (3.13)

= ps





∑ceiling(ī1,j̄1)
i,j=floor(ī0,j̄0)

īmidAij Iij
∑ceiling(ī1,j̄1)
ij=floor(ī0,j̄0)

Aij Iij
,

∑ceiling(ī1,j̄1)
i,j=floor(ī0,j̄0)

j̄midAij Iij
∑ceiling(ī1,j̄1)
ij=floor(ī0,j̄0)

Aij Iij





where īmid and j̄mid are defined

īmid =



















ī0 + (i+ 1)
2

for i = floor (ī0)

i+ 1
2

for ceiling (ī0) ≤ i < floor (ī1)
i+ ī1

2
for i = floor (ī1)

j̄mid =



















j̄0 + (j+ 1)
2

for j = floor (j̄0)

j + 1
2

for ceiling (j̄0) ≤ j < floor (j̄1)
j+ j̄1

2
for j = floor (j̄1)

and Aij is defined

Aij =



















(i + 1) − ī0 for i = floor (ī0)

1 for ceiling (ī0) ≤ i < floor (ī1)

ī1 − i for i = floor (ī1)

×
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(j + 1) − j̄0 for j = floor (j̄0)

1 for ceiling (j̄0) ≤ j < floor (j̄1)

j̄1 − j for j = floor (j̄1)

.

3. Center the new boxcar at this centroid.

4. Repeat steps 2 and 3 until the difference between the calculated cen-

troid of a boxcar and the center of that boxcar differ by less than a

specified error value.

3.3.4.3 Comparison of algorithms

A numerical simulation was used to compare the accuracy of the WCoG

and FPC algorithms in determining the centroid of a 2D Gaussian intensity

distribution with a 1/e2 full-width of 8.4 pixels, in the presence of realistic

noise sources. The width of 8.4 pixels was chosen because this is the width

for the best fit Gaussian to a spot 10 mm from the Hartmann plate designed

in Section 3.3.2.

A Gaussian spot with a known center, xG1
, was produced. Shot noise (SN)

was added at the realistic levels determined in Section 3.3.3.2 and readout

noise (RN) at the levels in Table 3.7 were added and the spot was quantized

using 12-bit digitization. The centroid of the spot was found with both al-

gorithms for a given summation range in the WCoG algorithm and a boxcar

of the same width in the FPC algorithm. In this instance the optimum sum-

mation range/boxcar width was determined to be 19 pixels. The Gaussian

spot was moved to a new location, xG2
, and the procedure was repeated.

The difference between the centroids from the first and second spots was de-

termined for both algorithms and was compared to the known displacement.

The results are summarised in Table 3.9.

The FPC is, ultimately, limited in precision because all pixels are weighted

by the same amount. Those pixels with higher levels of shot noise, due to less

electrons in the pixel well, will increase the overall noise in the centroid calcu-



86 CHAPTER 3. HARTMANN SENSOR DEVELOPMENT

Figure 3.18: A cartoon of the pixels on a CCD and the integration regions.
The centroid is determined for a boxcar of fixed width that is positioned
to include fractional parts of pixels. The true center is illustrated by the
cross. The center of each boxcar is the centroid of the previous boxcar. The
successive boxcars and their numbered central spots are seen approaching
the true center.

Algorithm SN & RN

Fractional Pixel Centroiding 0.34 % pixel
Weighted Center of Gravity 0.19 % pixel

Table 3.9: RMS error in the FPC and WCoG centroiding algorithms mea-
surements of displacements in the presence of realistic noise sources, shot
noise (SN) and readout noise (RN).
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lation. Conversely, the WCoG algorithm preferentially weights those pixels

with higher intensities, and, therefore, lower levels of shot noise reducing the

overall noise in the centroid calculation.

The FPC algorithm was used for earlier HWS measurements described

in Section 4.3 and in Chapter 6. Later measurements, the remaining HWS

measurements in Chapter 4 and all measurements in Chapter 5, used the

WCoG algorithm.

3.3.5 Wavefront reconstruction algorithm

For most applications the discrete gradient field output from the HWS must

be converted, via numerical or analytic integration, into a wavefront map

for additional post-processing1. Most of the material published on wave-

front reconstruction is based on the work of Southwell [62] who applied

reconstruction techniques that were developed for shearing interferometers

to Hartmann-type sensors and described the two basic types of wavefront

reconstruction algorithms: modal and zonal.

3.3.5.1 Modal wavefront reconstruction

In modal reconstruction the wavefront is represented by the sum of continu-

ous functions

W (x, y) =
n
∑

i=1

ai fi (x, y)

and its gradient is represented by

~∇W (x, y) =
n
∑

i=1

ai ~∇fi (x, y)

The coefficients ai are found by performing a least-squares fit of the gradient

functions, ~∇fi (x, y), to the discrete gradient field measured by the HWS.

1Sometimes full wavefront reconstruction is unnecessary and the analysis can be done
with the gradient data directly, for example in the measurement of defocus [91].
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Zernike polynomials are a particularly popular choice for SHWS used in

adaptive optics [92] [93] and ophthalmology [94] because they are orthogonal

over circular apertures, or approximately orthogonal over a discretely sam-

pled circular aperture. However, unless many polynomials are used, which

becomes computationally expensive, the result is generally a smooth wave-

front map.

The smooth nature of the reconstructed wavefront tends to mask localized

thermal blooming. Ryan Lawrence [12] found that Zernikes were inappro-

priate for describing point absorbers and scanning CO2 laser compensation.

Recall from the requirements for the wavefront sensor, Section 1.3.2, that af-

ter wavefront reconstruction one must be able to resolve the thermal lensing

from a point absorber. For this reason modal reconstruction is considered to

be inappropriate for use in a Hartmann sensor measuring thermal lensing in

the optics of a GWI.

3.3.5.2 Zonal wavefront reconstruction

Zonal wavefront reconstruction determines the best fit wavefront at the center

of each of the holes in the Hartmann plate. The advantage of this technique is

that it typically provides richer information than the modal technique [95].

Numerical integration can produce rounding errors when there are sharp

peaks in the wavefront. The following is a description of a reconstruction

technique reported by Southwell, which uses the Gauss-Seidel iteration.

An iterative algorithm can be used to reconstruct the wavefront, Wm,

at each of the M points on the Hartmann sensor from the discrete gradient

field, Gm, given by

Gm =

{

(x, y) ,

(

∂W

∂x
,
∂W

∂y

)}

m

.

First, the nearest neighbours of each point must be found. The nearest

neighbours of a point are defined as those points the distance to which lies

within the range hp ± ε/2, as illustrated in Figure 3.19, where hp is the hole
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16 17 18 19 20

21 22 23 24

hp

ε

Figure 3.19: Hartmann spots arranged in a hexagonal grid and numbered
from 1 to 24. The nearest neighbours of the 13th spot are those lying within
the dashed annular region of inner radius hp − ε and outer radius hp + ε.

spacing of the array of spots. This can be expressed as an M ×M matrix,

Λmn:

Λmn =







1 if | ~xm − ~xn | − hp ≤ ε

0 if | ~xn − ~xn | − hp > ε

where ~xm designates the mth point, ~xn designates the nth point and where

the tolerance value, ε, is included to allow for any small deviations from a

hexagonal array.

Next, a matrix of wavefront differences between nearest neighbours, ∆wneighbours

is defined:

∆wneighbours
mn =







∆wmn if | ~xm − ~xn | − hp ≤ ε

0 if | ~xm − ~xn | − hp > ε
,

where the wavefront difference, ∆wmn, between a point, ~xm, and its neigh-
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bour, ~xn, is found using the Improved Euler-Cauchy method (Heun’s method)

[96]:

∆wmn =
1

2

[(

∂W

∂x

)

m

+

(

∂W

∂x

)

n

]

× (xm − xn) +

1

2

[(

∂W

∂y

)

m

+

(

∂W

∂y

)

n

]

× (ym − yn) (3.14)

The wavefront can be now be reconstructed using Gauss-Seidel iteration

as follows:

1. Begin with a flat wavefront map as a zeroth guess, such that

Wm, 0 = 0

2. Determine the kth wavefront map, Wm, k , by updating each value in

the map, Wm, k−1, using the matrix ∆wneighbours:

Wm, k =

∑N
j=1 ∆wneighbours

mj +
∑N
j=1 Λmj × Wj, k−1

∑N
j=1 Λmj

(3.15)

In the Jacobi method, the wavefront is updated as a whole. That is, all

the wavefront values, Wm, k are updated from a previous set of values

{W1, k−1,W2, k−1, . . . ,Wm−1, k−1,Wm, k−1, . . . ,WN, k−1}

In Gauss-Seidel method, the wavefront value Wm, k is updated from a

set including the most recently updated values

{W1, k,W2, k, . . . ,Wm−1, k,Wm,k−1, . . . ,WN, k−1}

3. Repeat step 2 until the change between successive iterations is less than

a previously defined error value.
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4. Once the wavefront, Wm, has been reconstructed at the discrete points,

~xm, use linear interpolation to convert the discrete hexagonal array of

wavefront values into a 2D Cartesian array suitable for display as a

contour plot.

In certain cases, the wavefront is such that it appears likely that rounding

error will occur in the numerical integration. The wavefront may contain a

sharp peak, for example. In this case, the rounding error can be reduced

by artificially adding points into the discrete gradient field, such that a new

point lies between two of the original points in the gradient field and the

gradient of the new point is determined by interpolating the gradients of

several of the surrounding points.

3.3.5.3 Error propagation - From gradient to wavefront

The mean square error (variance) in the reconstructed wavefront, σ2
W, de-

pends on the variance in the wavefront difference between adjacent holes,

σ2
∆W. It can be predicted using

σ2
W = C∆W σ2

∆W (3.16)

where C∆W is the Southwell noise coefficient, [62], and the variance in the

wavefront difference between adjacent holes, σ2
∆W, is given by

σ2
∆W =

[

hp

L

(

σxc
+ σyc

2

)

]2

(3.17)

where σxc
and σyc

are the rms errors in the x and y centroids, respectively,

hp is the distance between the holes in the Hartmann plate and L is the lever

arm of the Hartmann sensor.

As pointed out by Southwell [62], C∆W is dependent on the number and

arrangement of holes. Following Southwell’s methodology, the noise coeffi-

cient was numerically determined as a function of the number of holes in a

hexagonal close-packed arrangement and the results are shown in Figure 3.20.
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Figure 3.20: The Southwell noise coefficient of the Gauss-Seidel iterative
matrix wavefront reconstruction versus the number of holes in the HP. A
hexagonal close-packed arrangement of spots was used. Note that this result
assumes that the noise in the gradient field is uncorrelated.

This coefficient allows one to predict the noise in the overall reconstructed

wavefront if the noise in the gradient field is uncorrelated. The actual noise

is determined by analyzing the reconstructed wavefront. Note that C∆W < 1

for the approximately 700 holes required for a HWS for advanced GWI and

thus the zonal reconstruction reduces the effect of uncorrelated noise in the

gradient field on the reconstructed wavefront.

3.3.6 Summary of noise sources

The noise sources discussed in the previous sections are summarized below

for convenience.

• Coherent Noise: An incoherent source was chosen to mitigate the effects
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of noise due to parasitic interference fringes caused by transmissive

beam-control optics.

• Cross-talk: It was established in Section 3.3.2 that the level of cross-

talk between neighbouring spots is about 0.08% of the signal size, or

one part in 1250. Hence, for a signal with a maximum size of 200 nm,

the cross-talk is not expected to produce an error greater than 0.16 nm.

• Random noise: (shot noise, readout noise and digitization). The error

in the centroid due to these random noise sources is expected to be

about 0.19% pixel using the WCoG algorithm and 0.34% using the FPC

algorithm, (see Table 3.9). Using Equations 3.16 and 3.17 and a noise

coefficient for the variance of approximately 0.4 (see Figure 3.20 for 700

gradient measurements) the rms wavefront error is estimated to be 0.6

nm for the WCoG algorithm and 1.1 nm for the FPC algorithm. Since

these noise sources are random, this can be improved by averaging.

• Sthermal (T ): One can specify the maximum permissible temperature

fluctuation, ∆Tmax, such that the error from this source is not greater

than Wεmax
= λ/467 @ 633 nm = 1.35 nm.

∆Tmax = Wεmax





2

d2 Sthermal

∆T





≈ 0.04 K

The largest source or error in the sensor is expected to be random noise in

the CCD (shot noise, readout noise and digitization uncertainty). This will

contribute an error of approximately 0.6 nm, or about λ/1050 @ 633nm, to a

wavefront measurement of thermal lensing in a GWI, which is substantially

better than the sensitivity required for the wavefront sensor in Advanced

LIGO. If, in addtion, there is a signal of approximately 200 nm to be mea-

sured, cross-talk will also contribute and the total error will be approximately
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0.76 nm or about λ/830 @ 633nm.

3.4 Conclusion

The design and development of a HWS for advanced GWI has been presented

in this chapter. Random noise in the CCD has been identified as the major

error source in the HWS limiting the sensitivity to about λ/1050 @ 633nm -

a value that can be improved with averaging due to the random nature of the

noise. In the next chapter, diagnostic testing of and measurements using this

sensor are described and the improvement of the sensitivity with averaging

is demonstrated.



Chapter 4

Testing the sensor

4.1 Introduction

This chapter focusses on the calibration and testing of the Hartmann wave-

front sensor (HWS) described in Chapter 3. The accuracy of the sensor is

determined by that of the pixel spacing, ps, and the lever arm, L, used to

convert the transverse displacement of the Hartmann spots to the gradient

field corresponding to the wavefront change. The measurement of ps was

described in Section 3.3.3.3, yielding 11.975 ± 0.005µm. The measurement

of L will be discussed in Section 4.2. The sensitivity (precision) of the HWS

is expected to be affected by the light source used for the HWS, see Section

3.3.1, and fluctuations in the temperature of the HWS, see section 3.3.2.4.

In Sections 4.3 and 4.4, therefore, a comparison of the noise floor of the

centroids in the HWS for different light sources and a measurement of its

temperature sensitivity are described.

For a suitable light source and temperature stability, the sensitivity of

the HWS is expected to be limited by photoelectron shot noise. Thus, in

Section 4.5, a measurement is described of the noise floor of the HWS and the

improvement that can be obtained by averaging the centroid positions over

multiple Hartmann images. The measurement of a small known wavefront

change to determine the accuracy of the HWS is described in Section 4.6.

95
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4.2 Lever arm calibration

The nominal value of the lever arm, L, the distance between the Hartmann

plate and the CCD, in the fully assembled Hartmann sensor is approximately

10 mm. Given that every gradient measurement of the sensor relies on this

value, any error in it reduces the accuracy of the sensor. As this error is

common to all measurements it thus represents a systematic error. It was

therefore necessary to refine the value of the lever arm.

An experiment that precisely and accurately determines the lever arm of

the Hartmann wavefront sensor is illustrated in Figure 4.1. Vertical needles

that could be bolted coaxially to tapped holes were designed. These were

bolted, at various times, into the regular grid of holes in a Newport RS Series

Research Grade Optical Table at positions A, B, C and D. Position E, shown

in Figure 4.1, contained no vertical needle, but was the intersection of the

line through BD and the line parallel to AB that passed through C. The

HWS was placed at the point of intersection of the line through AB and the

line through CD and was approximately normally incident to AB, the precise

angle of incidence not being critical.

A HeNe laser beam was aligned to needles at A and B by overlapping

their shadows. The needles were removed and the resulting spot pattern was

recorded and centroided 25 times. The mirrors M1 and M2 were then used

to align the beam to needles at positions C and D, again by overlapping their

shadows. The needles were removed and the new spot pattern was recorded

and centroided 25 times. This procedure was repeated 4 times.

Figure 4.2 shows the horizontal translation of the measured centroids.

The average measured horizontal displacement, ∆x, was 286.1 ± 0.3 pixels,

approximately 4.6× the horizontal-hole-spacing. Using this value and similar

triangles, it is straightforward to determine L

L = ∆x ps
|AB|

|BD| − |AC|
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(a) Lever arm measurement experiment

Bolt
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L
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(b) Lever arm measurement experiment - zoom

Figure 4.1: Schematic of the experiment used to calibrate the lever arm.
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= ∆x ps
|AB|
|DE| (4.1)

where ps is the previously determined value of the pixel size (see Section

3.3.3.3). Since |AB| = 1750.0 ± 0.5 mm and |DE| = 575.0 ± 0.5 mm, L =

10.43 ± 0.02 mm. The errors in |AB| and |DE| are given by the error in

the placement of the tapped holes in the optical table and is set, rather

conservatively, to 0.5 mm.

The assumption of similar triangles is limited by the degree to which the

HWS is not normally incident to the beam |AB|. If the HWS is rotated

away from normal incidence by a small angle δθ, then there will be a scaling

error in the similar triangles assumption of the order of δθ2/2 when δθ is

given in radians. For instance, if δθ = 2.5 degrees then the scaling error is

approximately 0.1%. Since the HWS can easily be aligned to better than 2.5

degrees the similar triangles assumption is assumed to be completely valid.

The accuracy of L is determined by the accuracy of ∆x, ps, |AB| and

|DE|. However, in a wavefront measurement, transverse spot displacements,

∆xi, are converted to wavefront gradients, ∂Wi/∂x, using

∂Wi

∂x
=

∆xi ps

L
=

∆xi
∆x

|DE|
|AB|

It is clear that the accuracy of a gradient measurement is limited by ∆xi,

|AB| and |DE|.

4.2.1 Discounting other solutions due to pattern de-

generacy

The other possible, though unlikely, solutions, corresponding to spot pat-

tern displacements of 3.6× and 5.6× the horizontal-hole-spacing, would give

L = 8.17 mm and L = 12.71 mm. These solutions were discounted by com-

paring the spot profile with numerical predictions as described below. The

cross-sections of measured spots at two different wavelengths, λ = 632.8 nm
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Figure 4.2: The measured centroids on the CCD for the HeNe aligned with
needles A and B (red) and with needles C and B (blue). Note that the
circular mask was digitally added after the measurement as a visual aid.
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(coherent) and λ = 820 nm (incoherent), were compared to the cross-sections

of a simulation using ZEMAX for the three potential solutions for the lever

arm. The results are shown in Figure 4.3. The best matches between the

measured and simulated diffraction patterns are in Figure 4.3 c) and d) cor-

responding to a lever arm of 10.43 mm, thus verifying the previous result.

Additionally, this result is consistent with a lever arm of approximately 11

mm, determined using a schematic diagram of the CCD camera and a mea-

surement of the spacer thickness.

The comparison of the measured and simulated diffraction patterns to ver-

ify the lever arm measurement provides some interesting information about

the diffraction of the rays from the Hartmann plate. However, it would have

been unnecessary to verify the lever arm measurement using this comparison

in the absence of pattern degeneracy. A simpler measurement would have

covered all holes except for a single column and used the displacement of the

spots from that column to measure the lever arm.

4.3 Comparison of incoherent and coherent

light sources

The Hartmann sensor should have lower noise when illuminated with light

from a broadband source because this light is free of coherent effects that can

cause fluctuations in the intensity pattern illuminating the sensor. To test

this, the distribution of centroid fluctuations in the Hartmann sensor was

investigated when it was illuminated with different light sources, coherent

and incoherent, and operated under different conditions as shown in Figure

4.4. The incoherent source was the fibre-coupled super luminescent diode

(SLD) described in Section 3.3.1 and the coherent source was a HeNe laser

beam.

In Tests 1 & 2 the wavefront from a light source diverged from the source

onto a Hartmann sensor placed a short distance away. In Tests 3 & 4 the

light propagated through a series of transmissive optical elements before be-
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(a) L = 8.17 mm, λ = 632.8 nm (b) L = 8.17 mm, λpeak = 820 nm

(c) L = 10.43 mm, λ = 632.8 nm (d) L = 10.43 mm, λpeak = 820 nm

(e) L = 12.71 mm, λ = 632.8 nm (f) L = 12.71 mm, λpeak = 820 nm

Figure 4.3: Intensity cross sections from measured Hartmann spots (red)
illuminated with a), c), e) 632.8 nm coherent light and b), d), f) 820 nm
incoherent light. Physical optics simulations by ZEMAX (blue) are also
plotted. 5 × the magnitude of the difference is also shown (green). The best
match between measured and simulated is at 10.43mm.
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HeNe
Laser

from SLD
Optical fibre

CCDHartmann sensor

Hartmann plate
Test 2

Test 1
L

W

(a) Tests 1 & 2 - no intermediate optics

CCDHartmann sensor

Hartmann plate

HeNe
Laser

Test 4

from SLD
Optical fibre

Test 3 L

(b) Tests 3 & 4 - multiple intermediate optics

Figure 4.4: Experimental setup to test the precision of the Hartmann sensor.
a) Test 1: An incoherent source (output from a fibre coupled SLD) directly
illuminates the Hartmann wavefront sensor. Test 2: A HeNe laser beam
focussed to form a waist that directly illuminates the Hartmann wavefront
sensor. b) Test 3: An incoherent source that propagates through multiple
transmissive optics illuminates the Hartmann wavefront sensor. Test 4: A
HeNe laser beam that propagates through multiple transmissive optics illu-
minates the Hartmann wavefront sensor.
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(a) Test 1 - incoherent, no optics (b) Test 2 - coherent, no optics

(c) Test 3 - incoherent, multiple optics (d) Test 4 - coherent, multiple optics

Figure 4.5: The distribution of the deviations of each of the M centroids from
its average value for each Test and best fit Gaussians. a) Test 1: incoherent
illumination and no optics between source and Hartmann sensor, b) Test 2:
coherent illumination and no optics, except a single imaging lens, between
source and Hartmann sensor, c) Test 3: incoherent illumination and multiple
optics between source and Hartmann sensor, d) Test 4: coherent source and
multiple optics between source and Hartmann sensor.
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ing incident upon the Hartmann sensor. A series of N images of the M

Hartmann spots was recorded over a short period of time for each set-up.

The patterns were analyzed using the FPC algorithm described in Section

3.3.4.2 to obtain a list of all centroids over all images. For simplicity, the

analysis only considered the x component of the centroids.

For each test, the average centroids for the jth spot from N images, xj ,

was calculated using

xj =
∑N

i=1
xi j

N
, where j = 1, . . . ,M.

The deviations, ∆xi j , of each of the M centroids from its average value for

all images were determined using

∆xi j = xi j − xj , where i = 1, . . . , N.

The distributions of the deviations for the four tests are plotted in Figure

4.6 and are compared to a best fit Gaussian. The width of the distribution

in Tests 1-3 is consistent with the shot noise limit, 0.34% of a pixel for the

FPC algorithm, established in Section 3.3.4.3, and the good agreement with

the Gaussian distributions shows that the distribution of centroid deviations

are largely random. The distribution of centroid deviations in Test 4 is much

wider, indicating an additional noise source.

The RMS deviation of the centroids in the ith image, from those in the

initial image, is defined as

σcenti =

√

√

√

√

∑M
j=1 (xi j − x0 j)

2

M − 1
.

and the temporal variation of this RMS deviation is shown in Figure 4.6.

Since the graphs for Test 1,2 & 3 are independent of i, the fluctuations in

the centroids are random. Futhermore, the RMS deviation for these tests is

similar to the 0.34% shot-noise floor predicted in the previous chapter. For
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(a) No/minimal optics

(b) Optics

Figure 4.6: RMS centroid difference between each set of centroids and the
first image set vs time. a) Tests 1 & 2: incoherent source (blue) and coherent
source (red), no optics between source and Hartmann sensor. b) Tests 3
& 4: incoherent source (blue) and coherent source (red), multiple optics
between source and Hartmann sensor. Note that the incoherent source test
(blue) was run for approximately 50 s and the coherent source test (red) for
approximately 100 s.
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Test 4, however, it is clear that there is a large temporal variation in the RMS

deviation. This is further evidence for some non-random noise component.

The most plausible explanation for this component is the presence of inter-

ference fringes in the intensity pattern, acquired from multiple reflections in

the transmissive optics, resulting in fluctuations in the Hartmann spots that

are not due to the variations in phase of the wavefront.

These results clearly demonstrate that using an incoherent source as a

probe beam yields a more robust Hartmann wavefront sensor as the incoher-

ent source remains shot-noise limited in scenarios where a coherent source

does not.

4.4 Temperature dependence of HWS

As discussed in Section 3.2.5, if Hartmann sensor measurements are made be-

fore and after a temperature change then there could be an apparent change

in the wavefront where none exists. This change would appear as the primary

aberration defocus.

A measurement was made of this temperature dependent error using a

system very similar to that shown in Figure 4.4 a). The HWS was turned on,

at t = 0, and illuminated with light from the SLD. Two temperature sensors,

one on the A/D converter and the other on the CCD sensor board, recorded

the temperature of the camera from t = 22.5 s. Centroiding the Hartmann

patterns and calculating the apparent defocus, relative to the first pattern,

commenced at t = 34.0 s.

The results of these measurements are plotted in the semi-logarithmic

plot in Figure 4.7. The red and blue data show the temperature at the A/D

converter and CCD sensor, respectively. Notice that the temperature of the

A/D converter starts increasing immediately, while the intial increase in the

temperature of the CCD is much slower and ultimately settles on a lower

value. The initial increase in the resultant apparent defocus (green data) is

delayed further still. This indicates that the heat in the camera is generated
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Figure 4.7: Temperature on the A/D board of the camera (red) and tem-
perature on the CCD sensor (blue). Apparent defocus, relative to the initial
state, measured by HWS (green).

in the immediate vicinity of the A/D converter and diffuses first to the CCD

and, subsequently, to the Hartmann plate.

Figure 4.8 is a scatter plot of the defocus and the temperature on the A/D

converter for measurements that were recorded at the same time. Notice

that there is a one-to-one and approximately linear relationship between

defocus and temperature. Also shown is the line of best fit, with a slope of

0.0025 m−1 K−1. Recall that an estimate, 0.00195 m−1 K−1, of this coefficient

was determined in Section 3.3.2.4.

The approximate linear relationship between defocus and temperature

and the reasonable agreement between the expected and measured values of

the coefficient of the temperature dependence of defocus are strong evidence

for the existence of a temperature dependent error in the Hartmann sensor

that is consistent with the physical argument presented in Section 3.2.5.

Also illustrated by this experiment is the necessity of allowing the Hartmann

sensor approximately 3 hours to reach a steady state temperature before it

should be used.
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Figure 4.8: Scatter plot of the measured defocus vs temperature. The dashed
line is the best linear fit and has a slope = 0.0025 m−1 K−1

4.5 Noise floor of the Hartmann sensor

The equivalent wavefront error due to noise in the sensor was measured us-

ing the system shown in Figure 4.4 a) using the 820nm fibre-coupled super-

luminescent diode (SLD). Spot centroids1 were calculated for consecutive

Hartmann images separated in time by 15 s and the average prism (tip/tilt)

in each image was removed. These zero-prism centroids were used to calcu-

late the error in the discrete gradient field and subsequent wavefront change.

A typical gradient field and map of the wavefront change, which has an RMS

error of λ/1450, are shown in Figure 4.9 a) and b), respectively. The RMS

error for these maps varied between λ/1000 and λ/2000 which is consistent

with the shot noise limit, established in Section 4.3, and the Southwell noise

coefficient (see Section 3.3.5.3), C∆W = 0.2, calculated for Nholes = 263 used

in this example. In general, the RMS wavefront error for a zonal reconstruc-

tion across all holes, assuming uncorrelated noise, is given by C
1/2
∆W × σ∆W ,

where σ∆W is the RMS wavefront difference between adjacent holes, which

was defined in Equation 3.17 and is repeated here.

1All the remaining experiments in this chapter used the WCoG algorithm to calculate
the spot centroids.
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σ∆W =
hp

L
σ∆y (4.2)

where σ∆y is the average RMS error in the individual centroids.

If the statistical characteristics of the noise do not vary with time (i.e.

the noise is stationary) then the wavefront error should be reduced by av-

eraging over multiple Hartmann images. To test this, a sequence of 2000

Hartmann images was recorded at 30 images/second and the global prism

was removed from each image. A set of reference centroids was then calcu-

lated by averaging over Nref = 1000 images, consisting of the first and last

500 images. The central 1000 images were used to calculate sets of centroids

averaged over Navg images, where Navg = 1, . . . , 990. This process ensured

that the reference and average centroids were statistically independent. The

procedure was repeated 5 times. The dependence of σ∆W on Navg is plotted

in Figure 4.10, showing that σ∆W < λ/15, 500 at Navg = 990.

The prediction of a numerical simulation that assumes stationary random

noise given by

σ2
∆W (Navg) = σ2

∆W,1

(

1

Navg
+

1

Nref

)

(4.3)

is also plotted in Figure 4.10, where σ∆W,1, the Navg = 1 error, is the only

free parameter. For small Navg, the error decreases as N1/2
avg , as expected and

it asymptotically approaches a value that is N
1/2
ref below the Navg = 1 error,

the limit due to noise in the reference centroids. Note the good agreement

between the measurement and the numerical prediction, except for Navg >

300 where the measured error is slightly larger than that predicted.

The RMS wavefront error was approximately λ/15, 500, which is larger

than the λ/21, 000 predicted using the Southwell noise coefficient appropriate

to this measurement. These discrepancies are probably due to the effect of

a low-frequency temperature fluctuation, which is described in Section 4.6.

These results demonstrate that the dominant noise in the Hartmann

wavefront sensor is random and well described by Poissonian statistics, which
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(a) Vector plot of gradient field

(b) Contour plot of reconstructed wavefront

Figure 4.9: Hartmann sensor measurement of the background shot-noise level
made by comparing two Hartmann patterns separated in time by approxi-
mately 15 s. Shown here are a) the gradient field of the apparent wavefront
change and b) a reconstruction of the apparent wavefront change.
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Figure 4.10: The improvement in HWS sensitivity due to averaging over
Navg Hartmann images. The solid curve shows the improvement predicted
assuming only random, stationary noise in the spot centroids

is consistent with the HWS being shot-noise limited as predicted in Section

3.3.3. The sensitivity is limited when averaging, implying an additional small

noise source. It is plausible that thermal expansion of the HP may be a con-

tributing factor to this noise.

4.6 Accuracy test using known wavefront change

A simultaneous measurement of the accuracy and precision of the HWS can

be tested by measuring a well-known, and preferably small, wavefront change.

Therefore, an experiment was developed to create a small quadratic wavefront

change, the primary aberration defocus.

4.6.1 Analytic form of known wavefront change

Consider a wavefront diverging from a point source and incident on a Hart-

mann sensor a distance z0 away, as illustrated in Figure 4.11. The equation

for the wavefront at height h is
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y0h

L

CCD

∆y
HP

z0

∆z

W W ′

Figure 4.11: Schematic showing the change in direction of a Hartmann ray
in the presence of defocus.

W (h) = z0 −
√

z2
0 + h2, (4.4)

and the gradient of the wavefront in the paraxial limit is

∂W

∂h
=

h

z0
. (4.5)

If the source is translated toward the HWS by ∆z, the new wavefront W ′,

equal to the original wavefront plus the wavefront change ∆W , has a gradient

at height h given by

∂W ′

∂h
=

h

z0 − ∆z
(4.6)

The gradient of the wavefront change is then given by

∂ (∆W )

∂h
=

h

z0
− h

z0 − ∆z

=
−∆z h

z0 (z0 − ∆z)
(4.7)

= S h (4.8)
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where S is the primary aberration defocus. The gradient can also be ex-

pressed as

∂ (∆W )

∂h
=

∆y

L
(4.9)

=
∆z

(z0 − ∆z) (z0 + L)
y0 (4.10)

The measured wavefront change, which can be made arbitrarily small by

reducing ∆z, is characterized by plotting ∂ (∆W ) /∂h versus y0, determining

the slope of the line-of-best-fit and the deviation of the data points about this

line. The predicted wavefront change is, therefore, known with the accuracy

with which z0, L and ∆z are known.

4.6.2 Experiment design

The layout of the system used to measure ∆z and the resulting wavefront

change is shown in Figure 4.12. The HWS was illuminated by light emitted

from the optical fiber coupled to the 820 nm Agilent HFBR-1414 super-

luminescent diode described in Section 3.3.1. The fiber was mounted on a

micrometer-controlled translation stage to allow the distance, z0, between

the light source and the HWS to be adjusted precisely.

Translation of the fibre end, ∆z, was measured using a Michelson inter-

ferometer, in which the input beam was split at point A. The object beam

of the interferometer was formed by the path A-Mobj-A, where Mobj was a

mirror mounted on the fibre holder on the translation stage. The reference

beam was formed by the path A-B-C-Mref -C-B-A, where Mref was a mirror

mounted on the front of the HWS. These beams were recombined on a CCD,

and the horizontal cross-section of the interference pattern was recorded as

rapidly as the CCD would allow, approximately 13 Hz. To assist in measur-

ing ∆z, a small amount or horizontal tilt was introduced between the object

and reference beams resulting in vertical fringes on the CCD and a sinusoidal

intensity pattern in the horizontal direction, which moved across on the CCD
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Interferometer
read−out

Optical fibre
from SLD

M obj

M ref

ref

objA

C

B

L

HeNe laser
Hartmann plate

Translation stage

z0

W

Hartmann sensor

CCD

Figure 4.12: A schematic of the Hartmann wavefront sensor and the system
used to test the sensor. The sensor was illuminated using a fiber-coupled
super luminescent diode (SLD), the free end of which was mounted on a
translation stage. Changes in the distance between the fiber end and the
Hartmann plate were measured using a Michelson interferometer.

in response to a translation ∆z. Fourier analysis was used to filter out all

the noise, leaving only the sinusoidal signal. An example of the interference

pattern measured by the CCD and the filtered signal are shown in Figure

4.13.

A change, ∆z, in the distance between HWS and the fibre holder results

in a horizontal translation of the sinusoid by a phase, ∆φ, given by

∆φ =
4 π∆z

λ
(4.11)

If the phase change per CCD frame was less than π then the translation

of the sinusoid per frame was unambiguous (i.e. avoided any modulo 2 π

ambiguity) and the change in phase and thus ∆z over time could be tracked.

Provided it was varied slowly, ∆z could be recorded with approximately 10

nm precision for small translations.
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Figure 4.13: A cross-section of the interference pattern output from the
Michelson interferometer measured on the CCD. The solid line shows the
measured fringes and the dotted line shows the filtered sinuosidal modulation
due to the tilt introduce into the reference beam. The vertical dashed line
indicates the position at which the phase is measured in every frame.

4.6.3 Calibration of the origin for z0

The accuracy of the defocus measurement can be determined by comparing

the measured defocus with that predicted using Equation 4.10, but this com-

parison requires an accurate determination of the origin of z0. The nominal

distance between the HP and the fibre end, znom, can be measured with a

ruler with a precision of ±1 mm. A micrometer or calipers could not be used

to measure the nominal because the HP was not a rigid surface. The true

distance between the HP and the fibre end is z0 and will differ from this

nominal value by a systematic offset εz such that

z0 = znom + εz

Therefore, if εz can be determined and a measurement of znom exists, then

the origin of z0 can be determined. This can be accomplished by exploiting

the non-linear dependence of the gradient of the wavefront change on z0.

Equations 4.7 and 4.9 can be combined to give
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∆y

L
=

∆z

z0 (z0 − ∆z)
h.

where the theoretical slope, mtheory, of ∆y/L versus h is thus

mtheory =
∆z

z0 (z0 − ∆z)

mtheory (εz) =
∆z

[znom + εz] ([znom + εz] − ∆z)
.

If a translation, ∆z, from an initial nominal distance, znom, is made, with

HWS measurements of N spots taken before and after, then the slope of

the line-of-best-fit, mfit, of (∆y/L)i versus hi, where 1 ≤ i ≤ N , can be

determined. The corresponding value of mtheory (εz) can be determined at

this nominal distance.

Multiple, large translations were made, ∆z ≈ 1 mm, for a series of nomi-

nal distances, znom, between the HP and the fibre end. The resulting theoret-

ical and fitted slopes, mtheory and mfit, respectively, were plotted versus the

nominal distances znom plus an estimate of εz. This resulted in two non-linear

curves that were offset from one another. The value εz was varied to displace

the curves until they lay on top of one another, as illustrated in Figure 4.14,

thereby yielding a value for the systematic offset εz, and hence calibrating

the origin of z0.

In this way, z0 for the measurement in Section 4.6.5 was determined to

be 91.7 ± 0.2 mm. Note that, although the best fit of z0 gives an error

of approximately ±0.03 mm, the error here is set to 0.2 mm because the

relative error in the lever arm L, which is used in the calculation of z0, is

approximately 0.2% (recall that L = 10.43 ± 0.02 mm).
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(a) εz0
= 0.0 mm low

(b) εz0
= −0.23 mm low (c) εz0

= −0.63 mm high

Figure 4.14: Multiple measurements of mtheory (red) and mfit (blue) at differ-
ent approximate distances, znom+εz0, from the HP. The only fitting parameter
is the error in the distance from the HP, εz0. a) Shows the comparison using
only the nominal value znom with εz0 = 0. By varying the fitting parameter,
εz0, the measurements (blue) could be made to lie on top of the theory curve
(red). In this way the distance from the fibre to the HP could be calibrated.
b) shows an example where this distance has been underestimated and c)
shows an example where this distance has been overestimated.
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4.6.4 Mitigating cyclic temperature fluctuations

Since ∆W was intended to be very small to simultaneously test precision

as well as accuracy, the temperature dependence of the HWS, discussed in

Section 3.2.5, was expected to introduce a significant error in response to any

changes in temperature. Recall that the change in wavefront due to a change

in temperature appears to be quadratic - the same form as the signal to be

measured in this defocus experiment!

Periodic fluctuations in the temperature of the CCD (±150 mK @ 0.5

mHz) were observed due to the laboratory air-conditioning (if the air- con-

ditioning was turned off the laboratory was subject to diurnal temperature

variations, approximately ±5, 500mK per day). The air-conditioning induced

temperature fluctuations were periodic and the translations could be timed

to coincide with a maxima or a minima such that the average temperature

before and after translation was the same and the net effect of these fluctu-

ations would thus be minimal. This was done by performing multiple trans-

lations of the fibre end and then leaving the system for another 2-3 hours to

record the period and phase of the background fluctuations. Knowing these

values, the periodic signal could be traced back in time and the translation

that occurred closest to a turning point of the periodic signal could then be

selected.

4.6.5 Experiment procedure

The experimental procedure was:

1. texpt = -180:00 minutes. The HWS was turned on 3 hours in advance

of any measurements to allow it to reach a steady-state temperature.

2. texpt = 000:00 minutes. The Michelson interferometer started

recording interference patterns at approximately 13 Hz and ran

continuously for the 6 hour duration of the experiment.
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3. texpt = 000:10 minutes. A temperature record of the HWS sensor was

started and ran continuously for the 6 hour duration of the

experiment. This was read from the the on-board sensors with a

frequency of 33 mHz (every 30 s).

4. texpt = 000:20 minutes. The HWS sensor started and ran continuously

for the 6 hour duration of the experiment. Centroid patterns were

recorded at approximately 33Hz.

5. texpt ≈ 000:20 → 006:30 minutes. 10,000 centroids were recorded at

the intial position.

6. texpt ≈ 006:30 → 007:30 minutes. The fibre was translated

approximately 10µm closer to the HWS by adjusting the translation

stage. This was done extremely carefully and slowly to enable

successful tracking of the fringes in the interference pattern.

7. texpt ≈ 007:30 → 014:00 minutes. 10,000 centroids were recorded at

the new position.

8. texpt ≈ 014:00 → 143:00 minutes. Steps 6 and 7 were repeated a

further 18 times.

9. texpt ≈ 143:00 → 360:00 minutes. The equipment was left recording

data for a further 3.5 hours.

10. texpt = 360:00 minutes. All data recording ceased.

4.6.6 Results

The defocus measured in Step 9 is plotted in Figure 4.15 a), the OPD mea-

sured by the interferometer for this Step in Figure 4.15 c) and the tempera-

ture measured by the on-board temperature sensors on the HWS in Figure

4.15 e). A sinusoidal variation in defocus with a frequency of 0.5 mHz can

be seen in the defocus data, the OPD measurements and the on-board tem-

perature. The spectral components of this signal are shown for the defocus,
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OPD and temperature in Figures 4.15 b), d) and f), respectively. Given that

it has been established, Section 3.2.5, that the HWS produces a temperature

dependent systematic error that appears to be defocus and that the temper-

ature and defocus oscillations have the same frequency, it is concluded that

the observed periodic fluctuations in defocus are caused by the cycling lab-

oratory temperature. Periodic thermal expansion of the optical table would

also explain the fluctuations in OPD observed in Figure 4.15 c).

The defocus measurements were made by comparing measurements im-

mediately before and after maxima or minima in the temperature cycle,

with the fibre translation itself coinciding with the maxima or minima. The

fluctuations in temperature were slowest at these points and the average

temperature of the measurements before and after the displacement were

approximately the same. The sinusoidal signal measured after the last mea-

surement was traced backward in time to determine the displacement which

occurred closest to a maxima or minima and therefore had the smallest sys-

tematic error. This is illustrated Figure 4.16. The displacement at 68 minutes

coincided with a maximum of the sinusoid and hence the centroids immedi-

ately before and after this measurement were used in the following analysis.

The change in the optical path length, measured by the interferometer, was

19.2 ± 0.1µm, giving ∆z = 9.60 ± 0.05µm.

The vertical gradient field of the wavefront distortion was determined

from the difference between the Hartmann centroids before and after the dis-

placement at t = 68 minutes. This was done for centroids averaged over Navg

measurements for Navg = 1, 100, 1000, 5000. Figure 4.17 shows plots of the

vertical component of the gradient field for the four averages. The predicted

value of vertical gradient is also plotted. These plots show a linear relation-

ship between the local gradient and transverse position, y0, as predicted by

Equation 4.10, and the improvement in sensitivity due to averaging.

The defocus due to the source translation can be calculated using the

slope, m, of the line-of-best-fit to this data and S = m (z0 + L) /z0 and the

results are summarised in Table 4.1. Linear regression analysis was used to
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(a) Hartmann defocus measurement (b) Hartmann defocus frequency spectrum

(c) Interferometer measurement (d) Interferometer frequency spectrum

(e) CCD temperature measurement (f) CCD temperature frequency spectrum

Figure 4.15: a) Hartmann sensor defocus measurement and b) its temporal
spectrum. c) Mach-Zehnder interferometer optical path distortion measure-
ment and d) its temporal spectrum. e) Average temperature measured by
the two CCD temperature sensors and f) its temporal spectrum. These plots
show a 0.5 mHz sinusoidal signal common to the defocus, interferometer and
temperature measurements.
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Figure 4.16: The defocus measured by the Hartmann sensor, relative to an
average background, versus time where the fibre end is displaced multiple
times by approximately 10µm every 7.5 minutes. The dotted lines are sinu-
soidal curves that have the same frequency and phase as the cyclic fluctuation
of the laboratory temperature and are traced backward in time. Notice that
the displacement at 68 minutes coincides with a peak.
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(a) Navg = 1 (b) Navg = 100

(c) Navg = 1000 (d) Navg = 5000

Figure 4.17: Measured local gradient of the wavefront change versus spot
position at the CCD, y0, due to translation of the fiber light source, averaged
over a) 1, b) 100, c) 1000 and d) 5000 Hartmann images.
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Navg Defocus, S Accuracy Precision

1 −1.3 ± 0.2 × 10−3 m−1 λ/860 λ/330
100 −1.127 ± 0.036 × 10−3 m−1 λ/3700 λ/1800
1000 −1.150 ± 0.008 × 10−3 m−1 λ/5200 λ/8200
5000 −1.159 ± 0.007 × 10−3 m−1 λ/3300 λ/9300

Expected value −1.14 ± 0.01 × 10−3 m−1 - -

Table 4.1: Summary of the defocus measurements with the HWS averaged
over Navg measurements, where Navg = 1, 100, 1000 and 5000. Precision is
given by the 95% confidence interval.

determine the slope and precision of the line-of-best-fit. The uncertainty in

S when averaged over 5000 images is equivalent to an uncertainty in the

wavefront sag of 0.1 nm (λ/9300) over the CCD aperture (≈ 10 mm), which

is roughly twice the previously measured λ/15, 500 due probably to non-

stationary noise during the extended acquistion time.

The accuracy of the defocus measurement over the aperture of the HWS

(≈ 10 mm) is determined by comparing the measured defocus with the pre-

dicted value of −1.14±0.01×10−3 m−1, which differs from the measurement

by about 2 × 10−5 m−1 or 1.7%, for Navg = 5000. This error is equivalent to

λ/3300 and could be explained by a change in average temperature of the

HWS of order 10 mK.

These results show that the HWS is ideal for high precision and high

accuracy measurement of wavefront changes, and represent a large improve-

ment in the state-of-the-art. The application to the measurement of a small

wavefront change due to defocus, S, with a precision of 7 × 10−6 m−1 (see

Table 4.1 for Navg = 5000 ) was demonstrated. It was also established that

the sensor measures this aberration with an accuracy of about 2× 10−5 m−1.

4.7 Conclusion

The sensitivity and accuracy of the Hartmann sensor has been demonstrated

by the results reported in this chapter. In Section 4.3, the choice of an

incoherent light source was shown to be crucial in reducing the uncertainty
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in centroid measurements to a shot-noise limit. A high precision and accuracy

calibration of the effective lever arm of the Hartmann sensor was described

in Section 4.2. In Section 4.5, the background noise in the Hartmann sensor

was shown to be dominated by Poissonian shot-noise and capable of being

reduced to at least λ/15,500 by averaging multiple measurements. Evidence

of another, potentially temperature related, noise source was observed at this

level. An observation of the temperature dependent error in the Hartmann

sensor was described in Section 4.4 and a simple measurement of the size

of this effect yielded a result relatively close to the expected value. Section

4.6 described the measurement of the accuracy using a novel experiment

to induce very small, yet well-defined, wavefront aberrations and the results

from this experiment demonstrated the measurement of a very small defocus,

equivalent to an 850m lens, with an accuracy of 1.7% and a precision of 0.7%.
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Chapter 5

Direct measurement of

wavefront distortion at the

High Optical Power Test

Facility

5.1 Background

The High Optical Power Test Facility (HOPTF), operated by the Australian

Consortium for Interferometric Gravitational Astronomy (ACIGA), is a test

facility designed to investigate critical issues associated with high power op-

tical cavities, such as the measurement and compensation of absorption-

induced wavefront distortion and the effect of parametric instabilities on

cavity stability [97].

The high optical power cavity at the facility has previously been used

to investigate the effect of absorption-induced thermal lensing in the cavity

optics on the cavity mode size by Zhao et al. [18]. This was accomplished

by measuring the spatial profile of the light emitted from the cavity and

comparing it with that predicted by a FEM, assuming the dominant thermal

time constants expected for the intra-cavity optics and that the cavity power

127
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was constant. Whilst there appeared to be reasonable agreement between

measurement and model in that investigation, such a technique could not be

used to produce a signal suitable for a thermal compensation system (TCS)

in Advanced LIGO, as described in Section 1.3 and illustrated in Figure 1.7,

as it a) estimates only the defocus (thermal lens) component of the wavefront

distortion (WD), and b) could not determine the WD of individual optics

within a GWI.

5.2 Objectives

In this chapter, I describe the first direct measurement of wavefront distortion

in an optical cavity that has high stored power using a sensor that meets the

sensitivity and spatial resolution criteria specified for Advanced LIGO (see

Section 1.3.2).

The installation of the sensor at the HOTPF and the properties of the

cavity itself are discussed in Section 5.3, as well a measurement of the sensor

noise floor. The experimental procedure and analysis of the data from the

sensor are discussed in Section 5.4. This discussion is particularly detailed

because the sensor measures the absorption-induced WD of multiple intra-

cavity optics off-axis and this measurement must be converted to the on-axis

distortion that is experienced by the cavity mode. The results of the wave-

front measurement and their validation using two independent measurements

are reported in Section 5.5 and concluding remarks are made in Section 5.6.

5.3 Description of measurement system

5.3.1 The HOPTF high-optical-power cavity in detail

The current optical configuration is a 77 m Fabry-Perot cavity in which the

substrate of the input coupler or ’input test mass’ (ITM) is inside the cavity

to enhance the absorption-induced wavefront distortion in that mirror, as
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Nd:YAG
LASER

ITM

77 m

ETM

Vacuum system

L3 BP
7.0 − 8.4 kW

CP

140 mm

input

10 W

optics
5 − 6 W

Figure 5.1: Schematic of the Fabry-Perot cavity with high stored power,
located at the HOPTF.

ITM ETM CP

Material Sapphire Sapphire Fused Silica
Diameter 100 mm 150 mm 160 mm
Thickness 46 mm 80 mm 17 mm
Radius of curvature flat 720 ± 100 m flat
HR transmission 1840 ± 100 ppm 20 ppm n/a
AR reflectivity 30 ± 20 ppm 12 ± 10 ppm 100 ppm
Volumetric absorption ≈ 51 ppm/cm n/a ≈ 2 ppm/cm

Table 5.1: Physical parameters of the HOPTF Fabry-Perot cavity optics

shown in Figure 5.1. The cavity also contains a fused-silica compensation

plate (CP) that can be heated via a heating coil wrapped around its barrel

surface, which is used by other members of ACIGA.

The optical and physical parameters of the ITM, CP and the end test

mass (ETM) are shown in Table 5.1. The cavity has a measured finesse of

approximately 1400 [98], which is consistent with the losses due to the AR

coatings and absorption of the CP and ITM substrates. A laser beam from a

10W Nd:YAG single frequency 1064 nm laser [99] is passed through a series

of input optics (a pre-mode cleaner, isolator, mode-matching and alignment

optics) and the remaining 5 - 6W is coupled into the 77 m Fabry-Perot cavity,

resulting in approximately 7.0 - 8.4kW of intra-cavity power. A small amount

of the cavity mode is transmitted through the end test mirror (ETM) and

is imaged onto a beam profiler (BP) with a demagnification = 2.92 ± 0.05,

thereby recording the cavity mode size and power level at the ETM.
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5.3.2 Installation of the HWS at HOPTF

A HWS was installed at the HOPTF to measure the wavefront distortion

in the ITM and the CP at an off-axis angle as illustrated in Figure 5.2.

The HWS was identical to the one described in Chapters 4 and 5, the only

modification being a more powerful light source (QPhotonics QSDM-790-2

2mW 800 nm fibre-coupled superluminescent diode [100]). The output of the

fibre was collimated into an approximately 80 mm diameter beam, steered

into the vacuum system and through the ITM and the CP at an angle of

10◦. The interior of the vacuum system, the beam steering mirrors, M2, M3,

and M4, the CP and the ITM are shown in the photograph in Figure 5.3.

After transmission through the ITM and CP, the beam was steered out of the

vacuum system, through an imaging lens, L2 (f = 500 mm), and was incident

on the HWS. The imaging lens was adjusted such that the exit plane of the

ITM, pobj, was imaged onto the Hartmann plate.

The ITM suspension assembly [101] can be seen surrounding the ITM in

Figure 5.3 and also in Figure 5.4 a). Part of the Hartmann probe beam was

obscured by several components of this suspension assembly, as illustrated in

the computer-generated rendering of the ITM and suspension assembly, from

the point-of-view of the probe beam, shown in Figure 5.4 b). The top and

bottom cross beams, on which the magnetic actuators used to align the ITM

are mounted, which cannot be removed, obscure a substantial fraction of the

ITM but a region about 3 × the cavity mode diameter around the center

of the cavity mode remains unobscured. This is sufficient for measuring the

wavefront distortion in the region of the cavity mode. Additionally, there

were two brackets to the left and right of the ITM center that obscured part

of the HWS probe beam. The front LH and rear RH brackets were removed as

their removal had little to no effect on the suspension system (these brackets

housed two safety stops and their removal left 12 remaining stops). This final

configuration is illustrated in the computer-generated rendering in Figure 5.4

c).

The aperture is highlighted in the computer-generated rendering in Figure
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Figure 5.3: Photograph showing interior of the vacuum system, the beam
steering mirrors, M2, M3, and M4, the CP and the ITM.

5.5 a) with the positions of the centers of the ITM and CP indicated by red

and blue crosses, respectively. An image of the probe beam at pobj is shown

in Figure 5.5 b).

5.3.3 Reduction of environmental noise coupling into

HWS

The wavefront distortion across the whole aperture was measured with the

Nd:YAG laser off so that there was no stored power in the cavity. The

RMS error when the HWS was first installed, averaged over 10 contiguous

Hartmann images, as a function of time is shown in Figure 5.6 in curve

a), exhibiting much higher average RMS wavefront error than the theoretical

shot-noise limit for the sensor: λ/45 vs λ/3000. The additional noise was pri-

marily due to air filters creating turbulence in the vicinity of the experiment.

Additionally, the volume of air through which the probe beam passed was

significantly greater than for the shot-noise limited measurements described

in Chapter 4 and hence the contribution from air currents was greater.
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Figure 5.4: a) Photograph of the ITM installed in its suspension system. b)
Computer-generated rendering of the ITM and suspension system from the
point-of-view of the probe beam. c) Computer-generated rendering of the
ITM and suspension system from the point-of-view of the HWS with the
corner brackets removed.
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(a) (b)

Figure 5.5: a) computer-generated rendered view of ITM and suspension
system at 10 degrees with aperture highlighted and the positions of the ITM
and CP centers indicated by red and blue crosses, respectively. b) Image of
the probe beam shadow at pobj .

Figure 5.6: RMS noise in HWS measurement versus time. a) With all air
filters on, b) with air filters off, c) with air filters off and beam tubes enclosing
the majority of the beam path and d) shot-noise limit (simulated).
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When the air filters were turned off to reduce air currents, the RMS

wavefront error decreased to an average value of λ/130. The time dependence

of the RMS wavefront error for that configuration is displayed in Figure 5.6

in curve b). The RMS wavefront error was further decreased by isolating

a substantial fraction of the probe beam with beam tubes, as illustrated in

the photographs in Figure 5.7. The final average RMS wavefront error was

λ/730 and this error as a function of time is shown in Figure 5.6 in curve

c). Also shown in this figure, curve d), is the RMS wavefront error expected

for purely random noise, with an average of λ/3000. The large excursions

from the mean RMS level in curve c) indicate that there is probably still

some correlated noise in the wavefront. Indeed, the wavefront difference for

curve c) at t ≈ 75 s indicates evidence of correlated noise as shown in Figure

5.8. This is most likely due to residual air currents and the large volume of

air in the probe beam, although it could also be acoustic vibration of the

optical components. To alleviate this in future the probe beam could be

expanded inside the vacuum system reducing the volume of air to which it is

exposed. Nevertheless, the sensor as installed in this experiment still satisifes

the Advanced LIGO sensitivity specification.

5.4 Measurement procedure and analysis

5.4.1 Measurement procedure

The procedure for measuring the thermal lensing in the sapphire (ITM) and

fused silica (CP) as a function of time, where texpt is the experiment time, is

as follows:

1. texpt ≈ −15 s. Start recording Hartmann images to establish reference

centroids before the 1064 nm beam is coupled into the cavity.

2. texpt = 0 s. Couple 10W laser into cavity. Start recording the trans-

mitted power and beam size with the beam profiler (BP).
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(a)

(b)

Figure 5.7: Photographs showing some of the (improvised) beam tubes that
attenuated background noise in the HWS.
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Figure 5.8: An example of correlated noise in the background wavefront
difference for curve c) in Figure 5.6 at t ≈ 75 s.

3. texpt = 0 s → texpt ≈ 300 s. Continue recording Hartmann images to

measure the temporal development of thermal distortions in the ITM

and CP.

4. texpt ≈ 300 s. Turn off 1064 nm beam.

5. texpt ≈ 300 s → texpt ≈ 400 s. Continue recording Hartmann images to

observe the decay of thermal distortions in the ITM and CP.

6. texpt ≈ 400 s. Cease recording with the HWS and the BP.

This procedure was repeated on 13 separate occasions. The power level

in the cavity was noticeably more stable on some occasions than others due

to variations in the mode-matching of the 1064 nm laser into the Fabry-Perot

cavity.
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5.4.2 Analysis of wavefront distortion

As indicated earlier, the Hartmann probe beam is incident on the CP and

the ITM with a 10◦ angle of incidence so that the wavefront distortions can

be measured separately. In Section 5.4.2.1, I show how this off-axis HWS

measurement of distortion is transformed into the distortion that would be

measured by an on-axis probe beam. The on-axis WD is measured in trans-

mission through the CP and ITM, however, while the cavity mode is reflected

from the high-reflecting surface of the ITM. Thus, in Section 5.4.2.2, I show

how the on-axis distortion can be used to determine the distortion experi-

enced by the cavity mode. Lastly, in Section 5.4.2.3, I show how to determine,

from the distortion experienced by the cavity mode, the thermally induced

defocus, which can be used to calculate the cavity mode size at the ETM.

In Section 5.5 the calculated mode size is compared with the measurements

from the BP to show that the wavefront distortion measurement is accurate.

Note that the off-axis to on-axis transformation described here is valid

only because the CP and ITM are separated by a distance that is large

compared to the thickness of the ITM and CP, and the angle of incidence is

small. More generally, a tomographic analysis should be used to achieve this

transformation as described in Chapter 6.

5.4.2.1 Converting off-axis distortion to on-axis distortion

A schematic illustrating the off-axis probe beam propagating through the CP

and ITM is shown in Figure 5.9 a). The results of a numerical simulation of

the expected off-axis wavefront distortion due to Hello-Vinet thermal gradi-

ent inside the optics is shown in Figure 5.9 b), where this off-axis distortion is

labelled WD(off). Two lobes are clearly seen, indicating the distortion in the

two optics. Due to the shallow viewing angle, a vertical cross-section through

each lobe is approximately equivalent to what would have been measured in

that component in an on-axis view. These cross-sections are indicated by

dashed lines in Figure 5.9 b) and are labelled WD
(off)
SAPH and WD

(off)
FS for the

sapphire and fused silica cross-sections, respectively.
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ITM

CP

140 mm

A
probe beam rays

B

10 degrees

(a)

(b)

Figure 5.9: a) Off-axis probe beam refracting through sapphire ITM and
fused silica CP. b) Simulated off-axis wavefront distortion, WD(off), showing

the two vertical cross-sections, WD
(off)
FS and WD

(off)
SAPH, used to determine the

defocus in the fused-silica and sapphire, blue and red respectively.
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The on-axis and off-axis distortions differ because of two effects. Firstly,

each lobe is smeared or elongated slightly in the horizontal direction due to

the axial extent of the thermal lenses. Secondly, each lobe is contaminated

slightly by the signal from the other lobe. This can be seen by considering

ray A in Figure 5.9 a): despite the fact that it is dominated by the strong

thermal lens at the center of the sapphire, there is still a contribution to the

total distortion from the thermal lens in the compensation plate. Thus, the

vertical cross-sections through each lobe represent a sum of on-axis wavefront

distortions which can be expressed as

WD
(off)
SAPH = KE1 (t) WD

(on)
SAPH + KC1 (t) WD

(on)
FS (5.1)

WD
(off)
FS = KE2 (t) WD

(on)
FS + KC2 (t) WD

(on)
SAPH (5.2)

where WD
(on)
SAPH and WD

(on)
FS are the on-axis distortions of the sapphire and

fused silica, respectively, KE1 (t) and KE2 (t) describe the elongation of the

sapphire and fused silica distortion, respectively, and KC1 (t) and KC2 (t)

describe the contribution of the fused-silica and sapphire distortion to the

opposite cross-section, respectively.

The parameters KE1 (t), KE2 (t), KC1 (t) and KC2 (t) can be determined

using the geometry of the ITM-CP-probe-beam arrangement and assuming

the temporal development of the wavefront distortion as described by Hello

and Vinet (see Appendix A.1) to first order.

The on-axis distortion is determined by solving the Equations 5.1 and 5.2

to yield

WD
(on)
SAPH =

KE2 WD
(off)
SAPH − KC1 WD

(off)
FS

KE1 KE2 − KC1 KC2

= b1 1 WD
(off)
SAPH + b1 2 WD

(off)
FS (5.3)
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(a) b1 1 (b) b1 2

(c) b2 2 (d) b2 1

Figure 5.10: Conversion parameters for off-axis distortion, calculated using
the Hello-Vinet equation and known geometry of ITM, CP and probe beam

WD
(on)
FS =

KE1 WD
(off)
FS − KC2 WD

(off)
SAPH

KE1 KE2 − KC1 KC2

= b2 2 WD
(off)
SAPH + b2 1 WD

(off)
FS (5.4)

where the conversion parameters, b1 1, b1 2, b2 1 and b2 2, are plotted in Figure

5.10.

5.4.2.2 Converting on-axis WD to round-trip cavity-mode WD

As noted by Ryan Lawrence [12] and others, and discussed in Section 1.2.3,

absorption in the substrate of a mirror leads to wavefront distortion via the

thermo-optic, elasto-optic and thermo-elastic effects. The first two effects
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Sapphire Fused Silica

Thermooptic Effect (SUB1, SUB2) 1 1
Elastooptic Effect (SUB1, SUB2) 0.2 -0.01
Thermoelastic expansion (CS1, . . ., CS4) 0.8 0.06

Table 5.2: Sizes of thermoelastic deformation and the elastooptic effect rel-
ative to the size of the thermooptic effect. SUB1, SUB2 and CS1, . . ., CS4,
refer to the locations at which these effects occur as indicated in Figure 5.11.

result in volumetric distortions that are acquired on transmission through the

substrate, while thermo-elastic distortion leads to surface deformation and

thus is acquired on reflection or refraction at the surface. The relative sizes

of the thermo-optic, elasto-optic and thermo-elastic distortion for sapphire

and fused silica are listed in Table 5.2 (reproduced from Table 2.1 in Ryan

Lawrence’s Ph.D thesis [12]).

A schematic diagram showing the cavity mode and the Hartmann beam

probing these distortions is illustrated in Figure 5.11. With the exception of

the distortion at curved surface 4 (CS4), the cavity mode experiences every

distortion twice that the probe beam experiences once. Therefore, the major

difference between the distortion experienced by the cavity mode and probe

beam arises at CS4, due to the thermo-elastic effect, which the cavity mode

experiences on reflection and the probe beam on transmission. The relative

sizes of the distortions accumulated by the probe beam and the cavity mode

can be determined using a simple ABCD matrix description of the reflection

of the cavity mode from and the transmission of the probe beam through

the ITM and knowing the relative sizes of the thermo-optic, thermo-elastic

and elasto-optic effects (see Appendix A.3 for details). This modelling shows

that the wavefront distortion experienced by the cavity mode in the ITM is

a factor of 2.53 larger than that measured by the HWS probe beam. Hence,

the distortion experienced by the cavity mode, WDcavity, can be expressed

WDcavity ≈ 2.53 × WD
(on)
SAPH + 2.0 × WD

(on)
FS (5.5)
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CS4 CS3
CS2 CS1

ITM
probe beam

cavity mode

SUB2

SUB1

CP

Figure 5.11: The probe beam (blue) is transmitted through both substrates,
SUB1 and SUB2, and through all curved surfaces, CS1 to CS4. The cavity
mode (red) is transmitted through both substrates, SUB1 and SUB2, and
through curved surfaces, CS1 to CS3 and is reflected from CS4.

5.4.2.3 Defocus of cavity-mode WD and ETM beam size

The characterization of the distortion by the defocus, S, is achieved using

the method of Arain et al. [102] which determines the maximum overlap

integral, I (S), between the distortion experienced by the cavity mode and a

spherically curved mirror, where

I (S) =
∫ +∞

−∞

√

(

2

π

)

1

wITM (S)
×

exp

(

−x2

[

2

w2
ITM (S)

])

×

exp
(

i
[

4 π

λ
WDcavity (x) − 4 π

λ
S x2

])

dx (5.6)

where wITM (S) is the calculated cavity mode size at the ITM and the defo-

cus of the cavity, Scavity, is the value of S which maximizes the integral in

Equation 5.6 and is, therefore, a solution of
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d I (S)

dS
= 0. (5.7)

The cavity mode can then be found from the cavity g-parameters (see

Seigman [103] for full details) given by

gETM = 1 − Lcav

RETM

and

gITM (S) = 1 − S Lcav,

where RETM, RITM are the radii of curvature of the end test mass and input

test mass, respectively, and Lcav is the length of the cavity. The mode size

at the ITM, wITM (S), is given by

wITM (S) =

√

√

√

√

Lcav λ

π

√

gETM

gITM (S) [1 − gITM (S) gETM]

Note that since the cavity mode size at the ITM, wITM (S), depends on the

calculated cavity defocus, S, this procedure must be iterated several times

to reach a convergent solution. It is first run using wITM (0) equal to the cold

cavity (nominal) mode size at the ITM to determine the new cavity mode

and then iterated several times, using the updated cavity mode sizes at the

ITM. Once a convergent solution is found, the cavity mode size at the ETM,

wETM (S), is then calculated using

wETM (S) =

√

√

√

√

√

Lcav λ

π

√

√

√

√

gITM (S)

gETM [1 − gITM (S) gETM]

5.5 Results

This section describes the results of the HWS measurement of wavefront

distortion. The comparison of the measured off-axis distortion with that ex-
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pected is discussed in Section 5.5.1, and the temporal development of vertical

cross-sections are compared to H-V in Section 5.5.2. The measured distor-

tion is also validated by comparing it to that predicted using a FEM and the

measured stored power and by comparing the predicted mode size with that

measured.

5.5.1 Measured off-axis wavefront distortion

The discrete gradient fields measured by the HWS at successively later times

are shown in Figure 5.12 a) - f), and the corresponding off-axis wavefront

profiles, WD(off), are shown in Figure 5.13 a) - f). The wavefront profiles

clearly show two wavefront distortions forming at different rates, where the

lens in the sapphire (RHS lobe) is the larger and forms more quickly. The

distance between the centers of the two distortions (≈ 23 mm) is consistent

with the projection of the centers of the two optical elements separated by

140 mm and viewed at 10◦, as previously illustrated in Figure 5.9 a).

The vertical cross sections of the distortions, WD
(off)
SAPH and WD

(off)
FS , at

time texpt ≈ 300 s are plotted in Figure 5.14. The ratio of the wavefront

distortion on transmission due to the sapphire compared to that due to the

fused silica is 1.62. Assuming that this distortion is the steady-state value

and using the theory of Hello and Vinet (see Section A.1), the ratio of the

absorbed power in the sapphire and fused silica is 40, which is significantly

different to the ratio of 93 determined indirectly by Zhao et al. [18]. This

provides an additional demonstration that direct measurement of thermal

lensing with a wavefront sensor provides more accurate information about

the behaviour of the cavity than can be inferred without such a measurement.

5.5.2 Temporal development of cavity defocus

The cavity defocus produced by the measured off-axis wavefront distortion

was calculated using the procedure described in Section 5.4.2. The time

dependence of the cavity defocus is shown in Figure 5.15 a). Also plotted
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(a) texpt = 0.38s (b) texpt = 1.63s

(c) texpt = 7.06s (d) texpt = 25.43s

(e) texpt = 87.00s (f) texpt = 291.39s

Figure 5.12: Vector fields showing the gradient of the wavefront distortion in
sapphire and fused silica at various times from texpt = 0 s, at which the laser
was locked to the cavity. The magnitude of the gradient is proportional to
the length of a vector (from the tip of the arrow to the end of the line) at
that point. The numbers on the axes indicate the coordinates on the HWS
CCD in pixels (1 pixel = 12 µm) and the magnfication between the HWS
and its conjugate plane at the ITM is approximately a factor of 7, indicating
that 1 pixel corresponds to ≈ 72µm at the ITM.
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(a) texpt = 0.38s (b) texpt = 1.63s

(c) texpt = 7.06s (d) texpt = 25.43s

(e) texpt = 87.00s (f) texpt = 291.39s

Figure 5.13: Contour plots of the wavefront distortion in sapphire and fused
silica, WD(off), at various times from texpt = 0 s, at which the laser was locked
to the cavity. In order to compare the wavefront distortion at different times,
all plots share the same colour scale. As such, parts of the distortion saturate
the scale at later times resulting in an apparent reduction of spatial extent
with time.
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Figure 5.14: Vertical cross-sections of wavefront distortion in the sapphire
ITM, WD

(off)
SAPH, (red) and fused silica CP, WD

(off)
FS , (blue). Some residual tilt

is present on the WD.

is the temporal development of the defocus predicted by the theory of Hello

and Vinet. This theory, however, assumes that the power is constant, which

it is not in this case as shown in Figure 5.15 b). The difference between

the measured and theoretical curves illustrates the advantage of having a

wavefront sensor: the temporal development of the thermal lensing in the

two optics may be measured directly and individually in each of the optics,

rather than inferred from the behaviour of the cavity and an idealized model

of the thermal lensing. This does not imply that the Hello-Vinet theory

is incorrect, merely that this scenario does not lie within the range of the

assumptions of the theory. Therefore, it would be inappropriate to apply the

Hello-Vinet theory to this cavity to diagnose its properties.

5.5.3 Correlation of measured distortion and stored

power

A finite element simulation was run to model the temporal development

of the thermal lenses in the sapphire and fused silica using the temporal
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(a)

(b)

Figure 5.15: a) Time dependence of the sapphire, fused silica and total (sap-
phire + fused silica) thermal lenses as measured by the Hartmann sensor and
experienced by the cavity mode. Also plotted is the prediction of the tempo-
ral development from the theory of Hello and Vinet. b) Time dependence of
the power transmitted through the ETM, as recorded by the beam profiler.
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development of the intra-cavity power and beam size measured by the beam

profiler. The source code for the model can be found in Appendix B.3. The

normalized defocus of this lens is plotted as a function of time in Figure 5.16

a) (red). Also plotted is the normalized defocus measured by the Hartmann

sensor (blue). The difference between the two curves is plotted in Figure 5.16

b) and has an rms value of approximately 0.03. The curves were normalized

by setting the average value between texpt = 100 and texpt = 300 s to 1. This

was necessary because that the transmittance through the end mirror is not

known accurately and, hence, the absolute power in the cavity can not be

determined accurately. There is clearly good agreement between the finite

element model of the defocus and the defocus measured by the HWS sensor.

5.5.4 Correlation of measured distortion and cavity

mode size

The cavity mode size at the ETM, as measured by the beam profiler, and the

mode size predicted by the measured distortion were compared for a measure-

ment that had particularly unstable mode-matching. The results are plotted

in Figure 5.17 a). There is excellent agreement between the magnitudes of

the predicted and measured cavity mode sizes and a clear correlation be-

tween fluctuations in the measured and predicted mode sizes. The difference

between the measured and predicted cavity mode size is plotted in Figure

5.17 b) and has an rms value of approximately 0.05 mm.

5.6 Conclusion

The results presented in this Chapter show that the HWS described in Chap-

ters 3 and 4 can be used to measure absorption-induced wavefront distortion

in optics that are suspended in a large vacuum system. The sensitivity of

the sensor was λ/730 where λ = 800 nm (average of 10 frames), which was

worse than the shot-noise limited sensitivity, probably due to residual air
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(a)

(b)

Figure 5.16: a) Finite element prediction of the total defocus using the mea-
sured of intracavity power versus time (red curve) and the measured defocus
(blue curve). Both plots were normalized to remove any scaling issues. b)
the difference between the red and blue curves which has an rms value of
approximately 3%.
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(a)

(b)

Figure 5.17: a) Cavity mode size versus time. The red curve is the mea-
surement from the beam profiler. The blue curve is the prediction from the
measurement of the Hartman sensor. b) the difference between the red and
blue curves which has an rms value of approximately 0.05 mm.
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currents. The HWS was validated by showing that the measured distortion

was consistent with the predictions of a FEM of the ITM and CP and the

measured cavity power, and by showing that the cavity mode size predicted

using the measured distortion agreed to within 0.05 mm (rms), about 0.7%,

with the measured mode size.

These results thus indicate that the installed HWS is both sufficiently

sensitive for the measurements of absorption-induced wavefront distortion in

advanced GWI, concordant with the requirements stated in Section 1.3.2, and

is accurate. Importantly, the HWS provides a direct, detailed measurement

of the variation of the WD, rather than a measurement that relies on the

validity of assumptions and models. Although the wavefront distortion was

characterized by the defocus in this instance, the profile is rich in spatial

information that is necessary for any future directed compensation system,

such as the scanning CO2 heating laser described in Section 1.3.1.
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Chapter 6

Off axis measurement of

wavefront distortion

6.1 Background

The measurement of three-dimensional index-of-refraction distributions with

an optical wavefront sensor was described by Roggemann et al. [104]. They

framed the problem to cover arbitrary three dimensional index-of-refraction

distributions and, as such, required multiple views of the variations in accor-

dance with traditional tomography. The solution presented in this chapter

takes advantage of the cylindrical symmetry inherent in the thermal lens-

ing problem in a GWI to solve for the refractive index distribution in the

glass test masses using only a single view approximately 20 − 40◦ off-axis.

Tomographic reconstruction of cylindrically symmetric refractive index dis-

tributions using a single view has previously been discussed by Miranda et al.

[105]. However, their solution relied on a view that was perpendicular to the

axis of symmetry. This view is not possible with a temperature distribution

in a cylindrical glass optic and hence their solution is not applicable to this

problem.

155
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6.2 Objective

In this chapter I will describe the measurement of absorption induced wave-

front distortion (WD) using an off-axis HWS. I begin by discussing, in Section

6.3, the analysis of a measured off-axis wavefront distortion to determine the

axially-symmetric temperature distribution in a test mass, and thus calcu-

late the on-axis wavefront distortion. The objective of the remainder of the

chapter is the proof-of-principle of the analysis under ideal conditions using a

numerical simulation, described in Section 6.5, and under practical conditions

using a bench-top experiment, described in Section 6.5.3.

6.3 Analysis of wavefront distortion measured

off-axis

A probe beam transmitting through an axially-symmetric temperature dis-

tribution T (r, z) in a test optic is shown in Figure 6.1. The temperature

distribution results in a refractive index distribution, n(r, z) + n2, which is

a deviation from the nominal refractive index, n0. The resulting wavefront

distortion, WD (x′, y′), is measured at the plane Pmeas. The projection of

this wavefront distortion onto the exit plane of the optic, Pexit, is denoted

WD (x, y) and is determined by the path integral through T (r, z), where the

path, ~σ (z), is defined parametrically

~σ (z) = {xp (z) , yp (z) , z}
xp (z) = x+ z tan (θ)

yp (z) = y

where x and y are the coordinates of the path as it crosses the plane z = 0

and are related to the coordinates x′ and y′, by
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Pexit

n1n1

ϕ

Pmeas

T(r,z)

z −ve

r, x

r, −x

y
(out of page)

x’ −ve

x’ +ve

y’(out of page)

z +ve

n(r,z) + n2θ

WD(x,y)

WD(x’,y’)

Figure 6.1: Schematic showing off-axis transmission through an axially sym-
metric thermo-refractive index distribution, n(r, z) = dn/dT × T (r, z) in a
test optic with nominal refractive index n2. The accumulated wavefront dis-
tortion, WD(x′, y′), is measured at the plane Pmeas. The accumulated wave-
front distortion projected onto the exit plane of the optic, Pexit, is denoted
WD(x, y).
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x′ = x cos (ϕ)

y′ = y

Thus, the path integral that returns the projected wavefront distortion,

WD (x, y), is given

WD (x, y) =
dn

dT

∫ z1

z0
T (x (z) , y (z) , z) |~σ′ (z)| dz

where |~σ′ (z)| is the infinitesimal length of a path element given by

|σ′ (z)| =

√

√

√

√

(

dxp (z)

dz

)2

+

(

dyp (z)

dz

)2

+

(

dz

dz

)2

=
√

tan2 (θ) + 1

6.3.1 A zonal representation of T (r, z)

In a zonal representation, the region of the temperature distribution is spanned

by a set of discrete volume elements, or voxels, Vij (r, z), that are discontin-

uous in r and z and have a uniform internal density, defined as

Vij (r, z) =







1 for ri ≤ r < ri+1 and zj ≤ z < zj+1

0 otherwise

The boundaries of these functions in the cut-away of a cylinder are il-

lustrated in Figure 6.2. For reference, the volume elements that were used

by Roggemann et al. [104] were not cylindrically symmetric and had a

non-uniform density defined by a three-dimensional Gaussian refractive in-

dex distribution within the region of the volume element. The path integral

through the function Vij (r, z) is given by:
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Figure 6.2: Cut-away of a cylinder containing 14 × 14 annular voxels

wij (x, y) =
∫ z1

z0
Vij (r, z) dz (6.1)

=
∫ Zupper

ij
(x,y)

Zlower
ij

(x,y)
1 dz (6.2)

where Z lower
ij (x, y) and Zupper

ij (x, y) are the limits of integration through the

ijth volume element for a ray passing through the coordinates (x, y, 0). Pro-

vided one chooses a fine enough mesh, one can ensure a good approximation

to all axially symmetric temperature distributions.

Physically, the functions wij (x, y) can be thought of as the wavefront dis-

tortion measured at the exit plane, Pexit, resulting from transmission through

a uniform density annular volume element, Vij (r, z). An example of a single

annular volume element in a mesh is shown in Figure 6.3 a) and the corre-

sponding wavefront distortion is shown as a greyscale image in Figure 6.3

b).

To prevent large numbers of indices in the following discussion, the func-

tions Vij (r, z) and wij (x, y) where 1 ≤ i ≤ Nr and 1 ≤ j ≤ Nz will be

re-labelled Vk (r, z) and wk (x, y) where 1 ≤ k ≤ Nr ×Nz.
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(a) (b)

Pexit

x

y

Figure 6.3: a) An example of a single annular volume element, Vij (r, z),
and b) a greyscale map of the corresponding wavefront distortion, wij (x, y),
measured at the exit plane, Pexit.

Recovery of the temperature distribution from the off-axis measurement

becomes a straightforward process. The coefficients, Ak, of the best fit of

wk (x, y) to the measured wavefront distortion are determined. If the wave-

front distortion is measured at m positions (xα, yα), where 1 ≤ α ≤ m, the

best fit is determined using the fitting method described by Bevington [106].

The calculation of a least squares fit to a set of functions, wk (x, y), begins

by determining a vector, B, containing the overlap of the measured wavefront

distortion projected onto Pexit, the exit plane, WD (x, y), and each wk (x, y),

where the Bk component of the vector is given by

Bk =
∑

α

[WD (xα, yα) wk (xα, yα)] . (6.3)

Next one determines a square matrix M, representing the overlap of every

combination of wk (x, y), where the lkth component of the matrix, Ml k, is

given by

Ml k =
∑

α

[wl (xα, yα) wk (xα, yα)] . (6.4)
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Thus, the coefficients, Ak, of the best fit of wk (x, y) to WD (x, y) are the

components of the vector A, given by

A = BM−1 (6.5)

where M−1 is the inverse of M. The fitted refractive index distribution,

nfit (r, z), is then

nfit (r, z) =
∑

k

Ak Vk (r, z) , (6.6)

the temperature distribution, Tfit (r, z), is

Tfit (r, z) =

(

dn

dT

)

−1
∑

k

ak Vk (r, z) , (6.7)

and, finally, the fitted on-axis wavefront distortion, WDfit (r), is given by

WDfit (r) =
∫ z1

z0
nfit (r, z) dz

=
∫ z1

z0

∑

k

Ak Vk (r, z) dz. (6.8)

6.4 Numerical simulation of voxel analysis

6.4.1 Simulation procedure

In this simulation, I compare the on-axis wavefront distortion, for a realistic

temperature distribution, by a) directly calculating the on-axis distortion,

and b) calculating the off-axis distortion and then using the voxel recon-

struction to determine the best-fit temperature distribution and its resulting

on-axis distortion.

1. Using the substrate absorption solution of Hello and Vinet, specify a

temperature distribution, T (r, z), in a 200 cm diameter, 100 cm thick

glass cylinder 1 heated by a Gaussian beam with a 1/e2 radius of 25 cm

1The optic is large by realistic standards but does not affect the results of the voxel
analysis.
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propagating along the cylindrical axis. For this simulation, the glass

had the same thermal properties as the BG20 filter glass described in

Chapter 2.

2. Integrate T (r, z) along the z-axis to determine the on-axis wavefront

distortion, WDon (r).

3. Determine the off-axis path integral of T (r, z):

(a) Determine the off-axis path integral projected onto, Pexit, the exit

plane of the optic, WDoff (xα, yα), through the distribution at

angle θ = 32.6◦ by taking the sum of a series of axial slices of

the temperature distribution of thickness dz that are offset from

each other in the x-direction by dz tan (θ) at the m coordinates

(xα, yα), where 1 ≤ α ≤ m. Note that the path integral (pro-

jection) through a distribution at angle θ is known as the Radon

Transform of that distribution [107].

(b) Determine the aperture created by the front and back faces. Set

WDoff (x, y) to be zero outside this aperture.

4. Determine the functions, wk:

(a) Specify the limits of each of the Nr×Nz volume elements, Vk (x, y),

where there are Nr elements in the radial direction and Nz ele-

ments in the axial direction. Note that because of the aperturing,

some areas of the cylinder are undersampled and some are not

sampled at all. Hence the extent of the voxels in the radial direc-

tion is set to be less than the actual radius of the cylinder.

(b) Determine the path integral through each uniform density volume

element, wk where 1 ≤ k ≤ Nr ×Nz, using Equation 6.1.

(c) Determine the overlap of WDoff (xα, yα) with the functions wk,

using Equation 6.3 to yield B.
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5. Determine the square matrix M, representing the overlap of every com-

bination of wk (xα, yα), using Equation 6.4.

6. Invert M to determine M−1.

7. Determine the best fit coefficients A using Equation 6.5:

8. Reconstruct the temperature distribution Tfit (r, z) using Equation 6.7.

9. Determine the on-axis distortion, WDfit (r), by integrating the recon-

structed temperature distribution along the axis using Equation 6.8.

10. Compare the reconstructed on-axis distortion, WDfit (r), with the known

on-axis distortion, WDon (r), calculated in Step 2.

6.4.2 Simulation results

The given and reconstructed temperature distributions from the simulation

are shown as false color images in the left and right cells, respectively, of Fig-

ure 6.4 a). Note that the full width of the temperature distribution can’t be

reconstructed due to aperturing and thus the reconstructed temperature dis-

tribution does not span the full width and has grey edges. The reconstruction

qualitatively agrees with the given temperature distribution.

The directly calculated and reconstructed on-axis wavefront distortions

are shown in Figure 6.4 b). There is clearly very good agreement between

the two distortions within the constraint of the quantization inherent in the

analysis.

The results of the simulation demonstrates that the off-axis voxel analysis

is, in principle, capable of reconstructing the temperature distribution and

on-axis distortion under ideal conditions.
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Figure 6.4: Simulation results: a) (left) False colour image of temperature
distribution in simulated BG20 glass (arbitrary units) and (right) false colour
image of 14 × 14 voxel reconstruction of temperature distribution. Grey
area indicates the region not reconstructed. b) Wavefront distortion (WD):
directly calculated on-axis distortion, WDon (r), (line) and reconstructed on-
axis distortion, WDfit (r), (points).
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6.5 Proof-of-principle demonstration of off-

axis voxel reconstruction

6.5.1 System layout

The measurement system for the proof-of-principle of the off-axis voxel anal-

ysis is shown in Figure 6.5. The BG20 glass test optic (GTO) described

in Chapter 2 was placed in the object arm of a Mach-Zender interferome-

ter that was constructed using a 10mW HeNe laser beam. A 3W Nd:YAG

cw laser beam was propagated along the axis of the GTO to produce wave-

front distortion in the GTO. The on-axis WD was measured using the MZ

interferometer in which the exit plane of the GTO was imaged onto CCDMZ.

The off-axis wavefront distortion, WD (x′, y′) at Pmeas, was measured us-

ing a HWS similar to that described in Chapters 3 and 4. The output from

the 820 nm Agilent fibre-coupled SLD was expanded and collimated into a

beam by the lenses in telescope T5. This probe beam was incident on the

GTO at an angle of 57.2 ± 0.2◦ and transmitted through the optic with an

internal angle of 32.8◦ ± 0.2◦ assuming the nominal refractive index is 1.55.

The probe beam was then demagnified with a Galilean telescope, T6, and

was incident on the HWS.

6.5.2 Procedure

The procedure for measuring the on-axis and off-axis WD in the GTO was:

1. Place a grid of holes at the exit plane of the GTO and record image of

632.8 nm transmission through the grid on CCDMZ to determine the

scale of the GTO image on the CCD.

2. Repeat step 1 with the 820 nm transmission through the grid and record

an image on the HWS CCD but with the Hartmann plate removed, to

determine the scale of the GTO image at the HWS.
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BS1 Pmeas

Pexit

820nm
Fibre coupled LED

632.8nm
10mW HeNe

T5

3W Nd:YAG laser
1064nm

S1 T1

DCBS

T2

T3

HWS
T6

GTO T4 BD BS2

L1

CCDMZ

reference beam

object beam

Figure 6.5: Schematic of experiment to measure thermal lensing in a cylin-
drical test optic. The output of a 3W 1064 nm Nd:YAG laser is incident on
shutter S1. When the shutter is open, the beam passes through telescope,
T1, and is transmitted through the BG20 glass test optic. The 1064nm is
incident on telescope T4 at an angle very close to normal incidence. A beam
dump with a small hole in it is placed at the focal plane of T4 and is adjusted
such that normally incident rays on T4 pass through the hole and those rays
at a small angle are blocked. The 1064 nm beam is blocked by the beam
dump. The output of a 10 mW HeNe laser is the input to a Mach-Zehnder
interferometer, the object arm of which contains the BG20 optic. The ob-
ject and reference arms are expanded by telescopes, T2 and T3, respectively.
The object arm is normally incident on telescope T4, is demagnified and
recombined with the reference arm at the second beamsplitter, BS2. The in-
terference pattern at the exit plane of the glass test optic is imaged onto the
CCD with lens L1. A dichroic beam splitter, DCBS, immediately before the
glass test optic is used to combine the two different wavelengths. The output
from the 820 nm Agilent fibre-coupled SLD is expanded and collimated into
a beam by the lenses in telescope T5. This probe beam is incident on the
GTO at an angle of 57.2± 0.2◦. The transmitted probe beam is demagnified
with a Galilean telescope, T6, and is incident on the HWS. The exit and
measurement planes described in Figure 6.1 are indicated on this figure by
Pexit and Pmeas, respectively.
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3. Record a series of reference interference patterns, with no heating of

the GTO, with CCDMZ.

4. Record a series of reference measurements with the HWS (with the

Hartmann plate replaced).

5. texpt = 0 s. Turn on the 3W 1064 nm Nd:YAG laser to induce a thermal

lens in the GTO.

6. texpt ≈ 500 s. Record a series of distorted interference patterns with

CCDMZ. Simultaneously, record a series of distorted Hartmann images

with the HWS.

7. Turn off 1064nm laser and cease recording with CCDMZ and the HWS.

6.5.3 Results

The on-axis and off-axis wavefront distortions are shown in Figures 6.6 a)

and b) respectively, where the scale was established by the images recorded

in Step 1. The off-axis distortion is clearly elongated in the x direction due

to propagation through the temperature distribution at a large angle. The

shape of the aperture (tall and thin) seen in Figure 6.6 b) is consistent with

viewing the GTO at a large external angle in the horizontal plane.

The off-axis wavefront distortion, WD (x′, y′), was projected onto the

coordinate system at exit plane of the optic, Pexit. The off-axis voxel analysis

was applied to the projected-off-axis-distortion, WD (x, y), to reconstruct the

on-axis distortion, WDfit (r), using a variety of different voxel configurations

(Nr, Nz and rVmax
). Two reconstructions are plotted in Figures 6.7 a) and b),

respectively. Also plotted is the radial on-axis distortion, WDon (r), measured

by the interferometer. These plots show that the off-axis voxel analysis is, in

principle, capable of reconstructing the on-axis wavefront distortion.

The accuracy of the reconstruction is dependent upon the configuration

of the voxels. For example, the quality of the reconstruction improves when

the range in the radial direction is reduced. This is to be expected because
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(a) Interferometer WD measurement

(b) HWS WD measurement

Figure 6.6: Contour plots of a) on-axis and b) off-axis wavefront distortion
as seen at the plane Pmeas.
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(a) Nr = 10, Nz = 7, rVmax
= 23.0 mm

(b) Nr = 11, Nz = 4, rVmax
= 13.5 mm

Figure 6.7: On-axis measured and off-axis reconstructed wavefront distortion.
a) Reconstruction with 10 annular × 7 axial volume elements to a radius of
23.0 mm with an RMS wavefront error of 11 nm. b) Reconstruction with
11 annular × 4 axial volume elements to a radius of 13.5 mm with an RMS
wavefront error of 4.5 nm.
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the aperture reduces the sampling of extreme radial values. Also, the quality

of the reconstruction decreases when the number of voxels is increased. Once

again, this is an expected effect of trying to fit a higher spatial resolution

model to a finite spatial resolution measurement.

6.6 Conclusion

The off-axis voxel analysis described here has been demonstrated to work

under ideal conditions in the simulation presented in Section 6.4.1 and in

practice in the experiment results presented in Section 6.5.3. There is scope

in future work to examine the efficacy of this technique under a variety of

conditions, such as the dependence on noise sources and the optimum model

configuration at a given angle. As such, this technique has been demonstrated

to be a promising area of research.



Chapter 7

Conclusion

7.1 Review of aims

The objective of the research described in this thesis is the development of a

wavefront sensor with sufficient sensitivity and spatial resolution for use in a

closed-loop active thermal compensation system in an advanced GWI. The

use of such a sensor contributes to solving one of the problems associated

with upgrading from initial to advanced gravitational wave interferometry,

as required for the realisation of gravitational wave astronomy. The specific

aims, therefore, were

1. to validate the Hello-Vinet solution for absorption induced wavefront

distortion. This solution has been used extensively in the modelling of

GW interferometers,

2. to develop and test a wavefront sensor with a sensitivity sufficient for

use in advanced GWI: at least λ/467 @ 632.8 nm with a spatial reso-

lution of at least 23× 23 sample points over the region of interest [21],

and to investigate the limits of sensitivity possible with the wavefront

sensor,

3. to deploy the wavefront sensor in a long-baseline high optical power

171
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cavity and measure the thermal lensing within the input-coupling mir-

ror, or ITM, of that cavity,

4. and the development and proof-of-principle demonstration of a single

view tomographic algorithm for reconstruction of axially symmetric

wavefront distortion.

7.2 Summary of results

A high-precision interferometric measurement of absorption-induced wave-

front distortion was described in Chapter 2. The results showed good agree-

ment with the predicitions of Hello and Vinet for longer times, but there was

a small systematic difference, possibly due to convective cooling of the glass

test optic - a cooling mechanism not included in the Hello-Vinet model. The

validation of this model, within this limitation, increases the confidence in

the validity of numerical models of GWI, such as MELODY [16], that employ

the Hello-Vinet model.

The design and development of a Hartmann wavefront sensor (HWS) for

advanced GWI was presented in this Chapter 3. Extensive modelling and

diffraction simulations were used to optimize the Hartmann sensor, including

an investigation of the systematic error introduced by cross-talk between

neighbouring spots in the HWS. In the final HWS design, random noise

associated with the photoelectrons in the pixels of the CCD was identified as

the major noise source, limiting the single-shot sensitivity to about λ/1050

@ 633nm based on the nominal properties of the CCD.

The measurement of the sensitivity and accuracy of the HWS was dis-

cussed in Chapter 4. The choice of an incoherent light source was shown

to be effective in reducing the uncertainty in centroid measurements to the

Poissonian shot-noise limit, thereby enabling the wavefront error to be re-

duced to at least λ/15,500 by averaging multiple measurements. Evidence of

another noise source, due probably to fluctuations in the temperature of the

HWS, was observed at this level. The measurement of a very small defocus,



7.3. FUTURE DIRECTIONS 173

equivalent to the change in wavefront curvature that would be caused by

an 850m lens, with an accuracy of 1.7% and a precision of 0.7% was also

described.

Chapter 5 described the use of the HWS for the measurement of absorption-

induced wavefront distortion in optics that were remotely suspended in a

large vacuum system as part of a high optical power cavity. The sensitiv-

ity of the HWS was λ/730 at λ = 800 nm (average of 10 frames), limited

somewhat by the noisy environment and residual air currents. The HWS

measurements were validated by showing that the measured distortion was

consistent with the predictions of a FEM of absorption-induced wavefront

distortion, using the measured cavity power. The cavity mode size pre-

dicted using the measured distortion agreed to within 0.05 mm (rms) with

the mode size measured by a beam profiler. The results in that chapter also

illustrated that the HWS provides a direct, detailed measurement of the vari-

ation of the absorption-induced wavefront distortion, rather than an indirect

measurement that relies on the validity of assumptions and models to infer

information about the intra-cavity optics.

In Chapter 6, a single-view off-axis tomographic technique was described.

A numerical simulation was used to demonstrate that a Hello-Vinet temper-

ature and refractive index distribution could be recovered with good fidelity

using a single off-axis view. The technique was validated by showing that the

on-axis results of the tomographic analysis agreed well with the wavefront

distortion measured on-axis using a Mach-Zehnder interferometer.

7.3 Future directions

It was evident from the results presented in Chapter 4 that the temperature

dependence of the current Hartmann sensor design probably limits the long-

term accuracy of the sensor. Work on future designs will most likely focus

on reducing this temperature dependent error. A passive reduction in the

temperature dependence can be made by replacing the brass Hartmann plate
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with one made from a material with a low coefficient of thermal expansion,

for example, invar. Alternatively or concurrently, active stabilization of the

temperature, using a combination of high precision thermistors and thermo-

electric coolers, could be employed to maintain a constant temperature in

the Hartmann sensor. Although this would require more development than

passive solutions, it would most likely allow the Hartmann sensor to operate

with high precision accuracy in many more environments.

I would also suggest further investigation of the tomographic technique,

presented in Chapter 6, to optimize its sensitivity and explore its application

under a variety of conditions. The generalization of this technique to non-

axially symmetric wavefront distortions may be important for identifying

point absorbers in test masses of advanced GWI or for the measurement of

wavefront distortion in the beam-splitter of a GWI.

“Our imagination has driven us to listen for the music of the cos-

mos. The opening movement entertains us with familiar themes,

but the remainder is an undiscovered symphony, infinitely richer

and more nuanced than we can possibly imagine.”

Aidan F. Brooks



Appendix A

Additional derivations

A.1 Analytic form of Hello-Vinet solution

Substrate absorption

Only the temporal Hello-Vinet substrate absorption case was considered

in Chapter 2, although that solution asymptotes to the steady-state case.

The solution is as follows.

For a Gaussian intensity distribution, I(r), of waist w and power P , given

by

I(r) =
2P

π w2
exp

[

−2
r2

w2

]

transmitted through a cylindrical test optic of radius a, length h, volumetric

absorption α, density ρ, specific heat C, thermal conductivity K, and thermo-

optic coefficient dn/dT , and assuming only radiative boundary conditions,

the total wavefront distortion, ψ (r, t), as a function of time is:

ψ (r, t) =
dn

dT

∫ h/2

−h/2
[T (t, r, z) − Text ] dz.

The temperature distribution, T (t, r, z), is given by
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T (t, r, z) = Text +
∑

p,m

C ′

pm [1 − exp (−αpm t)] cos (up z/a) J0 (ζm r/a) ,

where Text is the external temperature, where

C ′

pm =
4αa

K h

pm
ζ2
m

[

sin (up h/2 a)

up
− τ cos (up h/2 a)

ζ2
m + u2

p

]

1

cp
,

where αpm is given by

αpm =
K

ρC a2

(

ζ2
m + u2

p

)

,

where up is the pth solution of

u = τ cot

[

u h

2 a

]

,

where ζm is the mth solution of

x J1 (x) − τ J0 (x) = 0,

where pm is given by

pm =
2 ζ2

m

ζ2
m + τ 2

1

J0 (ζm)2

1

a2

∫ a

0
I(r)J0

(

ζm
r

a

)

r dr,

where τ is given by

τ = 4 σ′ T 3
ext a/K,

and, finally, where cp is given by

cp = 1 +
a

up h
sin (up h/a) .
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A.2 Variance of a digitized value

Determination of the variance in a digitized value. Suppose ones wishes to

determine the variance in a value, Ne, which has been digitized on an n-bit

scale. The gain, gD, of this digitization is the ratio of the highest possible

value of Ne, Nemax
, and the total number of digital values, 2n.

gD =
Nemax

2n
(A.1)

All values between i gD and (i+1) gD will be rounded down to i gD in the

digization process. Therefore the effective mean of these values is i gD. If a

series of M measurements, xei
, are made, such that they are all rounded to

i gD, then the variance is given by

σ2
digital,M =

M
∑

j=1

(

xej
− i gD

)2

M − 1

=
1

gD

M
∑

j=1

(

xej
− i gD

)2 gD

M − 1
(A.2)

In the limit that M → ∞, the set of values
(

xej
− i gD

)

approaches a

continuum, x, that ranges between 0 and gD, the value gD/(M−1) approaches

dx, and the variance calculation becomes an integral

lim
M→∞

σ2
digital,M =

1

gD

∫ gD

0
x2dx

=
g2
D

3
(A.3)

Hence the standard deviation, σdigital is given by

σdigital =
1√
3

Nemax

2n
(A.4)
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A.3 ABCD cavity calculation
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Appendix B

Computer code

B.1 Hartmann plate optimization code

The following Mathematica file produced a complex array representing the

transmission through a Hartmann plate of varying parameters of hole size

and hole spacing, discussed in Steps 1 to 5 in Section 3.3.2.1.

The data array from Mathematica had some header information attached

to convert it into a .ZBF file [77] suitable for importing into ZEMAX. The

complex array was unchanged by this step.

The .ZBF file is loaded into ZEMAX via POP many.ZPL. The command

THIC(count) = i*200.0 + 100.0 increases the thickness of the count-th

surface in increments of 200.0 mm, from 100.0 mm to 900.0 mm. The

index count simply identifies the ’surface’ in ZEMAX which is being al-

tered. In this case the surface is simply free space and, hence, its thick-

ness is equal to the propagation distance or lever arm. The command POP

filename$ count performs the physical optics propagation which uses the

Fourier diffraction propagation discussed by Goodman [80]. This covers Step

6 in Section 3.3.2.1.

The output is saved to a .ZBF file from which the electric field is extracted

and converted into an 8-bit TIFF image as described in Step 7 in Section

3.3.2.1.
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! ZEMAX test file 1

! Clear All Surfaces
DelAll = NSUR()

IF (NSUR() > 2)
   FOR i = DelAll − 1, 2, −1
      DELETE (i)
   NEXT
ENDIF

! Create file to store locations
OUTPUT "centres.txt"

! Set−up System Parameters
ATYP = 0
AVAL = 60.0
WAVL 1 = 0.6328
WWGT 1  = 1.0

ApertureSize = 60

! Loop to create fully apertured Hartmann Plate
count = 2

INSERT (count)
APTP (count) = 0
THIC (count) = 1000.0

file1$ = " Holes−Spacing−"
file2$ = " MM−HoleSize−"
file3$ = " MM−Radius"
file4Y$ = " −DIST.ZBF"
file4N$ = " −UNDIST.ZBF"

FOR j = 1, 8, 1
FOR k = 1, 5, 1

FOR q2 = 1, 2, 1

! Loop through q2 to run DIST and UNDIST respectively
IF (q2 < 2)

                    file4$ = file4Y$
ELSE

                   file4$ = file4N$
           ENDIF

! Loop through j to run through all the hole spacings
 holespace = 2.25 + (j−1)*0.25

FORMAT 3.2
      holespace1$ = $STR(holespace)

! Loop through k to run through all the hole sizes
holesize = 0.2*k

              FORMAT 2.1
holesize1$ = $STR(holesize)

! Create the input filename.
infile$ = file1$ + holespace1$ + file2$ + holesize1$ + f

ile3$ + file4$

infile1$ = " C:\Program Files\ZEMAX\POP\BeamFiles\" + infile$

Jul 23, 07 9:22 Page 1/2POP_many.ZPL

COPYFILE infile1$ " C:\Program Files\ZEMAX\POP\BeamFiles\input1.ZB
F"

OUTPUT SCREEN
PRINT infile1$

outfile$ = file1$ + holespace1$ + file2$ + holesize1$ + 
file3$

FORMAT 1.0

FOR i = 1, 5, 1

! Set propagation distance
THIC(count) = (i−1)*200.0 + 100.0

! IF (i < 10)
! filler$ = " 00"
!     ELSE
! filler$ = " 0"
! FORMAT 2.0
! ENDIF

filler$ = " −PD−"
filenumber$ = $STR(THIC(count))

        filename$ = outfile$ +  filler$ + filenumber$ + 
file4$

OUTPUT SCREEN
PRINT filename$

! Run physical optics propagation and save to ap
propriate filename.

POP filename$ count

! Remove result from C: drive and place on O:\ d
rive

outfile1$ = " C:\Program Files\ZEMAX\POP\BeamFiles\" + f
ilename$

movedfile$ = " O:\PHYSICS\Optics\abrooks\HartFiles\" + fil
ename$

COPYFILE outfile1$ movedfile$
DELETEFILE outfile1$

NEXT
NEXT

NEXT
NEXT

Jul 23, 07 9:22 Page 2/2POP_many.ZPL

Printed by Aidan Brooks

Monday July 23, 2007 1/1POP_many.ZPL
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B.2 Diffraction propagation for cross-talk anal-

ysis

The source code listed in this section was used to model the cross-talk be-

tween neighbouring spots in Figures 3.12 and 3.13.

Chp4_Fresnel_diffraction_Broadband_centroid.pro

The initial electric field, EIn, is created from an intensity array, IntIn,

of hexagonally arranged circular apertures and a phase array, phase, which

contains a randomly set amount of defocus. This is propagated over the

lever arm distance, deltaZ, using the Fourier transform technique discussed

by Goodman [80] to yield the output electric field, Eout. This is converted

to an intensity array.

For the coherent source, the final intensity array, outputArrPeak, is only

calculated for one wavelength. For the coherent source, the final intensity

array, outputArrFinal, is made from a sum of intensity arrays, where each

array is weighted by the amplitude of that wavelength in the spectrum of the

incoherent source.
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; Chp4 − Fresnel approximation
; Written by Aidan Brooks. 9th May 2007

seedL = 845739L
NTest = 10
time1 = systime(1)
for test_number = 0, NTest−1 do begin
    ; get the center and defocus of the wavefront distortion
    xc = 1E−1* randomn(seedL, 2)
    defocus = (−1.0)^( floor(2.0* randomu(seedL)))
    defocus = defocus * (1.0D−5)*( randomu(seedL) + 1.0)

    for displacement = 0, 1 do begin
        for HoleConfig = 0, 1 do begin
            time0 = systime(1)
            ; spectral width
            dW = 100D−6
            dW = 55.26D−6
            dWTotal = 3.2*dW
            ndW = 200
            dWStep = dWTotal/ndW

            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            ; specify parameters of model: length units − (mm)
            inputArrSize = (1.5D−3)*1024
            wavelengthPeak = 820D−6
            ;deltaZ = 31D0
            ;deltaZ = 10.43D0
            deltaZ = 10.00D0
            holesize = 150D−3
            N1 = 1024
            pi = acos(0.0D)*2.0D
            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

            outputArrFinal = dblarr(N1, N1)
            outputArrPeak = outputArrFinal

            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            ; get spatial array coordinates
            dx = (inputArrSize)/N1
            x = ( dindgen(N1)# replicate(1.0D, N1) − N1/2)*dx
            y = ( dindgen(N1)## replicate(1.0D, N1) − N1/2)*dx
            OPD = (defocus/2.0)*((x − xc(0))^2.0 + (y − xc(1))^2.0)
            if (displacement eq 0) then OPD = OPD*0.0D
            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            ; get spectral array coordinates
            f0 = findgen(N1) − (N1/2 − 1)
            f1A = shift(f0, −(N1/2 − 1) )/(N1*dx)
            ;f1A = shift(f0, −511)/(N1*(dx*N1))
            freqX = f1A# replicate(1.0D, N1)
            freqY = f1A## replicate(1.0D, N1)
            freqR2 = freqX^2 + freqY^2
            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
            ; get input mask
            IntIn = 0.0*x

Jul 23, 07 3:48 Page 1/3Chp4_Fresnel_diffraction_Broadband_centroid.pro
            r = sqrt((x)^2 + y^2)
            IntIn = IntIn + double(r le holesize/2.0)
            if (HoleConfig eq 0) then begin
                for i = 0, 5 do begin
                    angle = i*pi/3.0
                    pitch = 430E−3
                    r = sqrt((x − pitch* cos(angle))^2 + (y − pitch* sin(angle))^2
)
                    IntIn = IntIn + double(r le holesize/2.0)
                endfor
            endif
            ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

            window, 0
            window, 1

            for k = −ndW, ndW do begin
                wavelength = wavelengthPeak + k*dWStep
                ;amplitudeE = exp(−1.0*((wavelength − wavelengthPeak)/(dW))^2.0 
)
                amplitudeE = exp(−0.25*((wavelength − wavelengthPeak)/(dW))^2.0 
)

                ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                ; get propagator
                PExponent = −1.0D*pi*wavelength*deltaZ*freqR2
                TDeltaZ = COMPLEX( cos(PExponent), sin(PExponent), / DOUBLE)
                ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                ; get input field
                phase = OPD*2.0*pi/wavelength
                EIn = sqrt(IntIn) * COMPLEX( cos(phase), sin(phase), / DOUBLE)
                ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

                ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                ; Perform propagation to get output field and intensity
                F1 = FFT(Ein, / DOUBLE)
                F2 = TDeltaZ*F1
                Eout = FFT(F2, /INVERSE, / DOUBLE)
                IntOut = ( abs(Eout))^2
                ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
                if (k eq 0) then outputArrPeak = IntOut
                outputArrFinal = outputArrFinal + IntOut
                wset, 0
                plot, IntOut(N1/4:3*N1/4, N1/2)/ max(IntOut(N1/4:3*N1/4, N1/2))
                wset, 1
                plot, outputArrFinal(*, N1/2)/ max(outputArrFinal(N1/4:3*N1/4, N1
/2))
                timeNow = systime(1)
                print, [test_number, displacement, HoleConfig, k, wavelength, am
plitudeE^2, timeNow − time0, timeNow − time1]
                wait, 0.001

            endfor

            window, 0
            tvscl, IntIn(N1/4:3*N1/4, N1/4:3*N1/4)
            window, 1

Jul 23, 07 3:48 Page 2/3Chp4_Fresnel_diffraction_Broadband_centroid.pro
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            tvscl, IntOut(N1/4:3*N1/4, N1/4:3*N1/4)

            wset, 0
            plot, outputArrPeak(3*N1/8:5*N1/8, N1/2)/ max(outputArrPeak(3*N1/8:5*
N1/8, N1/2))
            wset, 1
            plot, outputArrFinal(3*N1/8:5*N1/8, N1/2)/ max(outputArrFinal(3*N1/8:
5*N1/8, N1/2))
            window, 2
            x2 = dblarr(N1/8)
            for i = 0, N1/8 − 1 do x2(i) = total(outputArrPeak(i*8:(i+1)*8 − 1, 
N1/2−4:N1/2+3))
            x3 = dblarr(N1/8)
            for i = 0, N1/8 − 1 do x3(i) = total(outputArrFinal(i*8:(i+1)*8 − 1,
N1/2−4:N1/2+3))
            N2 = N1/8
            plot, x2(3*N2/8:5*N2/8)/ max(x2(3*N2/8:5*N2/8))
            window, 3
            plot, x3(3*N2/8:5*N2/8)/ max(x3(3*N2/8:5*N2/8))

;            Final1 = outputArrFinal
;            Peak1 = outputArrPeak

            dirData = ’ D:\SciWord\Thesis\data\chapter_4\cross_talk_broadband_L3’
            outfilename = dirData + ’ \cross_talk_displ_test_number_’  + string(test_numb
er, format = ’ (I3.3)’) $
                                    + string(displacement, format = ’ (I2.2)’) + $
                                    ’ HoleConfig_’ + string(HoleConfig,  format = ’
(I2.2)’) + ’ .dat’
            openw, outunit, outfilename,  / GET_LUN
            writeu, outunit, long(N1)
            writeu, outunit, Ein
            writeu, outunit, OPD
            writeu, outunit, IntIn
            writeu, outunit, outputArrFinal
            writeu, outunit, outputArrPeak
            free_lun, outunit
;            writeu, outunit, long(N1)
;            writeu, outunit, Final1
;            writeu, outunit, Final2
;            writeu, outunit, Peak1
;            writeu, outunit, Peak2
;            free_lun, outunit

        endfor
    endfor
endfor
end
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192 APPENDIX B. COMPUTER CODE

B.3 FEM of ITM and CP thermal lens at the

HOPTF

The source code listed in this section was used to produce the finite element

prediction of the wavefront distortion in the cavity at the HOPTF. The de-

focus was determined from this wavefront distortion and is plotted in Figure

5.16.

The five files listed here are as follows:

1. FEM_Using_Spiricon.pro

The main code for that runs the finite element model.

2. solvecrosssectionalareafem.pro

Solve the Cross Sectional Area on the end face.

3. Create_V_FEM.pro

A procedure to create a variable to hold the volume elements.

4. CreateSurfaceAreaArrayFEM.pro

Create an array storing the Surface Area elements seen by each cell in

the 3D mesh of the FEM.

5. CreateThermalConductM.pro

Procedure to determine the CrossSectional area between cells divided

by the length between nodes of cells
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N1k = 121
Fit1 = 0

Ntype = 1      ; if Ntype = 1 then set power to be constant
WType = 1      ; if Wtype = 1 then set beam size to be constant
mat1 = 1
if (mat1 eq 1 ) then material = ’ sapphire’ else material = ’ fused_silca’

if (STRCMP(material, ’ sapphire’) eq 1) then begin
;    ThermalConductivity = 33.0
;    Text = 300.0
;    density = 3980.0
;    SpecificHeat = 757.0
    ThermalConductivity = 46.0
    Text = 300.0
    density = 3970.0
    SpecificHeat = 775.0
    SBConstant = 0.75*5.67E−8
    alpha = 3.6
    radius = 0.05
    height = 0.05
endif else begin
    ThermalConductivity = 1.38
    Text = 300.0
    density = 2202.0
    SpecificHeat = 745.0
    SBConstant = 0.75*5.67E−8
    alpha = 3.6
    radius = 0.08
    height = 0.017
endelse

;radius = 0.05
;height = 0.05
waistX =  0.0083
waistY = 0.0083

; determine cold cavity beam size
waistX = Get_Beam_Size(1D9, 720.0, 77.0, 1.064D−6)
waistY = waistX

if (WType eq 1) then begin
   waistX = 0.0080
   waistY = 0.0080
endif

NnodesR = N1k
NnodesZ = 27
dx = 2.0*radius/ double(NnodesR−2.0)
dy = dx
dz = height/ double(NnodesZ−2.0)

dNW = round(waistX/dx)

;dz = height/double(NnodesZ−2−1)
CrossX = − radius − dx + dx*( dindgen(NnodesR)+0.5)
CrossZ = −height/2.0 − dz + dz*( dindgen(NnodesZ)+0.5)
;CrossZ = −height/2.0 − dz + dz*(dindgen(NnodesZ))

Jul 19, 07 0:24 Page 1/8FEM_Using_Spiricon.pro
window, 4

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Create the Volume and CrossSectional Area arrays
SolveCrossSectionalAreaFEM, AreaEnd, LocationArrXY, radius, CrossX
AreaEndOld = AreaEnd
AreaEnd = AreaEnd + double(AreaEnd eq 0.0)*10000.0
V = Create_V_FEM(AreaEnd, height, NNodesZ)

; Create the Surface Area Array
CreateSurfaceAreaArrayFEM, SurfaceArea, AreaEndOld, radius, CrossX, CrossZ

print, ’ Starting thermal conductivity matrix’
wait, 0.001
; Create the Thermal Conductivity Matrix
CreateThermalConductM, ThermalConductM, radius, CrossX, CrossZ, LocationArrXY, A
reaEndOld
print, ’  End thermal matrix’

; Clear unnecessary variables
;Delvar, LocationArrXY, AreaEndOld, AreaEnd
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ThermalConductM = ThermalConductivity*ThermalConductM
SurfaceArea = SurfaceArea*SBConstant

TempArr = dblarr(NNodesR, NNodesR, NNodesZ) + Text
PArr = dblarr(NNodesR, NNodesR, NNodesZ)
;PArr(NNodesR/2−5:NNodesR/2+5, NNodesR/2−5:NNodesR/2+5, 1:NNodesZ−2) = 100000.0

OffsetXi = 0.000
OffsetXf = 0.000
Power = 1.0

time0 = systime(1)
for i = 1, NNodesZ − 2 do begin

    OffsetX = OffsetXi + (i−0.5)/(NNodesZ − 2.0)*(OffSetXf − OffSetXi)

    OffsetY = 0.000
    CrossX2 = CrossX# replicate(1.0D, NNodesR)
    XMin = sqrt(2.0)*(CrossX2 − OffSetX − dx/2.0)/waistX
    XMax = sqrt(2.0)*(CrossX2 − OffSetX + dx/2.0)/waistX
    CrossY2 = CrossX## replicate(1.0D, NNodesR)
    YMin = sqrt(2.0)*(CrossY2 − OffSetY − dx/2.0)/waistY
    YMax = sqrt(2.0)*(CrossY2 − OffSetY + dx/2.0)/waistY

    PArrEnd = 0.25*Power*(erf(Xmin) − erf(XMax))* $
                                 (erf(Ymin) − erf(Ymax))
    ;PArrEnd = PArrEnd * 0.5*(sin(2.0*CrossX2/0.005) + 1.0)
    ;PArrEnd = heat_Beam_FEM(NNodesR, Fit1)

    PArrEnd = ParrEnd * double(AreaEndOld gt 0.0)

    PArr(*, *, i) = height*alpha*PArrEnd(*, *)/(NNodesZ − 2.0)
endfor
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time1 = systime(1)
print, time1−time0
;wait, 1000

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

print, ’ hi’

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; load spiricon data
DirToAnalyzeHS = string( dblarr(13))

nDirToAnalyze = size(DirToAnalyzeHS, / N_ELEMENTS)

SpiriconDataFiles = DirToAnalyzeHS
ThursFiles = FILE_SEARCH(" D:\Hartmann − Shared Documents\Spiricon\2007−03−08", ’ 2007*.txt’, CO
UNT = ncount1)
SpiriconDataFiles(0:ncount1−1) = ThursFiles(*)
FriFiles = FILE_SEARCH(’ D:\Hartmann − Shared Documents\Fri Afternoon Folder’, ’ 2007−3*−9−*.txt’,
 COUNT = ncount2)
SpiriconDataFiles(ncount1:ncount1+ncount2−1) = FriFiles(*)
FriFilesCP = FILE_SEARCH(’ D:\Hartmann − Shared Documents\Fri Afternoon Folder’, ’ 2007−03−09.txt’
, COUNT = ncount2)
SpiriconDataFiles(nDirToAnalyze−1) = FriFilesCP(*)

DirIndex = 0
fileFEM = ’ D:\Hartmann − Shared Documents\Spiricon\FEM_’ + string(DirIndex, format = ’ (I3.3)
’)
FILE_MKDIR, fileFEM

        ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−
        ; copy Spiricon file into a temporary directory and lose the time string
s at the start
        filenameSpir = SpiriconDataFiles(DirIndex)
        filenameTemp = " c:\\temp\\Copied_Spiricon_file.txt"
        strIn = ""
        nLines = FILE_LINES(filenameSpir)

        openr, outunit1, filenameSpir, / GET_LUN
        openw, outunit2, filenameTemp, / GET_LUN
        for i = 0, nLines − 1 do begin
           readf, outunit1, strIn
           strIn = STRMID(strIN, 11)
           printf, outunit2, strIn
        endfor
        free_lun, outunit2
        free_lun, outunit1
        ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

        ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
        ; open temporary file and load data
        if (DirIndex eq 12) then nDims = 8 else nDims = 6
        dataSpir = dblarr(nDims, nLines)
        openr, outunit, fileNameTemp, / GET_LUN
        readf, outunit, dataSpir
        free_lun, outunit
        timeSpir = dblarr(nLines)
        timeSpir(*) = dataSpir(0, *)
        timeSpir = timeSpir − timeSpir(0)

Jul 19, 07 0:24 Page 3/8FEM_Using_Spiricon.pro
        nSpirData = nLines
        ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

        print, timeSpir
;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

dt = 0.0005
Q = dblarr(NNodesR, NNodesR, NNodesZ)
diffT = dblarr(1)
window, 0
window, 1
window, 2
TempOld = TempArr

TestDiff1 = 0.0
TestDiff2 = 0.0
count = 1
EnergyArr = TempArr*density*V*SpecificHeat

period = 200.0
w0 = 2.0*!Pi/period
TimeExpired = 0.0
TimeArr =[0.0]
NLimit = 7L*10L^6
TimeNew = 100.1

TimeNextRecord = 0.5
dtOld = 0.5
tCritical = density*SpecificHeat*radius^2.0/ThermalConductivity

RecordTempArrHot = 0
RecordTempArrCold = 0
RecordImage = 0

if (ntype eq 1) then begin
   n1 = nLines/2
   CurrentPower = dataSpir(1, n1)
endif else begin
   CurrentPower = dataSpir(1, 0)
endelse
CurrentTimeIndex = 0

OPDData = dblarr(4, NLimit)

;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; Start iteration of FEM
for i = 1L, NLimit do begin

    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    ; update energy−flow matrix
    Q = 0.0*Q
    Q(1 : NNodesR − 1, *, * ) = temporary(Q(1 : NNodesR − 1, *, * )) + (TempArr(
0 : NNodesR − 2, *, * ) − $
          TempArr(1 : NNodesR − 1, *, * ))*ThermalConductM(0, 1 : NNodesR − 1, *
, * )
    Q(0 : NNodesR − 2, *, * ) = temporary(Q(0 : NNodesR − 2, *, * )) + (TempArr(
1 : NNodesR − 1, *, * ) − $
          TempArr(0 : NNodesR − 2, *, * ))*ThermalConductM(2, 0 : NNodesR − 2, *
, * )
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    Q(*, 1 : NNodesR − 1, * ) = temporary(Q(*, 1 : NNodesR − 1, * )) + (TempArr(
*, 0 : NNodesR − 2, * ) − $
          TempArr(*, 1 : NNodesR − 1, * ))*ThermalConductM(3, *, 1 : NNodesR − 1
, * )
    Q(*, 0 : NNodesR − 2, * ) = temporary(Q(*, 0 : NNodesR − 2, * )) + (TempArr(
*, 1 : NNodesR − 1, * ) − $
          TempArr(*, 0 : NNodesR − 2, * ))*ThermalConductM(1, *, 0 : NNodesR − 2
, * )

    Q(*, *, 0 : NNodesZ − 2) = temporary(Q(*, *, 0 : NNodesZ − 2 )) + (TempArr(*
, *, 1 : NNodesZ − 1 ) − $
          TempArr(*, *, 0 : NNodesZ − 2 ))*ThermalConductM(5, *, *, 0 : NNodesZ 
− 2)
    Q(*, *, 1 : NNodesZ − 1) = temporary(Q(*, *, 1 : NNodesZ − 1 )) + (TempArr(*
, *, 0 : NNodesZ − 2 ) − $
          TempArr(*, *, 1 : NNodesZ − 1 ))*ThermalConductM(4, *, *, 1 : NNodesZ 
− 1)
    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    ; Add power to energy−flow matrix
    Q = temporary(Q) + PArr*CurrentPower/100.0 
    Q = temporary(Q) − SurfaceArea*(TempArr^4.0 − Text^4.0)

  
    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    ; update energy and temperature arrays
    EnergyArr = temporary(EnergyArr) + Q*dt
    TempArr = EnergyArr/(density*SpecificHeat*V)
    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

    wset, 0
    if (count le 5) then begin
       TestDiff1 = TestDiff1 + max( abs(TempArr − TempOld)/TempOld)/10.0
    endif else begin
       TestDiff2 = TestDiff2 + max( abs(TempArr − TempOld)/TempOld)/10.0
    endelse
    count = count + 1
    TimeExpired = TimeExpired + dt

    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    ; update FEM with real data
    if (TimeExpired gt TimeSpir(CurrentTimeIndex + 1)) then begin
       if (CurrentTimeIndex lt nSpirData−1) then begin
          CurrentTimeIndex = CurrentTimeIndex + 1
          if (nType eq 1) then CurrentPower = CurrentPower else CurrentPower = d
ataSpir(1, CurrentTimeIndex)
          fileOUT = fileFEM + ’ \\FEM_constW_’ + material + string(ntype, format =
 ’ (I2.2)’) + ’ _PRL_’ + string(CurrentTimeIndex, format = ’ (I4.4)’) + ’ .raw’

          openw, outunit, fileOUT, / GET_LUN
          writeu, outunit, byte(N1k)
          writeu, outunit, TimeExpired
          writeu, outunit, double(CrossX)
          OPD = total(TempArr(*, NNodesR/2, *), 3)
          OPD = OPD − OPD(1)
          writeu, outunit, OPD
          free_lun, outunit
          print, systime(0)
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          CurrentBeamSize = dataSpir(3, CurrentTimeIndex)
          if (CurrentBeamSize lt 3200.0) then begin
             ; solve for beam size at ITM
             mag = 0.00918612/(3145.0)
             q1Inv = COMPLEX(−1/720.0, (1.064E−6)/(3.14159*(CurrentBeamSize*mag)
^2.0))
             q1 = 1.0/q1Inv
             q2 = (q1 + 77.0)
             q2Inv = 1.0/q2
             ImgPart = IMAGINARY(q2Inv)
             w2 = sqrt( abs((1.064E−6)/(3.14159*ImgPart)) )

             print, " Beam Size at ITM = ", w2*1000.0
             ;waistX = w2
             ;waistY = w2

             for k1 = 1, NNodesZ − 2 do begin

                 OffsetX = OffsetXi + (k1−0.5)/(NNodesZ − 2.0)*(OffSetXf − OffSe
tXi)

                 OffsetY = 0.000
                 CrossX2 = CrossX# replicate(1.0D, NNodesR)
                 XMin = sqrt(2.0)*(CrossX2 − OffSetX − dx/2.0)/waistX
                 XMax = sqrt(2.0)*(CrossX2 − OffSetX + dx/2.0)/waistX
                 CrossY2 = CrossX## replicate(1.0D, NNodesR)
                 YMin = sqrt(2.0)*(CrossY2 − OffSetY − dx/2.0)/waistY
                 YMax = sqrt(2.0)*(CrossY2 − OffSetY + dx/2.0)/waistY

                 PArrEnd = 0.25*Power*(erf(Xmin) − erf(XMax))* $
                                              (erf(Ymin) − erf(Ymax))
                 ;PArrEnd = PArrEnd * 0.5*(sin(2.0*CrossX2/0.005) + 1.0)
                 ;PArrEnd = heat_Beam_FEM(NNodesR, Fit1)

                 PArrEnd = ParrEnd * double(AreaEndOld gt 0.0)

                 PArr(*, *, k1) = height*alpha*PArrEnd(*, *)/(NNodesZ − 2.0)
             endfor

          endif
       endif
    endif
    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−

    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    ; record data at appropriate times
    if ((TimeExpired ge TimeNextRecord) OR (RecordImage eq 1)) then begin
       RecordImage = 0
       TimeNextRecord = TimeNextRecord * (tCritical/dtOld)^(1.0D/50.0)
       TempTotal = ( total(TempArr, 3)*dz*(2.6*10.0^(−6.0)))/(6.33*10.0^(−7.0))
    endif
    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

    if (i mod 10) eq 0 then begin
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       ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−
       ; check that time interval of FEM is small enough
       if (TestDiff2 lt TestDiff1) then dt = dt*1.1 else dt = dt/1.8
       if (dt le 0.0005) then dt = 0.0005
       if (TestDiff2 lt 1.0E−14) then i = NLimit + 20L
       ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−

       ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−
       ; print and plot updated data
       print, i, dt, TimeExpired, total(SurfaceArea*(TempArr^4.0 − Text^4.0))/ to
tal(PArr) , $
                     max(TempArr) − TempArr(1, NNodesR/2, 1), max(TempArr) − Tex
t
       TestDiff2 = 0.0
       TestDiff1 = 0.0
       count = 1
       wset, 0
       plot, TempArr(1:NNodesR−2, NNodesR/2, NNodesZ/2) − TempArr(1, NNodesR/2, 
NNodesZ/2)
       oplot, TempArr(1:NNodesR−2, NNodesR/2, NNodesZ/2) − TempArr(1, NNodesR/2,
 NNodesZ/2), PSYM = 6
       oplot, TempArr(NNodesR/2, 1:NNodesR−2, NNodesZ/2) − TempArr(NNodesR/2, 1,
 NNodesZ/2)
      ; print, k1
       ;print, TempArr(NNodesR/2, NNodesR/2, 3) − Text
       wait, 0.001
       diffT = [diffT, TempArr(NNodesR/2, NNodesR/2, NNodesZ/2) − Text]
       TimeArr = [TimeArr, TimeExpired]
       ;diffT = [diffT, alog10((max(TempArr) − TempArr(1, NNodesR/2, 1))/total(S
urfaceArea*(TempArr^4.0 − Text^4.0))) ]
;       wset, 1
;       plot, TimeArr, diffT
       ;dt = dt*1.05
      ; print, dt
       wset, 2
       plot, TempArr(NNodesR/2, NNodesR/2, *) − Text
       ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−

    endif
    TEmpOld =TempArr
    result = total( FINITE(TempArr, /NAN)+ FINITE(TempArr, /INFINITY))
    ;print, result
    wait, 0.001

    OPD = total(TempArr(*, NNodesR/2, *), 3)
    OPD = OPD − OPD(1)
    result = poly_fit(CrossX(NNodesR/2 − dNW:NNodesR/2 + dNW), OPD(NNodesR/2 − d
NW:NNodesR/2 + dNW), 2, STATUS = statRes)
    OPDData(0, i−1) = TimeExpired
    OPDData(1, i−1) = CurrentPower
    OPDData(2, i−1) = result(2)*2.0

    offset = 0.12* tan(10.0* acos(0.0D)/90.0)
    offsetX = round(offset/dx)

    OPD = total(TempArr(*, NNodesR/2 + offsetX, *), 3)
    OPD = OPD − OPD(NNodesR/2)
    result = poly_fit(CrossX(NNodesR/2 − dNW:NNodesR/2 + dNW), OPD(NNodesR/2 − d
NW:NNodesR/2 + dNW), 2, STATUS = statRes)
    OPDData(3, i−1) = result(2)*2.0
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    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    ; plot any remaining data
    if (i mod 10) eq 0 then begin
       wset, 1
       plot, OPDData(0, 0:i−1), OPDData(1, 0:i−1)
       wset, 4
       plot, OPDData(0, 0:i−1), OPDData(2, 0:i−1)
       oplot, OPDData(0, 0:i−1), OPDData(3, 0:i−1), THICK = 2
    endif
    ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

endfor

end
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; Solve the Cross Sectional Area on the end face

pro SolveCrossSectionalAreaFEM, AreaEnd, LocationArrXY, radius, CrossX

s = size(CrossX)
Nnodes = s(1)

dx = CrossX(1) − CrossX(0)
x = CrossX# replicate(1.0, Nnodes)
y = CrossX## replicate(1.0, Nnodes)
r = sqrt(x^2 + y^2)

dxL = 2.0*radius/(NNodes − 3.0)
xLoc = −radius − dxL + dxL* findgen(NNodes)

LocationArrXY = dblarr(2, Nnodes, Nnodes)
LocationArrXY(0, *, *) = x
LocationArrXY(1, *, *) = y
;LocationArrXY(0, *, *) = xLoc#replicate(1.0D, NNodes)
;LocationArrXY(1, *, *) = xLoc##replicate(1.0D, NNodes)

rInside = double(r le radius)
area = rInside
rInSm = smooth(rInside, 3)

SumA = total(rInSm eq 1.0)*(dx*dx)
rEdge = (rInSm gt 0.0) AND (rInSm lt 1.0)
EdgeList = where(rEdge)
s = size(EdgeList)
s1 = s(1)

N3 = 800.0
for i = 0, s1 − 1 do begin
   xc = x(EdgeList(i))
   yc = y(EdgeList(i))
   XYPosn = ARRAY_INDICES(x, EdgeList(i))

   x1 = (dx*( dindgen(N3) + 0.5)/ double(N3) − dx/2.0 + xc)# replicate(1.0D, N3)
   y1 = (dx*( dindgen(N3) + 0.5)/ double(N3) − dx/2.0 + yc)## replicate(1.0D, N3)
   r1 = sqrt(x1^2 + y1^2)

   rTemp = double(r1 le radius)
   TempSum = total(rTemp)*(dx*dx)/ double(N3^2)
   SumA = SumA + TempSum
   area(EdgeList(i)) = TempSum/(dx*dx)
   if ( total(rTemp) ne 0.0) then begin
      LocationArrXY(0, XYPosn(0), XYPosn(1)) = total(rTemp*x1)/ total(rTemp)
      LocationArrXY(1, XYPosn(0), XYPosn(1)) = total(rTemp*y1)/ total(rTemp)
   endif
   print, i, "  of ", string(s1, format = ’ (i4)’), "  − Calculating surface area"
   wait, 0.0001

endfor

AreaEnd = double(area*dx*dx)

end
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; function to create variable V to hold the volume elements

function Create_V_FEM, AreaEnd, height, NnodesZ

s = size(AreaEnd)
s1 = s(1)

V = dblarr(s1, s1, NnodesZ)
for i = 0, NnodesZ − 1 do begin
   V(*, *, i) = AreaEnd(*, *)
endfor

return, V*height/(NNodesZ − 2.0)

end
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; Create an array storing the Surface Area elements seen by each cell.

pro CreateSurfaceAreaArrayFEM, SurfaceArea, AreaEndOld, radius, CrossX, CrossZ

dx = CrossX(1) − CrossX(0)
dz = CrossZ(1) − CrossZ(0)

sR = size(CrossX)
sZ = size(CrossZ)
Nr = sR(1)
Nz = sZ(1)

; Create an array of the EDGES of the node boxes
;x0 = CrossX(0) − 0.5*dx
;z0 = CrossZ(0) − 0.5*dz

x = CrossX# replicate(1.0, Nr)
y = CrossX## replicate(1.0, Nr)

; surface area is nominally zero, except for those nodes whose grid cells inters
ect the radius
; determine the area in each cell by working through the list of cells given abo
ve

; Option A: Get list of fractional area elements from AreaEndOld. Search for the
 cross−sections from ListOut2
; Option B: Determine the cells which border the intersection points in ListOut2

; Option A
AreaEndNew = AreaEndOld/(dx*dx)
EdgeList = where( (AreaEndNew lt 0.999999) AND (AreaEndNew gt 0.0) )
;ListIndices = (ListOut2 − x0)/dx
s = size(EdgeList)
s1 = s(1)
;

SurfaceArea = AreaEndOld*0.0
for i = 0, s1 − 1 do begin

   ; get centre and edges of cell
   xc = x(EdgeList(i))
   yc = y(EdgeList(i))

   xmin = xc − dx/2.0
   xmax = xc + dx/2.0
   ymin = yc − dx/2.0
   ymax = yc + dx/2.0

   ; Determine the intercepts of the gridlines and the circle
   if (radius^2.0 ge xmin^2.0) then begin
      xminYVals = [ sqrt(radius^2.0 − xmin^2.0), − sqrt(radius^2.0 − xmin^2.0)]
   endif else begin
      xminYVals = [10.0^6.0, 10.0^6.0]
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   endelse

   if (radius^2.0 ge xmax^2.0) then begin
      xmaxYVals = [ sqrt(radius^2.0 − xmax^2.0), − sqrt(radius^2.0 − xmax^2.0)]
   endif else begin
      xmaxYVals = [10.0^6.0, 10.0^6.0]
   endelse

   if (radius^2.0 ge ymax^2.0) then begin
      ymaxXVals = [ sqrt(radius^2.0 − ymax^2.0), − sqrt(radius^2.0 − ymax^2.0)]
   endif else begin
      ymaxXVals = [10.0^6.0, 10.0^6.0]
   endelse

   if (radius^2.0 ge ymin^2.0) then begin
      yminXVals = [ sqrt(radius^2.0 − ymin^2.0), − sqrt(radius^2.0 − ymin^2.0)]
   endif else begin
      yminXVals = [10.0^6.0, 10.0^6.0]
   endelse

   crossPts = dblarr(2, 4)
   crossN = 0

   ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
   ; Check positions of intercepts − do they line on cell edges?
   if ((xminYvals(0) ge ymin) AND (xminYVals(0) le ymax)) then begin
      crossPts(*, crossN) = [xmin, xminYVals(0)]
      crossN = crossN + 1
   endif
   if ((xminYvals(1) ge ymin) AND (xminYVals(1) le ymax)) then begin
      crossPts(*, crossN) = [xmin, xminYVals(1)]
      crossN = crossN + 1
   endif

   if ((xmaxYvals(0) ge ymin) AND (xmaxYVals(0) le ymax)) then begin
      crossPts(*, crossN) = [xmax, xmaxYVals(0)]
      crossN = crossN + 1
   endif
   if ((xmaxYvals(1) ge ymin) AND (xmaxYVals(1) le ymax)) then begin
      crossPts(*, crossN) = [xmax, xmaxYVals(1)]
      crossN = crossN + 1
   endif
   ;−−−−
   ;−−−−
   if ((yminXVals(0) ge xmin) AND (yminXVals(0) le xmax)) then begin
      crossPts(*, crossN) = [yminXVals(0), ymin]
      crossN = crossN + 1
   endif
   if ((yminXVals(1) ge xmin) AND (yminXVals(1) le xmax)) then begin
      crossPts(*, crossN) = [yminXVals(1), ymin]
      crossN = crossN + 1
   endif

   if ((ymaxXVals(0) ge xmin) AND (ymaxXVals(0) le xmax)) then begin
      crossPts(*, crossN) = [ymaxXVals(0), ymax]
      crossN = crossN + 1
   endif
   if ((ymaxXVals(1) ge xmin) AND (ymaxXVals(1) le xmax)) then begin
      crossPts(*, crossN) = [ymaxXVals(1), ymax]
      crossN = crossN + 1
   endif
   ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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   ; rearrange values so that the first two form and arc and the second two form
 an arc
   if (crossN gt 2) then begin
      crossPtsX = dblarr(4)
      crossPtsY = dblarr(4)
      crossPtsX(*) = crossPts(0, *)
      crossPtsY(*) = crossPts(1, *)

      XTrue = 0
      YTrue = 0
      Val = 0
      for j = 0, 2 do begin
         for k = j+1, 3 do begin
            if (crossPtsX(j) eq crossPtsX(k)) then begin
               XTrue = 1
               Val = [j, k]
            endif
            if (crossPtsY(j) eq crossPtsY(k)) then begin
               YTrue = 1
               Val = [j, k]
            endif
         endfor
      endfor

      rX = sqrt((crossPtsX − crossPtsX(Val(0)))^2.0 + (crossPtsY − crossPtsY(Val
(0)))^2.0)
      rX(Val(1)) = 100.0*radius
      NearList = sort(rX)

      crossOut = 0.0*crossPts
      crossOut(*, 0) = crossPts(*, Val(0))
      crossOut(*, 1) = crossPts(*, NearList(1))
      crossOut(*, 2) = crossPts(*, NearList(2))
      crossOut(*, 3) = crossPts(*, Val(1))

      crossPts = crossOut
   endif

   ; get the arc length − taking into account the fact that the arc might cross 
2Pi
   ArcLength = abs( atan(crossPts(1, 0), crossPts(0, 0)) − atan(crossPts(1, 1), 
crossPts(0, 1)) )
   if (ArcLength ge !Pi) then ArcLength = 2.0*!Pi − ArcLength

   ; if there are two points where the circle crosses the cell wall, then add th
e two arcs
   if (crossN gt 2) then begin
      ArcLength2 = abs( atan(crossPts(1, 2), crossPts(0, 2)) − atan(crossPts(1, 
3), crossPts(0, 3)) )
      if (ArcLength2 ge !Pi) then ArcLength2 = 2.0*!Pi − ArcLength2
      ArcLength = ArcLength + ArcLength2
   endif

   SurfaceArea(EdgeList(i)) = ArcLength*radius*dz
endfor

SurfaceAreaOut = dblarr(Nr, Nr, Nz)

for i = 1, Nz−2 do begin
   if ((i eq 1) OR (i eq Nz−2)) then begin
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      SurfaceAreaOut(*, *, i) = AreaEndOld(*, *)
   endif

   SurfaceAreaOut(*, *, i) = SurfaceAreaOut(*, *, i) + SurfaceArea(*, *)
endfor

SurfaceArea = SurfaceAreaOut

end
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; procedure to determine the CrossSectional area between cells divided by the le
ngth between nodes of cells

pro CreateThermalConductM, ThermalConductM, radius, CrossX, CrossZ, LocationArrX
Y, AreaEndOld

dx = CrossX(1) − CrossX(0)
dz = CrossZ(1) − CrossZ(0)

sR = size(CrossX)
sZ = size(CrossZ)
Nr = sR(1)
Nz = sZ(1)

ThermalConductM = dblarr(6, Nr, Nr, Nz)

CrossSectionBetweenCells = dblarr(4, Nr, Nr)

for i = 0, Nr − 1 do begin
   for j = 0, Nr − 1 do begin

      xmin = CrossX(i) − dx/2.0
      xmax = CrossX(i) + dx/2.0

      ymin = CrossX(j) − dx/2.0
      ymax = CrossX(j) + dx/2.0

      ; [South−West, North−West, North−East, South−East
      InsideR = [ sqrt(xmin^2.0 + ymin^2.0) le radius, sqrt(xmin^2.0 + ymax^2.0) 
le radius, $
                 sqrt(xmax^2.0 + ymax^2.0) le radius, sqrt(xmax^2.0 + ymin^2.0) 
le radius]

      ; West
      if (InsideR(0) AND InsideR(1)) then begin
         CrossSectionBetweenCells(0, i, j) = dx
      endif else begin
         if ((xmin^2 le radius^2.0) AND ( abs( abs(xmin) − abs(radius))/ abs(radiu
s) ge 1.0E−5  )) then begin
         MidPt = sqrt(radius^2.0 − xmin^2)
         MidPt = [MidPt, −MidPt]
         Select = where((MidPt lt ymax) AND (MidPt ge YMin))

         if (InsideR(0) OR InsideR(1) OR abs(MidPt(0) − MidPt(1)) le dx ) then b
egin
            if (InsideR(0)) then begin
               CrossSectionBetweenCells(0, i, j) = abs(ymin − MidPt(Select(0)) )
            endif
            if (InsideR(1)) then begin
               CrossSectionBetweenCells(0, i, j) = abs(ymax − MidPt(Select(0)) )
            endif
            if ( abs(MidPt(0) − MidPt(1)) le dx ) then begin
               CrossSectionBetweenCells(0, i, j) = abs(MidPt(0) − MidPt(1) )
            endif
         endif
         endif
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      endelse

      ; North
      if (InsideR(1) AND InsideR(2)) then begin
         CrossSectionBetweenCells(1, i, j) = dx
      endif else begin
         if ( (ymax^2.0 le radius^2.0) AND ( abs( abs(ymax) − abs(radius))/ abs(ra
dius) ge 1.0E−5  )) then begin
         MidPt = sqrt(radius^2.0 − ymax^2)
         MidPt = [MidPt, −MidPt]
         Select = where((MidPt lt xmax) AND (MidPt ge xmin))

         if (InsideR(1) OR InsideR(2) OR abs(MidPt(0) − MidPt(1)) le dx ) then b
egin
            if (InsideR(1)) then begin
               CrossSectionBetweenCells(1, i, j) = abs(xmin − MidPt(Select(0)) )
            endif
            if (InsideR(2)) then begin
               CrossSectionBetweenCells(1, i, j) = abs(xmax − MidPt(Select(0)) )
            endif
            if ( abs(MidPt(0) − MidPt(1)) le dx ) then begin
               CrossSectionBetweenCells(1, i, j) = abs(MidPt(0) − MidPt(1) )
            endif
         endif
         endif

      endelse

      ; East
      if (InsideR(2) AND InsideR(3)) then begin
         CrossSectionBetweenCells(2, i, j) = dx
      endif else begin
         if ((xmax^2.0 le radius^2.0) AND ( abs( abs(xmax) − abs(radius))/ abs(rad
ius) ge 1.0E−5  )) then begin
         MidPt = sqrt(radius^2.0 − xmax^2)
         MidPt = [MidPt, −MidPt]
         Select = where((MidPt lt ymax) AND (MidPt ge ymin))

         if (InsideR(2) OR InsideR(3) OR abs(MidPt(0) − MidPt(1)) le dx ) then b
egin
            if (InsideR(2)) then begin
               CrossSectionBetweenCells(2, i, j) = abs(ymax − MidPt(Select(0)) )
            endif
            if (InsideR(3)) then begin
               CrossSectionBetweenCells(2, i, j) = abs(ymin − MidPt(Select(0)) )
            endif
            if ( abs(MidPt(0) − MidPt(1)) le dx ) then begin
               CrossSectionBetweenCells(2, i, j) = abs(MidPt(0) − MidPt(1) )
            endif
         endif
         endif

      endelse

      ; South
      if (InsideR(3) AND InsideR(0)) then begin
         CrossSectionBetweenCells(3, i, j) = dx
      endif else begin
         if ((ymin^2.0 le radius^2.0) AND ( abs( abs(ymin) − abs(radius))/ abs(rad
ius) ge 1.0E−5  )) then begin
         MidPt = sqrt(radius^2.0 − ymin^2)
         MidPt = [MidPt, −MidPt]
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         Select = where((MidPt lt xmax) AND (MidPt ge xmin))

         if (InsideR(3) OR InsideR(0) OR abs(MidPt(0) − MidPt(1)) le dx ) then b
egin
            if (InsideR(3)) then begin
               CrossSectionBetweenCells(3, i, j) = abs(xmax − MidPt(Select(0)) )
            endif
            if (InsideR(0)) then begin
               CrossSectionBetweenCells(3, i, j) = abs(xmin − MidPt(Select(0)) )
            endif
            if ( abs(MidPt(0) − MidPt(1)) le dx ) then begin
               CrossSectionBetweenCells(3, i, j) = abs(MidPt(0) − MidPt(1) )
            endif
         endif
         endif

      endelse

   endfor
   wait, 0.001
endfor

;ThermalConductM = [West, North, East, South, Back, Front]

West = [[1, Nr−1], [0, Nr−1], [0, Nr−2], [0, Nr−1]]
South = [[0, Nr−1], [1, Nr−1], [0, Nr−1], [0, Nr−2]]
East = [[0, Nr−2], [0, Nr−1], [1, Nr−1], [0, Nr−1]]
North = [[0, Nr−1], [0, Nr−2], [0, Nr−1], [1, Nr−1]]

for m = 1, Nz − 2 do begin
   for i = 0, 5 do begin
      ; Fill in the sides
      if (i le 3) then begin
         if (i eq 0) then Dist = West
         if (i eq 1) then Dist = North
         if (i eq 2) then Dist = East
         if (i eq 3) then Dist = South

         Imin1 = Dist(0, 0)
         Imax1 = Dist(1, 0)
         Jmin1 = Dist(0, 1)
         Jmax1 = Dist(1, 1)

         Imin2 = Dist(0, 2)
         Imax2 = Dist(1, 2)
         Jmin2 = Dist(0, 3)
         Jmax2 = Dist(1, 3)

         LArr = (LocationArrXY(*, Imin1:Imax1, Jmin1:Jmax1) − LocationArrXY(*, I
min2:Imax2, Jmin2:Jmax2))^2.0
         Larr2 = dblarr(Imax1−Imin1+1, Jmax1−Jmin1+1)
         LArr2(*, *) = sqrt(Larr(0, *, *) + Larr(1, *, *))

         ThermalConductM(i, IMin1:IMax1, Jmin1:Jmax1, m) = CrossSectionBetweenCe
lls(i, Imin1:Imax1, Jmin1:Jmax1)*dz/Larr2
      endif

Nov 05, 05 16:54 Page 3/4CreateThermalConductM.pro
      ; Fill in the back surface (except between cells 0 and 1 in z direction − 
no thermal conduction)
      if ( i eq 4) then begin
         if (m ne 1) then begin
            ThermalConductM(i, *, *, m) = AreaEndOld(*, *)/dz
         endif
      endif

      ; Fill in the front surface (except between cells Nz−2 and Nz−1 in z dirn 
− no thermal conduction)
      if ( i eq 5) then begin
         if (m ne Nz − 2) then begin
            ThermalConductM(i, *, *, m) = AreaEndOld(*, *)/dz
         endif
      endif
   endfor
endfor

;print, ’hi’
;wait, 10

end

Nov 05, 05 16:54 Page 4/4CreateThermalConductM.pro

Printed by Aidan Brooks

Monday July 23, 2007 2/2CreateThermalConductM.pro



Appendix C

Relevant papers

C.1 An off-axis Hartmann sensor for the mea-

surement of absorption-induced wavefront

distortion in advanced gravitational wave

interferometers

A. Brooks, P.J. Veitch, J. Munch and T.L. Kelly, Gen. Relativ. Gravit.,

37,1575-1580 (2005)

This paper was superseded by the work discussed in Chapter 6.
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C.2 Ultra-sensitive wavefront measurement us-

ing a Hartmann sensor

Aidan F. Brooks, Thu-Lan Kelly, Peter J. Veitch, and Jesper Munch, Opt.

Express 15 (16), 10370-10375 (2007).
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Ultra-sensitive wavefront measurement
using a Hartmann sensor

Aidan F. Brooks, Thu-Lan Kelly, Peter J. Veitch, and Jesper Munch
The University of Adelaide, Adelaide, SA, 5005

aidan.brooks@adelaide.edu.au

Abstract: We describe a Hartmann sensor with a sensitivity ofλ /15,500
at λ = 820nm. We also demonstrate its application to the measurement of
an ultra small change in wavefront and show that the result agrees with that
expected to withinλ /3,300.

© 2007 Optical Society of America

OCIS codes: (120.4640) Optical instruments; (010.7350) Wave-front sensing; (350.4800) Op-
tical standards and testing
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1. Introduction

Hartmann wavefront sensors, first described in 1904 [1], andparticularly theShack-Hartmann
derivatives, have enjoyed a recent surge of popularity due to improvements in the speed, quality
and size of CCD arrays. They are currently used for a variety of applications, including lens
metrology [2], ophthalmology [3], adaptive optics [4] and the measurement of thermal lensing
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[5] [6]. The measurement of wavefront distortion induced byabsorption in the optics of ad-
vanced gravitational wave interferometers is a particularly demanding application, requiring a
sensitivity equivalent to at leastλ /600 atλ = 820nm [7].

The type of Hartmann sensor used for an application is usually dictated by the intensity of the
available light source. Shack-Hartmann sensors use micro-lens arrays to sample the wavefront
and thus optimize the light collection efficiency but they are susceptible to imperfections in
the micro-lens array [8]. A Hartmann wavefront sensor, by contrast, samples the wavefront,W,
using an opaque plate containing an array of holes, the Hartmann plate, as shown schematically
in part of Fig. 1. It is therefore less light efficient but it issimple to optimize and, as shown
here, capable of superior performance.

Interferometer
read−out

Optical fibre
from SLD

L

HeNe laser
Hartmann plate

Translation stage

z0

W

CCD

Hartmann sensor

Fig. 1. A schematic of the Hartmann wavefront sensor and the system used to test it. The
sensor consists of a Hartmann plate mounted a distance L froma CCD. It was illuminated
by a wavefrontW emitted from a fiber-coupled super luminescent diode (SLD),the free
end of the which was mounted on a micrometer-controlled translation stage.

The rays created by the Hartmann plate propagate normal to the incident wavefrontW, to the
active surface of a CCD where they produce an array of spots. If the local slope of the wave-
front changes then the positions of the spots will change. Dividing the transverse displacement
of each spot by the ’lever-arm’ propagation length L yields the gradient of the wavefront change
at each hole (see [9] for example), and the wavefront change,∆W , can be determined by nu-
merically integrating this gradient field. While knowledgeof the initial wavefront would then
enable the new wavefront to be calculated, in this paper we donot make any assumptions about
the initial wavefront but rather consider only the change,∆W , in the wavefront as required for
the measurement of thermal lensing in gravitational wave interferometers.

The position of each spot is specified by its centroid, the precision of which is maximized by
ensuring that each spot consists of a large number of pixels and that each pixel acquires a large
number of photoelectrons in the available integration time. This minimizes the effects of dark
current, CCD read-out noise, non-uniformity in pixel response and photoelectron shot noise.
Since Hartmann wavefront sensors naturally provide large spot sizes, they should be able to
provide high sensitivity measurements of wavefront changes. Indeed, a Hartmann sensor that
has a reproducibility (sensitivity) ofλ /1500 atλ = 13.4nm [10] and a scanning Hartmann
sensor that has a sensitivity ofλ /500 atλ = 1064nm [11] have been reported. The accuracy
of the scanning Hartmann sensor was estimated to beλ /50 atλ = 1064nm. In this paper, we
describe a detailed investigation of the optimization of a Hartmann wavefront sensor (H-WFS)
and demonstrate large improvements in the sensitivity and accuracy of this type of sensor.
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2. Hartmann wavefront sensor

The camera used in our sensor is a 12-bit digitized, 1024×1024 pixel CCD camera that has a
nominal dynamic range of 66 dB (11 bits) and a nominal pixel spacing of 12µm. The actual
average pixel spacing was measured by translating the camera sideways using a micrometer-
controlled translation stage and observing the displacement on the CCD of a fixed diffraction
pattern, yielding a value of 11.975±0.005µm.

The Hartmann plate was made from 50µm thick brass plate into which 150µm diameter
holes in a uniform hexagonal-close-packed array spaced 430µm apart were laser drilled. It was
mounted on the body of the camera and the distance between theplate and the active surface
of the CCD, the lever arm L, was calibrated by illuminating the sensor with two laser beams
separated by a precisely measured angle and measuring the average displacement between the
two spot patterns, giving L= 10.43± 0.02mm. The hole diameter, pitch, pattern and value
of L were chosen to ensure that cross-talk between neighbouring spots was negligible while
maintaining sensitivity.

A weighted centroiding algorithm was used to determine the spot positions [12]:
xc = ∑i p2

i xi/∑i p2
i andyc = ∑i p2

i yi/∑i p2
i wherepi is the digital number, directly proportional

to the number of photoelectrons, andxi andyi are the coordinates of theith pixel. The summa-
tion range of the algorithm was adjusted to minimize the variance in the centroids. In practice,
this meant using only pixels within a box that was 15 pixels square, which is 10% larger than
the hole diameter. Simulations indicate that cross-talk due to diffraction should introduce a
systematic error of less than 0.1% for the defocus measurement discussed in this paper.

All measurements reported here were recorded after a 3 hour warm-up period to reduce the
effects of thermal expansion of the sensor. However, there was a residual 0.5 mHz oscillation
in the output of the H-WFS due to a periodic variation in the temperature of the sensor with
an amplitude of 150 mK, caused by the cycling of the room temperature. The magnitude of
the oscillation is consistent with thermal expansion of theHartmann plate. To reduce the effect
of this variation, we used data recorded at the turning points of the oscillation for the analysis
reported below.

The H-WFS was tested using the system shown in Fig. 1, in whichit was illuminated by
light emitted from an optical fiber with a 50µm core and 0.36 NA that was coupled to an 820
nm super-luminescent diode, which had a full-width-half-maximum coherence length of about
5µm. A Michelson interferometer was used to measure changes inthe distance,z0, between
the light source and the H-WFS with a precision of 50 nm.

3. Results

The statistics of the noise in the H-WFS were investigated byilluminating the CCD with the
output from the fiber at three different intensity levels. A short integration time was used to
ensure that the dark current was negligible. We observed that the fluctuation,∆p, in the digital
number in a pixel,p, was well described by∆p ∝ p0.5, and thus the noise has Poissonian
statistics. A relative fluctuation of 0.25% was obtained forthe maximum digital number (4095),
indicating a maximum photoelectron count of approximately1.6×105, which is similar to the
specified electron well depth of each pixel, confirming that the dominant noise is photoelectron
shot noise.

Numerical simulation predicts that the RMS uncertainty in the centroid position due to pho-
toelectron shot noise in a single Hartmann image should be about 0.25% of a pixel, or about
30 nm, if the brightest pixel in each spot is full. If the noisein sequential Hartmann images
is uncorrelated then the RMS error in the displacement of a centroid, σ∆y, will be a fac-
tor of 21/2 larger. The RMS wavefront difference betweenadjacent holes, σ∆W , is given by
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σ∆W = σ∆y hp/L, wherehp is the spacing between adjacent holes in the Hartmann plate.The
RMS wavefront error for a zonal reconstruction acrossall holes, assuming uncorrelated noise,

is given byC1/2
pd ×σ∆W , whereCpd is the noise coefficient developed by Southwell [13], which

is dependent on the number,Nholes, and arrangement of holes.
The wavefront error was measured using the system shown in Fig. 1 while keepingz0 con-

stant. Spot centroids were calculated for consecutive Hartmann images separated in time by 15
s and the average prism in each image was removed. These zero-prism centroids were used to
calculate the error in the wavefront change. A typical map ofthe wavefront change, which has
an RMS error ofλ /1450, is shown in Fig. 2. The RMS error for these maps varied between
λ /1000 andλ /2000 which is consistent with the shot noise limit andCpd = 0.2, calculated for
Nholes= 263 used in this example.

Fig. 2. Measured single-frame wavefront error map over a 7.2mm×7.2mm region.

If the statistical characteristics of the noise do not vary with time then the wavefront error
should be reduced by averaging over multiple Hartmann images. To test this, we recorded a
sequence of 2000 Hartmann images at 30 images/second and removed the global prism from
each image. A set of reference centroids was then calculatedby averaging overNref = 1000
images, consisting of the first and last 500 images. The central 1000 images were used to
calculate sets of centroids averaged overNavg images, whereNavg = 1, . . . ,990. This process
ensured that the reference and average centroids were statistically independent. Theσ∆W is
plotted in Fig. 3, showing thatσ∆W < λ /15,500.

Theσ∆W is plotted in Fig. 3. Also plotted is the result of a numericalsimulation that assumes
stationary random noise and in which the only free parameteris theNavg = 1 error. For small

Navg, the error decreases asN1/2
avg, as expected, and it asymptotically approaches a value thatis a

factorNref times smaller than theNavg = 1, the limit due to the noise in the reference centroids.
Note the good agreement between the measurement and the numerical simulation except for
Navg > 200 where the measured error is slightly larger than that predicted.

The RMS wavefront error across all holes forNavg= 990 wasλ /15,500, which is larger than

the valueC1/2
pd ×σ∆W = λ /21,000 predicted using the simulated data and the Southwell noise

coefficient appropriate for this measurement. These discrepancies are probably due to the effect
of the low-frequency temperature fluctuation described above.

The ability of the H-WFS to measure a small (modal) change in the wavefront,∆W , was
demonstrated by translating the fiber light source. As shownin Fig. 4, translating the source a
distance∆z from an initial positionz0 displaces the spot on the CCD by∆y(h), assuming that
the change in the slope of each wavefront across the hole is small. The expected local gradient
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Fig. 3. The improvement in H-WFS sensitivity due to averaging overNavg Hartmann im-
ages. The solid curve shows the improvement predicted by a numerical simulation assum-
ing only random, stationary noise in the spot centroids.

of the wavefront change can then be calculated using

∂ (∆W )

∂h
=

∆y
L

=
∆zy0

(z0−∆z) (z0 + L)
=

∆zh
(z0−∆z) z0

= S h (1)

whereh is the position of the hole in the Hartmann plate,S is the primary aberration defocus
and we have considered only one dimension for clarity.

Fig. 4. Schematic diagram showing the displacement of the Hartmann spot on the CCD due
to a change in the distance between the fiber end and the H-WFS.

Unfortunately, the 0.5 mHz oscillation in the output of the H-WFS resulted in a synchronous
oscillation in the calculated defocus. We therefore continously recorded Hartmann images at 40
Hz and translated the fibre by about 10µm every 5-10 minutes. The translation that occurred
nearest a turning point of the 0.5 mHz oscillation was then selected for analysis, as this ensured
that the average temperature of the H-WFS was the same beforeand after the translation. Plots
of the local gradient of the wavefront change for∆z = 9.60± 0.05µm, versus the transverse
position,y0, of each spot are shown in Fig. 5. They show a linear relationship between the local
gradient and transverse position as predicted by Equation 1, and the improvement in sensitivity
due to averaging.

The defocus due to the source translation can be calculated using the slope,m, of the line-of-
best-fit to this data andS = m(z0 + L)/z0. The defocus for the 1-image and 5000-image aver-
ages are−1.3±0.2×10−3m−1 and−1.159±0.007×10−3m−1 at 95% confidence level. The
uncertainty inS when averaged over 5000 images is equivalent to an uncertainty in the wave-
front sag of 0.1 nm(λ /9300) over the CCD aperture (≈ 10 mm), which is roughly twice the
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Fig. 5. Measured local gradient of the wavefront change versus spot position at the CCD,y0,
due to translation of the fiber light source, averaged over (left) 1 and (right) 5000 Hartmann
images.

previously measuredλ /15,500 due probably to the non-stationary noise during the extended
acquistion time.

The accuracy of the defocus measurement can be determined bycomparing the measured de-
focus with that predicted using Equation 1, but this comparison requires an accurate measure-
ment of z0. The distance between the source and the H-WFS was determined by exploiting
the non-linear dependence of the local gradient on∆z: analyzing Hartmann images recorded
with large∆z and determining the value ofz0 that would produce the best agreement between
the measured local gradient and that predicted by Equation 1. With this approach, we found
z0 = 91.7±0.2 mm, giving an expected defocus of−1.14± 0.01× 10−3m−1, which differs
from the measurement by about 1.7%. This error is equivalentto λ /3,300 and could be ex-
plained by a change in average temperature of the H-WFS of order 10 mK.

4. Conclusion

We have demonstrated that the H-WFS can measure changes in a wavefront with a single-frame
sensitivity ofλ /1450, which is primarily limited by shot noise. We have also shown that the
sensitivity can be improved toλ /15,500 by averaging multiple Hartmann images. Finally, we
demonstrated its application to the measurement of a small wavefront change due to defocus
with a precision of 7× 10−6m−1 and established that the sensor is accurate to within about
2.0×10−5m−1.

Together with the simplicity of the H-WFS, these results show that it is ideal for high preci-
sion and high accuracy measurement of wavefront changes, and represent a large improvement
in the state-of-the-art. The H-WFS clearly exceeds the requirement for the measurement of
absorption-induced wavefront distortion in advanced gravitational wave interferometers.
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